WO2018014466A1 - 一种用于桩基高应变检测的落锤高度调节装置 - Google Patents

一种用于桩基高应变检测的落锤高度调节装置 Download PDF

Info

Publication number
WO2018014466A1
WO2018014466A1 PCT/CN2016/105034 CN2016105034W WO2018014466A1 WO 2018014466 A1 WO2018014466 A1 WO 2018014466A1 CN 2016105034 W CN2016105034 W CN 2016105034W WO 2018014466 A1 WO2018014466 A1 WO 2018014466A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
bracket
abutting
pile foundation
height adjusting
Prior art date
Application number
PCT/CN2016/105034
Other languages
English (en)
French (fr)
Inventor
顾盛
王鹏飞
蔡俊华
吴玉龙
Original Assignee
昆山市建设工程质量检测中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山市建设工程质量检测中心 filed Critical 昆山市建设工程质量检测中心
Priority to US15/751,263 priority Critical patent/US10590622B2/en
Publication of WO2018014466A1 publication Critical patent/WO2018014466A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0033Weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants

Definitions

  • the invention relates to the field of building engineering, in particular to a drop height adjusting device for high strain detection of a pile foundation.
  • Basic engineering is an important part of construction engineering. Its quality directly affects the safety of the entire building structure and is related to the safety of people's lives and property. With the continuous increase of building height and the increasing complexity of building structure system, pile foundation has become one of the most important basic forms, and the bearing capacity of single pile is the most important technical index of foundation pile. At present, the main detection methods for single pile bearing capacity are static load test method and high strain method. The bearing capacity of the piles measured by the static load test is intuitive and reliable, but it has many shortcomings, such as: high labor cost, high cost and long test time.
  • the high strain method has the unique advantages of detecting the quality of piles, such as: no need to stack, low manpower, low cost, short inspection time, high efficiency, and can complete the test of two main parameters of pile bearing capacity and pile integrity. Therefore, the high strain method is becoming more and more widely used.
  • the basic principle of high-strain detection is to impact the top of the pile with a heavy hammer to make enough relative displacement between the piles and soils to fully stimulate the soil resistance around the pile and the support force of the pile end, and the force on both sides of the pile body installed below the pile top.
  • the acceleration sensor receives the stress wave signal of the pile, and applies the stress wave theory to analyze the processing force and the speed time history curve, thereby determining the bearing capacity of the pile and evaluating the quality integrity of the pile body.
  • the weight of the hammer should not be lower than 2% of the characteristic value of the vertical ultimate bearing capacity of the pile.
  • the size of the drop is the peak of influence and An important factor in the speed of the pile top, if the distance is too small, then The amount is insufficient; and the drop distance is too large, the force peak is too large, and it is easy to crush the top of the pile.
  • the general drop distance control is between 1.0m and 2.0m, and should not be greater than 2.5m. It is best to make the heavy hammer low hit.
  • the hammer weight and the hammer drop distance should be selected so that the hammer penetration of the pile is between 2mm and 6mm. . If the penetration is too small, the strength of the soil is not sufficient. If it is too large, the wave theory is not satisfied, and the waveform distortion is measured.
  • the original high-strain detection devices for piles used cranes to directly lift and unhook the heavy hammer.
  • the sudden release of the heavy hammer caused a strong rebound of the boom, causing serious damage to the crane arm, and even a rollover accident, causing very serious consequences.
  • Some pile-pile high-strain detection devices do not have a drop-weight guide device. When the hammer is unhooked, there will be different degrees of sway, and it is not easy to align the center of the pile, which may cause severe eccentricity of the hammer and cause the test data to fail. Neither of these methods meets the requirements of the new specification "Technical Specifications for Building Pile Testing" JGJ 106-2014.
  • the first type of device is a sling type gantry type guide hammer frame structure, and the height of the drop weight is adjusted by the aid of the crane through a plurality of ear plates provided on the side of the wire rope and the gantry side. After the height of the drop hammer is adjusted, the weight of the weight is transmitted to the gantry through the wire rope.
  • the device has significant disadvantages: 1. Although the steel cable has high strength but small modulus of elasticity, it produces large tensile deformation under the action of heavy hammer. When the hook is used for unhooking, the cable suddenly contracts to make the hook appear severe. Rebound, causing impact damage to the hook or other parts of the device, and even the danger of surrounding personnel; 2.
  • the second device is a card slot type gantry type guide hammer frame structure.
  • the two side columns are subjected to the weight of the weight and serve as a guiding device.
  • the weight passes through the hole in the inner side of the column to realize the fixing and height adjustment of the weight.
  • the weight of the hammer is transmitted to the columns on both sides of the gantry through the decoupling device.
  • the object of the present invention is to overcome the above problems existing in the prior art and to provide a drop height adjusting device for high strain detection of a pile foundation.
  • the present invention overcomes the significant shortcomings of the existing detecting device, and adopts a fast and accurate height adjustment. Carry out tests to improve the efficiency of obtaining qualified test signals, greatly Improve the accuracy and efficiency of high strain detection of piles.
  • a falling weight height adjusting device for high strain detection of a pile foundation comprising a beam bracket, wherein a middle portion of the surface of the beam bracket is provided with a relief hole, and a track strip is disposed in the escape hole, and the two surfaces of the track strip are disposed
  • Each of the track strips is further provided with an abutting slider, and the abutting slider and the tooth set cooperate to define the position of the track strip.
  • the tooth sets on the two surfaces of the track strip are symmetrically disposed.
  • the tooth set is composed of a uniformly disposed stopper, the block is disposed on a side surface of the abutting slider, and a first abutting slope is disposed, and the first abutting slope is disposed upward, The bottom of the abutting slider corresponding to the first abutting slope is provided with a second abutting slope.
  • one end of the abutting slider is disposed on one side of the surface of the track strip, and the other end is connected to the telescopic shaft.
  • the telescopic shaft is disposed through the fixed baffle, and the telescopic joint between the fixed baffle and the abutting slider A spring is sleeved on the shaft, and the abutting slider is disposed on the rail base, and the rail base is disposed on the surface of the beam bracket.
  • the telescopic shaft is connected to the rope at one end of the fixed baffle, the rope is disposed through the guiding device, the guiding device comprises a positioning plate, the positioning plate is provided with a wire hole, and the positioning plate side A guide wheel is provided.
  • the invention further includes a detecting bracket fixed to the top of the detecting bracket, wherein the detecting bracket is provided with a weight, and the weight is connected with the bottom of the track strip through the unhooking device.
  • the weight side surface is symmetrically disposed with two guiding portions, the guiding portion is disposed on the guiding rod, and the guiding rod is provided with a plurality of U-shaped connecting plates, and the U-shaped connecting plate surface is provided with A plurality of horizontal adjustment holes, the U-shaped connecting plate is fixed on the auxiliary column, and the auxiliary column is disposed on the detecting bracket.
  • the detecting bracket includes an upper bracket and a lower bracket, and a plurality of guiding pieces are disposed on a side of the top of the lower bracket.
  • the track strip is made of steel.
  • the design of the drop weight height adjustment device can ensure the smooth and smooth adjustment of the weight upward adjustment. After the completion of the knot, the height of the drop hammer is quickly fixed, which will not cause the height loss caused by the height fixing or the sudden drop of the danger;
  • the spacing of the track teeth can be set to a fixed value, for example, 100mm, that is, one tooth is 100mm. In the field inspection, only the number of teeth is needed to calculate the adjustment height, no manual measurement is needed, which is convenient and accurate;
  • the adjustable drop weight guiding device can adjust the horizontal spacing of the two guiding rods to meet the effective guiding of different weights and weights;
  • the whole test only needs 2 to 3 people to operate.
  • the decoupling device can realize remote decoupling to ensure the safety of personnel and equipment.
  • Figure 1 is a partial structural view of a beam bracket of the present invention
  • FIG. 2 is a schematic structural view of a portion of a rail base of the present invention.
  • Figure 3 is a schematic structural view of a portion of the detecting stent of the present invention.
  • Figure 4 is a schematic view showing the structure of a guide bar portion of the present invention.
  • a drop height adjusting device for high strain detection of a pile foundation includes a beam bracket 1 , and a relief hole 2 is disposed in a middle portion of the surface of the beam bracket, and a crawler strip 3 is disposed in the avoidance hole, and the crawler belt is provided.
  • the tooth set 4 is disposed on both surfaces of the strip, and the abutment slider 5 is further disposed on both sides of the track strip, and the abutting slider and the tooth set cooperate to define the position of the track strip.
  • a relief hole is opened in the middle of the platform of the beam bracket, and a track strip is disposed in the middle, and the track strip can be hung on the abutting slider through the tooth group, so that the weight of the track strip is all transferred to the beam bracket. Therefore, after the height adjustment of the drop weight is completed, the weight of the weight and the track strip before the falling weight is borne by the beam bracket.
  • the material of the track strip is steel, that is, steel track. Through the material characteristics, it can effectively bear the weight of the weight, safety and stability, and improve the service life.
  • the tooth sets on the two surfaces of the track strip are symmetrically arranged to ensure uniform weight sharing.
  • One end of the abutting slider is disposed on one side of the surface of the track strip, and the other end is connected to the telescopic shaft 8.
  • the telescopic shaft is disposed through the fixed baffle 9.
  • the spring 10 is sleeved on the telescopic shaft between the fixed baffle and the abutting slider.
  • the abutting slider is disposed on the rail base 11, and the rail base is disposed on the surface of the beam bracket, and the rail base defines that the abutting slider can only move in the direction in which the rail is guided, and the elastic force of the spring makes the abutting slider always Push to the track strip.
  • the tooth set is composed of a uniformly arranged stopper 6 , and the stopper is located on one side of the abutting slider, and the first abutting slope 7 is disposed, and the first abutting slope is disposed upward, and the first abutting slope corresponds to the corresponding A second abutting slope 26 is disposed at the bottom of the slider.
  • the design makes the crawler strip move upward along the track base due to the abutting and pressing of the first abutting slope and the second abutting slope when the crawler strip is lifted upwards, that is, the rise of the crawler strip can be automatically avoided, each gear
  • the block can move the abutting slider once, wherein the spring setting ensures that the abutting slider can be automatically reset, ensuring that the crawler strip and the abutting slider cooperate to form a self-locking effect when the crawler strip rises at any height, which is safe and reliable. .
  • the telescopic shaft is connected to the rope 12 at one end of the fixed baffle, and the rope is disposed through the guiding device 13.
  • the guiding device comprises a positioning plate 14 which is provided with a threaded hole for the rope to pass through to ensure the position of the rope is fixed, and the positioning plate is A guide wheel 15 is provided on the side.
  • the steel track was adjusted downwards and connected to the weight placed on the top of the pile by a decoupling at the bottom of the steel track. Since the abutting slider has a self-locking effect, the abutting slider has a blocking effect, and after being guided by the rope, only the pulling rope is required.
  • the cable can ensure that the abutting slider is always unlocked, so that the track can be adjusted downwards; the beam bracket is placed at a high height, so that the rope can be turned by the guiding device, which is convenient for the following personnel to operate, and can also be connected with the winding motor. To achieve control operations, convenient and safe.
  • the utility model further comprises a detecting bracket 16, the beam bracket is fixed on the top of the detecting bracket, the detecting bracket is provided with a weight 17, and the weight is connected with the bottom of the track strip through the unhooking device 27.
  • the weight of the hammer has a standard drop space and height.
  • Two guiding portions 18 are symmetrically disposed on the side surface of the weight.
  • the guiding portion is disposed on the guiding rod 19.
  • the guiding rod is provided with a plurality of U-shaped connecting plates 20, and the surface of the U-shaped connecting plate is provided with a plurality of horizontal adjusting holes 21, U-shaped
  • the connecting plate is fixed on the auxiliary column 22, and the auxiliary column is disposed on the detecting bracket.
  • the guiding portion is arranged on the guiding rod so that the weight can only move along the guiding rod setting direction, thereby ensuring that the horizontal position when the weight falls is constant, is not affected by external factors, and improves data accuracy; and the U-shaped connection
  • the plate can stably install the guide rod, and the horizontal adjustment hole on the surface can adjust the distance between the two guide rods, that is, can adapt to the weight guide of different sizes, and has high adaptability.
  • the detecting bracket includes an upper bracket 23 and a lower bracket 24, and a plurality of guiding pieces 25 are disposed on the sides around the top of the lower bracket.
  • the upper bracket will slide down adaptively along the guide piece, ensuring the relative position between the upper bracket and the lower bracket, which is more convenient for assembly.
  • the unhooking device at the bottom of the steel track is used to unhook the weight and the weight falls.
  • the unlocking part does not affect the connection between the crane and the track strip, and has no effect on the crane. Therefore, personnel safety and equipment life are guaranteed.

Abstract

一种用于桩基高应变检测的落锤高度调节装置,包括横梁支架(1),横梁支架(1)表面中部设置有避让孔(2),避让孔(2)内设置有履带条(3),履带条(3)的两个表面上均设置有齿牙组(4),履带条(3)两侧还设置有抵接滑块(5),抵接滑块(5)与齿牙组(4)相互配合限定履带条(3)的位置。

Description

一种用于桩基高应变检测的落锤高度调节装置 技术领域
本发明涉及建筑工程领域,具体涉及一种用于桩基高应变检测的落锤高度调节装置。
背景技术
基础工程是建筑工程的重要组成部分,其质量直接影响整个建筑结构的安全,关系到人民生命财产安全。随着建筑高度的不断增加和建筑结构体系复杂程度增大,桩基础已成为最主要的基础形式之一,而单桩承载力是基桩最重要的技术指标。目前,单桩承载力主要的检测方法有静载试验法和高应变法。静载试验测得的基桩承载力直观、可靠,但其存在诸多缺点,如:耗费人力多、成本高、试验时间长。
高应变法检测基桩质量有其独特的优点,如:无需堆载,人力少、费用低、检测时间短、效率高,能同时完成基桩承载力和基桩完整性两个主要参数的测试,因此,高应变法越来越得到广泛运用。
高应变检测的基本原理是:用重锤冲击桩顶,使桩土间产生足够的相对位移,以充分激发桩周土阻力和桩端支承力,通过安装在桩顶以下桩身两侧的力和加速度传感器接收桩的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判定桩的承载力和评价桩身质量完整性。
为了使桩土间产生一定的相对位移,需要在桩上作用有较大的能量,必须用重锤配合一定的落距锤击桩顶来实现。高应变试验成功的关键是信号质量以及信号中的信息是否充分。所以应根据每锤信号质量初步判别采集到的信号是否满足检测目的的要求。因此,调整锤重和落距是关系到能否采集到合格有用信号的关键,关系试验成败。按照《建筑基桩检测技术规范》JGJ106-2014的要求,锤重应不低于桩单竖向极限承载力特征值的2%,在确定好锤重后,落距大小则是影响力峰值和桩顶速度的重要因素,落距过小,则能 量不足;而落距过大,力峰值过大,易击碎桩顶。一般的落距控制在1.0m~2.0m之间,不宜大于2.5m,最好是重锤低击,锤重和锤落距的选取要使桩的锤击贯入度在2mm~6mm之间。贯入度过小,土的强度发挥不充分,太大则不满足波动理论,实测波形失真。
原先的一些基桩高应变检测装置采用吊机直接将重锤吊起脱钩,重锤突然释放造成吊臂的强烈反弹,对吊车臂造成严重损害,甚至出现翻车事故,造成十分严重的后果;另一些基桩高应变检测装置未设置落锤导向装置,重锤脱钩时将会有不同程度的摇摆,也不易对正桩中心,易造成锤击严重偏心而导致检测数据失效。这两种方法均不符合新规范《建筑基桩检测技术规范》JGJ 106-2014的要求。
现有两种基本符合《建筑基桩检测技术规范》JGJ 106-2014要求的基桩高应变检测装置,但其仍存在诸多缺点。
第一种装置为吊索型龙门式导向锤架结构,通过钢丝绳及龙门架一侧立柱上设置的若干耳板,在吊机的辅助下调节落锤高度。落锤高度调节完成后,重锤自重通过钢丝绳传递至龙门架。该装置存在显著缺点:1、钢索虽强度高但弹性模量小,在大重量的重锤作用下产生较大拉伸变形,在使用脱钩器脱钩时,钢索突然收缩使吊钩出现剧烈反弹,造成吊钩或装置其他部位的撞击损伤,甚至周边人员的危险;2、在调节高度时,需人工测量重锤底部至桩顶的高度调节距离,不易操作;3、钢丝绳固定端与耳板之间必须通过人工操作连接,速度慢,不便利。
第二种装置为卡槽型龙门式导向锤架结构,两边立柱承受重锤重量并兼作导向装置,重锤通过立柱内侧的卡孔,实现重锤的固定和高度调节。锤重通过脱钩器传递给龙门架两侧立柱。在调节高度时,需量测高度调节距离,且脱钩器与龙门架之间的连接安装比较繁琐费劲。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种用于桩基高应变检测的落锤高度调节装置,本发明克服了现有检测装置的显著缺点,通过快速准确的高度调节并进行试验,提高取得合格的测试信号的效率,大大 提高了基桩高应变检测的精度和效率。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种用于桩基高应变检测的落锤高度调节装置,包括横梁支架,所述横梁支架表面中部设置有避让孔,所述避让孔内设置有履带条,所述履带条的两个表面上均设置有齿牙组,所述履带条两侧还设置有抵接滑块,所述抵接滑块与齿牙组相互配合限定履带条的位置。
进一步的,所述履带条的两个表面上的齿牙组对称设置。
进一步的,所述齿牙组由均匀设置的挡块组成,所述挡块位于抵接滑块的一侧面上设置有第一抵接斜面,所述第一抵接斜面朝上设置,所述第一抵接斜面相对应的抵接滑块底部设置有第二抵接斜面。
进一步的,所述抵接滑块一端设置在履带条表面一侧,另一端与伸缩轴连接,所述伸缩轴穿过固定挡板设置,所述固定挡板与抵接滑块之间的伸缩轴上套设有弹簧,所述抵接滑块设置在轨道底座上,所述轨道底座设置在横梁支架表面。
进一步的,所述伸缩轴位于固定挡板一端与绳索连接,所述绳索穿过导向装置设置,所述导向装置包括定位板,所述定位板上设置有过线孔,所述定位板一侧设置有导向轮。
进一步的,还包括检测支架,所述横梁支架固定在检测支架顶部,所述检测支架内设置有重锤,所述重锤与履带条底部通过脱钩器连接。
进一步的,所述重锤侧表面上对称设置有两个导向部,所述导向部设置在导向杆上,所述导向杆上设置有若干U型连接板,所述U型连接板表面设置有若干水平调节孔,所述U型连接板固定在辅助立柱上,所述辅助立柱设置在检测支架上。
进一步的,所述检测支架包括上节支架和下节支架,所述下节支架顶部四周的侧面上设置有若干导向片。
进一步的,所述履带条的材质为钢材。
本发明的有益效果是:
1、落锤高度快速调节装置的设计能够保证重锤向上调节时自由顺畅、调 节完成后落锤高度的快速固定,不会造成高度固定不及时带来的高度损失或突然下掉造成危险;
2、履带齿牙间距可以设置为固定值,例如100mm,即行进一齿为100mm,在现场检测时,仅需计量齿牙个数来计算调节高度,无需人工测量,方便准确;
3、重锤重力由钢履带承受,钢履带轴向刚度大,拉伸变形小,脱钩时,不会如产生类似钢索的剧烈反弹及甩钩情况,操作更加安全;
4、设有可调节式落锤导向装置,使得重锤平稳下落并与基桩对中碰撞;
5、可调节式落锤导向装置可调节两导向杆的水平间距,满足不同重量重锤的有效导向;
6、整个试验仅需2~3人操作即可,脱钩装置可实现远程脱钩,保证人员及设备安全。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的横梁支架部分结构示意图;
图2是本发明的轨道底座部分结构示意图;
图3是本发明的检测支架部分结构示意图;
图4是本发明的导向杆部分结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1至图4所示,一种用于桩基高应变检测的落锤高度调节装置,包括横梁支架1,横梁支架表面中部设置有避让孔2,避让孔内设置有履带条3,履带条的两个表面上均设置有齿牙组4,履带条两侧还设置有抵接滑块5,抵接滑块与齿牙组相互配合限定履带条的位置。在横梁支架这个平台的中部开设避让孔,中间穿设履带条,履带条通过齿牙组可以挂设在抵接滑块上,使得履带条的重量全部转移到横梁支架上。因此,在落锤高度调节完成后,重锤及履带条在落锤前的重量由横梁支架承担。
履带条的材质为钢材,即钢履带,通过材料特性,能够有效承受重锤重量,安全稳定,提高使用寿命。
其中,履带条的两个表面上的齿牙组对称设置,保证重量能够均匀分担。抵接滑块一端设置在履带条表面一侧,另一端与伸缩轴8连接,伸缩轴穿过固定挡板9设置,固定挡板与抵接滑块之间的伸缩轴上套设有弹簧10,抵接滑块设置在轨道底座11上,轨道底座设置在横梁支架表面,轨道底座限定了抵接滑块只能沿其轨道导向的方向运动,通过弹簧的弹力,使得抵接滑块始终被推向履带条。
齿牙组由均匀设置的挡块6组成,挡块位于抵接滑块的一侧面上设置有第一抵接斜面7,第一抵接斜面朝上设置,第一抵接斜面相对应的抵接滑块底部设置有第二抵接斜面26。该设计使得履带条在向上提升时,抵接滑块由于第一抵接斜面与第二抵接斜面的相互抵接挤压而沿轨道底座移动,即可以自动避让履带条的上升,每一个档块都能够使抵接滑块移动一次,其中由于弹簧设置,保证了抵接滑块能够自动复位,保证在履带条上升任意高度时,履带条与抵接滑块配合形成自锁效果,安全可靠。
伸缩轴位于固定挡板一端与绳索12连接,绳索穿过导向装置13设置,导向装置包括定位板14,定位板上设置有过线孔,供绳索穿过,保证绳索的位置固定,定位板一侧设置有导向轮15。在试验开始之前,需将钢履带向下调节,通过钢履带底部的脱钩器与放置在桩顶的重锤连接。由于抵接滑块具有自锁效果,因此抵接滑块存在阻挡作用,通过绳索引导后,只需要拉动绳 索就可以保证抵接滑块始终处于解锁状态,因此能够实现履带向下调节;横梁支架设置位置高度高,因此通过导向装置可将绳索转向,方便下方人员操作,其也可以与收线电机连接,实现操控操作,方便安全。
还包括检测支架16,横梁支架固定在检测支架顶部,检测支架内设置有重锤17,重锤与履带条底部通过脱钩器27连接。以供重锤具有符合标准的下落空间和高度。重锤侧表面上对称设置有两个导向部18,导向部设置在导向杆19上,导向杆上设置有若干U型连接板20,U型连接板表面设置有若干水平调节孔21,U型连接板固定在辅助立柱22上,辅助立柱设置在检测支架上。导向部配合设置在导向杆上,使得重锤只能沿导向杆设置方向移动,因此能够保证重锤下落时的水平位置恒定不变,不受外界因素影响,提高数据准确度;而U型连接板能够使导向杆稳定的安装,其表面的水平调节孔则能够调整两个导向杆之间的距离,即能够适应不同尺寸的重锤导向,适应性高。
检测支架包括上节支架23和下节支架24,下节支架顶部四周的侧面上设置有若干导向片25。在实际使用时,吊车吊装时,由于导向片设计,上节支架会沿导向片自适应下滑,保证了上节支架与下节支架之间的相对位置,更加方便组装。
试验时,使用钢履带底部的脱钩器使重锤脱钩,重锤下落,解锁部分不影响吊车与履带条连接部分,对吊车没有任何影响,因此对人员安全和设备寿命均得到保障。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种用于桩基高应变检测的落锤高度调节装置,其特征在于:包括横梁支架,所述横梁支架表面中部设置有避让孔,所述避让孔内设置有履带条,所述履带条的两个表面上均设置有齿牙组,所述履带条两侧还设置有抵接滑块,所述抵接滑块与齿牙组相互配合限定履带条的位置。
  2. 根据权利要求1所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述履带条的两个表面上的齿牙组对称设置。
  3. 根据权利要求1所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述抵接滑块一端设置在履带条表面一侧,另一端与伸缩轴连接,所述伸缩轴穿过固定挡板设置,所述固定挡板与抵接滑块之间的伸缩轴上套设有弹簧,所述抵接滑块设置在轨道底座上,所述轨道底座设置在横梁支架表面。
  4. 根据权利要求3所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述齿牙组由均匀设置的挡块组成,所述挡块位于抵接滑块的一侧面上设置有第一抵接斜面,所述第一抵接斜面朝上设置,所述第一抵接斜面相对应的抵接滑块底部设置有第二抵接斜面。
  5. 根据权利要求4所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述伸缩轴位于固定挡板一端与绳索连接,所述绳索穿过导向装置设置,所述导向装置包括定位板,所述定位板上设置有过线孔,所述定位板一侧设置有导向轮。
  6. 根据权利要求1所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:还包括检测支架,所述横梁支架固定在检测支架顶部,所述检测支架内设置有重锤,所述重锤与履带条底部通过脱钩器连接。
  7. 根据权利要求6所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述重锤侧表面上对称设置有两个导向部,所述导向部设置在导向杆上,所述导向杆上设置有若干U型连接板,所述U型连接板表面设置有若干水平调节孔,所述U型连接板固定在辅助立柱上,所述辅助立柱设置在检测支架上。
  8. 根据权利要求6所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述检测支架包括上节支架和下节支架,所述下节支架顶部四周的侧面上设置有若干导向片。
  9. 根据权利要求1-8任一项所述的一种用于桩基高应变检测的落锤高度调节装置,其特征在于:所述履带条的材质为钢材。
PCT/CN2016/105034 2016-07-18 2016-11-08 一种用于桩基高应变检测的落锤高度调节装置 WO2018014466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,263 US10590622B2 (en) 2016-07-18 2016-11-08 Drop hammer height adjusting device for high strain detection of pile foundation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610564885.7 2016-07-18
CN201610564885.7A CN106049562B (zh) 2016-07-18 2016-07-18 一种用于桩基高应变检测的落锤高度调节装置

Publications (1)

Publication Number Publication Date
WO2018014466A1 true WO2018014466A1 (zh) 2018-01-25

Family

ID=57187042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105034 WO2018014466A1 (zh) 2016-07-18 2016-11-08 一种用于桩基高应变检测的落锤高度调节装置

Country Status (3)

Country Link
US (1) US10590622B2 (zh)
CN (1) CN106049562B (zh)
WO (1) WO2018014466A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111694A (zh) * 2021-10-13 2022-03-01 四川省公路规划勘察设计研究院有限公司 抗滑桩变形监测装置及失效预警系统
CN114812362A (zh) * 2022-06-29 2022-07-29 湖南城市学院设计研究院有限公司 一种具有防护功能的边坡变形监测装置
CN114934521A (zh) * 2022-06-23 2022-08-23 中国建筑第五工程局有限公司 一种基坑支护桩
CN116122357A (zh) * 2023-04-20 2023-05-16 廊坊市翔宇工程咨询有限公司 一种用于桥梁施工的桩基检测装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106049562B (zh) * 2016-07-18 2018-02-16 昆山市建设工程质量检测中心 一种用于桩基高应变检测的落锤高度调节装置
CN109680731B (zh) * 2018-12-10 2024-03-29 中汽建工(洛阳)检测有限公司 一种便于对中的高应变检测用锤
WO2020167243A1 (en) * 2019-02-12 2020-08-20 Chin Jia Yi Pile set measurement apparatus
CN109706985B (zh) * 2019-02-14 2020-08-11 南通建威建设工程质量检测有限公司 基桩高应变检测用锤击系统
CN111156978B (zh) * 2019-12-30 2022-04-15 江苏科永和工程建设质量检测鉴定中心有限公司 建筑工程垂直度检测装置
CN111535372B (zh) * 2020-05-11 2021-06-11 浙江科圆工程检测有限公司 一种建筑桩基检测用辅助支撑协同装置
CN111637844B (zh) * 2020-05-12 2021-07-06 中铁大桥科学研究院有限公司 基于光纤光栅传感的位移传感器及位移监测装置
CN111693384B (zh) * 2020-06-18 2022-12-06 杭州大地工程测试技术有限公司 用于桩基高应变检测的设备及应用该设备的检测方法
CN111894128B (zh) * 2020-08-15 2021-08-24 广东中博建设工程有限公司 一种装配式建筑框架空心柱节点构造及其施工方法
CN112033826A (zh) * 2020-08-20 2020-12-04 广东稳固检测鉴定有限公司 一种建筑材料检测用耐冲击试验装置
CN112227429B (zh) * 2020-09-21 2022-03-25 台州市建设市政工程检测中心有限公司 基桩动测装置
CN112304196B (zh) * 2020-10-23 2022-03-08 江苏恒一岩土工程技术有限公司 一种高应变检测的落锤高度测量装置
CN112695812A (zh) * 2020-12-09 2021-04-23 山西华晋岩土工程勘察有限公司 一种桩土复合地基承载力检测装置
CN112854316B (zh) * 2021-01-08 2022-02-22 广州市建筑科学研究院有限公司 一种基于声波透射法的首至波声时智能修正方法及装置
CN113006165B (zh) * 2021-03-05 2022-07-29 广州市市政集团有限公司 一种灌注桩超灌监控装置
CN113250253B (zh) * 2021-06-22 2023-03-07 天津大学 一种模拟打桩的离心模型试验装置
CN113640123B (zh) * 2021-08-12 2024-02-13 南通市建设工程质量检测站有限公司 一种桩基抗拔静载试验装置
CN114166100B (zh) * 2021-12-01 2023-09-22 浙江宏宝项目管理咨询有限公司 一种工程监理用平整度检测装置及其使用方法
CN113981977A (zh) * 2021-12-09 2022-01-28 中铁二十二局集团第四工程有限公司 钻孔灌注桩基桩顶标高控制装置
US11608609B1 (en) * 2022-09-14 2023-03-21 Qingdao university of technology Pile-side lateral static load device
CN115855713B (zh) * 2023-03-03 2023-11-21 北京汉林汇融科技服务有限公司 一种橡胶类材料回弹特性检测仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB529328A (en) * 1938-06-06 1940-11-19 M R Hornibrook Pty Ltd An improved pile driving hammer
JPH08210957A (ja) * 1995-02-01 1996-08-20 Japan Steel Works Ltd:The 衝撃内圧試験装置
CN203129118U (zh) * 2013-03-20 2013-08-14 中国水利水电第五工程局有限公司 大型击实仪锁定装置
CN204252175U (zh) * 2014-10-10 2015-04-08 中勘冶金勘察设计研究院有限责任公司 预制桩高应变法检测专用导向装置
CN106049562A (zh) * 2016-07-18 2016-10-26 昆山市建设工程质量检测中心 一种用于桩基高应变检测的落锤高度调节装置
CN205839823U (zh) * 2016-07-18 2016-12-28 昆山市建设工程质量检测中心 一种用于桩基高应变检测的落锤高度调节装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115774A (en) * 1960-06-27 1963-12-31 Shell Oil Co Magnetostrictive drill string logging device
US3200599A (en) * 1960-12-23 1965-08-17 Raymond Int Inc Method for forming piles in situ
US3190110A (en) * 1962-11-26 1965-06-22 Lester V Craycraft Mechanical spike pulse filter for shock machine
US3470701A (en) * 1967-09-19 1969-10-07 Lee A Turzillo Means for making concrete piles
US3498388A (en) * 1967-12-05 1970-03-03 Arthur Jovis Pile driving system
US3824797A (en) * 1971-07-16 1974-07-23 Orb Inc Evacuated tube water hammer pile driving
US3931729A (en) * 1972-03-10 1976-01-13 Frederick Leonard L Dynamic force measuring instrument for foundation pile and casing
NL7405240A (zh) * 1973-04-27 1974-10-29
US3967688A (en) * 1973-08-14 1976-07-06 Mitsubishi Jukogyo Kabushiki Kaisha Fuel injection device for an impact atomization-type diesel pile hammer
NL148971B (nl) * 1974-05-20 1976-03-15 Kooten Bv V Leidgestel voor een heiinrichting.
US3960008A (en) * 1974-12-12 1976-06-01 Goble George G Pile capacity testing means
US4421180A (en) * 1981-02-25 1983-12-20 Orin H. Jinnings Pile driver
US4586366A (en) * 1984-03-14 1986-05-06 Milberger Lionel J Method and apparatus for measuring driving resistance and velocity of piles during driving
US4614110A (en) * 1984-06-08 1986-09-30 Osterberg Jorj O Device for testing the load-bearing capacity of concrete-filled earthen shafts
CA1296925C (en) * 1988-04-07 1992-03-10 Patrick Bermingham Test system for caissons and piles
US5099696A (en) * 1988-12-29 1992-03-31 Takechi Engineering Co., Ltd. Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
US5256003A (en) * 1989-12-26 1993-10-26 Konoike Construction Co., Ltd. Method for automatically driving gravel drain piles and execution apparatus therefor
US5145284A (en) * 1990-02-23 1992-09-08 Exxon Production Research Company Method for increasing the end-bearing capacity of open-ended piles
US5117924A (en) * 1991-01-15 1992-06-02 Berminghammer Corporation Limited Energy transfer unit for a pile driver
US5325702A (en) * 1992-09-16 1994-07-05 Funderingstechnieken Verstraeten B.V. Machine and method for determining the load capacity of foundation piles
US5332047A (en) * 1992-10-01 1994-07-26 John Marino Pile driving apparatus and method
US5581013A (en) * 1993-06-16 1996-12-03 Frederick Engineering Company Method and system for obtaining useful foundation information
US5410905A (en) * 1993-08-12 1995-05-02 Karani; Ron R. Meter for comparing impact hammers
US5549168A (en) * 1995-02-06 1996-08-27 Mgf Maschinen- Und Geraete-Fabrik Gmbh Pile driving apparatus
US5727639A (en) * 1996-03-11 1998-03-17 Lee Matherne Pile driving hammer improvement
US6349590B1 (en) * 1997-09-15 2002-02-26 Yee Kong Wai Method and apparatus for estimating load bearing capacity of piles
US6301551B1 (en) * 1998-10-01 2001-10-09 Pile Dynamics, Inc. Remote pile driving analyzer
US6425713B2 (en) * 2000-06-15 2002-07-30 Geotechnical Reinforcement Company, Inc. Lateral displacement pier, and apparatus and method of forming the same
JP2003194636A (ja) * 2001-12-27 2003-07-09 Mitsubishi Electric Corp 杭の動的載荷装置、杭の動的載荷法および動的載荷試験法
US6981425B2 (en) * 2002-11-22 2006-01-03 Frederick Engineering, Co. Dynamic force measuring instrument having a foil belt transducer
CA2466862C (en) * 2003-05-12 2011-07-26 Bermingham Construction Limited Pile driver with energy monitoring and control circuit
CN100478525C (zh) * 2004-11-12 2009-04-15 丁锦良 一种复合管桩基础的施工方法
CN2914064Y (zh) * 2006-03-14 2007-06-20 广东省建筑科学研究院 高应变动力试桩组合式重锤
KR100779486B1 (ko) * 2006-08-29 2007-11-26 (주)백경지앤씨 말뚝 동재하 시험 장치 및 시험 방법
AU2007333626B2 (en) * 2006-12-19 2014-12-04 Loadtest, Inc. Method and apparatus for testing load-bearing capacity utilizing a ring cell
US8763719B2 (en) * 2010-01-06 2014-07-01 American Piledriving Equipment, Inc. Pile driving systems and methods employing preloaded drop hammer
AU2011255653B2 (en) * 2010-05-18 2015-11-26 Loadtest, Inc. Method and apparatus for testing load-bearing capacity
US20130086974A1 (en) * 2011-10-05 2013-04-11 Pile Dynamics, Inc. Pile testing system
EP2833119B1 (en) * 2012-03-31 2017-03-01 China University Of Mining & Technology (Beijing) Dynamics performance testing system
CN202925573U (zh) * 2012-07-04 2013-05-08 天津原位物探科技有限公司 高应变试桩法锤击系统
US9322758B2 (en) * 2013-04-13 2016-04-26 John Fahd Fadlo Touma Method and apparatus for full scale dynamic footing load test
US9605404B2 (en) * 2013-05-29 2017-03-28 Glen G. Hale High strain dynamic load testing procedure
CN203373786U (zh) * 2013-07-17 2014-01-01 广东省建筑科学研究院 高应变自由落锤试验用的龙门式导向锤架
GB2551774B (en) * 2016-06-30 2019-02-20 Dawson Const Plant Ltd Pile Hammer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB529328A (en) * 1938-06-06 1940-11-19 M R Hornibrook Pty Ltd An improved pile driving hammer
JPH08210957A (ja) * 1995-02-01 1996-08-20 Japan Steel Works Ltd:The 衝撃内圧試験装置
CN203129118U (zh) * 2013-03-20 2013-08-14 中国水利水电第五工程局有限公司 大型击实仪锁定装置
CN204252175U (zh) * 2014-10-10 2015-04-08 中勘冶金勘察设计研究院有限责任公司 预制桩高应变法检测专用导向装置
CN106049562A (zh) * 2016-07-18 2016-10-26 昆山市建设工程质量检测中心 一种用于桩基高应变检测的落锤高度调节装置
CN205839823U (zh) * 2016-07-18 2016-12-28 昆山市建设工程质量检测中心 一种用于桩基高应变检测的落锤高度调节装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111694A (zh) * 2021-10-13 2022-03-01 四川省公路规划勘察设计研究院有限公司 抗滑桩变形监测装置及失效预警系统
CN114111694B (zh) * 2021-10-13 2024-01-26 四川省公路规划勘察设计研究院有限公司 抗滑桩变形监测装置及失效预警系统
CN114934521A (zh) * 2022-06-23 2022-08-23 中国建筑第五工程局有限公司 一种基坑支护桩
CN114934521B (zh) * 2022-06-23 2024-01-26 中国建筑第五工程局有限公司 一种基坑支护桩
CN114812362A (zh) * 2022-06-29 2022-07-29 湖南城市学院设计研究院有限公司 一种具有防护功能的边坡变形监测装置
CN114812362B (zh) * 2022-06-29 2023-06-30 湖南城市学院设计研究院有限公司 一种具有防护功能的边坡变形监测装置
CN116122357A (zh) * 2023-04-20 2023-05-16 廊坊市翔宇工程咨询有限公司 一种用于桥梁施工的桩基检测装置

Also Published As

Publication number Publication date
CN106049562B (zh) 2018-02-16
US20180238013A1 (en) 2018-08-23
CN106049562A (zh) 2016-10-26
US10590622B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2018014466A1 (zh) 一种用于桩基高应变检测的落锤高度调节装置
WO2013143145A1 (zh) 动力学性能测试系统
CN110884978B (zh) 一种矿用摩擦式提升机钢丝绳张力测试装置及方法
CN105277353A (zh) 一种高空吊篮类机械安全锁测试实验台及测试方法
CN103323340A (zh) 一种钢-砼接触界面力学特性测试装置及其方法
CN104328810B (zh) 预制管桩单桩地基承载力检测改进方法
CN105092395B (zh) 一种增加水平冲击试验台负载的装置
CN105699188A (zh) 一种用于检测栏杆水平推力的装置
CN203334187U (zh) 一种托架预压结构
CN112095683A (zh) 一种用于基桩高应变法检测的测试装置及测试方法
CN108625410A (zh) 一种桩侧摩阻力的测试方法
CN110736668A (zh) 一种海底电缆冲击性能测试系统
CN202041399U (zh) 预制梁应力静荷载试验装置
CN205839823U (zh) 一种用于桩基高应变检测的落锤高度调节装置
CN217811243U (zh) 一种桩基模型试验用水平与竖向组合加载装置
CN209989791U (zh) 一种地基承载力检测设备
CN106847055B (zh) 一种起重机械金属结构应力应变测试演示装置
CN206847632U (zh) 一种高凌空钢绳索垂度辅助测量装置
CN203007920U (zh) 一种重力触探重锤提升装置
CN205562286U (zh) 起重机主梁试验装置
CN205157186U (zh) 一种高空吊篮类机械安全锁测试实验台
CN206893187U (zh) 一种起重机械金属结构应力应变测试演示装置
CN103759928A (zh) 检测吊装大型设备用平衡梁的承载载荷的方法
CN214401715U (zh) 一种房屋建筑工程质量检测用地基检测装置
CN215931309U (zh) 一种紧凑型绞车实验架

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15751263

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909393

Country of ref document: EP

Kind code of ref document: A1