WO2018012267A1 - Flow path structure and treatment device - Google Patents

Flow path structure and treatment device Download PDF

Info

Publication number
WO2018012267A1
WO2018012267A1 PCT/JP2017/023421 JP2017023421W WO2018012267A1 WO 2018012267 A1 WO2018012267 A1 WO 2018012267A1 JP 2017023421 W JP2017023421 W JP 2017023421W WO 2018012267 A1 WO2018012267 A1 WO 2018012267A1
Authority
WO
WIPO (PCT)
Prior art keywords
passages
passage
structure according
flow path
path structure
Prior art date
Application number
PCT/JP2017/023421
Other languages
French (fr)
Japanese (ja)
Inventor
視紅磨 加藤
貴洋 寺田
真也 東
田中 正幸
香織 出浦
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2018012267A1 publication Critical patent/WO2018012267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Definitions

  • Embodiments of the present invention relate to a flow path structure and a processing apparatus.
  • An apparatus that discharges fluid from a plurality of holes is known.
  • a shower plate discharges gas from a plurality of holes.
  • the traveling direction of the fluid is distributed around the direction in which the hole for discharging the fluid faces. For this reason, the distribution of the fluid in the space where the fluid is discharged may be biased.
  • the flow path structure includes a member.
  • the member has an outer surface and is provided with a plurality of first passages that open to the outer surface. When fluid is discharged from the plurality of first passages, the fluid is discharged from each of the plurality of first passages from at least one of the other plurality of first passages. It is discharged in the direction that hits.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a plan view schematically showing a fourth surface of the shower plate of the first embodiment.
  • FIG. 3 is a plan view of the shower plate showing the passage of the first embodiment.
  • FIG. 4 is a cross-sectional view of the shower plate showing the passage of the first embodiment.
  • FIG. 5 is a plan view of the shower plate showing the passage of the first embodiment.
  • FIG. 6 is a cross-sectional view of the shower plate showing the passage of the first embodiment.
  • FIG. 7 is a plan view of the shower plate showing the passage of the first embodiment.
  • FIG. 8 is a cross-sectional view of the shower plate showing the passage of the first embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a plan view schematically showing a fourth surface of the shower plate of the first embodiment.
  • FIG. 3 is a plan
  • FIG. 9 is a plan view of a shower plate showing a passage according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the shower plate showing the passage of the second embodiment.
  • FIG. 11 is a plan view of a shower plate showing a passage according to the third embodiment.
  • FIG. 12 is a cross-sectional view of the shower plate showing the passage of the third embodiment.
  • FIG. 13 is sectional drawing of the shower plate which shows the channel
  • a vertically upward direction is defined as an upward direction and a vertically downward direction is defined as a downward direction.
  • a plurality of expressions may be described for the constituent elements according to the embodiment and the description of the elements.
  • the constituent elements and descriptions in which a plurality of expressions are made may be other expressions that are not described. Further, the constituent elements and descriptions that are not expressed in a plurality may be expressed in other ways that are not described.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor manufacturing apparatus 10 according to the first embodiment.
  • the semiconductor manufacturing apparatus 10 is an example of a processing apparatus, and may be referred to as a manufacturing apparatus, an intake / exhaust apparatus, a supply apparatus, and an apparatus, for example.
  • the processing apparatus is not limited to the semiconductor manufacturing apparatus 10 and may be another apparatus that performs processing such as processing, cleaning, and testing on the target object.
  • an X axis, a Y axis, and a Z axis are defined.
  • the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • the X axis is along the width of the semiconductor manufacturing apparatus 10.
  • the Y axis is along the depth (length) of the semiconductor manufacturing apparatus 10.
  • the Z axis is along the height of the semiconductor manufacturing apparatus 10.
  • the semiconductor manufacturing apparatus 10 of the first embodiment shown in FIG. 1 is, for example, a chemical vapor deposition (CVD) apparatus.
  • the semiconductor manufacturing apparatus 10 may be another apparatus.
  • the semiconductor manufacturing apparatus 10 includes a manufacturing unit 11, a pressure gauge 12, and a pump 13.
  • the pump 13 is an example of a fluid supply unit, and may be referred to as a supply unit, a discharge unit, or a sending unit, for example.
  • a chamber 21 is provided in the manufacturing unit 11.
  • the semiconductor manufacturing apparatus 10 manufactures a semiconductor wafer (hereinafter referred to as a wafer) W in the chamber 21.
  • the manufacturing unit 11 includes an upper wall 23, a peripheral wall 24, a stage 25, a diffusion plate 26, and a shower plate 27.
  • the stage 25 may also be referred to as an arrangement unit, a processing unit, a placement unit, or a table, for example.
  • the diffusing plate 26 may also be referred to as a supply unit, a discharge unit, or a part, for example.
  • the shower plate 27 is an example of a channel structure and a member, and may be referred to as, for example, an intake / exhaust member, a discharge unit, a discharge unit, a suction unit, or a component.
  • the upper wall 23 has a first inner surface 23a.
  • the first inner surface 23a is a substantially flat surface that faces in the negative direction (downward) along the Z-axis.
  • the first inner surface 23 a forms part of the chamber 21. That is, the first inner surface 23 a faces the inside of the chamber 21.
  • a supply port 31 is provided in the upper wall 23.
  • the supply port 31 is connected to the pump 13 by a pipe, for example.
  • the pump 13 supplies the gas G to the chamber 21 from the supply port 31.
  • the gas G is an example of a fluid.
  • the fluid is not limited to gas but may be liquid, for example.
  • FIG. 1 shows the flow of gas G with arrows.
  • the peripheral wall 24 has a second inner surface 24a.
  • the second inner surface 24a is a surface facing in a direction (substantially horizontal direction) perpendicular to the Z axis.
  • the second inner surface 24 a forms part of the chamber 21. That is, the second inner surface 24 a faces the inside of the chamber 21.
  • a plurality of exhaust ports 32 are provided in the peripheral wall 24.
  • the exhaust port 32 is connected to the pump 13 via the pressure gauge 12.
  • the pump 13 can suck the gas G in the chamber 21 from the exhaust port 32. In other words, the gas G in the chamber 21 is exhausted from the exhaust port 32.
  • the stage 25 has a support portion 25a.
  • the support unit 25a is an example of an object support unit, and may be referred to as, for example, an arrangement unit, a processing unit, a mounting unit, or a table.
  • the support portion 25 a is disposed inside the chamber 21.
  • the support portion 25 a faces the first inner surface 23 a of the upper wall 23 and supports the wafer W.
  • the stage 25 has a heater and can heat the wafer W supported by the support portion 25a.
  • the diffusion plate 26 is disposed inside the chamber 21 and attached to the upper wall 23.
  • the diffusion plate 26 has a first surface 26a and a second surface 26b.
  • the first surface 26 a faces the first inner surface 23 a of the upper wall 23.
  • the second surface 26b is located on the opposite side of the first surface 26a.
  • a diffusion chamber 35 is formed between the diffusion plate 26 and the upper wall 23.
  • the diffusion chamber 35 is a space surrounded by the diffusion plate 26 and the upper wall 23.
  • a supply port 31 of the upper wall 23 opens into the diffusion chamber 35. For this reason, the gas G is supplied from the supply port 31 to the diffusion chamber 35.
  • a plurality of holes 37 are provided in the diffusion plate 26.
  • the hole 37 is a hole that connects the first surface 26a and the second surface 26b. That is, the hole 37 connects between the inside and the outside of the diffusion chamber 35.
  • the shower plate 27 is disposed inside the chamber 21 and attached to the upper wall 23.
  • the shower plate 27 covers the diffusion plate 26.
  • the diffusion plate 26 is disposed between the shower plate 27 and the upper wall 23.
  • the shower plate 27 has a third surface 27a and a fourth surface 27b.
  • the third surface 27a is an example of a surface.
  • the fourth surface 27b is an example of an outer surface.
  • Each of the third surface 27a and the fourth surface 27b may be referred to as a surface, for example.
  • the third surface 27a is a substantially flat surface that faces in the positive direction along the Z axis (the direction in which the arrow on the Z axis faces, the upward direction).
  • the third surface 27a may be curved or may be provided with irregularities.
  • the third surface 27 a faces the second surface 26 b of the diffusion plate 26.
  • the third surface 27a faces a plurality of holes 37 that are opened in the second surface 26b with a gap therebetween.
  • the fourth surface 27b is located on the opposite side of the third surface 27a.
  • the fourth surface 27b is a substantially flat surface that faces in the negative direction along the Z-axis.
  • the fourth surface 27b may be a curved surface or may be provided with irregularities.
  • a supply chamber 39 is formed between the diffusion plate 26 and the shower plate 27.
  • the supply chamber 39 is a space surrounded by the diffusion plate 26 and the shower plate 27.
  • a plurality of holes 37 of the diffusion plate 26 are opened in the supply chamber 39. For this reason, the gas G in the diffusion chamber 35 is supplied to the supply chamber 39 through the plurality of holes 37 of the diffusion plate 26.
  • the third surface 27 a faces the supply chamber 39.
  • the fourth surface 27b is separated from the wafer W supported by the support portion 25a of the stage 25 via the space S in the positive direction along the Z axis.
  • the fourth surface 27b faces the wafer W supported by the support portion 25a of the stage 25 through the space S.
  • the shower plate 27 and the wafer W are arranged through the space S in the direction along the Z axis.
  • FIG. 2 is a plan view schematically showing the fourth surface 27b of the shower plate 27 of the first embodiment.
  • the shower plate 27 is provided with a plurality of passages 50. Each of the plurality of passages 50 penetrates the shower plate 27 and opens at the third surface 27a and the fourth surface 27b.
  • the plurality of passages 50 may be individually referred to as passages 50A, 50B, and 50C.
  • the description common to the passages 50A, 50B, and 50C is described as an explanation of the passage 50.
  • the size of the passage 50 with respect to the shower plate 27 is exaggerated for the sake of explanation. That is, the passage 50 is smaller with respect to the shower plate 27 than the passage 50 shown in FIG. Therefore, the number of the plurality of passages 50 provided in the shower plate 27 is larger than the number of the plurality of passages 50 shown in FIG.
  • FIG. 3 is a plan view of the shower plate 27 showing the passage 50A of the first embodiment.
  • FIG. 4 is a cross-sectional view of the shower plate 27 showing the passage 50A of the first embodiment.
  • FIG. 5 is a plan view of the shower plate 27 showing the passage 50B of the first embodiment.
  • FIG. 6 is a cross-sectional view of the shower plate 27 showing the passage 50B of the first embodiment.
  • FIG. 7 is a plan view of the shower plate 27 showing the passage 50C of the first embodiment.
  • FIG. 8 is a cross-sectional view of the shower plate 27 showing the passage 50C of the first embodiment.
  • each of the plurality of passages 50 has at least one first opening 51 and second opening 52.
  • the 1st opening 51 is an edge part of the channel
  • the second opening 52 is an end portion of the passage 50 provided in the third surface 27a. That is, the passage 50 connects the first opening 51 and the second opening 52.
  • each of the plurality of passages 50 includes at least one first passage 55 and a second passage 56.
  • the shower plate 27 is provided with a plurality of first passages 55 and a plurality of second passages 56.
  • the first passage 55 is a part of the passage 50 and is a portion that opens at the fourth surface 27 b of the shower plate 27.
  • the first passage 55 includes the first opening 51 of the passage 50.
  • the first passage 55 is a portion extending from the first opening 51.
  • the first opening 51 is a portion of the first passage 55 that opens at the fourth surface 27b.
  • the first opening 51 is an opening formed in the fourth surface 27 b of the first passage 55.
  • the second passage 56 is a part of the passage 50 and is a portion that opens at the third surface 27 a of the shower plate 27.
  • the second passage 56 includes the second opening 52 of the passage 50.
  • the second passage 56 is a portion extending from the second opening 52.
  • the second opening 52 is a portion of the second passage 56 that opens at the third surface 27a.
  • Each second passage 56 is connected to at least one first passage 55.
  • the first opening 51 of the passage 50A is formed in an annular shape.
  • the first passage 55 of the passage 50 ⁇ / b> A is formed in a cylindrical shape that extends in the direction along the Z-axis and whose inner diameter increases as the first opening 51 is approached.
  • the cross-sectional area of the first passage 55 of the passage 50 ⁇ / b> A decreases as the first opening 51 is approached.
  • the cross-sectional area of the first passage 55 of the passage 50 is a cross-sectional area in a plane orthogonal to the direction in which the first passage 55 extends.
  • the cross-sectional area of the first passage 55 of the passage 50A is a cross-sectional area in the XY plane.
  • FIG. 4 shows a cross section of the shower plate 27 in the XZ plane.
  • the direction in which the first passage 55 extends when viewed in a direction along the Y-axis as shown in FIG. 4 is as follows.
  • the direction along the Y axis is the direction in which the fourth surface 27b of the shower plate 27 faces and is orthogonal to the direction along the Z axis, which is the direction in which the shower plate 27 and the wafer W are arranged.
  • an intermediate point between both ends of the first passage 55 in the direction along the X axis is obtained.
  • the intermediate point is obtained at a plurality of points in the direction along the Z-axis, and the central axis of the first passage 55 is obtained by connecting the plurality of intermediate points.
  • the direction in which the central axis of the first passage 55 extends is the direction in which the first passage 55 in the present embodiment extends.
  • the direction in which the first passage 55 of the passage 50A obtained as described above extends obliquely intersects the Z axis.
  • the direction in which the first passage 55 extends in the passage 50A is a direction that approaches the other passage 50 adjacent to the passage 50A in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases.
  • the second opening 52 of the passage 50A is formed in an annular shape.
  • the second passage 56 of the passage 50A is formed in a cylindrical shape extending in the direction along the Z axis.
  • the cross-sectional area of the second passage 56 of the passage 50A is substantially constant.
  • the cross-sectional area of the second passage 56 of the passage 50 is a cross-sectional area in a plane orthogonal to the direction in which the second passage 56 extends.
  • the cross-sectional area of the second passage 56 of the passage 50A is a cross-sectional area in the XY plane.
  • the cross-sectional area of the second passage 56 is wider than the minimum cross-sectional area of the first passage 55.
  • the cross-sectional area of the second passage 56 in the second opening 52 is wider than the cross-sectional area of the first passage 55 in the first opening 51.
  • the cross-sectional area of the second opening 52 is wider than the cross-sectional area of the first opening 51.
  • the passage 50 ⁇ / b> A is formed by an inner peripheral surface 61 provided on the shower plate 27 and an inner pillar 62.
  • the inner peripheral surface 61 is a cylindrical surface extending in the direction along the Z axis, defines the outer diameter of the first passage 55, and defines the outer diameter of the second passage 56.
  • the inner column 62 is surrounded by the inner peripheral surface 61 at a position separated from the inner peripheral surface 61, defines the inner diameter of the first passage 55, and defines the inner diameter of the second passage 56.
  • the inner pillar 62 is a part of the shower plate 27 and is formed integrally with the other part of the shower plate 27.
  • the inner pillar 62 may be a part molded separately from other parts of the shower plate 27.
  • the inner pillar 62 has a conical part 62a and a pillar part 62b.
  • the conical portion 62 a is formed in a conical shape whose diameter increases as it approaches the first opening 51, and defines the inner diameter of the first passage 55.
  • the bottom surface of the conical portion 62 a forms part of the fourth surface 27 b of the shower plate 27.
  • the first passage 55 is formed between the conical portion 62 a and the inner peripheral surface 61.
  • the column part 62b is formed in a cylindrical shape extending in the direction along the Z axis from the top part of the cone part 62a, and defines the inner diameter of the second passage 56.
  • the second passage 56 is formed between the column part 62 b and the inner peripheral surface 61.
  • the column part 62b is supported by the 3rd surface 27a of the shower plate 27 via a beam, for example.
  • the passage 50 ⁇ / b> B includes four first openings 51.
  • the second passage 56 of the passage 50 ⁇ / b> B is connected to the four first passages 55.
  • the number of first passages 55 to which the second passages 56 are connected is not limited to this.
  • Each of the first openings 51 of the passage 50B is formed in an arc shape.
  • the four arc-shaped first openings 51 are spaced apart from each other in the circumferential direction, and have a substantially annular shape as a whole.
  • each of the first passages 55 of the passage 50B extends in a direction obliquely intersecting the Z axis.
  • the direction in which the first passage 55 extends in the passage 50B is a direction that approaches the other passage 50 adjacent to the passage 50B in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases.
  • the cross-sectional area of the first passage 55 of the passage 50 ⁇ / b> B decreases as the first opening 51 is approached.
  • the second opening 52 of the passage 50B is formed in a circular shape.
  • the second passage 56 of the passage 50B is formed in a columnar shape extending in the direction along the Z axis.
  • the cross-sectional area of the second passage 56 of the passage 50B is substantially constant.
  • the cross-sectional area of the second passage 56 is wider than the sum of the minimum cross-sectional areas of the four first passages 55.
  • the cross-sectional area of the second passage 56 in the second opening 52 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51.
  • the cross-sectional area of the second opening 52 is wider than the sum of the cross-sectional areas of the four first openings 51.
  • the passage 50 ⁇ / b> B is formed by an inner peripheral surface 61 provided on the shower plate 27 and a bottom wall 64.
  • the bottom surface of the bottom wall 64 forms part of the fourth surface 27 b of the shower plate 27.
  • the bottom wall 64 forming the passage 50B includes an inner plate 64a and four connection portions 64b.
  • the bottom wall 64 is a part of the shower plate 27 and is formed integrally with the other parts of the shower plate 27.
  • the bottom wall 64 may be a part molded separately from the other parts of the shower plate 27.
  • the inner plate 64 a is formed in a substantially disc shape and is surrounded by the inner peripheral surface 61 at a position spaced from the inner peripheral surface 61.
  • the four connecting portions 64b project radially from the outer peripheral surface of the inner plate 64a and connect the inner plate 64a and the inner peripheral surface 61.
  • the four first passages 55 of the passage 50B are respectively formed between the inner peripheral surface 61, the outer peripheral surface of the inner plate 64a, and the two connection portions 64b.
  • the second passage 56 of the passage 50 ⁇ / b> B is formed inside the inner peripheral surface 61.
  • the passage 50 ⁇ / b> C includes four first openings 51.
  • the second passage 56 of the passage 50 ⁇ / b> C is connected to the four first passages 55.
  • the first openings 51 of the passage 50C are each formed in a circular shape.
  • the four circular first openings 51 are spaced apart from each other in the circumferential direction.
  • each of the first passages 55 of the passage 50C extends in a direction obliquely intersecting the Z axis.
  • the direction in which the first passage 55 extends in the passage 50C is a direction that approaches the other passage 50 adjacent to the passage 50C in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases.
  • the cross-sectional area of the first passage 55 of the passage 50C is substantially constant.
  • the second opening 52 of the passage 50C is formed in a circular shape.
  • the second passage 56 of the passage 50C is formed in a columnar shape extending in the direction along the Z axis.
  • the cross-sectional area of the second passage 56 of the passage 50C is substantially constant.
  • the cross-sectional area of the second passage 56 is wider than the sum of the cross-sectional areas of the four first passages 55.
  • the cross-sectional area of the second passage 56 in the second opening 52 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51.
  • the cross-sectional area of the second opening 52 is wider than the sum of the cross-sectional areas of the four first openings 51.
  • the second passage 56 of the passage 50C is a hole having a bottom 56a.
  • the four first passages 55 of the passage 50C connect the bottom 56a of the second passage 56 and the first opening 51 that opens to the fourth surface 27b of the shower plate 27.
  • a plurality of passages 50 ⁇ / b> A are provided in the center of the shower plate 27.
  • the plurality of passages 50B are arranged so as to surround the plurality of passages 50A.
  • the plurality of passages 50C are arranged so as to surround the plurality of passages 50A and the plurality of passages 50B.
  • the plurality of passages 50A, 50B, and 50C may be arranged at positions different from those in FIG.
  • the shape of the passage 50A, the shape of the passage 50B, and the shape of the passage 50C are different from each other.
  • one shape of the plurality of passages 50 is different from the other shape of the plurality of passages 50.
  • the plurality of passages 50 may include only a plurality of passages 50A, a plurality of passages 50B, or a plurality of passages 50C.
  • the length of the first passage 55 of the passage 50A, the length of the first passage 55 of the passage 50B, and the length of the first passage 55 of the passage 50C are different from each other.
  • the pump 13 in FIG. 1 supplies the gas G to the plurality of passages 50 of the shower plate 27 configured as described above.
  • the pump 13 supplies the gas G to the supply chamber 39 through the supply port 31, the diffusion chamber 35, and the plurality of holes 37 of the diffusion plate 26.
  • the gas G in the supply chamber 39 is supplied to the second passages 56 of the plurality of passages 50.
  • the shower plate 27 supplies the gas G supplied from the pump 13 to the plurality of passages 50 from the first passage 55 of the plurality of passages 50 to the fourth surface 27b of the shower plate 27 and the support portion 25a of the stage 25. It discharges to the space S between the wafer W supported.
  • the gas G discharged from the first passage 55 will be described in detail.
  • each first opening 51 of each of the plurality of passages 50 ⁇ / b> A faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces.
  • the direction in which each first opening 51 of each of the plurality of passages 50 ⁇ / b> A faces is overlapped at one point with the direction in which at least one of the other passages 50 faces.
  • the first opening 51 is an example of a portion that opens to the outer surface of the first passage.
  • the direction in which the first opening 51 faces is an example of the direction in which the first passage opens toward the outer surface.
  • the direction in which the first opening 51 faces is the direction in which the first passage 55 faces in the first opening 51 (fourth surface 27b). According to another expression, the direction in which the first opening 51 faces is the direction in which the first passage 55 opens toward the fourth surface 27b. That is, the direction in which the first passage 55 obtained as described above extends linearly extends from the first opening 51 (fourth surface 27b).
  • the gas G is discharged from each of the first passages 55 of the plurality of passages 50A in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50.
  • the first passage 55 of one passage 50A discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50A adjacent to the passage 50A.
  • the first passage 55 of the passage 50A may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50A. good.
  • each first opening 51 of each of the plurality of passages 50 ⁇ / b> B faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces.
  • the direction in which each first opening 51 of each of the plurality of passages 50B faces overlaps the direction in which at least one first opening 51 of the other plurality of passages 50 faces at one point.
  • the gas G is discharged from each of the first passages 55 of the plurality of passages 50B in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50.
  • the first passage 55 of one passage 50B discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50B adjacent to the passage 50B.
  • the first passage 55 of the passage 50B may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50B. good.
  • each first opening 51 of each of the plurality of passages 50 ⁇ / b> C faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces.
  • the direction in which each first opening 51 of each of the plurality of passages 50C faces overlaps with the direction in which at least one of the plurality of other passages 50 faces, at one point.
  • the gas G is discharged from each of the first passages 55 of the plurality of passages 50C in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50.
  • the first passage 55 of one passage 50C discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50C adjacent to the passage 50C.
  • the first passage 55 of the passage 50C may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50C. good.
  • the shower plate 27 allows the gas G discharged from each of the first passages 55 of the plurality of passages 50 to be out of the first passages 55 of the other plurality of passages 50 before the gas G reaches the wafer W.
  • the gas G is discharged from at least one of them.
  • the gas G discharged from one first passage 55 and the gas G discharged from at least one other first passage 55 include the fourth surface 27b of the shower plate 27, the wafer W, and the like. Clash with each other.
  • the traveling directions of the gases G are dispersed.
  • the flow rate of the gas G after the collision is slower than the flow rate of the gas G when discharged from the first passage 55.
  • the gas G after the collision reaches the wafer W and generates a film on the surface of the wafer W.
  • the semiconductor manufacturing apparatus 10 is a plasma CVD apparatus, the gas G is converted into plasma in the space S.
  • the flow velocity and flow rate of the gas G reaching the surface of the wafer W are approximately uniform on the surface of the wafer W. For this reason, the amount of the gas G that chemically reacts on the surface of the wafer W is approximately uniform, and the thickness of the film generated on the surface of the wafer W is also approximately uniform.
  • the length of the first passage 55 in the passages 50A, 50B, and 50C and the arrangement of the passages 50A, 50B, and 50C are set so that the thickness of the film generated on the surface of the wafer W becomes more uniform.
  • the longer the length of the first passage 55, the lower the conductance of the first passage 55 and the higher the pressure resistance is adjusted by adjusting the length of the first passage 55.
  • the shower plate 27 is layered and formed by, for example, a 3D printer. For this reason, the shower plate 27 is formed as an integral body.
  • the shower plate 27 may be formed by other methods.
  • the direction in which each first opening 51 of the plurality of first passages 55 faces is at least one of the other plurality of first passages 55. At least one point overlaps the direction in which the first opening 51 faces. For example, the direction in which each first opening 51 of the plurality of first passages 55 faces and the direction in which at least one first opening 51 of the other plurality of first passages 55 faces each other. . Further, when the gas G is discharged from the plurality of first passages 55, the gas G is discharged from at least one of the plurality of first passages 55 from each of the plurality of first passages 55. The gas is discharged in the direction hitting the gas G.
  • the direction in which the first openings 51 of the plurality of first passages 55 face is set independently (individually) so that the thickness of the film formed on the wafer W becomes more uniform.
  • the distance between the wafer W and the shower plate 27 is increased. In this case, a large amount of gas G is supplied to the large space S. Therefore, the replacement efficiency of the gas G relating to the time for supplying and discharging the gas G in the chamber 21 and the utilization efficiency of the gas G relating to the amount of the gas G with respect to the thickness of the film formed on the wafer W are reduced. To do.
  • the distance between the wafer W and the shower plate 27 can be reduced, and a decrease in the replacement efficiency and utilization efficiency of the gas G is suppressed.
  • Each cross-sectional area of the plurality of second passages 56 is wider than the sum of the cross-sectional areas of the first passages 55 connected to the second passages 56. Thereby, the pressure resistance in the first passage 55 is high and the conductance is low, and the gas G is discharged from the plurality of first passages 55 more uniformly. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
  • Each of the plurality of second passages 56 is connected to at least two of the plurality of first passages 55. Thereby, the number of the first passages 55 is larger than the number of the second passages 56. That is, when the gas G is discharged from many positions, for example, when the shower plate 27 discharges the gas G that is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven. .
  • One shape of the plurality of first passages 55 is different from the other shape of the plurality of first passages 55.
  • each shape of the first passage 55 is set so as to have conductance and pressure resistance corresponding to various conditions including pre- and post-processes such as chemical mechanical polishing (CMP). Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
  • CMP chemical mechanical polishing
  • the length of one of the plurality of first passages 55 is different from the length of the other one of the plurality of first passages 55.
  • path 55 is set so that it may have conductance and pressure resistance according to various conditions, such as a back-and-forth process. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
  • the shower plate 27 discharges the gas G discharged from each of the plurality of first passages 55 from at least one of the other plurality of first passages 55 before the gas G reaches the wafer W. It is comprised so that it may hit against the gas G to be performed. Thereby, it is suppressed that the gas G discharged from the first passage 55 directly hits the wafer W. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
  • FIG. 9 is a plan view of the shower plate 27 showing the passage 50C according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the shower plate 27 showing the passage 50C of the second embodiment.
  • a plurality of grooves 71 are provided in the fourth surface 27 b of the shower plate 27.
  • the groove 71 is recessed from the fourth surface 27b and has a bottom.
  • the groove 71 extends between at least two of the plurality of first passages 55 opened in the fourth surface 27b.
  • the groove 71 extends between one first passage 55 of one passage 50C and one first passage 55 of another passage 50C adjacent to the one passage 50C.
  • the gas G discharged from the first passage 55 of the passage 50C is basically discharged in the direction in which the first opening 51 of the first passage 55 faces. Further, a part of the gas G discharged from the first passage 55 of the passage 50 ⁇ / b> C flows in a direction along the groove 71.
  • the gas G is discharged from the first passage 55 of the two passages 50C connected by the groove 71.
  • the gases G flow along the grooves 71 and collide with each other.
  • the gas G collides with the inside of the groove 71 and in the vicinity of the groove 71.
  • the inside of the groove 71 and the vicinity of the groove 71 are part of the space S.
  • the groove 71 provided in the fourth surface 27b is between at least two of the plurality of first passages 55 opened in the fourth surface 27b. It extends at. Thereby, the gas G discharged from the first passage 55 flows along the groove 71 and easily collides with the gas G discharged from the other first passage 55.
  • FIG. 11 is a plan view of the shower plate 27 showing the passage 50D according to the third embodiment.
  • FIG. 12 is a cross-sectional view of the shower plate 27 showing the passage 50D of the third embodiment.
  • the plurality of passages 50 include a plurality of passages 50D.
  • the plurality of passages 50 may include at least one of the passages 50A, 50B, and 50C of the first embodiment, or may include only the passage 50D.
  • the shower plate 27 has a plurality of convex portions 81. Each of the plurality of convex portions 81 protrudes from the fourth surface 27 b of the shower plate 27.
  • the plurality of convex portions 81 are arranged apart from each other.
  • Each of the plurality of convex portions 81 has a peripheral wall 82 and an end wall 83.
  • the peripheral wall 82 is formed in a cylindrical shape extending in the direction along the Z axis.
  • the peripheral wall 82 may be formed in other shapes such as a polygonal cylindrical shape.
  • An end portion in the positive direction along the Z-axis of the peripheral wall 82 is connected to the fourth surface 27b.
  • the peripheral wall 82 has an outer peripheral surface 82a.
  • the outer peripheral surface 82a is a cylindrical outer surface that faces in a direction orthogonal to the Z axis.
  • the outer peripheral surface 82 a faces the space S and forms part of the outer surface of the shower plate 27. That is, the outer peripheral surface 82a is an example of an outer surface.
  • the end wall 83 closes the end of the peripheral wall 82 in the negative direction along the Z axis.
  • the end wall 83 has a bottom surface 83a.
  • the bottom surface 83a is a substantially flat surface facing in the negative direction along the Z axis.
  • the bottom surface 83a faces the space S and forms a part of the outer surface of the shower plate 27. That is, the bottom surface 83a is an example of an outer surface.
  • the outer peripheral surface 82a and the bottom surface 83a of the convex portion 81 form part of the outer surface of the shower plate 27.
  • first passages 55 of the passage 50D open on the outer peripheral surface 82a of the peripheral wall 82.
  • the four first openings 51 are provided on the outer peripheral surface 82 a of the peripheral wall 82.
  • the first passage 55 extends in a direction (substantially horizontal direction) orthogonal to the Z axis.
  • the first opening 51 of the first passage 55 faces in a direction orthogonal to the Z axis. Note that the first opening 51 may face in another direction.
  • the direction in which the first opening 51 of the passage 50D faces is the direction in which the first passage 55 opens toward the outer peripheral surface 82a.
  • the second opening 52 of the passage 50D is formed in a circular shape.
  • the second passage 56 of the passage 50D is formed in a columnar shape extending in the direction along the Z axis.
  • the cross-sectional area of the second passage 56 of the passage 50D is substantially constant.
  • the passage 50D has a third passage 85.
  • the third passage 85 is surrounded by the peripheral wall 82 and the end wall 83.
  • the third passage 85 is formed by the inner surface of the peripheral wall 82 and the inner surface of the end wall 83.
  • the four first passages 55 that open to the outer peripheral surface 82 a are connected to the third passage 85.
  • the second passage 56 that opens to the third surface 27 a is also connected to the third passage 85.
  • the third passage 85 is interposed between the four first passages 55 and the second passage 56.
  • the third passage 85 is formed in a columnar shape extending in the direction along the Z axis.
  • Four first passages 55 are connected to the peripheral surface portion of the cylindrical third passage 85, and the second passage 56 is connected to an end surface portion of the third passage 85.
  • the cross-sectional area of the third passage 85 is substantially constant and is smaller than the cross-sectional area of the second passage 56.
  • the third passage 85 may have other shapes.
  • the cross-sectional area of the third passage 85 is wider than the sum of the minimum cross-sectional areas of the four first passages 55.
  • the cross-sectional area of the third passage 85 at the connection portion between the second passage 56 and the third passage 85 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51.
  • One of the four first passages 55 that open to the outer peripheral surface 82 a of the peripheral wall 82 faces one of the four first passages 55 that open to the outer peripheral surface 82 a of the other peripheral wall 82.
  • the first openings 51 of the two first passages 55 face each other. For this reason, the direction in which each of the plurality of first passages 55 is overlapped with the direction in which one of the other plurality of first passages 55 is facing.
  • the gas G is discharged from the first passage 55 of the two passages 50D facing each other.
  • the gas G collides with each other between the two convex portions 81.
  • a space between the two convex portions 81 is a part of the space S.
  • the plurality of first passages 55 open to the peripheral walls 82 of the plurality of convex portions 81.
  • the shower plate 27 discharges the gas G which is a CVD source gas
  • the gases G discharged from the plurality of first passages 55 collide more reliably before reaching the wafer W. . Therefore, the thickness of the film formed on the wafer W can be suppressed from becoming uneven.
  • One of the plurality of first passages 55 opening in the peripheral wall 82 faces one of the plurality of first passages 55 opening in the other peripheral wall 82.
  • the two first passages 55 face each other.
  • the first passage 55 of the passage 50D may further open on the bottom surface 83a of the end wall 83.
  • the plurality of first openings 51 may be provided on the outer peripheral surface 82 a of the peripheral wall 82 and the bottom surface 83 a of the end wall 83.
  • at least one of the plurality of first passages 55 is provided in the end wall 83 and extends in a direction along the Z axis or in a direction obliquely intersecting with the Z axis.
  • the first opening 51 formed in the bottom surface 83a of the end wall 83 faces in a direction along the Z axis or in a direction obliquely intersecting the Z axis. Note that the first opening 51 formed in the bottom surface 83a may face in another direction.
  • the direction in which the first opening 51 formed in the bottom surface 83a faces is the direction in which the first passage 55 provided in the end wall 83 opens toward the bottom surface 83a.
  • the gas G is also supplied under the end wall 83, and the thickness of the film formed on the wafer W is suppressed from becoming uneven. Furthermore, the total cross-sectional area of the first opening 51 formed on the bottom surface 83a of the end wall 83 is smaller than the total cross-sectional area of the first opening 51 formed on the outer peripheral surface 82a of the peripheral wall 82, for example. As a result, the amount of the gas G flowing directly toward the wafer W is reduced, and the thickness of the film formed on the wafer W is suppressed from becoming uneven.
  • FIG. 13 is a cross-sectional view of the shower plate 27 showing the passage 50E according to the fourth embodiment.
  • the plurality of passages 50 include a plurality of passages 50E.
  • the plurality of passages 50 may include at least one of the passages 50A, 50B, 50C, and 50D of the first to third embodiments, or may include only the passage 50E.
  • the first passage 55 of the passage 50E extends in a spiral shape. In other words, the first passage 55 of the passage 50E extends in a curved shape.
  • the length of the first passage 55 of one passage 50E is different from the length of the first passage 55 of the other passage 50E.
  • the number of turns of one spiral first passage 55 is different from the number of turns of the other spiral first passage 55.
  • the cross-sectional area of the first passage 55 of the passage 50E is substantially constant.
  • the direction in which each first opening 51 of each of the plurality of passages 50E faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces.
  • the direction in which each first opening 51 of each of the plurality of passages 50E faces overlaps with the direction in which at least one first opening 51 of the other plurality of passages 50 faces at one point.
  • the first opening 51 is an example of a portion that opens to the outer surface of the first passage.
  • the direction in which the first opening 51 faces is the direction in which the first passage 55 faces in the first opening 51 (fourth surface 27b). That is, the direction in which the first passage 55 obtained as described above extends linearly extends from the first opening 51 (fourth surface 27b).
  • each of the first passages 55 of the passage 50E extends in a spiral shape, it extends in a direction obliquely intersecting the Z axis.
  • the direction in which the first opening 51 of the other passage 50 faces even if the direction in which the first passage 55 of the passage 50E extends linearly at a position closer to the second opening 52 than the first opening 51 It does not always overlap with one point.
  • the first opening 51 if the direction in which the first passage 55 of the passage 50E extends is linearly extended, the first opening 51 overlaps with the direction in which the first opening 51 of the other passage 50 faces at one point. Therefore, the gas G exhausted from the first passage 55 of the passage 50E and the gas G exhausted from at least one other first passage 55 include the fourth surface 27b of the shower plate 27, the wafer W, and the like. Clash with each other.
  • At least one of the plurality of first passages 55 extends in a spiral shape. Thereby, even if the thickness of the shower plate 27 is constant, the length of one of the plurality of first passages 55 is different from the length of the other one of the plurality of first passages 55. Easy to set. Therefore, for example, the shape of each first passage 55 can be easily set so as to have conductance and pressure resistance in accordance with various conditions such as before and after processes.
  • the gas G that has passed through the hole 37 of the diffusion plate 26 is discharged from the plurality of passages 50 of the shower plate 27 into the space S.
  • the semiconductor manufacturing apparatus 10 is not limited to this, and the diffusion plate 26 may not be provided.
  • a flow path that connects the supply port 31 and the plurality of passages 50 and distributes the gas G to the plurality of passages 50 may be formed inside the shower plate 27.
  • the fluid is discharged from each of the plurality of first passages in a direction corresponding to the fluid discharged from at least one of the plurality of other first passages. .
  • the distribution of the fluid in the space where the fluid is discharged becomes more uniform.

Abstract

A flow path structure according to an embodiment is provided with a member. The member has an outer surface and is provided with a plurality of first paths open to the outer surface. At the time of discharging fluid from the plurality of first paths, the fluid is discharged from each of the plurality of first paths in the direction in which the fluid hits the fluid discharged from at least one of the remaining plurality of first paths.

Description

流路構造及び処理装置Flow path structure and processing apparatus
 本発明の実施形態は、流路構造及び処理装置に関する。 Embodiments of the present invention relate to a flow path structure and a processing apparatus.
 複数の孔から流体を排出する装置が知られる。例えば、CVD装置のような、ガスを用いる処理装置において、シャワープレートが複数の孔からガスを排出する。 An apparatus that discharges fluid from a plurality of holes is known. For example, in a processing apparatus using gas, such as a CVD apparatus, a shower plate discharges gas from a plurality of holes.
特開2012-54266号公報JP 2012-54266 A
 流体の進行方向は、当該流体を排出する孔が向く方向を中心に分布する。このため、流体が排出される空間における、流体の分布に偏りが生じることがある。 The traveling direction of the fluid is distributed around the direction in which the hole for discharging the fluid faces. For this reason, the distribution of the fluid in the space where the fluid is discharged may be biased.
 一つの実施形態に係る流路構造は、部材を備える。前記部材は、外面を有し、前記外面に開口する複数の第1の通路が設けられる。前記複数の第1の通路から流体が排出されるとき、前記流体が、前記複数の第1の通路のそれぞれから、他の前記複数の第1の通路のうち少なくとも一つから排出される前記流体に当たる方向に排出される。 The flow path structure according to one embodiment includes a member. The member has an outer surface and is provided with a plurality of first passages that open to the outer surface. When fluid is discharged from the plurality of first passages, the fluid is discharged from each of the plurality of first passages from at least one of the other plurality of first passages. It is discharged in the direction that hits.
図1は、第1の実施形態に係る半導体製造装置を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a semiconductor manufacturing apparatus according to the first embodiment. 図2は、第1の実施形態のシャワープレートの第4の面を概略的に示す平面図である。FIG. 2 is a plan view schematically showing a fourth surface of the shower plate of the first embodiment. 図3は、第1の実施形態の通路を示すシャワープレートの平面図である。FIG. 3 is a plan view of the shower plate showing the passage of the first embodiment. 図4は、第1の実施形態の通路を示すシャワープレートの断面図である。FIG. 4 is a cross-sectional view of the shower plate showing the passage of the first embodiment. 図5は、第1の実施形態の通路を示すシャワープレートの平面図である。FIG. 5 is a plan view of the shower plate showing the passage of the first embodiment. 図6は、第1の実施形態の通路を示すシャワープレートの断面図である。FIG. 6 is a cross-sectional view of the shower plate showing the passage of the first embodiment. 図7は、第1の実施形態の通路を示すシャワープレートの平面図である。FIG. 7 is a plan view of the shower plate showing the passage of the first embodiment. 図8は、第1の実施形態の通路を示すシャワープレートの断面図である。FIG. 8 is a cross-sectional view of the shower plate showing the passage of the first embodiment. 図9は、第2の実施形態に係る通路を示すシャワープレートの平面図である。FIG. 9 is a plan view of a shower plate showing a passage according to the second embodiment. 図10は、第2の実施形態の通路を示すシャワープレートの断面図である。FIG. 10 is a cross-sectional view of the shower plate showing the passage of the second embodiment. 図11は、第3の実施形態に係る通路を示すシャワープレートの平面図である。FIG. 11 is a plan view of a shower plate showing a passage according to the third embodiment. 図12は、第3の実施形態の通路を示すシャワープレートの断面図である。FIG. 12 is a cross-sectional view of the shower plate showing the passage of the third embodiment. 図13は、第4の実施形態に係る通路を示すシャワープレートの断面図である。FIG. 13: is sectional drawing of the shower plate which shows the channel | path which concerns on 4th Embodiment.
 以下に、第1の実施形態について、図1乃至図8を参照して説明する。なお、本明細書においては基本的に、鉛直上方を上方向、鉛直下方を下方向と定義する。また、本明細書において、実施形態に係る構成要素及び当該要素の説明について、複数の表現が記載されることがある。複数の表現がされた構成要素及び説明は、記載されていない他の表現がされても良い。さらに、複数の表現がされない構成要素及び説明も、記載されていない他の表現がされても良い。 Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 8. In the present specification, basically, a vertically upward direction is defined as an upward direction and a vertically downward direction is defined as a downward direction. In the present specification, a plurality of expressions may be described for the constituent elements according to the embodiment and the description of the elements. The constituent elements and descriptions in which a plurality of expressions are made may be other expressions that are not described. Further, the constituent elements and descriptions that are not expressed in a plurality may be expressed in other ways that are not described.
 図1は、第1の実施形態に係る半導体製造装置10を概略的に示す断面図である。半導体製造装置10は、処理装置の一例であり、例えば、製造装置、吸排気装置、供給装置、及び装置とも称され得る。なお、処理装置は半導体製造装置10に限らず、対象となる物体に、例えば加工、洗浄、及び試験のような処理を行う他の装置であっても良い。 FIG. 1 is a cross-sectional view schematically showing a semiconductor manufacturing apparatus 10 according to the first embodiment. The semiconductor manufacturing apparatus 10 is an example of a processing apparatus, and may be referred to as a manufacturing apparatus, an intake / exhaust apparatus, a supply apparatus, and an apparatus, for example. The processing apparatus is not limited to the semiconductor manufacturing apparatus 10 and may be another apparatus that performs processing such as processing, cleaning, and testing on the target object.
 各図面に示されるように、本明細書において、X軸、Y軸及びZ軸が定義される。X軸とY軸とZ軸とは、互いに直交する。X軸は、半導体製造装置10の幅に沿う。Y軸は、半導体製造装置10の奥行き(長さ)に沿う。Z軸は、半導体製造装置10の高さに沿う。 As shown in each drawing, in this specification, an X axis, a Y axis, and a Z axis are defined. The X axis, the Y axis, and the Z axis are orthogonal to each other. The X axis is along the width of the semiconductor manufacturing apparatus 10. The Y axis is along the depth (length) of the semiconductor manufacturing apparatus 10. The Z axis is along the height of the semiconductor manufacturing apparatus 10.
 図1に示される第1の実施形態の半導体製造装置10は、例えば、化学蒸着(CVD)装置である。半導体製造装置10は、他の装置であっても良い。図1に示すように、半導体製造装置10は、製造部11と、圧力計12と、ポンプ13とを有する。ポンプ13は、流体供給部の一例であり、例えば、供給部、排出部、又は送部とも称され得る。製造部11に、チャンバ21が設けられる。半導体製造装置10は、例えば、チャンバ21において、半導体ウェハ(以下、ウェハと称する)Wを製造する。 The semiconductor manufacturing apparatus 10 of the first embodiment shown in FIG. 1 is, for example, a chemical vapor deposition (CVD) apparatus. The semiconductor manufacturing apparatus 10 may be another apparatus. As shown in FIG. 1, the semiconductor manufacturing apparatus 10 includes a manufacturing unit 11, a pressure gauge 12, and a pump 13. The pump 13 is an example of a fluid supply unit, and may be referred to as a supply unit, a discharge unit, or a sending unit, for example. A chamber 21 is provided in the manufacturing unit 11. For example, the semiconductor manufacturing apparatus 10 manufactures a semiconductor wafer (hereinafter referred to as a wafer) W in the chamber 21.
 製造部11は、上壁23と、周壁24と、ステージ25と、拡散板26と、シャワープレート27とを有する。ステージ25は、例えば、配置部、処理部、載置部、又は台とも称され得る。拡散板26は、例えば、供給部、排出部、又は部分とも称され得る。シャワープレート27は、流路構造及び部材の一例であり、例えば、吸排気部材、吐出部、排出部、吸引部、又は部品とも称され得る。 The manufacturing unit 11 includes an upper wall 23, a peripheral wall 24, a stage 25, a diffusion plate 26, and a shower plate 27. The stage 25 may also be referred to as an arrangement unit, a processing unit, a placement unit, or a table, for example. The diffusing plate 26 may also be referred to as a supply unit, a discharge unit, or a part, for example. The shower plate 27 is an example of a channel structure and a member, and may be referred to as, for example, an intake / exhaust member, a discharge unit, a discharge unit, a suction unit, or a component.
 上壁23は、第1の内面23aを有する。第1の内面23aは、Z軸に沿う負方向(下方向)に向く略平坦な面である。第1の内面23aは、チャンバ21の一部を形成する。すなわち、第1の内面23aは、チャンバ21の内部に向く。 The upper wall 23 has a first inner surface 23a. The first inner surface 23a is a substantially flat surface that faces in the negative direction (downward) along the Z-axis. The first inner surface 23 a forms part of the chamber 21. That is, the first inner surface 23 a faces the inside of the chamber 21.
 上壁23に、供給口31が設けられる。供給口31は、例えばパイプによって、ポンプ13に接続される。ポンプ13は、供給口31から、チャンバ21にガスGを供給する。ガスGは、流体の一例である。流体は気体に限らず、例えば、液体であっても良い。図1は、ガスGの流れを矢印で示す。 A supply port 31 is provided in the upper wall 23. The supply port 31 is connected to the pump 13 by a pipe, for example. The pump 13 supplies the gas G to the chamber 21 from the supply port 31. The gas G is an example of a fluid. The fluid is not limited to gas but may be liquid, for example. FIG. 1 shows the flow of gas G with arrows.
 周壁24は、第2の内面24aを有する。第2の内面24aは、Z軸に直交する方向(略水平方向)に向く面である。第2の内面24aは、チャンバ21の一部を形成する。すなわち、第2の内面24aは、チャンバ21の内部に向く。 The peripheral wall 24 has a second inner surface 24a. The second inner surface 24a is a surface facing in a direction (substantially horizontal direction) perpendicular to the Z axis. The second inner surface 24 a forms part of the chamber 21. That is, the second inner surface 24 a faces the inside of the chamber 21.
 周壁24に、複数の排気口32が設けられる。排気口32は、圧力計12を介してポンプ13に接続される。ポンプ13は、排気口32から、チャンバ21のガスGを吸引することが可能である。言い換えると、チャンバ21のガスGは、排気口32から排出される。 A plurality of exhaust ports 32 are provided in the peripheral wall 24. The exhaust port 32 is connected to the pump 13 via the pressure gauge 12. The pump 13 can suck the gas G in the chamber 21 from the exhaust port 32. In other words, the gas G in the chamber 21 is exhausted from the exhaust port 32.
 ステージ25は、支持部25aを有する。支持部25aは、物体支持部の一例であり、例えば、配置部、処理部、載置部、又は台とも称され得る。支持部25aは、チャンバ21の内部に配置される。支持部25aは、上壁23の第1の内面23aに向き、ウェハWを支持する。ステージ25はヒータを有し、支持部25aに支持されたウェハWを加熱することが可能である。 The stage 25 has a support portion 25a. The support unit 25a is an example of an object support unit, and may be referred to as, for example, an arrangement unit, a processing unit, a mounting unit, or a table. The support portion 25 a is disposed inside the chamber 21. The support portion 25 a faces the first inner surface 23 a of the upper wall 23 and supports the wafer W. The stage 25 has a heater and can heat the wafer W supported by the support portion 25a.
 拡散板26は、チャンバ21の内部に配置され、上壁23に取り付けられる。拡散板26は、第1の面26aと、第2の面26bとを有する。第1の面26aは、上壁23の第1の内面23aに対向する。第2の面26bは、第1の面26aの反対側に位置する。 The diffusion plate 26 is disposed inside the chamber 21 and attached to the upper wall 23. The diffusion plate 26 has a first surface 26a and a second surface 26b. The first surface 26 a faces the first inner surface 23 a of the upper wall 23. The second surface 26b is located on the opposite side of the first surface 26a.
 拡散板26と、上壁23との間に、拡散室35が形成される。拡散室35は、拡散板26と上壁23とによって囲まれる空間である。拡散室35に、上壁23の供給口31が開口する。このため、ガスGは、供給口31から拡散室35に供給される。 A diffusion chamber 35 is formed between the diffusion plate 26 and the upper wall 23. The diffusion chamber 35 is a space surrounded by the diffusion plate 26 and the upper wall 23. A supply port 31 of the upper wall 23 opens into the diffusion chamber 35. For this reason, the gas G is supplied from the supply port 31 to the diffusion chamber 35.
 拡散板26に、複数の孔37が設けられる。孔37は、第1の面26aと、第2の面26bとの間を接続する孔である。すなわち、孔37は、拡散室35の内部と外部との間を接続する。 A plurality of holes 37 are provided in the diffusion plate 26. The hole 37 is a hole that connects the first surface 26a and the second surface 26b. That is, the hole 37 connects between the inside and the outside of the diffusion chamber 35.
 シャワープレート27は、チャンバ21の内部に配置され、上壁23に取り付けられる。シャワープレート27は、拡散板26を覆う。言い換えると、シャワープレート27と上壁23との間に、拡散板26が配置される。 The shower plate 27 is disposed inside the chamber 21 and attached to the upper wall 23. The shower plate 27 covers the diffusion plate 26. In other words, the diffusion plate 26 is disposed between the shower plate 27 and the upper wall 23.
 シャワープレート27は、第3の面27aと、第4の面27bとを有する。第3の面27aは、面の一例である。第4の面27bは、外面の一例である。第3の面27a及び第4の面27bはそれぞれ、例えば、表面とも称され得る。 The shower plate 27 has a third surface 27a and a fourth surface 27b. The third surface 27a is an example of a surface. The fourth surface 27b is an example of an outer surface. Each of the third surface 27a and the fourth surface 27b may be referred to as a surface, for example.
 第3の面27aは、Z軸に沿う正方向(Z軸の矢印が向く方向、上方向)に向く略平坦な面である。第3の面27aは、曲面状であっても良く、凹凸が設けられても良い。第3の面27aは、拡散板26の第2の面26bに対向する。第3の面27aは、間隔を介して、第2の面26bに開口した複数の孔37に面する。 The third surface 27a is a substantially flat surface that faces in the positive direction along the Z axis (the direction in which the arrow on the Z axis faces, the upward direction). The third surface 27a may be curved or may be provided with irregularities. The third surface 27 a faces the second surface 26 b of the diffusion plate 26. The third surface 27a faces a plurality of holes 37 that are opened in the second surface 26b with a gap therebetween.
 第4の面27bは、第3の面27aの反対側に位置する。第4の面27bは、Z軸に沿う負方向に向く略平坦な面である。第4の面27bは、曲面状であっても良く、凹凸が設けられても良い。 The fourth surface 27b is located on the opposite side of the third surface 27a. The fourth surface 27b is a substantially flat surface that faces in the negative direction along the Z-axis. The fourth surface 27b may be a curved surface or may be provided with irregularities.
 拡散板26と、シャワープレート27との間に、供給室39が形成される。供給室39は、拡散板26とシャワープレート27とによって囲まれる空間である。供給室39に、拡散板26の複数の孔37が開口する。このため、拡散室35のガスGは、拡散板26の複数の孔37を通って、供給室39に供給される。第3の面27aは、供給室39に面する。 A supply chamber 39 is formed between the diffusion plate 26 and the shower plate 27. The supply chamber 39 is a space surrounded by the diffusion plate 26 and the shower plate 27. A plurality of holes 37 of the diffusion plate 26 are opened in the supply chamber 39. For this reason, the gas G in the diffusion chamber 35 is supplied to the supply chamber 39 through the plurality of holes 37 of the diffusion plate 26. The third surface 27 a faces the supply chamber 39.
 第4の面27bは、ステージ25の支持部25aに支持されたウェハWから、Z軸に沿う正方向に空間Sを介して離間する。第4の面27bは、空間Sを介して、ステージ25の支持部25aに支持されたウェハWに面する。このように、シャワープレート27とウェハWとは、Z軸に沿う方向に空間Sを介して並べられる。 The fourth surface 27b is separated from the wafer W supported by the support portion 25a of the stage 25 via the space S in the positive direction along the Z axis. The fourth surface 27b faces the wafer W supported by the support portion 25a of the stage 25 through the space S. Thus, the shower plate 27 and the wafer W are arranged through the space S in the direction along the Z axis.
 図2は、第1の実施形態のシャワープレート27の第4の面27bを概略的に示す平面図である。図2に示すように、シャワープレート27に、複数の通路50が設けられる。複数の通路50はそれぞれ、シャワープレート27を貫通し、第3の面27a及び第4の面27bで開口する。 FIG. 2 is a plan view schematically showing the fourth surface 27b of the shower plate 27 of the first embodiment. As shown in FIG. 2, the shower plate 27 is provided with a plurality of passages 50. Each of the plurality of passages 50 penetrates the shower plate 27 and opens at the third surface 27a and the fourth surface 27b.
 以下の説明において、複数の通路50は、通路50A,50B,50Cと個別に称されることがある。なお、通路50A,50B,50Cに共通する説明は、通路50についての説明として記載される。 In the following description, the plurality of passages 50 may be individually referred to as passages 50A, 50B, and 50C. The description common to the passages 50A, 50B, and 50C is described as an explanation of the passage 50.
 図2において、説明のため、シャワープレート27に対する通路50の大きさは誇張されて描かれている。すなわち、通路50は、図2に示される通路50よりも、シャワープレート27に対して小さい。このため、シャワープレート27に設けられる複数の通路50の数は、図2に示される複数の通路50の数よりも多い。 In FIG. 2, the size of the passage 50 with respect to the shower plate 27 is exaggerated for the sake of explanation. That is, the passage 50 is smaller with respect to the shower plate 27 than the passage 50 shown in FIG. Therefore, the number of the plurality of passages 50 provided in the shower plate 27 is larger than the number of the plurality of passages 50 shown in FIG.
 図3は、第1の実施形態の通路50Aを示すシャワープレート27の平面図である。図4は、第1の実施形態の通路50Aを示すシャワープレート27の断面図である。図5は、第1の実施形態の通路50Bを示すシャワープレート27の平面図である。図6は、第1の実施形態の通路50Bを示すシャワープレート27の断面図である。図7は、第1の実施形態の通路50Cを示すシャワープレート27の平面図である。図8は、第1の実施形態の通路50Cを示すシャワープレート27の断面図である。 FIG. 3 is a plan view of the shower plate 27 showing the passage 50A of the first embodiment. FIG. 4 is a cross-sectional view of the shower plate 27 showing the passage 50A of the first embodiment. FIG. 5 is a plan view of the shower plate 27 showing the passage 50B of the first embodiment. FIG. 6 is a cross-sectional view of the shower plate 27 showing the passage 50B of the first embodiment. FIG. 7 is a plan view of the shower plate 27 showing the passage 50C of the first embodiment. FIG. 8 is a cross-sectional view of the shower plate 27 showing the passage 50C of the first embodiment.
 例えば図4、図6、及び図8に示すように、複数の通路50はそれぞれ、少なくとも一つの第1の開口51と、第2の開口52とを有する。第1の開口51は、第4の面27bに設けられた通路50の端部である。第2の開口52は、第3の面27aに設けられた通路50の端部である。すなわち、通路50は、第1の開口51と第2の開口52とを接続する。 For example, as shown in FIGS. 4, 6, and 8, each of the plurality of passages 50 has at least one first opening 51 and second opening 52. The 1st opening 51 is an edge part of the channel | path 50 provided in the 4th surface 27b. The second opening 52 is an end portion of the passage 50 provided in the third surface 27a. That is, the passage 50 connects the first opening 51 and the second opening 52.
 さらに、複数の通路50はそれぞれ、少なくとも一つの第1の通路55と、第2の通路56とを含む。言い換えると、シャワープレート27に、複数の第1の通路55と、複数の第2の通路56とが設けられる。 Further, each of the plurality of passages 50 includes at least one first passage 55 and a second passage 56. In other words, the shower plate 27 is provided with a plurality of first passages 55 and a plurality of second passages 56.
 第1の通路55は、通路50の一部であって、シャワープレート27の第4の面27bで開口する部分である。第1の通路55は、通路50の第1の開口51を含む。言い換えると、第1の通路55は、第1の開口51から延びる部分である。別の表現によれば、第1の開口51は、第1の通路55の、第4の面27bで開口する部分である。さらに別の表現によれば、第1の開口51は、第1の通路55の、第4の面27bに形成されている開口である。 The first passage 55 is a part of the passage 50 and is a portion that opens at the fourth surface 27 b of the shower plate 27. The first passage 55 includes the first opening 51 of the passage 50. In other words, the first passage 55 is a portion extending from the first opening 51. According to another expression, the first opening 51 is a portion of the first passage 55 that opens at the fourth surface 27b. According to another expression, the first opening 51 is an opening formed in the fourth surface 27 b of the first passage 55.
 第2の通路56は、通路50の一部であって、シャワープレート27の第3の面27aで開口する部分である。第2の通路56は、通路50の第2の開口52を含む。言い換えると、第2の通路56は、第2の開口52から延びる部分である。別の表現によれば、第2の開口52は、第2の通路56の、第3の面27aで開口する部分である。第2の通路56はそれぞれ、少なくとも一つの第1の通路55に接続される。 The second passage 56 is a part of the passage 50 and is a portion that opens at the third surface 27 a of the shower plate 27. The second passage 56 includes the second opening 52 of the passage 50. In other words, the second passage 56 is a portion extending from the second opening 52. According to another expression, the second opening 52 is a portion of the second passage 56 that opens at the third surface 27a. Each second passage 56 is connected to at least one first passage 55.
 図3に示すように、通路50Aの第1の開口51は、円環状に形成される。図4に示すように、通路50Aの第1の通路55は、Z軸に沿う方向に延び、且つ第1の開口51に近づくに従って内径が拡大する、円筒状に形成される。言い換えると、通路50Aの第1の通路55の断面積は、第1の開口51に近づくに従って縮小する。 As shown in FIG. 3, the first opening 51 of the passage 50A is formed in an annular shape. As shown in FIG. 4, the first passage 55 of the passage 50 </ b> A is formed in a cylindrical shape that extends in the direction along the Z-axis and whose inner diameter increases as the first opening 51 is approached. In other words, the cross-sectional area of the first passage 55 of the passage 50 </ b> A decreases as the first opening 51 is approached.
 本実施形態において、通路50の第1の通路55の断面積は、当該第1の通路55が延びる方向と直交する平面における断面積である。例えば、通路50Aの第1の通路55の断面積は、X‐Y平面における断面積である。 In the present embodiment, the cross-sectional area of the first passage 55 of the passage 50 is a cross-sectional area in a plane orthogonal to the direction in which the first passage 55 extends. For example, the cross-sectional area of the first passage 55 of the passage 50A is a cross-sectional area in the XY plane.
 図4は、X‐Z平面におけるシャワープレート27の断面を示す。図4のようにY軸に沿う方向に平面視した場合における、第1の通路55の延びる方向は、例えば次のように示される。なお、Y軸に沿う方向は、シャワープレート27の第4の面27bが向く方向であり、且つシャワープレート27とウェハWが並べられた方向であるZ軸に沿う方向と直交する。 FIG. 4 shows a cross section of the shower plate 27 in the XZ plane. For example, the direction in which the first passage 55 extends when viewed in a direction along the Y-axis as shown in FIG. 4 is as follows. The direction along the Y axis is the direction in which the fourth surface 27b of the shower plate 27 faces and is orthogonal to the direction along the Z axis, which is the direction in which the shower plate 27 and the wafer W are arranged.
 まず、Z軸に沿う方向における一地点において、X軸に沿う方向における第1の通路55の両端の中間点が得られる。当該中間点を、Z軸に沿う方向における複数の地点で得て、複数の中間点を結ぶことで、第1の通路55の中心軸が得られる。第1の通路55の中心軸が延びる方向が、本実施形態における第1の通路55が延びる方向である。 First, at one point in the direction along the Z axis, an intermediate point between both ends of the first passage 55 in the direction along the X axis is obtained. The intermediate point is obtained at a plurality of points in the direction along the Z-axis, and the central axis of the first passage 55 is obtained by connecting the plurality of intermediate points. The direction in which the central axis of the first passage 55 extends is the direction in which the first passage 55 in the present embodiment extends.
 上述のように求められた通路50Aの第1の通路55が延びる方向は、Z軸と斜めに交差する。通路50Aの第1の通路55が延びる方向は、第4の面27bから遠ざかるに従って、当該通路50Aに隣接する他の通路50にX‐Y平面(略水平方向)において近づく方向である。 The direction in which the first passage 55 of the passage 50A obtained as described above extends obliquely intersects the Z axis. The direction in which the first passage 55 extends in the passage 50A is a direction that approaches the other passage 50 adjacent to the passage 50A in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases.
 通路50Aの第2の開口52は、円環状に形成される。通路50Aの第2の通路56は、Z軸に沿う方向に延びる円筒状に形成される。通路50Aの第2の通路56の断面積は、略一定である。 The second opening 52 of the passage 50A is formed in an annular shape. The second passage 56 of the passage 50A is formed in a cylindrical shape extending in the direction along the Z axis. The cross-sectional area of the second passage 56 of the passage 50A is substantially constant.
 本実施形態において、通路50の第2の通路56の断面積は、当該第2の通路56が延びる方向と直交する平面における断面積である。例えば、通路50Aの第2の通路56の断面積は、X‐Y平面における断面積である。 In the present embodiment, the cross-sectional area of the second passage 56 of the passage 50 is a cross-sectional area in a plane orthogonal to the direction in which the second passage 56 extends. For example, the cross-sectional area of the second passage 56 of the passage 50A is a cross-sectional area in the XY plane.
 第2の通路56の断面積は、第1の通路55の最小の断面積よりも広い。例えば、第2の開口52における第2の通路56の断面積は、第1の開口51における第1の通路55の断面積よりも広い。言い換えると、第2の開口52の断面積は、第1の開口51の断面積よりも広い。 The cross-sectional area of the second passage 56 is wider than the minimum cross-sectional area of the first passage 55. For example, the cross-sectional area of the second passage 56 in the second opening 52 is wider than the cross-sectional area of the first passage 55 in the first opening 51. In other words, the cross-sectional area of the second opening 52 is wider than the cross-sectional area of the first opening 51.
 通路50Aは、シャワープレート27に設けられた内周面61と、内柱62とによって形成される。内周面61は、Z軸に沿う方向に延びる円筒状の面であり、第1の通路55の外径を規定し、且つ第2の通路56の外径を規定する。内柱62は、内周面61から離間した位置で内周面61に囲まれ、第1の通路55の内径を規定し、且つ第2の通路56の内径を規定する。 The passage 50 </ b> A is formed by an inner peripheral surface 61 provided on the shower plate 27 and an inner pillar 62. The inner peripheral surface 61 is a cylindrical surface extending in the direction along the Z axis, defines the outer diameter of the first passage 55, and defines the outer diameter of the second passage 56. The inner column 62 is surrounded by the inner peripheral surface 61 at a position separated from the inner peripheral surface 61, defines the inner diameter of the first passage 55, and defines the inner diameter of the second passage 56.
 内柱62は、シャワープレート27の一部であり、シャワープレート27の他の部分と一体に成形される。なお、内柱62は、シャワープレート27の他の部分と別に成形された部品であっても良い。内柱62は、錐部62aと、柱部62bとを有する。 The inner pillar 62 is a part of the shower plate 27 and is formed integrally with the other part of the shower plate 27. The inner pillar 62 may be a part molded separately from other parts of the shower plate 27. The inner pillar 62 has a conical part 62a and a pillar part 62b.
 錐部62aは、第1の開口51に近づくに従って径が拡大する円錐状に形成され、第1の通路55の内径を規定する。錐部62aの底面は、シャワープレート27の第4の面27bの一部を形成する。第1の通路55は、錐部62aと内周面61との間に形成される。柱部62bは、錐部62aの頂部からZ軸に沿う方向に延びる円柱状に形成され、第2の通路56の内径を規定する。第2の通路56は、柱部62bと内周面61との間に形成される。柱部62bは、例えば梁を介してシャワープレート27の第3の面27aに支持される。 The conical portion 62 a is formed in a conical shape whose diameter increases as it approaches the first opening 51, and defines the inner diameter of the first passage 55. The bottom surface of the conical portion 62 a forms part of the fourth surface 27 b of the shower plate 27. The first passage 55 is formed between the conical portion 62 a and the inner peripheral surface 61. The column part 62b is formed in a cylindrical shape extending in the direction along the Z axis from the top part of the cone part 62a, and defines the inner diameter of the second passage 56. The second passage 56 is formed between the column part 62 b and the inner peripheral surface 61. The column part 62b is supported by the 3rd surface 27a of the shower plate 27 via a beam, for example.
 図5に示すように、通路50Bは、四つの第1の開口51を含む。言い換えると、通路50Bの第2の通路56は、四つの第1の通路55に接続される。第2の通路56が接続される第1の通路55の数は、これに限らない。通路50Bの第1の開口51はそれぞれ、円弧状に形成される。四つの円弧状の第1の開口51は、周方向に互いに離間して配置され、全体として略円環形状を呈する。 As shown in FIG. 5, the passage 50 </ b> B includes four first openings 51. In other words, the second passage 56 of the passage 50 </ b> B is connected to the four first passages 55. The number of first passages 55 to which the second passages 56 are connected is not limited to this. Each of the first openings 51 of the passage 50B is formed in an arc shape. The four arc-shaped first openings 51 are spaced apart from each other in the circumferential direction, and have a substantially annular shape as a whole.
 図6に示すように、通路50Bの第1の通路55はそれぞれ、Z軸と斜めに交差する方向に延びる。通路50Bの第1の通路55が延びる方向は、第4の面27bから遠ざかるに従って、当該通路50Bに隣接する他の通路50にX‐Y平面(略水平方向)において近づく方向である。通路50Bの第1の通路55の断面積は、第1の開口51に近づくに従って縮小する。 As shown in FIG. 6, each of the first passages 55 of the passage 50B extends in a direction obliquely intersecting the Z axis. The direction in which the first passage 55 extends in the passage 50B is a direction that approaches the other passage 50 adjacent to the passage 50B in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases. The cross-sectional area of the first passage 55 of the passage 50 </ b> B decreases as the first opening 51 is approached.
 通路50Bの第2の開口52は、円状に形成される。通路50Bの第2の通路56は、Z軸に沿う方向に延びる円柱状に形成される。通路50Bの第2の通路56の断面積は、略一定である。 The second opening 52 of the passage 50B is formed in a circular shape. The second passage 56 of the passage 50B is formed in a columnar shape extending in the direction along the Z axis. The cross-sectional area of the second passage 56 of the passage 50B is substantially constant.
 第2の通路56の断面積は、四つの第1の通路55の最小の断面積の合計よりも広い。例えば、第2の開口52における第2の通路56の断面積は、第1の開口51における四つの第1の通路55の断面積の合計よりも広い。言い換えると、第2の開口52の断面積は、四つの第1の開口51の断面積の合計よりも広い。 The cross-sectional area of the second passage 56 is wider than the sum of the minimum cross-sectional areas of the four first passages 55. For example, the cross-sectional area of the second passage 56 in the second opening 52 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51. In other words, the cross-sectional area of the second opening 52 is wider than the sum of the cross-sectional areas of the four first openings 51.
 通路50Bは、シャワープレート27に設けられた内周面61と、底壁64とによって形成される。底壁64の底面は、シャワープレート27の第4の面27bの一部を形成する。通路50Bを形成する底壁64は、内板64aと、四つの接続部64bとを有する。 The passage 50 </ b> B is formed by an inner peripheral surface 61 provided on the shower plate 27 and a bottom wall 64. The bottom surface of the bottom wall 64 forms part of the fourth surface 27 b of the shower plate 27. The bottom wall 64 forming the passage 50B includes an inner plate 64a and four connection portions 64b.
 底壁64は、シャワープレート27の一部であり、シャワープレート27の他の部分と一体に成形される。なお、底壁64は、シャワープレート27の他の部分と別に成形された部品であっても良い。 The bottom wall 64 is a part of the shower plate 27 and is formed integrally with the other parts of the shower plate 27. The bottom wall 64 may be a part molded separately from the other parts of the shower plate 27.
 図5に示すように、内板64aは、略円盤状に形成され、内周面61から離間した位置で内周面61に囲まれる。四つの接続部64bは、内板64aの外周面から放射状に突出し、内板64aと内周面61とを接続する。 As shown in FIG. 5, the inner plate 64 a is formed in a substantially disc shape and is surrounded by the inner peripheral surface 61 at a position spaced from the inner peripheral surface 61. The four connecting portions 64b project radially from the outer peripheral surface of the inner plate 64a and connect the inner plate 64a and the inner peripheral surface 61.
 通路50Bの四つの第1の通路55はそれぞれ、内周面61と、内板64aの外周面と、二つの接続部64bとの間に形成される。通路50Bの第2の通路56は、内周面61の内側に形成される。 The four first passages 55 of the passage 50B are respectively formed between the inner peripheral surface 61, the outer peripheral surface of the inner plate 64a, and the two connection portions 64b. The second passage 56 of the passage 50 </ b> B is formed inside the inner peripheral surface 61.
 図7に示すように、通路50Cは、四つの第1の開口51を含む。言い換えると、通路50Cの第2の通路56は、四つの第1の通路55に接続される。通路50Cの第1の開口51はそれぞれ、円状に形成される。四つの円状の第1の開口51は、周方向に互いに離間して配置される。 As shown in FIG. 7, the passage 50 </ b> C includes four first openings 51. In other words, the second passage 56 of the passage 50 </ b> C is connected to the four first passages 55. The first openings 51 of the passage 50C are each formed in a circular shape. The four circular first openings 51 are spaced apart from each other in the circumferential direction.
 図8に示すように、通路50Cの第1の通路55はそれぞれ、Z軸と斜めに交差する方向に延びる。通路50Cの第1の通路55が延びる方向は、第4の面27bから遠ざかるに従って、当該通路50Cに隣接する他の通路50にX‐Y平面(略水平方向)において近づく方向である。通路50Cの第1の通路55の断面積は、略一定である。 As shown in FIG. 8, each of the first passages 55 of the passage 50C extends in a direction obliquely intersecting the Z axis. The direction in which the first passage 55 extends in the passage 50C is a direction that approaches the other passage 50 adjacent to the passage 50C in the XY plane (substantially horizontal direction) as the distance from the fourth surface 27b increases. The cross-sectional area of the first passage 55 of the passage 50C is substantially constant.
 通路50Cの第2の開口52は、円状に形成される。通路50Cの第2の通路56は、Z軸に沿う方向に延びる円柱状に形成される。通路50Cの第2の通路56の断面積は、略一定である。 The second opening 52 of the passage 50C is formed in a circular shape. The second passage 56 of the passage 50C is formed in a columnar shape extending in the direction along the Z axis. The cross-sectional area of the second passage 56 of the passage 50C is substantially constant.
 第2の通路56の断面積は、四つの第1の通路55の断面積の合計よりも広い。例えば、第2の開口52における第2の通路56の断面積は、第1の開口51における四つの第1の通路55の断面積の合計よりも広い。言い換えると、第2の開口52の断面積は、四つの第1の開口51の断面積の合計よりも広い。 The cross-sectional area of the second passage 56 is wider than the sum of the cross-sectional areas of the four first passages 55. For example, the cross-sectional area of the second passage 56 in the second opening 52 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51. In other words, the cross-sectional area of the second opening 52 is wider than the sum of the cross-sectional areas of the four first openings 51.
 図8に示すように、通路50Cの第2の通路56は、底56aを有する穴である。通路50Cの四つの第1の通路55は、第2の通路56の底56aと、シャワープレート27の第4の面27bに開口する第1の開口51と、を接続する。 As shown in FIG. 8, the second passage 56 of the passage 50C is a hole having a bottom 56a. The four first passages 55 of the passage 50C connect the bottom 56a of the second passage 56 and the first opening 51 that opens to the fourth surface 27b of the shower plate 27.
 図2に示すように、例えば、シャワープレート27の中心部に、複数の通路50Aが設けられる。複数の通路50Bは、複数の通路50Aを囲むように配置される。さらに、複数の通路50Cは、複数の通路50A及び複数の通路50Bを囲むように配置される。なお、複数の通路50A,50B,50Cは、図2と異なる位置に配置されても良い。 As shown in FIG. 2, for example, a plurality of passages 50 </ b> A are provided in the center of the shower plate 27. The plurality of passages 50B are arranged so as to surround the plurality of passages 50A. Further, the plurality of passages 50C are arranged so as to surround the plurality of passages 50A and the plurality of passages 50B. The plurality of passages 50A, 50B, and 50C may be arranged at positions different from those in FIG.
 図3乃至図8に示すように、通路50Aの形状と、通路50Bの形状と、通路50Cの形状とは互いに異なる。言い換えると、複数の通路50のうち一つの形状が、複数の通路50のうち他の一つの形状と異なる。なお、複数の通路50は、複数の通路50A、複数の通路50B、又は複数の通路50Cのみを有しても良い。さらに、通路50Aの第1の通路55の長さと、通路50Bの第1の通路55の長さと、通路50Cの第1の通路55の長さとは互いに異なる。 3 to 8, the shape of the passage 50A, the shape of the passage 50B, and the shape of the passage 50C are different from each other. In other words, one shape of the plurality of passages 50 is different from the other shape of the plurality of passages 50. The plurality of passages 50 may include only a plurality of passages 50A, a plurality of passages 50B, or a plurality of passages 50C. Furthermore, the length of the first passage 55 of the passage 50A, the length of the first passage 55 of the passage 50B, and the length of the first passage 55 of the passage 50C are different from each other.
 以上のように構成されたシャワープレート27の複数の通路50に、図1のポンプ13は、ガスGを供給する。ポンプ13は、供給口31、拡散室35、及び拡散板26の複数の孔37を通じて、供給室39にガスGを供給する。供給室39のガスGは、複数の通路50の第2の通路56に供給される。 The pump 13 in FIG. 1 supplies the gas G to the plurality of passages 50 of the shower plate 27 configured as described above. The pump 13 supplies the gas G to the supply chamber 39 through the supply port 31, the diffusion chamber 35, and the plurality of holes 37 of the diffusion plate 26. The gas G in the supply chamber 39 is supplied to the second passages 56 of the plurality of passages 50.
 シャワープレート27は、ポンプ13から複数の通路50に供給されたガスGを、複数の通路50の第1の通路55から、シャワープレート27の第4の面27bと、ステージ25の支持部25aに支持されたウェハWと、の間の空間Sに排出する。以下、第1の通路55から排出されるガスGについて詳しく説明する。 The shower plate 27 supplies the gas G supplied from the pump 13 to the plurality of passages 50 from the first passage 55 of the plurality of passages 50 to the fourth surface 27b of the shower plate 27 and the support portion 25a of the stage 25. It discharges to the space S between the wafer W supported. Hereinafter, the gas G discharged from the first passage 55 will be described in detail.
 図3及び図4に示すように、複数の通路50Aのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、交差する。言い換えると、複数の通路50Aのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、一点で重なる。第1の開口51は、第1の通路の外面に開口する部分の一例である。第1の開口51が向く方向は、第1の通路が外面に向かって開口する方向の一例である。 As shown in FIGS. 3 and 4, the direction in which each first opening 51 of each of the plurality of passages 50 </ b> A faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces. . In other words, the direction in which each first opening 51 of each of the plurality of passages 50 </ b> A faces is overlapped at one point with the direction in which at least one of the other passages 50 faces. The first opening 51 is an example of a portion that opens to the outer surface of the first passage. The direction in which the first opening 51 faces is an example of the direction in which the first passage opens toward the outer surface.
 第1の開口51が向く方向は、第1の開口51(第4の面27b)における、第1の通路55が向く方向である。別の表現によれば、第1の開口51が向く方向は、第1の通路55が第4の面27bに向かって開口する方向である。すなわち、上述のように得られた第1の通路55が延びる方向を、第1の開口51(第4の面27b)から直線状に延長した方向である。 The direction in which the first opening 51 faces is the direction in which the first passage 55 faces in the first opening 51 (fourth surface 27b). According to another expression, the direction in which the first opening 51 faces is the direction in which the first passage 55 opens toward the fourth surface 27b. That is, the direction in which the first passage 55 obtained as described above extends linearly extends from the first opening 51 (fourth surface 27b).
 ガスGは、上記の複数の通路50Aの第1の通路55のそれぞれから、他の複数の通路50の第1の通路55のうち少なくとも一つから排出されるガスGに当たる方向に排出される。例えば、一つの通路50Aの第1の通路55は、当該通路50Aに隣接する他の通路50Aの第1の通路55から排出されるガスGに当たる方向に、ガスGを排出する。なお、通路50Aの第1の通路55は、当該通路50Aに隣接する通路50よりも遠い他の通路50の第1の通路55から排出されるガスGに当たる方向に、ガスGを排出しても良い。 The gas G is discharged from each of the first passages 55 of the plurality of passages 50A in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50. For example, the first passage 55 of one passage 50A discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50A adjacent to the passage 50A. Note that the first passage 55 of the passage 50A may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50A. good.
 図5及び図6に示すように、複数の通路50Bのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、交差する。言い換えると、複数の通路50Bのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、一点で重なる。 As shown in FIGS. 5 and 6, the direction in which each first opening 51 of each of the plurality of passages 50 </ b> B faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces. . In other words, the direction in which each first opening 51 of each of the plurality of passages 50B faces overlaps the direction in which at least one first opening 51 of the other plurality of passages 50 faces at one point.
 ガスGは、上記の複数の通路50Bの第1の通路55のそれぞれから、他の複数の通路50の第1の通路55のうち少なくとも一つから排出されるガスGに当たる方向に排出される。例えば、一つの通路50Bの第1の通路55は、当該通路50Bに隣接する他の通路50Bの第1の通路55から排出されるガスGに当たる方向に、ガスGを排出する。なお、通路50Bの第1の通路55は、当該通路50Bに隣接する通路50よりも遠い他の通路50の第1の通路55から排出されるガスGに当たる方向に、ガスGを排出しても良い。 The gas G is discharged from each of the first passages 55 of the plurality of passages 50B in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50. For example, the first passage 55 of one passage 50B discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50B adjacent to the passage 50B. Note that the first passage 55 of the passage 50B may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50B. good.
 図7及び図8に示すように、複数の通路50Cのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、交差する。言い換えると、複数の通路50Cのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、一点で重なる。 As shown in FIGS. 7 and 8, the direction in which each first opening 51 of each of the plurality of passages 50 </ b> C faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces. . In other words, the direction in which each first opening 51 of each of the plurality of passages 50C faces overlaps with the direction in which at least one of the plurality of other passages 50 faces, at one point.
 ガスGは、上記の複数の通路50Cの第1の通路55のそれぞれから、他の複数の通路50の第1の通路55のうち少なくとも一つから排出されるガスGに当たる方向に排出される。例えば、一つの通路50Cの第1の通路55は、当該通路50Cに隣接する他の通路50Cの第1の通路55から排出されるガスGに当たる方向に、ガスGを排出する。なお、通路50Cの第1の通路55は、当該通路50Cに隣接する通路50よりも遠い他の通路50の第1の通路55から排出されるガスGに当たる方向に、ガスGを排出しても良い。 The gas G is discharged from each of the first passages 55 of the plurality of passages 50C in a direction corresponding to the gas G discharged from at least one of the first passages 55 of the other plurality of passages 50. For example, the first passage 55 of one passage 50C discharges the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50C adjacent to the passage 50C. Note that the first passage 55 of the passage 50C may discharge the gas G in a direction corresponding to the gas G discharged from the first passage 55 of the other passage 50 farther than the passage 50 adjacent to the passage 50C. good.
 シャワープレート27は、複数の通路50の第1の通路55のそれぞれから排出されたガスGを、ガスGがウェハWに到達する前に、他の複数の通路50の第1の通路55のうち少なくとも一つから排出されるガスGに当てる。言い換えると、一つの第1の通路55から排出されたガスGと、少なくとも一つの他の第1の通路55から排出されたガスGとは、シャワープレート27の第4の面27bとウェハWとの間で互いに衝突する。 The shower plate 27 allows the gas G discharged from each of the first passages 55 of the plurality of passages 50 to be out of the first passages 55 of the other plurality of passages 50 before the gas G reaches the wafer W. The gas G is discharged from at least one of them. In other words, the gas G discharged from one first passage 55 and the gas G discharged from at least one other first passage 55 include the fourth surface 27b of the shower plate 27, the wafer W, and the like. Clash with each other.
 複数の第1の通路55から排出されたガスGが互いに衝突すると、当該ガスGの進行方向が分散する。衝突した後のガスGの流速は、第1の通路55から排出されるときのガスGの流速よりも遅い。衝突した後のガスGは、ウェハWに到達し、ウェハWの表面に膜を生成する。なお、半導体製造装置10がプラズマCVD装置である場合、ガスGは、空間Sにおいてプラズマ化される。 When the gases G discharged from the plurality of first passages 55 collide with each other, the traveling directions of the gases G are dispersed. The flow rate of the gas G after the collision is slower than the flow rate of the gas G when discharged from the first passage 55. The gas G after the collision reaches the wafer W and generates a film on the surface of the wafer W. When the semiconductor manufacturing apparatus 10 is a plasma CVD apparatus, the gas G is converted into plasma in the space S.
 ガスGが互いに衝突することで、ウェハWの表面上において、当該ウェハWの表面に到達するガスGの流速及び流量は大よそ均一になる。このため、ウェハWの表面で化学反応するガスGの量は大よそ均一になり、ウェハWの表面に生成される膜の厚さも大よそ均一となる。 When the gas G collides with each other, the flow velocity and flow rate of the gas G reaching the surface of the wafer W are approximately uniform on the surface of the wafer W. For this reason, the amount of the gas G that chemically reacts on the surface of the wafer W is approximately uniform, and the thickness of the film generated on the surface of the wafer W is also approximately uniform.
 例えば、通路50A,50B,50Cにおける第1の通路55の長さや、通路50A,50B,50Cの配置は、ウェハWの表面に生成される膜の厚さがより均一になるよう設定される。例えば、ハーゲン・ポアズイユ式より、第1の通路55の長さが長いほど、第1の通路55のコンダクタンスが低く且つ圧力抵抗が高い。このため、第1の通路55の長さが調整されることで、当該第1の通路55の近傍におけるガスGの流量が調整される。 For example, the length of the first passage 55 in the passages 50A, 50B, and 50C and the arrangement of the passages 50A, 50B, and 50C are set so that the thickness of the film generated on the surface of the wafer W becomes more uniform. For example, from the Hagen-Poiseuille type, the longer the length of the first passage 55, the lower the conductance of the first passage 55 and the higher the pressure resistance. For this reason, the flow rate of the gas G in the vicinity of the first passage 55 is adjusted by adjusting the length of the first passage 55.
 本実施形態において、シャワープレート27は、例えば、3Dプリンタによって積層造形される。このため、シャワープレート27は一体物として成形される。なお、シャワープレート27は、他の方法で成形されても良い。 In the present embodiment, the shower plate 27 is layered and formed by, for example, a 3D printer. For this reason, the shower plate 27 is formed as an integral body. The shower plate 27 may be formed by other methods.
 以上説明された第1の実施形態に係る半導体製造装置10において、複数の第1の通路55のそれぞれの第1の開口51が向く方向は、他の複数の第1の通路55のうち少なくとも一つの第1の開口51が向く方向と少なくとも一点で重なる。例えば、複数の第1の通路55のそれぞれの第1の開口51が向く方向と、他の複数の第1の通路55のうち少なくとも一つの第1の開口51が向く方向と、が互いに交差する。また、複数の第1の通路55からガスGが排出されるとき、ガスGが、複数の第1の通路55のそれぞれから、他の複数の第1の通路55のうち少なくとも一つから排出されるガスGに当たる方向に排出される。複数の第1の通路55から排出されたガスGは互いに衝突し、当該ガスGの進行方向が分散する。これにより、ガスGが排出される空間Sにおける、ガスGの分布がより均一になる。従って、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になって膜の厚さにムラが生じることが抑制される。このように、ウェハWに形成される膜の厚さがより均一になるように、複数の第1の通路55の第1の開口51が向く方向が独立して(個別に)設定される。 In the semiconductor manufacturing apparatus 10 according to the first embodiment described above, the direction in which each first opening 51 of the plurality of first passages 55 faces is at least one of the other plurality of first passages 55. At least one point overlaps the direction in which the first opening 51 faces. For example, the direction in which each first opening 51 of the plurality of first passages 55 faces and the direction in which at least one first opening 51 of the other plurality of first passages 55 faces each other. . Further, when the gas G is discharged from the plurality of first passages 55, the gas G is discharged from at least one of the plurality of first passages 55 from each of the plurality of first passages 55. The gas is discharged in the direction hitting the gas G. The gases G discharged from the plurality of first passages 55 collide with each other, and the traveling direction of the gases G is dispersed. Thereby, the distribution of the gas G in the space S from which the gas G is discharged becomes more uniform. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is prevented from becoming nonuniform and unevenness in the thickness of the film is suppressed. Thus, the direction in which the first openings 51 of the plurality of first passages 55 face is set independently (individually) so that the thickness of the film formed on the wafer W becomes more uniform.
 一般的に、ウェハWに形成される膜の厚さを均一にするために、ウェハWとシャワープレート27との間の距離を大きくすることが行われる。この場合、大きい空間Sに多くのガスGが供給されることになる。従って、チャンバ21でガスGを供給及び排出するための時間に係るガスGの置換効率と、ウェハWに形成される膜の厚さに対するガスGの量に係るガスGの利用効率と、が低下する。一方、本実施形態によれば、ウェハWとシャワープレート27との間の距離を小さくすることができ、ガスGの置換効率及び利用効率の低下が抑制される。 Generally, in order to make the thickness of the film formed on the wafer W uniform, the distance between the wafer W and the shower plate 27 is increased. In this case, a large amount of gas G is supplied to the large space S. Therefore, the replacement efficiency of the gas G relating to the time for supplying and discharging the gas G in the chamber 21 and the utilization efficiency of the gas G relating to the amount of the gas G with respect to the thickness of the film formed on the wafer W are reduced. To do. On the other hand, according to the present embodiment, the distance between the wafer W and the shower plate 27 can be reduced, and a decrease in the replacement efficiency and utilization efficiency of the gas G is suppressed.
 複数の第2の通路56のそれぞれの断面積は、当該第2の通路56に接続された第1の通路55の断面積の合計よりも広い。これにより、第1の通路55における圧力抵抗が高く且つコンダクタンスが低くなり、複数の第1の通路55からより均一にガスGが排出される。従って、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になることが抑制される。 Each cross-sectional area of the plurality of second passages 56 is wider than the sum of the cross-sectional areas of the first passages 55 connected to the second passages 56. Thereby, the pressure resistance in the first passage 55 is high and the conductance is low, and the gas G is discharged from the plurality of first passages 55 more uniformly. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
 複数の第2の通路56はそれぞれ、複数の第1の通路55のうち少なくとも二つに接続される。これにより、第1の通路55の数が、第2の通路56の数よりも多くなる。すなわち、ガスGが多くの位置から排出され、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になることが抑制される。 Each of the plurality of second passages 56 is connected to at least two of the plurality of first passages 55. Thereby, the number of the first passages 55 is larger than the number of the second passages 56. That is, when the gas G is discharged from many positions, for example, when the shower plate 27 discharges the gas G that is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven. .
 複数の第1の通路55のうち一つの形状が、複数の第1の通路55のうち他の一つの形状と異なる。これにより、例えば、化学機械研磨(CMP)のような前後工程を含む種々の条件に応じたコンダクタンス及び圧力抵抗を有するように、第1の通路55のそれぞれの形状が設定される。従って、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になることが抑制される。 One shape of the plurality of first passages 55 is different from the other shape of the plurality of first passages 55. Thereby, for example, each shape of the first passage 55 is set so as to have conductance and pressure resistance corresponding to various conditions including pre- and post-processes such as chemical mechanical polishing (CMP). Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
 複数の第1の通路55のうち一つの長さは、複数の第1の通路55のうち他の一つの長さと異なる。これにより、例えば、前後工程のような種々の条件に応じたコンダクタンス及び圧力抵抗を有するように、第1の通路55のそれぞれの長さが設定される。従って、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になることが抑制される。 The length of one of the plurality of first passages 55 is different from the length of the other one of the plurality of first passages 55. Thereby, for example, each length of the 1st channel | path 55 is set so that it may have conductance and pressure resistance according to various conditions, such as a back-and-forth process. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
 シャワープレート27は、複数の第1の通路55のそれぞれから排出されたガスGを、当該ガスGがウェハWに到達する前に、他の複数の第1の通路55のうち少なくとも一つから排出されるガスGに当てるよう構成される。これにより、第1の通路55から排出されたガスGが直接的にウェハWに当たることが抑制される。従って、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、ウェハWに形成される膜の厚さが不均一になることが抑制される。 The shower plate 27 discharges the gas G discharged from each of the plurality of first passages 55 from at least one of the other plurality of first passages 55 before the gas G reaches the wafer W. It is comprised so that it may hit against the gas G to be performed. Thereby, it is suppressed that the gas G discharged from the first passage 55 directly hits the wafer W. Therefore, for example, when the shower plate 27 discharges the gas G, which is a CVD source gas, the thickness of the film formed on the wafer W is suppressed from becoming uneven.
 以下に、第2の実施形態について、図9及び図10を参照して説明する。なお、以下の複数の実施形態の説明において、既に説明された構成要素と同様の機能を持つ構成要素は、当該既述の構成要素と同じ符号が付され、さらに説明が省略される場合がある。また、同じ符号が付された複数の構成要素は、全ての機能及び性質が共通するとは限らず、各実施形態に応じた異なる機能及び性質を有していても良い。 Hereinafter, the second embodiment will be described with reference to FIGS. 9 and 10. In the following description of the plurality of embodiments, components having the same functions as the components already described are denoted by the same reference numerals as those described above, and further description may be omitted. . In addition, a plurality of components to which the same reference numerals are attached do not necessarily have the same functions and properties, and may have different functions and properties according to each embodiment.
 図9は、第2の実施形態に係る通路50Cを示すシャワープレート27の平面図である。図10は、第2の実施形態の通路50Cを示すシャワープレート27の断面図である。図9及び図10に示すように、シャワープレート27の第4の面27bに複数の溝71が設けられる。溝71は、第4の面27bから窪み、底を有する。 FIG. 9 is a plan view of the shower plate 27 showing the passage 50C according to the second embodiment. FIG. 10 is a cross-sectional view of the shower plate 27 showing the passage 50C of the second embodiment. As shown in FIGS. 9 and 10, a plurality of grooves 71 are provided in the fourth surface 27 b of the shower plate 27. The groove 71 is recessed from the fourth surface 27b and has a bottom.
 溝71は、第4の面27bに開口する複数の第1の通路55のうち少なくとも二つの間で延びる。例えば、溝71は、一つの通路50Cの一つの第1の通路55と、当該一つの通路50Cに隣接する他の通路50Cの一つの第1の通路55と、の間で延びる。 The groove 71 extends between at least two of the plurality of first passages 55 opened in the fourth surface 27b. For example, the groove 71 extends between one first passage 55 of one passage 50C and one first passage 55 of another passage 50C adjacent to the one passage 50C.
 通路50Cの第1の通路55から排出されたガスGは基本的に、当該第1の通路55の第1の開口51が向く方向に排出される。さらに、通路50Cの第1の通路55から排出されたガスGの一部は、溝71に沿う方向に流れる。 The gas G discharged from the first passage 55 of the passage 50C is basically discharged in the direction in which the first opening 51 of the first passage 55 faces. Further, a part of the gas G discharged from the first passage 55 of the passage 50 </ b> C flows in a direction along the groove 71.
 溝71によって接続された二つの通路50Cの第1の通路55から、ガスGが排出される。当該ガスGは、溝71に沿って流れ、互いに衝突する。このように、ガスGは、溝71の内部及び溝71の近傍において互いに衝突する。溝71の内部及び溝71の近傍は、空間Sの一部である。 The gas G is discharged from the first passage 55 of the two passages 50C connected by the groove 71. The gases G flow along the grooves 71 and collide with each other. Thus, the gas G collides with the inside of the groove 71 and in the vicinity of the groove 71. The inside of the groove 71 and the vicinity of the groove 71 are part of the space S.
 以上説明された第2の実施形態の半導体製造装置10において、第4の面27bに設けられた溝71が、第4の面27bに開口する複数の第1の通路55のうち少なくとも二つの間で延びる。これにより、第1の通路55から排出されたガスGが、溝71に沿って流れ、他の第1の通路55から排出されたガスGと衝突しやすくなる。 In the semiconductor manufacturing apparatus 10 of the second embodiment described above, the groove 71 provided in the fourth surface 27b is between at least two of the plurality of first passages 55 opened in the fourth surface 27b. It extends at. Thereby, the gas G discharged from the first passage 55 flows along the groove 71 and easily collides with the gas G discharged from the other first passage 55.
 以下に、第3の実施形態について、図11及び図12を参照して説明する。図11は、第3の実施形態に係る通路50Dを示すシャワープレート27の平面図である。図12は、第3の実施形態の通路50Dを示すシャワープレート27の断面図である。 Hereinafter, the third embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is a plan view of the shower plate 27 showing the passage 50D according to the third embodiment. FIG. 12 is a cross-sectional view of the shower plate 27 showing the passage 50D of the third embodiment.
 図11及び図12に示すように、複数の通路50は、複数の通路50Dを含む。複数の通路50は、第1の実施形態の通路50A,50B,50Cのうち少なくとも一つを有しても良いし、通路50Dのみを有しても良い。 11 and 12, the plurality of passages 50 include a plurality of passages 50D. The plurality of passages 50 may include at least one of the passages 50A, 50B, and 50C of the first embodiment, or may include only the passage 50D.
 シャワープレート27は、複数の凸部81を有する。複数の凸部81はそれぞれ、シャワープレート27の第4の面27bから突出する。複数の凸部81は、互いに離間して配置される。複数の凸部81はそれぞれ、周壁82と、端壁83とを有する。 The shower plate 27 has a plurality of convex portions 81. Each of the plurality of convex portions 81 protrudes from the fourth surface 27 b of the shower plate 27. The plurality of convex portions 81 are arranged apart from each other. Each of the plurality of convex portions 81 has a peripheral wall 82 and an end wall 83.
 周壁82は、Z軸に沿う方向に延びる円筒状に形成される。周壁82は、多角形の筒状のような他の形状に形成されても良い。周壁82のZ軸に沿う正方向の端部は、第4の面27bに接続される。 The peripheral wall 82 is formed in a cylindrical shape extending in the direction along the Z axis. The peripheral wall 82 may be formed in other shapes such as a polygonal cylindrical shape. An end portion in the positive direction along the Z-axis of the peripheral wall 82 is connected to the fourth surface 27b.
 周壁82は、外周面82aを有する。外周面82aは、Z軸と直交する方向に向く円筒形の外面である。外周面82aは、空間Sに面し、シャワープレート27の外面の一部を形成する。すなわち、外周面82aは、外面の一例である。 The peripheral wall 82 has an outer peripheral surface 82a. The outer peripheral surface 82a is a cylindrical outer surface that faces in a direction orthogonal to the Z axis. The outer peripheral surface 82 a faces the space S and forms part of the outer surface of the shower plate 27. That is, the outer peripheral surface 82a is an example of an outer surface.
 端壁83は、周壁82のZ軸に沿う負方向の端部を塞ぐ。端壁83は、底面83aを有する。底面83aは、Z軸に沿う負方向に向く略平坦な面である。底面83aは、空間Sに面し、シャワープレート27の外面の一部を形成する。すなわち、底面83aは、外面の一例である。このように、凸部81の外周面82a及び底面83aは、シャワープレート27の外面の一部を形成する。 The end wall 83 closes the end of the peripheral wall 82 in the negative direction along the Z axis. The end wall 83 has a bottom surface 83a. The bottom surface 83a is a substantially flat surface facing in the negative direction along the Z axis. The bottom surface 83a faces the space S and forms a part of the outer surface of the shower plate 27. That is, the bottom surface 83a is an example of an outer surface. Thus, the outer peripheral surface 82a and the bottom surface 83a of the convex portion 81 form part of the outer surface of the shower plate 27.
 周壁82の外周面82aに、通路50Dの四つの第1の通路55が開口する。言い換えると、四つの第1の開口51が、周壁82の外周面82aに設けられる。第1の通路55は、Z軸と直交する方向(略水平方向)に延びる。第1の通路55の第1の開口51は、Z軸と直交する方向に向く。なお、第1の開口51は、他の方向に向いても良い。通路50Dの第1の開口51が向く方向は、第1の通路55が外周面82aに向かって開口する方向である。 Four first passages 55 of the passage 50D open on the outer peripheral surface 82a of the peripheral wall 82. In other words, the four first openings 51 are provided on the outer peripheral surface 82 a of the peripheral wall 82. The first passage 55 extends in a direction (substantially horizontal direction) orthogonal to the Z axis. The first opening 51 of the first passage 55 faces in a direction orthogonal to the Z axis. Note that the first opening 51 may face in another direction. The direction in which the first opening 51 of the passage 50D faces is the direction in which the first passage 55 opens toward the outer peripheral surface 82a.
 通路50Dの第2の開口52は、円状に形成される。通路50Dの第2の通路56は、Z軸に沿う方向に延びる円柱状に形成される。通路50Dの第2の通路56の断面積は、略一定である。 The second opening 52 of the passage 50D is formed in a circular shape. The second passage 56 of the passage 50D is formed in a columnar shape extending in the direction along the Z axis. The cross-sectional area of the second passage 56 of the passage 50D is substantially constant.
 通路50Dは、第3の通路85を有する。第3の通路85は、周壁82と端壁83とに囲まれる。言い換えると、第3の通路85は、周壁82の内面と端壁83の内面とによって形成される。 The passage 50D has a third passage 85. The third passage 85 is surrounded by the peripheral wall 82 and the end wall 83. In other words, the third passage 85 is formed by the inner surface of the peripheral wall 82 and the inner surface of the end wall 83.
 外周面82aに開口する四つの第1の通路55は、第3の通路85に接続される。第3の面27aに開口する第2の通路56も、第3の通路85に接続される。第3の通路85は、四つの第1の通路55と、第2の通路56との間に介在する。 The four first passages 55 that open to the outer peripheral surface 82 a are connected to the third passage 85. The second passage 56 that opens to the third surface 27 a is also connected to the third passage 85. The third passage 85 is interposed between the four first passages 55 and the second passage 56.
 第3の通路85は、Z軸に沿う方向に延びる円柱状に形成される。円柱状の第3の通路85の周面部分に四つの第1の通路55が接続され、第3の通路85の端面部分に第2の通路56が接続される。第3の通路85の断面積は、略一定であり、第2の通路56の断面積よりも小さい。なお、第3の通路85は他の形状を有しても良い。 The third passage 85 is formed in a columnar shape extending in the direction along the Z axis. Four first passages 55 are connected to the peripheral surface portion of the cylindrical third passage 85, and the second passage 56 is connected to an end surface portion of the third passage 85. The cross-sectional area of the third passage 85 is substantially constant and is smaller than the cross-sectional area of the second passage 56. The third passage 85 may have other shapes.
 第3の通路85の断面積は、四つの第1の通路55の最小の断面積の合計よりも広い。例えば、第2の通路56と第3の通路85との接続部分における第3の通路85の断面積は、第1の開口51における四つの第1の通路55の断面積の合計よりも広い。 The cross-sectional area of the third passage 85 is wider than the sum of the minimum cross-sectional areas of the four first passages 55. For example, the cross-sectional area of the third passage 85 at the connection portion between the second passage 56 and the third passage 85 is wider than the sum of the cross-sectional areas of the four first passages 55 in the first opening 51.
 周壁82の外周面82aに開口する四つの第1の通路55のうち一つは、他の周壁82の外周面82aに開口する四つの第1の通路55のうち一つに向く。言い換えると、二つの第1の通路55の第1の開口51が互いに向かい合う。このため、複数の第1の通路55のそれぞれが向く方向は、他の複数の第1の通路55のうち一つが向く方向と重なる。 One of the four first passages 55 that open to the outer peripheral surface 82 a of the peripheral wall 82 faces one of the four first passages 55 that open to the outer peripheral surface 82 a of the other peripheral wall 82. In other words, the first openings 51 of the two first passages 55 face each other. For this reason, the direction in which each of the plurality of first passages 55 is overlapped with the direction in which one of the other plurality of first passages 55 is facing.
 互いに向かい合う二つの通路50Dの第1の通路55から、ガスGが排出される。当該ガスGは、二つの凸部81の間で互いに衝突する。二つの凸部81の間は、空間Sの一部である。 The gas G is discharged from the first passage 55 of the two passages 50D facing each other. The gas G collides with each other between the two convex portions 81. A space between the two convex portions 81 is a part of the space S.
 以上説明された第3の実施形態の半導体製造装置10において、複数の第1の通路55が、複数の凸部81の周壁82に開口する。これにより、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、複数の第1の通路55から排出されるガスG同士が、ウェハWに到達する前に、より確実に衝突する。従って、ウェハWに形成される膜の厚さが不均一になることが抑制される。 In the semiconductor manufacturing apparatus 10 of the third embodiment described above, the plurality of first passages 55 open to the peripheral walls 82 of the plurality of convex portions 81. Thereby, for example, when the shower plate 27 discharges the gas G which is a CVD source gas, the gases G discharged from the plurality of first passages 55 collide more reliably before reaching the wafer W. . Therefore, the thickness of the film formed on the wafer W can be suppressed from becoming uneven.
 周壁82に開口する複数の第1の通路55のうち一つは、他の周壁82に開口する複数の第1の通路55のうち一つに向く。言い換えると、二つの第1の通路55が向かい合う。これにより、例えばシャワープレート27がCVDの原料ガスであるガスGを排出する場合、複数の第1の通路55から排出されるガスG同士が、ウェハWに到達する前に、より確実に衝突する。従って、ウェハWに形成される膜の厚さが不均一になることが抑制される。 One of the plurality of first passages 55 opening in the peripheral wall 82 faces one of the plurality of first passages 55 opening in the other peripheral wall 82. In other words, the two first passages 55 face each other. Thereby, for example, when the shower plate 27 discharges the gas G which is a CVD source gas, the gases G discharged from the plurality of first passages 55 collide more reliably before reaching the wafer W. . Therefore, the thickness of the film formed on the wafer W can be suppressed from becoming uneven.
 第3の実施形態において、端壁83の底面83aに、通路50Dの第1の通路55がさらに開口しても良い。言い換えると、複数の第1の開口51が、周壁82の外周面82aと、端壁83の底面83aとに設けられても良い。この場合、複数の第1の通路55のうち少なくとも一つは、端壁83に設けられ、Z軸に沿う方向又はZ軸と斜めに交差する方向に延びる。 In the third embodiment, the first passage 55 of the passage 50D may further open on the bottom surface 83a of the end wall 83. In other words, the plurality of first openings 51 may be provided on the outer peripheral surface 82 a of the peripheral wall 82 and the bottom surface 83 a of the end wall 83. In this case, at least one of the plurality of first passages 55 is provided in the end wall 83 and extends in a direction along the Z axis or in a direction obliquely intersecting with the Z axis.
 端壁83の底面83aに形成された第1の開口51は、Z軸に沿う方向又はZ軸と斜めに交差する方向に向く。なお、底面83aに形成される第1の開口51は、他の方向に向いても良い。底面83aに形成された第1の開口51が向く方向は、端壁83に設けられる第1の通路55が底面83aに向かって開口する方向である。 The first opening 51 formed in the bottom surface 83a of the end wall 83 faces in a direction along the Z axis or in a direction obliquely intersecting the Z axis. Note that the first opening 51 formed in the bottom surface 83a may face in another direction. The direction in which the first opening 51 formed in the bottom surface 83a faces is the direction in which the first passage 55 provided in the end wall 83 opens toward the bottom surface 83a.
 端壁83に第1の通路55が設けられることで、端壁83の下にもガスGが供給され、ウェハWに形成される膜の厚さが不均一になることが抑制される。さらに、端壁83の底面83aに形成された第1の開口51の断面積の合計は、例えば、周壁82の外周面82aに形成された第1の開口51の断面積の合計よりも小さい。これにより、直接的にウェハWに向かって流出するガスGの量が低減され、ウェハWに形成される膜の厚さが不均一になることが抑制される。 By providing the first passage 55 in the end wall 83, the gas G is also supplied under the end wall 83, and the thickness of the film formed on the wafer W is suppressed from becoming uneven. Furthermore, the total cross-sectional area of the first opening 51 formed on the bottom surface 83a of the end wall 83 is smaller than the total cross-sectional area of the first opening 51 formed on the outer peripheral surface 82a of the peripheral wall 82, for example. As a result, the amount of the gas G flowing directly toward the wafer W is reduced, and the thickness of the film formed on the wafer W is suppressed from becoming uneven.
 以下に、第4の実施形態について、図13を参照して説明する。図13は、第4の実施形態に係る通路50Eを示すシャワープレート27の断面図である。図13に示すように、複数の通路50は、複数の通路50Eを含む。複数の通路50は、第1乃至第3の実施形態の通路50A,50B,50C,50Dのうち少なくとも一つを有しても良いし、通路50Eのみを有しても良い。通路50Eの第1の通路55は、螺旋状に延びる。言い換えると、通路50Eの第1の通路55は、曲線状に延びる。 Hereinafter, the fourth embodiment will be described with reference to FIG. FIG. 13 is a cross-sectional view of the shower plate 27 showing the passage 50E according to the fourth embodiment. As shown in FIG. 13, the plurality of passages 50 include a plurality of passages 50E. The plurality of passages 50 may include at least one of the passages 50A, 50B, 50C, and 50D of the first to third embodiments, or may include only the passage 50E. The first passage 55 of the passage 50E extends in a spiral shape. In other words, the first passage 55 of the passage 50E extends in a curved shape.
 一つの通路50Eの第1の通路55の長さは、他の一つの通路50Eの第1の通路55の長さと異なる。例えば、一つの螺旋状の第1の通路55の巻数は、他の螺旋状の第1の通路55の巻数と異なる。通路50Eの第1の通路55の断面積は、略一定である。 The length of the first passage 55 of one passage 50E is different from the length of the first passage 55 of the other passage 50E. For example, the number of turns of one spiral first passage 55 is different from the number of turns of the other spiral first passage 55. The cross-sectional area of the first passage 55 of the passage 50E is substantially constant.
 複数の通路50Eのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、交差する。言い換えると、複数の通路50Eのそれぞれの第1の開口51が向く方向は、他の複数の通路50のうち少なくとも一つの第1の開口51が向く方向と、一点で重なる。第1の開口51は、第1の通路の外面に開口する部分の一例である。 The direction in which each first opening 51 of each of the plurality of passages 50E faces intersects with the direction in which at least one first opening 51 of the other plurality of passages 50 faces. In other words, the direction in which each first opening 51 of each of the plurality of passages 50E faces overlaps with the direction in which at least one first opening 51 of the other plurality of passages 50 faces at one point. The first opening 51 is an example of a portion that opens to the outer surface of the first passage.
 第1の開口51が向く方向は、第1の開口51(第4の面27b)における、第1の通路55が向く方向である。すなわち、上述のように得られた第1の通路55が延びる方向を、第1の開口51(第4の面27b)から直線状に延長した方向である。 The direction in which the first opening 51 faces is the direction in which the first passage 55 faces in the first opening 51 (fourth surface 27b). That is, the direction in which the first passage 55 obtained as described above extends linearly extends from the first opening 51 (fourth surface 27b).
 通路50Eの第1の通路55はそれぞれ、螺旋状に延びるため、Z軸と斜めに交差する方向に延びる。第1の開口51よりも第2の開口52に近い位置において、通路50Eの第1の通路55が延びる方向を直線状に延長しても、他の通路50の第1の開口51が向く方向と一点で重なるとは限らない。しかし、第1の開口51において、通路50Eの第1の通路55が延びる方向を直線状に延長すれば、他の通路50の第1の開口51が向く方向と一点で重なる。従って、通路50Eの第1の通路55から排出されたガスGと、少なくとも一つの他の第1の通路55から排出されたガスGとは、シャワープレート27の第4の面27bとウェハWとの間で互いに衝突する。 Since each of the first passages 55 of the passage 50E extends in a spiral shape, it extends in a direction obliquely intersecting the Z axis. The direction in which the first opening 51 of the other passage 50 faces even if the direction in which the first passage 55 of the passage 50E extends linearly at a position closer to the second opening 52 than the first opening 51 It does not always overlap with one point. However, in the first opening 51, if the direction in which the first passage 55 of the passage 50E extends is linearly extended, the first opening 51 overlaps with the direction in which the first opening 51 of the other passage 50 faces at one point. Therefore, the gas G exhausted from the first passage 55 of the passage 50E and the gas G exhausted from at least one other first passage 55 include the fourth surface 27b of the shower plate 27, the wafer W, and the like. Clash with each other.
 以上説明された第4の実施形態の半導体製造装置10において、複数の第1の通路55のうち少なくとも一つは、螺旋状に延びる。これにより、シャワープレート27の厚さが一定であったとしても、複数の第1の通路55のうち一つの長さを、複数の第1の通路55のうち他の一つの長さと異なるように容易に設定できる。従って、例えば、前後工程のような種々の条件に応じたコンダクタンス及び圧力抵抗を有するように、各第1の通路55の形状を容易に設定できる。 In the semiconductor manufacturing apparatus 10 of the fourth embodiment described above, at least one of the plurality of first passages 55 extends in a spiral shape. Thereby, even if the thickness of the shower plate 27 is constant, the length of one of the plurality of first passages 55 is different from the length of the other one of the plurality of first passages 55. Easy to set. Therefore, for example, the shape of each first passage 55 can be easily set so as to have conductance and pressure resistance in accordance with various conditions such as before and after processes.
 上述の複数の実施形態において、拡散板26の孔37を通過したガスGが、シャワープレート27の複数の通路50から空間Sに排出される。半導体製造装置10はこれに限らず、拡散板26を有さなくても良い。例えば、シャワープレート27の内部に、供給口31と複数の通路50とを接続し、且つガスGを複数の通路50に分配する、流路が形成されても良い。 In the plurality of embodiments described above, the gas G that has passed through the hole 37 of the diffusion plate 26 is discharged from the plurality of passages 50 of the shower plate 27 into the space S. The semiconductor manufacturing apparatus 10 is not limited to this, and the diffusion plate 26 may not be provided. For example, a flow path that connects the supply port 31 and the plurality of passages 50 and distributes the gas G to the plurality of passages 50 may be formed inside the shower plate 27.
 以上説明された少なくとも一つの実施形態によれば、流体が、複数の第1の通路のそれぞれから、他の複数の第1の通路のうち少なくとも一つから排出される流体に当たる方向に排出される。これにより、流体が排出される空間における、流体の分布がより均一になる。 According to at least one embodiment described above, the fluid is discharged from each of the plurality of first passages in a direction corresponding to the fluid discharged from at least one of the plurality of other first passages. . Thereby, the distribution of the fluid in the space where the fluid is discharged becomes more uniform.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (20)

  1.  外面を有し、前記外面に開口する複数の第1の通路が設けられ、前記複数の第1の通路から流体が排出されるとき、前記流体が、前記複数の第1の通路のそれぞれから、他の前記複数の第1の通路のうち少なくとも一つから排出される前記流体に当たる方向に排出される、部材、
     を具備する流路構造。
    A plurality of first passages having an outer surface and opening to the outer surface are provided, and when fluid is discharged from the plurality of first passages, the fluid is discharged from each of the plurality of first passages, A member that is discharged in a direction that hits the fluid discharged from at least one of the plurality of other first passages;
    A flow path structure comprising:
  2.  外面を有し、前記外面に開口する複数の第1の通路が設けられ、前記複数の第1の通路が前記外面に向かって開口する方向は、他の前記複数の第1の通路のうち少なくとも一つが前記外面に向かって開口する方向と少なくとも一点で重なる、部材、
     を具備する流路構造。
    A plurality of first passages having an outer surface and opening to the outer surface are provided, and a direction in which the plurality of first passages open toward the outer surface is at least one of the other first passages A member that overlaps at least one point with the direction in which one opens toward the outer surface;
    A flow path structure comprising:
  3.  前記外面に溝が設けられ、
     前記溝は、前記外面に開口する前記複数の第1の通路のうち少なくとも二つの間で延びる、
     請求項1の流路構造。
    A groove is provided on the outer surface;
    The groove extends between at least two of the plurality of first passages that open to the outer surface.
    The flow channel structure according to claim 1.
  4.  前記部材は、前記外面の一部を形成する複数の凸部を有し、
     前記複数の凸部は、複数の前記第1の通路が開口する筒状の周壁と、前記周壁の端部を塞ぐ端壁とを含む、
     請求項1の流路構造。
    The member has a plurality of convex portions forming a part of the outer surface,
    The plurality of convex portions include a cylindrical peripheral wall in which the plurality of first passages are open, and an end wall that closes an end of the peripheral wall.
    The flow channel structure according to claim 1.
  5.  前記周壁に開口する前記複数の第1の通路のうち一つは、他の前記周壁に開口する前記複数の第1の通路のうち一つに向く、請求項4の流路構造。 The flow path structure according to claim 4, wherein one of the plurality of first passages opened in the peripheral wall faces one of the plurality of first passages opened in the other peripheral wall.
  6.  前記部材は、前記外面の反対側に位置する面を有し、前記面に開口する複数の第2の通路が設けられ、
     前記複数の第2の通路はそれぞれ、前記複数の第1の通路のうち少なくとも一つに接続され、
     前記複数の第2の通路のそれぞれの断面積は、一つの前記第2の通路に接続された前記第1の通路の前記外面に形成されている開口の断面積の合計よりも広い、
     請求項1の流路構造。
    The member has a surface located on the opposite side of the outer surface, and a plurality of second passages opened in the surface are provided,
    Each of the plurality of second passages is connected to at least one of the plurality of first passages;
    The cross-sectional area of each of the plurality of second passages is wider than the sum of the cross-sectional areas of the openings formed in the outer surface of the first passage connected to one second passage.
    The flow channel structure according to claim 1.
  7.  前記複数の第2の通路はそれぞれ、前記複数の第1の通路のうち少なくとも二つに接続される、請求項6の流路構造。 The flow path structure according to claim 6, wherein each of the plurality of second passages is connected to at least two of the plurality of first passages.
  8.  前記複数の第1の通路のうち一つの形状が、前記複数の第1の通路のうち他の一つの形状と異なる、請求項1の流路構造。 The flow path structure according to claim 1, wherein a shape of one of the plurality of first passages is different from another shape of the plurality of first passages.
  9.  前記複数の第1の通路のうち一つの長さは、前記複数の第1の通路のうち他の一つの長さと異なる、請求項1の流路構造。 The flow path structure according to claim 1, wherein one length of the plurality of first passages is different from another length of the plurality of first passages.
  10.  前記複数の第1の通路のうち少なくとも一つは、螺旋状に延びる、請求項9の流路構造。 The flow path structure according to claim 9, wherein at least one of the plurality of first passages extends in a spiral shape.
  11.  請求項1の流路構造と、
     前記外面から空間を介して離間した位置に物体を支持するよう構成された物体支持部と、
     前記複数の第1の通路に流体を供給するよう構成された流体供給部と、
     をさらに具備し、
     前記流路構造は、前記流体供給部から前記複数の第1の通路に供給された前記流体を、前記複数の第1の通路から前記外面と前記物体との間の前記空間に排出するよう構成された、
     処理装置。
    A flow path structure according to claim 1;
    An object support portion configured to support an object at a position spaced from the outer surface via a space;
    A fluid supply configured to supply fluid to the plurality of first passages;
    Further comprising
    The flow path structure is configured to discharge the fluid supplied from the fluid supply unit to the plurality of first passages from the plurality of first passages to the space between the outer surface and the object. Was
    Processing equipment.
  12.  前記外面に溝が設けられ、
     前記溝は、前記外面に開口する前記複数の第1の通路のうち少なくとも二つの間で延びる、
     請求項2の流路構造。
    A groove is provided on the outer surface;
    The groove extends between at least two of the plurality of first passages that open to the outer surface.
    The flow channel structure according to claim 2.
  13.  前記部材は、前記外面の一部を形成する複数の凸部を有し、
     前記複数の凸部は、複数の前記第1の通路が開口する筒状の周壁と、前記周壁の端部を塞ぐ端壁とを含む、
     請求項2の流路構造。
    The member has a plurality of convex portions forming a part of the outer surface,
    The plurality of convex portions include a cylindrical peripheral wall in which the plurality of first passages are open, and an end wall that closes an end of the peripheral wall.
    The flow channel structure according to claim 2.
  14.  前記周壁に開口する前記複数の第1の通路のうち一つは、他の前記周壁に開口する前記複数の第1の通路のうち一つに向く、請求項13の流路構造。 14. The flow path structure according to claim 13, wherein one of the plurality of first passages opening in the peripheral wall faces one of the plurality of first passages opening in the other peripheral wall.
  15.  前記部材は、前記外面の反対側に位置する面を有し、前記面に開口する複数の第2の通路が設けられ、
     前記複数の第2の通路はそれぞれ、前記複数の第1の通路のうち少なくとも一つに接続され、
     前記複数の第2の通路のそれぞれの断面積は、一つの前記第2の通路に接続された前記第1の通路の前記外面に形成されている開口の断面積の合計よりも広い、
     請求項2の流路構造。
    The member has a surface located on the opposite side of the outer surface, and a plurality of second passages opened in the surface are provided,
    Each of the plurality of second passages is connected to at least one of the plurality of first passages;
    The cross-sectional area of each of the plurality of second passages is wider than the sum of the cross-sectional areas of the openings formed in the outer surface of the first passage connected to one second passage.
    The flow channel structure according to claim 2.
  16.  前記複数の第2の通路はそれぞれ、前記複数の第1の通路のうち少なくとも二つに接続される、請求項15の流路構造。 The flow path structure according to claim 15, wherein each of the plurality of second passages is connected to at least two of the plurality of first passages.
  17.  前記複数の第1の通路のうち一つの形状が、前記複数の第1の通路のうち他の一つの形状と異なる、請求項2の流路構造。 The flow path structure according to claim 2, wherein one shape of the plurality of first passages is different from the other shape of the plurality of first passages.
  18.  前記複数の第1の通路のうち一つの長さは、前記複数の第1の通路のうち他の一つの長さと異なる、請求項2の流路構造。 The flow path structure according to claim 2, wherein one length of the plurality of first passages is different from another length of the plurality of first passages.
  19.  前記複数の第1の通路のうち少なくとも一つは、螺旋状に延びる、請求項18の流路構造。 The flow path structure according to claim 18, wherein at least one of the plurality of first passages extends in a spiral shape.
  20.  請求項2の流路構造と、
     前記外面から空間を介して離間した位置に物体を支持するよう構成された物体支持部と、
     前記複数の第1の通路に流体を供給するよう構成された流体供給部と、
     をさらに具備し、
     前記流路構造は、前記流体供給部から前記複数の第1の通路に供給された前記流体を、前記複数の第1の通路から前記外面と前記物体との間の前記空間に排出するよう構成された、
     処理装置。
    A flow path structure according to claim 2;
    An object support portion configured to support an object at a position spaced from the outer surface via a space;
    A fluid supply configured to supply fluid to the plurality of first passages;
    Further comprising
    The flow path structure is configured to discharge the fluid supplied from the fluid supply unit to the plurality of first passages from the plurality of first passages to the space between the outer surface and the object. Was
    Processing equipment.
PCT/JP2017/023421 2016-07-15 2017-06-26 Flow path structure and treatment device WO2018012267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-140831 2016-07-15
JP2016140831A JP2018011032A (en) 2016-07-15 2016-07-15 Flow path structure and treatment device

Publications (1)

Publication Number Publication Date
WO2018012267A1 true WO2018012267A1 (en) 2018-01-18

Family

ID=60952423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023421 WO2018012267A1 (en) 2016-07-15 2017-06-26 Flow path structure and treatment device

Country Status (3)

Country Link
JP (1) JP2018011032A (en)
TW (1) TW201805478A (en)
WO (1) WO2018012267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391120A (en) * 2018-04-17 2019-10-29 北京北方华创微电子装备有限公司 A kind of spray head and plasma process chamber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123721A (en) * 1985-11-25 1987-06-05 Hitachi Ltd Treater
JPH09186140A (en) * 1995-10-16 1997-07-15 Applied Materials Inc Gas injection slit nozzle in plasma process reactor
JP2003243365A (en) * 2002-02-20 2003-08-29 Hitachi High-Technologies Corp Plasma etching method
US20040003777A1 (en) * 2002-07-08 2004-01-08 Carpenter Craig M. Apparatus and method for depositing materials onto microelectronic workpieces
JP2006237093A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Plasma processing apparatus and method of plasma processing using it
JP2009038209A (en) * 2007-08-01 2009-02-19 Mitsubishi Materials Corp Silicon electrode plate providing uniform etching
WO2010058813A1 (en) * 2008-11-21 2010-05-27 国立大学法人長岡技術科学大学 Substrate processing method and substrate processing apparatus
WO2013051248A1 (en) * 2011-10-07 2013-04-11 東京エレクトロン株式会社 Plasma processing apparatus
JP2014070249A (en) * 2012-09-28 2014-04-21 Tokyo Electron Ltd Film deposition apparatus
JP2015134943A (en) * 2014-01-16 2015-07-27 東京エレクトロン株式会社 substrate processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100015213A (en) * 2008-08-04 2010-02-12 삼성전기주식회사 Showerhead and chemical vapor deposition apparatus having the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123721A (en) * 1985-11-25 1987-06-05 Hitachi Ltd Treater
JPH09186140A (en) * 1995-10-16 1997-07-15 Applied Materials Inc Gas injection slit nozzle in plasma process reactor
JP2003243365A (en) * 2002-02-20 2003-08-29 Hitachi High-Technologies Corp Plasma etching method
US20040003777A1 (en) * 2002-07-08 2004-01-08 Carpenter Craig M. Apparatus and method for depositing materials onto microelectronic workpieces
JP2006237093A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Plasma processing apparatus and method of plasma processing using it
JP2009038209A (en) * 2007-08-01 2009-02-19 Mitsubishi Materials Corp Silicon electrode plate providing uniform etching
WO2010058813A1 (en) * 2008-11-21 2010-05-27 国立大学法人長岡技術科学大学 Substrate processing method and substrate processing apparatus
WO2013051248A1 (en) * 2011-10-07 2013-04-11 東京エレクトロン株式会社 Plasma processing apparatus
JP2014070249A (en) * 2012-09-28 2014-04-21 Tokyo Electron Ltd Film deposition apparatus
JP2015134943A (en) * 2014-01-16 2015-07-27 東京エレクトロン株式会社 substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391120A (en) * 2018-04-17 2019-10-29 北京北方华创微电子装备有限公司 A kind of spray head and plasma process chamber
CN110391120B (en) * 2018-04-17 2022-02-22 北京北方华创微电子装备有限公司 Shower nozzle and plasma processing cavity

Also Published As

Publication number Publication date
JP2018011032A (en) 2018-01-18
TW201805478A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
KR102125736B1 (en) Shower plate, processing apparatus, and ejection method
CN109594061B (en) Gas distribution showerhead for semiconductor processing
TW202127567A (en) Substrate processing apparatus
JP5863050B2 (en) Gas shower head, manufacturing method thereof, and thin film growth reaction apparatus
JP6804990B2 (en) Substrate support with more uniform edge purge
JP6947911B2 (en) Multi-plate face plate for processing chamber
TWI557265B (en) Apparatus for regulating gas flow in a deposition chamber, depositon chamber, and methods of depositing a material uniformly over a substrate
TWI612174B (en) Chemical vapor deposition appartus, apparatus, and method of chemical vapor deposition
JPWO2015083615A1 (en) HOLDING DEVICE, HOLDING SYSTEM, CONTROL METHOD, AND CONVEYING DEVICE
JP2016039356A (en) Baffle and substrate treating apparatus including the same
JP2016036018A (en) Plasma processing device and gas supply member
WO2018012267A1 (en) Flow path structure and treatment device
KR101817254B1 (en) Gas distributor and manufacturing method of the same
TWI745889B (en) Gas injector with baffle
CN105779972B (en) A kind of spray head and its plasma processing apparatus
TW202330105A (en) Gas distribution plate and gas distribution system
CN110391124A (en) Spray head and substrate-treating apparatus
US10774420B2 (en) Flow passage structure and processing apparatus
JP2023529498A (en) Showerhead faceplate with angled gas distribution passages for semiconductor processing tools
JP6776160B2 (en) Shower plate, processing equipment, flow path structure, and distribution method
JP7284265B2 (en) Ampoule droplet reduction
KR20090070580A (en) Top nozzle and substrate treatment apparatus
JP2013110140A (en) Electrode plate for plasma treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827397

Country of ref document: EP

Kind code of ref document: A1