WO2018008768A1 - Thermal insulation material and multilayer thermal insulation material - Google Patents

Thermal insulation material and multilayer thermal insulation material Download PDF

Info

Publication number
WO2018008768A1
WO2018008768A1 PCT/JP2017/025125 JP2017025125W WO2018008768A1 WO 2018008768 A1 WO2018008768 A1 WO 2018008768A1 JP 2017025125 W JP2017025125 W JP 2017025125W WO 2018008768 A1 WO2018008768 A1 WO 2018008768A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
dielectric multilayer
multilayer film
insulating material
optical member
Prior art date
Application number
PCT/JP2017/025125
Other languages
French (fr)
Japanese (ja)
Inventor
純孝 太刀川
孝太 冨岡
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to JP2018526469A priority Critical patent/JP6667914B2/en
Publication of WO2018008768A1 publication Critical patent/WO2018008768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil

Definitions

  • the present invention relates to a heat insulating material and a multilayer heat insulating material.
  • a space device operating in outer space such as a space probe or an artificial satellite is required to suppress a temperature rise or temperature drop inside the space device within a predetermined range in order to perform a normal function.
  • a space device operating in outer space such as a space probe or an artificial satellite is required to suppress a temperature rise or temperature drop inside the space device within a predetermined range in order to perform a normal function.
  • the sunlight intensity is strong due to the short distance between the sun and the spacecraft
  • it is necessary to reduce the temperature rise inside the space device due to the incidence of sunlight on the other hand, for example, in a region where the sunlight intensity is low due to the distance between the sun and the spacecraft, it is necessary to suppress a temperature drop due to heat radiation from the inside of the space device.
  • Patent Document 1 discloses a heat control member for suppressing a temperature rise inside a space device due to the influence of sunlight.
  • This thermal control member has an infrared radiation layer formed of a material having a high infrared emissivity and a reflection layer formed of a material having a high reflectivity of electromagnetic waves such as visible light and infrared light.
  • the reflective layer is formed of metal (silver, aluminum, gold, etc.).
  • This thermal control member has a problem that radio waves cannot be transmitted and received inside the thermal control member because the reflection layer formed of metal reflects radio waves.
  • an object of the present invention is to provide a heat insulating material and a multilayer heat insulating material that can transmit radio waves.
  • the present invention provides: A first dielectric multilayer film configured to transmit radio waves; A second dielectric multilayer film having an infrared emissivity of less than 0.5 and configured to transmit radio waves; Provided is a heat insulating material including a first base material including a first main surface on which a first dielectric multilayer film is formed and a second main surface on which a second dielectric multilayer film is formed.
  • the heat insulation target object provided with the said heat insulating material 10 can suppress an internal temperature fall, it can ensure a normal function. Furthermore, in this heat insulating material, since the metal is not used by combining the first dielectric multilayer film and the second dielectric multilayer film, radio waves can be transmitted.
  • the first dielectric multilayer film is configured to reflect sunlight.
  • a temperature rise inside the heat insulating object for example, space equipment
  • the heat insulating material of the present invention preferably includes a spacer disposed on the second main surface side on which the second dielectric multilayer film is formed. Thereby, space can be provided between a 1st base material and a heat insulation target object (for example, space equipment), heat conduction is suppressed, and a heat insulation effect can be heightened.
  • the spacer is preferably made of polyimide foam and is lightweight and heat insulating material.
  • the heat insulating material of the present invention When the heat insulating material of the present invention is used as a multilayer heat insulating material, a higher heat insulating effect can be exhibited.
  • the present invention also provides: A plurality of laminated substrates; A dielectric multilayer film configured to transmit radio waves and formed on at least one main surface of each of the plurality of base materials; A spacer disposed between a plurality of substrates, A multilayer heat insulating material (MLI: Multilayer Insulator) in which at least one infrared emissivity of the plurality of dielectric multilayer films is less than 0.5 can also be provided.
  • MMI Multilayer Insulator
  • transmit an electromagnetic wave can be provided.
  • infrared radiation is highly radiated on the surface of the heat insulating material. Therefore, in a heat insulating object including the heat insulating material (for example, space equipment), an increase in temperature due to the influence of sunlight can be suppressed. Since infrared radiation can be cut off, normal function can be ensured.
  • infrared rays are radiated
  • the heat insulation target object provided with the said heat insulating material 10 can suppress an internal temperature fall, it can ensure a normal function.
  • an antenna needs to be arranged outside the heat insulating material. Therefore, for example, in space equipment in a region where sunlight is incident, the antenna is directly exposed to outer space, and therefore sunlight is directly incident on an antenna that is not covered with the heat insulating material.
  • the heat of the antenna whose temperature has risen is conducted to the main body of the space equipment, the temperature inside the space equipment tends to rise.
  • the heat insulating material of the present invention can transmit radio waves, the antenna can be accommodated inside the heat insulating material, and the heat insulating property can be further improved. Further, even in a space device in a region where sunlight does not enter, by housing the antenna inside the heat insulating material, it is possible to suppress a decrease in the internal temperature of the space device and to further improve the heat insulation.
  • FIG. 1A and 1B are partial cross-sectional views showing a state in which a multilayer heat insulating material 10 according to an embodiment of the present invention is attached to the outer surface of a space device.
  • 1A and 1B show a state in which the multilayer heat insulating material 10 is attached to the outer surface of the structural material 20 constituting the main body of the space equipment.
  • the upper side of the multilayer heat insulating material 10 is outer space, and the lower side of the structural material 20 is the inside of the space equipment.
  • FIG. 1A shows a case where sunlight is incident
  • FIG. 1B shows a case where sunlight is not incident.
  • the surface of the multilayer heat insulating material 10 preferably reflects sunlight in a region where sunlight enters as shown in FIG. 1A. Moreover, it is preferable that the surface of the multilayer heat insulating material 10 radiates
  • the multilayer heat insulating material 10 is configured to transmit radio waves. Thereby, it becomes possible to arrange
  • the infrared radiation can be cut by the multilayer heat insulating material 10, and the temperature rise of the antenna disposed inside can be suppressed. it can.
  • Such a multilayer heat insulating material 10 is particularly suitable for space equipment that needs to transmit and receive radio waves.
  • the space equipment include an inner planetary explorer, an outer planetary explorer, a deep space explorer, and a lunar explorer.
  • the multilayer heat insulating material 10 can be widely applied not only to space equipment but also to various equipment and members. For example, in a lunar probe that operates in the shadow of the sun, it is possible to achieve a heat insulation performance that can withstand the night.
  • FIG. 2 is an enlarged partial sectional view showing a region A1 surrounded by a one-dot chain line in FIG. 1A.
  • a plurality of connection portions 30 are provided on the outer surface of the structural material 20 so as to be spaced apart from each other, and a space is formed between the multilayer heat insulating material 10 and the structural material 20 by the plurality of connection portions 30. Thereby, the heat conduction between the multilayer heat insulating material 10 and the structural material 20 can be prevented, and the heat insulating performance can be further exhibited.
  • the multilayer heat insulating material 10 includes a single first optical member 11 and a plurality of second optical members 12.
  • Each of the first optical member 11 and the plurality of second optical members 12 has a flat plate shape extending in parallel along the outer surface of the structural material 20, and is laminated on the outer surface of the structural material 20 with a space therebetween. .
  • four second optical members 12 are arranged.
  • the multilayer heat insulating material 10 further includes a spacer 13 disposed between the optical members 11 and 12.
  • the spacer 13 has a function of providing a space between the optical members 11 and 12 and suppressing heat conduction.
  • the spacer 13 suppresses direct heat conduction between the optical members 11 and 12 by separating the optical members 11 and 12 from each other.
  • the spacer 13 is formed of a material having low thermal conductivity, so that heat conduction through the spacer 13 between the optical members 11 and 12 is less likely to occur.
  • FIG. 2 it is described that the space between the optical member 11 and the optical member 12 is filled with the spacer 13, but only a part of the region between the optical member 11 and the optical member 12 is a spacer. 13 is also preferable. Thereby, in the space where the spacer 13 is not filled, heat conduction between the optical members 11 and 12 can be prevented.
  • the spacer 13 is preferably formed of a polyimide foam having low thermal conductivity, light weight, and excellent heat resistance and environmental resistance. However, the spacer 13 is not limited to this, and may be formed of other low thermal conductivity materials.
  • the spacer 13 may be configured as a structure in which a plurality of members are combined.
  • the spacer 13 is also arranged between the innermost second optical member 12 and the connection portion 30. Thereby, the heat conduction between the multilayer heat insulating material 10 and the structural material 20 can be further effectively prevented.
  • this configuration is not essential, and the spacer 13 may not be disposed between the innermost second optical member 12 and the connection portion 30.
  • the plurality of spacers 13 may all have the same configuration, or may have different configurations for each spacer 13.
  • the multilayer heat insulating material 10 shown in FIG. 1A has been described above, the multilayer heat insulating material 10 shown in FIG. 1B also has the same configuration.
  • the multilayer heat insulating material 10 shown in FIG. 1B is different from the multilayer heat insulating material shown in FIG. 1A in the configuration of the first optical member 11, and the other configurations are common. For this reason, below, description of structures other than the 1st optical member 11 is abbreviate
  • FIG. 3 is a partial cross-sectional view further enlarging and showing a region A2 surrounded by a one-dot chain line in FIG.
  • the first optical member 11 of the multilayer heat insulating material 10 shown in FIG. 1A includes a first base material B1, a first dielectric multilayer film F1, and a second dielectric multilayer film F2.
  • the first dielectric multilayer film F1 is formed on the outer main surface of the first base material B1.
  • the second dielectric multilayer film F2 is formed on the inner main surface of the first base material B1.
  • the first base material B1 is a member for maintaining the shapes of the dielectric multilayer films F1 and F2.
  • the first base material B1 is preferably made of polyimide having flexibility and excellent heat resistance and environmental resistance.
  • the first base material B1 is not limited to this, and may be formed of other materials.
  • the thickness of 1st base material B1 can be determined suitably.
  • the thickness of the first substrate may be 10 to 1000 ⁇ m, 15 to 500 ⁇ m, or 20 to 200 ⁇ m.
  • FIG. 4 is a partial cross-sectional view further enlarging the region A3 surrounded by the one-dot chain line in FIG. FIG. 4 shows the case of outer space close to the sun, and the traveling paths of sunlight, infrared rays, and radio waves are schematically shown by arrows.
  • Each of the dielectric multilayer films F1 and F2 has a structure in which a high refractive index dielectric film and a low refractive index dielectric film are alternately laminated.
  • the dielectric multilayer films F1 and F2 reflect (or absorb) electromagnetic waves in a specific wavelength band by adjusting the types and thicknesses of the high refractive index dielectric film and the low refractive index dielectric film. It is configured.
  • Examples of the high refractive index dielectric film include metal oxides.
  • Examples of the low refractive index dielectric film include silicon dioxide.
  • the first dielectric multilayer film F1 is configured to reflect sunlight and absorb / radiate infrared rays in the case of outer space where sunlight enters.
  • Examples of the combination of the high refractive index dielectric film and the low refractive index dielectric film in the first dielectric multilayer film F1 include Ta 2 O 5 and SiO 2 , TiO 2 and SiO 2 , Si and SiO 2, and the like. Can be mentioned. In the first dielectric multilayer film F1, any one of these combinations or a plurality thereof may be used in combination.
  • the first dielectric multilayer film F1 it is possible to reflect the wavelength of the sunlight region by appropriately setting the thickness of each dielectric film.
  • the thickness of each dielectric film can be designed based on an arbitrary design method.
  • the number of dielectric films in the first dielectric multilayer film F1 can be determined as appropriate.
  • FIG. 5 and 6 are graphs illustrating the reflectance of the first dielectric multilayer film F1 using a combination of Si and SiO 2 .
  • FIG. 5 shows the reflectance in the wavelength band (0.25 to 2.5 ⁇ m) of the sunlight region of the first dielectric multilayer film F1.
  • FIG. 6 shows the reflectance of the first dielectric multilayer film F1 in the infrared wavelength band (especially around 10 ⁇ m).
  • the specific configuration of the first dielectric multilayer film F1 is as shown in Table 1 below.
  • the layers 2 to 9 are arranged in this order on the first base material B1 (layer 1).
  • Table 1 shows the material and thickness of each layer 1-9.
  • the first dielectric multilayer film F1 has a high reflectance in the wavelength band (0.25 to 2.5 ⁇ m) of the sunlight region.
  • the first dielectric multilayer film F1 has a low reflectance, that is, a high absorptance and emissivity, particularly near 10 ⁇ m.
  • the second dielectric multilayer film F2 is configured to reflect infrared rays, and has an infrared emissivity of less than 0.5.
  • the infrared emissivity may be 0.3 or less, 0.2 or less, or 0.15 or less.
  • Examples of the combination of the high refractive index dielectric film and the low refractive index dielectric film in the second dielectric multilayer film F2 include a combination of Ge and sulfide, Ge and fluoride, and the like.
  • Examples of the low refractive index sulfide that can be combined with Ge include zinc sulfide (ZnS).
  • Examples of the low refractive index fluoride that can be combined with Ge include calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and barium fluoride (BaF 2 ).
  • each dielectric film can be designed based on an arbitrary design method.
  • the entire wavelength band in the infrared region can be reflected by appropriately setting the thickness of each dielectric film.
  • the thickness of each dielectric film can be designed based on an arbitrary design method. Further, the number of dielectric films in the second dielectric multilayer film F2 can be determined as appropriate.
  • FIG. 7 is a graph illustrating the reflectance in the wavelength band (near 10 ⁇ m) in the infrared region of the second dielectric multilayer film F2 using a combination of Ge and ZnS. As shown in FIG. 7, it can be seen that the second dielectric multilayer film F2 has a high reflectance in the near-infrared to far-infrared wavelength band around 10 ⁇ m.
  • the specific configuration of the second dielectric multilayer film F2 is as shown in Table 2 below.
  • the layers 2 to 13 are arranged in this order on the first base material B1 (layer 1).
  • Table 2 shows the material and thickness of each layer 1 to 13.
  • the dielectric multilayer films F1 and F2 of the first optical member 11 transmit radio waves, radio waves incident on the first optical member 11 from outer space can reach the inside of the first optical member 11.
  • FIG. 8 is a partial cross-sectional view further enlarging the region A4 surrounded by the one-dot chain line in FIG.
  • the second optical member 12 includes a second base material B2 and a third dielectric multilayer film F3.
  • the third dielectric multilayer film F3 is formed on each main surface of the second base material B2.
  • the outermost second optical member 12 will be mainly described, but the other second optical members 12 have the same configuration.
  • the second base material B2 is a member for maintaining the shape of the third dielectric multilayer film F3.
  • the second base material B2 is preferably made of polyimide having flexibility and excellent heat resistance and environmental resistance.
  • the second base material B2 is not limited to this, and may be formed of other materials.
  • the thickness of 2nd base material B2 can be determined suitably.
  • the second base material B2 the same material as the first base material B1 of the first optical member 11 can be used. However, as the second base material B2, a material different from the first base material B1 of the first optical member 11 may be used. Moreover, you may utilize 2nd base material B2 different for every 2nd optical member 12.
  • FIG. As an example, the thickness of the second base material may be 10 to 1000 ⁇ m, 15 to 500 ⁇ m, or 20 to 200 ⁇ m.
  • the third dielectric multilayer film F3 is configured to reflect infrared rays (infrared emissivity is less than 0.5).
  • the configuration of the third dielectric multilayer film F3 may be the same as the configuration of the second dielectric multilayer film F2 described above, or may be different from the configuration of the second dielectric multilayer film F2.
  • the third dielectric multilayer film F3 formed on the inner main surface of the second base material B2 is the same as the third dielectric multilayer film F3 formed on the outer main surface of the second base material B2.
  • the structure may be different or different.
  • the configuration of the third dielectric multilayer film F3 may be different for each second optical member 12.
  • the entire wavelength band in the infrared region can be reflected by appropriately setting the thickness of each dielectric film.
  • the thickness of each dielectric film can be designed based on an arbitrary design method. Further, the number of dielectric films in the third dielectric multilayer film F3 can be determined as appropriate.
  • the second dielectric multilayer film F2 of the first optical member 11 has high infrared reflectance, that is, low infrared absorption and emissivity. If the absorptivity and emissivity of the second dielectric multilayer film F2 are 0%, the second dielectric multilayer film of the first optical member 11 does not absorb infrared rays and does not emit infrared rays at all.
  • the emissivity of the second dielectric multilayer film F2 it is impossible to set the emissivity of the second dielectric multilayer film F2 to 0%.
  • the infrared rays that the second dielectric multilayer film F2 of the first optical member 11 emits low inward are absorbed by the third dielectric multilayer film F3 outside the second optical member 12 with low absorption. Thereby, the temperature of the second optical member rises, and infrared rays are emitted at a low level.
  • the repetition of the low emission and low absorption of infrared rays makes it difficult for infrared rays to be transmitted to the inner optical member, and the infrared rays are cut.
  • the heat insulation performance of the multilayer heat insulating material 10 can be further improved by disposing the second optical member 12 so as to face the first optical member 11.
  • the other second optical members 12 also exhibit the same function as the outermost second optical member 12.
  • the heat insulation performance of the multilayer heat insulating material 10 is further improved by the action of the plurality of second optical members 12.
  • the third dielectric multilayer film F3 transmits radio waves, the radio waves transmitted through the first optical member 11 sequentially pass through each second optical member 12, thereby providing a structural material 20 for space equipment. Can be reached.
  • the third dielectric multilayer film F3 is preferably provided on both main surfaces of the second optical member 12.
  • the third dielectric multilayer film F3 may be provided only on one main surface of the second optical member 12.
  • the third dielectric multilayer film F3 may be provided on either the inner surface or the outer main surface of the second optical member 12.
  • the third dielectric multilayer film F3 may not be provided on the inner main surface.
  • the second dielectric multilayer film is provided on one main surface of the first base material.
  • one main surface of the first base material is described.
  • the second dielectric multilayer film may not be provided on the surface. That is, as a multilayer heat insulating material of a modified example, a dielectric multilayer film configured to transmit radio waves is provided on at least one of the main surfaces, and disposed between a plurality of stacked base materials and a plurality of base materials And a multilayer heat insulating material configured such that at least one of the dielectric multilayer films has an infrared emissivity of less than 0.5.
  • the infrared emissivity may be 0.3 or less, 0.2 or less, or 0.15 or less. Even with such a multilayer heat insulating material, the heat insulating effect can be exhibited.
  • the third dielectric multilayer film F3 is used for the infrared reflecting portion of the multilayer heat insulating material 10, but the configuration of the infrared reflecting portion is not limited to this.
  • the infrared reflection unit may have a configuration using a frequency selection plate (FSS: Frequency Selective. Surface) that can sufficiently transmit radio waves.
  • FSS Frequency Selective. Surface

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

Provided is a thermal insulation material which is capable of transmitting radio waves. This thermal insulation material is provided with a first dielectric multilayer film (F1), a second dielectric multilayer film (F2), and a first base (B1). The first dielectric multilayer film (F1) is configured so as to transmit radio waves. The second dielectric multilayer film (F2) has an infrared emissivity of less than 0.5 and is configured so as to transmit radio waves, while facing the first dielectric multilayer film (F1). This thermal insulation material is able to achieve a configuration which does not use a metal and is capable of transmitting radio waves by combining the first dielectric multilayer film (F1) and the second dielectric multilayer film (F2).

Description

断熱材及び多層断熱材Insulation and multilayer insulation
 本発明は、断熱材及び多層断熱材に関する。 The present invention relates to a heat insulating material and a multilayer heat insulating material.
 様々な空間や機器においては、内部空間や機器周辺の温度変化を抑制することが求められる場合がある。
 例えば、宇宙探査機や人工衛星などの宇宙空間で動作する宇宙機器は、正常な機能を果たすためには、宇宙機器内部の温度上昇や温度低下を所定の範囲内に抑制することが求められる。一例として、太陽と宇宙機の距離が近いなどにより太陽光強度が強い領域の場合には、太陽光の入射による宇宙機器内部の温度上昇を低減する必要がある。一方、例えば太陽と宇宙機の距離が遠いなどにより太陽光強度が低い領域の場合には、宇宙機器内部からの放熱による温度低下を抑制する必要がある。
In various spaces and devices, it may be required to suppress changes in temperature around the internal space and devices.
For example, a space device operating in outer space such as a space probe or an artificial satellite is required to suppress a temperature rise or temperature drop inside the space device within a predetermined range in order to perform a normal function. As an example, in a region where the sunlight intensity is strong due to the short distance between the sun and the spacecraft, it is necessary to reduce the temperature rise inside the space device due to the incidence of sunlight. On the other hand, for example, in a region where the sunlight intensity is low due to the distance between the sun and the spacecraft, it is necessary to suppress a temperature drop due to heat radiation from the inside of the space device.
 特許文献1には、太陽光の影響による宇宙機器の内部の温度上昇を抑制するための熱制御部材が開示されている。この熱制御部材は、赤外線の放射率の高い材料で形成された赤外線放射層と、可視光や赤外線といった電磁波の反射率の高い材料で形成された反射層と、を有する。 Patent Document 1 discloses a heat control member for suppressing a temperature rise inside a space device due to the influence of sunlight. This thermal control member has an infrared radiation layer formed of a material having a high infrared emissivity and a reflection layer formed of a material having a high reflectivity of electromagnetic waves such as visible light and infrared light.
特開2015-63118号公報JP2015-63118A
 特許文献1に記載の熱制御部材では、反射層が金属(銀、アルミニウム、金など)で形成されている。この熱制御部材では、金属で形成された反射層が電波を反射するため、熱制御部材の内側で電波の送受を行うことができないという問題があった。 In the heat control member described in Patent Document 1, the reflective layer is formed of metal (silver, aluminum, gold, etc.). This thermal control member has a problem that radio waves cannot be transmitted and received inside the thermal control member because the reflection layer formed of metal reflects radio waves.
 以上の問題を解決するために、本発明の目的は、電波が透過可能な断熱材及び多層断熱材を提供することにある。 In order to solve the above problems, an object of the present invention is to provide a heat insulating material and a multilayer heat insulating material that can transmit radio waves.
 上記目的を達成するため、本発明は、
 電波を透過させるように構成された第1誘電体多層膜と、
 赤外線放射率が0.5未満であり、電波を透過させるように構成された第2誘電体多層膜と、
 第1誘電体多層膜が形成された第1主面と、第2誘電体多層膜が形成された第2主面と、を含む第1基材と、を具備する、断熱材を提供する。
In order to achieve the above object, the present invention provides:
A first dielectric multilayer film configured to transmit radio waves;
A second dielectric multilayer film having an infrared emissivity of less than 0.5 and configured to transmit radio waves;
Provided is a heat insulating material including a first base material including a first main surface on which a first dielectric multilayer film is formed and a second main surface on which a second dielectric multilayer film is formed.
 この断熱材では、太陽光が入射する領域においては、断熱材の表面において赤外線を高放射することから、当該断熱材を備える断熱対象物(例えば宇宙機器)では、太陽光の影響による温度上昇を抑制することができ、赤外線放射をカットすることができるため、正常な機能を確保することができる。
 また、太陽光が入射しない領域においては、より温度が高い断熱対象物(例えば宇宙機器)から赤外線が放射されるが、当該断熱材によって赤外線放射をカットすることができる。これにより、当該断熱材10を備える断熱対象物は、内部の温度低下を抑制することができるため、正常な機能を確保することができる。
 さらに、この断熱材では、第1誘電体多層膜及び第2誘電体多層膜を組み合わせることにより、金属を用いないため、電波を透過させることができる。
In this heat insulating material, in the region where the sunlight is incident, infrared rays are highly radiated on the surface of the heat insulating material. Therefore, in a heat insulating object including the heat insulating material (for example, space equipment), the temperature rise due to the influence of sunlight is increased. Since it can be suppressed and infrared radiation can be cut off, a normal function can be ensured.
Moreover, in the area | region where sunlight does not enter, infrared rays are radiated | emitted from the heat insulation target object (for example, space equipment) whose temperature is higher, but infrared radiation can be cut with the said heat insulating material. Thereby, since the heat insulation target object provided with the said heat insulating material 10 can suppress an internal temperature fall, it can ensure a normal function.
Furthermore, in this heat insulating material, since the metal is not used by combining the first dielectric multilayer film and the second dielectric multilayer film, radio waves can be transmitted.
 第1誘電体多層膜は太陽光を反射するように構成されていることが好ましい。例えば、太陽光が入射する領域の場合には、太陽光を反射させることによって、太陽光の入射による断熱対象物(例えば宇宙機器)の内部の温度上昇を低減することができる。 It is preferable that the first dielectric multilayer film is configured to reflect sunlight. For example, in the case of a region where sunlight enters, by reflecting the sunlight, a temperature rise inside the heat insulating object (for example, space equipment) due to the incidence of sunlight can be reduced.
 本発明の断熱材は、第2誘電体多層膜が形成された第2主面側に配置されたスペーサを具備することが好ましい。これにより、第1基材と断熱対象物(例えば宇宙機器)との間に空間を設けることができ、熱伝導が抑制されて、断熱効果を高めることができる。
 スペーサは、ポリイミドフォームで形成することによって、軽量で断熱材とすることが好ましい。
The heat insulating material of the present invention preferably includes a spacer disposed on the second main surface side on which the second dielectric multilayer film is formed. Thereby, space can be provided between a 1st base material and a heat insulation target object (for example, space equipment), heat conduction is suppressed, and a heat insulation effect can be heightened.
The spacer is preferably made of polyimide foam and is lightweight and heat insulating material.
 上記本発明の断熱材は、多層断熱材として用いられることによって、より高い断熱効果を発揮することが可能となる。 When the heat insulating material of the present invention is used as a multilayer heat insulating material, a higher heat insulating effect can be exhibited.
 また、本発明は、
 積層された複数の基材と、
 電波を透過させるように構成され、複数の基材それぞれの少なくとも一方の主面に形成された誘電体多層膜と、
 複数の基材の間に配置されたスペーサと、を具備し、
 複数の誘電体多層膜の少なくとも一つの赤外線放射率が0.5未満である、多層断熱材(MLI:Multilayer Insulator)を提供することもできる。
The present invention also provides:
A plurality of laminated substrates;
A dielectric multilayer film configured to transmit radio waves and formed on at least one main surface of each of the plurality of base materials;
A spacer disposed between a plurality of substrates,
A multilayer heat insulating material (MLI: Multilayer Insulator) in which at least one infrared emissivity of the plurality of dielectric multilayer films is less than 0.5 can also be provided.
 本発明によれば、電波が透過可能な断熱材及び多層断熱材を提供することができる。
 太陽光が入射する領域においては、断熱材の表面において赤外線を高放射することから、当該断熱材を備える断熱対象物(例えば宇宙機器)では、太陽光の影響による温度上昇を抑制することができ、赤外線放射をカットすることができるため、正常な機能を確保することができる。
 また、太陽光が入射しない領域においては、より温度が高い断熱対象物(例えば宇宙機器)から赤外線が放射されるが、当該断熱材によって赤外線放射をカットすることができる。これにより、当該断熱材10を備える断熱対象物は、内部の温度低下を抑制することができるため、正常な機能を確保することができる。
 さらに、例えば宇宙探査機のように電波の送受を行う必要のある宇宙機器では、アンテナを断熱材の外側に配置する必要がある。したがって、例えば太陽光が入射する領域における宇宙機器では、アンテナが宇宙空間に直接晒されるため、断熱材に覆われていないアンテナに太陽光が直接入射するため、アンテナが温度上昇しやすい。温度上昇したアンテナの熱は宇宙機器の本体に伝導するため、宇宙機器の内部が温度上昇しやすくなる。しかし、本発明の断熱材は電波を透過させることができることから、アンテナを断熱材の内側へ収容可能となり、より断熱性を向上させることが可能となる。また、太陽光が入射しない領域における宇宙機器においても、アンテナを断熱材の内側に収容することによって、宇宙機器の内部温度の低下を抑制でき、より断熱性を向上させることが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the heat insulating material and multilayer heat insulating material which can permeate | transmit an electromagnetic wave can be provided.
In a region where sunlight is incident, infrared radiation is highly radiated on the surface of the heat insulating material. Therefore, in a heat insulating object including the heat insulating material (for example, space equipment), an increase in temperature due to the influence of sunlight can be suppressed. Since infrared radiation can be cut off, normal function can be ensured.
Moreover, in the area | region where sunlight does not enter, infrared rays are radiated | emitted from the heat insulation target object (for example, space equipment) whose temperature is higher, but infrared radiation can be cut with the said heat insulating material. Thereby, since the heat insulation target object provided with the said heat insulating material 10 can suppress an internal temperature fall, it can ensure a normal function.
Furthermore, in a space device that needs to transmit and receive radio waves, such as a space probe, an antenna needs to be arranged outside the heat insulating material. Therefore, for example, in space equipment in a region where sunlight is incident, the antenna is directly exposed to outer space, and therefore sunlight is directly incident on an antenna that is not covered with the heat insulating material. Since the heat of the antenna whose temperature has risen is conducted to the main body of the space equipment, the temperature inside the space equipment tends to rise. However, since the heat insulating material of the present invention can transmit radio waves, the antenna can be accommodated inside the heat insulating material, and the heat insulating property can be further improved. Further, even in a space device in a region where sunlight does not enter, by housing the antenna inside the heat insulating material, it is possible to suppress a decrease in the internal temperature of the space device and to further improve the heat insulation.
本発明の一実施形態に係る断熱材の、太陽光が入射する領域で利用可能な構成を例示する部分断面図である。It is a fragmentary sectional view which illustrates the composition which can be used in the field which sunlight enters of the heat insulating material concerning one embodiment of the present invention. 本発明の一実施形態に係る断熱材の、太陽光が入射しない領域で利用可能な構成を例示する部分断面図である。It is a fragmentary sectional view which illustrates the composition which can be used in the field which sunlight does not enter of the heat insulating material concerning one embodiment of the present invention. 上記断熱材の図1Aの領域A1を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows area | region A1 of FIG. 1A of the said heat insulating material. 上記断熱材の図2の領域A2を更に拡大して示す部分断面図である。It is a fragmentary sectional view which expands and further shows area | region A2 of FIG. 2 of the said heat insulating material. 上記断熱材の図3の領域A3を更に拡大して示す部分断面図である。It is a fragmentary sectional view which expands and further shows area | region A3 of FIG. 3 of the said heat insulating material. 上記断熱材の第1誘電体多層膜の反射率(太陽光)を例示するグラフである。It is a graph which illustrates the reflectance (sunlight) of the 1st dielectric multilayer film of the said heat insulating material. 上記断熱材の第1誘電体多層膜の反射率(赤外線)を例示するグラフである。It is a graph which illustrates the reflectance (infrared rays) of the 1st dielectric multilayer film of the said heat insulating material. 上記断熱材の第2誘電体多層膜の反射率(赤外線)を例示するグラフである。It is a graph which illustrates the reflectance (infrared rays) of the 2nd dielectric multilayer of the above-mentioned heat insulating material. 上記断熱材の図2の領域A4を更に拡大して示す部分断面図である。It is a fragmentary sectional view which expands and further shows area | region A4 of FIG. 2 of the said heat insulating material.
 以下、図面を参照しながら、本発明の実施形態を説明する。なお、本発明は、以下の実施形態によって限定的に解釈されるものではない。また、以下の実施形態では宇宙機器に用いられる多層断熱材として記載されているが、本発明の断熱材は、宇宙空間での使用に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limitedly interpreted by the following embodiment. Moreover, although described as a multilayer heat insulating material used for space equipment in the following embodiments, the heat insulating material of the present invention is not limited to use in outer space.
1.多層断熱材10の概略構成
 図1A,1Bは、本発明の一実施形態に係る多層断熱材10が宇宙機器の外面に貼り付けられた状態を示す部分断面図である。図1A,1Bは、多層断熱材10が宇宙機器の本体を構成する構造材20の外面に貼り付けられた状態を示している。図1A,1Bにおいて、多層断熱材10の上方が宇宙空間であり、構造材20の下方が宇宙機器の内部である。図1Aは太陽光が入射する場合を示し、図1Bは太陽光が入射しない場合を示す。
1. 1A and 1B are partial cross-sectional views showing a state in which a multilayer heat insulating material 10 according to an embodiment of the present invention is attached to the outer surface of a space device. 1A and 1B show a state in which the multilayer heat insulating material 10 is attached to the outer surface of the structural material 20 constituting the main body of the space equipment. 1A and 1B, the upper side of the multilayer heat insulating material 10 is outer space, and the lower side of the structural material 20 is the inside of the space equipment. FIG. 1A shows a case where sunlight is incident, and FIG. 1B shows a case where sunlight is not incident.
 多層断熱材10の表面は、図1Aのように太陽光が入射する領域においては、太陽光を反射することが好ましい。また、多層断熱材10の表面は、赤外線を高放射することが好ましい。これにより、多層断熱材10が貼り付けられた宇宙機器では、太陽光の影響による温度上昇を抑制することができ、赤外線放射をカットすることができるため、正常な機能を確保することができる。 The surface of the multilayer heat insulating material 10 preferably reflects sunlight in a region where sunlight enters as shown in FIG. 1A. Moreover, it is preferable that the surface of the multilayer heat insulating material 10 radiates | emits infrared rays highly. Thereby, in the space equipment to which the multilayer heat insulating material 10 is affixed, a temperature increase due to the influence of sunlight can be suppressed and infrared radiation can be cut, so that a normal function can be ensured.
 また、図1Bに示すように太陽光が入射しない領域においては、より温度が高い宇宙機器内部から赤外線が放射されるが、多層断熱材10によって赤外線放射をカットすることができる。これにより、多層断熱材10が貼り付けられた宇宙機器では、内部の温度低下を抑制することができるため、正常な機能を確保することができる。 Further, as shown in FIG. 1B, in the region where sunlight does not enter, infrared radiation is radiated from the interior of the space device having a higher temperature, but the infrared radiation can be cut by the multilayer heat insulating material 10. Thereby, in the space equipment to which the multilayer heat insulating material 10 is affixed, since a temperature fall inside can be suppressed, a normal function can be ensured.
 また、いずれの場合であっても、多層断熱材10は、電波が透過するように構成されている。これにより、多層断熱材10の内部にアンテナを配置することが可能となる。つまり、多層断熱材10の内部に配置されたアンテナによって電波の送受を行うことが可能となる。したがって、多層断熱材10が貼り付けられた宇宙機器では、アンテナを宇宙空間に晒さずに済む。 In any case, the multilayer heat insulating material 10 is configured to transmit radio waves. Thereby, it becomes possible to arrange | position an antenna inside the multilayer heat insulating material 10. FIG. That is, radio waves can be transmitted and received by the antenna disposed inside the multilayer heat insulating material 10. Therefore, in the space device to which the multilayer heat insulating material 10 is attached, it is not necessary to expose the antenna to the space.
 したがって、図1Aに示すような太陽光が入射する領域で利用される宇宙機器では、多層断熱材10によって赤外線放射をカットすることができ、内側に配置されたアンテナの温度上昇を抑制することができる。 Therefore, in the space equipment used in the area where sunlight is incident as shown in FIG. 1A, the infrared radiation can be cut by the multilayer heat insulating material 10, and the temperature rise of the antenna disposed inside can be suppressed. it can.
 また、図1Bに示すような太陽光が入射しない領域で利用される宇宙機器では、アンテナが多層断熱材10の外側に配置されていない場合には、アンテナを介したヒートリークの発生を防止することができ、宇宙機器の温度低下を更に抑制することができる。 In addition, in a space device used in an area where sunlight does not enter as shown in FIG. 1B, when the antenna is not arranged outside the multilayer heat insulating material 10, the occurrence of heat leak through the antenna is prevented. It is possible to further suppress the temperature drop of the space equipment.
 このような多層断熱材10は、電波の送受を行う必要がある宇宙機器に特に適している。宇宙機器としては、例えば、内惑星探査機、外惑星探査機、深宇宙探査機、月面探査機などが挙げられる。なお、多層断熱材10は、宇宙機器に限らず、様々な機器や部材などに対しても幅広く適用可能である。例えば太陽の影で動作する月面探査機において、越夜に耐える断熱性能を実現することができる。 Such a multilayer heat insulating material 10 is particularly suitable for space equipment that needs to transmit and receive radio waves. Examples of the space equipment include an inner planetary explorer, an outer planetary explorer, a deep space explorer, and a lunar explorer. The multilayer heat insulating material 10 can be widely applied not only to space equipment but also to various equipment and members. For example, in a lunar probe that operates in the shadow of the sun, it is possible to achieve a heat insulation performance that can withstand the night.
2.多層断熱材10の詳細構成
 2.1 全体構成
 図2は、図1Aの一点鎖線で囲んだ領域A1を拡大して示す部分断面図である。構造材20の外面には相互に間隔をあけて配置された複数の接続部30が設けられ、複数の接続部30によって多層断熱材10と構造材20との間に空間が形成されている。これにより、多層断熱材10と構造材20との間での熱伝導を防止することができ、断熱性能をより発揮することができる。
2. 2. Detailed Configuration of Multilayer Heat Insulating Material 2.1 Overall Configuration FIG. 2 is an enlarged partial sectional view showing a region A1 surrounded by a one-dot chain line in FIG. 1A. A plurality of connection portions 30 are provided on the outer surface of the structural material 20 so as to be spaced apart from each other, and a space is formed between the multilayer heat insulating material 10 and the structural material 20 by the plurality of connection portions 30. Thereby, the heat conduction between the multilayer heat insulating material 10 and the structural material 20 can be prevented, and the heat insulating performance can be further exhibited.
 多層断熱材10は、単一の第1光学部材11と、複数の第2光学部材12と、を具備する。第1光学部材11及び複数の第2光学部材12は、いずれも構造材20の外面に沿って平行に延びる平板状であり、構造材20の外面上に相互に間隔をあけて積層されている。図2に示す例では、4枚の第2光学部材12が配置されている。 The multilayer heat insulating material 10 includes a single first optical member 11 and a plurality of second optical members 12. Each of the first optical member 11 and the plurality of second optical members 12 has a flat plate shape extending in parallel along the outer surface of the structural material 20, and is laminated on the outer surface of the structural material 20 with a space therebetween. . In the example shown in FIG. 2, four second optical members 12 are arranged.
 図2に例示する多層断熱材10では、第1光学部材11が最も外側に配置され、複数の第2光学部材12がいずれも第1光学部材11より内側に配置されている。多層断熱材10は、光学部材11,12のそれぞれの間に配置されたスペーサ13を更に具備する。スペーサ13は、光学部材11,12の間での空間を設け、熱伝導を抑制する機能を有する。 2, the first optical member 11 is disposed on the outermost side, and the plurality of second optical members 12 are all disposed on the inner side of the first optical member 11. The multilayer heat insulating material 10 further includes a spacer 13 disposed between the optical members 11 and 12. The spacer 13 has a function of providing a space between the optical members 11 and 12 and suppressing heat conduction.
 つまり、スペーサ13は、光学部材11,12を相互に離間させることにより、光学部材11,12の間での直接の熱伝導を抑制する。また、スペーサ13は、熱伝導性の低い材料で形成され、これにより光学部材11,12の間でのスペーサ13を介した熱伝導も生じにくい構成となっている。また、図2では、光学部材11と光学部材12との間がスペーサ13で充填されているように記載されているが、光学部材11と光学部材12との間の一部の領域のみがスペーサ13で充填されていることも好ましい。これにより、スペーサ13が充填されていない空間では、光学部材11,12の間での熱伝導が防止できる。 That is, the spacer 13 suppresses direct heat conduction between the optical members 11 and 12 by separating the optical members 11 and 12 from each other. In addition, the spacer 13 is formed of a material having low thermal conductivity, so that heat conduction through the spacer 13 between the optical members 11 and 12 is less likely to occur. In FIG. 2, it is described that the space between the optical member 11 and the optical member 12 is filled with the spacer 13, but only a part of the region between the optical member 11 and the optical member 12 is a spacer. 13 is also preferable. Thereby, in the space where the spacer 13 is not filled, heat conduction between the optical members 11 and 12 can be prevented.
 スペーサ13は、熱伝導性が低く、軽量で、かつ耐熱性や耐環境性に優れたポリイミドフォームで形成されていることが好ましい。しかし、スペーサ13は、これに限定されず、他の低熱伝導性の材料で形成されていてもよい。また、スペーサ13は、複数の部材が組み合わされた構造体として構成されていてもよい。 The spacer 13 is preferably formed of a polyimide foam having low thermal conductivity, light weight, and excellent heat resistance and environmental resistance. However, the spacer 13 is not limited to this, and may be formed of other low thermal conductivity materials. The spacer 13 may be configured as a structure in which a plurality of members are combined.
 なお、図2に示すように、最も内側の第2光学部材12と接続部30との間にもスペーサ13が配置されていることが好ましい。これにより、多層断熱材10と構造材20との間での熱伝導を更に効果的に防止することができる。しかし、この構成は必須ではなく、最も内側の第2光学部材12と接続部30との間にはスペーサ13が配置されていなくてもよい。また、複数のスペーサ13がいずれも同様の構成であっても、各スペーサ13ごとに異なる構成であってもよい。 In addition, as shown in FIG. 2, it is preferable that the spacer 13 is also arranged between the innermost second optical member 12 and the connection portion 30. Thereby, the heat conduction between the multilayer heat insulating material 10 and the structural material 20 can be further effectively prevented. However, this configuration is not essential, and the spacer 13 may not be disposed between the innermost second optical member 12 and the connection portion 30. In addition, the plurality of spacers 13 may all have the same configuration, or may have different configurations for each spacer 13.
 以上では、図1Aに示す多層断熱材10について説明したが、図1Bに示す多層断熱材10も同様の構成を有する。図1Bに示す多層断熱材10は、図1Aに示す多層断熱材と、第1光学部材11の構成が異なり、その他の構成が共通する。このため、以下では、図1Bに示す多層断熱材10について、第1光学部材11以外の構成の説明を省略する。 Although the multilayer heat insulating material 10 shown in FIG. 1A has been described above, the multilayer heat insulating material 10 shown in FIG. 1B also has the same configuration. The multilayer heat insulating material 10 shown in FIG. 1B is different from the multilayer heat insulating material shown in FIG. 1A in the configuration of the first optical member 11, and the other configurations are common. For this reason, below, description of structures other than the 1st optical member 11 is abbreviate | omitted about the multilayer heat insulating material 10 shown to FIG. 1B.
 2.2 第1光学部材11
 図3は、図2の一点鎖線で囲んだ領域A2を更に拡大して示す部分断面図である。図1Aに示す多層断熱材10の第1光学部材11は、第1基材B1と、第1誘電体多層膜F1と、第2誘電体多層膜F2と、を有する。第1誘電体多層膜F1は、第1基材B1の外側の主面に形成されている。第2誘電体多層膜F2は、第1基材B1の内側の主面に形成されている。
2.2 First optical member 11
FIG. 3 is a partial cross-sectional view further enlarging and showing a region A2 surrounded by a one-dot chain line in FIG. The first optical member 11 of the multilayer heat insulating material 10 shown in FIG. 1A includes a first base material B1, a first dielectric multilayer film F1, and a second dielectric multilayer film F2. The first dielectric multilayer film F1 is formed on the outer main surface of the first base material B1. The second dielectric multilayer film F2 is formed on the inner main surface of the first base material B1.
 第1基材B1は、誘電体多層膜F1,F2の形状を保持するための部材である。第1基材B1は、柔軟性を有し、かつ耐熱性や耐環境性に優れたポリイミドで形成されていることが好ましい。しかし、第1基材B1は、これに限定されず、他の材料で形成されていてもよい。また、第1基材B1の厚さは、適宜決定可能である。
 第1基材の厚みは、一例として、10~1000μmであってもよく、15~500μmであってもよく、20~200μmであってもよい。
The first base material B1 is a member for maintaining the shapes of the dielectric multilayer films F1 and F2. The first base material B1 is preferably made of polyimide having flexibility and excellent heat resistance and environmental resistance. However, the first base material B1 is not limited to this, and may be formed of other materials. Moreover, the thickness of 1st base material B1 can be determined suitably.
As an example, the thickness of the first substrate may be 10 to 1000 μm, 15 to 500 μm, or 20 to 200 μm.
 図4は、図3の一点鎖線で囲んだ領域A3を更に拡大して示す部分断面図である。図4は太陽に近い宇宙空間の場合であり、太陽光、赤外線、及び電波の進行経路が、矢印によって模式的に示されている。 FIG. 4 is a partial cross-sectional view further enlarging the region A3 surrounded by the one-dot chain line in FIG. FIG. 4 shows the case of outer space close to the sun, and the traveling paths of sunlight, infrared rays, and radio waves are schematically shown by arrows.
 誘電体多層膜F1,F2はいずれも、高屈折率の誘電体膜と、低屈折率の誘電体膜と、が交互に積層された構造を有する。誘電体多層膜F1,F2では、高屈折率の誘電体膜及び低屈折率の誘電体膜の種類や厚さを調整することにより、特定の波長帯の電磁波を反射(又は吸収)するように構成されている。高屈折率の誘電体膜としては、例えば金属酸化物などが挙げられる。また、低屈折率の誘電体膜としては、例えば二酸化ケイ素などが挙げられる。 Each of the dielectric multilayer films F1 and F2 has a structure in which a high refractive index dielectric film and a low refractive index dielectric film are alternately laminated. The dielectric multilayer films F1 and F2 reflect (or absorb) electromagnetic waves in a specific wavelength band by adjusting the types and thicknesses of the high refractive index dielectric film and the low refractive index dielectric film. It is configured. Examples of the high refractive index dielectric film include metal oxides. Examples of the low refractive index dielectric film include silicon dioxide.
 具体的に、第1誘電体多層膜F1は、太陽光が入射する領域の宇宙空間の場合において、太陽光を反射し、赤外線を吸収・高放射するように構成されている。第1誘電体多層膜F1における高屈折率の誘電体膜と低屈折率の誘電体膜の組み合わせとしては、例えば、TaとSiO、TiOとSiO、SiとSiOなどが挙げられる。第1誘電体多層膜F1では、これらの組み合わせのうち、いずれか1つを用いても、複数を併用してもよい。 Specifically, the first dielectric multilayer film F1 is configured to reflect sunlight and absorb / radiate infrared rays in the case of outer space where sunlight enters. Examples of the combination of the high refractive index dielectric film and the low refractive index dielectric film in the first dielectric multilayer film F1 include Ta 2 O 5 and SiO 2 , TiO 2 and SiO 2 , Si and SiO 2, and the like. Can be mentioned. In the first dielectric multilayer film F1, any one of these combinations or a plurality thereof may be used in combination.
 第1誘電体多層膜F1では、各誘電体膜の厚さを適切に設定することにより、太陽光領域の波長を反射することが可能となる。各誘電体膜の厚さは、任意の設計手法に基づいて設計可能である。また、第1誘電体多層膜F1における誘電体膜の層数は適宜決定可能である。 In the first dielectric multilayer film F1, it is possible to reflect the wavelength of the sunlight region by appropriately setting the thickness of each dielectric film. The thickness of each dielectric film can be designed based on an arbitrary design method. The number of dielectric films in the first dielectric multilayer film F1 can be determined as appropriate.
 図5,6は、SiとSiOの組み合わせを用いた第1誘電体多層膜F1の反射率を例示するグラフである。図5は、第1誘電体多層膜F1の太陽光領域の波長帯(0.25~2.5μm)における反射率を示している。図6は、第1誘電体多層膜F1の赤外領域の波長帯(特に10μm付近)における反射率を示している。 5 and 6 are graphs illustrating the reflectance of the first dielectric multilayer film F1 using a combination of Si and SiO 2 . FIG. 5 shows the reflectance in the wavelength band (0.25 to 2.5 μm) of the sunlight region of the first dielectric multilayer film F1. FIG. 6 shows the reflectance of the first dielectric multilayer film F1 in the infrared wavelength band (especially around 10 μm).
 第1誘電体多層膜F1の具体的な構成は、以下の表1に示す通りである。第1誘電体多層膜F1では、第1基材B1(層1)上に、層2~9がこの順番で配置されている。表1には、各層1~9について、構成する材料及び厚さが示されている。
Figure JPOXMLDOC01-appb-T000001
The specific configuration of the first dielectric multilayer film F1 is as shown in Table 1 below. In the first dielectric multilayer film F1, the layers 2 to 9 are arranged in this order on the first base material B1 (layer 1). Table 1 shows the material and thickness of each layer 1-9.
Figure JPOXMLDOC01-appb-T000001
 図5に示すように、第1誘電体多層膜F1では、太陽光領域の波長帯(0.25~2.5μm)において、高い反射率が得られていることがわかる。また、図6に示すように、第1誘電体多層膜F1では、特に10μm付近において、低い反射率、つまり高い吸収率及び放射率が得られていることがわかる。 As shown in FIG. 5, it can be seen that the first dielectric multilayer film F1 has a high reflectance in the wavelength band (0.25 to 2.5 μm) of the sunlight region. In addition, as shown in FIG. 6, it can be seen that the first dielectric multilayer film F1 has a low reflectance, that is, a high absorptance and emissivity, particularly near 10 μm.
 また、第2誘電体多層膜F2は、第1誘電体多層膜F1とは反対に、赤外線を反射するように構成されており、赤外線放射率が0.5未満である。赤外線放射率は0.3以下であってもよく、0.2以下であってもよく、0.15以下であってもよい。
 第2誘電体多層膜F2における高屈折率の誘電体膜と低屈折率の誘電体膜の組み合わせとしては、例えば、Geと硫化物、Geとフッ化物、などの組み合わせが挙げられる。Geと組み合わせることができる低屈折率の硫化物としては、例えば、硫化亜鉛(ZnS)などが挙げられる。また、Geと組み合わせることができる低屈折率のフッ化物としては、例えば、フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)などが挙げられる。
In contrast to the first dielectric multilayer film F1, the second dielectric multilayer film F2 is configured to reflect infrared rays, and has an infrared emissivity of less than 0.5. The infrared emissivity may be 0.3 or less, 0.2 or less, or 0.15 or less.
Examples of the combination of the high refractive index dielectric film and the low refractive index dielectric film in the second dielectric multilayer film F2 include a combination of Ge and sulfide, Ge and fluoride, and the like. Examples of the low refractive index sulfide that can be combined with Ge include zinc sulfide (ZnS). Examples of the low refractive index fluoride that can be combined with Ge include calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and barium fluoride (BaF 2 ).
 各誘電体膜の厚さは、任意の設計手法に基づいて設計可能である。
 第2誘電体多層膜F2では、各誘電体膜の厚さを適切に設定することにより、赤外領域の波長帯全域を反射することが可能となる。各誘電体膜の厚さは、任意の設計手法に基づいて設計可能である。また、第2誘電体多層膜F2における誘電体膜の層数は適宜決定可能である。
The thickness of each dielectric film can be designed based on an arbitrary design method.
In the second dielectric multilayer film F2, the entire wavelength band in the infrared region can be reflected by appropriately setting the thickness of each dielectric film. The thickness of each dielectric film can be designed based on an arbitrary design method. Further, the number of dielectric films in the second dielectric multilayer film F2 can be determined as appropriate.
 図7は、GeとZnSの組み合わせを用いた第2誘電体多層膜F2の赤外領域の波長帯(10μm付近)における反射率を例示するグラフである。図7に示すように、第2誘電体多層膜F2では、10μm付近の、近赤外線から遠赤外線の波長帯において、高い反射率が得られていることがわかる。 FIG. 7 is a graph illustrating the reflectance in the wavelength band (near 10 μm) in the infrared region of the second dielectric multilayer film F2 using a combination of Ge and ZnS. As shown in FIG. 7, it can be seen that the second dielectric multilayer film F2 has a high reflectance in the near-infrared to far-infrared wavelength band around 10 μm.
 第2誘電体多層膜F2の具体的な構成は、以下の表2に示す通りである。第2誘電体多層膜F2では、第1基材B1(層1)上に、層2~13がこの順番で配置されている。表2には、各層1~13について、構成する材料及び厚さが示されている。
Figure JPOXMLDOC01-appb-T000002
The specific configuration of the second dielectric multilayer film F2 is as shown in Table 2 below. In the second dielectric multilayer film F2, the layers 2 to 13 are arranged in this order on the first base material B1 (layer 1). Table 2 shows the material and thickness of each layer 1 to 13.
Figure JPOXMLDOC01-appb-T000002
 以上のような構成により、太陽光が入射する領域においては、宇宙空間から第1光学部材11に入射する太陽光、赤外線、及び電波は、図4に示す進行経路をとる。つまり、第1光学部材11に入射する太陽光によって、第1光学部材11の温度が上昇し内側へも赤外線が放射されるが、第2誘電体多層膜の赤外線放射率が0.5未満であるため、第1光学部材11からの赤外線放射は低放射となる。 With the configuration as described above, in the region where sunlight enters, sunlight, infrared rays, and radio waves incident on the first optical member 11 from outer space take the traveling paths shown in FIG. That is, sunlight incident on the first optical member 11 raises the temperature of the first optical member 11 and radiates infrared rays to the inside, but the infrared emissivity of the second dielectric multilayer film is less than 0.5. Therefore, the infrared radiation from the first optical member 11 is low radiation.
 第1光学部材11の誘電体多層膜F1,F2が電波を透過させるため、宇宙空間から第1光学部材11に入射した電波は、第1光学部材11の内側に到達することができる。 Since the dielectric multilayer films F1 and F2 of the first optical member 11 transmit radio waves, radio waves incident on the first optical member 11 from outer space can reach the inside of the first optical member 11.
 2.3 第2光学部材12
 図8は、図2の一点鎖線で囲んだ領域A4を更に拡大して示す部分断面図である。第2光学部材12は、第2基材B2と、第3誘電体多層膜F3と、を有する。第3誘電体多層膜F3は、第2基材B2の両主面にそれぞれ形成されている。以下の説明では、主に最も外側の第2光学部材12について説明するが、他の第2光学部材12も同様の構成を有する。
2.3 Second optical member 12
FIG. 8 is a partial cross-sectional view further enlarging the region A4 surrounded by the one-dot chain line in FIG. The second optical member 12 includes a second base material B2 and a third dielectric multilayer film F3. The third dielectric multilayer film F3 is formed on each main surface of the second base material B2. In the following description, the outermost second optical member 12 will be mainly described, but the other second optical members 12 have the same configuration.
 第2基材B2は、第3誘電体多層膜F3の形状を保持するための部材である。第2基材B2は、柔軟性を有し、かつ耐熱性や耐環境性に優れたポリイミドで形成されていることが好ましい。しかし、第2基材B2は、これに限定されず、他の材料で形成されていてもよい。また、第2基材B2の厚さは、適宜決定可能である。 The second base material B2 is a member for maintaining the shape of the third dielectric multilayer film F3. The second base material B2 is preferably made of polyimide having flexibility and excellent heat resistance and environmental resistance. However, the second base material B2 is not limited to this, and may be formed of other materials. Moreover, the thickness of 2nd base material B2 can be determined suitably.
 第2基材B2としては、第1光学部材11の第1基材B1と同様のものを利用することができる。しかし、第2基材B2としては、第1光学部材11の第1基材B1とは異なるものを利用してもよい。また、各第2光学部材12ごとに異なる第2基材B2を利用してもよい。なお、第2基材の厚みは、一例として、10~1000μmであってもよく、15~500μmであってもよく、20~200μmであってもよい。 As the second base material B2, the same material as the first base material B1 of the first optical member 11 can be used. However, as the second base material B2, a material different from the first base material B1 of the first optical member 11 may be used. Moreover, you may utilize 2nd base material B2 different for every 2nd optical member 12. FIG. As an example, the thickness of the second base material may be 10 to 1000 μm, 15 to 500 μm, or 20 to 200 μm.
 第3誘電体多層膜F3はいずれも、第1光学部材11の第2誘電体多層膜F2と同様に、赤外線を反射(赤外線放射率が0.5未満)するように構成されている。第3誘電体多層膜F3の構成は、上述の第2誘電体多層膜F2の構成と同様であってもよく、第2誘電体多層膜F2の構成とは異なっていてもよい。 As with the second dielectric multilayer film F2 of the first optical member 11, the third dielectric multilayer film F3 is configured to reflect infrared rays (infrared emissivity is less than 0.5). The configuration of the third dielectric multilayer film F3 may be the same as the configuration of the second dielectric multilayer film F2 described above, or may be different from the configuration of the second dielectric multilayer film F2.
 また、第2基材B2の内側の主面に形成された第3誘電体多層膜F3と、第2基材B2の外側の主面に形成された第3誘電体多層膜F3と、は同様の構成であっても異なる構成であってもよい。更に、第3誘電体多層膜F3の構成は、各第2光学部材12ごとに異なっていてもよい。 The third dielectric multilayer film F3 formed on the inner main surface of the second base material B2 is the same as the third dielectric multilayer film F3 formed on the outer main surface of the second base material B2. The structure may be different or different. Furthermore, the configuration of the third dielectric multilayer film F3 may be different for each second optical member 12.
 第3誘電体多層膜F3では、各誘電体膜の厚さを適切に設定することにより、赤外領域の波長帯全域を反射することが可能となる。各誘電体膜の厚さは、任意の設計手法に基づいて設計可能である。また、第3誘電体多層膜F3における誘電体膜の層数は適宜決定可能である。 In the third dielectric multilayer film F3, the entire wavelength band in the infrared region can be reflected by appropriately setting the thickness of each dielectric film. The thickness of each dielectric film can be designed based on an arbitrary design method. Further, the number of dielectric films in the third dielectric multilayer film F3 can be determined as appropriate.
 ここで、第1光学部材11の第2誘電体多層膜F2は、赤外線の反射率が高く、つまり赤外線の吸収率及び放射率が低い。仮に第2誘電体多層膜F2の吸収率及び放射率が0%であれば、第1光学部材11の第2誘電体多層膜は、赤外線を全く吸収せず、また赤外線を全く放射しない。 Here, the second dielectric multilayer film F2 of the first optical member 11 has high infrared reflectance, that is, low infrared absorption and emissivity. If the absorptivity and emissivity of the second dielectric multilayer film F2 are 0%, the second dielectric multilayer film of the first optical member 11 does not absorb infrared rays and does not emit infrared rays at all.
 しかし、実際には、第2誘電体多層膜F2の放射率を0%とすることは不可能である。第1光学部材11の第2誘電体多層膜F2が内側に低放射する赤外線は、第2光学部材12の外側の第3誘電体多層膜F3に低吸収される。それにより、第2光学部材の温度が上昇し、赤外線が低放射される。
 このように、赤外線の低放射と低吸収の繰り返しにより、内側の光学部材に赤外線が伝わりにくくなり、赤外線がカットされる。したがって、第2光学部材12を第1光学部材11に対向して配置することにより、多層断熱材10の断熱性能を更に向上させることができる。また、他の第2光学部材12も、最も外側の第2光学部材12と同様の機能を発揮する。このように、複数の第2光学部材12の作用により、多層断熱材10の断熱性能が更に向上する。
However, in practice, it is impossible to set the emissivity of the second dielectric multilayer film F2 to 0%. The infrared rays that the second dielectric multilayer film F2 of the first optical member 11 emits low inward are absorbed by the third dielectric multilayer film F3 outside the second optical member 12 with low absorption. Thereby, the temperature of the second optical member rises, and infrared rays are emitted at a low level.
As described above, the repetition of the low emission and low absorption of infrared rays makes it difficult for infrared rays to be transmitted to the inner optical member, and the infrared rays are cut. Therefore, the heat insulation performance of the multilayer heat insulating material 10 can be further improved by disposing the second optical member 12 so as to face the first optical member 11. The other second optical members 12 also exhibit the same function as the outermost second optical member 12. Thus, the heat insulation performance of the multilayer heat insulating material 10 is further improved by the action of the plurality of second optical members 12.
 また、第2光学部材12では、第3誘電体多層膜F3を用いることにより、金属を用いることなく赤外線反射部が実現されている。各第2光学部材12では第3誘電体多層膜F3が電波を透過させるため、第1光学部材11を透過した電波は各第2光学部材12を順次透過することにより、宇宙機器の構造材20に到達することができる。 Further, in the second optical member 12, by using the third dielectric multilayer film F3, an infrared reflecting portion is realized without using a metal. In each second optical member 12, since the third dielectric multilayer film F3 transmits radio waves, the radio waves transmitted through the first optical member 11 sequentially pass through each second optical member 12, thereby providing a structural material 20 for space equipment. Can be reached.
 なお、第3誘電体多層膜F3は、第2光学部材12の両主面に設けられていることが好ましい。しかし、第3誘電体多層膜F3は、第2光学部材12のいずれか一方の主面のみに設けられていてもよい。この場合、第3誘電体多層膜F3は、第2光学部材12の内側又は外側のいずれの主面に設けられてもよい。例えば、最も内側の第2光学部材12では、接続部30との間にスペーサ13が配置されない場合、第3誘電体多層膜F3が内側の主面に設けられていなくてもよい。 The third dielectric multilayer film F3 is preferably provided on both main surfaces of the second optical member 12. However, the third dielectric multilayer film F3 may be provided only on one main surface of the second optical member 12. In this case, the third dielectric multilayer film F3 may be provided on either the inner surface or the outer main surface of the second optical member 12. For example, in the innermost second optical member 12, when the spacer 13 is not disposed between the second optical member 12 and the connection portion 30, the third dielectric multilayer film F3 may not be provided on the inner main surface.
3.その他の実施形態
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
3. Other Embodiments Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made.
 例えば、上記実施形態においては、第1基材の一方の主面に第2誘電体多層膜を設けることが記載されているが、多層断熱材の変形例として、第1基材の一方の主面に第2誘電体多層膜が設けられていなくてもよい。すなわち、変形例の多層断熱材としては、電波を透過させるように構成された誘電体多層膜を主面の少なくとも一方に備え、積層された複数の基材と、複数の基材の間に配置されたスペーサと、を具備し、誘電体多層膜の少なくとも一つが赤外線放射率が0.5未満となるように構成された、多層断熱材であってもよい。赤外線放射率は0.3以下であってもよく、0.2以下であってもよく、0.15以下であってもよい。
 このような多層断熱材であっても、断熱効果を発揮できる。
For example, in the above-described embodiment, it is described that the second dielectric multilayer film is provided on one main surface of the first base material. As a modification of the multilayer heat insulating material, one main surface of the first base material is described. The second dielectric multilayer film may not be provided on the surface. That is, as a multilayer heat insulating material of a modified example, a dielectric multilayer film configured to transmit radio waves is provided on at least one of the main surfaces, and disposed between a plurality of stacked base materials and a plurality of base materials And a multilayer heat insulating material configured such that at least one of the dielectric multilayer films has an infrared emissivity of less than 0.5. The infrared emissivity may be 0.3 or less, 0.2 or less, or 0.15 or less.
Even with such a multilayer heat insulating material, the heat insulating effect can be exhibited.
 また、上記実施形態では多層断熱材10の赤外線反射部に第3誘電体多層膜F3を利用しているが、赤外線反射部の構成はこれに限定されない。一例として、赤外線反射部は、電波を充分に透過可能な周波数選択板(FSS:Frequency Selective. Surface)を利用した構成を有していてもよい。 In the above embodiment, the third dielectric multilayer film F3 is used for the infrared reflecting portion of the multilayer heat insulating material 10, but the configuration of the infrared reflecting portion is not limited to this. As an example, the infrared reflection unit may have a configuration using a frequency selection plate (FSS: Frequency Selective. Surface) that can sufficiently transmit radio waves.
10…多層断熱材(MLI)
11…第1光学部材
12…第2光学部材
13…スペーサ
20…構造材
30…接続部
F1,F2,F3…誘電体多層膜
B1,B2…基材
10 ... Multi-layer insulation (MLI)
DESCRIPTION OF SYMBOLS 11 ... 1st optical member 12 ... 2nd optical member 13 ... Spacer 20 ... Structural material 30 ... Connection part F1, F2, F3 ... Dielectric multilayer film B1, B2 ... Base material

Claims (6)

  1.  電波を透過させるように構成された第1誘電体多層膜と、
     赤外線放射率が0.5未満であり、電波を透過させるように構成された第2誘電体多層膜と、
     前記第1誘電体多層膜が形成された第1主面と、前記第2誘電体多層膜が形成された第2主面と、を含む基材と、
     を具備する、断熱材。
    A first dielectric multilayer film configured to transmit radio waves;
    A second dielectric multilayer film having an infrared emissivity of less than 0.5 and configured to transmit radio waves;
    A substrate including a first main surface on which the first dielectric multilayer film is formed and a second main surface on which the second dielectric multilayer film is formed;
    A heat insulating material comprising:
  2.  前記第1誘電体多層膜が太陽光を反射するように構成された、
     請求項1に記載の断熱材。
    The first dielectric multilayer film is configured to reflect sunlight,
    The heat insulating material according to claim 1.
  3.  前記基材の前記第2主面側に配置されたスペーサを更に具備する、
     請求項1又は2に記載の断熱材。
    Further comprising a spacer disposed on the second main surface side of the substrate;
    The heat insulating material according to claim 1 or 2.
  4.  前記スペーサがポリイミドフォームで形成された、
     請求項3に記載の断熱材。
    The spacer is formed of polyimide foam;
    The heat insulating material according to claim 3.
  5.  請求項1~4のいずれか1項に記載の断熱材を具備する、
     多層断熱材。
    Comprising the heat insulating material according to any one of claims 1 to 4,
    Multi-layer insulation.
  6.  積層された複数の基材と、
     電波を透過させるように構成され、前記複数の基材それぞれの少なくとも一方の主面に形成された複数の誘電体多層膜と、
     前記複数の基材の間に配置されたスペーサと、を具備し、
     前記複数の誘電体多層膜の少なくとも一つの赤外線放射率が0.5未満である、
     多層断熱材。
    A plurality of laminated substrates;
    A plurality of dielectric multilayer films configured to transmit radio waves and formed on at least one main surface of each of the plurality of base materials;
    A spacer disposed between the plurality of base materials,
    At least one infrared emissivity of the plurality of dielectric multilayer films is less than 0.5;
    Multi-layer insulation.
PCT/JP2017/025125 2016-07-08 2017-07-10 Thermal insulation material and multilayer thermal insulation material WO2018008768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526469A JP6667914B2 (en) 2016-07-08 2017-07-10 Insulation and multilayer insulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136334 2016-07-08
JP2016136334 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008768A1 true WO2018008768A1 (en) 2018-01-11

Family

ID=60901732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025125 WO2018008768A1 (en) 2016-07-08 2017-07-10 Thermal insulation material and multilayer thermal insulation material

Country Status (2)

Country Link
JP (1) JP6667914B2 (en)
WO (1) WO2018008768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255965A1 (en) * 2020-06-19 2021-12-23 パナソニックIpマネジメント株式会社 Photography device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258595A (en) * 2012-06-13 2013-12-26 Toshiba Corp Waveguide tube
US20140118815A1 (en) * 2013-11-04 2014-05-01 Sung Nae CHO Heat blocking system utilizing particulates
WO2015104981A1 (en) * 2014-01-09 2015-07-16 コニカミノルタ株式会社 Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
WO2015168282A1 (en) * 2014-04-29 2015-11-05 Pleotint, L.L.C. Absorbing solar control interlayers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258595A (en) * 2012-06-13 2013-12-26 Toshiba Corp Waveguide tube
US20140118815A1 (en) * 2013-11-04 2014-05-01 Sung Nae CHO Heat blocking system utilizing particulates
WO2015104981A1 (en) * 2014-01-09 2015-07-16 コニカミノルタ株式会社 Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
WO2015168282A1 (en) * 2014-04-29 2015-11-05 Pleotint, L.L.C. Absorbing solar control interlayers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255965A1 (en) * 2020-06-19 2021-12-23 パナソニックIpマネジメント株式会社 Photography device

Also Published As

Publication number Publication date
JP6667914B2 (en) 2020-03-18
JPWO2018008768A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
KR102036071B1 (en) Multilayered radiant cooling structure
JP6602487B2 (en) Radiant cooling device
JP6584681B2 (en) Laminated structure
US20170297750A1 (en) Radiative Cooling Panels For Spacecraft
KR20210035771A (en) Radiant cooling device
US4586350A (en) Selective radiative cooling with MgO and/or LiF layers
JP6861614B2 (en) Radiative cooling device and radiative cooling method
KR20170023826A (en) Wire grid polarizer with dual absorptive regions
WO2016192569A2 (en) Low emissivity glass, method for manufacturing the same and vehicle window
EP2757393A1 (en) Infrared-reflective film
JP6821063B2 (en) Radiative cooling device
JPH05200933A (en) Heat control and layered body for electrostatic discharge
CN113666645A (en) Infrared and radar compatible stealthy window glass with sound and heat insulation function
WO2018008768A1 (en) Thermal insulation material and multilayer thermal insulation material
US20220119696A1 (en) Colored radiative cooling device
CN210148841U (en) Multi-layer thermal insulation system
JP2016021810A (en) Thermophotovoltaic power generator
JP4235110B2 (en) Optical surface reflector for spacecraft such as geostationary satellite
JP7004597B2 (en) Radiative cooling device
JP2002076681A (en) Electromagnetic wave absorbing body and method for absorbing the same
JP2007145689A (en) Near infrared ray-reflective substrate and near infrared ray-reflective laminated glass using the substrate, and near infrared ray-reflective double-glazed unit
JP2003229712A (en) Multiplayer radome plate and manufacturing method therefor
US11362431B1 (en) Optically transparent radar absorbing material (RAM)
KR102661547B1 (en) Light-transmissive multispectral stealth device
KR102559424B1 (en) Temperature responsive phase-transition cooling device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824371

Country of ref document: EP

Kind code of ref document: A1