WO2018004032A1 - Laser wafer processing method - Google Patents

Laser wafer processing method Download PDF

Info

Publication number
WO2018004032A1
WO2018004032A1 PCT/KR2016/006996 KR2016006996W WO2018004032A1 WO 2018004032 A1 WO2018004032 A1 WO 2018004032A1 KR 2016006996 W KR2016006996 W KR 2016006996W WO 2018004032 A1 WO2018004032 A1 WO 2018004032A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
laser
processing
position information
processing method
Prior art date
Application number
PCT/KR2016/006996
Other languages
French (fr)
Korean (ko)
Inventor
김선주
박훈
김현태
박재웅
홍순영
Original Assignee
주식회사 코윈디에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코윈디에스티 filed Critical 주식회사 코윈디에스티
Publication of WO2018004032A1 publication Critical patent/WO2018004032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a laser processing method of a silicon wafer applied to a semiconductor, a solar cell and the like.
  • a conventional laser wafer processing method includes pre-aligning a wafer transferred by a loading unit 10. Roughly performing alignment in the apparatus, acquiring the wafer image by the camera unit 70 through the reflection of the light irradiated by the light irradiation unit 30, and aligning the unit based on the obtained image. 12) performing the alignment, injecting the aligned wafer into the stage (S), the injected wafer through the lens unit 40, the scanner 50, the laser of the laser irradiation apparatus 60 The step of processing, and the step of taking out the processed wafer to the unloading unit 20. At this time, while passing through the mechanical arrangement of the pre-aligning unit 11 and the alignment unit, the wafers come into contact with each other and have a problem of failure. In addition, there is a problem that productivity is reduced to the above complex processing step.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a laser wafer processing method capable of processing a wafer that is not aligned by a simple method without applying a mechanical alignment method.
  • Laser processing method of the present invention for achieving the above object, the laser processing method of a rectangular wafer disposed at a position different from the laser processing reference coordinates, obtaining the position information of the rectangular wafer; Modifying laser processing coordinates based on the acquired position image; And processing the wafer by a laser irradiation apparatus by the modified processing coordinates.
  • the position information acquisition is made of a camera
  • the camera may be formed integrally with the laser irradiation apparatus.
  • the camera and the laser irradiation device may be disposed on the same optical axis.
  • the acquiring position information of the wafer may include acquiring two or three position position information at each of two adjacent edges of the rectangular wafer.
  • each of the two or three position positions has a predetermined separation distance, and the separation distance has a range of 1/10 to 3/10 of one edge side length at which position position information is measured. Can be.
  • the modifying the processing coordinates may include calculating a vertex and a rotation angle of the rectangular wafer based on the obtained four or six position position information.
  • the modifying the processing coordinates may include modifying the starting point and rotation angle of the laser.
  • the step of modifying the processing coordinates may be made by a mirror included in the scanner integrally formed with the laser processing apparatus.
  • Laser wafer processing method of the present invention derived to solve the problems of the prior art as described above can be processed by a simple method without mechanical alignment application.
  • FIG. 1 is a schematic diagram showing a conventional laser wafer processing method.
  • FIG. 3 is a diagram showing a method of obtaining four position position information of the edge of a wafer of an embodiment of the present invention.
  • the present invention relates to a laser processing method of a rectangular wafer placed (arranged) at a position different from a laser processing reference coordinate, the method comprising: obtaining position information of a rectangular wafer; Modifying laser processing coordinates based on the acquired position image; And processing the wafer by a laser irradiation apparatus by the modified processing coordinates.
  • the laser wafer processing method will be described based on a schematic diagram of the laser wafer processing apparatus shown in FIG. 2.
  • the unprocessed wafer is moved to the stage S by the transfer device of the loading part 100.
  • the stage S the positional information of the wafer is obtained, and laser processing is performed.
  • the present invention does not go through the mechanical (mechanical) pre-alignment step and the alignment step separately, it is possible to reduce the work space, it is possible to shorten the working time there is an advantage in terms of productivity .
  • the rectangular wafer moved to the stage S may acquire position information of the rectangular wafer by the light irradiation unit 300, the lens unit 400, the scanner 500, the adapter 800, and the camera 700.
  • the rectangular wafer is introduced into the stage S by being twisted about 5 °. 3 illustrates a shape of a warped rectangular wafer W, and illustrates a method of acquiring point position information 900 with the camera 700 as a fragment image of the warped wafer W.
  • the position information acquisition of the twisted rectangular wafer W is a method of obtaining two or three position position information 900 at each of two corners adjacent to the rectangular wafer W, as shown in FIG. 3. Is done. That is, the position position information 900 of two or three pieces of images are acquired at one corner, and the position position information 900 of two or three pieces of images of adjacent corners is obtained, and the preset laser reference data is obtained. (Fig. 4 (a)) by calculating the degree of disparity (rotation angle) and the vertex, it is to set the rotation angle and the starting point to be processed by laser (Fig. 4 (b)). The adjustment of the rotation angle and the starting point is made by adjusting the X and Y axis mirrors included in the scanner 500.
  • the position position information 900 of the fragment image may be four or six, depending on the size of the rectangular wafer (W) (two or three position position information at one corner). That is, when the size of the wafer is 100 ⁇ m 2 to 10 Cm 2 , four position position information 900 may be acquired. When the size of the wafer is 10 Cm 2 or more, six position position information 900 may be obtained. Acquiring four or six position position information 900 may be adjusted according to the error rate. Each of the two or three position position information 900 of one corner has a separation distance, that is, the other position position information 900 adjacent to the position position information 900 has a predetermined separation distance.
  • the separation distance may have a range of 1/10 to 3/10 of the length of one edge where the position position information 900 is measured. If it is less than 1/10, the error range may increase, and if it is more than 3/10, difficulty in obtaining position position information through a mirror of the scanner may occur.
  • Position information acquisition of the rectangular wafer (W) of the present invention may be made by the camera 700, it may be formed integrally with the laser irradiation apparatus 600 as shown in FIG.
  • the laser irradiation apparatus 600 and the camera 700 may share the adapter 800.
  • the adapter 800 serves to extract and bundle the light passing through the laser irradiation device 600 and the camera 700.
  • the laser irradiation apparatus 600 and the camera 700 may be disposed on the same optical axis.
  • the present invention is formed integrally with the laser irradiation apparatus 600 and disposed on the same optical axis, thereby making the apparatus compact. There is an advantage that can be harmonized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention relates to a laser wafer processing method which is capable of processing a wafer by a simple method without damage to the wafer. More specifically, the present invention relates to a laser processing method for a rectangular wafer arranged at a position different from a laser processing reference coordinate, comprising the steps of: acquiring the position information of the rectangular wafer; modifying the laser processing coordinate on the basis of the acquired position image; and processing the wafer with a laser irradiation apparatus in accordance with the modified processing coordinate.

Description

레이저 웨이퍼 가공방법Laser Wafer Processing Method
본 발명은 반도체, 태양전지 등에 적용되는 실리콘 웨이퍼의 레이저 가공방법에 대한 것이다.The present invention relates to a laser processing method of a silicon wafer applied to a semiconductor, a solar cell and the like.
도 1은 반도체 또는 태양전지에 적용되는 통상의 레이저 웨이퍼 가공방법에 대한 것으로, 통상의 레이저 웨이퍼 가공방법은 로딩부(10)에 의해 전달된 웨이퍼를 프리얼라인(Pre-align)부(11)에서 기구적으로 대략적으로 얼라인을 수행하는 단계, 광조사부(30)에 의해 조사된 광의 반사를 통해 웨이퍼 이미지를 카메라부(70)에 의해 획득하는 단계, 획득된 이미지를 바탕으로 얼라인 유닛(12)을 통하여 얼라인을 수행하는 단계, 얼라인이 수행된 웨이퍼를 스테이지(S)로 투입하는 단계, 투입된 웨이퍼를 렌즈부(40), 스캐너(50)를 통해 레이저 조사장치(60)의 레이저로 가공하는 단계, 가공된 웨이퍼를 언로딩부(20)로 반출하는 단계를 거치게 된다. 이때, 프리얼라인(Pre-align)부(11)와 얼라인 유닛의 기구적인 장치를 거치게 되면서 웨이퍼가 접촉되어 파손되고 불량이 발생하는 문제점이 있어왔다. 또한, 상기와 같은 복잡한 가공단계로 생산성이 떨어지는 문제점이 있다.1 illustrates a conventional laser wafer processing method applied to a semiconductor or a solar cell, and a conventional laser wafer processing method includes pre-aligning a wafer transferred by a loading unit 10. Roughly performing alignment in the apparatus, acquiring the wafer image by the camera unit 70 through the reflection of the light irradiated by the light irradiation unit 30, and aligning the unit based on the obtained image. 12) performing the alignment, injecting the aligned wafer into the stage (S), the injected wafer through the lens unit 40, the scanner 50, the laser of the laser irradiation apparatus 60 The step of processing, and the step of taking out the processed wafer to the unloading unit 20. At this time, while passing through the mechanical arrangement of the pre-aligning unit 11 and the alignment unit, the wafers come into contact with each other and have a problem of failure. In addition, there is a problem that productivity is reduced to the above complex processing step.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 기구적인 얼라인 방법의 적용 없이, 간단한 방법에 의해 얼라인 되지 않은 웨이퍼를 가공할 수 있는 레이저 웨이퍼 가공방법을 제공하는 것을 목적으로 한다. The present invention has been made to solve the above problems, and an object of the present invention is to provide a laser wafer processing method capable of processing a wafer that is not aligned by a simple method without applying a mechanical alignment method.
다만, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned are clearly to those skilled in the art from the following description. It can be understood.
상기 목적 달성을 위한 본 발명의 레이저 웨이퍼 가공방법은, 레이저 가공 기준 좌표와 다른 위치로 배치된 사각형의 웨이퍼의 레이저 가공방법에 있어서, 사각형의 웨이퍼의 위치정보를 획득하는 단계; 상기 획득된 위치영상을 바탕으로 레이저 가공 좌표를 수정하는 단계; 및 상기 수정된 가공좌표에 의해, 레이저 조사장치로 웨이퍼를 가공하는 단계;를 포함한다. Laser processing method of the present invention for achieving the above object, the laser processing method of a rectangular wafer disposed at a position different from the laser processing reference coordinates, obtaining the position information of the rectangular wafer; Modifying laser processing coordinates based on the acquired position image; And processing the wafer by a laser irradiation apparatus by the modified processing coordinates.
일 실시형태로, 상기 위치정보 획득은 카메라로 이루어지며, 상기 카메라는 상기 레이저 조사장치와 일체로 형성될 수 있다. In one embodiment, the position information acquisition is made of a camera, the camera may be formed integrally with the laser irradiation apparatus.
다른 일 실시형태로, 상기 카메라와 상기 레이저 조사장치는 동일 광축상에 배치될 수 있다.In another embodiment, the camera and the laser irradiation device may be disposed on the same optical axis.
또 다른 일 실시형태로, 상기 웨이퍼의 위치정보를 획득하는 단계는, 상기 사각형의 웨이퍼의 인접한 2개의 모서리 각각에 2개 또는 3개의 포지션 위치정보를 획득하는 단계를 포함할 수 있다.In another embodiment, the acquiring position information of the wafer may include acquiring two or three position position information at each of two adjacent edges of the rectangular wafer.
또 다른 일 실시형태로, 상기 2개 또는 3개의 포지션 위치 각각은 소정의 이격거리를 가지며, 상기 이격거리는 포지션 위치정보가 측정되는 하나의 모서리 변길이의 1/10 내지 3/10의 범위를 가질 수 있다. In another embodiment, each of the two or three position positions has a predetermined separation distance, and the separation distance has a range of 1/10 to 3/10 of one edge side length at which position position information is measured. Can be.
또 다른 일 실시형태로, 상기 가공좌표를 수정하는 단계는, 상기 획득된 4개 또는 6개의 포지션 위치정보를 바탕으로 상기 사각형 웨이퍼의 꼭지점 및 회전 각도를 계산하는 단계를 포함할 수 있다.In another embodiment, the modifying the processing coordinates may include calculating a vertex and a rotation angle of the rectangular wafer based on the obtained four or six position position information.
또 다른 일 실시형태로, 상기 가공좌표를 수정하는 단계는, 레이저의 가공 시작지점 및 회전각도를 수정하는 단계를 포함할 수 있다.In another embodiment, the modifying the processing coordinates may include modifying the starting point and rotation angle of the laser.
또 다른 일 실시형태로, 상기 가공좌표를 수정하는 단계는, 상기 레이저 가공장치와 일체로 형성되는 스캐너에 포함된 미러에 의해 이루어질 수 있다. In another embodiment, the step of modifying the processing coordinates may be made by a mirror included in the scanner integrally formed with the laser processing apparatus.
상기와 같이 종래 기술의 문제점을 해결하기 위해 도출된 본 발명의 레이저 웨이퍼 가공방법은 기구적인 얼라인 적용없이 간단한 방법에 의해 웨이퍼를 가공할 수 있다.Laser wafer processing method of the present invention derived to solve the problems of the prior art as described above can be processed by a simple method without mechanical alignment application.
또한, 기구적인 얼라인을 적용하지 않아, 웨이퍼의 손상에 의한 불량을 방지할 수 있으며, 기구적인 얼라인 과정을 생략함으로써, 생산성을 향상시킬 수 있는 효과가 있다. In addition, since mechanical alignment is not applied, defects due to damage to the wafer can be prevented, and the mechanical alignment process can be omitted, thereby improving productivity.
도 1은 종래의 레이저 웨이퍼 가공방법을 나타낸 모식도이다. 1 is a schematic diagram showing a conventional laser wafer processing method.
도 2는 본 발명의 일 실시형태의 레이저 웨이퍼 가공방법을 나타낸 모식도이다.It is a schematic diagram which shows the laser wafer processing method of one Embodiment of this invention.
도 3은 본 발명의 일 실시형태의 웨이퍼 모서리의 4개 포지션 위치정보를 획득하는 방법을 나타낸 도면이다.3 is a diagram showing a method of obtaining four position position information of the edge of a wafer of an embodiment of the present invention.
도 4는 본 발명의 일 실시형태의 기준 레이저 가공 좌표와 변경된 레이저 가공 좌표를 나타낸 도면이다. It is a figure which shows the reference laser machining coordinate and the changed laser machining coordinate of one Embodiment of this invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "특징으로 한다", "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as “characterize”, “comprise” or “have” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, It should be understood that it does not exclude in advance the possibility of the presence or addition of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of already known functions or configurations will be omitted to clarify the gist of the present invention.
본 발명은 레이저 가공 기준 좌표와 다른 위치로 투입된(배치된) 사각형의 웨이퍼의 레이저 가공방법에 대한 것으로, 사각형의 웨이퍼의 위치정보를 획득하는 단계; 상기 획득된 위치영상을 바탕으로 레이저 가공 좌표를 수정하는 단계; 및 상기 수정된 가공좌표에 의해, 레이저 조사장치로 웨이퍼를 가공하는 단계;를 포함한다. The present invention relates to a laser processing method of a rectangular wafer placed (arranged) at a position different from a laser processing reference coordinate, the method comprising: obtaining position information of a rectangular wafer; Modifying laser processing coordinates based on the acquired position image; And processing the wafer by a laser irradiation apparatus by the modified processing coordinates.
상기의 레이저 웨이퍼 가공방법은 도 2에 도시된 레이저 웨이퍼 가공장치의 모식도를 바탕으로 설명하고자 한다. 우선, 가공되지 않은 웨이퍼는 로딩부(100)의 이송장치에 의해 스테이지(S)로 이동된다. 스테이지(S)에서는 웨이퍼의 위치정보를 획득하고, 레이저 가공이 수행된다. 도 1과 비교해 보면, 본원 발명은 기구적인(기계적인) 프리얼라인 단계 및 얼라인 단계를 별도로 거치지 않게 되므로, 작업공간을 줄일 수 있으며, 작업시간을 단축할 수 있어 생산성 측면에서 이로운 장점이 있다. The laser wafer processing method will be described based on a schematic diagram of the laser wafer processing apparatus shown in FIG. 2. First, the unprocessed wafer is moved to the stage S by the transfer device of the loading part 100. In the stage S, the positional information of the wafer is obtained, and laser processing is performed. Compared with FIG. 1, the present invention does not go through the mechanical (mechanical) pre-alignment step and the alignment step separately, it is possible to reduce the work space, it is possible to shorten the working time there is an advantage in terms of productivity .
상기 스테이지(S)로 이동된 사각형의 웨이퍼는 광조사부(300), 렌즈부(400), 스캐너(500), 어댑터(800) 및 카메라(700)에 의해 사각형 웨이퍼의 위치정보를 획득하게 된다. 본원 발명은 종래와 달리 얼라인 단계를 거치지 않고 웨이퍼가 스테이지(S)로 투입되기 때문에 사각형의 웨이퍼가 5°내외 정도 틀어져서 스테이지(S)로 투입되게 된다. 도 3은 틀어진 사각형 웨이퍼(W)의 형상을 나타낸 것이며, 이렇게 틀어진 웨이퍼(W)의 조각 이미지로 포인트 위치정보(900)를 카메라(700)로 획득하는 방법을 나타낸 것이다.The rectangular wafer moved to the stage S may acquire position information of the rectangular wafer by the light irradiation unit 300, the lens unit 400, the scanner 500, the adapter 800, and the camera 700. According to the present invention, since the wafer is introduced into the stage S without undergoing an alignment step, the rectangular wafer is introduced into the stage S by being twisted about 5 °. 3 illustrates a shape of a warped rectangular wafer W, and illustrates a method of acquiring point position information 900 with the camera 700 as a fragment image of the warped wafer W.
상기의 틀어진 사각형 웨이퍼(W)의 위치정보 획득은, 도 3에 나타난 바와 같이, 사각형의 웨이퍼(W)에 인접한 2개의 모서리 각각에 2개 또는 3개의 포지션 위치정보(900)를 획득하는 방법으로 이루어진다. 즉, 하나의 모서리에 2개 또는 3개의 조각 이미지의 포지션 위치정보(900)를 획득한 다음 인접한 모서리의 2개 또는 3개의 조각 이미지의 포지션 위치정보(900)를 획득하여, 기설정된 레이저 기준 데이터(도 4 (a)) 대비 틀어진 정도(회전각도) 및 꼭지점을 계산하여, 레이저로 가공할 회전각도 및 시작점을 설정하게 된다(도 4 (b)). 이러한 회전각도 및 시작점의 조절은 스캐너(500)에 포함되어 있는 X축 및 Y축 미러의 조절에 의해 이루어지게 된다. 도 4의 (a)는 기설정된 레이저 기준 좌표를 나타내는 것이고, (b)는 웨이퍼의 틀어진 정도에 따라 변경 설정된 레이저 가공 좌표를 나타낸 것이다. 도 4와 같이, 레이저 가공 좌표의 변경은 스캐너의 X축 및 Y축 미러의 조절에 의해 간단히 이루어지며, 변경된 좌표에 의해 별도의 얼라인 없이 레이저 가공이 이루어지게 되어 생산성 측면에서 장점이 있다.The position information acquisition of the twisted rectangular wafer W is a method of obtaining two or three position position information 900 at each of two corners adjacent to the rectangular wafer W, as shown in FIG. 3. Is done. That is, the position position information 900 of two or three pieces of images are acquired at one corner, and the position position information 900 of two or three pieces of images of adjacent corners is obtained, and the preset laser reference data is obtained. (Fig. 4 (a)) by calculating the degree of disparity (rotation angle) and the vertex, it is to set the rotation angle and the starting point to be processed by laser (Fig. 4 (b)). The adjustment of the rotation angle and the starting point is made by adjusting the X and Y axis mirrors included in the scanner 500. 4 (a) shows preset laser reference coordinates, and (b) shows laser processing coordinates changed according to the degree of distortion of the wafer. As shown in Figure 4, the change of the laser processing coordinate is made simply by the adjustment of the X-axis and Y-axis mirror of the scanner, there is an advantage in terms of productivity because the laser processing is made without a separate alignment by the changed coordinates.
상기 조각 이미지의 포지션 위치정보(900)는 사각형 웨이퍼(W)의 크기에 따라 4개 또는 6개가 될 수 있다(하나의 모서리에 2개 또는 3개의 포시션 위치정보). 즉, 웨이퍼의 크기가 100㎛2 내지 10Cm2 일 경우에는 4개의 포지션 위치정보(900)를 획득하게 되고, 10Cm2 이상일 경우에는 6개의 포지션 위치정보(900)를 획득할 수 있다. 4개 또는 6개의 포지션 위치정보(900) 획득은 에러율에 따라 조절될 수 있다. 하나의 모서리 2개 또는 3개의 포지션 위치정보(900)의 각각은 이격거리를 가지며, 즉, 하나의 포지션 위치정보(900)와 인접한 다른 하나의 포지션 위치정보(900)는 소정의 이격거리를 가지며, 이러한 이격거리는 포지션 위치정보(900)가 측정되는 하나의 모서리 변길이의 1/10 내지 3/10 범위를 가질 수 있다. 1/10 미만일 경우에는 오차범위가 커질 수 있으며, 3/10 이상일 경우에는 스캐너의 미러를 통한 포지션 위치정보 획득의 어려움이 발생할 수 있다. The position position information 900 of the fragment image may be four or six, depending on the size of the rectangular wafer (W) (two or three position position information at one corner). That is, when the size of the wafer is 100 μm 2 to 10 Cm 2 , four position position information 900 may be acquired. When the size of the wafer is 10 Cm 2 or more, six position position information 900 may be obtained. Acquiring four or six position position information 900 may be adjusted according to the error rate. Each of the two or three position position information 900 of one corner has a separation distance, that is, the other position position information 900 adjacent to the position position information 900 has a predetermined separation distance. The separation distance may have a range of 1/10 to 3/10 of the length of one edge where the position position information 900 is measured. If it is less than 1/10, the error range may increase, and if it is more than 3/10, difficulty in obtaining position position information through a mirror of the scanner may occur.
본원 발명의 사각형 웨이퍼(W)의 위치정보 획득은 카메라(700)에 의해 이루어질 수 있으며, 도 2에 도시된 바와 같이 레이저 조사장치(600)와 일체로 형성될 수 있다. 레이저 조사장치(600)와 카메라(700)는 어댑터(800)를 공유할 수 있다. 본 발명에서 어댑터(800)는 레이저 조사장치(600)와 카메라(700)를 통과하는 광을 추출 및 묶어주는 역할을 한다. 또한, 레이저 조사장치(600)와 카메라(700)는 동일 광축상에 배치될 수 있다. 이와 같이, 종래에는 웨이퍼의 이미지 획득을 위한 카메라가 레이저 조사장치와 별개로 전단계에 구비되어 있었지만, 본 발명은 레이저 조사장치(600)와 일체로 형성되고, 동일 광축상에 배치함으로써, 장치를 컴팩트화할 수 있는 장점이 있다.Position information acquisition of the rectangular wafer (W) of the present invention may be made by the camera 700, it may be formed integrally with the laser irradiation apparatus 600 as shown in FIG. The laser irradiation apparatus 600 and the camera 700 may share the adapter 800. In the present invention, the adapter 800 serves to extract and bundle the light passing through the laser irradiation device 600 and the camera 700. In addition, the laser irradiation apparatus 600 and the camera 700 may be disposed on the same optical axis. As described above, although a camera for acquiring an image of a wafer is conventionally provided at a previous stage separately from the laser irradiation apparatus, the present invention is formed integrally with the laser irradiation apparatus 600 and disposed on the same optical axis, thereby making the apparatus compact. There is an advantage that can be harmonized.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다.While specific embodiments of the invention have been described and illustrated above, it is to be understood that the invention is not limited to the described embodiments, and that various modifications and changes can be made without departing from the spirit and scope of the invention. It is self-evident to those who have.

Claims (8)

  1. 레이저 가공 기준 좌표와 다른 위치로 배치된 사각형의 웨이퍼의 레이저 가공방법에 있어서, In the laser processing method of a rectangular wafer arranged at a position different from the laser processing reference coordinate,
    사각형의 웨이퍼의 위치정보를 획득하는 단계;Obtaining location information of a rectangular wafer;
    상기 획득된 위치영상을 바탕으로 레이저 가공 좌표를 수정하는 단계; 및Modifying laser processing coordinates based on the acquired position image; And
    상기 수정된 가공좌표에 의해, 레이저 조사장치로 웨이퍼를 가공하는 단계;를 Processing the wafer with a laser irradiation apparatus by the modified processing coordinates;
    포함하는 것을 특징으로 하는 레이저 웨이퍼 가공방법Laser wafer processing method comprising the
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 위치정보 획득은 카메라로 이루어지며,The location information acquisition is made of a camera,
    상기 카메라는 상기 레이저 조사장치와 일체로 형성되는 것을 특징으로 하는 레이저 웨이퍼 가공방법The camera is a laser wafer processing method, characterized in that formed integrally with the laser irradiation apparatus.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 카메라와 상기 레이저 조사장치는 동일 광축상에 배치되는 것을 특징으로 하는 레이저 웨이퍼 가공방법And the camera and the laser irradiation apparatus are disposed on the same optical axis.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 웨이퍼의 위치정보를 획득하는 단계는,Acquiring position information of the wafer,
    상기 사각형의 웨이퍼의 인접한 2개의 모서리 각각에 2개 또는 3개의 포지션 위치정보를 획득하는 단계를 포함하는 것을 특징으로 하는 레이저 웨이퍼 가공방법And obtaining two or three position position information at each of two adjacent edges of the rectangular wafer.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 2개 또는 3개의 포지션 위치 각각은 소정의 이격거리를 가지며,Each of the two or three position positions has a predetermined distance,
    상기 이격거리는 포지션 위치정보가 측정되는 하나의 모서리 변길이의 1/10 내지 3/10의 범위를 가지는 것을 특징으로 하는 레이저 웨이퍼 가공방법The separation distance is a laser wafer processing method characterized in that it has a range of 1/10 to 3/10 of the edge length of one corner position position information is measured.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 가공좌표를 수정하는 단계는,Modifying the processing coordinates,
    상기 획득된 4개 또는 6개의 포지션 위치정보를 바탕으로 상기 사각형 웨이퍼의 꼭지점 및 회전 각도를 계산하는 단계를 포함하는 것을 특징으로 하는 레이저 웨이퍼 가공방법Comprising the step of calculating the vertex and the rotation angle of the rectangular wafer based on the obtained four or six position position information, characterized in that the laser wafer processing method
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 가공좌표를 수정하는 단계는,Modifying the processing coordinates,
    레이저의 가공 시작지점 및 회전각도를 수정하는 단계를 포함하는 것을 특징으로 하는 레이저 웨이퍼 가공방법Laser wafer processing method comprising the step of modifying the laser processing start point and the rotation angle
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 가공좌표를 수정하는 단계는,Modifying the processing coordinates,
    상기 레이저 가공장치와 일체로 형성되는 스캐너에 포함된 미러에 의해 이루어지는 것을 특징으로 하는 레이저 웨이퍼 가공방법Laser wafer processing method characterized in that made by a mirror included in the scanner integrally formed with the laser processing apparatus
PCT/KR2016/006996 2016-06-29 2016-06-30 Laser wafer processing method WO2018004032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160081710A KR101789693B1 (en) 2016-06-29 2016-06-29 Wafer processing method with laser
KR10-2016-0081710 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018004032A1 true WO2018004032A1 (en) 2018-01-04

Family

ID=60786049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006996 WO2018004032A1 (en) 2016-06-29 2016-06-30 Laser wafer processing method

Country Status (2)

Country Link
KR (1) KR101789693B1 (en)
WO (1) WO2018004032A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228347A (en) * 1999-02-08 2000-08-15 Nikon Corp Aligning method and projection aligner
KR20070048650A (en) * 2004-08-31 2007-05-09 가부시키가이샤 니콘 Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus
JP5136996B2 (en) * 2007-04-05 2013-02-06 ハイデルベルク・インストルメンツ・ミクロテヒニツク・ゲー・エム・ベー・ハー Method and apparatus for imaging a programmable mask on a substrate
KR20140116233A (en) * 2013-01-31 2014-10-02 엘지디스플레이 주식회사 Apparatus and Method for substrate ablation
KR20140117020A (en) * 2013-03-25 2014-10-07 삼성디스플레이 주식회사 Laser annealing apparatus, method for laser annealing, and display apparatus manufacture by using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228347A (en) * 1999-02-08 2000-08-15 Nikon Corp Aligning method and projection aligner
KR20070048650A (en) * 2004-08-31 2007-05-09 가부시키가이샤 니콘 Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus
JP5136996B2 (en) * 2007-04-05 2013-02-06 ハイデルベルク・インストルメンツ・ミクロテヒニツク・ゲー・エム・ベー・ハー Method and apparatus for imaging a programmable mask on a substrate
KR20140116233A (en) * 2013-01-31 2014-10-02 엘지디스플레이 주식회사 Apparatus and Method for substrate ablation
KR20140117020A (en) * 2013-03-25 2014-10-07 삼성디스플레이 주식회사 Laser annealing apparatus, method for laser annealing, and display apparatus manufacture by using the method

Also Published As

Publication number Publication date
KR101789693B1 (en) 2017-11-20

Similar Documents

Publication Publication Date Title
KR20100065073A (en) Substrate inspecting method, substrate inspecting device and storage medium
KR101019899B1 (en) Inspection apparatus
KR101716817B1 (en) Image creation method, substrate inspection method, storage medium for storing program for executing image creation method and substrate inspection method, and substrate inspection apparatus
WO2011087337A2 (en) Substrate-inspecting device
KR20160126905A (en) Inspection device and substrate processing apparatus
CN114975213B (en) Wafer alignment device and alignment method
WO2017082496A1 (en) Wafer alignment method and alignment equipment using same
WO2017204560A1 (en) Method and apparatus of detecting particles on upper surface of glass, and method of irradiating incident light
WO2017142132A1 (en) Marking position correcting apparatus and method
WO2018004032A1 (en) Laser wafer processing method
US20210166420A1 (en) Method and system to detect substrate placement accuracy
WO2015199269A1 (en) Marking method for wafer dice
WO2012099337A1 (en) Method for detecting an invisible mark on a card
WO2021101224A1 (en) Wafer defect detection system for semiconductor photolithography process
KR102161160B1 (en) Method of inspecting a surface of a substrate and apparatus for performing the same
WO2019059613A1 (en) Transmissive optical system inspection apparatus and film defect inspection method using same
WO2017007047A1 (en) Spatial depth non-uniformity compensation method and device using jittered comparison
JP3180004B2 (en) Exposure film alignment method and alignment apparatus
WO2016104868A1 (en) Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system
JP2004347323A (en) Visual inspection method and device
WO2021187767A1 (en) Defect inspection method for inspection object
WO2015056927A1 (en) Device for inspecting section of window substrate
KR20190046121A (en) Wafer position inspecting apparatus
WO2023054910A1 (en) Wafer inspection apparatus
US11567416B2 (en) Inspection apparatus and substrate transfer method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907397

Country of ref document: EP

Kind code of ref document: A1