WO2018000345A1 - 自然冷机房空调及其过冷度控制方法 - Google Patents

自然冷机房空调及其过冷度控制方法 Download PDF

Info

Publication number
WO2018000345A1
WO2018000345A1 PCT/CN2016/087948 CN2016087948W WO2018000345A1 WO 2018000345 A1 WO2018000345 A1 WO 2018000345A1 CN 2016087948 W CN2016087948 W CN 2016087948W WO 2018000345 A1 WO2018000345 A1 WO 2018000345A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
subcooling
air conditioner
heat exchanger
room air
Prior art date
Application number
PCT/CN2016/087948
Other languages
English (en)
French (fr)
Inventor
曹维兵
欧阳超波
张健辉
游庆生
李垂君
Original Assignee
深圳市艾特网能技术有限公司
深圳市艾特网能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市艾特网能技术有限公司, 深圳市艾特网能有限公司 filed Critical 深圳市艾特网能技术有限公司
Priority to PCT/CN2016/087948 priority Critical patent/WO2018000345A1/zh
Publication of WO2018000345A1 publication Critical patent/WO2018000345A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Definitions

  • the present invention relates to the field of air conditioning, and more particularly to a natural cold room air conditioner and a method for controlling the degree of subcooling thereof.
  • Fluorine pump circulating natural cold air conditioning system includes fluorine pump, throttle, evaporator, condenser and other components, and is connected by a high pressure resistant copper pipe into a closed system, the system is filled with a certain amount of low boiling point medium, ie refrigeration
  • the fluorine pump circulating refrigerant circulates in the system.
  • the working principle is that the fluorine pump forces the liquid refrigerant to flow to the evaporator through the throttle device, and the indoor hot air radiates heat to the refrigerant circulating in the evaporator, the refrigerant absorbs heat and a small portion of the refrigerant absorbs heat and vaporizes, with bubbles
  • the refrigerant liquid is circulated into the condenser, and the heat carried by it is released into the outdoor atmosphere, and the refrigerant becomes a supercooled liquid when it is exothermic.
  • the technical problem to be solved by the present invention is to provide a natural cold room air conditioner and a degree of subcooling thereof, which solve the above-mentioned defects of the prior art and solve the problems of excessive subcooling of the refrigerant and insufficient heat transfer of the evaporator. Control Method.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a natural cold room air conditioner, including a condenser, a refrigerant pump, a throttle, and an evaporator, wherein the natural cold room air conditioner further includes Festival A heat exchanger for a refrigerant temperature at a refrigerant input end, the heat exchanger being disposed between the refrigerant pump and the restrictor.
  • a regulating valve for controlling the flow rate of the flowing refrigerant is further provided, the regulating valve being disposed between the refrigerant pump and the heat exchanger.
  • a controller connected to the regulating valve for controlling the throttle of the regulating valve is further included.
  • a sensor connected to the controller for measuring refrigerant pressure and temperature of the throttle refrigerant input end, the controller controlling the ⁇ of the regulating valve according to sampling data of the sensor degree.
  • the senor includes a temperature sensor and a pressure sensor, and the refrigerant sequentially flows through the heat exchanger, the temperature sensor, the pressure sensor, and the restrictor.
  • the heat exchanger is a heat exchanger using hot air as a heat medium
  • the heat exchanger is a finned hot coil disposed on a windward surface of the hot air of the evaporator.
  • the heat exchanger is a heat exchanger that uses hot water as a heat medium
  • the heat exchanger includes a heat exchange box, and the heat exchange box is provided with a hot water inlet and a hot water outlet;
  • the circulating hot water in the heat exchange tank is heated by the refrigerant flowing into the heat exchange tank.
  • the present invention also provides a subcooling degree control method for a natural cold room air conditioner, wherein the natural cold room air conditioner includes a condenser, a refrigerant pump, a throttle, and an evaporator, and the control method includes the following steps:
  • control method further includes:
  • S11 detecting the restrictor (3) refrigerant pressure Pl at the refrigerant input end, determining a corresponding refrigerant saturation temperature TO according to the pressure;
  • step S14 adjusting the heating position according to the magnitude relationship between the actual degree of subcooling value Ta and the target degree of subcooling Ts [0019] Further, the step S14 includes:
  • the present invention is directed to a natural cold room air conditioner in a refrigerant pump operating mode, the liquid refrigerant outputted by the refrigerant pump has a high degree of subcooling, and the method of setting a heat exchanger in front of the throttle device is utilized.
  • the temperature difference heat transfer increases the temperature of the refrigerant with a large degree of subcooling, reduces the actual degree of subcooling to the target degree of subcooling, and makes the theoretical value close to the actual value, thereby ensuring that the refrigerant after throttling can enter the two phases of gas-liquid mixing. State, improve the distribution uniformity and heat exchange efficiency of the refrigerant in the evaporator, and increase the cooling capacity of the air conditioner.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention
  • FIG. 2 is a block diagram of a subcooling degree control circuit according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a heat exchanger using hot air as a heat medium according to a first embodiment of the present invention
  • FIG. 5 is a schematic structural view of a heat exchanger using hot water as a heat medium according to a second embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a third embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a fourth embodiment of the present invention.
  • Embodiment 1 As shown in FIG. 1, in the first embodiment of the natural cold room air conditioner of the present invention, the air conditioner includes a refrigerant pump 1 connected through a pipe, a heat exchanger 2, a throttle device 3, an evaporator 4, and a condenser. 9.
  • the refrigerant pump 1 is integrated in the cabinet-type structural member.
  • the air conditioner further includes a regulating valve 7 that controls the flow of the refrigerant into the heat exchanger 2, and the refrigerant flowing out of the condenser 9 flows through the regulating valve 7 to the heat exchanger 2 and the restrictor 3.
  • the regulating valve 7 preferably uses two two-way valves; the inlet of the first two-way valve 71 is connected to the supercooled liquid refrigerant output end of the condenser 9 through the refrigerant pump 1, and its outlet and exchange The refrigerant inlet end of the heater 2 is connected.
  • the 2 inlet of the second two-way valve 7 is connected to the supercooled liquid refrigerant output end of the condenser 9 through the refrigerant pump 1, and the outlet is connected to the refrigerant input end of the restrictor 3.
  • the refrigerant input of the throttle 3 is provided with a temperature sensor 5 and a pressure sensor 6.
  • the air conditioner further includes a controller 8, and the controller 8 is connected to the temperature sensor 5, the pressure sensor 6, and the regulating valve 7.
  • the controller adopts a PID control method to adjust the deviation of the degree of subcooling of the refrigerant flowing into the throttle unit 3 so that the actual value of the refrigerant supercooling degree coincides with the required predetermined value.
  • the method for controlling the subcooling degree of the refrigerant in the natural cold room air conditioner controller 8 includes the following steps:
  • the controller 8 closes the second two-way valve 72, slams and increases the twist of the first two-way valve 71, increases the flow rate of the refrigerant flowing to the heat exchanger 2, and makes the actual degree of subcooling Ta into the target subcooling accuracy. range.
  • the controller 8 activates the second two-way valve 72. ⁇ reducing the twist of the first two-way valve 71, reducing the flow rate of the refrigerant flowing to the heat exchanger 2; and making the actual degree of subcooling Ta into the accuracy range of the target subcooling degree [0044] If the actual degree of subcooling Ta is within the accuracy range of Ts, the controller 8 closes the first two-way valve 71, and the refrigerant directly flows to the restrictor 3 without heating by the heat exchanger 2.
  • the method of determining the refrigerant saturation temperature TO in step 1 is to query the refrigerant saturation temperature ⁇ corresponding to the pressure value P1 through the refrigerant attribute table.
  • the controller 8 detects the actual degree of subcooling Ta every 10 seconds, and controls the refrigerant output of the feed 7 according to the detected data.
  • the amount is such that the actual degree of subcooling Ta enters the accuracy range of the target subcooling degree, and the heat exchange efficiency of the evaporator 4 is improved.
  • the heat exchanger 2 is a superheat coil which is disposed on the hot air windward surface of the evaporator coil 41.
  • the heat exchanger inlet end 21 is disposed on the leeward side of the evaporator coil, and the heat exchanger outlet end 22 is disposed on the windward side of the evaporator coil to maximize the contact area between the hot coil and the hot air.
  • the indoor hot air flows to the evaporator 4, and the hot air and the evaporator are in contact with the heat exchanger 2, and the heat exchanger 2 is disposed on the windward surface of the evaporator coil 41, and is performed with the heat exchanger 2.
  • the heat exchange heats the refrigerant in the heat exchanger 2.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the heat exchanger of the first embodiment of the natural cold room air conditioner is improved, and a partition wall heat exchanger using hot water as a heat medium is used.
  • the heat exchanger is provided with a heat exchange box 25, and the refrigerant flows through the heat exchanger inlet end 21, the heat exchange tank 25 and the heat exchanger outlet end 22, and the tank is provided with a hot water inlet 23 and hot water. Exit 24.
  • Such heat exchangers reduce the degree of subcooling by heating the refrigerant flowing into the heat exchange tank by hot water circulating in the heat exchange tank.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the regulating valve 7 of the first embodiment is modified, and a three-way valve is used to regulate the flow rate of the refrigerant into the heat exchanger 2.
  • the regulating valve 7 is a three-way valve; the inlet of the three-way valve 7 is connected to the supercooled liquid refrigerant output end of the condenser 9 through the refrigerant pump 1, and the first outlet of the three-way valve 7 and the heat exchanger 2 are fed.
  • the end connection has its second outlet connected to the refrigerant input of the restrictor 3.
  • the air conditioner also includes a controller 8, which is connected to the temperature sensor 5, the pressure sensor 6, and the regulating valve 7. Pick up.
  • the controller adopts a PID control method to adjust the degree of subcooling of the refrigerant flowing into the restrictor 3 so that the actual value of the refrigerant supercooling degree coincides with the required predetermined value.
  • the natural cold room air conditioning controller 8 control refrigerant subcooling is controlled as follows: [0055] 1 according to the pressure sensor sampling pressure value P1 to determine the corresponding refrigerant saturation temperature TO;
  • the controller 8 controls the three-way valve 7 to increase the temperature of the first outlet, and increases the flow rate of the refrigerant flowing to the heat exchanger 2; the actual degree of subcooling Ta is entered into the accuracy range of the target subcooling degree.
  • the controller 8 controls the three-way valve 7 to reduce the first outlet.
  • the twist reducing the flow of refrigerant to the heat exchanger 2; making the actual degree of subcooling Ta into the accuracy range of the target subcooling.
  • the controller 8 controls the three-way valve 7 to close the first outlet, and the refrigerant flows directly to the restrictor 3 without heating by the heat exchanger 2.
  • the method of determining the refrigerant saturation temperature TO in step 1 is to query the refrigerant saturation temperature ⁇ corresponding to P1 through the refrigerant attribute table.
  • the controller 8 detects the actual degree of subcooling Ta every 10 seconds, and controls the refrigerant output of the feed 7 according to the detected data.
  • the amount is such that the actual degree of subcooling Ta enters the accuracy range of the target subcooling degree, and the heat exchange efficiency of the evaporator 4 is improved.
  • the flow rate of the refrigerant to the heat exchanger 2 can be controlled. After the refrigerant pump is operated, the heat exchanger 2 is directly turned on, and the refrigerant flowing through the heat exchanger is heated to reduce the degree of subcooling.
  • the heat exchanger in the natural cold room air conditioner mentioned in the present invention may be in the form of a sleeve, a fin tube, a microchannel, and a shell tube.
  • the corresponding heat source can be set for the heat exchanger, and is not limited to the above two forms of hot air and hot water.
  • the two-way valve mentioned in the specification may be a two-way valve of a stern type or an adjustable two-way valve.
  • the three-way valve mentioned in the present invention may be of a manual adjustment type or an electric adjustment type.
  • the present invention is directed to a natural cold room air conditioner in a refrigerant pump operation mode, the liquid refrigerant outputted by the refrigerant pump has a high degree of subcooling, and the heat exchanger is disposed in front of the throttle device to utilize
  • the temperature difference heat transfer increases the temperature of the refrigerant with a large degree of subcooling, reduces the actual degree of subcooling to the target degree of subcooling, and makes the theoretical value close to the actual value, thereby ensuring that the refrigerant after throttling can enter the two phases of gas-liquid mixing. State, improve the distribution uniformity and heat exchange efficiency of the refrigerant in the evaporator, and increase the cooling capacity of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种自然冷机房空调,包括冷凝器(9)、制冷剂泵(1)、节流器(3)和蒸发器(4),在制冷剂泵(1)和节流器(3)之间设有用于提高节流器(3)制冷剂输入端制冷剂温度的换热器(2)。一种自然冷机房空调的过冷度控制方法。通过在节流器前设置换热器,保证节流后的制冷剂能够进入气液混合的两相态,提高了制冷剂在蒸发器内的分配均匀度和换热效率。

Description

发明名称: 自然冷机房空调及其过冷度控制方法 技术领域
[0001] 本发明涉及空调领域, 更具体地说, 涉及一种自然冷机房空调及其过冷度控制 方法。
背景技术
[0002] 为维持工业和信息机房恒定的室内温度, 机房空调的一个特点是全年制冷, 在 室外温度低于室内温度吋, 可直接或间接利用室外的自然冷源。 直接利用自然 冷源会受到空气质量、 地理位置等条件限制; 间接使用室外自然冷源是目前机 房空调常用的解决方案。 其中, 氟泵循环自然冷却方案是一种具有竞争力的高 效节能方案。 氟泵循环自然冷空调系统包括氟泵、 节流器、 蒸发器、 冷凝器等 部件, 并由耐高压的铜管将之连接成密闭的系统, 系统充注一定量的低沸点介 质, 即制冷剂, 氟泵循环制冷剂在系统中循环。 其工作原理为, 氟泵强制液体 制冷剂经过节流器流向蒸发器, 室内热空气放热给蒸发器内循环的制冷剂, 制 冷剂吸热且少部分的制冷剂吸热汽化, 带气泡的制冷剂液体循环到冷凝器内, 再将其携带的热量释放到室外的大气中, 制冷剂放热后变为过冷液体。 由此可 见, 在制冷剂泵循环中, 由于流入节流器的制冷剂过冷度过大, 节流后进入蒸 发器的制冷剂仍为过冷液体, 会导致蒸发器换热面积无法有效利用, 制冷量不 足。
技术问题
[0003] 本发明要解决的技术问题在于, 针对现有技术的上述缺陷, 提供一种解决制冷 剂过冷度过大, 蒸发器换热不充分等问题的自然冷机房空调及其过冷度控制方 法。
问题的解决方案
技术解决方案
[0004] 本发明解决其技术问题所采用的技术方案是: 构造一种自然冷机房空调, 包括 冷凝器、 制冷剂泵、 节流器和蒸发器, 所述自然冷机房空调还包括用于提高节 流器制冷剂输入端制冷剂温度的换热器, 所述换热器设于所述制冷剂泵和所述 节流器之间。
[0005] 优选地, 还包括用于控制流制冷剂流量的调节阀, 所述调节阀设于所述制冷剂 泵和所述换热器之间。
[0006] 优选地, 还包括与所述调节阀连接用于控制所述调节阀幵度的控制器。
[0007] 优选地, 还包括与所述控制器连接用于测量所述节流器制冷剂输入端的制冷剂 压力及温度的传感器, 所述控制器根据所述传感器的采样数据控制调节阀的幵 度。
[0008] 优选地, 所述传感器包括温度传感器与压力传感器, 所述制冷剂依次流过所述 换热器、 所述温度传感器、 所述压力传感器和所述节流器。
[0009] 优选地, 所述换热器为以热空气为热媒的换热器, 所述换热器为设置在所述蒸 发器热空气迎风面上的翅片式过热盘管。
[0010] 优选地, 所述换热器为以热水为热媒的换热器, 所述换热器包括换热箱, 所述 换热箱上设有热水进口和热水出口; 所述换热箱内的循环热水为流入换热箱的 制冷剂加热。
[0011] 本发明还提供一种自然冷机房空调的过冷度控制方法, 所述自然冷机房空调包 括冷凝器、 制冷剂泵、 节流器、 蒸发器, 所述控制方法包括以下步骤:
[0012] S1 : 在所述制冷剂泵 (1) 与所述节流器 (3) 之间对流过的制冷剂进行加热处 理;
[0013] S2: 所述加热处理后的制冷剂再依次流向所述节流器 (3) 、 蒸发器 (4) 和冷 凝器 (9) 。
[0014] 进一步地, 所述控制方法还包括:
[0015] S11 : 检测所述节流器 (3) 制冷剂输入端的制冷剂压力 Pl, 根据所述压力确定 对应的制冷剂饱和温度 TO;
[0016] S12: 检测所述节流器 (3) 制冷剂输入端的制冷剂温度 Tl, 根据所述温度 T1 和步骤 S11得到的制冷剂饱和温度 TO确定实际过冷度 Ta, 即 Ta= T0-T1 ;
[0017] S13: 设定目标过冷度 Ts, 精度为 a, 即 Ts=ITs-a,Ts+al;
[0018] S14: 根据所述实际过冷度值 Ta与目标过冷度 Ts的大小关系, 调控进行加热处 [0019] 进一步地, 所述步骤 S14包括:
[0020] 若实际过冷度 Ta>TS+a, 增加进行加热处理的制冷剂流量;
[0021] 若实际过冷度 Ta<Ts-a, 减少进行加热处理的制冷剂流量;
[0022] 若实际过冷度 Ta在 Ts的精度范围内, 不对制冷剂进行加热处理。
发明的有益效果
有益效果
[0023] 本发明针对自然冷机房空调在制冷剂泵运行模式下, 制冷剂泵输出的液体制冷 剂具有较高的过冷度的问题, 采用在节流器前设置换热器的方式, 利用温差换 热将过冷度大的制冷剂的温度提升, 降低实际过冷度至目标过冷度, 使理论值 与实际值接近, 从而保证节流后的制冷剂能够进入气液混合的两相态, 提高制 冷剂在蒸发器内的分配均匀度和换热效率, 增加空调的制冷量。
对附图的简要说明
附图说明
[0024] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0025] 图 1是本发明第一实施例的结构示意图;
[0026] 图 2是本发明第一实施例的过冷度控制电路框图;
[0027] 图 3是本发明第一实施例的控制流程图;
[0028] 图 4是本发明第一实施例的以热空气为热媒的换热器结构示意图;
[0029] 图 5是本发明第二实施例的以热水为热媒的换热器结构示意图;
[0030] 图 6是本发明第三实施例的结构示意图;
[0031] 图 7是本发明第三实施例的控制流程图;
[0032] 图 8是本发明第四实施例的结构示意图。
[0033]
实施该发明的最佳实施例
本发明的最佳实施方式
[0034] 实施例一: [0035] 如图 1所示, 在本发明自然冷机房空调第一实施例中, 该空调包括通过管道连 接的制冷剂泵 1, 换热器 2、 节流器 3、 蒸发器 4和冷凝器 9。 制冷剂泵 1集成在柜 型结构件内。 该空调还包括控制制冷剂流入换热器 2流量的调节阀 7, 从冷凝器 9 流出的制冷剂通过调节阀 7流向换热器 2和节流器 3。 为了实现更好的调节效果, 调节阀 7优先使用两个二通阀; 第一二通阀 71的进口通过制冷剂泵 1与冷凝器 9的 过冷液体制冷剂输出端连接, 其出口与换热器 2的制冷剂进液端连接。 第二二通 阀 7的 2进口通过制冷剂泵 1与冷凝器 9的过冷液体制冷剂输出端连接, 出口与节 流器 3的制冷剂输入端连接。 节流器 3的制冷剂输入端设有温度传感器 5和压力传 感器 6。
[0036] 如图 2所示的过冷度控制电路框图中, 该空调还包括控制器 8, 控制器 8与温度 传感器 5、 压力传感器 6和调节阀 7连接。 该控制器采用 PID控制方法, 对流入节 流器 3的制冷剂的过冷度进行偏差调节, 使制冷剂过冷度的实际值与要求的预定 值一致。
[0037] 本实施例中, 自然冷机房空调控制器 8对制冷剂过冷度的控制方法包括以下步 骤:
[0038] 1根据压力传感器的采样压力值 P1确定对应的制冷剂饱和温度 TO;
[0039] 2根据温度传感器的采样温度值 T1和步骤 S11得到的制冷剂饱和温度 TO确定实 际过冷度 Ta, 即 Ta= T0-Tl ;
[0040] 3根据空调实际运行环境, 设定目标过冷度 Ts, 精度为 a, 即 Ts=ITs-a,Ts+al;
[0041] 如图 3示出的控制流程图:
[0042] 4若实际过冷度 Ta>TS+a, 说明实际过冷度过大, 会导致蒸发器换热不充分, 应 对制冷剂进行加热以减小过冷度。 控制器 8关闭第二二通阀 72, 打幵并增大第一 二通阀 71的幵度, 增加流向换热器 2的制冷剂流量; 使实际过冷度 Ta进入目标过 冷度的精度范围。
[0043] 若实际过冷度 Ta<Ts-a, 说明实际过冷度虽然接近目标过冷度, 但仍会影响蒸 发器的换热效率, 控制器 8幵启第二二通阀 72, 打幵并减小第一二通阀 71的幵度 , 减少流向换热器 2的制冷剂流量; 使实际过冷度 Ta进入目标过冷度的精度范围 [0044] 若实际过冷度 Ta在 Ts的精度范围内, 控制器 8关闭第一二通阀 71, 制冷剂直接 流向节流器 3, 无需通过换热器 2加热。
[0045] 具体地, 在步骤 1中确定制冷剂饱和温度 TO的方法为, 通过制冷剂属性表査询 出压力值 P1对应的制冷剂饱和温度 το。
[0046] 为了实现更好的检测效果, 当实际过冷度 Ta超过 Ts的范围吋, 控制器 8每 10S检 测一次实际过冷度 Ta, 并根据检测得到的数据控制调节飼 7的制冷剂输出量, 使 实际过冷度 Ta进入目标过冷度的精度范围, 提高蒸发器 4的换热效率。
[0047] 如图 4所示, 针对换热器的换热形式, 优选利用吹向室内蒸发器 4的热风和机房 室内温度对制冷剂加热, 达到精确控制过冷度的目的。 换热器 2为过热盘管, 设 置在蒸发器盘管 41的热风迎风面上。 换热器进液端 21设置在蒸发器盘管的背风 面, 换热器出液端 22设置在蒸发器盘管的迎风面, 尽量增大过热盘管与热风的 接触面积。 在室内风机 42的作用下室内热空气流向蒸发器 4, 热风与蒸发器接触 换热的同吋也与设置在蒸发器盘管 41迎风面上的换热器 2接触, 与换热器 2进行 热交换, 使换热器 2内的制冷剂升温。
[0048] 为提高换热器 2的换热效率, 优选采用翅片管形式的热盘管作为换热器 2, 增大 过热盘管的外表面积, 提升换热效率。
[0049] 实施例二:
[0050] 如图 5所示, 为实现稳定的换热效果, 对实施例一自然冷机房空调的换热器进 行改进, 采用以热水作为热媒的间壁式换热器。 该换热器设有换热箱 25, 制冷 剂依次流过换热器进液端 21、 换热箱 25和换热器出液端 22, 该箱体上设有热水 进口 23和热水出口 24。 此类换热器通过在换热箱内循环的热水对流入换热箱的 制冷剂加热, 减小其过冷度。
[0051] 实施例三:
[0052] 如图 6所示, 为简化空调结构, 针对实施例一的调节阀 7进行改进, 采用一个三 通阀来调节制冷剂流入换热器 2的流量。 调节阀 7为一个三通阀; 三通阀 7的进口 通过制冷剂泵 1与冷凝器 9的过冷液体制冷剂输出端连接, 三通阀 7的第一出口与 换热器 2的进液端连接, 其第二出口与节流器 3的制冷剂输入端连接。
[0053] 该空调同样包括控制器 8, 控制器 8与温度传感器 5、 压力传感器 6和调节阀 7连 接。 该控制器采用 PID控制方法, 对流入节流器 3的制冷剂的过冷度进行偏差调 节, 使制冷剂过冷度的实际值与要求的预定值一致。
[0054] 本实施例中, 具有自然冷机房空调控制器 8对制冷剂过冷度的控制方式如下: [0055] 1根据压力传感器的采样压力值 P1确定对应的制冷剂饱和温度 TO;
[0056] 2根据温度传感器的采样温度值 T1和步骤 S11得到的制冷剂饱和温度 TO确定实 际过冷度 Ta, 即 Ta= T0-Tl ;
[0057] 3根据空调实际运行环境, 设定目标过冷度 Ts, 精度为 a, 即 Ts=ITs-a,Ts+al;
[0058] 如图 7所示的控制流程图所示:
[0059] 4若实际过冷度 Ta>TS+a, 说明实际过冷度过大, 会导致蒸发器换热不充分, 应 对制冷剂进行加热减小过冷度。 控制器 8控制三通阀 7增大第一出口的幵度, 增 加流向换热器 2的制冷剂流量; 使实际过冷度 Ta进入目标过冷度的精度范围。
[0060] 若实际过冷度 Ta<Ts-a, 说明实际过冷度虽然接近目标过冷度, 但仍会影响蒸 发器的换热效率, 控制器 8控制三通阀 7减小第一出口的幵度, 减少流向换热器 2 的制冷剂流量; 使实际过冷度 Ta进入目标过冷度的精度范围。
[0061] 若实际过冷度 Ta在 Ts的精度范围内, 控制器 8控制三通阀 7关闭第一出口, 制冷 剂直接流向节流器 3, 无需通过换热器 2加热。
[0062] 具体地, 在步骤 1中确定制冷剂饱和温度 TO的方法为, 通过制冷剂属性表査询 出 P1对应的制冷剂饱和温度 το。
[0063] 为了实现更好的检测效果, 当实际过冷度 Ta超过 Ts的范围吋, 控制器 8每 10S检 测一次实际过冷度 Ta, 并根据检测得到的数据控制调节飼 7的制冷剂输出量, 使 实际过冷度 Ta进入目标过冷度的精度范围, 提高蒸发器 4的换热效率。
[0064] 实施例四:
[0065] 如图 8所示, 对于寒冷地区的机房空调, 若制冷剂总处于过冷度过大的状态。
可对制冷剂流向换热器 2的流量不做控制, 在制冷剂泵运行吋, 直接幵启换热器 2, 加热流过换热器的制冷剂, 减小其过冷度。
[0066] 需要指出的是, 本发明中提及的自然冷机房空调中的换热器形式可以为套管、 翅片管、 微通道及壳管等任意形式。 根据自然冷机房空调的实际工作情况, 可 为换热器设定相应的热源, 并不限于上述的热空气和热水两种热源形式。 本发 明中提及的二通阀可以是幵关型二通阀, 也可以是可调节型二通阀。 本发明中 提及的三通阀可以是手动调节型, 也可以是电动调节型。
[0067] 本发明针对自然冷机房空调在制冷剂泵运行模式下, 制冷剂泵输出的液体制冷 剂具有较高的过冷度的问题, 采用在节流器前设置换热器的方式, 利用温差换 热将过冷度大的制冷剂的温度提升, 降低实际过冷度至目标过冷度, 使理论值 与实际值接近, 从而保证节流后的制冷剂能够进入气液混合的两相态, 提高制 冷剂在蒸发器内的分配均匀度和换热效率, 增加空调的制冷量。
[0068] 可以理解的, 以上实施例仅表达了本发明的优选实施方式, 其描述较为具体和 详细, 但并不能因此而理解为对本发明专利范围的限制; 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 可以对上述技术 特点进行自由组合, 还可以做出若干变形和改进, 这些都属于本发明的保护范 围; 因此, 凡跟本发明权利要求范围所做的等同变换与修饰, 均应属于本发明 权利要求的涵盖范围。

Claims

权利要求书
[权利要求 1] 一种自然冷机房空调, 包括冷凝器 (9) 、 制冷剂泵 (1) 、 节流器 (
3) 和蒸发器 (4) , 其特征在于, 所述自然冷机房空调还包括用于提 高节流器 (3) 制冷剂输入端制冷剂温度的换热器 (2) , 所述换热器 (2) 设于所述制冷剂泵 (1) 和所述节流器 (3) 之间。
[权利要求 2] 根据权利要求 1所述的自然冷机房空调, 其特征在于, 所述自然冷机 房空调还包括用于控制制冷剂流量的调节阀 (7) , 所述调节阀 (7) 设于所述制冷剂泵 (1) 和所述换热器 (2) 之间。
[权利要求 3] 根据权利要求 2所述的自然冷机房空调, 其特征在于, 还包括与所述 调节阀 (7) 连接用于控制所述调节阀 (7) 幵度的控制器 (8) 。
[权利要求 4] 根据权利要求 3所述的自然冷机房空调, 其特征在于, 还包括与所述 控制器 (8) 连接用于测量所述节流器 (3) 制冷剂输入端的制冷剂压 力及温度的传感器, 所述控制器 (8) 根据所述传感器的采样数据控 制调节阀 (7) 的幵度。
[权利要求 5] 根据权利要求 4所述的自然冷机房空调, 其特征在于, 所述传感器包 括温度传感器 (5) 与压力传感器 (6) , 所述制冷剂依次流过所述温 度传感器 (5) 、 所述压力传感器 (6) 和所述节流器 (3) 。
[权利要求 6] 根据权利要求 1所述的自然冷机房空调, 其特征在于, 所述换热器 (2
) 为以热空气为热媒的换热器 (2) , 所述换热器 (2) 为设置在所述 蒸发器 (4) 的热空气迎风面上的翅片式过热盘管。
[权利要求 7] 根据权利要求 1所述的自然冷机房空调, 其特征在于, 所述换热器 (2
) 为以热水为热媒的换热器 (2) , 所述换热器 (2) 包括换热箱 (25 ) , 所述换热箱上设有热水进口 (23) 和热水出口 (24) ; 所述换热 箱 (25) 内的循环热水为流入换热箱 (25) 的制冷剂加热。
[权利要求 8] —种自然冷机房空调的过冷度控制方法, 其特征在于, 所述自然冷机 房空调包括冷凝器 (9) 、 制冷剂泵 (1) 、 节流器 (3) 、 蒸发器 (4 ) , 所述控制方法包括以下步骤:
S1 : 在所述制冷剂泵 (1) 与所述节流器 (3) 之间对流过的制冷剂进 行加热处理;
S2: 所述加热处理后的制冷剂再依次流向所述节流器 (3) 、 蒸发器 (4) 和冷凝器 (9) 。
[权利要求 9] 根据权利要求 8所述的方法, 其特征在于, 还包括:
S11 : 检测所述节流器 (3) 制冷剂输入端的制冷剂压力 Pl, 根据所 述压力确定对应的制冷剂饱和温度 TO;
S12: 检测所述节流器 (3) 制冷剂输入端的制冷剂温度 Tl, 根据所 述温度 T1和步骤 S11得到的制冷剂饱和温度 TO确定实际过冷度 Ta, 即 Ta= T0-Tl ;
S13: 设定目标过冷度 Ts, 精度为 a, 即 Ts=ITs-a,Ts+al;
S14: 根据所述实际过冷度值 Ta与目标过冷度 Ts的大小关系, 调控进 行加热处理的制冷剂流量。
[权利要求 10] 根据权利要求 9所述的方法, 其特征在于, 所述步骤 S14包括:
若实际过冷度 Ta>TS+a, 增加进行加热处理的制冷剂
若实际过冷度 Ta<Ts-a, 减少进行加热处理的制冷剂 若实际过冷度 Ta在 Ts的精度范围内, 不对制冷剂进行加热处理
PCT/CN2016/087948 2016-06-30 2016-06-30 自然冷机房空调及其过冷度控制方法 WO2018000345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087948 WO2018000345A1 (zh) 2016-06-30 2016-06-30 自然冷机房空调及其过冷度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087948 WO2018000345A1 (zh) 2016-06-30 2016-06-30 自然冷机房空调及其过冷度控制方法

Publications (1)

Publication Number Publication Date
WO2018000345A1 true WO2018000345A1 (zh) 2018-01-04

Family

ID=60784961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087948 WO2018000345A1 (zh) 2016-06-30 2016-06-30 自然冷机房空调及其过冷度控制方法

Country Status (1)

Country Link
WO (1) WO2018000345A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940014A (zh) * 2019-12-19 2020-03-31 珠海格力电器股份有限公司 一种节能空调水系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198235A (ja) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd 空気調和装置
CN103486691A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 多联机空调系统的制冷剂流量控制方法和装置
CN104633815A (zh) * 2015-02-02 2015-05-20 北京雅驿欣科技有限公司 机房用空调系统及其控制方法
CN104990236A (zh) * 2015-07-15 2015-10-21 广东美的暖通设备有限公司 室内风机控制方法及装置
CN204853759U (zh) * 2015-06-24 2015-12-09 广东美的暖通设备有限公司 一种跨临界co2热泵制冷制热空调系统
CN106016541A (zh) * 2016-06-30 2016-10-12 深圳市艾特网能技术有限公司 自然冷机房空调及其过冷度控制方法
CN205878435U (zh) * 2016-06-30 2017-01-11 深圳市艾特网能技术有限公司 自然冷机房空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198235A (ja) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd 空気調和装置
CN103486691A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 多联机空调系统的制冷剂流量控制方法和装置
CN104633815A (zh) * 2015-02-02 2015-05-20 北京雅驿欣科技有限公司 机房用空调系统及其控制方法
CN204853759U (zh) * 2015-06-24 2015-12-09 广东美的暖通设备有限公司 一种跨临界co2热泵制冷制热空调系统
CN104990236A (zh) * 2015-07-15 2015-10-21 广东美的暖通设备有限公司 室内风机控制方法及装置
CN106016541A (zh) * 2016-06-30 2016-10-12 深圳市艾特网能技术有限公司 自然冷机房空调及其过冷度控制方法
CN205878435U (zh) * 2016-06-30 2017-01-11 深圳市艾特网能技术有限公司 自然冷机房空调

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940014A (zh) * 2019-12-19 2020-03-31 珠海格力电器股份有限公司 一种节能空调水系统

Similar Documents

Publication Publication Date Title
EP2459944B1 (en) Method and device for heat recovery on a vapour refrigeration system
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN108489069A (zh) 一种空调散热结构控制方法及系统
CN106016541A (zh) 自然冷机房空调及其过冷度控制方法
JP4795709B2 (ja) 恒温恒湿装置
CN205878435U (zh) 自然冷机房空调
CN111609497B (zh) 自然冷机房空调的控制方法、控制装置及自然冷机房空调
JP5869648B1 (ja) 空気調和システム
CN105841397B (zh) 压力恒温冷水热水生产系统
JP2007303806A (ja) 冷凍サイクル装置とその運転方法
KR102396178B1 (ko) 수착 열펌프 및 제어 방법
CN203744542U (zh) 一种具有双模式热泵热水机
WO2018000345A1 (zh) 自然冷机房空调及其过冷度控制方法
CA2977033A1 (en) Auxiliary heat exchangers
JP2021014947A (ja) 空気調和機及び空気調和システム
US20220128285A1 (en) Water regulator
CN213747100U (zh) 一种高精度恒温恒湿空调
JP3456871B2 (ja) 冷凍能力制御用熱交換器部付き冷凍回路
CN114294833A (zh) 一种热泵高能效热水系统的控制方法
CN209147486U (zh) 一种制冷系统
CN109341126A (zh) 一种制冷系统和控制方法
WO2018141150A1 (zh) 一种空调的控制方法、装置及空调
JPH062982A (ja) 吸収冷暖房システムとその制御方法
WO2018120572A1 (zh) 一种变风量泳池变频除湿兼池水恒温系统及其运行模式
WO2024057506A1 (ja) 冷却加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906745

Country of ref document: EP

Kind code of ref document: A1