WO2017223538A1 - Methods for generating barcoded combinatorial libraries - Google Patents

Methods for generating barcoded combinatorial libraries Download PDF

Info

Publication number
WO2017223538A1
WO2017223538A1 PCT/US2017/039146 US2017039146W WO2017223538A1 WO 2017223538 A1 WO2017223538 A1 WO 2017223538A1 US 2017039146 W US2017039146 W US 2017039146W WO 2017223538 A1 WO2017223538 A1 WO 2017223538A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
cassette
target
nuclease
Prior art date
Application number
PCT/US2017/039146
Other languages
French (fr)
Other versions
WO2017223538A9 (en
Inventor
Ryan T. Gill
Andrew GARST
Tanya Elizabeth Warnecke LIPSCOMB
Marcelo Colika BASSALO
Ramsey Ibrahim ZEITOUN
Original Assignee
The Regents Of The University Of Colorado, A Body Corporate
Muse Biotechnology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of Colorado, A Body Corporate, Muse Biotechnology, Inc. filed Critical The Regents Of The University Of Colorado, A Body Corporate
Priority to DK17816357.2T priority Critical patent/DK3474669T3/en
Priority to JP2019519616A priority patent/JP2019518478A/en
Priority to CN201780052145.8A priority patent/CN109688820B/en
Priority to ES17816357T priority patent/ES2915562T3/en
Priority to AU2017280353A priority patent/AU2017280353B2/en
Priority to EP17816357.2A priority patent/EP3474669B1/en
Priority to LTEPPCT/US2017/039146T priority patent/LT3474669T/en
Priority to CA3029254A priority patent/CA3029254A1/en
Publication of WO2017223538A1 publication Critical patent/WO2017223538A1/en
Publication of WO2017223538A9 publication Critical patent/WO2017223538A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • compositions comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid.
  • a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation
  • PAM protospacer adjacent motif
  • compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid.
  • compositions wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease.
  • the nucleic acid-guided nuclease is a Type II or Type V Cas protein.
  • compositions wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.
  • compositions wherein the second donor nucleic acid comprises a second PAM mutation.
  • compositions wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off.
  • compositions wherein the second donor nucleic acid sequence targets a unique landing site.
  • nucleic acid-guided nuclease is a CRISPR nuclease.
  • PAM mutation is not recognized by the nucleic acid-guided nuclease.
  • nucleic acid-guided nuclease is a Type II or Type V Cas protein.
  • nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.
  • the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.
  • nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off. Further disclosed are methods wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds.
  • the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.
  • an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.
  • PAM protospacer adjacent motif
  • compositions comprising i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a mutant protospacer adjacent motif (PAM) sequence; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a recorder sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid.
  • the first donor nucleic acid and the second donor nucleic acid are covalently linked or comprised on a single nucleic acid molecule.
  • compositions wherein the modified first target nucleic acid comprises a 5' homology are and a 3 ' homology arm. Further provided are compositions wherein the 5' homology arm and the 3' homology arm are homologous to nucleic acid sequence flanking a protospacer complementary to the first spacer region. Further provided are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further provided are compositions wherein the first gRNA is compatible with a nucleic acid-guided nuclease, thereby facilitating nuclease- mediate cleavage of the first target nucleic acid.
  • compositions wherein the nucleic acid-guided nuclease is a Cas protein, such as a Type II or Type V Cas protein. Further provided are compositions wherein the nucleic acid-guided nuclease is Cas9 or Cpfl . Further provided are compositions wherein the nucleic acid-guided nuclease is MAD2 or MAD7. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non- natural enzyme. Further provided are compositions wherein the nucleic acid-guided nuclease is a engineered or non-natural enzyme derived from Cas9 or Cpfl .
  • compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme that has less than 80% homology to either Cas9 or Cpfl . Further provided are compositions wherein the mutant PAM sequence is not recognized by the nucleic acid-guided nuclease. Further provided are compositions wherein the recorder sequence comprises a barcode. Further provided are compositions wherein the recorder sequence comprises a fragment of a screenable or selectable marker. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid sequence is specifically identified. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the edited cells may be selected or enriched.
  • a first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein.
  • a second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein.
  • a first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette.
  • a first donor nucleic acid and a second donor nucleic acid can be covalently linked.
  • the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
  • cells comprising an engineered chromosome or polynucleic acid comprising: a first modified sequence; a first mutant protospacer adjacent motif (PAM); a first recorder sequence, the sequence of which uniquely identifies the first modified sequence, wherein the first modified sequence and the first recorder sequence are separated by at least lbp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lOObp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 500bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lkbp. Further provided are cells wherein the first recorder sequence is a barcode.
  • cells wherein the first modified sequence is within a coding sequence. Further provided are cells wherein the first modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells further comprising: a second modified sequence; a second mutant PAM; and a second recorder sequence, the sequence of which uniquely identifies the second modified sequence, wherein the second modified sequence and the second recorder sequence are separated by at least 1 kb. Further provided are cells wherein the first recorder sequence and the second recorder sequence are separated by less than 100 bp. Further provided are cells wherein the second recorder sequence is a barcode. Further provided are cells wherein the second modified sequence is within a coding sequence.
  • the second modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence.
  • the first recorder sequence and the second recorder sequence are immediately adjacent to each other or overlapping, thereby generating a combined recorder sequence.
  • the combined recorder sequence comprises a selectable or screenable marker.
  • the combined recorder sequence comprises a selectable or screenable marker by which the cells may be enriched or selected.
  • each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease
  • each polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; iii) a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid; and (iv) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; d) cleaving the first target nucleic acid by the targetable nuclease in cells that do not comprise the mutant
  • each polynucleotide further comprises a second mutant PAM sequence.
  • each polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid.
  • the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence.
  • inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology- directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination.
  • the polynucleotide further comprises a second guide nucleic acid sequence comprising a spacer region complementary to a portion of the second target nucleic acid.
  • inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence.
  • inserting the modified first target nucleic acid sequence further comprises homology-directed repair.
  • inserting the modified first target nucleic acid sequence further comprises homologous recombination.
  • the targetable nuclease is a Cas protein.
  • the Cas protein is a Type II or Type V Cas protein.
  • the Cas protein is Cas9 or Cpfl .
  • the targetable nuclease is a nucleic acid-guided nuclease.
  • the targetable nuclease is MAD2 or MAD7.
  • the mutant PAM sequence is not recognized by the targetable nuclease.
  • the targetable nuclease is an engineered targetable nuclease.
  • the mutant PAM sequence is not recognized by the engineered targetable nuclease.
  • each cell within the second population of cells comprises a third nucleic acid, a fourth target nucleic acid, and a targetable nuclease.
  • each of the second polynucleotides comprises: i) a modified third target nucleic acid sequence; ii) a third mutant protospacer adjacent motif (PAM) sequence; iii) a third guide nucleic acid sequence comprising a spacer region complementary to a portion of the third target nucleic acid; and (iv) a second recorder sequence.
  • each second polynucleotide further comprises a fourth mutant PAM sequence.
  • each second polynucleotide further comprises a fourth guide nucleic acid sequence comprising a guide sequence complementary to a portion of the fourth target nucleic acid.
  • methods further comprising: a) inserting the modified third target nucleic acid sequence within the third target nucleic acid; b) inserting the second recorder sequence within the fourth target nucleic acid; c) cleaving the third target nucleic acid by the nuclease in cells that do not comprise the second mutant PAM sequence, thereby enriching for cells comprising the inserted modified third target nucleic acid sequence.
  • the fourth target nucleic acid is adjacent to the second target nucleic acid.
  • the inserted first recorder sequence is adjacent to the second recorder sequence, such that sequencing information can be obtained for the first and second recorder sequence from a single sequencing read.
  • identifying engineered cells comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a recorder sequence corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the
  • the second donor nucleic acid further comprises a second mutant PAM sequence.
  • sequencing the record sequence array comprises obtaining sequence information for each of the plurality of recorder sequences within a single sequencing read. Further provided are methods wherein steps a) - c) are repeated at least once. Further provided are methods wherein steps a) - c) are repeated at least twice. Further provided are methods wherein the recorder sequence is a barcode. Further provided are methods where the first donor nucleic acid and the second donor nucleic acid are covalently linked.
  • a first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein.
  • a second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein.
  • a first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette.
  • a first donor nucleic acid and a second donor nucleic acid can be covalently linked.
  • the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
  • identifying engineered cells comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a marker fragment corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant
  • the complete marker comprises a selectable marker.
  • the selectable marker comprises an antibiotic resistance marker or an auxotrophic marker.
  • the complete marker comprises a screenable reporter.
  • the screenable reporter comprises a fluorescent reporter.
  • the screenable reporter comprises a gene.
  • the screenable reporter comprises a promotor or regulatory element.
  • the promoter or regulatory element turns on or off transcription of a screenable or selectable element.
  • the screenable reporter comprises a screenable or selectable element which alters a characteristic of a colony comprising the element compared to a colony that does not comprise the element.
  • a first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein.
  • a second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein.
  • a first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette.
  • a first donor nucleic acid and a second donor nucleic acid can be covalently linked.
  • the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
  • the polynucleotide further comprises a second mutant nuclease recognition site. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the second target nucleic acid by the nuclease in cells that do not comprise the second mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence.
  • the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homologous recombination. Further provided are methods wherein the nuclease is a Cas protein.
  • the polynucleotide further comprises a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence.
  • inserting the modified first target nucleic acid sequence or the recorder sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homologous recombination. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant PAM sequence not recognized by the targetable nuclease. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the targetable nuclease is MAD2. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD2. Further provided are methods wherein the targetable nuclease is MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD7.
  • the Cas protein is Cas9. Further provided are methods wherein the mutant PAM sequence is not recognized by Cas9. Further provided are methods wherein the Cas protein is Cpfl . Further provided are methods wherein the mutant PAM sequence is not recognized by Cpfl . Further provided are methods wherein the nuclease is an Argonaute nuclease. Further provided are methods further comprising introducing guide DNA oligonucleotides comprising a guide sequence complementary to a portion of the first target nucleic acid prior to selecting for a phenotype. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant target flanking sequence not recognized by the Argonaute nuclease.
  • nuclease is a zinc finger nuclease. Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the zinc finger nuclease. Further provided are methods wherein the nuclease is a transcription activator-like effector nuclease (TALEN). Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the TALEN.
  • TALEN transcription activator-like effector nuclease
  • Figures 1A-1C depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.
  • Figures 2A-2D depicts validation data for an example experiment using a disclosed engineering method.
  • Figures 3A-3C depict an example trackable genetic engineering workflow, including a plasmid comprising an editing cassette and a recording cassette, and downstream sequencing of barcodes in order to identify the incorporated edit or mutation.
  • Figures 3D-3E depict an example trackable genetic engineering workflow, including iterative rounds of engineering with a different editing cassette and recorder cassette with unique barcode (BC) at each round, followed by selection and tracking to confirm the successful engineering step at each round.
  • BC barcode
  • Figures 4A-4B depict an example of incorporation of a target mutation and PAM mutation using a plasmid comprising an editing cassette.
  • Figures 5A-5B depict an example of a plasmid comprising an editing cassette, designed to incorporate a target mutation and a PAM mutation into a first target sequence, and a recording cassette, designed to incorporate a barcode sequence into a second target sequence.
  • Figure 5B depicts example data validating incorporation of the editing cassette and recorder cassette and selection of the engineered bacterial cells.
  • Figure 6 depicts an example recursive engineering workflow.
  • Figures 7A-7B depict an example plasmid curing workflow for combinatorial engineering and validation of an example experiment using said workflow.
  • Figures 8A-8B depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.
  • Figures 9A-9D depicts validation data for an example genetic engineering experiment.
  • Figures 10A-10F depict an example data set from a genetic engineering experiment.
  • Figures 11A-11C depict an example design and data set from a genetic engineering experiment.
  • Figures 12A-12F depict an example design for a genetic engineering experiment.
  • Figures 13A-13D depict example designed edits to be made by a genetic engineering.
  • Figures 14A-14B depict an example design for a genetic engineering experiment.
  • Figures 15A-15D depict an example of Cas9 editing efficiency controls.
  • Figures 16A-16E depict an examples of toxicity of dsDNA cleavage in E. coli.
  • Figure 16F-16H depict an example of a transformation and survival assay, and editing and recording efficiencies, with low and high copy plasmids expressing Cas9.
  • Figures 17A-17D depict an example of genetic engineering strategy for gene deletion.
  • Figures 18A-18B depicts an example of editing efficiency controls by cotransformation of guide nucleic acid and linear dsDNA cassettes.
  • Figures 19A-19D depict an example of library cloning analysis and statistics.
  • Figures 20A-20B depict an example of precision of editing cassette tracking of recombineered populations.
  • Figure 21 depicts an example of growth characteristics of folA mutations in M9 minimal media
  • Figures 22A-22C depicts an example of enrichment profiles for folA editing cassettes in minimal media.
  • Figures 23A-23F depict an example of validation of identified acrB mutations for improved solvent and antibiotic tolerance.
  • Figures 24A-24D depict an example mutant variant assessment analysis.
  • Figure 25 depicts an example of reconstruction of mutations identified by erythromycin selection.
  • Figures 26A-26B depict an example of validation of Crp S28P mutation for furfural or thermal tolerance.
  • Figures 27A-27C depict an example of edit and barcode correlation studies.
  • Figure 28 depicts an example of a selectable recording strategy.
  • Figure 29 depicts an example of a selectable recording strategy.
  • Figures 30A-30B depict data from a selectable recording experiment.
  • Figures 31A-31B depict editing and transformation efficiencies from various nucleic acid-guided nucleases from an example experiment.
  • Figure 32 depict editing efficiencies of the MAD2 nuclease with various guide nucleic acids.
  • Figure 33 depict editing efficiencies of the MAD7 nuclease with various guide nucleic acids.
  • Methods and compositions for enabling sophisticated combinatorial engineering strategies to optimize and explore complex phenotypes are provided herein.
  • Many phenotypes of interest to basic research and biotechnology are the result of combinations of mutations that occur at distal loci.
  • cancer is often linked to mutations that influence multiple hallmark gene functions rather than a single chromosomal edit.
  • metabolic and regulatory processes that are the target of continuing engineering efforts require the activities of many proteins acting in concert to produce the phenotypic output of interest.
  • Methods and compositions disclosed herein can provide ways of rapid engineering and prototyping of such functions since they can provide rapid construction and accurate reporting on the mutational effects at many sites in parallel.
  • nucleic acid-guided nuclease system such as CRISPR or Argonaute, or other targetable nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA), including prokaryotic, eukaryotic, or archaeal cells.
  • the cell can be a bacterial cell, such as Escherichia spp. (e.g., E. coli).
  • the cell can be a fungal cell, such as a yeast cell, e.g., Saccharomyces spp.
  • the cell can be a human cell.
  • the cell can be an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell. Additionally or alternatively, the methods described herein can be carried out in vitro or in cell-free systems in which a nucleic acid guided nuclease system, such as CRISPR or Argonaute, or other nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).
  • a nucleic acid guided nuclease system such as CRISPR or Argonaute
  • other nuclease systems such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).
  • compositions and methods for genetic engineering Disclosed are methods and compositions suitable for trackable or recursive genetic engineering. Disclosed method and compositions can use massively multiplexed oligonucleotide synthesis and cloning to enable high fidelity, trackable, multiplexed genome editing at single nucleotide resolution on a whole genome scale. Trackable plasmids
  • Methods and compositions can be used to perform high-fidelity trackable editing, for example, at single-nucleotide resolution and can be used to perform editing at a whole genome scale or on episomal nucleic acid molecules.
  • Massively multiplexed oligonucleotide synthesis and/or cloning can be used in combination with a targetable nuclease system, such as a CRISPR system, MAD2 system, MAD7 system, or other nucleic acid-guided nuclease system, for editing.
  • cassette often refers to a single molecule polynucleotide.
  • a cassette can comprise DNA.
  • a cassette can comprise RNA.
  • a cassette can comprise a combination of DNA and RNA.
  • a cassette can comprise non-naturally occurring nucleotides or modified nucleotides.
  • a cassette can be single stranded.
  • a cassette can be double stranded.
  • a cassette can be synthesized as a single molecule.
  • a cassette can be assembled from other cassettes, oligonucleotides, or other nucleic acid molecules.
  • a cassette can comprise one or more elements.
  • Such elements can include, as non-limiting examples, one or more of any of editing sequences, recorder sequences, guide nucleic acids, promoters, regulatory elements, mutant PAM sequences, homology arms, primer sites, linker regions, unique landing sites, a cassette, and any other element disclosed herein. Such elements can be in any order or combination. Any two or more elements can be contiguous or non-contiguous.
  • a cassette can be comprised within a larger polynucleic acid. Such a larger polynucleic acid can be linear or circular, such as a plasmid or viral vector.
  • a cassette can be a synthesized cassette.
  • a cassette can be a trackable cassette.
  • a cassette can be designed to be used in any method or composition disclosed herein, including multiplex engineering methods and trackable engineering methods.
  • An exemplary cassette can couple two or more elements, such as 1) a guide nucleic acid (e.g. gRNAs or gDNAs) designed for targeting a user specified target sequence in the genome and 2) an editing sequence and/or recorder sequence as disclosed herein (e.g. Figure IB and Figure 5A).
  • a cassette comprising an editing sequence and guide nucleic acid can be referred to as an editing cassette.
  • a cassette comprising an editing sequence can be referred to as an editing cassette.
  • a cassette comprising a recorder sequence and a guide nucleic acid can be referred to as a recorder cassette.
  • a cassette comprising a recorder sequence can be referred to as a recorder cassette.
  • an editing cassette and a recorder cassette are delivered into the cell at the same time.
  • an editing cassette and a recorder cassette may be covalently linked.
  • these elements may be synthesized together by multiplexed oligonucleotide synthesis.
  • a cassette can comprise one or more guide nucleic acids and editing cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing cassette are contiguous. In other examples, one or more guide nucleic acids and editing cassette are non-contiguous. In other examples, two or more guide nucleic acids and editing cassette are non-contiguous.
  • a cassette can comprise one or more guide nucleic acids, an editing cassette, and a recorder cassette as a contiguous polynucleotide.
  • one or more guide nucleic acids, editing cassette, and recorder cassette are contiguous.
  • two or more guide nucleic acids, editing cassette, and recorder cassette are contiguous.
  • one or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous.
  • two or more guide nucleic acids, editing cassette, and recorder cassette are noncontiguous.
  • a cassette can comprise one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes as a contiguous polynucleotide.
  • one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are contiguous.
  • two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are contiguous.
  • one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are non-contiguous.
  • two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are non-contiguous.
  • a cassette can comprise one or more guide nucleic acids and editing sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing sequence are contiguous. In other examples, one or more guide nucleic acids and editing sequence are non-contiguous. In other examples, two or more guide nucleic acids and editing sequence are non-contiguous.
  • a cassette can comprise one or more guide nucleic acids, an editing sequence, and a recorder sequence as a contiguous polynucleotide.
  • one or more guide nucleic acids, editing sequence, and recorder sequence are contiguous.
  • two or more guide nucleic acids, editing sequence, and recorder sequence are contiguous.
  • one or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.
  • two or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.
  • a cassette can comprise one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences as a contiguous polynucleotide.
  • one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are contiguous.
  • two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are contiguous.
  • one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are non-contiguous.
  • two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are non-contiguous.
  • An editing cassette can comprise an editing sequence.
  • An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms
  • An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs) designed to undergo homologous recombination with the target sequence at the site of nucleic acid-guided nuclease-mediated double strand break (e.g.
  • a recorder cassette can comprise a recorder sequence.
  • a recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs).
  • a recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs) designed to undergo homologous recombination with the chromosome at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. Figure IB).
  • a cassette can encode machinery (e.g. targetable nuclease, guide nucleic acid, editing cassette, and/or recorder cassette as disclosed herein) necessary to induce strand breakage as well as designed repair that can be selectively enriched and/or tracked in cells.
  • a cell can be any cell such as eukaryotic cell, archaeal cell, prokaryotic cell, or microorganisms such as E. coli (e.g. Figure 2A-2D).
  • a cassette can comprise an editing cassette.
  • a cassette can comprise a recorder cassette.
  • a cassette can comprise a guide nucleic acid and an editing cassette.
  • a cassette can comprise a guide nucleic acid and a recorder cassette.
  • a cassette can comprise a guide nucleic acid, an editing cassette, and a recorder cassette.
  • a cassette can comprise two guide nucleic acids, an editing cassette, and a recorder cassette.
  • a cassette can comprise more than two guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes.
  • a cassette can comprise an editing sequence.
  • a cassette can comprise a recorder sequence.
  • a cassette can comprise a guide nucleic acid and an editing sequence.
  • a cassette can comprise a guide nucleic acid and a recorder sequence.
  • a cassette can comprise a guide nucleic acid, an editing sequence, and a recorder sequence.
  • a cassette can comprise two guide nucleic acids, an editing sequence, and a recorder sequence.
  • a cassette can comprise more than two guide nucleic acids, one or more editing sequences, and one or more recorder sequences.
  • each editing cassette upon transformation, each editing cassette generates the designed genetic modification within the transformed cell.
  • the editng cassette can act in trans as a barcode of the genetic mutation introduced by the editing cassette and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions (e.g. Figure 2A-2D and Figure 1C).
  • a recording cassette inserts the designed trackable sequence, such as a marker or barcode sequence, within the transformed cell.
  • the recorder cassette can act in cis as a barcode of the chromosomal mutation and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions.
  • the methods provided herein simplify sample preparation and depth of coverage for mapping diversity genome wide, and provide powerful tools for engineering on a genome scale (e.g. Figure 1C).
  • a plurality of cassettes can be pooled into a library of cassettes.
  • a library of cassettes can comprise at least 2 cassettes.
  • a library of cassettes can comprise from 5 to a million cassettes.
  • a library of cassettes can comprise at least a million cassettes. It should be understood, that a library of cassettes can comprise any number of cassettes.
  • a library of cassettes can comprise cassettes that have any combination of common elements and non-common or unique elements as compared to the other cassettes within the pool.
  • a library of cassettes can comprise common priming sites or common homology arms while also containing non-common or unique barcodes.
  • Common elements can be shared by a plurality, majority, or all of the cassettes within a library of cassettes.
  • Non- common elements can be shared by a plurality, minority, or sub-population of cassettes within the library of cassettes.
  • Unique elements can be shared by a one, a few, or a sub-population of cassettes within the library of cassettes, such that it is able to identify or distinguish the one, few, or sub-population of cassettes from the other cassettes within the library of cassettes. Such combinations of common and non-common are advantageous for multiplexing techniques as disclosed herein.
  • Cassettes disclosed herein can generate the designed genetic modification or insert the designed marker or barcode sequence with high efficiency within a transformed cell. In many examples, the efficiency is greater than 50%. In some examples the efficiency is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% (e.g., Figures 32A, 32B, and 33).
  • transformation, editing, and/or recording efficiency can be increased by modulating the expression of one or more components disclosed herein, such as a nucleic acid-guided nuclease. Methods for modulating components are disclosed herein and are known in the art. Such methods can include expressing a component, such as a nucleic acid- guided nuclease or CRISPR enzyme of a subject system on a low or high copy plasmid, depending on the experimental design.
  • a cassettes can comprise a cassettes as disclosed herein.
  • a cassette can comprise any combination of an editing cassette and/or recorder cassette disclosed herein.
  • Such a cassette can be comprised on a larger polynucleic acid molecule.
  • Such a larger polynucleic acid molecule can be linear or circular, such as a plasmid or viral vector.
  • An editing cassette can comprise a mutation relative to a target nucleic acid sequence.
  • the editing cassette can comprise sequence homologous to the target sequence flanking the desired mutation or editing sequence.
  • the editing cassette can comprise a region which recognizes, or hybridizes to, a target sequence of a nucleic acid in a cell or population of cells, is homologous to the target sequence of the nucleic acid of the cell and includes a mutation, or a desired mutation, of at least one nucleotide relative to the target sequence.
  • An editing cassette can comprise a first editing sequence comprising a first mutation relative to a target sequence.
  • a first mutation can comprise a mutation such as an insertion, deletion, or substitution of at least one nucleotide compared to the non-editing target sequence.
  • the mutation can be incorporated into a coding region or non-coding region.
  • An editing cassette can comprise a second editing sequence comprising a second mutation relative to a target sequence.
  • the second mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence.
  • this mutation or silencing of a PAM can serve as a method for selecting transformants in which the first editing sequence has been incorporated.
  • an editing cassette comprises at least two mutations, wherein one mutation is a PAM mutation.
  • the PAM mutation can be in a second editing cassette.
  • Such a second editing cassette can be covalently linked and can be continuous or noncontiguous to the other elements in the cassette.
  • An editing cassette can comprise a guide nucleic acid, such as a gRNA encoding gene, optionally operably linked to a promoter.
  • the guide nucleic acid can be designed to hybridize with the targeted nucleic acid sequence in which the editing sequence will be incorporated.
  • a recording cassette can comprise a recording sequence.
  • a recorder sequence can comprise a barcoding sequence, or other screenable or selectable marker or fragment thereof.
  • the recording sequence can be comprised within a recorder cassette.
  • Recorder cassettes can comprise regions homologous to an insertion site within a target nucleic acid sequence such that the recording sequence is incorporated by homologous recombination or homology-driven repair systems.
  • the site of incorporation of the recording cassette can be comprised on the same DNA molecule as the target nucleic acid to be edited by an editing cassette.
  • the recorder sequence can comprise a barcode, unique DNA sequence, and/or a complete copy or fragment of a selectable or screenable element or marker.
  • a recorder cassette can comprise a mutation relative to the target sequence.
  • the mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the first recording sequence has been incorporated.
  • a recorder cassette can comprise a PAM mutation.
  • the PAM mutation can be designed to mutate or otherwise silence a PAM site such that a corresponding CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the recorder sequence has been incorporated.
  • a recorder cassette can comprise a guide nucleic acid, such as a gene encoding a gRNA.
  • a promoter can be operably linked to a nucleic acid sequence encoding a guide nucleic acid capable of targeting a nucleic acid-guided nuclease to the desired target sequence.
  • a guide nucleic acid can target a unique site within the target site. In some cases, the guide nucleic acid targets a unique landing site that was incorporated in a prior round of engineering. In some cases, the guide nucleic acid targets a unique landing site that was incorporated by a recorder cassette in a prior round of engineering.
  • a recorder cassette can comprise a barcode.
  • a barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode.
  • the barcode is a non-naturally occurring sequence that is not found in nature.
  • the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature.
  • a barcode can be any number of nucleotides in length.
  • a barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.
  • a barcode can be generated by degenerate oligonucleotide synthesis.
  • a barcode can be rationally designed or user-specified.
  • a recorder cassette can comprise a landing site.
  • a landing site can serve as a target site for a recorder cassette for a successive engineering round.
  • a landing site can comprise a PAM.
  • a landing site can be a unique sequence.
  • a landing site can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 nucleotides in length. In some cases, the landing site is greater than 50 nucleotides in length.
  • a recorder cassette can comprise a selectable or screenable marker, or a regulatory sequence or mutation that turns a selectable or screenable marker on or off.
  • the turning on or off of a selectable marker can be used of selection or counter-selection, respectively, of iterative rounds of engineering.
  • An example regulatory sequence includes a ribosome-binding site (RBS), though other such regulatory sequences are envisioned.
  • Mutations that turn a selectable or screenable marker on can include any possible start codon that is recognized by the host transcription machinery.
  • a mutation that turns off a selectable or screenable marker includes a mutation that deletes a start codon or one that inserts a premature stop codon or a reading frame shift mutation.
  • a recorder cassette can comprise one or more of a guide nucleic acid targeting a target site into which the recorder sequence is to be incorporated, a PAM mutation to silence a PAM used by the guide RNA, a barcode corresponding to an editing cassette, a unique site to serve as a landing site for a recorder cassette of a subsequent rounds of engineering, a regulatory sequence or mutation that turns a screenable or selectable marker on or off, these one or more elements being flanked by homology arms that are designed to promote recombination of these one or more elements into the cleaved target site that is targeted by the guide RNA.
  • a recorder cassette can comprise a first homology arm, a PAM mutation, a barcode, a unique landing site, a regulatory sequence or mutation for a screenable or selectable marker, a second homology arm, and guide RNA.
  • the first homology arm can be an upstream homology arm.
  • the second homology arm can be a downstream homology arm.
  • the homology arms can be homologous to sequences flanking a cleavage site that is targeted by the guide RNA.
  • a cassette can comprise two guide nucleic acids designed to target two distinct target nucleic acid sequences.
  • the guide nucleic acid can comprise a single gRNA or chimeric gRNA consisting of a crRNA and trRNA sequences, or alternatively, the gRNA can comprise separated crRNA and trRNAs, or a guide nucleic acid can comprise a crRNA.
  • guide nucleic acid can be introduced simultaneously with a trackable polynucleic acid or plasmid comprising an editing cassette and/or recorder cassette. In these cases, the guide nucleic acid can be encoded on a separate plasmid or be delivered in RNA form via delivery methods well known in the art.
  • a cassette can comprise a gene encoding a nucleic acid-guided nuclease, such as a CRISPR nuclease, functional with the chosen guide nucleic acid.
  • a nucleic acid-guided nuclease or CRISPR nuclease gene can be provided on a separate plasmid.
  • a nucleic acid-guided nuclease or CRISPR nuclease can be provided on the genome or episomal plasmid of a host organism to which a trackable polynucleic acid or plasmid will be introduced.
  • nucleic acid-guided nuclease or CRISPR nuclease gene can be operably linked to a constitutive or inducible promotor.
  • suitable constitutive and inducible promoters are well known in the art.
  • a nucleic acid-guided nuclease or CRISPR nuclease can be provided as mRNA or polypeptide using delivery systems well known in the art. Such mRNA or polypeptide delivery systems can include, but are not limited to, nanoparticles, viral vectors, or other cell-permeable technologies.
  • a cassette can comprise a selectable or screenable marker, for example, such as that comprised within a recorder cassette.
  • the recorder cassette can comprise a barcode, such as trackable nucleic acid sequence which can be uniquely correlated with a genetic mutation of the corresponding editing cassette, or otherwise identifiably correlated with such a genetic mutation such that sequencing the barcode will allow identification of the corresponding genetic mutation introduced by the editing cassette.
  • recorder cassette can comprise a complete copy of or a fragment of a gene encoding an antibiotic resistance gene, auxotrophic marker, fluorescent protein, or other known selectable or screenable markers.
  • a trackable library can comprise a plurality of cassettes as disclosed herein.
  • a trackable library can comprise a plurality of trackable polynucleic acids or plasmids comprising a cassette as disclosed herein.
  • a cassette, polynucleotide, or plasmid comprising a recorder sequence or recorder cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.
  • a cassette, polynucleotide, or plasmid comprising an editing sequence or editing cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.
  • Library size can depend on the experiment design. For example, if the aim is to edit each amino acid within a protein of interest, then the library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library (all 20 amino acids at each position or non-naturally occurring amino acids) scaling as 19 (or more)xN and an alanine- mapping library scaling as l xN. Thus, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities (e.g. 120,000 oligos). In addition to or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using the libraries disclosed herein.
  • libraries can be designed to mutate any number of amino acids within a target protein, including 1, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. up to the total number of amino acids within a target protein.
  • select amino acids can be targeted, such as catalytically active amino acids, or those involved in protein-protein interactions.
  • Each amino acid that is targeted for mutation can be mutated into any number of alternate amino acids, such as any other natural or non-naturally occurring amino acid or amino acid analog.
  • all targeted amino acids are mutated to the same amino acid, such as alanine.
  • the targeted amino acids are independently mutated to any other amino acid in any combination or permutation.
  • Trackable libraries can comprise trackable mutations in individual residues or sequences of interest. Trackable libraries can be generated using custom-synthesized oligonucleotide arrays. Trackable plasmids can be generated using any cloning or assembly methods known in the art. For example, CREATE-Recorder plasmids can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.
  • Recorder sequences such as barcodes, can be designed in silico via standard code with a degenerate mutation at the target codon.
  • the degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues.
  • the degenerate mutations can comprise 15 nucleic acid residues (N15).
  • Homology arms can be added to a recorder sequence and/or editing sequence to allow incorporation of the recorder and/or editing sequence into the desired location via homologous recombination or homology-driven repair.
  • Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art.
  • homology arms can be assembled via overlapping oligo extension, Gibson assembly, or any other method disclosed herein.
  • a homology arm can be added to both ends of a recorder and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5' homology arm and a 3' homology arm.
  • the same 5' and 3' homology arms can be added to a plurality of distinct recorder sequences, thereby generating a library of unique recorder sequences that each have the same spacer target or targeted insertion site.
  • the same 5' and 3' homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same spacer target or targeted insertion site.
  • different or a variety of 5' or 3' homology arms can be added to a plurality of recorder sequences or editing sequences.
  • a recorder sequence library comprising flanking homology arms can be cloned into a vector backbone.
  • the recorder sequence and homology arms are cloned into a recorder cassette.
  • Recorder cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of recorder sequence insertion.
  • the nucleic acid sequences flanking the CRISPR/Cas- mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the recorder cassette.
  • An editing sequence library comprising flanking homology arms can be cloned into a vector backbone.
  • the editing sequence and homology arms are cloned into an editing cassette.
  • Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion.
  • the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the editing cassette.
  • Gene-wide or genome-wide editing libraries can be subcloned into a vector backbone.
  • the vector backbone comprises a recorder cassette as disclosed herein.
  • the editing sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites.
  • a recorder sequence and/or cassette can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette.
  • an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a recorder sequence and/or cassette.
  • a recorder sequence and/or cassette and an editing sequence and/or cassette are simultaneous inserted or assembled into a vector.
  • a recorder sequence and/or cassette and an editing sequence and/or cassette are comprised on the same cassette prior to simultaneous insertion or assembly into a vector.
  • a recorder sequence and/or cassette and an editing sequence and/or cassette are linked prior to simultaneous insertion or assembly into a vector.
  • a recorder sequence and/or cassette and an editing sequence and/or cassette are covalently linked prior to simultaneous insertion or assembly into a vector. In any of these cases, trackable plasmids or plasmid libraries can be generated.
  • a cassette or nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein.
  • a nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid.
  • a nucleic acid molecule can be synthesized that comprises an editing cassette and a recorder cassette.
  • a nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette.
  • a nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids.
  • a nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid.
  • a nucleic acid molecule can be synthesized that comprises a recorder cassette.
  • a nucleic acid molecule can be synthesized that comprises an editing cassette.
  • the guide nucleic acid can optionally be operably linked to a promoter.
  • the nucleic acid molecule can further include one or more barcodes.
  • cassettes or synthesized nucleic acid molecules can be synthesized using any oligonucleotide synthesis method known in the art.
  • cassettes can be synthesized by array based oligonucleotide synthesis.
  • the oligonucleotides can be cleaved from the array. Cleavage of oligonucleotides from an array can create a pool of oligonucleotides.
  • Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , or more cassettes, such as trackable cassettes. An automation method can generate trackable plasmids in rapid fashion. Trackable cassettes can be processed through a workflow with minimal steps to produce precisely defined genome-wide libraries.
  • Cassette libraries such as trackable cassette libraries, can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements.
  • such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above.
  • Cassettes or cassette libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each cassette.
  • a known recorder sequence is paired with a known editing sequence during the library generation process.
  • Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.
  • the libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes.
  • BACs Bacterial artificial chromosomes
  • YACs Yeast artificial chromosomes
  • synthetic chromosomes or viral or phage genomes.
  • These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli.
  • Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination.
  • Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage (e.g. Figure 3 A).
  • Each plasmid can encode a recorder cassette designed to edit a site in the target DNA (e.g. Figure 3A, black cassette). Sites to be targeted can be functionally neutral sites, or they can be a screenable or selectable marker gene.
  • the homology arm (HA) of the recorder cassette can contain a recorder sequence (e.g., Figure 3B) that is inserted into the recording site during recombineering. Recombineering can comprise DNA cleavage, such as nucleic acid-guided nuclease-mediated DNA cleavage, and repair via homologous recombination.
  • the recorder sequence can comprise a barcode, unique DNA sequence, or a complete copy or fragment of a screenable or selectable marker. In some examples, the recorder sequence is 15 nucleotides.
  • the recorder sequence can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides.
  • the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid (e.g., Figure 3A, green cassette) to generate trackable plasmid libraries that have a unique recorder and editing cassette combination.
  • This trackable library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA (e.g., Figure 3C).
  • Recorder and editing sequences can be comprised on the same polynucleotide, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event.
  • the recorder and editing sequences can be comprised on separate cassettes within the same trackable plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.
  • Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.
  • Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.
  • Trackable plasmids can be generated using in vitro assembly or cloning techniques.
  • the CREATE-Recorder plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.
  • Trackable plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence.
  • the recording sequence is used to record and track engineering events.
  • Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence.
  • the desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence.
  • the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the trackable plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event.
  • the recording and editing sequences are comprised on separate cassettes within the trackable plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events.
  • the trackable plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.
  • Recorder sequences can be inserted into a site separated from the editing sequence insertion site.
  • the inserted recorder sequence can be separated from the editing sequence by lbp or any number of base pairs.
  • the separation distance can be about lbp, lObp, 50bp, lOObp, 500bp, lkp, 2kb, 5kb, lOkb, or greater.
  • the separation distance can be any discrete integer of base pairs. It should be readily understood that there the limit of the number of base pairs separating the two insertion sites can be limited by the size of the genome, chromosome, or polynucleotide into which the insertions are being made.
  • Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence.
  • the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted.
  • Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted.
  • the recorder sequence can be inserted into a functionally neutral or nonfunctional site.
  • the recorder sequence can be inserted into a screenable or selectable marker gene.
  • the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid.
  • the target nucleic acid sequence can be in vitro or in vivo.
  • the CREATE-Recorder plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof.
  • the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.
  • the engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair.
  • the engineering event is performed in vitro or in vivo.
  • the methods described herein can be carried out in any type of cell in which a nucleic acid-guided nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells or in vitro.
  • the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli).
  • the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp.
  • the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.
  • a cell is a recombinant organism.
  • the cell can comprise a non-native nucleic acid-guided nuclease system.
  • the cell can comprise recombination system machinery.
  • Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems.
  • the trackable plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.
  • a method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells.
  • Such a method can optionally further comprise (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
  • a method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells.
  • Such a method can optionally further comprise (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.
  • Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells.
  • Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
  • a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette and recorder cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; and (c) obtaining viable cells.
  • Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.
  • Such methods can also further comprise a recorder cassette comprising a second PAM mutation, such that both PAMs must be silences by the editing cassette PAM mutation and recorder cassette PAM mutation in order to escape cell death.
  • transformation efficiency is determined by using a non-targeting guide nucleic acid control, which allows for validation of the recombineering procedure and CFU/ng calculations.
  • absolute efficient is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control.
  • relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).
  • the methods of the disclosure can provide, for example, greater than lOOOx improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.
  • the methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the efficiency of generating genomic or combinatorial libraries.
  • the methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the scale of generating genomic or combinatorial libraries.
  • the methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater decrease in the cost of generating genomic or combinatorial libraries.
  • the methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the precision of genomic or combinatorial library generation.
  • Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of trackable engineering at the single cell level through several serial engineering cycles (e.g., Figure 3D or Figure 6). These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.
  • Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.
  • a new recorder sequence such as a barcode
  • a target site e.g., Figure 3D, green bars or Figure 6, black bars
  • a PCR, or similar reaction, of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site.
  • Selection can occur by a PAM mutation incorporated by an editing cassette.
  • Selection can occur by a PAM mutation incorporated by a recorder cassette.
  • Selection can occur using a screenable, selectable, or counter-selectable marker.
  • Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.
  • Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein.
  • recursive vector systems can be used to move rapidly through the transformation procedure (e.g., Figure 7A).
  • these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and gRNAs.
  • the gRNA in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage.
  • These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes.
  • Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed.
  • Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.
  • the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids.
  • the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.
  • Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid.
  • the selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene.
  • each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid.
  • only those genome or plasmids, which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.
  • Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering.
  • Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker.
  • short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off. Such short sequences can easily fit within a cassette or polynucleotide, such as a synthesized cassette.
  • each round of engineering is used to incorporate an edit unique from that of previous rounds.
  • Each round of engineering can incorporate a unique recording sequence.
  • Each round of engineering can result in removal or curing of the CREATE plasmid used in the previous round of engineering.
  • successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.
  • Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.
  • Successive sequences can be inserted at a distance from one another.
  • successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp.
  • successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500bp.
  • Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.
  • a recorder cassette comprises a landing site to be used as a target site for the recorder cassette of the next round of engineering.
  • a guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence.
  • a subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid.
  • a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.
  • a guide nucleic acid can be DNA.
  • a guide nucleic acid can be RNA.
  • a guide nucleic acid can comprise both DNA and RNA.
  • a guide nucleic acid can comprise modified of non- naturally occurring nucleotides.
  • the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.
  • a guide nucleic acid can comprise a guide sequence.
  • a guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence.
  • the degree of complementarity between a guide sequence and its corresponding target sequence when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%), 97.5%), 99%), or more.
  • Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences.
  • a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.
  • a guide nucleic acid can comprise a scaffold sequence.
  • a "scaffold sequence” includes any sequence that has sufficient sequence to promote formation of a targetable nuclease complex, wherein the targetable nuclease complex comprises a nucleic acid- guided nuclease and a guide nucleic acid comprising a scaffold sequence and a guide sequence.
  • Sufficient sequence within the scaffold sequence to promote formation of a targetable nuclease complex may include a degree of complementarity along the length of two sequence regions within the scaffold sequence, such as one or two sequence regions involved in forming a secondary structure. In some cases, the one or two sequence regions are comprised or encoded on the same polynucleotide.
  • the one or two sequence regions are comprised or encoded on separate polynucleotides.
  • Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self- complementarity within either the one or two sequence regions.
  • the degree of complementarity between the one or two sequence regions along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%>, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
  • at least one of the two sequence regions is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
  • a scaffold sequence of a subject guide nucleic acid can comprise a secondary structure.
  • a secondary structure can comprise a pseudoknot region.
  • the compatibility of a guide nucleic acid and nucleic acid-guided nuclease is at least partially determined by sequence within or adjacent to a pseudoknot region of the guide RNA.
  • binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by secondary structures within the scaffold sequence.
  • binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by nucleic acid sequence with the scaffold sequence.
  • guide nucleic acid refers to a polynucleotide comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with an nucleic acid-guided nuclease as described herein.
  • a guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence.
  • a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease loci.
  • native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.
  • Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.
  • Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features.
  • Common features can include sequence outside a pseudoknot region.
  • Common features can include a pseudoknot region.
  • Common features can include a primary sequence or secondary structure.
  • a guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence.
  • a guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid.
  • Engineered guide nucleic acids are often non-naturally occurring and are not found in nature. More methods
  • nuclease such as a nucleic acid-guided nuclease to perform directed genome evolution/produce changes (deletions, substitutions, additions) in a target sequence, such as DNA or RNA, for example, genomic DNA or episomal DNA.
  • Suitable nucleases can include, for example, RNA-guided nucleases such as Cas9, Cpfl, MAD2, or MAD7, DNA-guided nucleases such as Argonaute, or other nucleases such as zinc-finger nucleases, TALENs, or meganucleases.
  • Nuclease genes can be obtained from any source, such as from a bacterium, archaea, prokaryote, eukaryote, or virus.
  • a Cas9 gene can be obtained from a bacterium harboring the corresponding Type II CRISPR system, such as the bacterium S. pyogenes (SEQ ID NO: 110).
  • the nucleic acid sequence and/or amino acid sequence of the nuclease may be mutated, relative to the sequence of a naturally occurring nuclease.
  • a mutation can be, for example, one or more insertions, deletions, substitutions or any combination of two or three of the foregoing.
  • the resulting mutated nuclease can have enhanced or reduced nuclease activity relative to the naturally occurring nuclease. In some cases, the resulting mutated nuclease can have no nuclease activity relative to the naturally occurring nuclease.
  • Some disclosed methods can include a two-stage construction process which relies on generation of cassette libraries that incorporate directed mutations from an editing cassettes directly into a genome, episomal nucleic acid molecule, or isolated nucleic acid molecule.
  • rationally designed editing cassettes can be cotransformed into cells with a guide nucleic acid (e.g., guide RNA) that hybridizes to or targets a target DNA sequence.
  • the guide nucleic acid is introduced as an RNA molecule, or encoded on a DNA molecule.
  • Editing cassettes can be designed such that they couple deletion or mutation of a PAM site with the mutation of one or more desired codons or nucleic acid residues in the adjacent nucleic acid sequence.
  • the deleted or mutated PAM site in some cases, can no longer be recognized by the chosen nucleic acid-guided nuclease.
  • at least one PAM or more than one PAM can be deleted or mutated, such as two, three, four, or more PAMs.
  • Methods disclosed herein can enable generation of an entire cassette library in a single transformation.
  • the cassette library can be retrieved, in some cases, by amplification of the recombinant chromosomes, e.g. by a PCR reaction, using a synthetic feature or priming site from the editing cassettes.
  • a second PAM deletion or mutation is simultaneously incorporated. This approach can covalently couple the codon-targeted mutations directly to a PAM deletion.
  • the PCR amplified cassette libraries carrying the destination PAM deletion/mutation and the targeted mutations, such as a desired mutation of one or more nucleotides, such as one or more nucleotides in one or more codons can be co-transformed into naive cells.
  • the cells can be eukaryotic cell, archaeal cell, or prokaryotic cells.
  • the cassette libraries can be co-transformed with a guide nucleic acid or plasmid encoding the same to generate a population of cells that express a rationally designed protein library.
  • the libraries can be co-transformed with a guide nucleic acid such as a gRNA, chimeric gRNA, split gRNA, or a crRNA and trRNA set.
  • the cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette and guide nucleic acid.
  • the cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette, recorder cassettes and two guide nucleic acids
  • the guide nucleic acid can guide selection of a target sequence.
  • a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired.
  • the target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus.
  • the guide nucleic acid can be expressed as a DNA molecule, referred to as a guide DNA, or as a RNA molecule, referred to as a guide RNA.
  • a guide nucleic acid can comprise a guide sequence, that is complementary to a region of the target region.
  • a guide nucleic acid can comprise a scaffold sequence that can interact with a compatible nucleic acid-guided nuclease, and can optionally form a secondary structure.
  • a guide nucleic acid can functions to recruit a nucleic acid-guided nuclease to the target site.
  • a guide sequence can be complementary to a region upstream of the target site.
  • a guide sequence can be complementary to at least a portion of the target site.
  • a guide sequence can be completely complementary (100% complementary) to the target site or include one or more mismatches, provided that it is sufficiently complementary to the target site to specifically hybridize/guide and recruit the nuclease.
  • Suitable nucleic acid guided nuclease include, as non-limiting examples, CRISPR nucleases, Cas nucleases, such as Cas9 or Cpfl, MAD2, and MAD7.
  • the CRISPR RNA (crRNA or spacer-containing RNA) and trans-activating CRISPR RNA (tracrRNA or trRNA) can guide selection of a target sequence.
  • a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired.
  • the target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus.
  • the tracrRNA and crRNA can be expressed as a single, chimeric RNA molecule, referred to as a single-guide RNA, guide RNA, or gRNA.
  • the nucleic acid sequence of the gRNA comprises a first nucleic acid sequence, also referred to as a first region, that is complementary to a region of the target region and a second nucleic acid sequence, also referred to a second region, that forms a stem loop structure and functions to recruit a CRISPR nuclease to the target region.
  • the first region of the gRNA can be complementary to a region upstream of the target genomic sequence.
  • the first region of the gRNA can be complementary to at least a portion of the target region.
  • the first region of the gRNA can be completely complementary (100% complementary) to the target genomic sequence or include one or more mismatches, provided that it is sufficiently complementary to the target genomic sequence to specifically hybridize/guide and recruit a CRISPR nuclease, such as Cas9 or Cpf 1.
  • a CRISPR nuclease such as Cas9 or Cpf 1.
  • a guide sequence or first region of the gRNA can be at least 15, 16, 17, 18, 19,
  • the guide sequence or first region of the gRNA can be at least 20 nucleotides in length.
  • a stem loop structure that can be formed by the scaffold sequence or second nucleic acid sequence of a gRNA can be at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nucleotides in length.
  • a stem loop structure can be from 80 to 90 or 82 to 85 nucleotides in length.
  • a scaffold sequence or second region of the gRNA that forms a stem loop structure can be 83 nucleotides in length.
  • a guide nucleic acid of a cassette that is introduced into a first cell using the methods disclosed herein can be the same as the guide nucleic acid of a second cassette that is introduced into a second cell. More than one guide nucleic acid can be introduced into the population of first cells and/or the population of second cells. The more than one guide nucleic acids can comprise guide sequences that are complementary to more than one target region.
  • Methods disclosed herein can comprise using oligonucleotides.
  • Such oligonucleotides can be obtained or derived from many sources.
  • an oligonucleotide can be derived from a nucleic acid library that has been diversified by nonhomologous random recombination (NRR); such a library is referred to as an NRR library.
  • NRR nonhomologous random recombination
  • An oligonucleotide can be synthesized, for example by array-based synthesis or other known chemical synthesis method. The length of an oligonucleotide can be dependent on the method used in obtaining the oligonucleotide.
  • An oligonucleotide can be approximately 50-200 nucleotides, 75-150 nucleotides, or between 80- 120 nucleotides in length.
  • An oligonucleotide can be about 10, 20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer, for example, 51, 52, 53, 54, 201, 202, etc.
  • An oligonucleotide can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more nucleotides in length, including any integer, for example, 101, 203, 1001, 2001, 2010, etc.
  • Oligonucleotides and/or other nucleic acid molecules can be combined or assembled to generate a cassette.
  • a cassette can comprise (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation.
  • the PAM mutation can be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that it is no longer recognized by a nucleic acid-guided nuclease system or CRISPR nuclease system.
  • a cell that comprises such a PAM mutation may be said to be "immune" to nuclease- mediated killing.
  • the desired mutation relative to the sequence of the target region can be an insertion, deletion, and/or substitution of one or more nucleotides.
  • the insertion, deletion, and/or substitution of one or more nucleotides is in at least one codon of the target region.
  • the cassette can be synthesized in a single synthesis, comprising (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, (b) a protospacer adjacent motif (PAM) mutation, and optionally (c) a region that is homologous to a second target region of the nucleic acid of the cell and includes a recorder sequence.
  • PAM protospacer adjacent motif
  • the methods disclosed herein can be applied to any target nucleic acid molecule of interest, from any prokaryote including bacteria and archaea, or any eukaryote, including yeast, mammalian, and human genes, or any viral particle.
  • the nucleic acid module can be a non- coding nucleic acid sequence, gene, genome, chromosome, plasmid, episomal nucleic acid molecule, artificial chromosome, synthetic chromosome, or viral nucleic acid.
  • Methods for assessing recovery efficiency of donor strain libraries are disclosed herein. Recovery efficiency can be verified based on the presence of a PCR product or on changes in amplicon or PCR product sizes or sequence obtained with primers directed at the selected target locus.
  • Primers can be designed to hybridize with endogenous sequences or heterologous sequences contained on the donor nucleic acid molecule.
  • the PCR primer can be designed to hybridize to a heterologous sequence such that PCR will only be possible if the donor nucleic acid is incorporated. Sequencing of PCR products from the recovered libraries indicates the heterologous sequence or synthetic priming site from the dsDNA cassettes or donor sequences can be incorporated with about 90-100% efficiency.
  • the efficiency can be about 5%, 10% 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100%.
  • the ability to improve final editing efficiencies of the methods disclosed herein can be assessed by carrying out cassette construction in gene deficient strains before transferring to a wild-type donor strain in an effort to prevent loss of mutations during the donor construction phase. Additionally or alternatively, efficiency of the disclosed methods can be assessed by targeting an essential gene.
  • Essential genes can include any gene required for survival or replication of a viral particle, cell, or organism.
  • essential genes include dxs, metA, and folA. Essential genes have been effectively targeted using guide nucleic acid design strategies described. Other suitable essential genes are well known in the art.
  • [00171] Provided herein are method of increasing editing efficiencies by modulating the level of a nucleic acid-guided nuclease. This could be done by using copy control plasmids, such as high copy number plasmids or low copy number plasmids. Low copy number plasmids could be plasmids that can have about 20 or less copies per cell, as opposed to high copy number plasmids that can have about 1000 copies per cell. High copy number plasmids and low copy number plasmids are well known in the art and it is understood that an exact plasmid copy per cell does not need to be known in order to characterize a plasmid as either high or low copy number.
  • the decreasing expression level of a nucleic acid-guided nuclease can increase transformation, editing, and/or recording efficiencies.
  • decreasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a low copy number plasmid.
  • the increasing expression level of a nucleic acid-guided nuclease can increase transformation, editing, and/or recording efficiencies.
  • increasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a high copy number plasmid.
  • the mutant library can be effectively constructed and retrieved within 1-3 hours post recombineering. In some examples, the mutant library is constructed within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 24 hours post recombineering. In some examples, the mutant library can be retrieved within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, or 48 hours post recombineering and/or post-constructing by recombineering. [00176] Some methods disclosed herein can be used for trackable, precision genome editing.
  • methods disclosed herein can achieve high efficiency editing/mutating using a single cassette that encodes both an editing cassette and guide nucleic acid, and optionally a recorder cassette and second guide nucleic acid.
  • a single vector can encode an editing cassette while a guide nucleic acid is provided sequentially or concomitantly.
  • methods disclosed herein can provide single step generation of hundreds or thousands of precision edits/mutations. Mutations can be mapped by sequencing the editing cassette on the vector, rather than by sequencing of the genome or a section of the genome of the cell or organism.
  • the methods disclosed herein can have broad utility in protein and genome engineering applications, as well as for reconstruction of mutations, such as mutations identified in laboratory evolution experiments.
  • the methods and compositions disclosed here can combine an editing cassette, which could include a desired mutation and a PAM mutation, with a gene encoding a guide nucleic acid on a single vector.
  • a trackable mutant library can be generated in a single transformation or single reaction.
  • Methods disclosed herein can comprise introducing a cassette comprising an editing cassette that includes the desired mutation and the PAM mutation into a cell or population of cells.
  • the cell into which the cassette or vector is introduced also comprises a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7.
  • a gene or mRNA encoding the nucleic acid-guided nuclease is concomitantly, sequentially, or subsequently introduced into the cell or population of cells.
  • a targetable nuclease system including nucleic acid-guided nuclease and a guide nucleic acid
  • expression of a targetable nuclease system including nucleic acid-guided nuclease and a guide nucleic acid, in the cell or cell population can be activated such that the guide nucleic acid recruits the nucleic acid-guided nuclease to the target region, where dsDNA cleavage occurs.
  • the homologous region of an editing cassette complementary to the target sequence mutates the PAM and the one or more codon of the target sequence.
  • Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage.
  • cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable or targeted mutations.
  • the homologous region of a recorder cassette complementary to the target sequence mutates the PAM and introduces a barcode into a target sequence.
  • Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage.
  • cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable mutations.
  • a separate vector or mRNA encoding a nucleic acid-guided nuclease can be introduced into the cell or population of cells.
  • Introducing a vector or mRNA into a cell or population of cells can be performed using any method or technique known in the art.
  • vectors can be introduced by standard protocols, such as transformation including chemical transformation and electroporation, transduction and particle bombardment.
  • mRNA can be introduced by standard protocols, such as transformation as disclosed herein, and/or by techniques involving cell permeable peptides or nanoparticles.
  • An editing cassette can include (a) a region, which recognizes (hybridizes to) a target region of a nucleic acid in a cell or population of cells, is homologous to the target region of the nucleic acid of the cell and includes a mutation, referred to a desired mutation, of at least one nucleotide that can be in at least one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation.
  • the editing cassette also comprises a barcode.
  • the barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode.
  • the PAM mutation may be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that the mutated PAM (PAM mutation) is not recognized by a chosen nucleic acid-guided nuclease system.
  • a cell that comprises such as a PAM mutation may be said to be "immune" to nucleic acid-guided nuclease-mediated killing.
  • the desired mutation relative to the sequence of the target region may be an insertion, deletion, and/or substitution of one or more nucleotides and may be at least one codon of the target region.
  • the distance between the PAM mutation and the desired mutation is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides on the editing cassette
  • the PAM mutation is located at least 9 nucleotides from the end of the editing cassette.
  • the desired mutation is located at least 9 nucleotides from the end of the editing cassette.
  • a desired mutation can be an insertion of a nucleic acid sequence relative to the sequence of the target sequence.
  • the nucleic acid sequence inserted into the target sequence can be of any length.
  • the nucleic acid sequence inserted is at least 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or at least 2000 nucleotides in length.
  • the editing cassette comprises a region that is at least 10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, or at least 60 nucleotides in length and homologous to the target sequence.
  • the homology arms or homologous region can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer therein.
  • the homology arms or homologous region can be over 200 nucleotides in length.
  • a barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode.
  • the barcode is a non- naturally occurring sequence that is not found in nature.
  • the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature.
  • a barcode can be any number of nucleotides in length.
  • a barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.
  • An editing cassette or recorder cassette can comprise at least a portion of a gene encoding a guide nucleic acid, and optionally a promoter operable linked to the encoded guide nucleic acid.
  • the portion of the gene encoding the guide nucleic acid encodes the portion of the guide nucleic acid that is complementary to the target sequence.
  • the portion of the guide nucleic acid that is complementary to the target sequence, or the guide sequence can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length.
  • the guide sequence is 24 nucleotides in length.
  • the guide sequence is 18 nucleotides in length.
  • the editing cassette or recorder cassette further comprises at least two priming sites.
  • the priming sites may be used to amplify the cassette, for example by PCR.
  • the portion of the guide sequence is used as a priming site.
  • Editing cassettes or recorder cassettes for use in the described methods can be obtained or derived from many sources.
  • the cassettes can be synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art.
  • the editing cassette or recorder cassette is synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, -in vitro assembly, Gibson assembly, or any other synthesis method known in the art.
  • the length of the editing cassette or recorder cassette may be dependent on the method used in obtaining said cassette.
  • An editing cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the editing cassette can be any discrete length between 50 nucleotide and 1 Mb.
  • a recorder cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80- 120 nucleotides in length. In some embodiments, the recorder cassette can be any discrete length between 50 nucleotide and 1 Mb.
  • Methods disclosed herein can also involve obtaining editing cassettes and recorder cassettes and constructing a trackable plasmid or vector.
  • Methods of constructing a vector will be known to one ordinary skill in the art and may involve ligating the cassettes into a vector backbone.
  • plasmid construction occurs by in vitro DNA assembly methods, oligonucleotide assembly, PCR-based assembly, SLIC, CPEC, or other assembly methods well known in the art.
  • the cassettes or a subset (pool) of the cassettes can be amplified prior to construction of the vector, for example by PCR.
  • the cell or population of cells comprising a polynucleotide encoding a nucleic acid- guided nuclease can be maintained or cultured under conditions in which the nuclease is expressed.
  • Nucleic acid-guided nuclease expression can be controlled or can be constitutively on.
  • the methods described herein can involve maintaining cells under conditions in which nuclease expression is activated, resulting in production of the nuclease, for example, Cas9, Cpfl, MAD2, or MAD7.
  • Specific conditions under which the nucleic acid-guided nuclease is expressed can depend on factors, such as the nature of the promoter used to regulate expression of the nuclease.
  • Nucleic acid-guided nuclease expression can be induced in the presence of an inducer molecule, such as arabinose.
  • an inducer molecule such as arabinose.
  • expression of the nuclease can occur.
  • CRISPR-nuclease expression can be repressed in the presence of a repressor molecule.
  • expression of the nuclease can occur.
  • Cells or the population of cells that remain viable can be obtained or separated from the cells that undergo unedited cell death as a result of nucleic acid-guided nuclease -mediated killing; this can be done, for example, by spreading the population of cells on culture surface, allowing growth of the viable cells, which are then available for assessment.
  • the methods can involve sequencing of the editing cassette, recorder cassette, or barcode to identify the mutation of one of more codon. Sequencing of the editing cassette can be performed as a component of the vector or after its separation from the vector and, optionally, amplification. Sequencing can be performed using any sequencing method known in the art, such as by Sanger sequencing or next-generation sequencing methods.
  • the cell is a bacterial cell, such as Escherichia spp., e.g., E. coli.
  • the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp.
  • the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.
  • a "vector” is any of a variety of nucleic acids that comprise a desired sequence or sequences to be delivered to or expressed in a cell.
  • a desired sequence can be included in a vector, such as by restriction and ligation or by recombination or assembly methods know in the art.
  • Vectors are typically composed of DNA, although RNA vectors are also available.
  • Vectors include, but are not limited to plasmids, fosmids, phagemids, virus genomes, artificial chromosomes, and synthetic nucleic acid molecules.
  • Vectors useful in the methods disclosed herein can comprise at least one editing cassette as described herein, at least one gene encoding a gRNA, and optionally a promoter and/or a barcode. More than one editing cassette can be included on the vector, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 or more editing cassettes.
  • the more than one editing cassettes can be designed to target different target regions, for example, there could be different editing cassettes, each of which contains at least one region homologous with a different target region.
  • each editing cassette target the same target region while each editing cassette comprises a different desired mutation relative to the target region.
  • the plurality of editing cassettes can comprise a combination of editing cassettes targeting the same target region and editing cassettes targeting different target regions.
  • Each editing cassette can comprise an identifying barcode.
  • the vector can include one or more genes encoding more than one gRNA, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more gRNAs.
  • the more than one gRNAs can contain regions that are complementary to a portion of different target regions, for example, if there are different gRNAs, each of which can be complementary to a portion of a different target region.
  • the more than one gRNA can each target the same target region.
  • the more than one gRNA can be a combination of gRNAs targeting the same and different target regions.
  • a cassette comprising a gene encoding a portion of a guide nucleic acid can be ligated or assembled into a vector that encodes another portion of a guide nucleic acid. Upon ligation or assembly, the portion of the guide nucleic acid from the cassette and the other portion of the guide nucleic acid can form a functional guide nucleic acid.
  • a promoter and a gene encoding a guide nucleic acid can be operably linked.
  • the methods involve introduction of a second vector encoding a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7.
  • the vector may further comprise one or more promoters operably linked to a gene encoding the nucleic acid-guided nuclease.
  • operably linked can mean the promoter affects or regulates transcription of the DNA encoding a gene, such as the gene encoding the gRNA or the gene encoding a CRISPR nuclease.
  • a promoter can be a native promoter such as a promoter present in the cell into which the vector is introduced.
  • a promoter can be an inducible or repressible promoter, for example, the promoter can be regulated allowing for inducible or repressible transcription of a gene, such as the gene encoding the guide nucleic acid or the gene encoding a nucleic acid-guided nuclease.
  • Such promoters that are regulated by the presence or absence of a molecule can be referred to as an inducer or a repressor, respectively.
  • the nature of the promoter needed for expression of the guide nucleic acid or nucleic acid-guided nuclease can vary based on the species or cell type and can be recognized by one of ordinary skill in the art.
  • a separate vector encoding a nucleic acid-guided nuclease can be introduced into a cell or population of cells before or at the same time as introduction of a trackable plasmid as disclosed herein.
  • the gene encoding a nucleic acid-guided nuclease can be integrated into the genome of the cell or population of cells, or the gene can be maintained episomally.
  • the nucleic acid-guided nuclease-encoding DNA can be integrated into the cellular genome before introduction of the trackable plasmid, or after introduction of the trackable plasmid.
  • a nucleic acid molecule such as DNA-encoding a nucleic acid-guided nuclease, can be expressed from DNA integrated into the genome.
  • a gene encoding Cas9, Cpfl, MAD2, or MAD7 is integrated into the genome of the cell.
  • Vectors or cassettes useful in the methods described herein can further comprise two or more priming sites.
  • the presence of flanking priming sites allows amplification of the vector or cassette.
  • a cassette or vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
  • the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus).
  • the engineered nuclease comprises at most 6 NLSs.
  • an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
  • NLSs include an
  • NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 111); the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO: 112)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO: 113) or RQRRNELKRSP (SEQ ID NO: 111).
  • NQS SNFGPMKGGNFGGRS SGP YGGGGQYF AKPRNQGGY SGP YGGGGQYF AKPRNQGGY (SEQ ID NO: 115); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: l
  • PPKKARED (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL
  • KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 125) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 126) of the steroid hormone receptors (human) glucocorticoid.
  • the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell.
  • strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors.
  • Detection of accumulation in the nucleus may be performed by any suitable technique.
  • a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
  • Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g.
  • nucleic acid-guided nuclease activity assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more LSs.
  • Methods disclosed herein are capable of engineering a few to hundreds of genetic sequence or proteins simultaneously. These methods can permit one to map in a single experiment many or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway. This approach can be used at least for the following by mapping i) any number of residue changes for any number of proteins of interest in a specific biochemical pathway or that catalyze similar reactions or ii) any number of residues in the regulatory sites of any number of proteins or interest with a specific regulon or iii) any number of residues of a biological agent used to treat a health condition.
  • methods described herein include identifying genetic variations of one or more target genes that affect any number or residues, such as one or more, or all residues of one or more target proteins.
  • compositions and methods disclosed herein permit parallel analysis of two or more target proteins or proteins that contribute to a trait. Parallel analysis of multiple proteins by a single experiment described can facilitate identification, modification and design of superior systems for example for producing a eukaryotic or prokaryotic byproduct, producing a eukaryotic byproduct, for example, a biological agent such as a growth factor or antibody, in a prokaryotic organism and the like.
  • Relevant biologies used in analysis and treatment of disease can be produced in these genetically engineered environments that could reduce production time, increase quality all while reducing costs to the manufacturers and the consumers.
  • Some embodiments disclosed herein comprise constructs of use for studying genetic variations of a gene or gene segment wherein the gene or gene segment is capable of generating a protein.
  • a construct can be generated for any number of residues, such as one, two, more than two, or all residue modifications of a target protein that is linked to a trackable agent such as a barcode.
  • a barcode indicative of a genetic variation of a gene of a target protein can be located outside of the open reading frame of the gene. In some embodiments such a barcode can be located many hundreds or thousands of bases away from the gene. It is contemplated herein that these methods can be performed in vivo.
  • such a construct comprises a trackable polynucleic acid or plasmid as disclosed herein.
  • Constructs described herein can be used to compile a comprehensive library of genetic variations encompassing all residue changes of one target protein, more than one target protein or target proteins that contribute to a trait.
  • libraries disclosed herein can be used to select proteins with improved qualities to create an improved single or multiple protein system for example for producing a byproduct, such as a chemical, biofuels, biological agent, pharmaceutical agent, or for biomass, or biologic compared to a non-selective system.
  • compositions and methods which can be used to rapidly and efficiently examine the roles of some or all genes in a viral, microbial, or eukaryotic genome using mixtures of barcoded oligonucleotides.
  • these compositions and methods can be used to develop a powerful new technology for comprehensively mapping protein structure-activity relationships (ProSAR).
  • multiplex cassette synthesis can be combined with recombineering, to create mutant libraries of specifically designed and barcoded mutations along one or more genes of interest in parallel.
  • Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of protein sequence-activity relationships (ProSAR).
  • ProSAR protein sequence-activity relationships
  • systematic ProSAR mapping can elucidate individual amino acid mutations for improved function and/or activity and/or stability etc.
  • Methods can be iterated to combinatorially improve the function, activity, or stability.
  • Cassettes can be generated by oligonucleotide synthesis. Given that existing capabilities of multiplex oligonucleotide synthesis can reach over 120,000 oligonucleotides per array, combined with recombineering, the methods disclosed herein can be scaled to construct mutant libraries for dozens to hundreds of proteins in a single experiment. In some examples, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more proteins can be partially or completely covered by mutant libraries generated by the methods disclosed herein.
  • a partial or complete substitution library for one or more protein constructs can be barcoded, or non-barcoded if desired, for one or for several hundred proteins at the same time.
  • such libraries comprise trackable plasmids as disclosed herein.
  • Cassette library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library, including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)xN and an alanine-mapping library scaling as l xN.
  • N number of amino acids in a protein of interest
  • a full saturation library including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)xN and an alanine-mapping library scaling as l xN.
  • mutations at residues important for a particular trait such as thermostability, resistance to environmental pressures, or increases or decreases in functionality or production, can be combined via multiplex recombineering with mutations important for various other traits, such as catalytic activity, to create combinatorial libraries for multi-trait optimization.
  • Methods disclosed herein can provide for creating and/or evaluating comprehensive, in vivo, mutational libraries of one or more target protein(s). These approaches can be extended via a recorder cassettes or barcoding technology to generate trackable mutational libraries for any number of residues or every residue in a protein. This approach can be based on protein sequence-activity relationship mapping method extended to work in vivo, capable of working on one or a few to hundreds of proteins simultaneously depending on the technology selected. For example, these methods permit one to map in a single experiment any number of, the majority of, or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway.
  • these approaches can be used at least for the following by mapping i) any number of or all residue changes for any number of or all proteins in a specific biochemical pathway, such as lycopene production, or that catalyze similar reactions, such as dehydrogenases or other enzymes of a pathway of use to produce a desired effect or produce a product, or ii) any number of or all residues in the regulatory sites of any number of or all proteins with a specific regulatory mechanism, such as heat shock response, or iii) any number of or all residues of a biological agent used to treat a health condition, such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.
  • a biological agent used to treat a health condition such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.
  • Scores related to various input parameters can be assigned in order to generate one or more composite score(s) for designing genomically-engineered organisms or systems. These scores can reflect quality of genetic variations in genes or genetic loci as they relate to selection of an organism or design of an organism for a predetermined production, trait or traits. Certain organisms or systems can be designed based on a need for improved organisms for biorefining, biomass, such as crops, trees, grasses, crop residues, or forest residues, biofuel production, and using biological conversion, fermentation, chemical conversion and catalysis to generate and use compounds, biopharmaceutical production and biologic production. In certain embodiments, this can be accomplished by modulating growth or production of microorganism through genetic manipulation methods disclosed herein.
  • Genetic manipulation by methods disclosed herein of genes encoding a protein can be used to make desired genetic changes that can result in desired phenotypes and can be accomplished through numerous techniques including but not limited to, i) introduction of new genetic material, ii) genetic insertion, disruption or removal of existing genetic material, as well as, iii) mutation of genetic material, such as a point mutation, or any combinations of i, ii, and iii, that results in desired genetic changes with desired phenotypic changes. Mutations can be directed or random, in addition to those including, but not limited to, error prone or directed mutagenesis through PCR, mutator strains, and random mutagenesis. Mutations can be incorporated using trackable plasmids and methods as disclosed herein.
  • Disclosed methods can be used for inserting and accumulating higher order modifications into a microorganism's genome or a target protein; for example, multiple different site-specified mutations in the same genome, at high efficiency to generate libraries of genomes with over 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or more targeted modifications are described.
  • these mutations are within regulatory modules, regulatory elements, protein-coding regions, or non-coding regions.
  • Protein coding modifications can include, but are not limited to, amino acid changes, codon optimization, and translation tuning.
  • methods are provided for the co-delivery of reagents to a single biological cell.
  • the methods generally involve the attachment or linkage of two or more cassettes, followed by delivery of the linked cassettes to a single cell.
  • the methods provided herein involve the delivery of two or more cassettes to a single cell.
  • Traditional methods of reagent delivery may often be inefficient and/or inconsistent, leading to situations in which some cells receive only one of the cassettes.
  • the methods provided herein may improve the efficiency and/or consistency of reagent delivery, such that a majority of cells in a cell population each receive the two or more cassettes. For example, more than 50%, 55%, 60%, 65%, 70%, 75%,
  • 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the cells in a cell population may receive the two or more cassettes.
  • the two or more cassettes may be linked by any known method in the art and generally the method chosen will be commensurate with the chemistry of the cassettes.
  • the two or more cassettes are linked by a covalent bond (i.e., covalently-linked), however, other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds.
  • covalent bond i.e., covalently-linked
  • other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds.
  • the editing cassette and the recorder cassette may be linked and delivered into a single cell.
  • a known edit is then associated with a known recorder or barcode sequence for that cell.
  • the two or more cassettes are nucleic acids, such as two or more nucleic acids.
  • the nucleic acids may be RNA, DNA, or a combination of both, and may contain any number of chemically-modified nucleotides or nucleotide analogues.
  • two or more RNA cassettes are linked for delivery to a single cell.
  • two or more DNA cassettes are linked for delivery to a single cell.
  • a DNA cassettes and an RNA cassettes are linked for delivery to a single cell.
  • the nucleic acids may be derived from genomic RNA, complementary DNA (cDNA), or chemically or enzymatically synthesized DNA.
  • a cassettes may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 190, about
  • Two or more cassettes may be linked on a linear nucleic acid molecule or may be linked on a plasmid or circular nucleic acid molecule.
  • the two or more cassettes may be linked directly to one another or may be separated by one or more nucleotide spacers or linkers.
  • Two or more cassettes may be covalently linked on a linear cassettes or may be covalently linked on a plasmid or circular nucleic acid molecule.
  • the two or more cassettes may be covalently linked directly to one another or may be separated by one or more nucleotide spacers or linkers.
  • cassettes may be linked for co-delivery.
  • the two or more cassettes may include nucleic acids, lipids, proteins, peptides, small molecules, or any combination thereof.
  • the two or more cassettes may be essentially any cassettes that are amenable to linkage.
  • the two or more cassettes are covalently linked (e.g., by a chemical bond). Covalent linkage may help to ensure that the two or more cassettes are co- delivered to a single cell. Generally, the two or more cassettes are covalently linked prior to delivery to a cell. Any method of covalently linking two or more molecules may be utilized, and it should be understood that the methods used will be at least partly determined by the types of cassettes to be linked.
  • methods are provided for the co-delivery of reagents to a single biological cell.
  • the methods generally involve the covalent attachment or linkage of two or more cassettes, followed by delivery of the covalently-linked cassettes into a single cell.
  • the methods provided may help to ensure that an individual cell receives the two or more cassettes.
  • Any known method of reagent delivery may be utilized to deliver the linked cassettes to a cell and will at least partly depend on the chemistry of the cassettes to be delivered.
  • Non-limiting examples of reagent delivery methods may include: transformation, lipofection, electroporation, transfection, nanoparticles, and the like.
  • cassettes, or isolated, donor, or editing nucleic acids may be introduced to a cell or microorganism to alter or modulate an aspect of the cell or microorganism, for example survival or growth of the microorganism as disclosed herein.
  • the isolated nucleic acid may be derived from genomic RNA, complementary DNA (cDNA), chemically or enzymatically synthesized DNA. Additionally or alternatively, isolated nucleic acids may be of use for capture probes, primers, labeled detection oligonucleotides, or fragments for DNA assembly.
  • a "nucleic acid” can include single- stranded and/or double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
  • Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthetic techniques, or combinations thereof.
  • the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.
  • the nucleic acids may conveniently comprise sequences in addition to a portion of a lysine riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added.
  • a nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell.
  • Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.
  • Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art.
  • oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell. Methods for construction of nucleic acid libraries are known and any such known methods may be used.
  • Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.
  • High stringency conditions for nucleic acid hybridization are well known in the art.
  • conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetram ethyl ammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.
  • Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.
  • PCR polymerase chain reaction
  • Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.
  • Target proteins contemplated herein include protein agents used to treat a human condition or to regulate processes (e.g. part of a pathway such as an enzyme) involved in disease of a human or non-human mammal. Any method known for selection and production of antibodies or antibody fragments is also contemplated. Additionally or alternatively, target proteins can be proteins or enzymes involved in a pathway or process in a virus, cell, or organism.
  • Some methods disclosed herein comprise targeting cleavage of specific nucleic acid sequences using a site-specific, targetable, and/or engineered nuclease or nuclease system.
  • Such nucleases can create double-stranded break (DSBs) at desired locations in a genome or nucleic acid molecule.
  • DSBs double-stranded break
  • a nuclease can create a single strand break.
  • two nucleases are used, each of which generates a single strand break.
  • the one or more double or single strand break can be repaired by natural processes of homologous recombination (HR) and non-homologous end-joining (NHEJ) using the cell's endogenous machinery. Additionally or alternatively, endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.
  • HR homologous recombination
  • NHEJ non-homologous end-joining
  • endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.
  • Engineered nucleases such as zinc finger nucleases (ZFNs), Transcription Activator- Like Effector Nucleases (TALENs), engineered homing endonucleases, and RNA or DNA guided endonucl eases, such as CRISPR/Cas such as Cas9 or CPF1, and/or Argonaute systems, are particularly appropriate to carry out some of the methods of the present invention. Additionally or alternatively, RNA targeting systems can use used, such as CRISPR/Cas systems including c2c2 nucleases.
  • Methods disclosed herein can comprise cleaving a target nucleic acid using a CRISPR systems, such as a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR system.
  • CRISPR/Cas systems can be multi-protein systems or single effector protein systems. Multi- protein, or Class 1, CRISPR systems include Type I, Type III, and Type IV systems. Alternatively, Class 2 systems include a single effector molecule and include Type II, Type VI, and Type VI.
  • CRISPR systems used in methods disclosed herein can comprise a single or multiple effector proteins.
  • An effector protein can comprise one or multiple nuclease domains.
  • An effector protein can target DNA or RNA, and the DNA or RNA may be single stranded or double stranded.
  • Effector proteins can generate double strand or single strand breaks.
  • Effector proteins can comprise mutations in a nuclease domain thereby generating a nickase protein.
  • Effector proteins can comprise mutations in one or more nuclease domains, thereby generating a catalytically dead nuclease that is able to bind but not cleave a target sequence.
  • CRISPR systems can comprise a single or multiple guiding RNAs.
  • the gRNA can comprise a crRNA.
  • the gRNA can comprise a chimeric RNA with crRNA and tracrRNA sequences.
  • the gRNA can comprise a separate crRNA and tracrRNA.
  • Target nucleic acid sequences can comprise a protospacer adjacent motif (PAM) or a protospacer flanking site (PFS).
  • PAM or PFS may be 3' or 5' of the target or protospacer site. Cleavage of a target sequence may generate blunt ends, 3 ' overhangs, or 5' overhangs.
  • a gRNA can comprise a spacer sequence.
  • Spacer sequences can be complementary to target sequences or protospacer sequences. Spacer sequences can be 10, 11, 12, 13, 14, 15, 16,
  • the spacer sequence can be less than 10 or more than 36 nucleotides in length.
  • a gRNA can comprise a repeat sequence.
  • the repeat sequence is part of a double stranded portion of the gRNA.
  • a repeat sequence can be 10, 11, 12, 13, 14, 15, 16, 17,
  • the spacer sequence can be less than 10 or more than 50 nucleotides in length.
  • a gRNA can comprise one or more synthetic nucleotides, non-naturally occurring nucleotides, nucleotides with a modification, deoxyribonucleotide, or any combination thereof. Additionally or alternatively, a gRNA may comprise a hairpin, linker region, single stranded region, double stranded region, or any combination thereof. Additionally or alternatively, a gRNA may comprise a signaling or reporter molecule.
  • a CRISPR nuclease can be endogenously or recombinantly expressed within a cell.
  • a CRISPR nuclease can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome.
  • a CRISPR nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
  • gRNAs can be encoded by genetic or episomal DNA within a cell.
  • gRNAs can be provided or delivered to a cell expressing a CRISPR nuclease.
  • gRNAs can be provided or delivered concomitantly with a CRISPR nuclease or sequentially.
  • Guide RNAs can be chemically synthesized, in vitro transcribed, or otherwise generated using standard RNA generation techniques known in the art.
  • a CRISPR system can be a Type II CRISPR system, for example a Cas9 system.
  • the Type II nuclease can comprise a single effector protein, which, in some cases, comprises a RuvC and HNH nuclease domains.
  • a functional Type II nuclease can comprise two or more polypeptides, each of which comprises a nuclease domain or fragment thereof.
  • the target nucleic acid sequences can comprise a 3' protospacer adjacent motif (PAM).
  • the PAM may be 5' of the target nucleic acid.
  • Guide RNAs gRNA
  • gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences.
  • the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA.
  • the Type II nuclease can generate a double strand break, which is some cases creates two blunt ends.
  • the Type II CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break.
  • two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase.
  • the two single strand breaks effectively create a double strand break.
  • a Type II nickase In some cases where a Type II nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang.
  • a Type II nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave.
  • a Type II nuclease could have mutations in both the RuvC and HNH domains, thereby rendering the both nuclease domains non-functional.
  • a Type II CRISPR system can be one of three subtypes, namely Type II-A, Type II-B, or Type II-C.
  • a CRISPR system can be a Type V CRISPR system, for example a Cpfl, C2cl, or C2c3 system.
  • the Type V nuclease can comprise a single effector protein, which in some cases comprises a single RuvC nuclease domain.
  • a function Type V nuclease comprises a RuvC domain split between two or more polypeptides.
  • the target nucleic acid sequences can comprise a 5' PAM or 3' PAM.
  • Guide RNAs can comprise a single gRNA or single crRNA, such as can be the case with Cpfl . In some cases, a tracrRNA is not needed.
  • a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA.
  • the Type V CRISPR nuclease can generate a double strand break, which in some cases generates a 5' overhang.
  • the Type V CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break.
  • two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase.
  • the two single strand breaks effectively create a double strand break.
  • a Type V nickase is used to generate two single strand breaks
  • the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang.
  • a Type V nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave.
  • a Type V nuclease could have mutations a RuvC domain, thereby rendering the nuclease domain non-functional.
  • a CRISPR system can be a Type VI CRISPR system, for example a C2c2 system.
  • a Type VI nuclease can comprise a HEPN domain.
  • the Type VI nuclease comprises two or more polypeptides, each of which comprises a HEPN nuclease domain or fragment thereof.
  • the target nucleic acid sequences can by RNA, such as single stranded RNA.
  • a target nucleic acid can comprise a protospacer flanking site (PFS).
  • the PFS may be 3' or 5'or the target or protospacer sequence.
  • Guide RNAs gRNA
  • gRNA can comprise a single gRNA or single crRNA.
  • a tracrRNA is not needed.
  • a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA.
  • a Type VI nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave.
  • a Type VI nuclease could have mutations in a HEPN domain, thereby rendering the nuclease domains nonfunctional.
  • Non-limiting examples of suitable nucleases, including nucleic acid-guided nucleases, for use in the present disclosure include C2cl, C2c2, C2c3, Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Cpfl, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlOO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Cs
  • Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nit
  • Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom, which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes.
  • Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes.
  • Suitable nucleic acid- guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales.
  • Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae,
  • Peptostreptococcaceae Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae.
  • nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidomonococcus sp., Lachnospiraceae bacterium COEl, Prevotella brevis ATCC 19188, Smithella sp.
  • an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branch
  • SCADC Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C.
  • Lachnospiraceae bacterium MA2020 Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium D2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp.
  • Suitable nucleases for use in any of the methods disclosed herein include, but are not limited to, nucleases having the sequences listed in Table 1, or homologues having at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%), or 99% sequence identity to any of the nucleases listed in Table 1.
  • Argonaute (Ago) systems can be used to cleave target nucleic acid sequences.
  • Ago protein can be derived from a prokaryote, eukaryote, or archaea.
  • the target nucleic acid may be RNA or DNA.
  • a DNA target may be single stranded or double stranded.
  • the target nucleic acid does not require a specific target flanking sequence, such as a sequence equivalent to a protospacer adjacent motif or protospacer flanking sequence.
  • the Ago protein may create a double strand break or single strand break.
  • an Ago protein when a Ago protein forms a single strand break, two Ago proteins may be used in combination to generate a double strand break.
  • an Ago protein comprises one, two, or more nuclease domains.
  • an Ago protein comprises one, two, or more catalytic domains.
  • One or more nuclease or catalytic domains may be mutated in the Ago protein, thereby generating a nickase protein capable of generating single strand breaks.
  • mutations in one or more nuclease or catalytic domains of an Ago protein generates a catalytically dead Ago protein that can bind but not cleave a target nucleic acid.
  • Ago proteins can be targeted to target nucleic acid sequences by a guiding nucleic acid.
  • the guiding nucleic acid is a guide DNA (gDNA).
  • the gDNA can have a 5' phosphorylated end.
  • the gDNA can be single stranded or double stranded. Single stranded gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length.
  • the gDNA can be less than 10 nucleotides in length.
  • the gDNA can be more than 50 nucleotides in length.
  • Argonaute-mediated cleavage can generate blunt end, 5' overhangs, or 3' overhangs.
  • one or more nucleotides are removed from the target site during or following cleavage.
  • Argonaute protein can be endogenously or recombinantly expressed within a cell.
  • Argonaute can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome.
  • an Argonaute protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide.
  • polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
  • Guide DNAs can be provided by genetic or episomal DNA within a cell.
  • gDNA are reverse transcribed from RNA or mRNA within a cell.
  • gDNAs can be provided or delivered to a cell expressing an Ago protein.
  • Guide DNAs can be provided or delivered concomitantly with an Ago protein or sequentially.
  • Guide DNAs can be chemically synthesized, assembled, or otherwise generated using standard DNA generation techniques known in the art.
  • Guide DNAs can be cleaved, released, or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.
  • compositions comprising a nuclease such as an nucleic acid-guided nuclease (e.g., Cas9, Cpfl, MAD2, or MAD7) or a DNA-guided nuclease (e.g., Ago), linked to a chromatin-remodeling enzyme.
  • a nuclease fusion protein as described herein may provide improved accessibility to regions of highly-structured DNA.
  • Non-limiting examples of chromatin-remodeling enzymes that can be linked to a nucleic-acid guided nuclease may include: histone acetyl transferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), chromatin remodeling complexes, and transcription activator-like (Tal) effector proteins.
  • Histone deacetylases may include HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, sirtuin 1, sirtuin 2, sirtuin 3, sirtuin 4, sirtuin 5, sirtuin 6, and sirtuin 7.
  • Histone acetyl transferases may include GCN5, PCAF, Hatl, Elp3, Hpa2, Hpa3, ATF-2, Nutl, Esal, Sas2, Sas3, Tip60, MOF, MOZ, MORF, HBOl, p300, CBP, SRC-1, ACTR, TIF-2, SRC-3, TAFII250, TFIIIC, Rttl09, and CLOCK.
  • Histone methyltransferases may include ASH1L, DOT1L, EHMT1, EHMT2, EZH1, EZH2, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM2, SET, SETBP1, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, SETD6, SETD7, SETD8, SETD9, SETDB1, SETDB2, SETMAR, SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, SUV420H1, and SUV420H2.
  • Chromatin-remodeling complexes may include SWI/SNF, ISWI, NuRD/Mi-2/CHD, F O80 and SWR1.
  • the nuclease is a wild-type nuclease.
  • the nuclease is a chimeric engineered nuclease.
  • Chimeric engineered nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups disclosed herein; advantageously the fragments are from nuclease orthologs of different species.
  • a chimeric engineered nuclease can be comprised of fragments or domains from at least two different nucleases.
  • a chimeric engineered nuclease can be comprised of fragments or domains from at least two different species.
  • a chimeric engineered nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species.
  • more than one fragment or domain from one nuclease or species wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species.
  • a chimeric engineered nuclease comprises 2 fragments, each from a different protein or nuclease.
  • a chimeric engineered nuclease comprises 3 fragments, each from a different protein or nuclease.
  • a chimeric engineered nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 5 fragments, each from a different protein or nuclease.
  • Nuclease fusion proteins can be recombinantly expressed within a cell.
  • a nuclease fusion protein can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome.
  • a nuclease and a chromatin-remodeling enzyme may be engineered separately, and then covalently linked, prior to delivery to a cell.
  • a nuclease fusion protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
  • compositions comprising a cell-cycle-dependent nuclease are provided.
  • a cell-cycle dependent nuclease generally includes a targeted nuclease as described herein linked to an enzyme that leads to degradation of the targeted nuclease during Gl phase of the cell cycle, and expression of the targeted nuclease during G2/M phase of the cell cycle.
  • Such cell-cycle dependent expression may, for example, bias the expression of the nuclease in cells where homology-directed repair (HDR) is most active (e.g., during G2/M phase).
  • HDR homology-directed repair
  • the nuclease is covalently linked to cell-cycle regulated protein such as one that is actively degraded during Gl phase of the cell cycle and is actively expressed during G2/M phase of the cell cycle.
  • the cell-cycle regulated protein is Geminin.
  • Other non- limiting examples of cell-cycle regulated proteins may include: Cyclin A, Cyclin B, Hsll, Cdc6, Finl, p21 and Skp2.
  • the nuclease is a wild-type nuclease.
  • the nuclease is a engineered nuclease.
  • Engineered nucleases can be non-naturally occurring.
  • Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.
  • Non-naturally targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems.
  • Engineered nuclease systems can comprise one or more of an engineered nuclease, such as an engineered nucleic acid-guided nuclease, an engineered guide nucleic acid, an engineered polynucleotides encoding said nuclease, or an engineered polynucleotides encoding said guide nucleic acid.
  • Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.
  • Non-limiting examples of types of engineering that can be done to obtain a non- naturally occurring nuclease system are as follows.
  • Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell.
  • Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery.
  • Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs.
  • Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system.
  • Engineering can alter, increase, or decrease protein stability.
  • Engineering can alter, increase, or decrease processivity of nucleic acid scanning.
  • Engineering can alter, increase, or decrease target sequence specificity.
  • Engineering can alter, increase, or decrease nuclease activity.
  • Engineering can alter, increase, or decrease editing efficiency.
  • Engineering can alter, increase, or decrease transformation efficiency.
  • Engineering can alter, increase, or decrease nuclease or guide
  • non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 41-60), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 127-146), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 147-166), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 61-80), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 21-40) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 1-20), or engineered guide nucleic acids comprising any
  • nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 168), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 169), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 170), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 171), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 167) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 108-110), or engineered guide nucleic acids compatible with any targetable nucle
  • nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.
  • a guide nucleic acid can be DNA.
  • a guide nucleic acid can be RNA.
  • a guide nucleic acid can comprise both DNA and RNA.
  • a guide nucleic acid can comprise modified of non- naturally occurring nucleotides.
  • the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.
  • Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.
  • Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features.
  • Common features can include sequence outside a pseudoknot region.
  • Common features can include a pseudoknot region (e.g., 172-181).
  • Common features can include a primary sequence or secondary structure.
  • a guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence.
  • a guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid.
  • Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.
  • the nuclease is a chimeric nuclease.
  • Chimeric nucleases can be engineered nucleases.
  • Chimeric nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid- guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups; advantageously the fragments are from nuclease orthologs of different species.
  • a chimeric nuclease can be comprised of fragments or domains from at least two different nucleases.
  • a chimeric nuclease can be comprised of fragments or domains from at least two different species.
  • a chimeric nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 5 fragments, each from a different protein or nuclease.
  • Figures 1A-C depict an example of an overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design and workflow.
  • Figure 1A shows an example of the CREATE methodology which allows programmatic genome modifications to be focused on key amino acid residues or promoter targets across the genome. Such libraries thus enable systematic assessment of sequence/activity relationships for a wide variety of genomic targets in parallel.
  • Figure IB depicts an example of CREATE cassettes designed to encode both homology arm (HA) and guide RNA (gRNA) sequences to target a specific locus in the E. coli genome.
  • HA homology arm
  • gRNA guide RNA
  • the 100 bp homology arm was designed to introduce a specific codon mutation (target codon) that can be selectively enriched by a synonymous PAM mutation to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis.
  • the PI and P2 sites black) serve as general priming sites allowing multiplexed amplification, cloning and sequencing of many libraries in parallel.
  • the promoter J23119, green
  • J23119, green is a constitutive promoter that drives expression of the gRNA.
  • the HA design for introducing a stop codon at residue 145 in the galK locus is also depicted at the bottom of Figure IB.
  • the top sequence shows the wildtype genome sequence with the PAM (CCG; the reverse complement of which is CGG, which is recognized by S.
  • FIG. 1C depicts an overview of an example CREATE workflow.
  • CREATE cassettes are synthesized on a microarray delivered as large oligo pools (10 4 to 10 6 individual library members). Parallel cloning and recombineering allowed processing of these pools into genomic libraries, in some cases in 23 days. Deep sequencing of the CREATE plasmids can be used to track the fitness of thousands of precision mutations genome wide following selection or screening of the mutant libraries.
  • Figure 2A-D depicts an example of the effect of Cas9 activity on transformation and editing efficiencies.
  • the galK 120/17 CREATE cassette 120 bp HA and 17 bp PAM/codon spacing) targeting codon 145 in galK gene or a control non-targeting gRNA vector was transformed in cells carrying pSFM5 along with dCas9 (e.g. left set of bars in Figure 2A) or Cas9 (e.g. right set of bars in Figure 2A) plasmids.
  • the pSFM5 plasmid carries lambda red recombination machinery.
  • the cas9 gene was cloned into the pBTBX-2 backbone under the control of a pBAD promoter to allow control of the cleavage activity by addition of arabinose. Transformation efficiencies of each vector are shown with dark grey bars. The total number of recombinant cells (light grey bars) were calculated based on red/white colony screening on MacConkey agar. In cases where white colonies were undetectable by plate based screening we assumed 10 4 editing efficiencies. A 10 2 fold reduction in transformation efficiency compared to the non-targeting gRNA control was also observed for CREATE cassettes transformed into the Cas9 background.
  • Figure 2B depicts an example of the characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). Dark grey and light grey bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing.
  • Figure 2C shows example data from sequencing of the genomic loci from CREATE recombineering reactions.
  • the galK cassettes from Figure 2B are labeled according to the HA length and PAM codon spacing.
  • the other loci shown were cassettes isolated from multiplexed library cloning reactions.
  • the bar plot ( Figure 2C) indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette.
  • the + and labels at the bottom indicate the presence or absence of the designed mutation at the two relevant sites in each clone.
  • the circular inset indicates the relative position of each gene on the E. coli genome.
  • Figure 2D depicts an example of library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of these plasmid counts for the entire library. The distribution follows expected Poisson distribution for low average counts.
  • Example 3 CREATE-recording used to engineer trackable episomal DNA libraries
  • Figure 3A depicts an example of an overview of the method used to generate a trackable episomal DNA library. Transformation of a CREATE recorder plasmid generates modifications of the target DNA at two sites. One edit occurs to the desired target gene (gray) introducing a codon or promoter mutation designed to test specific engineering objectives. The second edit targets a functionally neutral site and introduces a 15 nucleotide barcode (BC, black).
  • BC 15 nucleotide barcode
  • Figure 2B depicts an example of the CREATE barcode design.
  • a degenerate library is constructed from overlapping oligos and cloned in a separate site of the CREATE vector to make a library of CREATE recorder cassettes that can be coupled to the designer editing libraries.
  • Figure 2C depicts an exemplary CREATE record mapping strategy. Deep sequencing of both the target DNA (left) and CREATE plasmids allows a simple sequence mapping strategy by allowing each editing cassette to be uniquely assigned by the barcode sequence. This allows the relative fitness of each barcode (and thus edit) to be tracked during selection or screening processes and can be shuttled between different organisms using standard vectors.
  • Methods and compositions disclosed herein were used to mutate a key residue of the cas9 gene used for the CREATE process (e.g. Figure 4A-4B).
  • a cassette was designed to make an R1335K mutation in the Cas9 protein.
  • This cassette was cloned into a CREATE plasmid and transformed into MG1655 E. coli carrying the pSEVI5 and X2-Cas9 vectors.
  • the pSEVI5 vector comprises lambda red recombination machinery.
  • the X2-Cas9 vector comprises an arabinose- inducible Cas9 expression cassette.
  • the edited CFUs numbers were calculated by extrapolation of the data in Figure 5A to the total number of CFUs on the plate.
  • the barcoded CFUs numbers were calculated by counting the number of white colonies in a galK screening (site in which barcode is integrated). These data show that the majority of barcoded colonies contained the designed genomic edit.
  • Figure 6 depicts an example of combinatorial genome engineering and tracking.
  • Three recursive CREATE plasmids are used, each with a gRNA targeting one of the other markers in this series (indicated by T-lines).
  • an edit and barcode are incorporated into the genome and the previous CREATE plasmid is cured.
  • rapid iterative transformations can be performed to construct either a defined combination of mutations or a combinatorial library to search for improved phenotypes.
  • the recording site is compatible with short read sequencing technologies that allow the fitness of combinations to be tracked across a population. Such an approach allows rapid investigation of genetic epistasis and optimization of phenotypes relevant to basic research or for commercial biological applications.
  • Figure 3D and Figure 3E depict another example of combinatorial genome engineering.
  • an editing cassette blue rectangle in Figure 3D
  • a recorder cassette green rectangle in Figure 3D
  • each recorder sequence comprises a 15 nucleotide barcode.
  • the recorder sequences are each inserted adjacent to the last recorder sequence, despite where the editing cassette was inserted.
  • Each recorder cassette can simultaneously delete a PAM site.
  • the engineered cells can be selected and then the inserted mutations can be tracked by sequencing the recorder region that comprises all of the inserted recorder cassettes.
  • each editing cassette can be linked or associated with one or more unique barcodes within the recorder cassette. Since each recorder cassette corresponds to the associate editing cassette, then the mutations incorporated by the editing cassettes can be tracked or identified by the sequence of the recorder cassette, or the sequence of the barcodes within the recorder cassette. As is demonstrated in Figure 3E, by sequencing all of the recorder cassettes or barcodes within the recorder cassettes, each of the inserted mutations can be identified and tracked.
  • the inserted recorder sequences can be referred to as a recorder site, recorder array, or barcode array.
  • sequencing the barcode array or recorder site allows tracking of the history of genomic editing events in the strain.
  • the barcode array or recorder site can identify the order in which the mutations were inserted as well as what the mutation is.
  • Each CREATE plasmid can be positively selected for based on the indicated antibiotics (Trimeth: trimethoprim, Carb: carbenicillin, Tet: tetracycline) and contains a gRNA targeting one of the other antibiotic markers.
  • the reCREATEl plasmid can be selected for on carbenicillin and encodes a gRNA that will selectively target the trimethoprim resistance gene for destruction.
  • One pass through the carb/tetracycline/trimethoprim antibiotic marker series allows selective incorporation of up to three targeted edits.
  • the recording function would be implemented as illustrated in Figure 5, but is omitted here for simplicity.
  • Figure 7B depicts an example of data from iterative rounds of CREATE engineering.
  • a serial transformation series began with cells transformed with X2cas9 (kan) and the reCREATEl vector.
  • the spot plating results indicate that curing is 99.99% effective at each transformation step, ensuring highly efficient engineering in each round of transformation.
  • Simultaneous genome editing and plasmid curing in each transformation step with high efficiencies was achieved by introducing the requisite recording and editing CREATE cassettes into recursive vectors as disclosed herein (e.g. Figure 7B).
  • FIG. 8A shows example anatomy of a CREATE cassette designed for protein engineering.
  • Cassettes encode a spacer (red) along with part of a guide RNA (gRNA) sequence and a designer homology arm (HA) that can template homologous recombination at the genomic cut site.
  • gRNA guide RNA
  • HA designer homology arm
  • the HA is designed to systematically couple mutations to a specified codon or target site (TS, blue) to a nearby synonymous PAM mutation (SPM, red) to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis.
  • the priming sites (PI and P2, black) are designed to allow multiplexed amplification and cloning of specific subpools from massively parallel array based synthesis.
  • a constitutive promoter (green) drives expression of the gRNA.
  • Figure 8 A further shows a detailed example of HA design for introducing a stop codon at residue
  • CREATE workflow CREATE oligos are synthesized on a microarray and delivered as large pools (10 4 -10 6 individual library members). These cassettes are amplified and cloned in multiplex with the ability to subpool designs. After introduction of the CREATE plasmids into cells expressing Cas9 mutations are transferred to the genome with high efficiencies.
  • Measurement of the frequency of each plasmid before (fi, tl) and after selection (fi, t2) by deep sequencing provides enrichment scores (Ei) for each CREATE cassette. These scores allow rapid identification of adaptive variants at up to single nucleotide or amino acid resolution for thousands loci in parallel.
  • Figure 9A depicts an example of the effects of Cas9 activity on transformation and editing efficiencies were measured using no a cassette with a spacer and 120 bp HA targeted to the galK (galK Y " 145* _120 y ⁇ 7)
  • the total transformants (TT white) produced by this CREATE vector are shown in white and the total number of recombinants (TR) in dark blue.
  • TR is calculated as the product of the editing efficiency and Tt.
  • Asterisks indicate experiments in which recombinants could not be observed by plate based screening.
  • Figure 9B shows an example of characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency.
  • FIG. 9C depicts an example of determination of editing efficiency for oligo derived cassettes by sequencing of the genomic loci.
  • the gor/ _Y145*_120/17 cassette from Figures 9A and 9B is shown in white for reference.
  • the bar plot indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette.
  • the circular inset indicates the relative position of each gene on the E. coli genome.
  • Figure 9D depicts distance between
  • Example 10- Scanning saturation mutagenesis of an essential chromosomal gene
  • Figure 1 OA- IOC depict an example where CREATE was used to generate a full scanning saturation mutagenesis library of the folA gene for identification of mutations that can confer resistance to TMP.
  • the count weighted average enrichment score from two trials of selection is plotted as a function of residue position (right).
  • Cassettes encoding nonsynonymous mutations are shown in gray, and those encoding synonymous mutations in black.
  • Cassettes with enrichment scores greater than 1.8 are highlighted in red and mutations that affect previously reported sites are labeled for reference.
  • the dashed lines indicate enrichment values that are significantly different (p ⁇ 0.05) from the synonymous dataset as determined by bootstrapping of the confidence intervals. These values are shown as a histogram for reference (middle).
  • FIGS 10D-10F depict example growth analysis of wt (left) F153W (middle) and F153R (right) variants in the indicated range of TMP concentrations (shown right).
  • Figure 11A depicts example genomic plots of enrichment scores for CREATE libraries grown at 42.2°C in minimal media conditions.
  • the innermost plot illustrates the counts of the plasmid library before selection with labels for the top 20 representatives.
  • the outer ring shows the fitness of pooled library variants after growth in minimal media at elevated temperature (42.2°C).
  • the bars are colored according to log2 enrichment. Blue bars represent detrimental mutations, red bars represent significantly enriched mutations and gray bars indicate mutations that appear neutral in this assay.
  • the 20 most enriched variants are labeled for reference and labels corresponding to ALE-derived variants are colored red.
  • Figure 1 IB shows a histogram of enrichment scores of all library variants (gray), ALE-derived mutants (red) and synonymous mutants (black) under 42.2°C growth conditions.
  • the dotted gray line indicates significant enrichment scores compared to the synonymous population.
  • the histograms are normalized as a fraction of the total number of variants passing the counting threshold (number indicated in parentheses). Note that 231 of 251 unique nonsynonmous ALE cassettes sampled by this experiment appear to provide significant growth benefits.
  • Figure 11C depicts enrichment of mutations based on mutational distance from wt.
  • Figure 12A depicts example genomic plots of enrichment (log2) of library variants in the presence of erythromycin (outer) and rifampicin (middle). The innermost plot illustrates the count distribution of the input plasmids for reference. Coloring and labeling are as in Figure 11A-11C.
  • Figure 12B depicts CREATE mutation mapping at the individual amino acid level. CREATE cassettes that introduce bulky side chains to amino acids 1572, S531 and L533 (red) of the RNA polymerase ⁇ subunit (rpoB) are highly enriched in the presence of rifampicin from genome wide targeting libraries.
  • Figure 11C depicts a zoomed in region of the MarA transcription factor bound to its cognate DNA target is shown for reference (PDB ID 1BL0).
  • the wt Q89 residue protrudes away from the DNA binding interface due to unfavorable steric and electrostatic interactions between this side chain and the DNA.
  • the Q89N substitution identified by selection introduces a H-donor and shortens the side chain such that productive H-bonding can occur between this residue and the DNA backbone. Such an interaction likely favors stronger DNA binding and induction of downstream resistance genes.
  • Figure 12D depicts enrichment plot of genome wide targeting libraries with 10 g/L acetate or 2 g/L furfural respectively. Coloring is the same as in Figure 11 A.
  • Figure 12E depicts CREATE mapping at a gene level reveals trends at the gene level. Strong enrichment fis metA and fadR targeting mutations in acetate suggests important roles for these genes in acetate tolerance, as depicted in Figure 12F, same as in the furfural selections depicted in Figure 12E.
  • Figures 13A-13D Illustration of example designs compatible with CREATE strategy are depicted in Figures 13A-13D.
  • Figure 13 A shows protein engineering applications a silent codon approach is taken (top, see also Figure 8A-8B). This mutation strategy allows targeted mutagenesis of key protein regions to alter features such as DNA binding, protein-protein interactions, catalysis, or allosteric regulation. Above an illustration of a DNA binding saturation mutagenesis library designed for the global transcription factor Fis designed for this study is illustrated.
  • Figure 13B shows promoter mutations PAM sites in proximity to a specified transcription start site (TSS) can be disrupted through nucleotide replacement or integration cassettes.
  • TSS transcription start site
  • FIG. 13C shows an example cassette design for mutagenizing a ribosome binding site (RBS).
  • Figure 13D depicts an example of a simple deletion design. Points a and b are included to illustrate distance between two sites at the gene deletion locus. In all cases cassette designs disrupt a targeted PAM to allow selective enrichment of the designed mutant.
  • Figures 14A-14B depict edits made the DMAPP pathway in E. coli which is the precursor to lycopene. Edits were made to the ORF's for 11 genes. Eight edits were designed to improve activity and 3 edits were designed to reduce activity of competitive enzymes. Approximately 10,000 variants within the lycopene pathway were constructed and screened.
  • FIG. 15 depicts Cas9 editing control experiments.
  • the CREATE galK_120/17 off cassette (relevant edits shown in red at bottom) was transformed into different backgrounds to assess the efficiency of homologous recombination between the CREATE plasmid and the target genome.
  • Red colonies represent unedited (wt) genomic variants and white colonies represent edited variants.
  • Transformation into cells containing only pSEVI5 or pSEVI5/X2 and dCas9 plasmids exhibited no detectable recombination as indicated by the lack of white colonies.
  • active Cas9 X2-Cas9 far right
  • FIGS 16A-16C depict experiments testing the toxicity of generating double strand breaks in E. coli.
  • gRNA targeting galK spacer sequence TTAACTTTGCGTAACAACGC
  • folA spacer sequence GTAATTTTGTATAGAATTTA
  • rescue efficiencies of 10 3 -10 4 are observed upon co- transformation of a single stranded donor oligo indicating the need for a homologous repair template to alleviate this toxicity
  • b) Toxicity of multiple CREATE edits The targeted sites are illustrated graphically on the left and at the bottom of the bar graph.
  • a non-targeting gRNA control was used to estimate transformation efficiency based on no edits (far left, no target sites).
  • Figures 16D-16E depicts data from another such cell survival assay.
  • the editing cassette contained a F153R mutation, which leads to temperature sensitivity of the folA gene.
  • the recorder cassette contained a 15 nucleotide barcode designed to disrupt the galK gene, which allows screening of colonies on MacConkey agar plates. In this example, generating two cuts decreased cell survival compared to generating zero or one cut.
  • Figure 16F depicts data from a transformation and survival assay comparing a low copy number plasmid (Ec23) expressing Cas9 and a high copy number plasmid (MG) expressing Cas9.
  • Ec23 low copy number plasmid
  • MG high copy number plasmid
  • Different vectors with distinct editing cassettes were used to target different gene target sites (folA, lacZ, xylA, and rhaA).
  • the recorder cassettes were designed to target different sequences within the galK gene, either site SI, S2, or S3.
  • the recursive vector used had a different vector backbone compared to the others and is part of a 3-vector system designed for iterative engineering that cures the cell of the previous round vector.
  • the data indicates that lower Cas9 expression (Ec23 vector) increases survival and/or transformation efficiency.
  • the decreased Cas9 expression increased transformation efficiency by orders of magnitude in cells undergoing two genomic cuts (editing cassette and recording cassette).
  • Figure 16G shows the correlation between editing efficiency and recording efficiency in cells transformed with the low copy number plasmid (Ec23) expressing Cas9 and the high copy number plasmid (MG) expressing Cas9. Editing and recording efficiencies were similar for high (MG) and lower (Ec23) expression of cas9. Ec23 yielded more colonies and had better survival (as shown in Figure 16E), while maintaining a high efficiency of dual editing (editing cassette and recorder cassette incorporation). .
  • Figure 17A-D depict an example CREATE strategy for gene deletion.
  • Figure 17A depicts an example cassette design for deleting 100 bp from the galK ORF.
  • the HA is designed to recombine with regions of homology with the designated spacing, with each 50 bp side of the CREATE HA designed to recombine at the designated site (blue).
  • the PAM/spacer location (red) is proximal to one of the homology arms and is deleted during recombination, allowing selectable enrichment of the deleted segment.
  • Figure 17B depicts electrophoresis of chromosomal PCR amplicons from clones recombineered with this cassette.
  • Figure 17C depicts design for 700 bp deletion as in a).
  • Figure 17D depicts colony PCR of 700 bp deletion cassettes as in Figure 17B).
  • the asterisks in Figure 17B and 17D indicate colonies that appear to have the designed deletion. Note that some clones appear to have bands pertaining to both wt and deletion sizes indicating that chromosome segregation in some of the colonies is incomplete when plated
  • FIG. 18 depicts effect of PAM distance on editing efficiency using linear dsDNA PCR amplicons and co-transformation with a gRNA.
  • On the left is an illustration of the experiments using PCR amplicons containing a dual (TAATAA) stop codon on one side (asterisk) and a PAM mutation just downstream of the galK gene (gray box) on the other end were co-transformed with a gRNA targeting the downstream galK PAM site.
  • the primers were designed such that the mutations were 40 nt from the end of the amplicon to ensure enough homology for recombination. Data was obtained from these experiments by red/white colony screening. A linear fit to the data is shown at the bottom.
  • Figure 19A depicts reads from an example plasmid library following cloning are shown according to the number of total mismatches between the read and the target design sequence. The majority of plasmids are matches to the correct design. However, there are a large number of 4 base pair indel/mismatch mutants that were observed in this cloned population.
  • Figure 19B depicts a plot of the mutation profile for the plasmid pool as a function of cassette position. An increase in the mutation frequency is observed near the center of the homology arm (HA) indicating a small error bias in the sequencing or synthesis of this region. We suspect that this is due to the presence of sequences complementary to the spacer element in the gRNA.
  • HA homology arm
  • Figure 19C depicts a histogram of the distances between the PAM and codon for the CREATE cassettes designed in this study. Large majority (> 95%) were within the design constraints tested in Figure 9A-9D. The small fraction that are beyond 60 bp were made in cases where there was no synonymous PAM mutation within closer proximity.
  • Figure 19D depicts library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of the number of variants having the indicated plasmid counts in the cloned libraries.
  • Figure 20A depicts a correlation plot of CREATE cassette read frequencies in the plasmid population prior to Cas9 exposure (x-axis) and after 3 hours post transformation into a Cas9 background.
  • Figure 20B depicts a correlation plot between replicate recombineering reactions following overnight recovery. The gray lines indicate the line of perfect correlation for reference. R2 and p values were calculated from a linear fit to the data using the Python SciPy statistics package. A counting threshold of 5 for each replicate experiment was applied to the data to filter out noise from each data set.
  • Figure 21 depicts growth characteristics of folA mutations in M9 minimal media.
  • Figure 22 depicts enrichment profiles for folA CREATE cassettes in minimal media.
  • Cassettes that encode synonymous HA are shown in black and non-synonymous cassettes in gray, the dashed lines indicate enrichment scores with p ⁇ 0.05 significance compared to the synonymous population mean as estimated from a bootstrap analysis.
  • the enrichment score observed for each mutant cassette at each position in the protein sequence is shown to the left and a histogram of these enrichment scores as a fraction of the total variants to the right.
  • the two populations appear to be largely similar. conserveed residues that are highly deleterious are shown in blue for reference.
  • Figure 23A depicts on the left a global overview of AcrB efflux pump. Substrates enter the pump through the openings in the periplasmic space and are extruded via the AcrB/AcrA/TolC complex across the outer membrane and into the extracellular space. Library targeted residues are highlighted by blue spheres for reference and the red dot indicates the region where many of the enriched variants clustered. On the right is a blow up of the loop-helix motif abutting the central funnel where enriched mutations in isobutanol were identified (red and teal spheres), presumably affecting solute transport from the periplasmic space.
  • Mutants targeting the T60 position was also enriched in the presence of erythromycin.
  • Figure 23C depicts improved growth of the AcrB T60N mutant was observed in inhibitory concentrations of erythromycin (200 ⁇ g/mL) and isobutanol (1.2%) in shaking 96 well plate, indicating that this mutation may enhance the efflux activity of this pump towards many compounds.
  • CREATE cassette designs were individually synthesized, cloned and sequence verified before recombineering into E. coli MG1655 to reconstruct the mutations and the genomic modifications were sequence verified by colony PCR to confirm the genotype-phenotype association.
  • Figures 24A-24D depict the number of variants detected in CREATE experiments involving 500 ⁇ g/mL rifampicin (Figure 24A), 500 ⁇ g/mL erythromycin (Figure 24B), 10 g/L acetate ( Figure 24C), and 2 g/L furfural ( Figure 24D). While naturally evolving systems or error- prone PCR are highly biased towards sampling single nucleotide polymorphisms (e.g. 1 nt mutations, red) these histograms illustrate the potential advantages for rational design approaches that can identify rare or inaccessible mutations (2 and 3 nt, green and blue respectively).
  • Figure 26A depicts a crystal structure of the Crp regulatory protein with variants identified by furfural selection highlighted in red (PDB ID 3N4M).
  • PDB ID 3N4M A number of the CREATE designs targeting residues near the cyclic- AMP binding site (aa. 28-30, 65) of this regulator were highly enriched in minimal media selections for furfural or thermal tolerance suggesting that these mutations may enhance E. coli growth in minimal media under a variety of stress conditions.
  • Figure 26B depicts validation the Crp S28P mutant identified in 2 g/L furfural selections in M9 media. This mutant was reconstructed as described for AcrB T60S in Example
  • CRISPR EnAbled Trackable genome Engineering couples highly efficient CRISPR editing with massively parallel oligomer synthesis to enable trackable precision editing on a genome wide scale. This can be accomplished using synthetic cassettes that link a targeting guide RNA with rationally programmable homologous repair cassettes that can be systematically designed to edit loci across a genome and track their phenotypic effects.
  • CREATE CRISPR EnAbled Trackable genome Engineering
  • each CREATE cassette is designed to include both a targeting guide RNA (gRNA) and a homology arm (HA) that introduces rational mutations at the chromosomal cleavage site (e.g. Figure 8A).
  • the HA encodes both the genomic edit of interest coupled to a synonymous PAM mutation that is designed to abrogate Cas9 cleavage after repair (e.g. Fig 8B).
  • This arrangement not only ensures that the desired edit can be selectively enriched to high levels by Cas9 but also that the sequences required to guide cleavage and HR are covalently coupled during synthesis and thus delivered simultaneously to the same cell during transformation.
  • the high efficiency editing of CRISPR based selection in E. coli should also ensure a strong correlation between the CREATE plasmid and genomic sequences and allow the plasmid sequence to serve as a transacting barcode or proxy for the genomic edit (e.g. Figure 8C).
  • FIG 15A-15D This is in contrast to single stranded recombineering approaches in which oligonucleotides anneal with high efficiency at the lagging strand of the replication fork.
  • Cas9 also adversely impacts the overall transformation efficiency due to toxicity of dsDNA cleavage in E. coli (e.g. Figure 9A-9D). This toxicity is further exacerbated when performing CREATE at two sites simultaneously in the same cell (e.g. Figure 16A-16E); which when combined with the absence of an effective nonhomologous end joining pathway strongly supports the fact that off target editing events should be rare within a recombineered library.
  • the pooled oligo libraries were amplified and cloned in parallel and a subset of single variants were isolated to further characterize editing efficiency at different loci (e.g. Figure 9C).
  • Amplification and sequencing of the genomic loci after transformation with the CREATE plasmids revealed editing efficiencies of 70% on average (106 of 144 clones sampled at seven different loci), with a range of 30% for the metA_V20L cassette to 100% for the rpoH_V179H cassette.
  • the differences in editing efficiency for each cassette were highly correlated with the distance between the PAM and target codon (e.g. Figure 9D), a feature that also appears to affect the ability of linear DNA templates to effectively introduce targeted mutations (e.g.
  • DHFR dihydrofolate reductase
  • TMP antibiotic trimethoprim
  • a CREATE library designed to saturate every codon from 2-158 of the DHFR enzyme was recombineered into E. coli MG1655 and allowed to recover overnight. Following recovery - 10 9 cells (1 mL saturated culture) was transferred into media containing inhibitory TMP concentrations and allowed to grow for 48 hours. The resulting plasmid populations were then sequenced to assess our ability to capture information at the level of single amino acid substitutions that can confer TMP resistance (e.g. Figure 10A-10B). Bootstrapped confidence intervals for mutational effect were derived using the enrichment data of the 158 synonymous mutations included in this experiment (e.g. Figure 10A-10B).
  • the data suggest that a bulky substitution is necessary to sterically hinder 7 rifampicin binding.
  • the rifampicin selections enriched a number mutations to the MarA transcriptional activator, whose over-expression due to marR knockout is a well studied aspect of multiple antibiotic resistance (MAR) phenotypes in E. coli .
  • MAR multiple antibiotic resistance
  • Q89 is positioned near the DNA backbone but pointed into solution due to a steric clash between other possible rotamers and nearest phosphate group on the DNA backbone (e.g. Figure 12C).
  • Modeling of the MarA Q89N and Q89D mutations identified by this selection suggests that shortening the side chain by a single carbon unit may enable new protein-DNA H-bonding interactions and thereby improve the overall MAR induction response.
  • T60N in Figure 23E-23F and D73L in Figure 25 can significantly improve tolerance to both erythromycin as well as isobutanol isobutanol, further supporting the idea that this motif may provide a useful engineering target for broad range of tolerance phenotypes.
  • AcrB we also observed enrichment of multiple soxR and rpoS mutants, both of which have been previously implicated in stress tolerance and general antibiotic resistance phenotypes. In total, we observed 136 of the
  • SoxR SoxR, AcrB, or dxs proteins, each of which has extensive prior validation as antibiotic resistance genes.
  • Fis, Fnr and FadR regulators are all involved transcriptional regulation of the primary acetate utilization gene acs, and implicated in the so-called "acetate- switch" which allows the cell to effectively scavenge acetate. Knockout of these regulators leads to constitutive expression of the acetate utilization pathways and improved acetate growth phenotypes suggesting that the mutations identified in this study (e.g. Figure 12E-12F) likely inhibit these regulatory functions by destabilizing their respective protein targets.
  • CREATE allows parallel mapping of tens of thousands of amino acid and promoter mutations in a single experiment.
  • the construction, selection, and mapping of >50,000 genome-wide mutations can in some examples be accomplished in 1-2 weeks by a single researcher, offering orders of magnitude improvement in economics, throughput, and target scale over the current state of the art methods in synthetic biology.
  • the ability to track the enrichment of library variants allows multiplex sequence to activity mapping by a simple PCR based workflow using just a single set of primers as opposed to more complicated downstream sequencing approaches that are limited to a few dozen loci.
  • the CREATE strategy provides a streamlined approach for sequence to activity mapping and directed evolution by integrating multiplexed oligo synthesis, CRISPR- CAS editing, and high-throughput sequencing.
  • the plasmid cassette should have minimal or no functional influence relative to the genomic edit, ii) the genomic loci will only be either the WT sequence or the sequence from the editing cassette that we obtain via sequencing, and iii) offsite editing is highly unlikely given the toxicity of CRISPR-Cas editing of multiple sites (e.g. Figure 16A-16E) or when performed in the absence of an added editing-repair template.
  • the use of replicate experiments and deeper sequencing can also address these issues.
  • Off target gRNA cleavage should be rare in E. coli due to the relatively small size of its genome (4 Mb), and thus lack of (non-targeted) regions of homology to the CREATE cassette. Moreover, the toxicity of gRNAs in the presence of Cas9 (e.g. Figure 9A) ensures that cells survival is compromised in E. coli due to dsDNA breaks. Each additional cut introduced into E. coli appears to incur multiplicative toxicity effects, even when homologous repair templates are provided for each cut site (e.g. Figure 16A-16E). This toxicity effect would be further exacerbated by the absence of a repair template to guide HR (e.g. Figure 16A-16E), as would be the case for an off-target cleavage event from a single gRNA targeting two sites but containing only a single HA.
  • a repair template to guide HR e.g. Figure 16A-16E
  • the folA library (3140 cassettes) was designed to be an unbiased, exploratory library for full single site saturation mutagenesis and sequence activity.
  • the genes we sought to maximize the probability of interesting genotypes by choosing to focus the diversity of sites most likely to have a functional impact on the targeted protein (e.g. DNA binding sites, active sites, regions identified as mutational hotspots by previous selections).
  • the sites that were included in these library designs were selected based on information deposited in databases including Ecocyc (biocyc.org/), Uniprot (uniprot.org/), and the PDB (rcsb.org/pdb) as well as relevant literature citations that identified residues or regions of interest using directed evolution approaches.
  • the Uniprot and Ecocyc databases provide manually curated sequence features that indicate mutational effects and important domains of each protein. In cases where there was enough structural information to model ligand or DNA binding sites the relevant crystal structures were loaded into Pymol and manual residue selections were made and exported as numerical lists.
  • Design of the CREATE cassettes was automated using custom Python scripts.
  • the basic algorithm takes a gene sequence, a list of target residues, and a list of codons as inputs.
  • the gene sequence is searched for all available PAM sites with the corresponding spacer sequence. This list is then sorted according to relative proximity to the targeted codon position.
  • the algorithm checks for synonymous mutations that can be made in-frame that also directly disrupt the PAM site, in the event that this condition is met the algorithm proceeds to making the prescribed codon change and designing the full CREATE cassette with the accompanying spacer and iterates for each input codon and position respectively. For each PAM mutation, all possible synonymous codon substitutions are checked before proceeding to the next PAM site.
  • codon saturation libraries in this study we chose the most frequent codons (genscript.com/cgi-bin/tools/codon_freq_table) for each designed amino acid substitution according to the E. coli usage statistics.
  • the script can be run rapidly on a laptop computer and was used to generate the full design of these libraries in ⁇ 10 minutes.
  • the algorithm used in this study was designed to make the most conservative mutations possible by sometimes using only the PAM as the selectable mutation marker.
  • Plasmids [00362] The X2-cas9 broad host range vector was constructed by amplifying the cas9 gene from genomic S. pyogenes DNA into the pBTBX2 backbone (Lucigen). A vector map and sequence of this vector and the galK_Y145*_120/17 CREATE cassette are provided at the following locations: benchling.eom/s/3c941j/edit; benchling.com/s/xRBDwcMy/edit.
  • Genomic libraries were prepared by transforming CREATE plasmid libraries into a wildtype E. coli MG1655 strain carrying the temperature sensitive pSIM5 plasmid (lambda RED) and a broad host range plasmid containing an inducible cas9 gene from cloned from S. pyogenes genomic DNA into the pBTBX-2 backbone (X2cas9, e.g. Figure 15A-15D).
  • pSEVI5 was induced for 15 min at 42°C followed by chilling on ice for 15 min. The cells were washed 3 times with 1 ⁇ 2 the initial culture volume of ddH20 (e.g. 10 mL washes for 50 mL culture).
  • the cells were recovered in LB + 0.4% arabinose to induce Cas9. The cells were recovered 1-2 hrs before spot plating to determine library coverage and transferred to a 10X volume for overnight recovery in LB+ 0.4% arabinose + 50 ⁇ g/mL kanamycin + 100 ⁇ g/mL carbenicillin. Saturated overnight cultures were pelleted and resuspended in 5 mL of LB. 1 mL was used to make glycerol stocks and the other 1 mL washed with the appropriate selection media before proceeding with selection.
  • the cells were harvested by pelleting and resuspension in fresh selection media. All selections were performed in shake flask and inoculated at an initial OD600 of 0.1. Three serial dilutions (48-96 hrs depending on growth rates in the target condition) were carried out for each selection by transferring 1/lOOth the media volume after the cultures reached stationary phase. The 42°C selections were performed in M9 media + 0.2% glucose to mimic low carbon availability from the initial adaptation. Antibiotic selections were carried out in LB + 500 ⁇ g/mL rifampicin or erythromycin to ensure stringent selection.
  • the solvent selections were performed in M9 + 0.4% glucose and either 10 g/L acetate (unbuffered) or 2 g/L furfural. Selections were harvested by pelleting 1 mL of the final culture and the cell pellet was boiled in 100 ⁇ _, TE buffer to preserve both the plasmid and the genomic DNA for further desired analyses.
  • Custom Illumina compatible primers were designed to allow a single amplification step from the CREATE plasmid and assignment of experimental reads using barcodes.
  • the CREATE cassettes were amplified directly from the plasmid sequences of boiled cell lysates using 20 cycles of PCR with the Phusion (NEB) polymerase using 60°C annealing and 1 :30 minute extension times. As in the cloning procedure a minimal number of PCR cycles was maintained to prevent accumulation of mutations and recombined CREATE cassettes that were observed when an excessive number of PCR cycles was implemented (e.g. >25-30).
  • Amplified fragments were verified and quantified by 1% agarose gel electrophoresis and pooled according to the desired read depth for each sample.
  • the pooled library was cleaned using Qiaquick PCR cleanup kit and processed for NGS using standard Illumina preparation kits.
  • the Dlumina sequencing and sample preparation were performed with the primers.
  • Paired-end Illumina sequencing reads were sorted according to the golay barcode index with allowance of up to 3 mismatches then merged using the usearch -fastq merge algorithm. Sorted reads were then matched against the database of designed CREATE cassettes using the usearch global algorithm at an identity threshold of 90% allowing up to 60 possible hits for each read. The resulting hits were further sorted according to percent identity and read assignment was made using the best matching CREATE cassette design at a final cutoff 98% identity to the initial design. It should be noted that this read assignment strategy attempts to identify correlations between the designed genotypes and may therefore miss other important features that arise due to mutations that could occur during the experimental procedure. This approach was taken both to simplify data analysis as well as evaluate the 'forward' design and annotation procedure and it's ability to accurately identify meaningful genetic phenomena.
  • Enrichment scores were calculated as the log2 enrichment score using the following equation: where F X;f is the frequency of cassette X at the final time point and F x i is the initial frequency of cassette X and W is the absolute fitness of each variant. Frequencies were determined by dividing the read counts for each variant by the total experimental counts including those that were lost to filtering. Each selection was performed in duplicate and the count weighted average of the two measurements was used to infer the average fitness score of each mutation as
  • Circle plots were generated using Circos v0.67. Plots were generated in Python 2.7 using the matplotlib plotting libraries and figures were made using Adobe Illustrator CS5. Entropy scores for the FolA (Figure 10A) were determined using the ProDy Python package and the Pfam accession PF00186 representative proteome alignment RP35.
  • FIG. 1 Figures of the protein libraries and high fitness mutations were made using The PyMol Molecular Graphics System, Schrodinger, LLC. The following are the proteins and PDBs used in the figure generation: AcrB (3W9H, 4K7Q, 3AOC), Fis (3JR9), Ihf (1IHF), RNA polymerase (4KMU, 4IGC), Crp (3N4M), MarA (1BLO), and SoxR (2ZHG).
  • Example 29 Testing Edit-Barcode correlation
  • Figure 27C shows the results from the sequencing data. Two of the edit/barcode combinations were found in 100% of the tested colonies (30/30 colonies), and the other edit/barcode combination transformation was found in approximately 97% of tested colonies (29/30 colonies). The single colony that was not properly engineered contained the gene edit, but not the barcode.
  • Figure 28 depicts an example strategy for selecting for the recording event (e.g., incorporation of the barcode by the recorder cassette), in addition to selecting for the editing cassette incorporation, thereby increasing the efficiency of recovering cells that have been both edited and barcoded.
  • the recording event e.g., incorporation of the barcode by the recorder cassette
  • sequences SO, SI, S2, etc. are designed to be targeted by the guide RNA associated with the recorder cassette of the next round.
  • a PAM mutation, a barcode, SI site, and regulatory elementary necessary to turn on a selectable marker are incorporated into the SO site in the target region. This turns on the TetR selectable marker and allows for enrichment of barcoded mutants variants with the SI site that have the first round PAM site deleted.
  • a new recorder cassette comprising a second PAM mutation, a second barcode, a S2 site, and a mutation that turns off the selectable marker is incorporated into the S I site from the previous round.
  • the recorder cassette from each round is designed to incorporate into a unique sequence (e.g., SO, SI, etc.) that was incorporated in the previous round. This ensures that the last round of barcoding was successful so that all desired engineering steps are contained in the final product.
  • the incorporation of PAM mutations at each step also helps ensure that the desired barcoded variants are selected for since cells having the unmodified PAM sequences will be killed as they can't escape CRISPR enzyme cleavage.
  • This strategy uses multiple methods to increase the efficiency of isolating desired variants that contain all of the engineered edits from each round of engineering.
  • the PAM mutation, selectable marker switch, and unique landing site incorporated in each round separately increase efficiency and together increase efficiency as well.
  • These tools allow for selection of each recording round and allow design of highly active recording guide RNAs.
  • An array of equally spaced (or not equally spaced, depending on the design) barcodes is generated and facilitates downstream analysis such as sequencing the barcode array to determine which corresponding edits are incorporated throughout the genome.
  • Figure 29 depicts an experimental design to test the selectable recorder strategy described above.
  • a plasmid (pRECl) containing an editing cassette and a recorder cassette was transformed into cells.
  • the editing cassette either contained a non-targeting editing cassette, or a mutation that incorporated a mutation (not TS) or a temperature sensitive mutation (TS) into a target gene.
  • the recorder cassette was designed to incorporate into the SO site in the target gene that originally had the tetR selectable marker turned off.
  • the recorder cassette also contained a PAM mutation that deleted the SO PAM site, first barcode (BCl), a unique SI site for the subsequent engineering round recording cassette to incorporate into, and a corrective mutation that will turn on the TetR selectable marker.
  • a guide RNA on the recorder cassette that targets a PAM site in the SO site allows a CRISPR enzyme, in this case Cas9, to cleave the SO site.
  • the recorder cassette recombines into the cleaved SO site.
  • the PAM mutation is incorporated, which means the SO-gRNA can no longer target the SO site, thereby killing WT cells and enriching for cells that received the barcode.
  • the TetR selectable marker was also turned on, allowing further selection of the barcoded variant.
  • FIGS 30A and 30B show the results from the experiment described above and depicted in Figure 29.
  • 16 were sequence and determined to all contain the designed barcode (Figure 30A).
  • Figure 30B shows that the control cells that did not contain the recorder target site (non-target) did not survive the presence of Tet, while cells that contained the target site were successfully barcoded as evidences by the turning on of TetR, allowing cells to be selected on Tet containing media.
  • the Tet resistant colonies were confirmed at the genomic site to have TetR gene turned on. These data showed that selectable recording was successful.
  • Example 31 Expression of MAD nucleases
  • Wild-type nucleic acid sequences for MAD1-MAD20 include SEQ ID NOs 21-40, respectively. These MAD nucleases were codon optimized for expression in E. coli and the codon optimized sequences are listed as SEQ ID NO: 41-60, respectively (summarized in Table 2).
  • Codon optimized MAD1-MAD20 were cloned into an expression construct comprising a constitutive or inducible promoter (e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82) and an optional 6X-His tag.
  • a constitutive or inducible promoter e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82
  • 6X-His tag e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82
  • the generated MAD1-MAD20 expression constructs are provided as SEQ ID NOs: 61-80, respectively.
  • MAD2 and MAD7 nucleases are nucleic acid-guided nuclease that can be used in the methods disclosed herein.
  • Nucleases Mad2 (SEQ ID NO: 2) and Mad 7 (SEQ ID NO: 7) were cloned and transformed into cells. Editing cassettes designed to mutate a target site in a galK gene were designed with mutations, which allowed for white/red screening of successfully editing colonies.
  • the editing cassettes also encoded a guide nucleic acid designed to target galK.
  • the editing cassettes were transformed into E. coli cells expressing MAD2, MAD7, or Cas9.
  • Figure 31A shows the editing efficiency of Mad2 and Mad7 compared to Cas9 (SEQ ID NO: 110).
  • Figure 3 IB shows the transformation efficiency as evidenced by cell survival rates.
  • the guide nucleic acid used with MAD2 and MAD7 comprised a scaffold-12 sequence and a guide sequence targeting galK.
  • the guide nucleic acid used with Cas9 comprised a sequence compatible with the S. pyogenes Cas9.
  • Figure 32 and Table 3 show more examples of gene editing using the MAD2 nuclease.
  • different guide nucleic acid sequences were tested.
  • the guide sequence of the guide nucleic acids targeted the galK gene as described above.
  • the scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated.
  • Guide nucleic acids with scaffold-5, scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD2.
  • Figure 33 and Table 4 show more examples of gene editing using the MAD7 nuclease.
  • different guide nucleic acid sequences were tested.
  • the guide sequence of the guide nucleic acids targeted the galK gene as described above.
  • the scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated.
  • Guide nucleic acids with scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD7.
  • Amino acid sequences are provided in Table 2 and scaffolding sequences are provided in Table 3 and Table 4.
  • Table 3 and Table 4 also provided the designed mutations in the editing cassettes that were used to mutate the galK target gene.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

Provided herein are methods and composition for trackable genetic variant libraries. Further provided herein are methods and compositions for recursive engineering. Further provided herein are methods and compositions for multiplex engineering. Further provided herein are methods and compositions for enriching for editing and trackable engineered sequences and cells using nucleic acid-guided nucleases.

Description

METHODS FOR GENERATING BARCODED COMBINATORIAL LIBRARIES
CROSS-REFERENCE
[0001] The present application claims priority to U.S. Provisional Application Serial No. 62/354,516, filed June 24, 2016; U.S. Provisional Application Serial No. 62/367,386, filed July 27, 2016; and U.S. Provisional Application Serial No. 62/483,930, filed April 10, 2017, the contents of each being hereby incorporated by reference in their entirety.
STATEMENT AS TO FEDERALLY SPONSORED RESEARCH
[0002] This disclosure was made with the support of the United States government under Contract number DE-SC0008812 by the Department of Energy.
SEQUENCE LISTING
[0003] This application contains a sequence list in Table 5.
BACKGROUND OF THE DISCLOSURE
[0004] Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for editing of multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.
SUMMARY OF THE DISCLOSURE
[0005] Disclosed herein are compositions comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid. Further disclosed are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further disclosed are compositions wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue. Further disclosed are compositions wherein the second donor nucleic acid comprises a second PAM mutation. Further disclosed are compositions wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off. Further disclosed are compositions wherein the second donor nucleic acid sequence targets a unique landing site.
[0006] Disclosed herein are methods of genome engineering, the method comprising: a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease, wherein the polynucleotide comprises 1) an editing cassette comprising: i) a modified first target nucleic acid sequence; ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and 2) a recorder cassette comprising i) a barcode corresponding to the modified first target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease; b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid- guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid. Further disclosed are methods further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a). Further disclosed are methods wherein the nucleic acid-guided nuclease is a CRISPR nuclease. Further disclosed are methods wherein the PAM mutation is not recognized by the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue. Further disclosed are methods wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.
[0007] Disclosed herein are methods of selectable recursive genetic engineering comprising a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site. Further disclosed are methods wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off. Further disclosed are methods wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds. Further disclosed are methods wherein the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.
[0008] Provided herein are compositions comprising i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a mutant protospacer adjacent motif (PAM) sequence; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a recorder sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid. In some aspects, the first donor nucleic acid and the second donor nucleic acid are covalently linked or comprised on a single nucleic acid molecule. Further provided are compositions wherein the modified first target nucleic acid comprises a 5' homology are and a 3 ' homology arm. Further provided are compositions wherein the 5' homology arm and the 3' homology arm are homologous to nucleic acid sequence flanking a protospacer complementary to the first spacer region. Further provided are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further provided are compositions wherein the first gRNA is compatible with a nucleic acid-guided nuclease, thereby facilitating nuclease- mediate cleavage of the first target nucleic acid. Further provided are compositions wherein the nucleic acid-guided nuclease is a Cas protein, such as a Type II or Type V Cas protein. Further provided are compositions wherein the nucleic acid-guided nuclease is Cas9 or Cpfl . Further provided are compositions wherein the nucleic acid-guided nuclease is MAD2 or MAD7. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non- natural enzyme. Further provided are compositions wherein the nucleic acid-guided nuclease is a engineered or non-natural enzyme derived from Cas9 or Cpfl . Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme that has less than 80% homology to either Cas9 or Cpfl . Further provided are compositions wherein the mutant PAM sequence is not recognized by the nucleic acid-guided nuclease. Further provided are compositions wherein the recorder sequence comprises a barcode. Further provided are compositions wherein the recorder sequence comprises a fragment of a screenable or selectable marker. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid sequence is specifically identified. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the edited cells may be selected or enriched. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
[0009] Provided herein are cells comprising an engineered chromosome or polynucleic acid comprising: a first modified sequence; a first mutant protospacer adjacent motif (PAM); a first recorder sequence, the sequence of which uniquely identifies the first modified sequence, wherein the first modified sequence and the first recorder sequence are separated by at least lbp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lOObp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 500bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lkbp. Further provided are cells wherein the first recorder sequence is a barcode. Further provided are cells wherein the first modified sequence is within a coding sequence. Further provided are cells wherein the first modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells further comprising: a second modified sequence; a second mutant PAM; and a second recorder sequence, the sequence of which uniquely identifies the second modified sequence, wherein the second modified sequence and the second recorder sequence are separated by at least 1 kb. Further provided are cells wherein the first recorder sequence and the second recorder sequence are separated by less than 100 bp. Further provided are cells wherein the second recorder sequence is a barcode. Further provided are cells wherein the second modified sequence is within a coding sequence. Further provided are cells wherein the second modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells wherein the first recorder sequence and the second recorder sequence are immediately adjacent to each other or overlapping, thereby generating a combined recorder sequence. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker by which the cells may be enriched or selected. [0010] Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a plurality of polynucleotides, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein each polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; iii) a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid; and (iv) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; d) cleaving the first target nucleic acid by the targetable nuclease in cells that do not comprise the mutant
PAM sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein each polynucleotide further comprises a second mutant PAM sequence. Further provided are methods wherein each polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology- directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a spacer region complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the targetable nuclease is a Cas protein.
Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein.
Further provided are methods wherein the Cas protein is Cas9 or Cpfl . Further provided are methods wherein the targetable nuclease is a nucleic acid-guided nuclease. Further provided are methods wherein the targetable nuclease is MAD2 or MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by the targetable nuclease. Further provided are methods wherein the targetable nuclease is an engineered targetable nuclease. Further provided are methods wherein the mutant PAM sequence is not recognized by the engineered targetable nuclease. Further provided are methods further comprising introducing a second plurality of polynucleotides into a second population of cells comprising the enriched cells from step d), wherein each cell within the second population of cells comprises a third nucleic acid, a fourth target nucleic acid, and a targetable nuclease. Further provided are methods wherein each of the second polynucleotides comprises: i) a modified third target nucleic acid sequence; ii) a third mutant protospacer adjacent motif (PAM) sequence; iii) a third guide nucleic acid sequence comprising a spacer region complementary to a portion of the third target nucleic acid; and (iv) a second recorder sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth mutant PAM sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth guide nucleic acid sequence comprising a guide sequence complementary to a portion of the fourth target nucleic acid. Further provided are methods further comprising: a) inserting the modified third target nucleic acid sequence within the third target nucleic acid; b) inserting the second recorder sequence within the fourth target nucleic acid; c) cleaving the third target nucleic acid by the nuclease in cells that do not comprise the second mutant PAM sequence, thereby enriching for cells comprising the inserted modified third target nucleic acid sequence. Further provided are methods wherein the fourth target nucleic acid is adjacent to the second target nucleic acid. Further provided are methods wherein the inserted first recorder sequence is adjacent to the second recorder sequence, such that sequencing information can be obtained for the first and second recorder sequence from a single sequencing read. Further provided are methods further comprising obtaining sequence information from the first and second recorder sequences within a single sequence read, thereby identifying the modified first and third target nucleic acid sequences inserted into the first and third target nucleic acids respectively.
[0011] Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a recorder sequence corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a) - c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the recorder sequence from each round is incorporated adjacent to the recorder sequence from the previous round, thereby generating a record sequence array comprising a plurality of traceable barcodes, and e) sequencing the record sequence, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein sequencing the record sequence array comprises obtaining sequence information for each of the plurality of recorder sequences within a single sequencing read. Further provided are methods wherein steps a) - c) are repeated at least once. Further provided are methods wherein steps a) - c) are repeated at least twice. Further provided are methods wherein the recorder sequence is a barcode. Further provided are methods where the first donor nucleic acid and the second donor nucleic acid are covalently linked. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
[0012] Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a marker fragment corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a) - c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the marker fragment from each round is incorporated adjacent to the marker fragment from the previous round, thereby generating a complete marker, and e) identifying cells comprising the complete marker, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence.
Further provided are methods wherein the complete marker comprises a selectable marker.
Further provided are methods wherein the selectable marker comprises an antibiotic resistance marker or an auxotrophic marker. Further provided are methods wherein the complete marker comprises a screenable reporter. Further provided are methods wherein the screenable reporter comprises a fluorescent reporter. Further provided are methods wherein the screenable reporter comprises a gene. Further provided are methods wherein the screenable reporter comprises a promotor or regulatory element. Further provided are methods wherein the promoter or regulatory element turns on or off transcription of a screenable or selectable element. Further provided are methods wherein the screenable reporter comprises a screenable or selectable element which alters a characteristic of a colony comprising the element compared to a colony that does not comprise the element. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.
[0013] Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein the polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant nuclease recognition sequence; iii) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; and d) selecting for a phenotype of interest. Further provided are methods wherein the polynucleotide further comprises a second mutant nuclease recognition site. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the second target nucleic acid by the nuclease in cells that do not comprise the second mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homologous recombination. Further provided are methods wherein the nuclease is a Cas protein. Further provided are methods wherein the polynucleotide further comprises a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homologous recombination. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant PAM sequence not recognized by the targetable nuclease. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the targetable nuclease is MAD2. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD2. Further provided are methods wherein the targetable nuclease is MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD7. Further provided are methods wherein the Cas protein is Cas9. Further provided are methods wherein the mutant PAM sequence is not recognized by Cas9. Further provided are methods wherein the Cas protein is Cpfl . Further provided are methods wherein the mutant PAM sequence is not recognized by Cpfl . Further provided are methods wherein the nuclease is an Argonaute nuclease. Further provided are methods further comprising introducing guide DNA oligonucleotides comprising a guide sequence complementary to a portion of the first target nucleic acid prior to selecting for a phenotype. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant target flanking sequence not recognized by the Argonaute nuclease. Further provided are methods wherein the nuclease is a zinc finger nuclease. Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the zinc finger nuclease. Further provided are methods wherein the nuclease is a transcription activator-like effector nuclease (TALEN). Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the TALEN.
INCORPORATION BY REFERENCE
[0014] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Figures 1A-1C depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.
[0016] Figures 2A-2D depicts validation data for an example experiment using a disclosed engineering method.
[0017] Figures 3A-3C depict an example trackable genetic engineering workflow, including a plasmid comprising an editing cassette and a recording cassette, and downstream sequencing of barcodes in order to identify the incorporated edit or mutation.
[0018] Figures 3D-3E depict an example trackable genetic engineering workflow, including iterative rounds of engineering with a different editing cassette and recorder cassette with unique barcode (BC) at each round, followed by selection and tracking to confirm the successful engineering step at each round..
[0019] Figures 4A-4B depict an example of incorporation of a target mutation and PAM mutation using a plasmid comprising an editing cassette.
[0020] Figures 5A-5B depict an example of a plasmid comprising an editing cassette, designed to incorporate a target mutation and a PAM mutation into a first target sequence, and a recording cassette, designed to incorporate a barcode sequence into a second target sequence. Figure 5B depicts example data validating incorporation of the editing cassette and recorder cassette and selection of the engineered bacterial cells.
[0021] Figure 6 depicts an example recursive engineering workflow.
[0022] Figures 7A-7B depict an example plasmid curing workflow for combinatorial engineering and validation of an example experiment using said workflow.
[0023] Figures 8A-8B depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.
[0024] Figures 9A-9D depicts validation data for an example genetic engineering experiment. [0025] Figures 10A-10F depict an example data set from a genetic engineering experiment.
[0026] Figures 11A-11C depict an example design and data set from a genetic engineering experiment.
[0027] Figures 12A-12F depict an example design for a genetic engineering experiment.
[0028] Figures 13A-13D depict example designed edits to be made by a genetic engineering.
[0029] Figures 14A-14B depict an example design for a genetic engineering experiment.
[0030] Figures 15A-15D depict an example of Cas9 editing efficiency controls.
[0031] Figures 16A-16E depict an examples of toxicity of dsDNA cleavage in E. coli.
[0032] Figure 16F-16H depict an example of a transformation and survival assay, and editing and recording efficiencies, with low and high copy plasmids expressing Cas9.
[0033] Figures 17A-17D depict an example of genetic engineering strategy for gene deletion.
[0034] Figures 18A-18B depicts an example of editing efficiency controls by cotransformation of guide nucleic acid and linear dsDNA cassettes.
[0035] Figures 19A-19D depict an example of library cloning analysis and statistics.
[0036] Figures 20A-20B depict an example of precision of editing cassette tracking of recombineered populations.
[0037] Figure 21 depicts an example of growth characteristics of folA mutations in M9 minimal media
[0038] Figures 22A-22C depicts an example of enrichment profiles for folA editing cassettes in minimal media.
[0039] Figures 23A-23F depict an example of validation of identified acrB mutations for improved solvent and antibiotic tolerance.
[0040] Figures 24A-24D depict an example mutant variant assessment analysis.
[0041] Figure 25 depicts an example of reconstruction of mutations identified by erythromycin selection.
[0042] Figures 26A-26B depict an example of validation of Crp S28P mutation for furfural or thermal tolerance.
[0043] Figures 27A-27C depict an example of edit and barcode correlation studies.
[0044] Figure 28 depicts an example of a selectable recording strategy.
[0045] Figure 29 depicts an example of a selectable recording strategy.
[0046] Figures 30A-30B depict data from a selectable recording experiment.
[0047] Figures 31A-31B depict editing and transformation efficiencies from various nucleic acid-guided nucleases from an example experiment.
[0048] Figure 32 depict editing efficiencies of the MAD2 nuclease with various guide nucleic acids. [0049] Figure 33 depict editing efficiencies of the MAD7 nuclease with various guide nucleic acids.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0050] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.
[0051] Methods and compositions for enabling sophisticated combinatorial engineering strategies to optimize and explore complex phenotypes are provided herein. Many phenotypes of interest to basic research and biotechnology are the result of combinations of mutations that occur at distal loci. For example, cancer is often linked to mutations that influence multiple hallmark gene functions rather than a single chromosomal edit. Likewise, many metabolic and regulatory processes that are the target of continuing engineering efforts require the activities of many proteins acting in concert to produce the phenotypic output of interest. Methods and compositions disclosed herein can provide ways of rapid engineering and prototyping of such functions since they can provide rapid construction and accurate reporting on the mutational effects at many sites in parallel.
[0052] The methods and compositions described herein can be carried out or used in any type of cell in which a nucleic acid-guided nuclease system, such as CRISPR or Argonaute, or other targetable nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA), including prokaryotic, eukaryotic, or archaeal cells. The cell can be a bacterial cell, such as Escherichia spp. (e.g., E. coli). The cell can be a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. The cell can be a human cell. The cell can be an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell. Additionally or alternatively, the methods described herein can be carried out in vitro or in cell-free systems in which a nucleic acid guided nuclease system, such as CRISPR or Argonaute, or other nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).
[0053] Disclosed herein are compositions and methods for genetic engineering. Disclosed are methods and compositions suitable for trackable or recursive genetic engineering. Disclosed method and compositions can use massively multiplexed oligonucleotide synthesis and cloning to enable high fidelity, trackable, multiplexed genome editing at single nucleotide resolution on a whole genome scale. Trackable plasmids
[0054] Methods and compositions can be used to perform high-fidelity trackable editing, for example, at single-nucleotide resolution and can be used to perform editing at a whole genome scale or on episomal nucleic acid molecules. Massively multiplexed oligonucleotide synthesis and/or cloning can be used in combination with a targetable nuclease system, such as a CRISPR system, MAD2 system, MAD7 system, or other nucleic acid-guided nuclease system, for editing.
[0055] As used herein, "cassette" often refers to a single molecule polynucleotide. A cassette can comprise DNA. A cassette can comprise RNA. A cassette can comprise a combination of DNA and RNA. A cassette can comprise non-naturally occurring nucleotides or modified nucleotides. A cassette can be single stranded. A cassette can be double stranded. A cassette can be synthesized as a single molecule. A cassette can be assembled from other cassettes, oligonucleotides, or other nucleic acid molecules. A cassette can comprise one or more elements. Such elements can include, as non-limiting examples, one or more of any of editing sequences, recorder sequences, guide nucleic acids, promoters, regulatory elements, mutant PAM sequences, homology arms, primer sites, linker regions, unique landing sites, a cassette, and any other element disclosed herein. Such elements can be in any order or combination. Any two or more elements can be contiguous or non-contiguous. A cassette can be comprised within a larger polynucleic acid. Such a larger polynucleic acid can be linear or circular, such as a plasmid or viral vector. A cassette can be a synthesized cassette. A cassette can be a trackable cassette.
[0056] A cassette can be designed to be used in any method or composition disclosed herein, including multiplex engineering methods and trackable engineering methods. An exemplary cassette can couple two or more elements, such as 1) a guide nucleic acid (e.g. gRNAs or gDNAs) designed for targeting a user specified target sequence in the genome and 2) an editing sequence and/or recorder sequence as disclosed herein (e.g. Figure IB and Figure 5A). A cassette comprising an editing sequence and guide nucleic acid can be referred to as an editing cassette. A cassette comprising an editing sequence can be referred to as an editing cassette. A cassette comprising a recorder sequence and a guide nucleic acid can be referred to as a recorder cassette. A cassette comprising a recorder sequence can be referred to as a recorder cassette. In a preferred embodiment, an editing cassette and a recorder cassette are delivered into the cell at the same time. Further, an editing cassette and a recorder cassette may be covalently linked. Further, these elements may be synthesized together by multiplexed oligonucleotide synthesis.
[0057] A cassette can comprise one or more guide nucleic acids and editing cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing cassette are contiguous. In other examples, one or more guide nucleic acids and editing cassette are non-contiguous. In other examples, two or more guide nucleic acids and editing cassette are non-contiguous.
[0058] A cassette can comprise one or more guide nucleic acids, an editing cassette, and a recorder cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are noncontiguous.
[0059] A cassette can comprise one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are contiguous. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are non-contiguous.
[0060] A cassette can comprise one or more guide nucleic acids and editing sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing sequence are contiguous. In other examples, one or more guide nucleic acids and editing sequence are non-contiguous. In other examples, two or more guide nucleic acids and editing sequence are non-contiguous.
[0061] A cassette can comprise one or more guide nucleic acids, an editing sequence, and a recorder sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.
[0062] A cassette can comprise one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are contiguous. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are non-contiguous.
[0063] An editing cassette can comprise an editing sequence. An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms
(HAs). An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs) designed to undergo homologous recombination with the target sequence at the site of nucleic acid-guided nuclease-mediated double strand break (e.g.
Figure IB).
[0064] A recorder cassette can comprise a recorder sequence. A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs). A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs) designed to undergo homologous recombination with the chromosome at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. Figure IB).
[0065] A cassette can encode machinery (e.g. targetable nuclease, guide nucleic acid, editing cassette, and/or recorder cassette as disclosed herein) necessary to induce strand breakage as well as designed repair that can be selectively enriched and/or tracked in cells. A cell can be any cell such as eukaryotic cell, archaeal cell, prokaryotic cell, or microorganisms such as E. coli (e.g. Figure 2A-2D).
[0066] A cassette can comprise an editing cassette. A cassette can comprise a recorder cassette. A cassette can comprise a guide nucleic acid and an editing cassette. A cassette can comprise a guide nucleic acid and a recorder cassette. A cassette can comprise a guide nucleic acid, an editing cassette, and a recorder cassette. A cassette can comprise two guide nucleic acids, an editing cassette, and a recorder cassette. A cassette can comprise more than two guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.
[0067] A cassette can comprise an editing sequence. A cassette can comprise a recorder sequence. A cassette can comprise a guide nucleic acid and an editing sequence. A cassette can comprise a guide nucleic acid and a recorder sequence. A cassette can comprise a guide nucleic acid, an editing sequence, and a recorder sequence. A cassette can comprise two guide nucleic acids, an editing sequence, and a recorder sequence. A cassette can comprise more than two guide nucleic acids, one or more editing sequences, and one or more recorder sequences. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous. [0068] Single genome edits can be tracked using sequencing technologies, e.g. short read sequencing technologies (e.g. Figure 1C), long read sequencing technologies, or any other sequencing technologies known in the art.
[0069] In some embodiments, upon transformation, each editing cassette generates the designed genetic modification within the transformed cell. In some examples, the editng cassette can act in trans as a barcode of the genetic mutation introduced by the editing cassette and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions (e.g. Figure 2A-2D and Figure 1C).
[0070] In some examples, a recording cassette inserts the designed trackable sequence, such as a marker or barcode sequence, within the transformed cell. In some examples, the recorder cassette can act in cis as a barcode of the chromosomal mutation and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions.
[0071] By providing cis and/or trans tracking of designed genomic mutations, the methods provided herein simplify sample preparation and depth of coverage for mapping diversity genome wide, and provide powerful tools for engineering on a genome scale (e.g. Figure 1C).
[0072] A plurality of cassettes can be pooled into a library of cassettes. A library of cassettes can comprise at least 2 cassettes. A library of cassettes can comprise from 5 to a million cassettes. A library of cassettes can comprise at least a million cassettes. It should be understood, that a library of cassettes can comprise any number of cassettes.
[0073] A library of cassettes can comprise cassettes that have any combination of common elements and non-common or unique elements as compared to the other cassettes within the pool. For example, a library of cassettes can comprise common priming sites or common homology arms while also containing non-common or unique barcodes. Common elements can be shared by a plurality, majority, or all of the cassettes within a library of cassettes. Non- common elements can be shared by a plurality, minority, or sub-population of cassettes within the library of cassettes. Unique elements can be shared by a one, a few, or a sub-population of cassettes within the library of cassettes, such that it is able to identify or distinguish the one, few, or sub-population of cassettes from the other cassettes within the library of cassettes. Such combinations of common and non-common are advantageous for multiplexing techniques as disclosed herein.
[0074] Cassettes disclosed herein can generate the designed genetic modification or insert the designed marker or barcode sequence with high efficiency within a transformed cell. In many examples, the efficiency is greater than 50%. In some examples the efficiency is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% (e.g., Figures 32A, 32B, and 33). [0075] In some examples, transformation, editing, and/or recording efficiency can be increased by modulating the expression of one or more components disclosed herein, such as a nucleic acid-guided nuclease. Methods for modulating components are disclosed herein and are known in the art. Such methods can include expressing a component, such as a nucleic acid- guided nuclease or CRISPR enzyme of a subject system on a low or high copy plasmid, depending on the experimental design.
[0076] Disclosed herein are methods and compositions for generating cassettes. A cassettes can comprise a cassettes as disclosed herein. For example, a cassette can comprise any combination of an editing cassette and/or recorder cassette disclosed herein. Such a cassette can be comprised on a larger polynucleic acid molecule. Such a larger polynucleic acid molecule can be linear or circular, such as a plasmid or viral vector.
[0077] An editing cassette can comprise a mutation relative to a target nucleic acid sequence. The editing cassette can comprise sequence homologous to the target sequence flanking the desired mutation or editing sequence. The editing cassette can comprise a region which recognizes, or hybridizes to, a target sequence of a nucleic acid in a cell or population of cells, is homologous to the target sequence of the nucleic acid of the cell and includes a mutation, or a desired mutation, of at least one nucleotide relative to the target sequence.
[0078] An editing cassette can comprise a first editing sequence comprising a first mutation relative to a target sequence. A first mutation can comprise a mutation such as an insertion, deletion, or substitution of at least one nucleotide compared to the non-editing target sequence. The mutation can be incorporated into a coding region or non-coding region.
[0079] An editing cassette can comprise a second editing sequence comprising a second mutation relative to a target sequence. The second mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM can serve as a method for selecting transformants in which the first editing sequence has been incorporated.
[0080] In some examples, an editing cassette comprises at least two mutations, wherein one mutation is a PAM mutation. In some examples, the PAM mutation can be in a second editing cassette. Such a second editing cassette can be covalently linked and can be continuous or noncontiguous to the other elements in the cassette.
[0081] An editing cassette can comprise a guide nucleic acid, such as a gRNA encoding gene, optionally operably linked to a promoter. The guide nucleic acid can be designed to hybridize with the targeted nucleic acid sequence in which the editing sequence will be incorporated. [0082] A recording cassette can comprise a recording sequence. A recorder sequence can comprise a barcoding sequence, or other screenable or selectable marker or fragment thereof. The recording sequence can be comprised within a recorder cassette. Recorder cassettes can comprise regions homologous to an insertion site within a target nucleic acid sequence such that the recording sequence is incorporated by homologous recombination or homology-driven repair systems. The site of incorporation of the recording cassette can be comprised on the same DNA molecule as the target nucleic acid to be edited by an editing cassette. The recorder sequence can comprise a barcode, unique DNA sequence, and/or a complete copy or fragment of a selectable or screenable element or marker.
[0083] A recorder cassette can comprise a mutation relative to the target sequence. The mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the first recording sequence has been incorporated. A recorder cassette can comprise a PAM mutation. The PAM mutation can be designed to mutate or otherwise silence a PAM site such that a corresponding CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the recorder sequence has been incorporated.
[0084] A recorder cassette can comprise a guide nucleic acid, such as a gene encoding a gRNA. A promoter can be operably linked to a nucleic acid sequence encoding a guide nucleic acid capable of targeting a nucleic acid-guided nuclease to the desired target sequence. A guide nucleic acid can target a unique site within the target site. In some cases, the guide nucleic acid targets a unique landing site that was incorporated in a prior round of engineering. In some cases, the guide nucleic acid targets a unique landing site that was incorporated by a recorder cassette in a prior round of engineering.
[0085] A recorder cassette can comprise a barcode. A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length. A barcode can be generated by degenerate oligonucleotide synthesis. A barcode can be rationally designed or user-specified. [0086] A recorder cassette can comprise a landing site. A landing site can serve as a target site for a recorder cassette for a successive engineering round. A landing site can comprise a PAM. A landing site can be a unique sequence. A landing site can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 nucleotides in length. In some cases, the landing site is greater than 50 nucleotides in length.
[0087] A recorder cassette can comprise a selectable or screenable marker, or a regulatory sequence or mutation that turns a selectable or screenable marker on or off. In such cases, the turning on or off of a selectable marker can be used of selection or counter-selection, respectively, of iterative rounds of engineering. An example regulatory sequence includes a ribosome-binding site (RBS), though other such regulatory sequences are envisioned. Mutations that turn a selectable or screenable marker on can include any possible start codon that is recognized by the host transcription machinery. A mutation that turns off a selectable or screenable marker includes a mutation that deletes a start codon or one that inserts a premature stop codon or a reading frame shift mutation.
[0088] A recorder cassette can comprise one or more of a guide nucleic acid targeting a target site into which the recorder sequence is to be incorporated, a PAM mutation to silence a PAM used by the guide RNA, a barcode corresponding to an editing cassette, a unique site to serve as a landing site for a recorder cassette of a subsequent rounds of engineering, a regulatory sequence or mutation that turns a screenable or selectable marker on or off, these one or more elements being flanked by homology arms that are designed to promote recombination of these one or more elements into the cleaved target site that is targeted by the guide RNA.
[0089] A recorder cassette can comprise a first homology arm, a PAM mutation, a barcode, a unique landing site, a regulatory sequence or mutation for a screenable or selectable marker, a second homology arm, and guide RNA. The first homology arm can be an upstream homology arm. The second homology arm can be a downstream homology arm. The homology arms can be homologous to sequences flanking a cleavage site that is targeted by the guide RNA.
[0090] A cassette can comprise two guide nucleic acids designed to target two distinct target nucleic acid sequences. In any case, the guide nucleic acid can comprise a single gRNA or chimeric gRNA consisting of a crRNA and trRNA sequences, or alternatively, the gRNA can comprise separated crRNA and trRNAs, or a guide nucleic acid can comprise a crRNA. In other examples, guide nucleic acid can be introduced simultaneously with a trackable polynucleic acid or plasmid comprising an editing cassette and/or recorder cassette. In these cases, the guide nucleic acid can be encoded on a separate plasmid or be delivered in RNA form via delivery methods well known in the art. [0091] A cassette can comprise a gene encoding a nucleic acid-guided nuclease, such as a CRISPR nuclease, functional with the chosen guide nucleic acid. A nucleic acid-guided nuclease or CRISPR nuclease gene can be provided on a separate plasmid. A nucleic acid-guided nuclease or CRISPR nuclease can be provided on the genome or episomal plasmid of a host organism to which a trackable polynucleic acid or plasmid will be introduced. In any of these examples, the nucleic acid-guided nuclease or CRISPR nuclease gene can be operably linked to a constitutive or inducible promotor. Examples of suitable constitutive and inducible promoters are well known in the art. A nucleic acid-guided nuclease or CRISPR nuclease can be provided as mRNA or polypeptide using delivery systems well known in the art. Such mRNA or polypeptide delivery systems can include, but are not limited to, nanoparticles, viral vectors, or other cell-permeable technologies.
[0092] A cassette can comprise a selectable or screenable marker, for example, such as that comprised within a recorder cassette. For example, the recorder cassette can comprise a barcode, such as trackable nucleic acid sequence which can be uniquely correlated with a genetic mutation of the corresponding editing cassette, or otherwise identifiably correlated with such a genetic mutation such that sequencing the barcode will allow identification of the corresponding genetic mutation introduced by the editing cassette. In other examples, recorder cassette can comprise a complete copy of or a fragment of a gene encoding an antibiotic resistance gene, auxotrophic marker, fluorescent protein, or other known selectable or screenable markers.
Trackable plasmid libraries
[0093] A trackable library can comprise a plurality of cassettes as disclosed herein. A trackable library can comprise a plurality of trackable polynucleic acids or plasmids comprising a cassette as disclosed herein. A cassette, polynucleotide, or plasmid comprising a recorder sequence or recorder cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid. A cassette, polynucleotide, or plasmid comprising an editing sequence or editing cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.
[0094] In some cases, within the trackable library are distinct editing cassette and recorder cassette combinations that are sequenced to determine which editing sequence corresponds with a given marker or barcode sequence comprised within the recorder cassette. Therefore, when the editing and recorder sequences are incorporated into a target sequence, you can determine the edit that was incorporated by sequencing the recorder sequence. Sequence the recorder sequence or barcode can significantly cut down on sequencing time and cost.
[0095] Library size can depend on the experiment design. For example, if the aim is to edit each amino acid within a protein of interest, then the library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library (all 20 amino acids at each position or non-naturally occurring amino acids) scaling as 19 (or more)xN and an alanine- mapping library scaling as l xN. Thus, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities (e.g. 120,000 oligos). In addition to or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using the libraries disclosed herein. It should be readily understood that libraries can be designed to mutate any number of amino acids within a target protein, including 1, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. up to the total number of amino acids within a target protein. Additionally, select amino acids can be targeted, such as catalytically active amino acids, or those involved in protein-protein interactions. Each amino acid that is targeted for mutation can be mutated into any number of alternate amino acids, such as any other natural or non-naturally occurring amino acid or amino acid analog. In some examples, all targeted amino acids are mutated to the same amino acid, such as alanine. In other cases, the targeted amino acids are independently mutated to any other amino acid in any combination or permutation.
[0096] Trackable libraries can comprise trackable mutations in individual residues or sequences of interest. Trackable libraries can be generated using custom-synthesized oligonucleotide arrays. Trackable plasmids can be generated using any cloning or assembly methods known in the art. For example, CREATE-Recorder plasmids can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.
[0097] Recorder sequences, such as barcodes, can be designed in silico via standard code with a degenerate mutation at the target codon. The degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues. In some examples, the degenerate mutations can comprise 15 nucleic acid residues (N15).
[0098] Homology arms can be added to a recorder sequence and/or editing sequence to allow incorporation of the recorder and/or editing sequence into the desired location via homologous recombination or homology-driven repair. Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art. For example, homology arms can be assembled via overlapping oligo extension, Gibson assembly, or any other method disclosed herein. A homology arm can be added to both ends of a recorder and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5' homology arm and a 3' homology arm. [0099] The same 5' and 3' homology arms can be added to a plurality of distinct recorder sequences, thereby generating a library of unique recorder sequences that each have the same spacer target or targeted insertion site. The same 5' and 3' homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same spacer target or targeted insertion site. In alternative examples, different or a variety of 5' or 3' homology arms can be added to a plurality of recorder sequences or editing sequences.
[00100] A recorder sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the recorder sequence and homology arms are cloned into a recorder cassette. Recorder cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of recorder sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas- mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the recorder cassette.
[00101] An editing sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the editing sequence and homology arms are cloned into an editing cassette. Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the editing cassette.
[00102] Gene-wide or genome-wide editing libraries can be subcloned into a vector backbone. In some cases, the vector backbone comprises a recorder cassette as disclosed herein. The editing sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites.
[00103] A recorder sequence and/or cassette can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette. In other cases, an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a recorder sequence and/or cassette. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are simultaneous inserted or assembled into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are comprised on the same cassette prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are linked prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are covalently linked prior to simultaneous insertion or assembly into a vector. In any of these cases, trackable plasmids or plasmid libraries can be generated.
[00104] A cassette or nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein. For example, a nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises an editing cassette and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids. A nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette. In any of these cases, the guide nucleic acid can optionally be operably linked to a promoter. In any of these cases, the nucleic acid molecule can further include one or more barcodes.
[00105] Synthesized cassettes or synthesized nucleic acid molecules can be synthesized using any oligonucleotide synthesis method known in the art. For example, cassettes can be synthesized by array based oligonucleotide synthesis. In such examples, following synthesis of the oligonucleotides, the oligonucleotides can be cleaved from the array. Cleavage of oligonucleotides from an array can create a pool of oligonucleotides.
[00106] Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 102, 103, 104, 105, 106, or more cassettes, such as trackable cassettes. An automation method can generate trackable plasmids in rapid fashion. Trackable cassettes can be processed through a workflow with minimal steps to produce precisely defined genome-wide libraries.
[00107] Cassette libraries, such as trackable cassette libraries, can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements. For example, such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 104, 105, 106, 107, 108, 109, 1010, or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above. [00108] Cassettes or cassette libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each cassette. In other cases, a known recorder sequence is paired with a known editing sequence during the library generation process. Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.
[00109] Methods and compositions for tracking edited episomal libraries that are shuttled between E. coli and other organisms/cell lines are provided herein. The libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes. These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli. Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination. Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage (e.g. Figure 3 A).
Trackable engineering methods
[00110] An example of trackable engineering workflow is depicted in Figure 3 A. Each plasmid can encode a recorder cassette designed to edit a site in the target DNA (e.g. Figure 3A, black cassette). Sites to be targeted can be functionally neutral sites, or they can be a screenable or selectable marker gene. The homology arm (HA) of the recorder cassette can contain a recorder sequence (e.g., Figure 3B) that is inserted into the recording site during recombineering. Recombineering can comprise DNA cleavage, such as nucleic acid-guided nuclease-mediated DNA cleavage, and repair via homologous recombination. The recorder sequence can comprise a barcode, unique DNA sequence, or a complete copy or fragment of a screenable or selectable marker. In some examples, the recorder sequence is 15 nucleotides. The recorder sequence can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides.
[00111] Through a multiplexed cloning approach, the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid (e.g., Figure 3A, green cassette) to generate trackable plasmid libraries that have a unique recorder and editing cassette combination. This trackable library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA (e.g., Figure 3C). Recorder and editing sequences can be comprised on the same polynucleotide, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event. In other examples, the recorder and editing sequences can be comprised on separate cassettes within the same trackable plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.
[00112] Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.
[00113] Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.
[00114] Trackable plasmids can be generated using in vitro assembly or cloning techniques. For example, the CREATE-Recorder plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.
[00115] Trackable plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence. In most cases, the recording sequence is used to record and track engineering events. Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence. The desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence. In some examples, the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the trackable plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event. In other examples, the recording and editing sequences are comprised on separate cassettes within the trackable plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events. In some examples, the trackable plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.
[00116] Recorder sequences can be inserted into a site separated from the editing sequence insertion site. The inserted recorder sequence can be separated from the editing sequence by lbp or any number of base pairs. For example, the separation distance can be about lbp, lObp, 50bp, lOObp, 500bp, lkp, 2kb, 5kb, lOkb, or greater. The separation distance can be any discrete integer of base pairs. It should be readily understood that there the limit of the number of base pairs separating the two insertion sites can be limited by the size of the genome, chromosome, or polynucleotide into which the insertions are being made. In some examples, the maximum distance of separation depends on the size of the target nucleic acid or genome. [00117] Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence. For example, the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted. Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted. The recorder sequence can be inserted into a functionally neutral or nonfunctional site. The recorder sequence can be inserted into a screenable or selectable marker gene.
[00118] In some examples, the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid. In various examples, the target nucleic acid sequence can be in vitro or in vivo. When the target nucleic acid sequence is in vivo, the CREATE-Recorder plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof. In such examples, the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.
[00119] The engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair. In some examples, the engineering event is performed in vitro or in vivo.
[00120] The methods described herein can be carried out in any type of cell in which a nucleic acid-guided nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells or in vitro. In some embodiments the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli). In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.
[00121] In some examples, a cell is a recombinant organism. For example, the cell can comprise a non-native nucleic acid-guided nuclease system. Additionally or alternatively, the cell can comprise recombination system machinery. Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems. Where appropriate, the trackable plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.
[00122] A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
[00123] A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.
[00124] Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
[00125] In some examples where the trackable plasmid comprises an editing cassette designed to silence a PAM site, a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette and recorder cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; and (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon. Such methods can also further comprise a recorder cassette comprising a second PAM mutation, such that both PAMs must be silences by the editing cassette PAM mutation and recorder cassette PAM mutation in order to escape cell death.
[00126] In some examples transformation efficiency is determined by using a non-targeting guide nucleic acid control, which allows for validation of the recombineering procedure and CFU/ng calculations. In some cases, absolute efficient is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control. In some examples, relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).
[00127] The methods of the disclosure can provide, for example, greater than lOOOx improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.
[00128] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the efficiency of generating genomic or combinatorial libraries.
[00129] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the scale of generating genomic or combinatorial libraries.
[00130] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater decrease in the cost of generating genomic or combinatorial libraries.
[00131] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the precision of genomic or combinatorial library generation.
Recursive tracking for combinatorial engineering
[00132] Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of trackable engineering at the single cell level through several serial engineering cycles (e.g., Figure 3D or Figure 6). These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.
[00133] Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.
[00134] In some examples, during each round of engineering a new recorder sequence, such as a barcode, is incorporated at the same or nearby locus in a target site (e.g., Figure 3D, green bars or Figure 6, black bars) such that following multiple engineering cycles to construct combinatorial diversity throughout the genome (e.g., Figure 3E, green bars or Figure 6, grey bars) a PCR, or similar reaction, of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site. .
[00135] Disclosed herein are methods for selecting for successive rounds of engineering. Selection can occur by a PAM mutation incorporated by an editing cassette. Selection can occur by a PAM mutation incorporated by a recorder cassette. Selection can occur using a screenable, selectable, or counter-selectable marker. Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.
[00136] Quantitation of these genotypes can be used for understanding combinatorial mutational effects on large populations and investigation of important biological phenomena such as epi stasis.
[00137] Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein. These recursive vector systems can be used to move rapidly through the transformation procedure (e.g., Figure 7A). In some examples, these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and gRNAs. The gRNA in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage. These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes. Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed. Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.
[00138] In some examples, the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids. In some examples, the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.
[00139] Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid. The selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene. In some examples, each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid. In such examples, only those genome or plasmids, which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.
[00140] Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering. Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker. Furthermore, short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off. Such short sequences can easily fit within a cassette or polynucleotide, such as a synthesized cassette.
[00141] One or more rounds of engineering can be performed using the methods and compositions disclosed herein. In some examples, each round of engineering is used to incorporate an edit unique from that of previous rounds. Each round of engineering can incorporate a unique recording sequence. Each round of engineering can result in removal or curing of the CREATE plasmid used in the previous round of engineering. In some examples, successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.
[00142] Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.
[00143] Successive sequences can be inserted at a distance from one another. For example, successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp. In some examples, successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500bp.
[00144] Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.
[00145] In some examples, a recorder cassette comprises a landing site to be used as a target site for the recorder cassette of the next round of engineering. By using such a method, successive rounds of recorder cassettes can only be introduced into the target site if the recorder cassette from the previous round was successfully incorporated, thereby providing the target site for the present engineering round (e.g., Figure 28).
Guide nucleic acid
[00146] A guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence. A subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid. Likewise, a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.
[00147] A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non- naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.
[00148] A guide nucleic acid can comprise a guide sequence. A guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence. The degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%), 97.5%), 99%), or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences. In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.
[00149] A guide nucleic acid can comprise a scaffold sequence. In general, a "scaffold sequence" includes any sequence that has sufficient sequence to promote formation of a targetable nuclease complex, wherein the targetable nuclease complex comprises a nucleic acid- guided nuclease and a guide nucleic acid comprising a scaffold sequence and a guide sequence. Sufficient sequence within the scaffold sequence to promote formation of a targetable nuclease complex may include a degree of complementarity along the length of two sequence regions within the scaffold sequence, such as one or two sequence regions involved in forming a secondary structure. In some cases, the one or two sequence regions are comprised or encoded on the same polynucleotide. In some cases, the one or two sequence regions are comprised or encoded on separate polynucleotides. Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self- complementarity within either the one or two sequence regions. In some embodiments, the degree of complementarity between the one or two sequence regions along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%>, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, at least one of the two sequence regions is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 25, 30, 40, 50, or more nucleotides in length.
[00150] A scaffold sequence of a subject guide nucleic acid can comprise a secondary structure. A secondary structure can comprise a pseudoknot region. In some example, the compatibility of a guide nucleic acid and nucleic acid-guided nuclease is at least partially determined by sequence within or adjacent to a pseudoknot region of the guide RNA. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by secondary structures within the scaffold sequence. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by nucleic acid sequence with the scaffold sequence.
[00151] In aspects of the invention the terms "guide nucleic acid" refers to a polynucleotide comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with an nucleic acid-guided nuclease as described herein.
[00152] A guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence. Often, a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease loci. In other words, native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.
[00153] Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.
[00154] Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region. Common features can include a primary sequence or secondary structure.
[00155] A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature. More methods
[00156] Disclosed herein are methods for genome engineering that employ a nuclease, such as a nucleic acid-guided nuclease to perform directed genome evolution/produce changes (deletions, substitutions, additions) in a target sequence, such as DNA or RNA, for example, genomic DNA or episomal DNA. Suitable nucleases can include, for example, RNA-guided nucleases such as Cas9, Cpfl, MAD2, or MAD7, DNA-guided nucleases such as Argonaute, or other nucleases such as zinc-finger nucleases, TALENs, or meganucleases. Nuclease genes can be obtained from any source, such as from a bacterium, archaea, prokaryote, eukaryote, or virus. For example, a Cas9 gene can be obtained from a bacterium harboring the corresponding Type II CRISPR system, such as the bacterium S. pyogenes (SEQ ID NO: 110). The nucleic acid sequence and/or amino acid sequence of the nuclease may be mutated, relative to the sequence of a naturally occurring nuclease. A mutation can be, for example, one or more insertions, deletions, substitutions or any combination of two or three of the foregoing. In some cases, the resulting mutated nuclease can have enhanced or reduced nuclease activity relative to the naturally occurring nuclease. In some cases, the resulting mutated nuclease can have no nuclease activity relative to the naturally occurring nuclease.
[00157] Methods for nucleic acid-guided nuclease-mediated genome editing are provided herein. Some disclosed methods can include a two-stage construction process which relies on generation of cassette libraries that incorporate directed mutations from an editing cassettes directly into a genome, episomal nucleic acid molecule, or isolated nucleic acid molecule. In some examples, during the first stage of cassette library construction, rationally designed editing cassettes can be cotransformed into cells with a guide nucleic acid (e.g., guide RNA) that hybridizes to or targets a target DNA sequence. In some examples, the guide nucleic acid is introduced as an RNA molecule, or encoded on a DNA molecule.
[00158] Editing cassettes can be designed such that they couple deletion or mutation of a PAM site with the mutation of one or more desired codons or nucleic acid residues in the adjacent nucleic acid sequence. The deleted or mutated PAM site, in some cases, can no longer be recognized by the chosen nucleic acid-guided nuclease. In some examples, at least one PAM or more than one PAM can be deleted or mutated, such as two, three, four, or more PAMs.
[00159] Methods disclosed herein can enable generation of an entire cassette library in a single transformation. The cassette library can be retrieved, in some cases, by amplification of the recombinant chromosomes, e.g. by a PCR reaction, using a synthetic feature or priming site from the editing cassettes. In some examples, a second PAM deletion or mutation is simultaneously incorporated. This approach can covalently couple the codon-targeted mutations directly to a PAM deletion. [00160] In some examples, there is a second stage to construction of cassette libraries. During the second stage the PCR amplified cassette libraries carrying the destination PAM deletion/mutation and the targeted mutations, such as a desired mutation of one or more nucleotides, such as one or more nucleotides in one or more codons, can be co-transformed into naive cells. The cells can be eukaryotic cell, archaeal cell, or prokaryotic cells. The cassette libraries can be co-transformed with a guide nucleic acid or plasmid encoding the same to generate a population of cells that express a rationally designed protein library. The libraries can be co-transformed with a guide nucleic acid such as a gRNA, chimeric gRNA, split gRNA, or a crRNA and trRNA set. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette and guide nucleic acid. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette, recorder cassettes and two guide nucleic acids.
[00161] In some targetable nuclease systems, the guide nucleic acid can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The guide nucleic acid can be expressed as a DNA molecule, referred to as a guide DNA, or as a RNA molecule, referred to as a guide RNA. A guide nucleic acid can comprise a guide sequence, that is complementary to a region of the target region. A guide nucleic acid can comprise a scaffold sequence that can interact with a compatible nucleic acid-guided nuclease, and can optionally form a secondary structure. A guide nucleic acid can functions to recruit a nucleic acid-guided nuclease to the target site. A guide sequence can be complementary to a region upstream of the target site. A guide sequence can be complementary to at least a portion of the target site. A guide sequence can be completely complementary (100% complementary) to the target site or include one or more mismatches, provided that it is sufficiently complementary to the target site to specifically hybridize/guide and recruit the nuclease. Suitable nucleic acid guided nuclease include, as non-limiting examples, CRISPR nucleases, Cas nucleases, such as Cas9 or Cpfl, MAD2, and MAD7.
[00162] In some CRISPR systems, the CRISPR RNA (crRNA or spacer-containing RNA) and trans-activating CRISPR RNA (tracrRNA or trRNA) can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The tracrRNA and crRNA can be expressed as a single, chimeric RNA molecule, referred to as a single-guide RNA, guide RNA, or gRNA. The nucleic acid sequence of the gRNA comprises a first nucleic acid sequence, also referred to as a first region, that is complementary to a region of the target region and a second nucleic acid sequence, also referred to a second region, that forms a stem loop structure and functions to recruit a CRISPR nuclease to the target region. The first region of the gRNA can be complementary to a region upstream of the target genomic sequence. The first region of the gRNA can be complementary to at least a portion of the target region. The first region of the gRNA can be completely complementary (100% complementary) to the target genomic sequence or include one or more mismatches, provided that it is sufficiently complementary to the target genomic sequence to specifically hybridize/guide and recruit a CRISPR nuclease, such as Cas9 or Cpf 1.
[00163] A guide sequence or first region of the gRNA can be at least 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. The guide sequence or first region of the gRNA can be at least 20 nucleotides in length.
[00164] A stem loop structure that can be formed by the scaffold sequence or second nucleic acid sequence of a gRNA can be at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nucleotides in length. A stem loop structure can be from 80 to 90 or 82 to 85 nucleotides in length. A scaffold sequence or second region of the gRNA that forms a stem loop structure can be 83 nucleotides in length.
[00165] A guide nucleic acid of a cassette that is introduced into a first cell using the methods disclosed herein can be the same as the guide nucleic acid of a second cassette that is introduced into a second cell. More than one guide nucleic acid can be introduced into the population of first cells and/or the population of second cells. The more than one guide nucleic acids can comprise guide sequences that are complementary to more than one target region.
[00166] Methods disclosed herein can comprise using oligonucleotides. Such oligonucleotides can be obtained or derived from many sources. For example, an oligonucleotide can be derived from a nucleic acid library that has been diversified by nonhomologous random recombination (NRR); such a library is referred to as an NRR library. An oligonucleotide can be synthesized, for example by array-based synthesis or other known chemical synthesis method. The length of an oligonucleotide can be dependent on the method used in obtaining the oligonucleotide. An oligonucleotide can be approximately 50-200 nucleotides, 75-150 nucleotides, or between 80- 120 nucleotides in length. An oligonucleotide can be about 10, 20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer, for example, 51, 52, 53, 54, 201, 202, etc. An oligonucleotide can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more nucleotides in length, including any integer, for example, 101, 203, 1001, 2001, 2010, etc.
[00167] Oligonucleotides and/or other nucleic acid molecules can be combined or assembled to generate a cassette. Such a cassette can comprise (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. The PAM mutation can be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that it is no longer recognized by a nucleic acid-guided nuclease system or CRISPR nuclease system. A cell that comprises such a PAM mutation may be said to be "immune" to nuclease- mediated killing. The desired mutation relative to the sequence of the target region can be an insertion, deletion, and/or substitution of one or more nucleotides. In some examples, the insertion, deletion, and/or substitution of one or more nucleotides is in at least one codon of the target region. Alternatively, the cassette can be synthesized in a single synthesis, comprising (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, (b) a protospacer adjacent motif (PAM) mutation, and optionally (c) a region that is homologous to a second target region of the nucleic acid of the cell and includes a recorder sequence.
[00168] The methods disclosed herein can be applied to any target nucleic acid molecule of interest, from any prokaryote including bacteria and archaea, or any eukaryote, including yeast, mammalian, and human genes, or any viral particle. The nucleic acid module can be a non- coding nucleic acid sequence, gene, genome, chromosome, plasmid, episomal nucleic acid molecule, artificial chromosome, synthetic chromosome, or viral nucleic acid.
[00169] Methods for assessing recovery efficiency of donor strain libraries are disclosed herein. Recovery efficiency can be verified based on the presence of a PCR product or on changes in amplicon or PCR product sizes or sequence obtained with primers directed at the selected target locus. Primers can be designed to hybridize with endogenous sequences or heterologous sequences contained on the donor nucleic acid molecule. For example, the PCR primer can be designed to hybridize to a heterologous sequence such that PCR will only be possible if the donor nucleic acid is incorporated. Sequencing of PCR products from the recovered libraries indicates the heterologous sequence or synthetic priming site from the dsDNA cassettes or donor sequences can be incorporated with about 90-100% efficiency. In other examples, the efficiency can be about 5%, 10% 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100%. [00170] In some cases, the ability to improve final editing efficiencies of the methods disclosed herein can be assessed by carrying out cassette construction in gene deficient strains before transferring to a wild-type donor strain in an effort to prevent loss of mutations during the donor construction phase. Additionally or alternatively, efficiency of the disclosed methods can be assessed by targeting an essential gene. Essential genes can include any gene required for survival or replication of a viral particle, cell, or organism. In some examples, essential genes include dxs, metA, and folA. Essential genes have been effectively targeted using guide nucleic acid design strategies described. Other suitable essential genes are well known in the art.
[00171] Provided herein are method of increasing editing efficiencies by modulating the level of a nucleic acid-guided nuclease. This could be done by using copy control plasmids, such as high copy number plasmids or low copy number plasmids. Low copy number plasmids could be plasmids that can have about 20 or less copies per cell, as opposed to high copy number plasmids that can have about 1000 copies per cell. High copy number plasmids and low copy number plasmids are well known in the art and it is understood that an exact plasmid copy per cell does not need to be known in order to characterize a plasmid as either high or low copy number.
[00172] In some cases, the decreasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, decreasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a low copy number plasmid.
[00173] In some cases, the increasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, increasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a high copy number plasmid.
[00174] Other methods of modulating the expression level of a protein are also envisioned and are known in the art. Such methods include using a inducible or constitutive promoter, incorporating enhancers or other expression regulatory elements onto an expression plasmid, using RNAi, amiRNAi, or other RNA silencing techniques to modulate transcript level, fusing the protein of interest to a degradation domain, or any other method known in the art.
[00175] Provided herein are methods for generating mutant libraries. In some examples, the mutant library can be effectively constructed and retrieved within 1-3 hours post recombineering. In some examples, the mutant library is constructed within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 24 hours post recombineering. In some examples, the mutant library can be retrieved within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, or 48 hours post recombineering and/or post-constructing by recombineering. [00176] Some methods disclosed herein can be used for trackable, precision genome editing. In some examples, methods disclosed herein can achieve high efficiency editing/mutating using a single cassette that encodes both an editing cassette and guide nucleic acid, and optionally a recorder cassette and second guide nucleic acid. Alternatively, a single vector can encode an editing cassette while a guide nucleic acid is provided sequentially or concomitantly. When used with parallel DNA synthesis, such as array-based DNA synthesis, methods disclosed herein can provide single step generation of hundreds or thousands of precision edits/mutations. Mutations can be mapped by sequencing the editing cassette on the vector, rather than by sequencing of the genome or a section of the genome of the cell or organism.
[00177] The methods disclosed herein can have broad utility in protein and genome engineering applications, as well as for reconstruction of mutations, such as mutations identified in laboratory evolution experiments. In some examples, the methods and compositions disclosed here can combine an editing cassette, which could include a desired mutation and a PAM mutation, with a gene encoding a guide nucleic acid on a single vector.
[00178] In some examples, a trackable mutant library can be generated in a single transformation or single reaction.
[00179] Methods disclosed herein can comprise introducing a cassette comprising an editing cassette that includes the desired mutation and the PAM mutation into a cell or population of cells. In some embodiments, the cell into which the cassette or vector is introduced also comprises a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7. In some embodiments, a gene or mRNA encoding the nucleic acid-guided nuclease is concomitantly, sequentially, or subsequently introduced into the cell or population of cells. Expression of a targetable nuclease system, including nucleic acid-guided nuclease and a guide nucleic acid, in the cell or cell population can be activated such that the guide nucleic acid recruits the nucleic acid-guided nuclease to the target region, where dsDNA cleavage occurs.
[00180] In some examples, without wishing to be bound by any particular theory, the homologous region of an editing cassette complementary to the target sequence mutates the PAM and the one or more codon of the target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable or targeted mutations.
[00181] In some examples, without wishing to be bound by any particular theory, the homologous region of a recorder cassette complementary to the target sequence mutates the PAM and introduces a barcode into a target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable mutations.
[00182] A separate vector or mRNA encoding a nucleic acid-guided nuclease can be introduced into the cell or population of cells. Introducing a vector or mRNA into a cell or population of cells can be performed using any method or technique known in the art. For example, vectors can be introduced by standard protocols, such as transformation including chemical transformation and electroporation, transduction and particle bombardment. Additionally or alternatively, mRNA can be introduced by standard protocols, such as transformation as disclosed herein, and/or by techniques involving cell permeable peptides or nanoparticles.
[00183] An editing cassette can include (a) a region, which recognizes (hybridizes to) a target region of a nucleic acid in a cell or population of cells, is homologous to the target region of the nucleic acid of the cell and includes a mutation, referred to a desired mutation, of at least one nucleotide that can be in at least one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. In some examples, the editing cassette also comprises a barcode. The barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. The PAM mutation may be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that the mutated PAM (PAM mutation) is not recognized by a chosen nucleic acid-guided nuclease system. A cell that comprises such as a PAM mutation may be said to be "immune" to nucleic acid-guided nuclease-mediated killing. The desired mutation relative to the sequence of the target region may be an insertion, deletion, and/or substitution of one or more nucleotides and may be at least one codon of the target region. In some embodiments, the distance between the PAM mutation and the desired mutation is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides on the editing cassette In some embodiments, the PAM mutation is located at least 9 nucleotides from the end of the editing cassette. In some embodiments, the desired mutation is located at least 9 nucleotides from the end of the editing cassette.
[00184] A desired mutation can be an insertion of a nucleic acid sequence relative to the sequence of the target sequence. The nucleic acid sequence inserted into the target sequence can be of any length. In some embodiments, the nucleic acid sequence inserted is at least 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or at least 2000 nucleotides in length. In embodiments in which a nucleic acid sequence is inserted into the target sequence, the editing cassette comprises a region that is at least 10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, or at least 60 nucleotides in length and homologous to the target sequence. The homology arms or homologous region can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer therein. The homology arms or homologous region can be over 200 nucleotides in length.
[00185] A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non- naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.
[00186] An editing cassette or recorder cassette can comprise at least a portion of a gene encoding a guide nucleic acid, and optionally a promoter operable linked to the encoded guide nucleic acid. In some embodiments, the portion of the gene encoding the guide nucleic acid encodes the portion of the guide nucleic acid that is complementary to the target sequence. The portion of the guide nucleic acid that is complementary to the target sequence, or the guide sequence, can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. In some embodiments, the guide sequence is 24 nucleotides in length. In some embodiments, the guide sequence is 18 nucleotides in length.
[00187] In some embodiments, the editing cassette or recorder cassette further comprises at least two priming sites. The priming sites may be used to amplify the cassette, for example by PCR. In some embodiments, the portion of the guide sequence is used as a priming site.
[00188] Editing cassettes or recorder cassettes for use in the described methods can be obtained or derived from many sources. For example, the cassettes can be synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art. In some embodiments, the editing cassette or recorder cassette is synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, -in vitro assembly, Gibson assembly, or any other synthesis method known in the art. The length of the editing cassette or recorder cassette may be dependent on the method used in obtaining said cassette. [00189] An editing cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the editing cassette can be any discrete length between 50 nucleotide and 1 Mb.
[00190] A recorder cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80- 120 nucleotides in length. In some embodiments, the recorder cassette can be any discrete length between 50 nucleotide and 1 Mb.
[00191] Methods disclosed herein can also involve obtaining editing cassettes and recorder cassettes and constructing a trackable plasmid or vector. Methods of constructing a vector will be known to one ordinary skill in the art and may involve ligating the cassettes into a vector backbone. In some examples, plasmid construction occurs by in vitro DNA assembly methods, oligonucleotide assembly, PCR-based assembly, SLIC, CPEC, or other assembly methods well known in the art. In some embodiments, the cassettes or a subset (pool) of the cassettes can be amplified prior to construction of the vector, for example by PCR.
[00192] The cell or population of cells comprising a polynucleotide encoding a nucleic acid- guided nuclease can be maintained or cultured under conditions in which the nuclease is expressed. Nucleic acid-guided nuclease expression can be controlled or can be constitutively on. The methods described herein can involve maintaining cells under conditions in which nuclease expression is activated, resulting in production of the nuclease, for example, Cas9, Cpfl, MAD2, or MAD7. Specific conditions under which the nucleic acid-guided nuclease is expressed can depend on factors, such as the nature of the promoter used to regulate expression of the nuclease. Nucleic acid-guided nuclease expression can be induced in the presence of an inducer molecule, such as arabinose. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the presence of the inducer molecule, expression of the nuclease can occur. CRISPR-nuclease expression can be repressed in the presence of a repressor molecule. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the absence of a molecule that represses expression of the nuclease, expression of the nuclease can occur.
[00193] Cells or the population of cells that remain viable can be obtained or separated from the cells that undergo unedited cell death as a result of nucleic acid-guided nuclease -mediated killing; this can be done, for example, by spreading the population of cells on culture surface, allowing growth of the viable cells, which are then available for assessment.
[00194] Disclosed herein are methods for the identification of the mutation without the need to sequence the genome or large portions of the genome of the cell. The methods can involve sequencing of the editing cassette, recorder cassette, or barcode to identify the mutation of one of more codon. Sequencing of the editing cassette can be performed as a component of the vector or after its separation from the vector and, optionally, amplification. Sequencing can be performed using any sequencing method known in the art, such as by Sanger sequencing or next-generation sequencing methods.
[00195] Some methods described herein can be carried out in any type of cell in which a targetable nuclease system can function, or target and cleave DNA, including prokaryotic and eukaryotic cells. In some embodiments, the cell is a bacterial cell, such as Escherichia spp., e.g., E. coli. In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.
[00196] A "vector" is any of a variety of nucleic acids that comprise a desired sequence or sequences to be delivered to or expressed in a cell. A desired sequence can be included in a vector, such as by restriction and ligation or by recombination or assembly methods know in the art. Vectors are typically composed of DNA, although RNA vectors are also available. Vectors include, but are not limited to plasmids, fosmids, phagemids, virus genomes, artificial chromosomes, and synthetic nucleic acid molecules.
[00197] Vectors useful in the methods disclosed herein can comprise at least one editing cassette as described herein, at least one gene encoding a gRNA, and optionally a promoter and/or a barcode. More than one editing cassette can be included on the vector, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 or more editing cassettes. The more than one editing cassettes can be designed to target different target regions, for example, there could be different editing cassettes, each of which contains at least one region homologous with a different target region. In other examples, each editing cassette target the same target region while each editing cassette comprises a different desired mutation relative to the target region. In other examples, the plurality of editing cassettes can comprise a combination of editing cassettes targeting the same target region and editing cassettes targeting different target regions. Each editing cassette can comprise an identifying barcode. Alternatively or additionally, the vector can include one or more genes encoding more than one gRNA, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more gRNAs. The more than one gRNAs can contain regions that are complementary to a portion of different target regions, for example, if there are different gRNAs, each of which can be complementary to a portion of a different target region. In other examples, the more than one gRNA can each target the same target region. In other examples, the more than one gRNA can be a combination of gRNAs targeting the same and different target regions.
[00198] A cassette comprising a gene encoding a portion of a guide nucleic acid, can be ligated or assembled into a vector that encodes another portion of a guide nucleic acid. Upon ligation or assembly, the portion of the guide nucleic acid from the cassette and the other portion of the guide nucleic acid can form a functional guide nucleic acid. A promoter and a gene encoding a guide nucleic acid can be operably linked.
[00199] In some embodiments, the methods involve introduction of a second vector encoding a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7. The vector may further comprise one or more promoters operably linked to a gene encoding the nucleic acid-guided nuclease.
[00200] As used herein, "operably" linked can mean the promoter affects or regulates transcription of the DNA encoding a gene, such as the gene encoding the gRNA or the gene encoding a CRISPR nuclease.
[00201] A promoter can be a native promoter such as a promoter present in the cell into which the vector is introduced. A promoter can be an inducible or repressible promoter, for example, the promoter can be regulated allowing for inducible or repressible transcription of a gene, such as the gene encoding the guide nucleic acid or the gene encoding a nucleic acid-guided nuclease. Such promoters that are regulated by the presence or absence of a molecule can be referred to as an inducer or a repressor, respectively. The nature of the promoter needed for expression of the guide nucleic acid or nucleic acid-guided nuclease can vary based on the species or cell type and can be recognized by one of ordinary skill in the art.
[00202] A separate vector encoding a nucleic acid-guided nuclease can be introduced into a cell or population of cells before or at the same time as introduction of a trackable plasmid as disclosed herein. The gene encoding a nucleic acid-guided nuclease can be integrated into the genome of the cell or population of cells, or the gene can be maintained episomally. The nucleic acid-guided nuclease-encoding DNA can be integrated into the cellular genome before introduction of the trackable plasmid, or after introduction of the trackable plasmid. In some examples, a nucleic acid molecule, such as DNA-encoding a nucleic acid-guided nuclease, can be expressed from DNA integrated into the genome. In some embodiments, a gene encoding Cas9, Cpfl, MAD2, or MAD7 is integrated into the genome of the cell.
[00203] Vectors or cassettes useful in the methods described herein can further comprise two or more priming sites. In some embodiments, the presence of flanking priming sites allows amplification of the vector or cassette.
[00204] In some embodiments, a cassette or vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In a preferred embodiment of the invention, the engineered nuclease comprises at most 6 NLSs. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. Non-limiting examples of NLSs include an
NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 111); the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO: 112)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO: 113) or RQRRNELKRSP (SEQ
ID NO: 114); the hRNPAl M9 NLS having the sequence
NQS SNFGPMKGGNFGGRS SGP YGGGGQYF AKPRNQGGY (SEQ ID NO: 115); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: l
116) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID NO: 117) and
PPKKARED (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID
NO: 119) of human p53; the sequence SALIKKKKKMAP (SEQ ID NO: 120) of mouse c-abl IV; the sequences DRLRR (SEQ ID NO: 121) and PKQKKRK (SEQ ID NO: 122) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID NO: 123) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID NO: 124) of the mouse Mxl protein; the sequence
KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 125) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 126) of the steroid hormone receptors (human) glucocorticoid.
[00205] In general, the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more LSs.
ProSAR
[00206] Methods disclosed herein are capable of engineering a few to hundreds of genetic sequence or proteins simultaneously. These methods can permit one to map in a single experiment many or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway. This approach can be used at least for the following by mapping i) any number of residue changes for any number of proteins of interest in a specific biochemical pathway or that catalyze similar reactions or ii) any number of residues in the regulatory sites of any number of proteins or interest with a specific regulon or iii) any number of residues of a biological agent used to treat a health condition.
[00207] In some embodiments, methods described herein include identifying genetic variations of one or more target genes that affect any number or residues, such as one or more, or all residues of one or more target proteins. In accordance with these embodiments, compositions and methods disclosed herein permit parallel analysis of two or more target proteins or proteins that contribute to a trait. Parallel analysis of multiple proteins by a single experiment described can facilitate identification, modification and design of superior systems for example for producing a eukaryotic or prokaryotic byproduct, producing a eukaryotic byproduct, for example, a biological agent such as a growth factor or antibody, in a prokaryotic organism and the like. Relevant biologies used in analysis and treatment of disease can be produced in these genetically engineered environments that could reduce production time, increase quality all while reducing costs to the manufacturers and the consumers.
[00208] Some embodiments disclosed herein comprise constructs of use for studying genetic variations of a gene or gene segment wherein the gene or gene segment is capable of generating a protein. A construct can be generated for any number of residues, such as one, two, more than two, or all residue modifications of a target protein that is linked to a trackable agent such as a barcode. A barcode indicative of a genetic variation of a gene of a target protein can be located outside of the open reading frame of the gene. In some embodiments such a barcode can be located many hundreds or thousands of bases away from the gene. It is contemplated herein that these methods can be performed in vivo. In some examples, such a construct comprises a trackable polynucleic acid or plasmid as disclosed herein.
[00209] Constructs described herein can be used to compile a comprehensive library of genetic variations encompassing all residue changes of one target protein, more than one target protein or target proteins that contribute to a trait. In certain embodiments, libraries disclosed herein can be used to select proteins with improved qualities to create an improved single or multiple protein system for example for producing a byproduct, such as a chemical, biofuels, biological agent, pharmaceutical agent, or for biomass, or biologic compared to a non-selective system. Protein Sequence-Activity Relationship (ProSAR) Mapping
[00210] Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.
[00211] Provided herein are methods which can be used to rapidly and efficiently examine the roles of some or all genes in a viral, microbial, or eukaryotic genome using mixtures of barcoded oligonucleotides. In some embodiments, these compositions and methods can be used to develop a powerful new technology for comprehensively mapping protein structure-activity relationships (ProSAR).
[00212] Using methods and compositions disclosed herein, multiplex cassette synthesis can be combined with recombineering, to create mutant libraries of specifically designed and barcoded mutations along one or more genes of interest in parallel. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of protein sequence-activity relationships (ProSAR). In some embodiments, systematic ProSAR mapping can elucidate individual amino acid mutations for improved function and/or activity and/or stability etc.
[00213] Methods can be iterated to combinatorially improve the function, activity, or stability. Cassettes can be generated by oligonucleotide synthesis. Given that existing capabilities of multiplex oligonucleotide synthesis can reach over 120,000 oligonucleotides per array, combined with recombineering, the methods disclosed herein can be scaled to construct mutant libraries for dozens to hundreds of proteins in a single experiment. In some examples, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more proteins can be partially or completely covered by mutant libraries generated by the methods disclosed herein.
[00214] Disclosed herein are strategies to construct barcoded substitution libraries for several different proteins at the same time. Using existing multiplex DNA synthesis technology, as disclosed, a partial or complete substitution library for one or more protein constructs can be barcoded, or non-barcoded if desired, for one or for several hundred proteins at the same time. In some examples, such libraries comprise trackable plasmids as disclosed herein.
[00215] Some embodiments herein apply to analysis and structure/function/stability library construction of any protein with a corresponding screen or selection for activity. Cassette library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library, including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)xN and an alanine-mapping library scaling as l xN. Thus, in some examples, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities of at least 120,000 oligos per array.
[00216] In addition or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using methods and cassettes disclosed herein. For example, universal protein folding and solubility reporters can be engineered for expression in the cytoplasm, periplasm, and the inner membrane. In some examples, a protein library can be screened under different conditions such as different temperatures, different substrates or co-factors, in order to identify residue changes required for expression of various traits. In other embodiments, because residues can be analyzed one at a time, mutations at residues important for a particular trait, such as thermostability, resistance to environmental pressures, or increases or decreases in functionality or production, can be combined via multiplex recombineering with mutations important for various other traits, such as catalytic activity, to create combinatorial libraries for multi-trait optimization.
[00217] Methods disclosed herein can provide for creating and/or evaluating comprehensive, in vivo, mutational libraries of one or more target protein(s). These approaches can be extended via a recorder cassettes or barcoding technology to generate trackable mutational libraries for any number of residues or every residue in a protein. This approach can be based on protein sequence-activity relationship mapping method extended to work in vivo, capable of working on one or a few to hundreds of proteins simultaneously depending on the technology selected. For example, these methods permit one to map in a single experiment any number of, the majority of, or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway.
[00218] In some examples, these approaches can be used at least for the following by mapping i) any number of or all residue changes for any number of or all proteins in a specific biochemical pathway, such as lycopene production, or that catalyze similar reactions, such as dehydrogenases or other enzymes of a pathway of use to produce a desired effect or produce a product, or ii) any number of or all residues in the regulatory sites of any number of or all proteins with a specific regulatory mechanism, such as heat shock response, or iii) any number of or all residues of a biological agent used to treat a health condition, such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.
[00219] Scores related to various input parameters can be assigned in order to generate one or more composite score(s) for designing genomically-engineered organisms or systems. These scores can reflect quality of genetic variations in genes or genetic loci as they relate to selection of an organism or design of an organism for a predetermined production, trait or traits. Certain organisms or systems can be designed based on a need for improved organisms for biorefining, biomass, such as crops, trees, grasses, crop residues, or forest residues, biofuel production, and using biological conversion, fermentation, chemical conversion and catalysis to generate and use compounds, biopharmaceutical production and biologic production. In certain embodiments, this can be accomplished by modulating growth or production of microorganism through genetic manipulation methods disclosed herein.
[00220] Genetic manipulation by methods disclosed herein of genes encoding a protein can be used to make desired genetic changes that can result in desired phenotypes and can be accomplished through numerous techniques including but not limited to, i) introduction of new genetic material, ii) genetic insertion, disruption or removal of existing genetic material, as well as, iii) mutation of genetic material, such as a point mutation, or any combinations of i, ii, and iii, that results in desired genetic changes with desired phenotypic changes. Mutations can be directed or random, in addition to those including, but not limited to, error prone or directed mutagenesis through PCR, mutator strains, and random mutagenesis. Mutations can be incorporated using trackable plasmids and methods as disclosed herein.
[00221] Disclosed methods can be used for inserting and accumulating higher order modifications into a microorganism's genome or a target protein; for example, multiple different site-specified mutations in the same genome, at high efficiency to generate libraries of genomes with over 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or more targeted modifications are described. In some examples, these mutations are within regulatory modules, regulatory elements, protein-coding regions, or non-coding regions. Protein coding modifications can include, but are not limited to, amino acid changes, codon optimization, and translation tuning.
[00222] In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the attachment or linkage of two or more cassettes, followed by delivery of the linked cassettes to a single cell. Generally, the methods provided herein involve the delivery of two or more cassettes to a single cell. In many cases, it is desirable that each individual cell receives the two or more cassettes. Traditional methods of reagent delivery may often be inefficient and/or inconsistent, leading to situations in which some cells receive only one of the cassettes. The methods provided herein may improve the efficiency and/or consistency of reagent delivery, such that a majority of cells in a cell population each receive the two or more cassettes. For example, more than 50%, 55%, 60%, 65%, 70%, 75%,
80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the cells in a cell population may receive the two or more cassettes.
[00223] The two or more cassettes may be linked by any known method in the art and generally the method chosen will be commensurate with the chemistry of the cassettes. Generally, the two or more cassettes are linked by a covalent bond (i.e., covalently-linked), however, other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds. In this way, the editing cassette and the recorder cassette may be linked and delivered into a single cell. A known edit is then associated with a known recorder or barcode sequence for that cell.
[00224] In one example, the two or more cassettes are nucleic acids, such as two or more nucleic acids. The nucleic acids may be RNA, DNA, or a combination of both, and may contain any number of chemically-modified nucleotides or nucleotide analogues. In some cases, two or more RNA cassettes are linked for delivery to a single cell. In other cases, two or more DNA cassettes are linked for delivery to a single cell. In yet other cases, a DNA cassettes and an RNA cassettes are linked for delivery to a single cell. The nucleic acids may be derived from genomic RNA, complementary DNA (cDNA), or chemically or enzymatically synthesized DNA.
[00225] A cassettes may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element. [00226] Two or more cassettes may be linked on a linear nucleic acid molecule or may be linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be linked directly to one another or may be separated by one or more nucleotide spacers or linkers.
[00227] Two or more cassettes may be covalently linked on a linear cassettes or may be covalently linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be covalently linked directly to one another or may be separated by one or more nucleotide spacers or linkers.
[00228] Any number and variety of cassettes may be linked for co-delivery. For example, the two or more cassettes may include nucleic acids, lipids, proteins, peptides, small molecules, or any combination thereof. The two or more cassettes may be essentially any cassettes that are amenable to linkage.
[00229] In preferred examples, the two or more cassettes are covalently linked (e.g., by a chemical bond). Covalent linkage may help to ensure that the two or more cassettes are co- delivered to a single cell. Generally, the two or more cassettes are covalently linked prior to delivery to a cell. Any method of covalently linking two or more molecules may be utilized, and it should be understood that the methods used will be at least partly determined by the types of cassettes to be linked.
[00230] In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the covalent attachment or linkage of two or more cassettes, followed by delivery of the covalently-linked cassettes into a single cell. The methods provided may help to ensure that an individual cell receives the two or more cassettes. Any known method of reagent delivery may be utilized to deliver the linked cassettes to a cell and will at least partly depend on the chemistry of the cassettes to be delivered. Non-limiting examples of reagent delivery methods may include: transformation, lipofection, electroporation, transfection, nanoparticles, and the like.
[00231] In various embodiments, cassettes, or isolated, donor, or editing nucleic acids may be introduced to a cell or microorganism to alter or modulate an aspect of the cell or microorganism, for example survival or growth of the microorganism as disclosed herein. The isolated nucleic acid may be derived from genomic RNA, complementary DNA (cDNA), chemically or enzymatically synthesized DNA. Additionally or alternatively, isolated nucleic acids may be of use for capture probes, primers, labeled detection oligonucleotides, or fragments for DNA assembly.
[00232] A "nucleic acid" can include single- stranded and/or double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.
[00233] Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.
[00234] The nucleic acids may conveniently comprise sequences in addition to a portion of a lysine riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.
[00235] Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell. Methods for construction of nucleic acid libraries are known and any such known methods may be used.
[00236] Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.
[00237] High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetram ethyl ammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.
[00238] Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.
[00239] Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.
[00240] Any method known in the art for identifying, isolating, purifying, using and assaying activities of target proteins contemplated herein are contemplated. Target proteins contemplated herein include protein agents used to treat a human condition or to regulate processes (e.g. part of a pathway such as an enzyme) involved in disease of a human or non-human mammal. Any method known for selection and production of antibodies or antibody fragments is also contemplated. Additionally or alternatively, target proteins can be proteins or enzymes involved in a pathway or process in a virus, cell, or organism.
Targetable nucleic acid cleavage systems
[00241] Some methods disclosed herein comprise targeting cleavage of specific nucleic acid sequences using a site-specific, targetable, and/or engineered nuclease or nuclease system. Such nucleases can create double-stranded break (DSBs) at desired locations in a genome or nucleic acid molecule. In other examples, a nuclease can create a single strand break. In some cases, two nucleases are used, each of which generates a single strand break.
[00242] The one or more double or single strand break can be repaired by natural processes of homologous recombination (HR) and non-homologous end-joining (NHEJ) using the cell's endogenous machinery. Additionally or alternatively, endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.
[00243] Engineered nucleases such as zinc finger nucleases (ZFNs), Transcription Activator- Like Effector Nucleases (TALENs), engineered homing endonucleases, and RNA or DNA guided endonucl eases, such as CRISPR/Cas such as Cas9 or CPF1, and/or Argonaute systems, are particularly appropriate to carry out some of the methods of the present invention. Additionally or alternatively, RNA targeting systems can use used, such as CRISPR/Cas systems including c2c2 nucleases.
[00244] Methods disclosed herein can comprise cleaving a target nucleic acid using a CRISPR systems, such as a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR system. CRISPR/Cas systems can be multi-protein systems or single effector protein systems. Multi- protein, or Class 1, CRISPR systems include Type I, Type III, and Type IV systems. Alternatively, Class 2 systems include a single effector molecule and include Type II, Type VI, and Type VI.
[00245] CRISPR systems used in methods disclosed herein can comprise a single or multiple effector proteins. An effector protein can comprise one or multiple nuclease domains. An effector protein can target DNA or RNA, and the DNA or RNA may be single stranded or double stranded. Effector proteins can generate double strand or single strand breaks. Effector proteins can comprise mutations in a nuclease domain thereby generating a nickase protein. Effector proteins can comprise mutations in one or more nuclease domains, thereby generating a catalytically dead nuclease that is able to bind but not cleave a target sequence. CRISPR systems can comprise a single or multiple guiding RNAs. The gRNA can comprise a crRNA. The gRNA can comprise a chimeric RNA with crRNA and tracrRNA sequences. The gRNA can comprise a separate crRNA and tracrRNA. Target nucleic acid sequences can comprise a protospacer adjacent motif (PAM) or a protospacer flanking site (PFS). The PAM or PFS may be 3' or 5' of the target or protospacer site. Cleavage of a target sequence may generate blunt ends, 3 ' overhangs, or 5' overhangs.
[00246] A gRNA can comprise a spacer sequence. Spacer sequences can be complementary to target sequences or protospacer sequences. Spacer sequences can be 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 36 nucleotides in length.
[00247] A gRNA can comprise a repeat sequence. In some cases, the repeat sequence is part of a double stranded portion of the gRNA. A repeat sequence can be 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 50 nucleotides in length.
[00248] A gRNA can comprise one or more synthetic nucleotides, non-naturally occurring nucleotides, nucleotides with a modification, deoxyribonucleotide, or any combination thereof. Additionally or alternatively, a gRNA may comprise a hairpin, linker region, single stranded region, double stranded region, or any combination thereof. Additionally or alternatively, a gRNA may comprise a signaling or reporter molecule.
[00249] A CRISPR nuclease can be endogenously or recombinantly expressed within a cell. A CRISPR nuclease can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A CRISPR nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
[00250] gRNAs can be encoded by genetic or episomal DNA within a cell. In some examples, gRNAs can be provided or delivered to a cell expressing a CRISPR nuclease. gRNAs can be provided or delivered concomitantly with a CRISPR nuclease or sequentially. Guide RNAs can be chemically synthesized, in vitro transcribed, or otherwise generated using standard RNA generation techniques known in the art.
[00251] A CRISPR system can be a Type II CRISPR system, for example a Cas9 system. The Type II nuclease can comprise a single effector protein, which, in some cases, comprises a RuvC and HNH nuclease domains. In some cases a functional Type II nuclease can comprise two or more polypeptides, each of which comprises a nuclease domain or fragment thereof. The target nucleic acid sequences can comprise a 3' protospacer adjacent motif (PAM). In some examples, the PAM may be 5' of the target nucleic acid. Guide RNAs (gRNA) can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences. Alternatively, the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type II nuclease can generate a double strand break, which is some cases creates two blunt ends. In some cases, the Type II CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type II nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang. In some examples, a Type II nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type II nuclease could have mutations in both the RuvC and HNH domains, thereby rendering the both nuclease domains non-functional. A Type II CRISPR system can be one of three subtypes, namely Type II-A, Type II-B, or Type II-C.
[00252] A CRISPR system can be a Type V CRISPR system, for example a Cpfl, C2cl, or C2c3 system. The Type V nuclease can comprise a single effector protein, which in some cases comprises a single RuvC nuclease domain. In other cases, a function Type V nuclease comprises a RuvC domain split between two or more polypeptides. In such cases, the target nucleic acid sequences can comprise a 5' PAM or 3' PAM. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA, such as can be the case with Cpfl . In some cases, a tracrRNA is not needed. In other examples, such as when C2cl is used, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type V CRISPR nuclease can generate a double strand break, which in some cases generates a 5' overhang. In some cases, the Type V CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type V nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang. In some examples, a Type V nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type V nuclease could have mutations a RuvC domain, thereby rendering the nuclease domain non-functional.
[00253] A CRISPR system can be a Type VI CRISPR system, for example a C2c2 system. A Type VI nuclease can comprise a HEPN domain. In some examples, the Type VI nuclease comprises two or more polypeptides, each of which comprises a HEPN nuclease domain or fragment thereof. In such cases, the target nucleic acid sequences can by RNA, such as single stranded RNA. When using Type VI CRISPR system, a target nucleic acid can comprise a protospacer flanking site (PFS). The PFS may be 3' or 5'or the target or protospacer sequence. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA. In some cases, a tracrRNA is not needed. In other examples, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. In some examples, a Type VI nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type VI nuclease could have mutations in a HEPN domain, thereby rendering the nuclease domains nonfunctional.
[00254] Non-limiting examples of suitable nucleases, including nucleic acid-guided nucleases, for use in the present disclosure include C2cl, C2c2, C2c3, Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Cpfl, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlOO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4, homologues thereof, orthologues thereof, or modified versions thereof. Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Alicyclobacillus, Brevibacilus, Bacillus, Bacteroidetes, Brevibacilus, Carnobacterium, Clostridiaridium, Clostridium, Desulfonatronum, Desulfovibrio, Helcococcus, Leptotrichia, Listeria, Methanomethyophilus, Methylobacterium, Opitutaceae, Paludibacter, Rhodobacter, Sphaerochaeta, Tuberibacillus, and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom, which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes. Suitable nucleic acid- guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae,
Peptostreptococcaceae, Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae.
[00255] Other nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidomonococcus sp., Lachnospiraceae bacterium COEl, Prevotella brevis ATCC 19188, Smithella sp. SCADC, Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium D2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp. CAG:290, Kandleria vitulina, Clostridiales bacterium KA00274, Lachnospiraceae bacterium 3-2, Dorea longicatena, Coprococcus catus GD/7, Enterococcus columbae DSM 7374, Fructobacillus sp. EFB-N1, Weissella halotolerans, Pediococcus acidilactici, Lactobacillus curvatus, Streptococcus pyogenes, Lactobacillus versmoldensis, and Filifactor alocis ATCC 35896.
[00256] Suitable nucleases for use in any of the methods disclosed herein include, but are not limited to, nucleases having the sequences listed in Table 1, or homologues having at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%), or 99% sequence identity to any of the nucleases listed in Table 1.
Table 1.
Figure imgf000060_0001
[00257] In some methods disclosed herein, Argonaute (Ago) systems can be used to cleave target nucleic acid sequences. Ago protein can be derived from a prokaryote, eukaryote, or archaea. The target nucleic acid may be RNA or DNA. A DNA target may be single stranded or double stranded. In some examples, the target nucleic acid does not require a specific target flanking sequence, such as a sequence equivalent to a protospacer adjacent motif or protospacer flanking sequence. The Ago protein may create a double strand break or single strand break. In some examples, when a Ago protein forms a single strand break, two Ago proteins may be used in combination to generate a double strand break. In some examples, an Ago protein comprises one, two, or more nuclease domains. In some examples, an Ago protein comprises one, two, or more catalytic domains. One or more nuclease or catalytic domains may be mutated in the Ago protein, thereby generating a nickase protein capable of generating single strand breaks. In other examples, mutations in one or more nuclease or catalytic domains of an Ago protein generates a catalytically dead Ago protein that can bind but not cleave a target nucleic acid.
[00258] Ago proteins can be targeted to target nucleic acid sequences by a guiding nucleic acid. In many examples, the guiding nucleic acid is a guide DNA (gDNA). The gDNA can have a 5' phosphorylated end. The gDNA can be single stranded or double stranded. Single stranded gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the gDNA can be less than 10 nucleotides in length. In some examples, the gDNA can be more than 50 nucleotides in length.
[00259] Argonaute-mediated cleavage can generate blunt end, 5' overhangs, or 3' overhangs. In some examples, one or more nucleotides are removed from the target site during or following cleavage.
[00260] Argonaute protein can be endogenously or recombinantly expressed within a cell. Argonaute can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. Additionally or alternatively, an Argonaute protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
[00261] Guide DNAs can be provided by genetic or episomal DNA within a cell. In some examples, gDNA are reverse transcribed from RNA or mRNA within a cell. In some examples, gDNAs can be provided or delivered to a cell expressing an Ago protein. Guide DNAs can be provided or delivered concomitantly with an Ago protein or sequentially. Guide DNAs can be chemically synthesized, assembled, or otherwise generated using standard DNA generation techniques known in the art. Guide DNAs can be cleaved, released, or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.
[00262] In some instances, compositions are provided comprising a nuclease such as an nucleic acid-guided nuclease (e.g., Cas9, Cpfl, MAD2, or MAD7) or a DNA-guided nuclease (e.g., Ago), linked to a chromatin-remodeling enzyme. Without wishing to be bound by theory, a nuclease fusion protein as described herein may provide improved accessibility to regions of highly-structured DNA. Non-limiting examples of chromatin-remodeling enzymes that can be linked to a nucleic-acid guided nuclease may include: histone acetyl transferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), chromatin remodeling complexes, and transcription activator-like (Tal) effector proteins. Histone deacetylases may include HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, sirtuin 1, sirtuin 2, sirtuin 3, sirtuin 4, sirtuin 5, sirtuin 6, and sirtuin 7. Histone acetyl transferases may include GCN5, PCAF, Hatl, Elp3, Hpa2, Hpa3, ATF-2, Nutl, Esal, Sas2, Sas3, Tip60, MOF, MOZ, MORF, HBOl, p300, CBP, SRC-1, ACTR, TIF-2, SRC-3, TAFII250, TFIIIC, Rttl09, and CLOCK. Histone methyltransferases may include ASH1L, DOT1L, EHMT1, EHMT2, EZH1, EZH2, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM2, SET, SETBP1, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, SETD6, SETD7, SETD8, SETD9, SETDB1, SETDB2, SETMAR, SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, SUV420H1, and SUV420H2. Chromatin-remodeling complexes may include SWI/SNF, ISWI, NuRD/Mi-2/CHD, F O80 and SWR1.
[00263] In some instances, the nuclease is a wild-type nuclease. In other instances, the nuclease is a chimeric engineered nuclease. Chimeric engineered nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups disclosed herein; advantageously the fragments are from nuclease orthologs of different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric engineered nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 5 fragments, each from a different protein or nuclease.
[00264] Nuclease fusion proteins can be recombinantly expressed within a cell. A nuclease fusion protein can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A nuclease and a chromatin-remodeling enzyme may be engineered separately, and then covalently linked, prior to delivery to a cell. A nuclease fusion protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.
Cell-cycle-dependent expression of targeted nucleases.
[00265] In some instances, compositions comprising a cell-cycle-dependent nuclease are provided. A cell-cycle dependent nuclease generally includes a targeted nuclease as described herein linked to an enzyme that leads to degradation of the targeted nuclease during Gl phase of the cell cycle, and expression of the targeted nuclease during G2/M phase of the cell cycle. Such cell-cycle dependent expression may, for example, bias the expression of the nuclease in cells where homology-directed repair (HDR) is most active (e.g., during G2/M phase). In some cases, the nuclease is covalently linked to cell-cycle regulated protein such as one that is actively degraded during Gl phase of the cell cycle and is actively expressed during G2/M phase of the cell cycle. In a non-limiting example, the cell-cycle regulated protein is Geminin. Other non- limiting examples of cell-cycle regulated proteins may include: Cyclin A, Cyclin B, Hsll, Cdc6, Finl, p21 and Skp2.
[00266] In some instances, the nuclease is a wild-type nuclease.
[00267] In other instances, the nuclease is a engineered nuclease. Engineered nucleases can be non-naturally occurring.
[00268] Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.
[00269] Disclosed herein are non-naturally targetable nuclease systems. Such targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems. Engineered nuclease systems can comprise one or more of an engineered nuclease, such as an engineered nucleic acid-guided nuclease, an engineered guide nucleic acid, an engineered polynucleotides encoding said nuclease, or an engineered polynucleotides encoding said guide nucleic acid. Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.
[00270] Non-limiting examples of types of engineering that can be done to obtain a non- naturally occurring nuclease system are as follows. Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell. Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery. Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs. Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system. Engineering can alter, increase, or decrease protein stability. Engineering can alter, increase, or decrease processivity of nucleic acid scanning. Engineering can alter, increase, or decrease target sequence specificity. Engineering can alter, increase, or decrease nuclease activity. Engineering can alter, increase, or decrease editing efficiency. Engineering can alter, increase, or decrease transformation efficiency. Engineering can alter, increase, or decrease nuclease or guide nucleic acid expression.
[00271] Examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 41-60), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 127-146), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 147-166), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 61-80), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 21-40) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 1-20), or engineered guide nucleic acids comprising any one of SEQ ID NO: 84-107. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.
[00272] Additional examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 168), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 169), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 170), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 171), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 167) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 108-110), or engineered guide nucleic acids compatible with any targetable nuclease disclosed herein. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art..
[00273] A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non- naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.
[00274] Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.
[00275] Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region (e.g., 172-181). Common features can include a primary sequence or secondary structure.
[00276] A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.
[00277] In other instances, the nuclease is a chimeric nuclease. Chimeric nucleases can be engineered nucleases. Chimeric nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid- guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups; advantageously the fragments are from nuclease orthologs of different species. A chimeric nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric nuclease can be comprised of fragments or domains from at least two different species. A chimeric nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 5 fragments, each from a different protein or nuclease.
EXAMPLES
Example 1 - CREATE-plasmids and libraries
[00278] Figures 1A-C depict an example of an overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design and workflow. Figure 1A shows an example of the CREATE methodology which allows programmatic genome modifications to be focused on key amino acid residues or promoter targets across the genome. Such libraries thus enable systematic assessment of sequence/activity relationships for a wide variety of genomic targets in parallel. Figure IB depicts an example of CREATE cassettes designed to encode both homology arm (HA) and guide RNA (gRNA) sequences to target a specific locus in the E. coli genome. The 100 bp homology arm was designed to introduce a specific codon mutation (target codon) that can be selectively enriched by a synonymous PAM mutation to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The PI and P2 sites (black) serve as general priming sites allowing multiplexed amplification, cloning and sequencing of many libraries in parallel. The promoter (J23119, green) is a constitutive promoter that drives expression of the gRNA. Detailed example the HA design for introducing a stop codon at residue 145 in the galK locus is also depicted at the bottom of Figure IB. The top sequence shows the wildtype genome sequence with the PAM (CCG; the reverse complement of which is CGG, which is recognized by S. pyogenes Cas9) and target codon (TAT, encoding Y) highlighted. The HA design introduces a "silent scar" at the PAM site (CgG, the reverse complement of which is CCG, which is not recognized by S. pyogenes Cas9) and a single nucleotide TAT>TAA mutation at codon 145 (resulting in a STOP). This design strategy was implemented programmatically for coding regions across the genome. Figure 1C depicts an overview of an example CREATE workflow. CREATE cassettes are synthesized on a microarray delivered as large oligo pools (104 to 106 individual library members). Parallel cloning and recombineering allowed processing of these pools into genomic libraries, in some cases in 23 days. Deep sequencing of the CREATE plasmids can be used to track the fitness of thousands of precision mutations genome wide following selection or screening of the mutant libraries. Example 2 - CREATE plasmid validation
[00279] Figure 2A-D depicts an example of the effect of Cas9 activity on transformation and editing efficiencies. The galK 120/17 CREATE cassette (120 bp HA and 17 bp PAM/codon spacing) targeting codon 145 in galK gene or a control non-targeting gRNA vector was transformed in cells carrying pSFM5 along with dCas9 (e.g. left set of bars in Figure 2A) or Cas9 (e.g. right set of bars in Figure 2A) plasmids. The pSFM5 plasmid carries lambda red recombination machinery. The cas9 gene was cloned into the pBTBX-2 backbone under the control of a pBAD promoter to allow control of the cleavage activity by addition of arabinose. Transformation efficiencies of each vector are shown with dark grey bars. The total number of recombinant cells (light grey bars) were calculated based on red/white colony screening on MacConkey agar. In cases where white colonies were undetectable by plate based screening we assumed 104 editing efficiencies. A 102 fold reduction in transformation efficiency compared to the non-targeting gRNA control was also observed for CREATE cassettes transformed into the Cas9 background.
[00280] Figure 2B depicts an example of the characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). Dark grey and light grey bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing.
[00281] Figure 2C shows example data from sequencing of the genomic loci from CREATE recombineering reactions. The galK cassettes from Figure 2B are labeled according to the HA length and PAM codon spacing. The other loci shown were cassettes isolated from multiplexed library cloning reactions. The bar plot (Figure 2C) indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The + and labels at the bottom indicate the presence or absence of the designed mutation at the two relevant sites in each clone. The circular inset indicates the relative position of each gene on the E. coli genome.
[00282] Figure 2D depicts an example of library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of these plasmid counts for the entire library. The distribution follows expected Poisson distribution for low average counts. Example 3 - CREATE-recording used to engineer trackable episomal DNA libraries
[00283] Figure 3A depicts an example of an overview of the method used to generate a trackable episomal DNA library. Transformation of a CREATE recorder plasmid generates modifications of the target DNA at two sites. One edit occurs to the desired target gene (gray) introducing a codon or promoter mutation designed to test specific engineering objectives. The second edit targets a functionally neutral site and introduces a 15 nucleotide barcode (BC, black).
By virtue of coupling these libraries on a single CREATE plasmid the target DNA is edited at both sites and each unique barcode can be used to track edits throughout the rest of the plasmid.
[00284] Figure 2B depicts an example of the CREATE barcode design. A degenerate library is constructed from overlapping oligos and cloned in a separate site of the CREATE vector to make a library of CREATE recorder cassettes that can be coupled to the designer editing libraries.
[00285] Figure 2C depicts an exemplary CREATE record mapping strategy. Deep sequencing of both the target DNA (left) and CREATE plasmids allows a simple sequence mapping strategy by allowing each editing cassette to be uniquely assigned by the barcode sequence. This allows the relative fitness of each barcode (and thus edit) to be tracked during selection or screening processes and can be shuttled between different organisms using standard vectors.
Example 4 - CREATE-mediated editing of episomal DNA
[00286] Methods and compositions disclosed herein were used to mutate a key residue of the cas9 gene used for the CREATE process (e.g. Figure 4A-4B). A cassette was designed to make an R1335K mutation in the Cas9 protein. This cassette was cloned into a CREATE plasmid and transformed into MG1655 E. coli carrying the pSEVI5 and X2-Cas9 vectors. The pSEVI5 vector comprises lambda red recombination machinery. The X2-Cas9 vector comprises an arabinose- inducible Cas9 expression cassette. Following three hours recovery in LB supplemented with 0.4% arabinose to induce Cas9 expression, the cells were plated on agar containing antibiotics that maintain selective pressure for replication of both the X2-Cas9 and CREATE plasmids. Colony PCR of random clones revealed the designed edits from the CREATE plasmid were efficiently transferred into the X2-Cas9 plasmid (e.g. Figure 4B). Of the clones that were sequenced, 100% contained the silent PAM mutation in X2Cas9 and 6/14 (43%) also containing desired coding edit. This is the first demonstration that plasmid based editing using CREATE is robust despite higher copy numbers associated with the plasmid target as compared to previous genome engineering efforts.
Example 5 - CREATE-mediated editing and tracking of E. coli genome - double cassette
[00287] To test the performance of the recording strategy in a genomic context we tested the ability to edit two distal genomic loci in the E. coli genome (e.g. Figure 5 A). To do so we cloned CREATE recording cassette libraries designed to embed the 15 nucleotide barcodes into the galK locus. After cloning, we isolated a few unique barcodes and cloned a second editing cassette designed to incorporate an F153R mutation in the dihydrofolate reductase (DHFR)//e>M gene that was identified by our previous CREATE studies as conferring tolerance to the antibiotic trimethoprim. Genotyping of E. coli strains following transformation of the dual CREATE recording vector according to previously described protocols yielded the data in Figure 5 A. The efficiency of barcoding (100%) was higher than the target genome edit (80-90%), ensuring that edited genomes can be tracked. Of the transformed population we observed > 80% of colonies contained the barcode edit in the galK locus as determined by red white colony screening (e.g. Figure 5B). From the barcoded colonies we found that 85% of the colonies also encoded the DFIFR F153R mutation indicating that we have a strong tracking between the barcode and codon edits. Figure 5B depicts the total number of colonies (CFUs) in duplicate experiments that are edited and/or barcoded. The edited CFUs numbers were calculated by extrapolation of the data in Figure 5A to the total number of CFUs on the plate. The barcoded CFUs numbers were calculated by counting the number of white colonies in a galK screening (site in which barcode is integrated). These data show that the majority of barcoded colonies contained the designed genomic edit.
Example 6- Plasmid curing for combinatorial engineering
[00288] Figure 6 depicts an example of combinatorial genome engineering and tracking. Three recursive CREATE plasmids are used, each with a gRNA targeting one of the other markers in this series (indicated by T-lines). During each transformation, an edit and barcode are incorporated into the genome and the previous CREATE plasmid is cured. In this way rapid iterative transformations can be performed to construct either a defined combination of mutations or a combinatorial library to search for improved phenotypes. The recording site is compatible with short read sequencing technologies that allow the fitness of combinations to be tracked across a population. Such an approach allows rapid investigation of genetic epistasis and optimization of phenotypes relevant to basic research or for commercial biological applications.
[00289] Figure 3D and Figure 3E depict another example of combinatorial genome engineering. With each round of engineering, an editing cassette (blue rectangle in Figure 3D) is incorporated into the target sequence in the genome (blue star) and a recorder cassette (green rectangle in Figure 3D) is incorporated into a different target sequence of the genome (green dash in middle panel of Figure 3D). In this example, each recorder sequence comprises a 15 nucleotide barcode. As shown in the right panel of Figure 3D, the recorder sequences are each inserted adjacent to the last recorder sequence, despite where the editing cassette was inserted. Each recorder cassette can simultaneously delete a PAM site. After completion of each round of engineering, the engineered cells can be selected and then the inserted mutations can be tracked by sequencing the recorder region that comprises all of the inserted recorder cassettes. By sequencing the starting plasmid library, each editing cassette can be linked or associated with one or more unique barcodes within the recorder cassette. Since each recorder cassette corresponds to the associate editing cassette, then the mutations incorporated by the editing cassettes can be tracked or identified by the sequence of the recorder cassette, or the sequence of the barcodes within the recorder cassette. As is demonstrated in Figure 3E, by sequencing all of the recorder cassettes or barcodes within the recorder cassettes, each of the inserted mutations can be identified and tracked. The inserted recorder sequences can be referred to as a recorder site, recorder array, or barcode array. As a result, after recursive rounds of engineering, sequencing the barcode array or recorder site allows tracking of the history of genomic editing events in the strain. When the recorder cassettes are inserted in order as depicted, for example, in Figure 3D, then the barcode array or recorder site can identify the order in which the mutations were inserted as well as what the mutation is.
Example 7 - Recursive Engineering using iterative CREATE-recording engineering events
[00290] The example of recursive engineering depicted in Figure 7A was used for plasmid curing to demonstrate that the design is extremely efficient at eliminating previous vectors (Figure 7B). Each CREATE plasmid can be positively selected for based on the indicated antibiotics (Trimeth: trimethoprim, Carb: carbenicillin, Tet: tetracycline) and contains a gRNA targeting one of the other antibiotic markers. For example, the reCREATEl plasmid can be selected for on carbenicillin and encodes a gRNA that will selectively target the trimethoprim resistance gene for destruction. One pass through the carb/tetracycline/trimethoprim antibiotic marker series allows selective incorporation of up to three targeted edits. The recording function would be implemented as illustrated in Figure 5, but is omitted here for simplicity.
[00291] Figure 7B depicts an example of data from iterative rounds of CREATE engineering. A serial transformation series began with cells transformed with X2cas9 (kan) and the reCREATEl vector. The spot plating results indicate that curing is 99.99% effective at each transformation step, ensuring highly efficient engineering in each round of transformation. Simultaneous genome editing and plasmid curing in each transformation step with high efficiencies was achieved by introducing the requisite recording and editing CREATE cassettes into recursive vectors as disclosed herein (e.g. Figure 7B).
Example 8- CREATE design and workflow
[00292] An example overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design workflow is depicted in Figures 8A-8B. Figure 8A shows example anatomy of a CREATE cassette designed for protein engineering. Cassettes encode a spacer (red) along with part of a guide RNA (gRNA) sequence and a designer homology arm (HA) that can template homologous recombination at the genomic cut site. For protein engineering purposes the HA is designed to systematically couple mutations to a specified codon or target site (TS, blue) to a nearby synonymous PAM mutation (SPM, red) to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The priming sites (PI and P2, black) are designed to allow multiplexed amplification and cloning of specific subpools from massively parallel array based synthesis. A constitutive promoter (green) drives expression of the gRNA.
Figure 8 A further shows a detailed example of HA design for introducing a stop codon at residue
145 in the galK locus. The top sequence shows is of the wt genome with the PAM and TS codon highlighted. The translation sequences are shown to illustrate that the resulting mutant contains a single nonsynonymous mutation at the target site. Figure 8B shows an example overview of the
CREATE workflow. CREATE oligos are synthesized on a microarray and delivered as large pools (104-106 individual library members). These cassettes are amplified and cloned in multiplex with the ability to subpool designs. After introduction of the CREATE plasmids into cells expressing Cas9 mutations are transferred to the genome with high efficiencies.
Measurement of the frequency of each plasmid before (fi, tl) and after selection (fi, t2) by deep sequencing provides enrichment scores (Ei) for each CREATE cassette. These scores allow rapid identification of adaptive variants at up to single nucleotide or amino acid resolution for thousands loci in parallel.
Example 9- CREATE design validation
[00293] Figure 9A depicts an example of the effects of Cas9 activity on transformation and editing efficiencies were measured using no a cassette with a spacer and 120 bp HA targeted to the galK (galK Y "145* _120 y Ί7) The total transformants (TT white) produced by this CREATE vector are shown in white and the total number of recombinants (TR) in dark blue. TR is calculated as the product of the editing efficiency and Tt. Asterisks indicate experiments in which recombinants could not be observed by plate based screening. Figure 9B shows an example of characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). White and blue bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing. Figure 9C depicts an example of determination of editing efficiency for oligo derived cassettes by sequencing of the genomic loci. The gor/ _Y145*_120/17 cassette from Figures 9A and 9B is shown in white for reference. The bar plot indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The circular inset indicates the relative position of each gene on the E. coli genome. Figure 9D depicts distance between
SPM and the TS (as exemplified in Figure 8A) is strongly correlated with editing efficiency
(correct edits/total sequences sampled). The galK cassettes with 44 and 59 bp in Figure 9B were omitted from this analysis. The depicted error bars are derived from N=3 independent replicates of the indicated experiment.
Example 10- Scanning saturation mutagenesis of an essential chromosomal gene
[00294] Figure 1 OA- IOC depict an example where CREATE was used to generate a full scanning saturation mutagenesis library of the folA gene for identification of mutations that can confer resistance to TMP. The count weighted average enrichment score from two trials of selection is plotted as a function of residue position (right). Cassettes encoding nonsynonymous mutations are shown in gray, and those encoding synonymous mutations in black. Cassettes with enrichment scores greater than 1.8 are highlighted in red and mutations that affect previously reported sites are labeled for reference. The dashed lines indicate enrichment values that are significantly different (p<0.05) from the synonymous dataset as determined by bootstrapping of the confidence intervals. These values are shown as a histogram for reference (middle). Mutations that appear to significantly impact DHFR resistance are highlighted as red spheres to the far right. Figures 10D-10F depict example growth analysis of wt (left) F153W (middle) and F153R (right) variants in the indicated range of TMP concentrations (shown right).
Example 11- Reconstruction of ALE mutation set and forward engineering of
thermotolerant genotypes
[00295] Figure 11A depicts example genomic plots of enrichment scores for CREATE libraries grown at 42.2°C in minimal media conditions. The innermost plot illustrates the counts of the plasmid library before selection with labels for the top 20 representatives. The outer ring shows the fitness of pooled library variants after growth in minimal media at elevated temperature (42.2°C). The bars are colored according to log2 enrichment. Blue bars represent detrimental mutations, red bars represent significantly enriched mutations and gray bars indicate mutations that appear neutral in this assay. The 20 most enriched variants are labeled for reference and labels corresponding to ALE-derived variants are colored red. Figure 1 IB shows a histogram of enrichment scores of all library variants (gray), ALE-derived mutants (red) and synonymous mutants (black) under 42.2°C growth conditions. The dotted gray line indicates significant enrichment scores compared to the synonymous population. The histograms are normalized as a fraction of the total number of variants passing the counting threshold (number indicated in parentheses). Note that 231 of 251 unique nonsynonmous ALE cassettes sampled by this experiment appear to provide significant growth benefits. Figure 11C depicts enrichment of mutations based on mutational distance from wt. Mutations that require 2 and 3 nucleotide (nt) transitions are exceedingly rare or absent in ALE approaches however we note that the two most enriched clones from the pooled library selection (targeting the Crp regulator) require two nucleotide substitutions and are highlighted at the far right.
Example 12- Genome scale mapping of amino acid substitutions for the study of antibiotic resistance and tolerance
[00296] Figure 12A depicts example genomic plots of enrichment (log2) of library variants in the presence of erythromycin (outer) and rifampicin (middle). The innermost plot illustrates the count distribution of the input plasmids for reference. Coloring and labeling are as in Figure 11A-11C. Figure 12B depicts CREATE mutation mapping at the individual amino acid level. CREATE cassettes that introduce bulky side chains to amino acids 1572, S531 and L533 (red) of the RNA polymerase β subunit (rpoB) are highly enriched in the presence of rifampicin from genome wide targeting libraries. Figure 11C depicts a zoomed in region of the MarA transcription factor bound to its cognate DNA target is shown for reference (PDB ID 1BL0). The wt Q89 residue protrudes away from the DNA binding interface due to unfavorable steric and electrostatic interactions between this side chain and the DNA. The Q89N substitution identified by selection introduces a H-donor and shortens the side chain such that productive H-bonding can occur between this residue and the DNA backbone. Such an interaction likely favors stronger DNA binding and induction of downstream resistance genes. Figure 12D depicts enrichment plot of genome wide targeting libraries with 10 g/L acetate or 2 g/L furfural respectively. Coloring is the same as in Figure 11 A. Figure 12E depicts CREATE mapping at a gene level reveals trends at the gene level. Strong enrichment fis metA and fadR targeting mutations in acetate suggests important roles for these genes in acetate tolerance, as depicted in Figure 12F, same as in the furfural selections depicted in Figure 12E.
Example 13- CREATE-enabled flexible design strategies
[00297] Illustration of example designs compatible with CREATE strategy are depicted in Figures 13A-13D. Figure 13 A shows protein engineering applications a silent codon approach is taken (top, see also Figure 8A-8B). This mutation strategy allows targeted mutagenesis of key protein regions to alter features such as DNA binding, protein-protein interactions, catalysis, or allosteric regulation. Above an illustration of a DNA binding saturation mutagenesis library designed for the global transcription factor Fis designed for this study is illustrated. Figure 13B shows promoter mutations PAM sites in proximity to a specified transcription start site (TSS) can be disrupted through nucleotide replacement or integration cassettes. To simplify this design procedure used in this study consensus CAP or UP elements were designed for integration at a fixed location relative to the TSS without taking into account possible effects of these mutations may have on proximal genes. Figure 13C shows an example cassette design for mutagenizing a ribosome binding site (RBS). Figure 13D depicts an example of a simple deletion design. Points a and b are included to illustrate distance between two sites at the gene deletion locus. In all cases cassette designs disrupt a targeted PAM to allow selective enrichment of the designed mutant.
Example 14- Engineering the lycopene pathway
[00298] Figures 14A-14B depict edits made the DMAPP pathway in E. coli which is the precursor to lycopene. Edits were made to the ORF's for 11 genes. Eight edits were designed to improve activity and 3 edits were designed to reduce activity of competitive enzymes. Approximately 10,000 variants within the lycopene pathway were constructed and screened.
Example 15- Cas9 editing efficiency controls
[00299] Figure 15 depicts Cas9 editing control experiments. The CREATE galK_120/17 off cassette (relevant edits shown in red at bottom) was transformed into different backgrounds to assess the efficiency of homologous recombination between the CREATE plasmid and the target genome. Red colonies represent unedited (wt) genomic variants and white colonies represent edited variants. Transformation into cells containing only pSEVI5 or pSEVI5/X2 and dCas9 plasmids exhibited no detectable recombination as indicated by the lack of white colonies. In the presence of active Cas9 (X2-Cas9 far right) we observe high efficiency editing (>80%), indicating the requirements for dsDNA cleavage to achieve high efficiency editing and library coverage.
Example 16- Toxicity of gRNA dsDNA cleavage in E. coli
[00300] Figures 16A-16C depict experiments testing the toxicity of generating double strand breaks in E. coli. The toxicity of a single gRNA cut in E. coli as observed in control experiments with a gRNA targeting galK (spacer sequence TTAACTTTGCGTAACAACGC) or folA ( spacer sequence GTAATTTTGTATAGAATTTA). In the absence of a repair template we observe strong killing from the gRNA. Rescue efficiencies of 103-104 are observed upon co- transformation of a single stranded donor oligo indicating the need for a homologous repair template to alleviate this toxicity, b) Toxicity of multiple CREATE edits. The targeted sites are illustrated graphically on the left and at the bottom of the bar graph. A non-targeting gRNA control was used to estimate transformation efficiency based on no edits (far left, no target sites). A CREATE cassette targeting either folA (green) or galK (red) or a combination of the two. Note the multiplicative toxicity in E. coli of having additional gRNAs expressed from the same plasmid. In this scenario there is homologous repair for each site suggesting that off-target gRNA cleavage would be highly lethal. These data suggest that off target cleavage by a CREATE cassette would be selectively removed from the population early in the library construction phase.
[00301] Figures 16D-16E depicts data from another such cell survival assay. The editing cassette contained a F153R mutation, which leads to temperature sensitivity of the folA gene. The recorder cassette contained a 15 nucleotide barcode designed to disrupt the galK gene, which allows screening of colonies on MacConkey agar plates. In this example, generating two cuts decreased cell survival compared to generating zero or one cut.
[00302] Figure 16F depicts data from a transformation and survival assay comparing a low copy number plasmid (Ec23) expressing Cas9 and a high copy number plasmid (MG) expressing Cas9. Different vectors with distinct editing cassettes were used to target different gene target sites (folA, lacZ, xylA, and rhaA). The recorder cassettes were designed to target different sequences within the galK gene, either site SI, S2, or S3. The recursive vector used had a different vector backbone compared to the others and is part of a 3-vector system designed for iterative engineering that cures the cell of the previous round vector. The data indicates that lower Cas9 expression (Ec23 vector) increases survival and/or transformation efficiency. The decreased Cas9 expression increased transformation efficiency by orders of magnitude in cells undergoing two genomic cuts (editing cassette and recording cassette).
[00303] Figure 16G shows the correlation between editing efficiency and recording efficiency in cells transformed with the low copy number plasmid (Ec23) expressing Cas9 and the high copy number plasmid (MG) expressing Cas9. Editing and recording efficiencies were similar for high (MG) and lower (Ec23) expression of cas9. Ec23 yielded more colonies and had better survival (as shown in Figure 16E), while maintaining a high efficiency of dual editing (editing cassette and recorder cassette incorporation). .
Example 17- CREATE strategy for gene deletion
[00304] Figure 17A-D depict an example CREATE strategy for gene deletion. Figure 17A depicts an example cassette design for deleting 100 bp from the galK ORF. The HA is designed to recombine with regions of homology with the designated spacing, with each 50 bp side of the CREATE HA designed to recombine at the designated site (blue). The PAM/spacer location (red) is proximal to one of the homology arms and is deleted during recombination, allowing selectable enrichment of the deleted segment. Figure 17B depicts electrophoresis of chromosomal PCR amplicons from clones recombineered with this cassette. Figure 17C depicts design for 700 bp deletion as in a). Figure 17D depicts colony PCR of 700 bp deletion cassettes as in Figure 17B). The asterisks in Figure 17B and 17D indicate colonies that appear to have the designed deletion. Note that some clones appear to have bands pertaining to both wt and deletion sizes indicating that chromosome segregation in some of the colonies is incomplete when plated
3 hrs post recombineering.
Example 18- Editing efficiency controls by cotransformation of gRNA and linear dsDNA cassettes
[00305] Figure 18 depicts effect of PAM distance on editing efficiency using linear dsDNA PCR amplicons and co-transformation with a gRNA. On the left is an illustration of the experiments using PCR amplicons containing a dual (TAATAA) stop codon on one side (asterisk) and a PAM mutation just downstream of the galK gene (gray box) on the other end were co-transformed with a gRNA targeting the downstream galK PAM site. The primers were designed such that the mutations were 40 nt from the end of the amplicon to ensure enough homology for recombination. Data was obtained from these experiments by red/white colony screening. A linear fit to the data is shown at the bottom. Cassettes in which only the PAM mutation is present were included as assay controls were observed to have very low rates of GalK inactivation. These experiments were performed in a BW25113 strain of E. coli in which the mutS gene was knocked out to allow high efficiency editing with double stranded DNA templates. This approach in MG1655 did not achieve high efficiency editing due to the active mutS allele.
Example 19- Library cloning analysis and statistics
[00306] Figure 19A depicts reads from an example plasmid library following cloning are shown according to the number of total mismatches between the read and the target design sequence. The majority of plasmids are matches to the correct design. However, there are a large number of 4 base pair indel/mismatch mutants that were observed in this cloned population. Figure 19B depicts a plot of the mutation profile for the plasmid pool as a function of cassette position. An increase in the mutation frequency is observed near the center of the homology arm (HA) indicating a small error bias in the sequencing or synthesis of this region. We suspect that this is due to the presence of sequences complementary to the spacer element in the gRNA. Figure 19C depicts a histogram of the distances between the PAM and codon for the CREATE cassettes designed in this study. Large majority (> 95%) were within the design constraints tested in Figure 9A-9D. The small fraction that are beyond 60 bp were made in cases where there was no synonymous PAM mutation within closer proximity. Figure 19D depicts library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of the number of variants having the indicated plasmid counts in the cloned libraries. Example 20- Precision of CREATE cassette tracking of recombineered populations
[00307] Figure 20A depicts a correlation plot of CREATE cassette read frequencies in the plasmid population prior to Cas9 exposure (x-axis) and after 3 hours post transformation into a Cas9 background. Figure 20B depicts a correlation plot between replicate recombineering reactions following overnight recovery. The gray lines indicate the line of perfect correlation for reference. R2 and p values were calculated from a linear fit to the data using the Python SciPy statistics package. A counting threshold of 5 for each replicate experiment was applied to the data to filter out noise from each data set.
Example 21- Growth characteristics of folA mutations in M9 minimal media
[00308] Figure 21 depicts growth characteristics of folA mutations in M9 minimal media.
While F153R appears to maintain normal growth characteristics the growth rate of the F153W mutation is significantly slower under these conditions, suggesting that these two amino acid substitutions at the same site have very different effects on organismal fitness presumably due to different changes invoked in the stability/dynamics of this protein.
Example 22- Enrichment profiles for folA CREATE cassettes in minimal media
[00309] Figure 22 depicts enrichment profiles for folA CREATE cassettes in minimal media.
Cassettes that encode synonymous HA are shown in black and non-synonymous cassettes in gray, the dashed lines indicate enrichment scores with p<0.05 significance compared to the synonymous population mean as estimated from a bootstrap analysis. The enrichment score observed for each mutant cassette at each position in the protein sequence is shown to the left and a histogram of these enrichment scores as a fraction of the total variants to the right. The two populations appear to be largely similar. Conserved residues that are highly deleterious are shown in blue for reference.
Example 23- Validation of newly identified acrB mutations for improved solvent and antibiotic tolerance
[00310] Figure 23A depicts on the left a global overview of AcrB efflux pump. Substrates enter the pump through the openings in the periplasmic space and are extruded via the AcrB/AcrA/TolC complex across the outer membrane and into the extracellular space. Library targeted residues are highlighted by blue spheres for reference and the red dot indicates the region where many of the enriched variants clustered. On the right is a blow up of the loop-helix motif abutting the central funnel where enriched mutations in isobutanol were identified (red and teal spheres), presumably affecting solute transport from the periplasmic space. Mutants targeting the T60 position (teal spheres) was also enriched in the presence of erythromycin. Figure 23B depicts confirmation of N70D and D73L mutations for tolerance to isobutanol. The N70D mutation in particular appears to improve the final OD to a significant degree. Reconstructed strains were measured for final OD in capped 1.5 mL eppendorf tubes following 48 hours incubation. Error bars are derived from N=3 trials and p-values derived from a one- tailed T-test. Figure 23C depicts improved growth of the AcrB T60N mutant was observed in inhibitory concentrations of erythromycin (200 μg/mL) and isobutanol (1.2%) in shaking 96 well plate, indicating that this mutation may enhance the efflux activity of this pump towards many compounds. For these experiments CREATE cassette designs were individually synthesized, cloned and sequence verified before recombineering into E. coli MG1655 to reconstruct the mutations and the genomic modifications were sequence verified by colony PCR to confirm the genotype-phenotype association.
Example 24- Benefits of rational mutagenesis for sampling novel adaptive genotypes
[00311] Figures 24A-24D depict the number of variants detected in CREATE experiments involving 500 μg/mL rifampicin (Figure 24A), 500 μg/mL erythromycin (Figure 24B), 10 g/L acetate (Figure 24C), and 2 g/L furfural (Figure 24D). While naturally evolving systems or error- prone PCR are highly biased towards sampling single nucleotide polymorphisms (e.g. 1 nt mutations, red) these histograms illustrate the potential advantages for rational design approaches that can identify rare or inaccessible mutations (2 and 3 nt, green and blue respectively). For example, the highest fitness solutions appear to be biased toward these rare mutations in rifampicin, erythromycin and furfural selections to varying degrees. These results indicate that procedures such as CREATE should allow more rapid and thorough analysis of fitness improving mutations, in much the same way that computational approaches are being used to improve directed evolution for protein engineering.
Example 25- Reconstruction of mutations identified by erythromycin selection
[00312] Figure 25 depicts reconstructed strains grown in 0.5 mL in capped 1.5 mL eppendorf tubes following 48 hours incubation in the presence of 200 μg/mL erythromycin and final OD measurements assessed. Error bars are derived from N=3 trials. A one tailed T-test was performed on each set of measurements to determine p-values indicated for significance of growth benefit.
Example 26- Validation of Crp S28P mutation for furfural or thermal tolerance
[00313] Figure 26A depicts a crystal structure of the Crp regulatory protein with variants identified by furfural selection highlighted in red (PDB ID 3N4M). A number of the CREATE designs targeting residues near the cyclic- AMP binding site (aa. 28-30, 65) of this regulator were highly enriched in minimal media selections for furfural or thermal tolerance suggesting that these mutations may enhance E. coli growth in minimal media under a variety of stress conditions. Figure 26B depicts validation the Crp S28P mutant identified in 2 g/L furfural selections in M9 media. This mutant was reconstructed as described for AcrB T60S in Example
23.
Example 27- Genome-scale sequence to activity relationship mapping at single nucleotide resolution
[00314] Advances in DNA synthesis and sequencing have motivated increasingly complex efforts to rationally program genomic modifications on laboratory timescales. Realization of such efforts requires strategies that span the design-build-test forward-engineering cycle by not only precisely and efficiently generating large numbers of mutant designs but also by mapping the effects of these mutations at similar throughputs. CRISPR EnAbled Trackable genome Engineering (CREATE) couples highly efficient CRISPR editing with massively parallel oligomer synthesis to enable trackable precision editing on a genome wide scale. This can be accomplished using synthetic cassettes that link a targeting guide RNA with rationally programmable homologous repair cassettes that can be systematically designed to edit loci across a genome and track their phenotypic effects. We demonstrated the flexibility and ease of use of CREATE for genome engineering by parallel mapping of sequence-activity relationships for applications ranging from site saturation mutagenesis, rational protein engineering, complete residue substitution libraries and reconstruction of prior adaptive laboratory evolution experiments.
[00315] Validation of CREATE cassette design
[00316] In order to realize our engineering objectives we took into account a number of key design considerations to both maximize the editing efficiency as well as distill a complex design process into an easily executable workflow. For example, each CREATE cassette is designed to include both a targeting guide RNA (gRNA) and a homology arm (HA) that introduces rational mutations at the chromosomal cleavage site (e.g. Figure 8A). The HA encodes both the genomic edit of interest coupled to a synonymous PAM mutation that is designed to abrogate Cas9 cleavage after repair (e.g. Fig 8B). This arrangement not only ensures that the desired edit can be selectively enriched to high levels by Cas9 but also that the sequences required to guide cleavage and HR are covalently coupled during synthesis and thus delivered simultaneously to the same cell during transformation. The high efficiency editing of CRISPR based selection in E. coli should also ensure a strong correlation between the CREATE plasmid and genomic sequences and allow the plasmid sequence to serve as a transacting barcode or proxy for the genomic edit (e.g. Figure 8C). Assuming that changes in the plasmid frequency under different selective pressures are correlated to their associated genomic edit thereby allows the impact of precise genomic modifications at many loci to be monitored in parallel using a simple downstream sequencing approach to map enriched genotypes on a population scale, analogous to previous genomic tracking methodologies.
[00317] To test this concept we first performed control experiments using a CREATE cassette designed to inactivate the galK gene by introducing a single point mutation to convert codon 145 from TAT to a TAA stop codon (e.g. Figure 8B) using a 120 bp HA. The editing efficiency of this cassette using Cas9 and the nuclease deficient dCas9 control was evaluated using a red/white colony screening assay (e.g. Figure 8A-B, Figure 15A-15C). These experiments also indicated that HR between a circular double stranded plasmid and the chromosome is strongly dependent on the Cas9 cleavage as recombination is not observed in the absence of the active enzyme (e.g. Figure 15A-15D). This is in contrast to single stranded recombineering approaches in which oligonucleotides anneal with high efficiency at the lagging strand of the replication fork. Cas9 also adversely impacts the overall transformation efficiency due to toxicity of dsDNA cleavage in E. coli (e.g. Figure 9A-9D). This toxicity is further exacerbated when performing CREATE at two sites simultaneously in the same cell (e.g. Figure 16A-16E); which when combined with the absence of an effective nonhomologous end joining pathway strongly supports the fact that off target editing events should be rare within a recombineered library. Additionally, toxicity limits the size of library construction and coverage, however we note that the observed 104-105
Figure imgf000080_0001
DNA (e.g. Figure 9A) is on a scale compatible with current oligo synthesis capabilities (104"5 oligos per order). Thus, we anticipated that using the CREATE synthetic oligo design, we would be able to simultaneously generate ~105 or more designer mutations at any location in the genome and precisely map such mutations onto a targeted phenotype.
[00318] To further characterize how changes in the CREATE cassette design influence the editing efficiency we varied the HA length (80-120 bp) and the distance between the PAM- codon/ TS (17-59 bp) (e.g. Figure 9B). Induction of Cas9 revealed that all of these cassette variants can support high efficiency HR. High efficiency conversion is also observed in the absence of Cas9 induction indicating that low level expression of Cas9, due to a leaky inducible promoter, is sufficient to drive cleavage and HR (e.g. Figure 9B). To verify that the edits matched our intended design we sequenced the chromosome of randomly chosen clones and found that 71% (27/38) contained a perfect match to the CREATE design, while 26% (10/38) contained only the PAM edit and the remaining 3% (1/38) appeared to be wt escapers. As an additional test of design flexibility performed similar experiments using deletion cassettes that that introduce different sized deletions (e.g. Figure 17A-17D) and observed similar efficiencies (>70%) indicating that the same design automation and tracking capabilities should readily extend to a variety of design objectives (e.g. Figure 13A-13D). [00319] High-throughput design and multiplexed library construction
[00320] To scale the CREATE process for genome-wide applications we developed a custom software to automate cassette design that takes into account the above mentioned criteria to systematically identify a PAM sequence nearest to a target site (TS) of interest and modify it to create a synonymous PAM mutation. This design software is part of a suite of web-based design tools that can be implemented for E. coli and is under further development for other organisms as well as an expanded set of CRISPR-Cas systems. This software platform enables high-throughput rational design of genomic libraries in a format that is compatible with parallelized array based oligo synthesis and simple homology based cloning methods that can be performed in batch for library construction (e.g. Figure 8B).
[00321] Using this design software we generated a total of 52,356 CREATE cassettes for a range of applications where sequence to activity mapping by traditional methods would be time-consuming and prohibitively expensive. Briefly, the library designs included: 1) a complete saturation of the folA gene to map the entire mutational landscape of an essential gene in its chromosomal context 2) saturation mutagenesis of functional residues in 35 global regulators, efflux pumps and metabolic enzymes implicated in a wide range of tolerance and production phenotypes in E. coli 3) a reconstruction of the complete set of nonsynonymous mutations identified by a recent adaptive laboratory evolution (ALE) study of thermotolerance, and 4) promoter engineering libraries designed to incorporate UP elements or CAP binding elements at transcription start sites annotated in RegulonDB (e.g. Figure 13A-13D).
[00322] The pooled oligo libraries were amplified and cloned in parallel and a subset of single variants were isolated to further characterize editing efficiency at different loci (e.g. Figure 9C). Amplification and sequencing of the genomic loci after transformation with the CREATE plasmids revealed editing efficiencies of 70% on average (106 of 144 clones sampled at seven different loci), with a range of 30% for the metA_V20L cassette to 100% for the rpoH_V179H cassette. Interestingly, the differences in editing efficiency for each cassette were highly correlated with the distance between the PAM and target codon (e.g. Figure 9D), a feature that also appears to affect the ability of linear DNA templates to effectively introduce targeted mutations (e.g. Figure 18A-18B). This relationship suggests that subsequent CREATE designs should readily increase editing efficiency by optimizing PAM selection criteria. We also note that differences in editing efficiency may reflect detrimental effects of some mutations on organismal fitness (metA is considered an essential gene in most media conditions), and that there may be an upper bound on the number of mutations that can be observed for a particular protein. Finally, these data were obtained outside of any specific selective or screening steps that enrich for chromosomal mutants of interest, and as such demonstrate the ability of this approach to construct mutational libraries.
[00323] To further characterize the fidelity of the multiplexed synthesis and cloning procedures we performed deep sequencing on the pooled libraries (e.g. Figure 19A-D). From 594,998 total reads of the cloned CREATE cassette libraries, 550,152 (92%) passed quality filtering and produced hits against the design database. Of these we observed a perfect match for 34,291 (65%) of the possible unique variants and note that many cassettes that were missing in this initial pool were observed in later selections, suggesting that at the cloning stage we can readily cover the majority of the intended design space. In depth analysis of these reads revealed that 46% of the reads passing quality filter were exact matches to their intended design, with the remainder containing 1-4 bp indels or mismatches, primarily in the HA region near the designed mutation site (e.g. Figure 19A). The mutational bias in this region suggests that the repetitive spacer elements in the HA and gRNA portions of the cassette may form secondary structures that adversely affect sequencing or synthesis (e.g. Figure 19B). We note that these variant designs are easily identified via the CREATE plasmid-barcoding strategy, and that in some cases it may be desired to have this added diversity in the generated library. We also observed significant (p<0.05) correlation between variant frequencies from the cloned pools and after overnight recovery following recombineering, as well as between replicate recombineering experiments (e.g. Figure 20A-20B). These results suggest that well represented variants should be readily tracked by our methodology with a precision similar to previous CRISPR based saturation mutagenesis procedures performed at a single loci.
[00324] CREATE based protein engineering
[00325] To test the robustness of the CREATE methodology for protein engineering at a single gene level we performed deep-scanning mutagenesis of the essential folA gene. This gene encodes the dihydrofolate reductase (DHFR) enzyme responsible for the production of tetrahydrofolate and the biosynthesis of pyrimidines, purines and nucleic acids. DHFR is also the primary target of the antibiotic trimethoprim (TMP) and other antifolates that are used as antibiotics or chemotherapeutics. The wealth of structural and biochemical data DHFR function and antibiotic resistance make it an ideal model for validation of the approach.
[00326] A CREATE library designed to saturate every codon from 2-158 of the DHFR enzyme was recombineered into E. coli MG1655 and allowed to recover overnight. Following recovery - 109 cells (1 mL saturated culture) was transferred into media containing inhibitory TMP concentrations and allowed to grow for 48 hours. The resulting plasmid populations were then sequenced to assess our ability to capture information at the level of single amino acid substitutions that can confer TMP resistance (e.g. Figure 10A-10B). Bootstrapped confidence intervals for mutational effect were derived using the enrichment data of the 158 synonymous mutations included in this experiment (e.g. Figure 10A-10B). Using this criteria, we observed significant (P<0.05) levels of enrichment for 74 substitutions (2.3% of the design space) covering 49 aa positions in the protein. Although this degree of mutational flexibility of an essential enzyme may seem counterintuitive, it supports previous conclusions that this enzyme has not reached its evolutionary optimum and that many mutations that can improve TMP tolerance through enhancement of the endogenous enzymatic activity or alteration of the dynamic folding landscape of this enzyme.
[00327] These results also support the fact that we probe more deeply into the mutation space of improved fitness variants using rational mutagenesis strategies. For example, we observed 7 significantly enriched substitutions at position F153 (e.g. Figure 10A-10B), none of which have been previously identified by error-prone PCR and adaptive laboratory evolution (ALE). To validate these specific mutations, we reconstructed F153R and F153W variants, which had not been previously reported in the literature and spanned a large range of the measured enrichment scale at this position (e.g. Figure 10D-10F). We confirmed that the highly enriched F153R mutant grows rapidly under a large range of TMP concentrations while the F153W mutant demonstrates growth only at the moderate TMP concentration used in the selection, consistent with their respective enrichment scores (e.g. Figure 10A-10F). Moreover, 6 of the 7 mutations we identified using CREATE require two nucleotide changes to convert the wt TTT codon to one of the observed amino acids (I: 1 nt,W: 2 nt ,D: 2 nt,R: 2 nt,P: 2 nt,M: 2 nt,H: 2 nt). The F153R and F153W mutations also appear to impact the native enzyme activity in distinct ways (e.g. Figure 21), implying that these substitutions may confer tolerance by altering the enzymatic cycle of this enzyme in distinct manners.
[00328] In addition to mapping substitutions that confer TMP resistance, we also attempted to identify substitutions that affect the native activity of DHFR. To do so, we compared the frequencies of each plasmid variant after overnight growth in M9 (e.g. Figure 22A-22C). In this case, we observed similar overall enrichment profiles for both synonymous and nonsynonymous mutation sets, with very few mutations observed to have significant impact on growth. This unexpected result suggests a need for greater sequencing depth and/or alternate selection strategies to assign high confidence to low fitness variants.
[00329] As a separate validation of protein engineering applications, we generated a 4,240 variant library targeting the AcrB multidrug efflux pump in E. coli (e.g. Figure 23 A-23F). This protein acts as a proton exchange pump that exports a wide variety of chemicals including antibiotics, chemical mutagens, and short chain alcohols that are being pursued as next generation biofuels and motivating numerous engineering efforts. The library was designed to target the interior chamber, the exit funnel that channels substrates towards the outer- membrane component of the AcrB/AcrA/TolC complex, and key regions of the transmembrane domain where mutations conferring tolerance to isobutanol and longer chain alcohols have been identified (e.g. Figure 23A-23C). We then constructed the AcrB CREATE library identically as for the FolA library and grew the library in the presence of 1.2% isobutanol. Sequencing identified multiple mutations to the loop-helix motif adjacent to the central efflux funnel that were significantly enriched, suggesting this substructure may provide a novel target for engineering enhanced efflux activity. Reconstruction of the AcrB N70D and D73L mutations also confirmed the ability of these mutations to enhance overall growth in the presence of this solvent stress (e.g. Figure 23D).
[00330] Parallel evaluation of genotype fitness from large scale adaptation studies
[00331] We next sought to expand our efforts from the single protein scale and validate the use of CREATE at the genome-scale. To do so we chose to reconstruct and map mutations resulting from a prior adaptive laboratory evolution study of E. coli thermal tolerance. ALE has been used extensively as a tool to study the bacterial adaptation in response to a broad range of environmental stressors. However, in the majority of cases the genome undergoes multiple mutations making it difficult to assess the contribution of each mutation to the phenotype in question. Here, we designed and constructed a CREATE library to include all 645 nonsynonymous mutants from the Tenaillon et al ALE experiment and then subjected this library to growth selection in minimal media at 42.2°C. To assess any possible effects that could arise from the synonymous PAM mutation we included redundancy in the design of this library such that each target codon was coupled to two different PAM mutations to provide a 4 fold design redundancy for each nonsynonymous mutation. For calibration purposes the ALE library was pooled with the protein targeting libraries to allow for relative enrichment comparisons from the non-ALE derived libraries as a benchmark (e.g. Figure 11A- 11C). Of the more than 50,000 cassettes in this experiment we observed 405 cassettes from the ALE derived library above the minimal counting threshold, pertaining to 252 unique variants (e.g. Figure 11B). Of these 346 cassettes (encoding 231 nonsynonymous changes) were significantly enriched compared with the synonymous controls (e.g. Figure 1 IB), suggesting that 92% (231/252) of the mutations sampled confer significant selective growth advantages as individual chromosomal mutations, consistent with their fixation during adaptive growth. Additionally we found that 141 mutations from the additional CREATE libraries were also significantly enriched, with 86 of these targeting residues in or around the cAMP binding site of Crp, a central regulator of carbon metabolism. The identification of such a large number of Crp mutants is highly suggestive of a role for Crp in thermal-tolerance in agreement with previous findings.
[00332] For each mutant we also calculated the number of mutations required to convert the wt codon to each of the other 19 amino acids (e.g. Figure 11C). As with folA, we found that highly impactful mutations, such as the crp S28P and L30Y mutations, require more than a single nucleotide substitution and would therefore be inaccessible or exceedingly rare in naturally evolving systems under laboratory timescales. In fact, this seemed to be a recurrent theme across many of the selections we performed (e.g. Figure 24A-24D) highlighting again the value of synthetic DNA driven search strategies for genomic engineering applications.
[00333] High-throughput mapping of selectable precision edits on a genome wide scale
[00334] To further validate the method for genome-scale mapping and exploration we challenged genome wide targeting libraries with antibiotics or solvents relevant to bioproduction (e.g. Figure 12A-12F). In the case of selections performed with rifampicin, an antibiotic that inhibits transcription by the RNA polymerase (e.g. Figure 12A, inner circle) we observed a number of enriched variants that highlighted the robustness of the CREATE approach for atomic resolution mapping. For example, 10 of the top 50 hits identified mutations to residues 1572, L533 and S531 of the RNA polymerase β subunit (encoded by rpoB) including variants that form part of the rifampicin binding site (e.g. Figure 12B). In 6 of the 7 enriched variants the data suggest that a bulky substitution is necessary to sterically hinder 7 rifampicin binding. In addition to the β-subunit mutations the rifampicin selections enriched a number mutations to the MarA transcriptional activator, whose over-expression due to marR knockout is a well studied aspect of multiple antibiotic resistance (MAR) phenotypes in E. coli . In the DNA bound crystal structure of MarA, Q89 is positioned near the DNA backbone but pointed into solution due to a steric clash between other possible rotamers and nearest phosphate group on the DNA backbone (e.g. Figure 12C). Modeling of the MarA Q89N and Q89D mutations identified by this selection suggests that shortening the side chain by a single carbon unit may enable new protein-DNA H-bonding interactions and thereby improve the overall MAR induction response.
[00335] To compare these results to an antibiotic that interferes with translation we performed another round of selections in the presence of erythromycin (e.g. outer circle Figure 12A). The enrichment profiles from this selection again highlighted loci previously implicated in resistance to this antibiotic. For example, we observed strong enrichment of 4 different mutations to the AcrB efflux pump which acts as the primary exporter of this drug from the periplasmic space (e.g. Figure 12A). Interestingly, one of the variants (AcrB T60N) appears at the same residue identified from isobutanol selections (e.g. Figure 23A-23F). As with the other mutations, reconstruction validated that at least two of these mutations (e.g. T60N in Figure 23E-23F and D73L in Figure 25) can significantly improve tolerance to both erythromycin as well as isobutanol isobutanol, further supporting the idea that this motif may provide a useful engineering target for broad range of tolerance phenotypes. In addition to AcrB we also observed enrichment of multiple soxR and rpoS mutants, both of which have been previously implicated in stress tolerance and general antibiotic resistance phenotypes. In total, we observed 136 of the
341 significantly enriched mutations (40%) were identified within the RpoB, MarA, MarR,
SoxR, AcrB, or dxs proteins, each of which has extensive prior validation as antibiotic resistance genes.
[00336] Finally, we performed selections using furfural or acetate, common components of cellulosic hydrolysate that inhibit bacterial growth under industrial fermentation conditions and are thus the target of many strain engineering efforts (e.g. Figure 12D-12F). In the presence of high acetate concentrations (10 g/L , e.g. inner plot Figure 12D) the top 100 ranking mutations were predominated by cassettes targeting the fis, fadR, rho and fnr genes respectively (e.g. Figure 12E). The Fis, Fnr and FadR regulators are all involved transcriptional regulation of the primary acetate utilization gene acs, and implicated in the so-called "acetate- switch" which allows the cell to effectively scavenge acetate. Knockout of these regulators leads to constitutive expression of the acetate utilization pathways and improved acetate growth phenotypes suggesting that the mutations identified in this study (e.g. Figure 12E-12F) likely inhibit these regulatory functions by destabilizing their respective protein targets.
[00337] In contrast to the weak acid tolerance of acetate, the enrichment profiles obtained the presence of growth inhibiting concentrations of furfural (2g/L) were significantly different with the most frequently observed mutations targeting the oxidative stress response regulator rpoS (e.g. Figure 12F). Furfural growth inhibition is thought to occur through depletion of cellular NADPH pools, an important cofactor in the prevention of oxidative stress and anabolic pathways for cell growth. In line with our findings, previous studies of RpoS have demonstrated that inactive alleles are favored in such nutrient depleted scenarios. Interestingly, we also observed some of the same mutations in crp that were observed in the 42.2°C selections (e.g. Figure 11A and 11C) and upon reconstruction confirmed that the Crp S28P mutant can substantially improve growth in the presence of furfural (e.g. Figure 26A-26B). We also found that this selection uniquely enriched for variants of the PntA transhydrogenase, a membrane bound transhydrogenase that transfers hydride ions from NADH to NADP+ to maintain sufficient pools for anabolism. A mutation to 1258 A in close proximity to the substrate binding cleft may therefore impart enhanced NADPH production.
[00338] Collectively, these selections validate the CREATE strategy by demonstrating the ability to map known associations as well as highlight power of this method for rapid mapping of novel mutations to traits of interest. It is also important to note that in contrast to the most other functional genomics technologies that mainly identify loss of function mutations, the ability to perform such broad scale scanning mutagenesis opens the door for more general genomic searches that can also identify novel gain of function mutations.
[00339] In this work we have demonstrated that CREATE allows parallel mapping of tens of thousands of amino acid and promoter mutations in a single experiment. The construction, selection, and mapping of >50,000 genome-wide mutations (e.g. Figures 11A-11C and 12A-12F) can in some examples be accomplished in 1-2 weeks by a single researcher, offering orders of magnitude improvement in economics, throughput, and target scale over the current state of the art methods in synthetic biology. Importantly, the ability to track the enrichment of library variants allows multiplex sequence to activity mapping by a simple PCR based workflow using just a single set of primers as opposed to more complicated downstream sequencing approaches that are limited to a few dozen loci. In addition, the ability to map the effects of single nucleotide or amino acid level variation in coding regions or promoters allows CREATE to address a considerably more diverse set of design objectives than previous high-throughput genomic technologies such as trackable multiplexed recombineering (TRMR) or Tn-seq approaches that are limited to gene resolution analysis. Such capabilities enable new paradigms for deciphering gene function and engineering cellular traits including workflows in which iterative rounds of CREATE could be implemented to perform design-driven genome engineering and address a broad range of ambitions.
[00340] Notably, as a further distinction from prior approaches, the high efficiency mutagenesis (e.g. Figure 9A-9D) reported in this work was not only an order of magnitude improved but was also achieved in a wild type MG1655 strain in which all of the native DNA repair pathways are intact. The majority of previously reported recombineering efforts in E. coli have used single-stranded oligo engineering which requires deletion of the mismatch repair genes or chemically modified oligonucleotides to achieve mutagenesis at 1-30% efficiency. The combination of plasmid based homologous recombination substrates and Cas9 dsDNA cleavage appears to circumvent these requirements (e.g. Figure 13A-13D and Figure 9A-9D), eliminating the need for specialized genetic modifications outside of the Cas9 and λ-RED genes to perform efficient editing and tracking on a population scale (e.g. Figure 9A-9D). This fact alongside the broad utility of CRISPR editing suggests that the CREATE approach will readily port to a wide range of microorganisms such as Saccharomyces cerevisiae and other recombinogenic bacteria for which high-efficiency transformation protocols are available. The CREATE strategy should also be compatible with a wide range of CRISPR/Cas systems using similar automation approaches to design and tracking. Extension of this methodology to higher eukaryotes however will require the development of strategies to overcome non-homologous end-joining as well as alternative tracking systems that can stably replicate.
[00341] The CREATE strategy provides a streamlined approach for sequence to activity mapping and directed evolution by integrating multiplexed oligo synthesis, CRISPR- CAS editing, and high-throughput sequencing.
Example 28- Genome-scale sequence to activity relationship mapping at single nucleotide resolution, additional examples
[00342] Possible effects of inconsistent mapping of plasmid barcode to genomic edit
[00343] We note that the initial CREATE library included designs that we would expect to have low confidence mapping between the plasmid barcode and the genomic edit (as explained primarily by distance between the PAM and target mutation in the CREATE cassette, see Fig 2d). We describe below the various scenarios that may arise in the fraction of cases where the plasmid tracking may lead to erroneous conclusions regarding a genomic variant. A few things to note in evaluating these scenarios include i) the plasmid cassette should have minimal or no functional influence relative to the genomic edit, ii) the genomic loci will only be either the WT sequence or the sequence from the editing cassette that we obtain via sequencing, and iii) offsite editing is highly unlikely given the toxicity of CRISPR-Cas editing of multiple sites (e.g. Figure 16A-16E) or when performed in the absence of an added editing-repair template. Finally, we note that the use of replicate experiments and deeper sequencing can also address these issues.
[00344] Tracking of high fitness variants (positive enrichment tracking)
[00345] In cases where there is a strong selective advantage for the genomic modification (and thus the associated plasmid) we will only observe cells with the edit in the chromosome post selection. Thus, this is almost always a true positive particularly when selection times are short, thus limiting the possibility of random mutations due to replication error sweeping the population. While this phenomenon may lead to a quantitative underestimation of the true fitness of a mutation due to an enrichment profile that represents the convolution of modified and wt fitness, it will not produce false positives. Moreover, the use of replicated experiments and/or longer selections can also address this potential issue and eliminate erroneous conclusions regarding a mutations impact on fitness.
[00346] Tracking of low fitness variants (negative enrichment tracking)
[00347] In cases where the encoded mutation has a negative fitness contribution but is linked to a PAM only or unmodified chromosome we would incorrectly overestimate the fitness of the mutant and assume that it is closer to wt, especially for longer selection times (e.g. see Figure 22A-22C). However, any deep sequencing approach must deal with similar limitations due to the lack of information regarding such mutations following selection and the problems associated with counting statistics in these scenarios. Moreover, we would note that this scenario is only relevant to the subset of truly negative fitness mutants (which should be 10-20% based on historic directed evolution and ALE data) within the unedited fraction (-30%) and that remain in the unedited fraction in multiple replicate transformations. In other words, it is a small percentage (4-5%) scenario that can be detected and/or addressed through replicate transformations where one would observe inconsistencies in the particular mutant showing up occasionally with WT fitness.
[00348] Incomplete coverage
[00349] In cases where a variant is not present in the initial population (due to both low transformation efficiency and low editing efficiency) a couple of scenarios could arise. As implied by the points above, if the mutation is beneficial one could falsely conclude that it does not confer a fitness advantage, and if it is truly deleterious it also could be incorrectly assigned a neutral fitness score. This appears to be encountered sometimes in this work and impacts both the error associated with replicate measurements and our ability to distinguish low fitness variants from a synonymous control. However, our ability to identify beneficial mutants is robust despite these issues as evidenced by our ability to readily identify novel and previously validated mutations. Strategies to address this by overcoming Cas9 toxicity and improving recombineering efficiencies hold promise to largely eliminate such problems. Furthermore, increasing the number of replicates, increasing sequencing depth, and/or improving the library coverage by performing larger scale transformation also can help to address these issues.
[00350] Off target gRNA cleavage
[00351] Off target gRNA cleavage should be rare in E. coli due to the relatively small size of its genome (4 Mb), and thus lack of (non-targeted) regions of homology to the CREATE cassette. Moreover, the toxicity of gRNAs in the presence of Cas9 (e.g. Figure 9A) ensures that cells survival is compromised in E. coli due to dsDNA breaks. Each additional cut introduced into E. coli appears to incur multiplicative toxicity effects, even when homologous repair templates are provided for each cut site (e.g. Figure 16A-16E). This toxicity effect would be further exacerbated by the absence of a repair template to guide HR (e.g. Figure 16A-16E), as would be the case for an off-target cleavage event from a single gRNA targeting two sites but containing only a single HA.
[00352] Random off target mutagenesis (evolution)
[00353] The probability that a CREATE variant is strongly enriched due to an off target mutation even is highly improbable due to 2 factors: 1) the toxicity effect for the reasons stated above and 2) the low mutation rates of MG1655 or other mutation repair proficient strains compared with the mutagenesis rates of CREATE, particularly in multiple replicates of selection.
We also have validated that we can transfer the plasmid pool back into a naive parental background and rapidly verify the enrichment of fitness improving CREATE plasmids from the initial population. Like replicate data, this allows us to decouple each CREATE plasmid from the potential of background mutations that would interfere with our analysis. These factors simplify the assumptions made during our analysis, the validity of which is supported both by externally and internally validated genotypes that were identified during this work.
[00354] Possible effects of Synonymous mutations
[00355] Synonymous mutations (e.g. in the PAM region) can confer unexpected effects on phenotype. We have controlled for this in a number of manners. In every experiment we included an internal control that consists of a library of synonymous mutations (1/20 at each codon or 5% of total input), each of which samples different PAM and codon combinations and thus give us an idea of the range of possible effects we may have on a gene by measuring the enrichment profile of many synonymous changes. Using this population as a control we can accurately identify significant fitness changes at the resolution of single amino acids as the work suggests. We can also control for this effect by utilizing redundant sampling approaches where a site is coupled to multiple PAM mutations similar to what was done for the ALE study described herein.
[00356] CREATE library design considerations
[00357] A variety of design principles were implemented in the gene targeting libraries described in some work disclosed herein. For example, the folA library (3140 cassettes) was designed to be an unbiased, exploratory library for full single site saturation mutagenesis and sequence activity. However, for the majority of the genes we sought to maximize the probability of interesting genotypes by choosing to focus the diversity of sites most likely to have a functional impact on the targeted protein (e.g. DNA binding sites, active sites, regions identified as mutational hotspots by previous selections). The sites that were included in these library designs were selected based on information deposited in databases including Ecocyc (biocyc.org/), Uniprot (uniprot.org/), and the PDB (rcsb.org/pdb) as well as relevant literature citations that identified residues or regions of interest using directed evolution approaches. The Uniprot and Ecocyc databases provide manually curated sequence features that indicate mutational effects and important domains of each protein. In cases where there was enough structural information to model ligand or DNA binding sites the relevant crystal structures were loaded into Pymol and manual residue selections were made and exported as numerical lists. For promoter libraries we took into account the spacing of these sites relative to the transcription start site and the canonical recognition sequence of either the CRP binding site (AAATGTGAtctagaTCACATTT located between -72 and -40 relative to the transcription start site) or the UP element (AAAATTTTTTTTCAAAAGTA -60 from the transcription start site) that directly recruit the alpha subunit of the RNA polymerase. These sequences were designed to integrate at these positions relative to the publicly available transcriptional start site annotations in RegulonDB using a variation of the automated CREATE design software designed for protein targeting (e.g. Figure 13A-13D). These cassettes were made with the intent of assessing the effects of gene dosage and regulation on fitness. Finally, we designed a library to reconstruct all of the 645 non-synonymous mutations targeting 197 genes that were identified by a comprehensive ALE experiment in which the complete genomes of 115 isolates were sequenced after a year of adaptation to growth at elevated temperature (e.g. 42.2°C). In all, we designed 52,356 oligomers, with 48,080 intended to saturate 2404 codon positions across 35 genes, 2,550 oligos were made for regenerating the ALE mutations, 379 UP promoter mutants and 772 CAP promoter mutations in a manner that would allow simultaneous sequence to activity relationship mapping.
[00358] Cassette design and automation principles
[00359] Based on the control experiments with galK (e.g. Figure 9A-9D) and current maximal commercial synthesis length constraints (200 bp from Agilent) we developed a general design for each CREATE cassette (e.g. Figure 8A-8B).
[00360] Design of the CREATE cassettes was automated using custom Python scripts. The basic algorithm takes a gene sequence, a list of target residues, and a list of codons as inputs. The gene sequence is searched for all available PAM sites with the corresponding spacer sequence. This list is then sorted according to relative proximity to the targeted codon position. For each PAM site in the initial list the algorithm checks for synonymous mutations that can be made in-frame that also directly disrupt the PAM site, in the event that this condition is met the algorithm proceeds to making the prescribed codon change and designing the full CREATE cassette with the accompanying spacer and iterates for each input codon and position respectively. For each PAM mutation, all possible synonymous codon substitutions are checked before proceeding to the next PAM site. For the codon saturation libraries in this study we chose the most frequent codons (genscript.com/cgi-bin/tools/codon_freq_table) for each designed amino acid substitution according to the E. coli usage statistics. The script can be run rapidly on a laptop computer and was used to generate the full design of these libraries in < 10 minutes. The algorithm used in this study was designed to make the most conservative mutations possible by sometimes using only the PAM as the selectable mutation marker.
[00361] Plasmids [00362] The X2-cas9 broad host range vector was constructed by amplifying the cas9 gene from genomic S. pyogenes DNA into the pBTBX2 backbone (Lucigen). A vector map and sequence of this vector and the galK_Y145*_120/17 CREATE cassette are provided at the following locations: benchling.eom/s/3c941j/edit; benchling.com/s/xRBDwcMy/edit.
[00363] The editing experiments performed in some of this work employed the X2-cas9 vector in combination with the pSIM5 vector (redrecombineering.ncifcrf.gov/strains~ plasmids.html) to achieve the reported efficiencies.
[00364] Recombineering of CREATE libraries
[00365] Genomic libraries were prepared by transforming CREATE plasmid libraries into a wildtype E. coli MG1655 strain carrying the temperature sensitive pSIM5 plasmid (lambda RED) and a broad host range plasmid containing an inducible cas9 gene from cloned from S. pyogenes genomic DNA into the pBTBX-2 backbone (X2cas9, e.g. Figure 15A-15D). pSEVI5 was induced for 15 min at 42°C followed by chilling on ice for 15 min. The cells were washed 3 times with ½ the initial culture volume of ddH20 (e.g. 10 mL washes for 50 mL culture). Following electroporation the cells were recovered in LB + 0.4% arabinose to induce Cas9. The cells were recovered 1-2 hrs before spot plating to determine library coverage and transferred to a 10X volume for overnight recovery in LB+ 0.4% arabinose + 50 μg/mL kanamycin + 100 μg/mL carbenicillin. Saturated overnight cultures were pelleted and resuspended in 5 mL of LB. 1 mL was used to make glycerol stocks and the other 1 mL washed with the appropriate selection media before proceeding with selection.
[00366] For the control experiments with galK we used CREATE cassettes designed to convert Y145 (TAT) into a stop codon (TAA) with a single point mutation at this position and a second point mutation to make a synonymous mutation that abolishes the targeted PAM site (e.g. Figure 8B and Figure 13A-13D). Editing efficiencies (e.g. Figure 13A-13D and Figure 9A-9B) were estimated using red/white plate based screening on 1% galactose supplemented MacConkey agar as previously described.
[00367] Selection procedures
[00368] Following overnight recovery, the cells were harvested by pelleting and resuspension in fresh selection media. All selections were performed in shake flask and inoculated at an initial OD600 of 0.1. Three serial dilutions (48-96 hrs depending on growth rates in the target condition) were carried out for each selection by transferring 1/lOOth the media volume after the cultures reached stationary phase. The 42°C selections were performed in M9 media + 0.2% glucose to mimic low carbon availability from the initial adaptation. Antibiotic selections were carried out in LB + 500 μg/mL rifampicin or erythromycin to ensure stringent selection. The solvent selections were performed in M9 + 0.4% glucose and either 10 g/L acetate (unbuffered) or 2 g/L furfural. Selections were harvested by pelleting 1 mL of the final culture and the cell pellet was boiled in 100 μΙ_, TE buffer to preserve both the plasmid and the genomic DNA for further desired analyses.
[00369] Library preparation and sequencing
[00370] Custom Illumina compatible primers were designed to allow a single amplification step from the CREATE plasmid and assignment of experimental reads using barcodes. The CREATE cassettes were amplified directly from the plasmid sequences of boiled cell lysates using 20 cycles of PCR with the Phusion (NEB) polymerase using 60°C annealing and 1 :30 minute extension times. As in the cloning procedure a minimal number of PCR cycles was maintained to prevent accumulation of mutations and recombined CREATE cassettes that were observed when an excessive number of PCR cycles was implemented (e.g. >25-30). Amplified fragments were verified and quantified by 1% agarose gel electrophoresis and pooled according to the desired read depth for each sample. The pooled library was cleaned using Qiaquick PCR cleanup kit and processed for NGS using standard Illumina preparation kits. The Dlumina sequencing and sample preparation were performed with the primers.
[00371] Preprocessing of high-throughput sequencing and count generation
[00372] Paired-end Illumina sequencing reads were sorted according to the golay barcode index with allowance of up to 3 mismatches then merged using the usearch -fastq merge algorithm. Sorted reads were then matched against the database of designed CREATE cassettes using the usearch global algorithm at an identity threshold of 90% allowing up to 60 possible hits for each read. The resulting hits were further sorted according to percent identity and read assignment was made using the best matching CREATE cassette design at a final cutoff 98% identity to the initial design. It should be noted that this read assignment strategy attempts to identify correlations between the designed genotypes and may therefore miss other important features that arise due to mutations that could occur during the experimental procedure. This approach was taken both to simplify data analysis as well as evaluate the 'forward' design and annotation procedure and it's ability to accurately identify meaningful genetic phenomena.
[00373] Data analysis and fitness calculation
[00374] Enrichment scores (or absolute fitness scores) were calculated as the log2 enrichment score using the following equation:
Figure imgf000093_0001
where FX;f is the frequency of cassette X at the final time point and Fx i is the initial frequency of cassette X and W is the absolute fitness of each variant. Frequencies were determined by dividing the read counts for each variant by the total experimental counts including those that were lost to filtering. Each selection was performed in duplicate and the count weighted average of the two measurements was used to infer the average fitness score of each mutation as
follows:
Figure imgf000094_0001
[00375] These scores were used to rank and assess the fitness contributions of each mutation under the various selection pressures investigated. For all selections we took average absolute fitness scores for all of the synonymous mutants as a composite measure of the average growth rate. Absolute enrichment scores were considered significant if the mutant enrichment was at least +/- 2*σ (e.g. p=0.05 assuming a normal distribution) of the wild-type value. We performed two replicates of each selection reported in this study to derive these figures and applied a cutoff threshold of 10 across the replicate experiments for inclusion in each analysis.
[00376] For every codon targeted our designs also included a synonymous variant to provide an internal experimental control. Thus 5% of the protein targeting cassettes encoded synonymous mutations that allow us to estimate confidence intervals for mutation effects using custom Python bootstrapping scripts. The enrichment data for each experiment was resampled with replacement 20000 to obtain 95% confidence interval estimations that were used to infer statistical significance of enrichment scores for each analysis presented in the manuscript.
[00377] Mutant reconstructions and growth measurements
[00378] The AcrB T60N and Crp S28P and FolA F153R/W CREATE cassettes were ordered as separate gblocks from IDT, cloned and sequence verified. Each cassette was transformed into MG1655 and colony screened to identify a clone with the designed genomic edit. These strains (e.g. Figure 21 and Figure 22A-22C) were then subjected to the growth conditions from the pooled library selection as indicated. The growth curves were taken in triplicate for each condition in 100 μΐ. in a 96 well plate reader set to measure absorbance at 600 nm. The plate was covered and water added to empty wells to reduce evaporation during the growth.
[00379] Software and figure generation
[00380] Circle plots were generated using Circos v0.67. Plots were generated in Python 2.7 using the matplotlib plotting libraries and figures were made using Adobe Illustrator CS5. Entropy scores for the FolA (Figure 10A) were determined using the ProDy Python package and the Pfam accession PF00186 representative proteome alignment RP35.
[00381] Figures of the protein libraries and high fitness mutations were made using The PyMol Molecular Graphics System, Schrodinger, LLC. The following are the proteins and PDBs used in the figure generation: AcrB (3W9H, 4K7Q, 3AOC), Fis (3JR9), Ihf (1IHF), RNA polymerase (4KMU, 4IGC), Crp (3N4M), MarA (1BLO), and SoxR (2ZHG). Example 29: Testing Edit-Barcode correlation
[00382] A strain expressing a low copy number plasmid (Ec23) which is a Cas9-pSIM5 dual vector,, was tested using different gene editing cassettes (lacZ, xylA, and rhaA) and recorder cassettes with different barcodes and insertion sites (galK site 1, galK site 2, and galK site 3) (Summarized in Figure 27A). The possible outcomes are depicted in Figure 27B. Pre-selection, all combinations of edit/barcodeAVT are possible. After selection, edits cells could be enriched whether they are barcoded or not in this experimental design.
[00383] The transformations were plated on selective media that allowed for enrichment of cells contaiing the gene edits. 30 colonies from each combination transformation were sequenced to determine if they contained the desired barcode.
[00384] Figure 27C shows the results from the sequencing data. Two of the edit/barcode combinations were found in 100% of the tested colonies (30/30 colonies), and the other edit/barcode combination transformation was found in approximately 97% of tested colonies (29/30 colonies). The single colony that was not properly engineered contained the gene edit, but not the barcode.
[00385] Overall, 89 out of 90 tested colonies has the designed gene edit and barcode.
Example 30: Selectable Recording
[00386] When a barcode is not selected for, it allows for enrichment of non-barcoded cells even if the corresponding gene edit is incorporated and selected for. Figure 28 depicts an example strategy for selecting for the recording event (e.g., incorporation of the barcode by the recorder cassette), in addition to selecting for the editing cassette incorporation, thereby increasing the efficiency of recovering cells that have been both edited and barcoded.
[00387] As depicted in Figure 28, sequences SO, SI, S2, etc. are designed to be targeted by the guide RNA associated with the recorder cassette of the next round. In the depicted example, in the first round of engineering, a PAM mutation, a barcode, SI site, and regulatory elementary necessary to turn on a selectable marker are incorporated into the SO site in the target region. This turns on the TetR selectable marker and allows for enrichment of barcoded mutants variants with the SI site that have the first round PAM site deleted. In the second round of engineering, a new recorder cassette comprising a second PAM mutation, a second barcode, a S2 site, and a mutation that turns off the selectable marker is incorporated into the S I site from the previous round. This allows for counter-selection of variants that have incorporated the second barcode and S2 site. The subsequent rounds continue to flip the selectable marker between an on and off state and using selection or counter-selection respectively to enrich the desired variants. The recorder cassette from each round is designed to incorporate into a unique sequence (e.g., SO, SI, etc.) that was incorporated in the previous round. This ensures that the last round of barcoding was successful so that all desired engineering steps are contained in the final product. The incorporation of PAM mutations at each step also helps ensure that the desired barcoded variants are selected for since cells having the unmodified PAM sequences will be killed as they can't escape CRISPR enzyme cleavage.
[00388] This strategy uses multiple methods to increase the efficiency of isolating desired variants that contain all of the engineered edits from each round of engineering. The PAM mutation, selectable marker switch, and unique landing site incorporated in each round separately increase efficiency and together increase efficiency as well. These tools allow for selection of each recording round and allow design of highly active recording guide RNAs. An array of equally spaced (or not equally spaced, depending on the design) barcodes is generated and facilitates downstream analysis such as sequencing the barcode array to determine which corresponding edits are incorporated throughout the genome.
[00389] Figure 29 depicts an experimental design to test the selectable recorder strategy described above. A plasmid (pRECl) containing an editing cassette and a recorder cassette was transformed into cells. The editing cassette either contained a non-targeting editing cassette, or a mutation that incorporated a mutation (not TS) or a temperature sensitive mutation (TS) into a target gene. The recorder cassette was designed to incorporate into the SO site in the target gene that originally had the tetR selectable marker turned off. The recorder cassette also contained a PAM mutation that deleted the SO PAM site, first barcode (BCl), a unique SI site for the subsequent engineering round recording cassette to incorporate into, and a corrective mutation that will turn on the TetR selectable marker. A guide RNA on the recorder cassette that targets a PAM site in the SO site (SO-gRNA) allows a CRISPR enzyme, in this case Cas9, to cleave the SO site. The recorder cassette recombines into the cleaved SO site. The PAM mutation is incorporated, which means the SO-gRNA can no longer target the SO site, thereby killing WT cells and enriching for cells that received the barcode. The TetR selectable marker was also turned on, allowing further selection of the barcoded variant.
[00390] The data in Figures 30A and 30B show the results from the experiment described above and depicted in Figure 29. Of the Tet Resistant colonies that were recovered from the transformation and engineering round, 16 were sequence and determined to all contain the designed barcode (Figure 30A). Figure 30B shows that the control cells that did not contain the recorder target site (non-target) did not survive the presence of Tet, while cells that contained the target site were successfully barcoded as evidences by the turning on of TetR, allowing cells to be selected on Tet containing media. The Tet resistant colonies were confirmed at the genomic site to have TetR gene turned on. These data showed that selectable recording was successful. Example 31: Expression of MAD nucleases
[00391] Wild-type nucleic acid sequences for MAD1-MAD20 include SEQ ID NOs 21-40, respectively. These MAD nucleases were codon optimized for expression in E. coli and the codon optimized sequences are listed as SEQ ID NO: 41-60, respectively (summarized in Table 2).
Codon optimized MAD1-MAD20 were cloned into an expression construct comprising a constitutive or inducible promoter (e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82) and an optional 6X-His tag. The generated MAD1-MAD20 expression constructs are provided as SEQ ID NOs: 61-80, respectively.
Table 2.
Figure imgf000097_0001
Example 32: MAD2 and MAD7 nucleases
[00392] MAD2 and MAD7 nucleases are nucleic acid-guided nuclease that can be used in the methods disclosed herein. Nucleases Mad2 (SEQ ID NO: 2) and Mad 7 (SEQ ID NO: 7) were cloned and transformed into cells. Editing cassettes designed to mutate a target site in a galK gene were designed with mutations, which allowed for white/red screening of successfully editing colonies. The editing cassettes also encoded a guide nucleic acid designed to target galK. The editing cassettes were transformed into E. coli cells expressing MAD2, MAD7, or Cas9. Figure 31A shows the editing efficiency of Mad2 and Mad7 compared to Cas9 (SEQ ID NO: 110). Figure 3 IB shows the transformation efficiency as evidenced by cell survival rates. In this example, the guide nucleic acid used with MAD2 and MAD7 comprised a scaffold-12 sequence and a guide sequence targeting galK. The guide nucleic acid used with Cas9 comprised a sequence compatible with the S. pyogenes Cas9.
[00393] Figure 32 and Table 3 show more examples of gene editing using the MAD2 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-5, scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD2.
[00394] Figure 33 and Table 4 show more examples of gene editing using the MAD7 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-10, scaffold-11, and scaffold-12 (e.g., Figure 31 A) were able to form functional complexes with MAD7. Amino acid sequences are provided in Table 2 and scaffolding sequences are provided in Table 3 and Table 4. Table 3 and Table 4 also provided the designed mutations in the editing cassettes that were used to mutate the galK target gene.
[00395] Further details and characterization of MAD2, MAD7, and other MAD nucleases are described in US Application No. 15/631,989, filed June 23, 2017, and US Application No. 15/632,001, filed June 23, 2017, each of which are incorporated herein in their entirety. Table 3.
Figure imgf000099_0001
[00396] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. SEQUENCE LISTING
Table 5.
SE I Sequence
Q
no
N
O:
~ SE MGKMYYLGLDIGTNSVGYAVTDPSYHLLKFKGEPMWGAHVFAAGNQSAERRSFRTSRRRLDRRQQ Q RVKLVQEIFAPVISPIDPRFFIRLHESALWRDDVAETDKHIFFNDPTYTDKEYYSDYPTIHHLIVDLME
E) SSEKHDPRLVYLAVAWLVAHRGHFLNEVDKDNIGDVLSFDAFYPEFLAFLSDNGVSPWVCESKALQ N ATLLSRNSVNDKYKALKSLIFGSQKPEDNFDANISEDGLIQLLAGKKVKVN LFPQESNDASFTLND
O: KEDAIEEILGTLTPDECEWIAHIRRLFDWAIMKHALKDGRTISESKVKLYEQHHHDLTQLKYFVKTY
1 LAKEYDDIFRNVDSETTK YVAYSYHVKEVKGTLPKNKATQEEFCKYVLGKVKNIECSEADKVDFD EMIQRLTDNSFMPKQVSGENRVIPYQLYYYELKTILNKAASYLPFLTQCGKDAISNQDKLLSIMTFRI PYFVGPLRKDNSEHAWLERKAGKIYPWNFNDKVDLDKSEEAFIRRMTNTCTYYPGEDVLPLDSLIYE KFMILNEINNimDGYPISVDVKQQWGLFEKKRRVTVKDIQNLLLSLGALDKHGKLTGIDTTIHSNYN TYHHFKSLMERGVLTRDDVERIVERMTYSDDTKJ VRLWLN YGTLTADDVKHISR^
SKMFLTGLKGVHKETGERASILDFMWNTNDNLMQLLSECYTFSDEITKLQEAYYAKAQLSLNDFLD SMYISNAVKRPIYRTLAVVNDIRKACGTAPKRIFIEMARDGESKKKRSVTRREQIKNLYRSIRKDFQQ EVDFLEKILENKSDGQLQSDALYLYFAQLGRDMYTGDPIKLEHIKDQSFYNIDHIYPQSMVKDDSLD NKVLVQSEINGEKSSRYPLDAAIRNKMKPLWDAYYNHGLISLKKYQRLTRSTPFTDDEKWDFINRQL VETRQSTKALAILLKRKFPDTEIVYSKAGLSSDFRHEFGLVKSRNINDLHHAKDAFLAIVTGNVYHER FNRRWFMVNQPYSVKTKTLFTHSIKNGNFVAWNGEEDLGRIVKMLKQNKNTIHFTRFSFDRKEGLF DIQPLKASTGLVPRKAGLDVVKYGGYDKSTAAYYLLVRFTLEDKKTQHKLMMIPVEGLYKARIDH DKEFLTDYAQTTISEILQKDKQKVINIMFPMGTRHIKLNSMISIDGFYLSIGGKSSKGKSVLCHAMVPL IWHKIECYIKAMESFARKFKEN KLmVEKFDKITVEDNLNLYELFLQKLQHNPYNKTFSTQFDVLT NGRSTFT LSPEEQVQTLLNILSIFKTCRSSGCDLKSINGSAQAARIMISADLTGLSKKYSDIRLVEQSA SGLFVSKSQNLLEYL*
SE MSSLTKFTNKYSKQLTIKNELIPVGKTLENIKENGLIDGDEQLNENYQKAKIIVDDFLRDFINKALNNT Q QIGNWRELADALNKEDEDNIEKLQDKIRGIIVSKFETFDLFSSYSIKKDEKIIDDDNDVEEEELDLGKK HO TSSFKYIFKKNLFKLVLPSYLKTTNQDKLKIISSFDNFSTYFRGFFENRKNIFTKKPISTSIAYRIVHDNF N PKFLDNIRCFNVWQTECPQLIVKADNYLKSKNVIAKDKSLANYFTVGAYDYFLSQNGIDFYNNIIGG
O: LPAFAGHEKIQGLNEFINQECQKDSELKSKLKNRHAFKMAVLFKQILSDREKSFVIDEFESDAQVIDA
2 VKNFYAEQCKDNNVIFNLLNLn NIAFLSDDELDGIFIEGKYLSSVSQKLYSDWSKLRNDIEDSANSK QGN ELAKKIKTNKGDVEKAISKYEFSLSELNSIVHDNTKESDLLSCTLHKVASEKLVKVNEGDWPK HLKNNEEKQKIKEPLDALLEIYNTLLIFNCKSFNKNGNFYVDYDRCINELSSVWLYNKTRNYCTKK PYNTDKFKLNFNSPQLGEGFSKSKENDCLTLLFKKDDNYYVGIIRKGAKINFDDTQAIADNTDNCIFK MNYFLLKDAKKFIPKCSIQLKEVKAHFKKSEDDYILSDKEKFASPLVIKKSTFLLATAHVKGKKGNIK KFQKEYSKENPTEYRNSLNEWIAFCKEFLKTYKAATIFDITTLKKAEEYADIVEFYKDVDNLCYKLEF CPIKTSFIENLIDNGDLYLFRIN KDFSSKSTGTKNLHTLYLQAIFDERNLN PTIMLNGGAELFYRKE SIEQKNPJTHKAGSILWKVCKDGTSLDDKIRNEIYQYEN FIDTLSDEAKKVLPNVIKKEATHDITKD
KRFTSDKFFFHCPLTINYKEGDTKQFN EVLSFLRGNPDINIIGIDRGER LIYVTVINQKGEILDSVSF
NTWNKSSKIEQTVDYEEKLAVREKERIEAKRSWDSISKIATLKEGYLSAIVHEICLLMIKHNAIVVLE
NLNAGFKRIRGGLSEKSWQKFEKMLINKLNYFVSKKESDWNKPSGLLNGLQLSDQFESFEKLGIQS
GFIFYVPAAYTSKIDPTTGFANVLNLSKVRNVDAIKSFFSNFNEISYSKKEALFKFSFDLDSLSKKGFSS
FVKFSKSKWNWTFGERIIKPKNKQGYREDKRINLTFEMKKLLNEYKVSFDLENNLIPNLTSANLKD
TFWKELFFIFKTTLQLRNSVTNGKEDVLISPVKNAKGEFFVSGTHNKTLPQDCDANGAYHIALKGLM
ILERN LVREEKDTKKIMAISNVDWFEYVQKRRGVL*
SE MN YDEFT LYPIQKTIRFELKPQGRTMEHLETFNFFEEDRDRAEKYKILKEAIDEYHKKFIDEHLTN
Q MSLDWNSLKQISEKYYKSREEKDKK LSEQKRMRQEIVSEFKKDDRFKDLFSKKLFSELLKEEIYK
no KGNHQEIDALKSFDKFSGYFIGLHENRKNMYSDGDEITAISNRIVNENFPKFLDNLQKYQEARKKYP
N EWIIKAESALVAHNIKMDE SLEYFNKVLNQEGIQRYNLALGGYVTKSGEKMMGLNDALNLAHQ
O: SEKSSKGRIHMTPLFKQILSEKESFSYIPDVFTEDSQLLPSIGGFFAQIENDKDGNIFDRALELISSYAEY
3 DTERIYIRQADINRVSNVIFGEWGTLGGLMREYKADSINDINLERTCKKVDKWLDSKEFALSDVLEAI
KRTGNNDAFNEYISKMRTAREKIDAARKEMKFISEKISGDEESIHIIKTLLDSVQQFLHFFNLFKARQD
IPLDGAFYAEFDEVHSKLFAIWLYNKVR YLTKN LNTKKIKLNFKNPTLANGWDQNKVYDYASLI
FLRDGNYYLGIINPKRKKNIKFEQGSGNGPFYRKMWKQIPGPNKNLPR LTSTKGKKEYKPSKEII
EGYEADKHIRGDKFDLDFCHKLIDFFKESIEKHKDWSKFNFYFSPTESYGDISEFYLDVEKQGYRMHF
ENISAETroEYVEKGDLFLFQIYN DFVKAATGKKDMHTIYWNAAFSPENLQDVVVKLNGEAELFY
RDKSDIKEIVHREGEILVNRTYNGRTP DKIHKKLTDYHNGRTKDLGEAKEYLDKVRYFKAHYDIT
KDRRYLNDKIYFHVPLTLNFKANGKKNLNKMVIEKFLSDEKAHIIGIDRGERNLLYYSIIDRSGKIIDQ
QSLNVIDGFDYREKLNQREIEMKDARQSWNAIGKIKDLKEGYLSKAVHEITKMAIQYNAIVVMEEL
NYGFKRGRFKVEKQIYQKFENMLIDKMNYLVFKDAPDESPGGVLNAYQLTNPLESFAKLGKQTGIL
FYVPAAYTSKIDPTTGFVNLFNTSSKTNAQERKEFLQKFESISYSAKDGGIFAFAFDYRKFGTSKTDH
KNVWTAYTNGERMRYIKEKKR ELFDPSKEIKEALTSSGIKYDGGQNILPDILRSN NGLIYTMYSSF
IAAIQMRVYDGKEDYIISPIKNSKGEFFRTDPKRRELPIDADANGAYNIALRGELTMRAIAEKFDPDSE
KMAKLELKHKD WFEFMQTRGD *
SE MTKTFDSEFFNLYSLQKTVRFELKPVGETASFVEDFKNEGLKRVVSEDERRAVDYQKVKEIIDDYHR
Q DFIEESLNYFPEQVSKDALEQAFHLYQKLKAAKVEEREKALKEWEALQKKLREKVVKCFSDSNKAR
no FSRIDKKELIKEDLINWLVAQNREDDIPTVETFN FTTYFTGFHENRKNIYSKDDHATAISFRLIHENL
N PKFFDNVISFNKLKEGFPELKFDKVKEDLEVDYDLKHAFEIEYFVNFVTQAGIDQYNYLLGGKTLED
O: GTKKQGMNEQINLFKQQQTRDKARQIPKLIPLFKQILSERTESQSFIPKQFESDQELFDSLQKLHNNCQ 4 DKFTVLQQAILGLAEADLKKVFIKTSDLNALSNTIFGNYS SDALNLYKESLKTKKAQEAFEKLPA
HSIHDLIQYLEQFNSSLDAEKQQSTDTVLNYFIKTDELYSRFIKSTSEAFTQVQPLFELEALSSKRRPPE
SEDEGAKGQEGFEQIKRIKAYLDTLMEAVHFAKPLYLVKGRKMIEGLDKDQSFYEAFEMAYQELES
LIIPIYNKARSYLSRKPFKADKFKINFDNNTLLSGWDANKETANASILFKKDGLYYLGIMPKGKTFLF
DYFVSSEDSEKLKQRRQKTAEEALAQDGESYFEKIRYKLLPGASKMLPKVFFSNKNIGFYNPSDDILR
IRNTASHTKNGTPQKGHSKVEFNLNDCHKMIDFFKSSIQKHPEWGSFGFTFSDTSDFEDMSAFYREV
ENQGYVISFDKIKETYIQSQVEQGNLYLFQIYNKDFSPYSKGKPNLHTLYWKALFEEANLNNVVAKL
NGEAEIFFRRHSIKASDKVVHPANQAIDNKNPHTEKTQSTFEYDLVKDKRYTQDKFFFHVPISLNFKA
QGVSKFNDKVNGFLKGNPDVNIIGIDRGERHLLYFTVVNQKGEILVQESLNTLMSDKGHVNDYQQK
LDKKEQERDAARKSWTTVENIKELKEGYLSHVVHKLAHLIIKYNAIVCLEDLNFGFKRGRFKVEKQ VYQKFEKALIDKLNYLVFKEKELGEVGHYLTAYQLTAPFESFKKLGKQSGILFYVPADYTSKIDPTT
GFVNFLDLRYQSVEKAKQLLSDFNAIRFNSVQNYFEFEIDYKKLTPKRKVGTQSKWVICTYGDVRY QNRRNQKGHWETEEVNVTEKLKALFASDSKTTTVIDYANDDNLIDVILEQDKASFFKELLWLLKLT MTLRHSKIKSEDDFILSPVKNEQGEFYDSRKAGEVWPKDADANGAYHIALKGLWNLQQINQWEKG KTLNLAIKNQDWFSFIQEKPYQE*
SE MHTGGLLSMDAKEFTGQYPLSKTLRFELRPIGRTWDNLEASGYLAEDRHRAECYPRAKELLDDNHR
Q AFLNRVLPQIDMDWHPIAEAFCKVHKNPGNKELAQDYNLQLSKRRKEISAYLQDADGYKGLFAKPA
no LDEAMKIAKENGNESDIEVLEAFNGFSVYFTGYHESRENIYSDEDMVSVAYRITEDNFPRFVSNALIF
N DKLNESHPDIISEVSGNLGVDDIGKYFDVSNYN FLSQAGIDDYNHIIGGHTTEDGLIQAFNVVLNLR
O: HQKDPGFEKIQFKQLYKQILSVRTSKSYIPKQFDNSKEMVDCICDYVSKIEKSETVERALKLVRNISSF 5 DLRGIFWKKNLRILSNK IGDWDAIETALMHSSSSENDKKSWDSAEAFTLDDIFSSVKKFSDASAE
DIGNRAEDICRVISETAPFINDLRAVDLDSLNDDGYEAAVSKIRESLEPYMDLFHELEIFSVGDEFPKC
AAFYSELEEVSEQLIEIIPLFNKARSFCTRKRYSTDKIKVNLKFPTLADGWDLNKERDNKAAILRKDG
KYYLAILDMKKDLSSIRTSDEDESSFEKMEYKLLPSPVKMLPKIFVKSKAAKEKYGLTDRMLECYDK
GMHKSGSAFDLGFCHELIDYYKRCIAEYPGWDVFDFKFRETSDYGSMKEFNEDVAGAGYYMSLRKI
PCSEWRLLDEKSIYLFQIYN DYSENAHGNKNMHTMYWEGLFSPQNLESPVFKLSGGAELFFRKSS
IPNDAKTVHPKGSVLWRNDVNGRRIPDSIYRELTRYFNRGDCRISDEAKSYLDKVKTKKADHDIVK
DRRFTVDKM FHWIAMNFKAISKPNLN VIDGIIDDQDLKIIGIDRGER^
DSLNILNGYDYRKALDVREYDN EARRNWTKVEGIRKMKEGYLSLAVSKLADMIIENNAIIVMEDL
NHGFKAGRSKIEKQWQKFESMLINKLGYMVLKDKSIDQSGGALHGYQLANHVTTLASVGKQCGVI
FYIPAAFTSKIDPTTGFADLFALSNVKNVASMREFFSKMKSVIYDKAEGKFAFTFDYLDYNVKSECG
RTLWTVYTVGERFTYSRVNREYVRKVPTDIIYDALQKAGISVEGDLRDRIAESDGDTLKSIFYAFKY
ALDMRVENREEDYIQSPVKNASGEFFCSKNAGKSLPQDSDANGAYNIALKGILQLRMLSEQYDPNA
ESIRLPLITNKAWLTFMQSGMKTWKN*
SE MD SLKDFTNLYP VSKTLRFELKP VGKTLENIEKAGILKEDEHRAES YRRVKKIIDTYHKVFID S SLEN
Q MAKMGIENEIKAMLQSFCELYKKDHRTEGEDKALDKIRAVLRGLIVGAFTGVCGRRENTVQNEKYE
no SLFKEKLKEILPDFVLSTEAESLPFSVEEATRSLKEFDSFTSYFAGFYENRKNIYSTKPQSTAIAYRLIH
N ENLPKFIDNILVFQKIKEPIAKELEHIRADFSAGGYIKKDERLEDIFSLNYYIHVLSQAGIEKYNALIGKI
O: VTEGDGEMKGLNEHINLYNQQRGREDRLPLFRPLYKQILSDREQLSYLPESFEKDEELLRALKEFYD
6 HIAEDILGRTQQLMTSISEYDLSRIYVR DSQLTDISKKMLGDWNAIYMARERAYDHEQAPKRITAK
YERDRIKALKGEESISLANLNSCIAFLDNVRDCRVDTYLSTLGQKEGPHGLSNLVENVFASYHEAEQ
LLSFPYPEEN LIQDKDNVVLIKNLLDNISDLQRFLKPLWGMGDEPDKDERFYGEYNYIRGALDQVIP
LYNKVR YLTRKPYSTRKVKLNFGNSQLLSGWDRNKEKDNSCVILRKGQNFYLAIMNNRHKRSFE
NKVLPEYKEGEPWEKMDYKFLPDPNKMLPK LSKKGIEIYKPSPKLLEQYGHGTHKKGDTFSMD
DLHELIDFFKHSIEAHEDWKQFGFKFSDTATYENVSSFYREVEDQGYKLSFRKVSESYVYSLIDQGKL
YLFQIYN DFSPCSKGTPNLHTLYWRMLFDERNLADVIYKLDGKAEIFFREKSLKNDHPTHPAGKPI
KKKSRQKKGEESLFEYDLVKDRHYTMDKEQFHWITMNFKCSAGSKVNDMVNAHI
IDRGERNLLYICVIDSRGTILDQISLNTINDIDYHDLLESRDKDRQQERRNWQTIEGIKELKQGYLSQA
VHmAELNWAYKAVVALEDLNMGFKRGRQKVESSVYQQFEKQLIDKLNYLVDKKKRPEDIGGLLR
AYQFTAPFKSFKEMGKQNGFLFYIPAWNTSNIDPTTGFVNLFHAQYENVDKAKSFFQKFDSISYNPK
KDWFEFAFDYKNFTKKAEGSRSMWILCTHGSRIKNFRNSQKNGQWDSEEFALTEAFKSLFVRYEID
YTADLKTAIVDEKQKDFFVDLLKLFKLTVQMRNSWKEKDLDYLISPVAGADGRFFDTREGNKSLPK DADANGAYNIALKGLWALRQIRQTSEGGKLKLAISNKEWLQFVQERSYEKD*
SE MNNGTN FQNFIGISSLQKTLRNALIPTETTQQFIVKNGIIKEDELRGENRQILKDIMDDYYRGFISETL
Q SSIDDIDWTSLFEK EIQLKNGDN DTLIKEQTEYRKAIHKKFANDDRFKNMFSAKLISDILPEFVIHN
no N YSASEKEEKTQVIKLFSRFATSFKDYFKNRANCFSADDISSSSCHRIVNDNAEIFFSNALVYRRIVK
N SLSNDDINKISGDMKDSLKEMSLEEIYSYEKYGEFITQEGISFYNDICGKVNSFMNLYCQKNKENKNL
0: YKLQKLHKQILCIADTSYEVPYKFESDEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGYNLDKIYIV
7 SKFYESVSQKTYRDWETINTALEIHYNNILPGNGKSKADKVKKAVKNDLQKSITEINELVSNYKLCS
DDNIKAETYIHEISHILN FEAQELKYNPEIHLVESELKASELKNVLDVIMNAFHWCSVFMTEELVDK
DN FYAELEEIYDEIYPVISLYNLVR YVTQKPYSTKKIKLNFGIPTLADGWSKSKEYSNNAIILMRD
NLYYLGIFNAKNKPDKKIIEGNTSENKGDYKKMIYNLLPGPNKMIPKVFLSSKTGVETYKPSAYILEG
YKQNKHIKSSKDFDITFCHDLIDYFKNCIAIHPEWKNFGFDFSDTSTYEDISGFYREVELQGYKIDWT
YISEKDIDLLQEKGQLYLFQIYNKDFSKKSTGNDNLHTMYLKNLFSEENLKDIVLKLNGEAEIFFRKS
SIKNPIIFn KGSILVNRTYEAEEKDQFGNIQIVRKNIPENIYQELYKYFNDKSDKELSDEAAKLKNVVG
HHEAATNIVKDYRYTYDKYFLHMPITINFKANKTGFINDRILQYIAKEKDLHVIGIDRGERNLIYVSVI
DTCGNIVEQKSFNIVNGYDYQIKLKQQEGARQIARKEWKEIGKIKEIKEGYLSLVIHEISKMVIKYNAI
IAMEDLSYGFKKGRFKVERQWQKFETMLINKLNYLVFKDISITENGGLLKGYQLTYIPDKLKNVGH
QCGCIFYVPAAYTSKIDPTTGFWIFKFKDLTVDAKREFIKKFDSIRYDSEKNLFCFTFDYN FITQNT
VMSKSSWSWTYGWIKRRFWGRFSNESDTIDITKDMEKTLEMTDINWRDGHDLRQDIIDYEIVQHI
FEIFRLTVQMRNSLSELEDRDYDRLISPVLNENNIFYDSAKAGDALPKDADANGAYCIALKGLYEIKQ
ITENWKEDGKFSRDKLKISNKDWFDFIQNKRYL*
SE MTN FTNQYSLSKTLRFELIPQGKTLEFIQEKGLLSQDKQRAESYQEMKKTIDKFHKYFIDLALSNAK
Q LTHLETYLELYNKSAET KEQKFKDDLKKVQDNLRKEIVKSFSDGDAKSIFAILDKKELITVELEKWF
no EN EQKDIYFDEKFKTFTTYFTGFHQNRKNMYSVEPNSTAIAYRLIHENLPKFLENAKAFEKIKQVES
N LQVNFRELMGEFGDEGLIFWELEEMFQINYYNDVLSQNGITIYNSIISGFTKNDIKYKGLNEYIN YN
0: QTKDKKDRLPKLKQLYKQILSDRISLSFLPDAFTDGKQVLKAIFDFYKINLLSYTIEGQEESQNLLLLI 8 RQTIENLSSFDTQKIYLKNDTHLTTISQQ GDFS STALNYWYETKVNPKFETEYSKA EKKREIL
DKAKA TKQDYFSIAFLQEVLSEYILTLDHTSDIVKKHSSNCIADYFKNHFVAKKENETDKTFDFIA
NITAKYQCIQGILENADQYEDELKQDQKLIDNLKFFLDAILELLHFIKPLHLKSESITEKDTAFYDVFE
NYYEALSLLTPLYNMVRNYVTQKPYSTEKIKLNFENAQLLNGWDAN EGDYLTTILKKDGNYFLAI
MDKKHNKAFQKFPEGKENYEKMWKLLPGVNKMLPK FSNKNIAYFNPSK^
DTFNLEHCHTLIDFFKDSLNKHEDWKYFDFQFSETKSYQDLSGFYREVEHQGYKINFKNIDSEYIDGL
VNEGKLFLFQIYSKDFSPFSKGKPNMHTLYWKALFEEQNLQNVIYKLNGQAEIFFRKASIKPKNIILH
KKKIKIAKKHFIDKKTKTSEIWVQTIKNLNMYYQGKISEKELTQDDLRYIDNFSIFNEKNKTIDIIKDK
RFTVDKFQFHWITMNFKATGGSYINQTVLEYLQNNPEVKIIGLDRGERHLVYLTLIDQQGNILKQES
LNTITDSKISTPYHKLLDNKENERDLARKNWGTVENIKELKEGYISQVVHKIATLMLEENAIVVMED
LNFGFKRGRFKVEKQIYQKLEKMLIDKLNYLVLKDKQPQELGGLYNALQLTNKFESFQKMGKQSGF
LFYWAWNTSKIDPTTGFVNYFYTKYENVDKAKAFFEKFEAIRFNAEKKYFEFEVKKYSDFNPKAEG
TQQAWTICTYGERIETKRQKDQN FVSTPINLTEKIEDFLGKNQIVYGDGNCIKSQIASKDDKAFFE
TLLYWFKMTLQMRNSETRTDIDYLISPVMNDNGTFYNSRDYEKLENPTLPKDADANGAYHIAKKGL
MLLNKIDQADLTKKVDLSISNRDWLQFVQKNK*
SE MEQEYYLGLDMGTGSVGWAVTDSEYHVLRKHGKALWGVRLFESASTAEERRMFRTSRRRLDRRN
Q WRIEILQEIFAEEISKKDPGFFLRMKESKYYPEDKRDINGNCPELPYALFVDDDFTDKDYHKKFPTIYH no LRK LMNTEETPDIRLWLAIHHMMK^
N EEYAVVESILKDNMLNRSTKKTP IKALKAKSICEKAVLNLLAGGTVKLSDIFGLEELNETEPJKISFA
O: DNGYDDYIGEVENELGEQFYIIETAKAVYDWAVLVEILGKYTSISEAKVATYEKHKSDLQFLKKIVR
9 KYLTKEEYKDIFVSTSDKLKNYSAYIGMTKINGKKVDLQSKRCSKEEFYDFIKKNVLKKLEGQPEYE
YLKEELEP^TFLPKQVNRDNGVIPYQIHLYELKKILGNLRDKIDLIKENEDKLVQLFEFRIPYYVGPLN
KIDDGKEGKFTWAVRKSNEKIYPWNFENVVDIEASAEKFIRRMTNKCTYLMGEDVLPKDSLLYSKY
MVLNELNNVKLDGEKLSVELKQRLYTDVFCKYRKVTVKKIKNYLKCEGIISGNVEITGIDGDFKASL
TAYHDFKEILTGTELAKKDKENIITNIVLFGDDKKLLKKRLNRLYPQITPNQLKKICALSYTGWGRFS
KKFLEEITAPDPETGE NIITALWESN NLMQLLSNEYRFMEEVETYNMGKQTKTLSYETVENMY
VSPSVKRQIWQTLKIVKELEKVMKESPKRVFIEMAREKQESKRTESRKKQLIDLYKACKNEEKDWV
KELGDQEEQKLRSDKLYLYYTQKGRCMYSGEVIELKDLWDNTKYDIDHIYPQSKTMDDSLNNRVL
VKKKYNATKSDKYPLNENIRHERKGFWKSLLDGGFISKEKYERLIRNTELSPEELAGFIERQIVETRQ
STKAVAEILKQVFPESEIVYVKAGTVSRFRKDFELLKVREVNDLHHAKDAYLNIVVGNSYYVKFTK
NASWFKENPGRTYNLKKMFTSGWNIERNGEVAWEVGKKGTIVTVKQIMNKNNILVTRQVHEAKG
GLFDQQIMKKGKGQIAIKETDERLASIEKYGGYNKAAGAYFMLVESKDKKGKTIRTIEFIPLYLKNKI
ESDESIALNFLEKGRGLKEPKILLKKIKE)TLFDVDGFKMWLSGRTGDRLLFKCANQLILDEKIIVTMK
KIVKFIQRRQENRELKLSDKDGIDNEVLMEIYNTFVDKLENTVYRIRLSEQAKTLIDKQKEFERLSLE
DKSSTLFEILHIFQCQSSAANLKMIGGPGKAGILVMNNNISKCNKISIINQSPTGIFENEIDLLK
SE MN FENFTGLYPISKTLRFELIPQGKTLEYIEKSEILENDNYRAEKYEEVKDIIDGYHKWFINETLHDL
Q HINWSELKVALENNRIEKSDASKKELQRVQKIKREEIYNAFIEHEAFQYLFKENLLSDLLPIQIEQSED
no LDAEKKKQAVETFNRFSTYFTGFHENRKNIYSKEGISTSVTYmVHDNFPKFLENMKVFEILRNECPE
N VISDTANELAPFIDGVRIEDIFLIDFFNSTFSQNGIDYYNRILGGVTTETGEKYRGINEFTNLYRQQHPE
O: FGKSKKATKMVVLFKQILSDRDTLSFIPEMFGNDKQVQNSIQLFYNREISQFENEGVKTDVCTALATL 10 TSKIAEFDTEKIYIQQPELPNVSQRLFGSWNELNACLFKYAELKFGTAEKVANRKKIDKWLKSDLFSF
TELNKALEFSGKDERIENYFSETGIFAQLVKTGFDEAQSILETEYTSEVHLKDQQTDIEKIKTFLDALQ
NLMHLLKSLCVSEEADRDAAFYNEFDMLYNQLKLVWLYNKVR YITQKLFRSDKIKIYFENKGQF
LGGWVDSQTENSDNGTQAGGYIFRKENVINEYDYYLGICSDPKLFRRTTIVSENDRSSFERLDYYQL
KTASVYGNSYCGKHPYTEDKNELVNSIDRFVHLSGNNILIEKIAKDKVKSNPTTNTPSGYLNFIHREA
PNTYECLLQDENFVSLNQRWSALKATLATLVRVPKALVYAKKDYHLFSEIINDIDELSYEKAFSYFP
VSQTEFENSSNRTIKPLLLFKISNKDLSFAENFEKGNRQKIGKKNLHTLYFEALMKGNQDTIDIGTGM
VFHRVKSLNYNEKTLKYGHHSTQLNEKFSYPIIKDKRFASDKFLFHLSTEINYKEKRKPLNNSIIEFLT
N PDINIIGLDRGERHLIYLTLINQKGEILRQKTFNIVGNTNYHEKLNQREKERDNARKSWATIGKIKE
LKEGFLSLVIHEIAKIMVENNAIVVLEDLNFGFKRGRFKVEKQIYQKFEKMLIDKLNYLVFKDKKAN
EAGGVLKGYQLAEKFESFQKMGKQSGFLFYWAAYTSKIDPTTGFVNMLNLNYTNMKDAQTLLSG
MDKISFNADANYFEFELDYEKFKTNQTDHTNKWTICTVGEKRFTYNSATKETTTVNVTEDLKKLLD
KFEVKYSNGDNIKDEICRQTDAKFFEIILWLLKLTMQMRNSNTKTEEDFILSPVKNSNGEFFRSNDDA
NGIWPADADANGAYHIALKGLYLVKECFNKNEKSLKIEHKNWFKFAQTRFNGSLTKNG*
SE NffiNFKNLYPINKTLRFELRPYGKTLENFKKSGLLEKDAFKANSRRSMQAIIDEKFKETffiERLKYTEF
Q SECDLGNMTSKDKKITDKAATNLKKQVILSFDDEIFNNYLKPDKNIDALFKNDPSNPVISTFKGFTTY
no FVNFFEIRKHIFKGESSGSMAYRIIDENLTTYLNNIEKIKKLPEELKSQLEGIDQIDKLN YNEFITQSGI
N THYNEIIGGISKSENVKIQGINEGINLYCQKNKVKLPRLTPLYKMILSDRVSNSFVLDTIENDTELIEMI
O: SDLINKTEISQDVIMSDIQNIFIKYKQLGNLPGISYSSIVNAICSDYDN FGDGKRKKSYENDRKKHLE 11 TNWSINYISELLTDTDVSSNIKMRYKELEQNYQVCKENFNATNWMNIKNIKQSEKTNLIKDLLDILK
SIQPJYDLFDIVDEDKNPSAEFYTWLSKNAEKLDFEFNSWNKSRNYLTPJ QYSDKKIKLNFDSPTLA
KGWDANKEIDNSTIIMPJ FN DRGDYDYFLGIWNKSTPA EKIIPLEDNGLFEKMQYKLYPDPSKM^
PKQFLSKIWKAKHPTTPEFDKKYKEGRHKKGPDFEKEFLHELIDCFKHGLVNHDEKYQD GFNLR
NTEDYNSYTEFLEDVERCNYNLSFNKIADTSNLINDGKLY QIWSKDFSIDSKGTKNLNTIYFESLFS
EENMIEKMFKLSGEAEIFYRPASLNYCEDIIKKGHHHAELKDKFDYPIIKDKRYSQDKFFFHVPMVIN
YKSEKLNSKSLN RTNENLGQFTHIIGIDRGERHLIYLTVVDVSTGEIVEQKHLDEIINTDTKGVEHKT
HYLNKLEEKSKTRDNERKSWEAIETIKELKEGYISHVINEIQKLQEKYNALIVMENLNYGFKNSRIKV
EKQVYQKFETALIKKFNYIIDKKDPETYIHGYQLTNPITTLDKIGNQSGIVLYIPAWNTSKIDPVTGFV
NLLYADDLKYKNQEQAKSFIQKIDNIYFENGEFKFDIDFSKWN RYSISKTKWTLTSYGTRIQTFRNP
QKN KWDSAEYDLTEEFKLILNIDGTLKSQDVETYKKFMSLFKLMLQLRNSVTGTDIDYMISPVTDK
TGTHFDSRENIKNLPADADANGAYNIARKGIMAIENIMNGISDPLKISNEDYLKYIQNQQE
SE MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQL
Q VQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAE
ID LFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKEN N CHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIK
O: GLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVL 12 ETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKH
EDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWF
AVDESNEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKXPYSVEKFKLNFQMPTLASGWDV^
NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVT
AHFQTHTTPILLSNNFIEPLEITKEIYDLN PEKEPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLS
KYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYN DFAKG
HHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKS
DTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKF
NQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQA
WSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKL
NCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKN
HESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAG
KRIWVIENHRFTGRYRDLYPANELIALLEEKGI RDGSNILPKLLENDDSHAIDTMVALIRSVLQMR
NSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQN
GISNQDWLAYIQELRN*
SE MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQECDKTA
Q EECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFLSPLADK
ID DAVGGLGIAKAGN PRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYT N DSEMSSVEWKPLRKGQAWTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFV
O: GQEHLVHLVNQLQQDMKEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIK 13 NVQRRNTRRFGSHDLFAKLAEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHP
IWTRFDKLGGNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDNLLPRDPN
EPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSVRVQSQSEARGERRPPY
AAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLRVMSVDLGLRTSASISVFRVARKD
ELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPGETESKDLRAIREERQRTLRQLRTQLAYLRLLV RCGSEDVGPJ ERSWAKLIEQPVDAA HMTPDWP^AFENELQKLKSLHGICSDKEWMDAVYESVRR
VWRHMGKQVRDWRKDVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFGKVSGQVIR
AEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELSEY
QFN DRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARC
TQEHNPEPFPWWLNKFWEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQ
RLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKKRRKVFA
QEKL SEEEAELL VE ADE AREKS VVLMRDP SGIINRGNWTRQKEF WSMVNQRIEGYL VKQIRSRVPLQ
DSACENTGDI*
SE MATRSFILKIEPNEEVKKGLWKTHEVLNHGIAYYMNILKLIRQEAIYEHHEQDPKNPKKVSKAEIQAE
Q LWDFVLKMQKCNSFTHEVDKDV NILRELYEELWSSVEKKGEANQLSNKFLYPLVDPNSQSGKG
no TASSGRKPRWYNLKIAGDPSWEEEKKKWEEDKKKDPLAKILGKLAEYGLIPLFIPFTDSNEPIVKEIK
N WMEKSRNQSVRRLDKDMFIQALERFLSWESWNLKVKEEYEKVEKEHKTLEERIKEDIQAFKSLEQY
O: EKERQEQLLRDTLNTNEYRLSKRGLRGWREIIQKmKMDENEPSEKYLEVFKDYQRKHPREAGDYS 14 WEFLSKKENHFIWR HPEYPYLYATFCEIDKKKKDAKQQATFTLADPINHPLWVRFEERSGSNLNK
YRILTEQLHTEKLKKKLTVQLDRLIYPTESGGWEEKGKVDIVLLPSRQFYNQIFLDIEEKGKHAFTYK
DESIKFPLKGTLGGARVQFDRDHLRRYPHKVESGNVGRIYFNMTVNIEPTESPVSKSLKIHRDDFPKF
VNFKPKELTEWIKDSKGKKLKSGIESLEIGLRVMSIDLGQRQAAAASIFEVVDQKPDIEGKLFFPIKGT
ELYAVHRASFNIKLPGETLVKSREVLRKAREDNLKLMNQKLNFLRNVLHFQQFEDITEREKRVTKWI
SRQENSDVPLVYQDELIQIRELMYKPYKDWVAFLKQLHKRLEVEIGKEVKHWRKSLSDGRKGLYGI
SLKNIDEIDRTRKFLLRWSLRPTEPGEVRRLEPGQRFAIDQLNHLNALKEDRLKKMANTIIMHALGYC
YDVRKKKWQAKNPACQIILFEDLSNYNPYEERSRFENSKLMKWSRREIPRQVALQGEIYGLQVGEV
GAQFSSRFHAKTGSPGIRCSVVTKEKLQDNRFFKNLQREGRLTLDKIAVLKEGDLYPDKGGEKFISLS
KDRKLVTTHADINAAQNLQKRFWTRTHGFYKVYCKAYQVDGQTVYIPESKDQKQKIIEEFGEGYFI
LKDGVYE WGNAGKLKIKKGS SKQ S S SEL VD SDILKD SFDL ASELKGEKLMLYRDP SGNVFPSDKWM
AAGVFFGKLERILISKLTNQYSISTIEDDSSKQSM*
SE MPTRTINLKLVLGKNPENATLRRALFSTHRLVNQATKRIEEFLLLCRGEAYRTVDNEGKEAEIPRHA
Q VQEEALAFAKAAQRHNGCISTYEDQEILDVLRQLYERLVPSVNEN EAGDAQAANAWVSPLMSAES
no EGGLSWDKVLDPPPVWMKLKEEKAPGWEAASQIWIQSDEGQSLLNKPGSPPRWIRKLRSGQPWQD
N DFVSDQKKKQDELTKGNAPLIKQLKEMGLLPLVNPFFRHLLDPEGKGVSPWDRLAVRAAVAHFISW
O: ESWNHRTRAEYNSLKLRRDEFEAASDEFKDDFTLLRQYEAKRHSTLKSIALADDSNPYRIGVRSLRA 15 WNRVREEWIDKGATEEQRVTILSKLQTQLRGKFGDPDLFNWLAQDRHVHLWSPRDSVTPLVRINAV
DKVLRRRKPYALMTFAHPRFHPRWILYEAPGGSNLRQYALDCTENALHITLPLLVDDAHGTWIEKKI
R LAPSGQIQDLTLEKLEKKKNRLYYRSGFQQFAGLAGGAEVLFHRPYMEHDERSEESLLERPGAV
WFKLTLDVATQAPPNWLDGKGRWTPPEVHHFKTALSNKSKHTRTLQPGLRVLSVDLGMRTFASCS ELIEGKPETGRAFPVADERSMDSPN LWAKHERSFKLTLPGETPSRKEEEERSIARAEIYALKRDIQ
RLKSLLRLGEEDNDNRRDALLEQFFKGWGEEDVVPGQAFPRSLFQGLGAAPFRSTPELWRQHCQTY
YDKAEACLAKHISDWRKRTRPRPTSREMWYKTRSYHGGKSIWMLEYLDAVRKLLLSWSLRGRTYG
AINRQDTARFGSLASRLLHHINSLKEDRIKTGADSIVQAARGYIPLPHGKGWEQRYEPCQLILFEDLA
RYRFRVDRPRRENSQLMQWNHRAIVAETTMQAELYGQIVENTAAGFSSRFHAATGAPGVRCRFLLE
RDFDNDLPKPYLLRELSWMLGNTKVESEEEKLRLLSEKIRPGSLVPWDGGEQFATLHPKRQTLCVIH
ADMNAAQNLQRRFFGRCGEAFRLVCQPHGDDVLRLASTPGARLLGALQQLENGQGAFELVRDMGS
TSQMNRFVMKSLGKKKIKPLQDNNGDDELEDVLSVLPEEDDTGRITVFRDSSGIFFPCNVWIPAKQF .
WPAVRAMIWKVMASHSLG*
SE MTKLPJmQKKLTHDWAGSKKREVLGSNGKLQNPLLMPVKKGQVTEFRKAFSAYARATKGEMTDG
Q R NMFTHSFEPFKTKPSLHQCELADKAYQSLHSYLPGSLAHFLLSAHALGFRIFSKSGEATAFQASSK
no IEAYESKLASELACVDLSIQNLTISTLFNALTTSVRGKGEETSADPLIARFYTLLTGKPLSRDTQGPERD
N LAEVISRKIASSFGTWKEMTANPLQSLQFFEEELHALDANVSLSPAFDVLIKMNDLQGDLKNRTIVFD
O: PDAP EYNAEDPADIIIKLTARYAKEAVIKNQNVGNYVKNAITTTNANGLGWLLNKGLSLLPVSTD 16 DELLEFIGVERSHP SCH ALIELI AQLE APELFEKNVF SDTRSEVQGMID S AVSNHI ARLS S SRNSLSMD S
EELERLIKSFQIHTPHCSLFIGAQSLSQQLESLPEALQSGVNSADILLGSTQYMLTNSLVEESIATYQRT
LNRINYLSGVAGQINGAIKRKAIDGEKIHLPAAWSELISLPFIGQPVIDVESDLAHLKNQYQTLSNEFD
TLISALQKNFDLNFNKALLNRTQHFEAMCRSTKKNALSKPEIVSYRDLLARLTSCLYRGSLVLRRAGI
EVLKKHKIFESNSELREHVHERKHF VSPLDRKAKKLLRLTDSRPDLLHVIDEILQHDNLENKDRES
LWLVRSGYLLAGLPDQLSSSFINLPIITQKGDRRLIDLIQYDQINRDAFVMLVTSAFKSNLSGLQYRAN
KQSFVVTRTLSPYLGSKLVYVPKDKDWLVPSQMFEGRFADILQSDYMVWKDAGRLCVIDTAKHLS
NIKKSVFSSEEVLAFLRELPHRTFIQTEVRGLGVNVDGIAFNNGDIPSLKTFSNCVQVKVSRTNTSLVQ
TLNRWFEGGKVSPPSIQFERAYYKKDDQIHEDAAKRKIRFQMPATELVHASDDAGWTPSYLLGIDPG
EYGMGLSLVSINNGEVLDSGFIHINSLINFASKKSNHQTKVVPRQQYKSPYANYLEQSKDSAAGDIA
HILDRLIYKLNALPVFEALSGNSQSAADQVWTKVLSFYTWGDNDAQNSIRKQHWFGASHWDIKGM
LRQPPTEKKPKPYIAFPGSQVSSYGNSQRCSCCGR PIEQLREMAKDTSIKELKIRNSEIQLFDGTIKLF
NPDPSTVIERRRHNLGPSRIPVADRTFKNISPSSLEFKELITIVSRSIRHSPEFIAKKRGIGSEYFCAYSDC
NS SLNSE AN AAANV AQKFQKQLFFEL *
SE MKRILNSLKVAALRLLFRGKGSELVKTVKYPLVSPVQGAVEELAEAIRHDNLHLFGQKEIVDLMEK
Q DEGTQVYSVVDFWLDTLRLGMFFSPSANALKITLGKFNSDQVSPFRKVLEQSPFFLAGRLKVEPAERI
no LSVEIRKIGKRENRVENYAADVETCFIGQLSSDEKQSIQKLANDIWDSKDHEEQRMLKADFFAIPLIK
N DPKAVTEEDPENETAGKQKPLELCVCLVPELYTRGFGSIADFLVQRLTLLRDKMSTDTAEDCLEYVG
O: IEEEKGNGMNSLLGTFLKNLQGDGFEQIFQFMLGSYVGWQGKEDVLRERLDLLAEKVKRLPKPKFA 17 GEWSGHRMFLHGQLKSWSSNFFRLFNETRELLESIKSDIQHATMLISYVEEKGGYHPQLLSQYRKLM
EQLPALRTKVLDPEIEMTHMSEAVRSYIMIHKSVAGFLPDLLESLDRDKDREFLLSIFPRIPKIDKKTK
EIVAWELPGEPEEGYLFTANNLFRNFLENPKHWRFMAERIPEDWTRLRSAPVWFDGMVKQWQKV
VNQLVESPGALYQFNESFLRQRLQAMLTVYKRDLQTEKFLKLLADVCRPLVDFFGLGGNDIIFKSCQ
DPRKQWQTVIPLSWADVYTACEGLAIRLRETLGFEWKNLKGHEREDFLRLHQLLGNLLFWIRDAK
LVVKLEDWMNNPCVQEYVEARKAIDLPLEIFGFEWIFLNGYLFSELRQLELLLRRKSVMTSYSVKTT
GSPNRLFQLVYLPLNPSDPEKKNSNNFQERLDTPTGLSRRFLDLTLDAFAGKLLTDPVTQELKTMAG
FYDHLFGFKLPCKL AAMSNHPGS S SKMV VL AKPKKG VASNIGFEPIPDP AHP VFRVRS S WPELKYLE
GLLYLPEDTPLTIELAETSVSCQSVSSVAFDLKNLTTILGRVGEFRVTADQPFKLTPIIPEKEESFIGKTY
LGLDAGERSGVGFAIVTVDGDGYEVQRLGVHEDTQLMALQQVASKSLKEPVFQPLRKGTFRQQERI
RKSLRGCYWNFYHALMIKYRAKVVHEESVGSSGLVGQWLRAFQKDLKKADVLPKKGGKNGVDK
KKRESSAQDTLWGGAFSKKEEQQIAFEVQAAGSSQFCLKCGWWFQLGMREVNRVQESGVVLDWN
RSIVTFLIESSGEKWGFSPQQLEKGFRPDIETFKKMVRDFMRPPMFDRKGRPAAAYERFVLGRRHRR
YRFDK EERFGRSALFICPRVGCGNFDHSSEQSAVVLALIGYIADKEGMSGKKLVYVRLAELMAE
WKLKKLERSR VEEQ S S AQ *
SE MAESKQMQCRKCGASMKYEVIGLGKKSCRYMCPDCGNHTSARKIQNKKKRDKKYGSASKAQSQR
Q I AV AG AL YPDKKVQTIKTYKYP ADLNGEVHD S GVAEKI AQ AIQEDEIGLLGP S SEY ACWI ASQKQSE no PYSVVDFWFDAVCAGGVFAYSGARLLSTVLQLSGEESVLRAALASSPFVDDINLAQAEKFLAVSRRT
N GQDKLGKRIGECFAEGRLEALGIKDPJVIP^FVQAIDVAQTAGQPJAAKLKIFGISQMPEAKQWN DS O: GLTVCILPDYYVPEENRADQLVVLLRRLREIAYCMGIEDEAGFEHLGIDPGALSNFSNGNPKRGFLGR 18 LLN DIIALANNMSAMTPYWEGRKGELIERLAWLKHRAEGLYLKEPHFGNSWADHRSRIFSRIAGW
LSGCAGKLKIAKDQISGVRTDLFLLKRLLDAVPQSAPSPDFIASISALDRFLEAAESSQDPAEQVRALY
AFHLNAPAWSIANKAVQRSDSQEWLIKELDAVDHLEFNKAFPFFSDTGKKKKKGANSNGAPSEEE
YTETESIQQPEDAEQEVNGQEGNGASKNQKKFQRIPRFFGEGSRSEYRILTEAPQYFDMFCN MRAIF
MQLESQPRKAPRDFKCFLQNRLQKLYKQTFLNARSNKCRALLESVLISWGEFYTYGANEKKFRLRH
EASERSSDPDYVVQQALEIARRLFLFGFEWRDCSAGERVDLVEIHKKAISFLLAITQAEVSVGSYNWL
GNSTVSRYLSVAGTDTLYGTQLEEFLNATVLSQMRGLAIRLSSQELKDGFDVQLESSCQDNLQHLLV
YRASRDLAACKRATCPAELDPKILVLPVGAFIASVMKMIERGDEPLAGAYLRHRPHSFGWQIRVRGV
AEVGMDQGTALAFQKPTESEPFKIKPFSAQYGPVLWLNSSSYSQSQYLDGFLSQPKNWSMRVLPQA
GSWVEQRVALIWNLQAGKMRLERSGARAFFMPVPFSFRPSGSGDEAVLAPNRYLGLFPHSGGIEYA
VVDVLDSAGFKILERGTIAWGFSQKRGERQEEAHREKQRRGISDIGRKKPVQAEVDAANELHRKYT
DVATRLGCRIVVQWAPQPKPGTAPTAQTVYARAVRTEAPRSGNQEDHARMKSSWGYTWGTYWEK
RKPEDILGISTQVYWTGGIGESCPAVAVALLGHIRATSTQTEWEKEEVVFGRLKKFFPS*
SE MEKRINKIRKKLSADNATKPVSRSGPMKTLLWVMTDDLKKRLEKRRKKPEVMPQVISNNAAN^
Q MLLDDYTKMKEAILQWWQEFKDDHVGLMCKFAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQ
no CGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFY
N SIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESL
O: REL AGKENLEYP S VTLPPQPHTKEGVD AYNE VI ARVRMWVNLNL WQKLKL SRDD AKPLLRLKGFP S 19 FPVVERRENEVDWWNTINEVKKLIDAKRDMGR WSGVTAEKRNTILEGYNYLPNENDHKKREG
LENPKKPAKRQFGDLLLYLEKKYAGDWGKVFDEAWERIDKKIAGLTSHIEREEARNAEDAQSKAVL
TDWLRAKASFVLERLKEMDEKEFYACEIQLQKWYGDLRGNPFAVEAENRVVDISGFSIGSDGHSIQY
RNLLAWKYLENGKREFYLLMNYGKKGRIRFTDGTDIKKSGKWQGLLYGGGKAKVIDLTFDPDDEQ
LIILPLAFGTRQGREFIWNDLLSLETGLIKLANGRVIEKTIYNKKIGRDEPALFVALTFERREVVDPSNI
KPVNLIGVDRGENIPAVIALTDPEGCPLPEFKDSSGGPTDILRIGEGYKEKQRAIQAAKEVEQRRAGG
YSRKFASKSRNLADDMWNSARDLFYHAVTHDAVL ENLSRGFGRQGKRTFMTERQYTKMEDW
LTAKLAYEGLTSKTYLSKTLAQYTSKTCSNCGFTITTADYDGMLVRLKKTSDGWATTLN KELKAE
GQITYYNRYKRQTVEKELSAELDRLSEESGN DISKWTKGRRDEALFLLKKRFSHRPVQEQFVCLDC
GHEVHADEQAALNIARSWLFLNSNSTEFKSYKSGKQPFVGAWQAFYKRRLKEVWKPNA
SE MKRINKIRRRLVKDSNTKKAGKTGPMKTLLVR
Q LTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPAPKNIDQRKLIPVKDGNERLTSSGFACSQCCQP
ID LYVYKLEQVNDKGKPHTNYFGRCNVSEHERLILLSPHKPEANDELVTYSLGKFGQRALDFYSIHVTR
N ESNHP VKPLEQIGGNS CAS GP VGKAL SD ACMGAVASFLTKYQDIILEHQKVIKKNEKRL ANLKDI AS
O: ANGLAFPKITLPPQPHTKEGIEAYNNVVAQIVIWVNLNLWQKLKIGRDEAKPLQRLKGFPSFPLVERQ 20 ANEVDWWDMVCNVKKLINEKKEDGK WQNLAGYKRQEALLPYLSSEEDRKKGKKFARYQFGD
LLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEG
LKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIIN
YFKGGKLRFKKIKPEAFEANRFYTVINKXSGEIWMEVNFNFDDPNLIILPLAFGKRQGREFIW^
LETGSLKL ANGRVIEKTLYNRRTRQDEP ALF V ALTFERRE VLD S SNIKPMNLIGIDRGENIP AVI ALTD
PEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKYASKAKNLADDMVRNT ARDLLYYAVTQDAMLIFENLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLA
QYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVE
LDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHADEQAALNIARSWLFL
RSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKP
SE atgGGAAAAATGTATTATCTTGGTCTGGATATAGGAACAAATTCTGTTGGATATGCCGTAACCGA
Q CCCATCGTACCATTTGCTCAAATTTAAAGGCGAACCGATGTGGGGTGCCCACGTGTTTGCTGCG
no GGGAATCAATCAGCTGAACGGAGAAGCTTTCGTACGAGCCGCAGACGCCTTGACCGCAGGCAA
N CAGCGTGTCAAACTGGTTCAAGAAATCTTTGCTCCCGTGATTAGTCCCATTGATCCACGTTTTTT
O: TATCAGACTTCATGAGAGCGCTTTATGGCGGGATGATGTGGCTGAAACGGATAAACATATTTTC 21 TTTAATGACCCGACCTATACGGATAAGGAATATTATTCTGACTATCCAACCATCCATCATCTCAT
TGTGGACCTTATGGAAAGCAGTGAAAAGCATGACCCGCGGCTTGTTTATTTGGCTGTTGCCTGG
CTGGTTGCTCATCGTGGTCATTTCCTCAATGAAGTGGATAAGGATAATATTGGGGATGTCCTGAG
TTTTGACGCCTTTTATCCTGAGTTTCTGGCATTTCTTTCCGATAATGGGGTGTCACCTTGGGTATG
TGAGTCAAAAGCACTCCAAGCGACCCTGCTTTCACGAAACTCCGTCAACGATAAGTATAAAGCC
TTGAAGTCTCTGATCTTTGGCAGCCAAAAGCCGGAGGATAATTTTGATGCCAATATCAGTGAAG
ATGGACTTATCCAACTTTTAGCAGGAAAAAAGGTCAAGGTCAATAAACTTTTTCCTCAAGAAAG
TAATGATGCTTCCTTTACACTCAATGATAAGGAAGATGCAATTGAGGAAATCTTAGGAACGCTT
ACACCGGATGAGTGTGAATGGATTGCGCATATTAGGAGGCTGTTTGATTGGGCCATCATGAAAC
ATGCTCTCAAAGATGGCAGAACAATCTCCGAATCGAAAGTAAAGCTCTATGAACAGCATCACCA
TGACTTGACACAGCTCAAGTATTTTGTGAAGACCTATCTAGCAAAGGAATATGATGACATTTTTC
GAAACGTAGATAGTGAAACAACCAAAAACTATGTCGCATATTCCTATCATGTAAAAGAAGTCAA
GGGTACATTGCCCAAAAATAAGGCAACCCAAGAAGAATTTTGCAAGTATGTCCTTGGAAAGGTA
AAGAACATCGAATGCAGTGAAGCTGATAAGGTTGATTTTGATGAAATGATTCAGCGTCTTACAG
ACAATTCCTTTATGCCGAAACAAGTATCAGGTGAAAACAGGGTTATCCCTTACCAGCTTTACTAT
TATGAACTAAAGACTATTTTGAATAAAGCCGCTTCTTATCTGCCTTTTTTGACCCAATGCGGAAA
AGATGCCATCTCCAATCAAGATAAGCTCCTTTCCATCATGACCTTTCGGATTCCGTATTTCGTTG
GGCCCTTGCGCAAGGACAATTCAGAGCATGCCTGGCTGGAACGAAAAGCAGGGAAAATCTATC
CGTGGAATTTTAACGACAAAGTTGACCTTGATAAAAGTGAAGAAGCGTTCATTCGGAGAATGAC
GAATACCTGCACTTATTATCCCGGTGAAGATGTTTTGCCACTTGACTCCCTTATTTATGAAAAAT
TCATGATCCTCAATGAAATCAATAATATCCGAATTGATGGTTATCCTATTTCTGTAGATGTAAAA
TGCTTTCCTTGGGTGCCTTGGATAAGCATGGTAAATTGACGGGAATCGATACTACCATCCATAGC
AATTACAATACATACCATCATTTTAAATCGCTCATGGAGCGTGGCGTTCTTACTCGTGATGATGT
GGAACGCATTGTGGAGCGTATGACCTATAGTGATGATACAAAACGCGTCCGTCTTTGGCTGAAC
AATAATTATGGAACGCTCACTGCTGACGACGTAAAGCATATTTCAAGGCTCCGAAAGCATGATT
TTGGCCGGCTTTCCAAAATGTTCCTCACAGGCCTAAAGGGAGTTCATAAGGAAACGGGGGAACG
AGCTTCCATTTTGGATTTTATGTGGAATACCAATGATAACTTGATGCAGCTTTTATCTGAATGTT
ATACTTTTTCGGATGAAATTACCAAGCTGCAGGAAGCATACTATGCCAAGGCGCAGCTTTCCCT
GAATGATTTTCTGGACTCCATGTATATTTCAAATGCTGTCAAACGTCCTATCTATCGAACTCTTG
CCGTTGTAAATGACATACGCAAAGCCTGTGGGACGGCGCCAAAACGCATTTTTATCGAAATGGC
AAGAGATGGGGAAAGCAAAAAGAAAAGGAGCGTAACAAGAAGAGAACAAATCAAGAATCTTT
ATAGGTCCATCCGCAAGGATTTTCAGCAGGAGGTAGATTTCCTTGAAAAAATCCTTGAAAACAA AAGCGATGGACAGCTGCAAAGCGATGCGCTCTATCTATACTTTGCGCAGCTTGGAAGGGATATG
TATACCGGGGACCCTATCAAGTTGGAGCATATCAAGGACCAGTCCTTCTATAATATTGATCATAT
CTATCCCCAAAGCATGGTCAAGGACGATAGTCTTGATAACAAGGTGTTGGTTCAATCGGAAATT
AATGGAGAGAAGAGCAGTCGATATCCTCTTGATGCTGCTATCCGTAATAAAATGAAGCCTCTTT
GGGATGCTTATTATAACCATGGCCTGATTTCCCTCAAGAAGTATCAGCGTTTGACGCGGAGCAC
TCCCTTTACAGATGATGAAAAGTGGGATTTCATCAATCGGCAGCTTGTTGAGACAAGACAATCC
ACGAAGGCCTTGGCAATCTTACTAAAAAGGAAGTTCCCTGATACGGAGATTGTCTACTCCAAGG
CAGGGCTTTCTTCTGATTTTCGGCATGAGTTTGGTCTCGTAAAATCGAGGAATATCAATGACCTG
CACCATGCAAAGGACGCATTTCTTGCGATTGTAACAGGAAATGTCTATCATGAACGCTTTAATC
GCCGGTGGTTTATGGTGAACCAGCCCTATTCCGTCAAGACCAAGACGTTGTTTACGCATTCTATT
AAAAATGGTAATTTTGTAGCTTGGAATGGAGAAGAGGATCTTGGCCGCATTGTTAAAATGTTAA
AGCAAAATAAGAACACTATTCATTTCACGCGGTTCTCTTTTGATCGAAAGGAAGGCCTGTTTGAT
ATTCAGCCACTAAAAGCGTCAACCGGTCTTGTACCAAGAAAAGCCGGACTAGACGTGGTAAAAT
ATGGTGGCTATGACAAATCGACAGCAGCTTATTATCTCCTTGTTCGATTTACACTAGAAGATAAA
AAGACTCAACATAAATTGATGATGATTCCTGTAGAAGGCTTGTATAAAGCTCGAATTGACCATG
ATAAGGAATTCTTAACGGACTATGCACAAACTACAATCAGTGAAATCCTACAAAAAGATAAAC
AAAAGGTGATAAATATAATGTTTCCAATGGGAACAAGGCACATTAAACTGAATTCCATGATTTC
AATCGATGGTTTTTATCTTTCCATTGGAGGAAAGTCTAGTAAGGGAAAATCGGTGTTGTGTCATG
CTATGGTACCTCTTATTGTACCTCATAAGATAGAATGTTATATTAAGGCGATGGAGTCTTTTGCA
CGTAAATTTAAAGAAAATAATAAATTAAGGATTGTGGAAAAGTTTGATAAGATTACGGTGGAA
GATAACTTGAACCTATACGAACTATTTTTACAAAAACTTCAACATAACCCATATAATAAGTTCTT
CTCCACACAATTTGATGTGCTGACTAATGGAAGAAGTACATTTACTAAATTATCTCCAGAGGAA
CAAGTTCAAACGTTATTGAATATCTTATCAATTTTTAAAACTTGTCGGAGCTCTGGCTGCGATTT
AAAATCCATTAACGGTTCTGCTCAAGCTGCCAGAATTATGATCAGCGCAGATTTAACTGGACTC
TCAAAAAAATATTCCGATATTCGGCTTGTTGAGCAATCAGCATCTGGACTTTTTGTTAGTAAATC
ACAAAATCTTTTGGAGTATTTAtga
SE atgtcttcattaacaaaatttacaaataaatacagtaagcagctaaccataaaaaatgaactcatcccagtaggaaagactctcgagaacattaaggaaaacggtc
Q tcatagatggagatgaacagctaaacgagaattatcaaaaagcaaagataatcgttgatgattttctacgagatttcataaataaagctttaaataatacccaaatag no gaaattggagagaattagcagatgctttaaataaagaagatgaagataacatagaaaagctccaagacaaaatcagaggaataattgtaagtaaattcgagaca
N tttgatttgttttcttcttactcgataaagaaagacgaaaagataatagatgatgataatg^
O: aatatatttttaagaaaaacctttttaaattagtacttccttcttatttaaagacaacaaatcaggataaactgaaaataatctcttcttttga
22 aggattctttgagaacagaaaaaatattttcactaagaagcctatatctacgtcaattgcctacagaattgtccatgataactttccaaagtttctagataacat^ gttttaatgtgtggcaaacagaatgcccacagttaattgtaaaggctgataattatt^
gtaggagcatatgattacttcttatcccagaatggcattgatttctacaacaacattatcggcggtctaccagcatttgctggtcatgagaaaatccaaggacttaat gaatttataaatcaagaatgccaaaaggacagcgaactaaaatctaaactgaaaaacagacatgctttcaaaatggctgttctatttaagcaaattctttcagatag agaaaaaagttttgttatagacgagttcgaatctgatgctcaggtcatagatgcggttaagaacttctatgcagaacaatgtaaggataataatgttatttttaac taaatcttatcaagaatatagcgttcttatctgatgatgaattagatggaattttMagaaggcaagtatttaagctctgtttcccaaaagctatatt^ agcttcgaaatgatattgaagatagtgcaaacagtaaacaaggaaataaagagttagcaaagaaaattaaaacaaataaaggcgatgttgaaaaggccataagt aaatatgagttttcttMcagaacttaactcaattgtacatgataatacaaaattcagtgaccttctttcttgtacgttacataaagtggctagcgaaaaacte gttaatgaaggggactggccaaaacacctgaaaaataatgaagaaaaacaaaagataaaagagcctttagatgcattgttagaaatttataatacattgctgatat tcaactgcaagtcatttaataagaacggtaatttcMgttgattatgacagatgcataaa¾^
aaagaaaccttataacacagacaaattcaaattaaactttaacagtcctcaattaggagagggctttagtaagtcgaaagaaaatgactgtctgacattattatte aaaagacgacaattactatgttggaattatcagaaaaggggcaaaaattaactttgatgatacacaagccattgcagacaatacagataactgtatatttaagatga attatttcctattaaaagatgctaaaaagtttattcctaaatgttcaatt^
aaagaaaaatttgcctctccccttgttattaagaaatcaacatttttattagcaacagcacatgtaaaaggaaagaaaggaaacataaaaaaattccaaaaggaat attctaaggaaaatccaacagaatatagaaattctctgaatgaatggattgcattttgtaaagaatttctaaaaacatataaggcggcaacaatctttgacattacaa cgttaaaaaaagctgaagaatatgctgatattgttgagttttataaggatgtag
attgataatggggacttatatttattcagaatcaataataaagatttcagttcaaaatctactggtacaaagaatcttcatacgctcMcttcaggcaatctttga agaaacctcaataatcctactattatgttaaatggcggagcagagttattttatcgaaaagaaagcattgaacagaaaaataggataactcataaggcaggatcaa ttcttgtaaacaaggtttgtaaggatggaacaagtctagatgacaaaatcagaaacgaaataMcaaMga^
aaaaagttttacctaatgtaataaaaaaagaagcaactcacgacataacaaaagataagcgatttacat^^
taaggaaggagatacaaaacaatttaacaatgaggttttatctttccttagaggtaatccagacattaatatcatcggaattgacagaggagaaagaaaccttatat acgtaactgttattaatcagaaaggcgaaatacttgacagcgtttcgtttaacacagtaacaaacaagtcgagcaaaattgaacaaactgttgattatgaggaaaa gcttgctgttagggaaaaagaaagaatagaagcaaaaagatcctgggattcaatatcaaagatagcaaccttaaaagaaggttatctatcagctattgttcatgag atatgcctactgatgatcaaacacaacgcaatcgttgtacttgagaatctaaatgcaggatttaagagaattagaggaggattatcagaaaagtctgtttatcagaa attcgagaagatgctMtaacaaactaaattactttgtatctaaaaaagaatcagactggaataaacctagtggacttttaaatggtttacaactttcagaccagttc gagtcatttgagaaattaggaattcaatctgggttcatcttcMgttcctgcagcata^
aaggtaagaaatgttgatgcaataaagagttttttcagtaatttcaatgaaatttca
gaagggcttcagctcatttgtaaaattcagtaaatctaaatggaatgtatatacatttggagagagaataataaaaccaaagaataagcaagggtatcgtgaagat aagagaattaatttaacatttgaaatgaaaaaacttctgaatgaatataaagtaagttttgatcttgaaaacaacttaattccaaatctaacctctgc taccttctggaaagaactattctttatttttaaaacaactctgcagctta^
aggagagttctttgtatcaggaactcataacaagacattacctcaagactgtgatgcaaatggagcatatcatatcgccctaaaaggtctgatgattcttgaacgta acaatcttgttagagaagaaaaagacacaaagaagataatggcaatttctaatgttgactggtttgagtatgttcaaaaaaggagaggtgtcctgtaa
SE ATGAACAACTATGATGAGTTTACCAAACTGTACCCAATACAGAAAACGATAAGGTTCGAATTGA
Q AGCCGCAGGGAAGAACGATGGAACACCTCGAAACATTCAACTTTTTCGAAGAGGACAGGGATA
no GAGCGGAGAAATATAAGATTTTAAAGGAAGCAATCGACGAGTATCATAAGAAGTTTATAGACG
N AACATCTAACAAATATGTCTCTTGACTGGAATTCTTTAAAACAGATTTCAGAGAAATACTATAA
O: GAGTAGAGAGGAAAAAGACAAGAAAGTTTTTCTGTCAGAACAGAAACGCATGAGGCAAGAGAT
23 AGTTTCTGAGTTCAAAAAAGACGATCGGTTTAAAGATCTTTTTTCAAAAAAATTGTTTTCTGAAC
TTCTCAAGGAAGAGATTTACAAAAAAGGAAACCATCAGGAAATTGACGCATTGAAAAGTTTTG
ATAAATTCTCAGGCTATTTTATTGGGTTGCATGAGAACCGAAAAAATATGTATTCTGACGGAGA
CGAGATCACGGCTATCTCTAACCGTATTGTAAATGAGAATTTCCCGAAGTTCCTCGACAACCTTC
AGAAATATCAGGAAGCTCGTAAAAAATATCCAGAGTGGATCATTAAGGCAGAATCTGCTTTAGT
TGCACATAATATCAAGATGGATGAAGTCTTTTCCTTAGAGTATTTCAACAAAGTCCTGAATCAA
GAAGGAATACAGAGATACAATCTCGCCCTAGGTGGCTATGTGACCAAAAGTGGTGAGAAAATG
ATGGGGCTTAATGATGCACTTAATCTTGCCCATCAAAGTGAAAAAAGCAGCAAGGGAAGGATA
CACATGACTCCACTCTTCAAACAGATTCTGAGTGAAAAAGAGTCCTTTTCTTATATACCAGATGT
TTTTACAGAAGACTCTCAACTTTTACCATCCATTGGTGGGTTCTTTGCACAAATAGAAAATGATA
AGGACGGGAATATTTTTGACAGAGCATTAGAATTGATATCTTCTTATGCAGAATACGATACAGA
AAGGATATATATCAGGCAAGCGGACATAAACAGAGTTTCTAATGTTATTTTCGGGGAGTGGGGA
ACACTGGGGGGGTTAATGAGGGAATACAAAGCAGACTCTATCAACGACATCAATTTGGAGAGA
ACATGCAAGAAGGTAGACAAGTGGCTCGACTCAAAGGAGTTTGCGTTATCAGATGTATTAGAGG
CAATAAAAAGAACCGGCAATAATGATGCTTTTAATGAATATATCTCAAAGATGCGCACTGCCAG
GGAAAAGATTGACGCTGCAAGAAAGGAAATGAAATTCATTTCGGAAAAAATATCTGGAGACGA AGAATCGATCCATATTATCAAAACCTTATTGGACTCGGTGCAACAGTTTTTACATTTTTTCAATT
TATTCAAAGCGCGTCAGGACATTCCTCTTGATGGAGCATTCTATGCGGAGTTCGATGAAGTCCAT
AGCAAACTGTTTGCTATTGTTCCGTTGTATAATAAGGTTAGGAACTATCTTACGAAAAATAACCT
TAACACGAAAAAGATAAAGCTAAACTTCAAGAATCCAACTCTGGCAAACGGATGGGATCAAAA
CAAGGTATATGACTACGCCTCCTTAATCTTTCTCCGCGATGGTAATTATTATCTCGGAATAATAA
ATCCAAAAAGGAAAAAGAATATTAAATTCGAACAAGGGTCTGGAAATGGCCCATTCTACCGGA
AGATGGTGTACAAACAAATTCCAGGGCCGAACAAGAACTTACCAAGAGTCTTCCTCACATCTAC
GAAAGGCAAAAAAGAGTACAAGCCGTCAAAGGAGATAATAGAAGGATATGAAGCGGACAAAC
ACATAAGAGGAGATAAATTCGATCTGGATTTCTGTCATAAGCTGATAGACTTCTTCAAGGAATC
CATCGAGAAGCACAAGGACTGGAGTAAGTTCAACTTCTATTTCTCTCCAACTGAATCATATGGA
GACATCAGCGAATTCTATCTGGATGTAGAAAAACAGGGATACCGGATGCATTTTGAGAATATTT
CTGCCGAGACGATTGATGAGTATGTCGAAAAGGGGGACTTATTCCTCTTCCAGATATACAACAA
AGACTTTGTGAAAGCGGCAACCGGAAAAAAAGATATGCACACCATTTATTGGAACGCGGCATTC
TCGCCCGAGAACCTTCAGGATGTGGTAGTGAAACTGAACGGTGAAGCAGAACTTTTCTACAGAG
ACAAGAGCGACATCAAGGAGATAGTTCACAGGGAGGGAGAGATACTGGTCAATCGTACCTACA
ACGGCAGGACACCTGTGCCTGACAAGATCCACAAAAAATTAACAGATTATCATAATGGCCGTAC
CAAAGATCTCGGAGAAGCAAAAGAATACCTCGATAAGGTCAGATATTTCAAAGCGCACTACGA
CATCACAAAGGATCGCAGATACCTGAATGATAAAATATACTTCCATGTGCCTCTGACATTGAAT
TTCAAAGCAAACGGGAAGAAGAATCTCAATAAGATGGTAATTGAAAAGTTCCTCTCGGACGAA
AAAGCGCATATTATTGGGATTGATCGCGGGGAAAGGAATCTTCTTTACTATTCTATCATTGACAG
GTCAGGTAAAATAATCGATCAACAGAGCCTCAACGTCATCGATGGATTCGATTACCGAGAGAAA
CTGAATCAGAGGGAGATCGAGATGAAGGATGCCAGACAAAGCTGGAATGCTATCGGGAAGATA
AAGGACCTCAAGGAAGGGTATCTTTCAAAAGCGGTCCACGAAATTACCAAGATGGCGATACAA
TACAATGCCATTGTTGTCATGGAGGAACTCAATTATGGGTTCAAACGCGGACGTTTCAAAGTTG
AGAAGCAGATATATCAGAAATTCGAGAATATGCTGATTGACAAGATGAATTATCTGGTATTCAA
GGATGCTCCGGATGAAAGTCCGGGAGGAGTCCTCAATGCATATCAGCTTACTAATCCGCTTGAA
AGTTTCGCTAAACTTGGGAAACAGACAGGAATTCTTTTCTATGTTCCGGCAGCCTATACTTCGAA
GATAGATCCGACGACCGGGTTTGTCAATCTTTTCAATACTTCAAGTAAAACGAACGCACAGGAA
AGAAAAGAATTCTTGCAAAAATTCGAGTCGATCTCCTATTCCGCTAAAGACGGAGGAATATTCG
CATTCGCGTTCGATTATCGGAAGTTCGGAACGTCAAAAACAGACCACAAAAATGTATGGACCGC
ATACACGAACGGGGAAAGGATGAGGTACATAAAAGAGAAAAAACGCAACGAACTGTTCGACCC
CTCGAAGGAGATCAAAGAGGCTCTCACTTCATCAGGAATCAAATATGACGGCGGACAGAACAT
ATTGCCAGATATCCTGAGGAGCAACAATAACGGTCTGATCTACACAATGTATTCCTCTTTCATAG
CGGCCATTCAAATGAGGGTCTATGACGGGAAAGAAGACTATATCATCTCGCCGATAAAGAACA
GCAAGGGAGAGTTCTTCAGGACCGATCCGAAAAGAAGGGAACTTCCGATAGACGCGGATGCGA
ACGGCGCGTATAACATTGCTCTCAGGGGCGAATTGACGATGCGTGCGATAGCGGAGAAGTTCGA
TCCGGACTCGGAAAAGATGGCGAAGCTAGAACTGAAACATAAGGACTGGTTCGAATTCATGCA
GACAAGGGGGGATTGA
SE ATGACAAAAACATTTGATTCAGAATTTTTTAATTTATATTCTCTTCAAAAAACAGTTCGTTTTGA
Q ACTCAAGCCGGTTGGTGAAACAGCCTCGTTTGTTGAAGATTTTAAAAACGAAGGTTTGAAACGA
no GTTGTTTCAGAGGATGAACGGCGTGCGGTTGATTACCAAAAAGTGAAAGAAATTATTGATGACT
N ACCACCGAGATTTTATTGAAGAATCGCTGAACTATTTTCCTGAGCAGGTCTCAAAAGACGCTTTG GAACAAGCTTTTCACCTTTATCAAAAACTAAAAGCCGCTAAGGTTGAAGAGCGTGAAAAAGCAT
TGAAAGAATGGGAAGCCCTTCAGAAAAAACTGCGCGAAAAAGTTGTTAAATGTTTTTCAGATTC
AAACAAAGCACGCTTTTCCCGCATTGATAAAAAAGAACTGATTAAAGAAGATTTAATTAACTGG
TTGGTTGCACAAAATCGCGAAGATGACATTCCAACCGTTGAAACCTTTAACAACTTTACGACTT
ATTTTACGGGGTTTCATGAAAACCGAAAAAACATTTATTCAAAAGACGATCATGCCACAGCCAT
TTCATTTCGACTCATTCATGAAAACCTGCCTAAGTTTTTTGATAATGTGATCAGCTTTAATAAATT
GAAGGAAGGATTTCCAGAGCTGAAATTTGATAAGGTTAAGGAAGATTTAGAAGTTGATTATGAC
TTGAAACATGCCTTTGAAATCGAATACTTTGTCAATTTTGTTACCCAAGCCGGAATTGACCAATA
TAACTATCTTTTGGGGGGTAAAACCTTAGAAGACGGCACCAAAAAGCAAGGCATGAATGAACA
AATCAATCTGTTCAAGCAACAGCAAACCCGAGACAAAGCCCGACAAATTCCCAAACTCATACCA
TTGTTTAAACAAATTCTAAGCGAACGAACGGAAAGCCAATCGTTTATTCCAAAACAATTTGAAT
CAGACCAAGAGCTATTTGACTCACTGCAAAAACTGCATAACAACTGCCAAGATAAATTTACCGT
ACTGCAACAAGCCATTTTAGGCTTAGCCGAAGCAGATCTGAAAAAAGTATTCATTAAAACATCT
GATCTTAATGCGCTATCAAATACCATTTTTGGAAATTACAGTGTGTTTTCGGATGCGTTGAATTT
ATACAAAGAATCGCTCAAAACAAAAAAGGCGCAAGAAGCGTTTGAAAAACTACCCGCTCACAG
CATTCATGACTTGATTCAATATTTGGAGCAATTTAATAGCTCTTTGGATGCAGAAAAACAGCAAT
CAACTGACACCGTACTGAATTACTTTATTAAAACAGACGAGCTGTATTCTCGGTTCATAAAATCA
ACGAGCGAAGCCTTCACACAAGTACAACCACTCTTTGAATTGGAAGCATTAAGCTCAAAACGTC
GTCCACCGGAAAGTGAAGACGAAGGCGCAAAAGGTCAGGAAGGGTTTGAGCAAATTAAACGCA
TAAAAGCCTATTTGGATACCTTGATGGAGGCGGTGCATTTTGCAAAACCACTTTATCTGGTGAA
GGGGCGCAAAATGATTGAAGGTCTGGACAAAGACCAAAGTTTCTATGAAGCCTTTGAAATGGCT
TACCAAGAACTAGAAAGTCTGATTATTCCAATCTACAACAAAGCTCGTAGTTATTTAAGTCGTA
AACCGTTTAAAGCGGACAAATTCAAAATTAATTTTGATAATAATACATTGCTTTCCGGTTGGGAT
GCTAATAAAGAAACGGCTAACGCTTCAATTTTGTTTAAGAAGGATGGTTTGTATTATTTAGGAAT
CATGCCTAAAGGAAAAACGTTTTTGTTCGATTACTTCGTTTCATCGGAAGATTCTGAAAAGTTAA
AACAAAGAAGACAAAAAACCGCCGAAGAAGCGCTTGCGCAAGATGGCGAAAGCTACTTTGAAA
AAATTCGTTACAAGCTGTTACCTGGCGCCAGCAAAATGTTGCCGAAAGTATTTTTTTCCAACAAA
AACATAGGGTTTTACAACCCAAGTGATGACATACTTCGTATCAGGAATACAGCCTCTCACACTA
AAAACGGAACACCGCAAAAAGGGCACTCTAAAGTAGAGTTTAATTTGAATGATTGTCATAAGAT
GATTGATTTCTTTAAATCAAGCATTCAAAAGCATCCAGAGTGGGGAAGTTTTGGATTCACCTTTT
CAGATACATCAGATTTTGAAGATATGAGCGCCTTTTATCGAGAAGTCGAAAACCAAGGTTATGT
CATTAGTTTCGATAAAATAAAAGAAACTTACATTCAGAGTCAAGTTGAACAGGGGAACCTATAT
TTATTCCAAATCTACAATAAAGACTTCTCGCCCTACAGCAAAGGCAAACCAAATTTACACACGC
TTTACTGGAAAGCGTTGTTTGAGGAAGCCAACCTAAATAATGTGGTGGCAAAACTCAATGGTGA
AGCTGAAATTTTCTTTAGGCGACACTCAATCAAAGCATCTGATAAAGTGGTGCACCCAGCGAAT
CAAGCCATTGACAATAAAAACCCGCATACCGAAAAAACGCAAAGCACCTTTGAATATGATCTTG
TAAAAGACAAGCGCTATACCCAAGACAAATTCTTCTTCCATGTACCGATTTCATTGAACTTTAAG
GCACAAGGTGTTTCAAAATTTAACGATAAAGTGAATGGATTTTTAAAGGGTAACCCAGATGTCA
ATATTATTGGCATTGACCGAGGCGAACGACACCTTCTGTATTTCACTGTGGTGAATCAGAAAGG
TGAAATTTTGGTTCAAGAGTCGCTTAATACCCTAATGAGTGATAAAGGGCATGTGAATGACTAC
CAGCAAAAACTCGACAAAAAAGAACAAGAACGCGATGCCGCTCGCAAAAGCTGGACGACGGTT
GAAAATATCAAAGAATTAAAAGAAGGCTATTTATCTCATGTTGTTCATAAGTTGGCACACCTGA TTATTAAATACAATGCCATTGTTTGCTTGGAAGACCTGAATTTTGGTTTCAAACGCGGGCGTTTT
AAAGTGGAAAAACAAGTTTATCAGAAATTTGAAAAAGCGCTTATTGATAAGCTTAACTACTTGG
TATTTAAAGAAAAAGAGTTAGGCGAGGTGGGCCATTATCTAACCGCCTATCAGTTGACCGCACC
GTTTGAAAGTTTCAAGAAGTTAGGCAAGCAAAGTGGCATATTGTTTTATGTTCCGGCGGATTAC
ACCTCCAAAATTGACCCAACCACCGGGTTTGTCAACTTTCTTGATCTGCGTTATCAGAGTGTCGA
AAAAGCCAAACAGCTCTTAAGCGACTTTAATGCCATTCGTTTTAATTCAGTACAAAACTATTTTG
AGTTCGAAATAGATTACAAAAAACTCACACCCAAACGTAAAGTTGGTACTCAGAGTAAATGGGT
GATTTGTACCTATGGAGATGTCCGCTATCAAAATCGGCGTAATCAAAAAGGTCACTGGGAAACG
GAAGAAGTCAATGTGACTGAAAAACTAAAAGCCCTTTTCGCCAGTGATTCCAAAACTACAACCG
TAATCGATTACGCCAATGACGACAACCTAATTGACGTCATTCTGGAACAGGACAAAGCCAGCTT
CTTCAAAGAACTGTTATGGTTATTAAAACTCACCATGACGCTCCGCCACAGCAAAATCAAAAGT
GAAGACGACTTTATTCTTTCACCCGTTAAAAACGAACAAGGCGAGTTTTACGATAGTCGAAAAG
CGGGCGAGGTGTGGCCTAAAGATGCAGACGCCAATGGCGCTTATCACATAGCGTTGAAAGGCTT
GTGGAATCTGCAACAGATCAATCAGTGGGAAAAGGGTAAAACACTTAATCTGGCGATTAAAAA
CCAGGATTGGTTCAGTTTTATTCAAGAAAAGCCCTATCAAGAATAA
SE ATGCACACAGGCGGATTACTTAGCATGGATGCCAAGGAGTTTACCGGACAGTACCCCCTTTCGA
Q AGACTCTGCGTTTTGAACTGAGACCGATAGGCAGAACGTGGGACAATCTCGAAGCATCGGGGTA
no TCTTGCGGAGGACAGACACCGTGCAGAATGCTATCCCAGGGCAAAAGAGCTCTTGGACGACAA
N CCATCGTGCATTCCTCAACCGTGTCCTGCCTCAGATCGATATGGATTGGCACCCGATCGCAGAG
O: GCATTCTGCAAAGTCCACAAGAATCCGGGAAACAAGGAATTGGCTCAGGATTACAATCTTCAGC 25 TGTCCAAACGCAGAAAGGAGATTTCGGCCTATCTGCAGGATGCGGACGGCTATAAAGGTCTGTT
TGCCAAACCTGCATTGGATGAAGCAATGAAGATCGCGAAAGAAAACGGAAATGAATCGGACAT
AGAGGTTCTTGAGGCATTCAACGGTTTCTCCGTATACTTCACCGGATATCATGAGAGCAGGGAG
AACATCTATTCGGACGAGGATATGGTGTCGGTAGCTTATCGCATCACCGAAGACAATTTCCCGA
GATTCGTTTCCAATGCGCTTATATTCGATAAGCTGAATGAGTCGCACCCCGATATAATCTCGGAA
GTATCCGGAAATCTGGGCGTAGACGACATCGGAAAATATTTTGATGTGTCTAACTACAATAATT
TCCTGTCGCAGGCCGGTATAGATGACTACAATCACATCATCGGCGGCCATACGACGGAGGACGG
TCTGATCCAGGCATTCAATGTTGTTCTGAATCTCAGGCATCAGAAAGACCCCGGATTCGAAAAA
ATCCAATTCAAACAGCTGTACAAACAGATACTCAGCGTCCGTACATCCAAATCCTATATCCCGA
AACAGTTCGATAATTCGAAGGAGATGGTGGACTGCATCTGCGACTATGTGTCCAAGATCGAAAA
ATCCGAAACGGTCGAGAGAGCATTGAAGCTGGTAAGGAACATATCTTCTTTTGATTTGCGCGGA
ATATTCGTAAACAAGAAGAATCTCCGCATTCTTTCCAACAAACTGATTGGTGATTGGGACGCGA
TCGAAACCGCGCTGATGCACTCCTCCTCTTCGGAAAATGATAAGAAATCCGTCTACGACAGCGC
CGAGGCATTTACGCTGGATGATATCTTTTCGTCCGTTAAAAAATTCTCAGATGCATCTGCAGAGG
ATATCGGAAACCGGGCGGAGGACATATGCAGAGTCATATCTGAGACCGCTCCGTTCATAAACGA
TCTGAGGGCTGTCGATTTGGACAGTTTGAATGACGACGGTTACGAGGCGGCGGTTTCCAAGATA
AGGGAATCTCTGGAACCATATATGGATCTGTTTCATGAACTGGAGATATTCTCCGTAGGCGATG
AATTCCCGAAATGTGCAGCTTTCTACAGTGAACTTGAAGAAGTCTCCGAACAGCTAATCGAGAT
TATACCGTTATTCAACAAGGCCCGTTCGTTCTGTACGCGCAAGAGATACAGTACGGACAAGATA
AAGGTCAATTTGAAATTCCCGACACTCGCCGACGGATGGGATCTCAACAAAGAACGCGACAAC
AAAGCCGCAATACTCAGGAAAGACGGAAAGTACTACCTGGCCATACTGGATATGAAGAAAGAT
CTTTCTTCGATCAGAACTTCGGATGAAGACGAATCCAGTTTTGAGAAAATGGAGTACAAGCTTC TTCCGAGTCCGGTAAAGATGCTGCCAAAGATCTTCGTAAAATCGAAGGCGGCCAAGGAGAAGT
ACGGTCTGACCGACCGTATGCTGGAGTGCTACGATAAAGGGATGCACAAGAGCGGCAGTGCAT
TCGATCTCGGATTTTGTCACGAATTGATCGATTACTACAAGAGGTGCATCGCAGAATATCCCGG
CTGGGACGTCTTCGATTTCAAGTTCAGGGAAACATCGGATTATGGCAGCATGAAGGAGTTCAAT
GAGGATGTTGCAGGGGCCGGATACTATATGTCCCTCAGAAAGATCCCTTGTTCGGAGGTCTACA
GGCTTCTTGATGAGAAATCGATATATCTTTTCCAGATCTACAACAAAGATTATTCGGAAAACGCT
CATGGGAATAAGAACATGCATACCATGTATTGGGAAGGGCTCTTTTCCCCCCAGAATCTGGAAT
CCCCTGTGTTTAAACTCAGCGGCGGTGCGGAGCTTTTCTTCCGTAAATCCTCCATACCCAATGAC
GCCAAAACGGTCCATCCGAAGGGAAGCGTCCTGGTTCCGCGCAATGATGTAAACGGCCGCAGG
ATACCTGACAGCATATATCGGGAGCTCACCAGATATTTCAACCGCGGAGATTGCCGCATAAGCG
ACGAGGCAAAGAGTTATCTGGACAAGGTGAAAACCAAGAAAGCTGACCACGATATCGTGAAAG
ACAGGAGGTTCACGGTGGACAAGATGATGTTCCACGTCCCTATCGCCATGAATTTCAAAGCGAT
TTCGAAGCCGAATCTCAATAAAAAGGTGATTGACGGCATAATCGACGACCAAGATCTGAAGATC
ATCGGCATAGACCGCGGAGAGCGCAACCTCATCTACGTAACCATGGTGGATCGCAAAGGGAAC
ATCCTCTATCAGGATAGCCTCAATATTCTGAACGGATACGATTACCGTAAGGCCCTCGACGTCC
GCGAATATGACAATAAAGAGGCTCGGAGGAACTGGACGAAGGTCGAAGGCATCCGTAAGATGA
AAGAGGGGTATCTGTCGCTTGCAGTCAGCAAATTGGCAGATATGATCATAGAGAACAATGCGAT
TATCGTCATGGAGGATCTCAATCACGGATTCAAGGCAGGGCGTTCGAAGATAGAGAAACAGGT
CTATCAGAAGTTCGAATCCATGCTCATAAACAAACTCGGTTACATGGTCCTCAAGGATAAGTCT
ATCGATCAGAGCGGCGGAGCTCTCCACGGATACCAGCTTGCCAACCATGTGACAACATTGGCAT
CTGTAGGTAAACAATGTGGAGTGATATTCTACATCCCTGCTGCATTTACATCCAAGATAGATCCG
ACAACAGGATTTGCAGATCTGTTCGCCCTCAGCAATGTTAAAAACGTGGCATCTATGAGAGAAT
TTTTCTCCAAGATGAAGTCTGTAATCTATGATAAGGCGGAGGGAAAATTCGCATTTACCTTCGAC
TATCTTGATTATAATGTGAAATCCGAGTGCGGAAGGACCCTTTGGACCGTGTATACGGTCGGAG
AGAGATTCACATACAGCAGGGTCAATAGAGAATATGTCAGAAAAGTTCCGACAGACATAATCT
ACGACGCATTGCAAAAGGCAGGAATATCTGTTGAAGGGGATCTCAGGGACAGGATTGCTGAAT
CGGATGGCGACACTCTGAAGAGCATATTCTATGCATTCAAGTATGCATTGGATATGAGAGTAGA
GAACCGCGAAGAGGATTACATACAGTCTCCTGTCAAAAATGCCTCCGGAGAATTCTTCTGTTCC
AAGAACGCAGGCAAATCGCTCCCTCAGGATTCCGATGCGAACGGTGCATACAATATCGCACTCA
AGGGGATCCTGCAGCTACGTATGCTTTCCGAGCAGTATGATCCGAATGCAGAGAGCATACGGTT
GCCACTGATAACCAACAAGGCCTGGCTGACCTTTATGCAGTCCGGTATGAAGACATGGAAGAAC
TGA
SE atgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAATTAAAG
Q CCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAGAGGATGAGCATCGT
no GCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGGTATTTATCGATTCTT
N CTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAAAAGCAATGCTCCAAAGTTTCTG
O: CGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAAGGCATTAGATAAAATTCGAGC 26 AGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGCGGAAGACGGGAAAATACAGTC
CAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATAAAAGAAATTTTACCTGATTTTG
TGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTGAAGAAGCTACGAGGTCACTGAAGGA
GTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAATAGAAAGAATATATACTCGACGA
AACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGAACTTGCCGAAGTTCATTGATAAT ATTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAGCTGGAACATATTCGTGCGGACT
TTTCTGCCGGGGGGTACATAAAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGAACTATTA
TATCCACGTGTTATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGATTGTGACA
GAAGGAGATGGAGAGATGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAAAGAGGC
AGAGAGGATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAGTGACAGAGAGCAAT
TATCATACTTGCCTGAGAGTTTTGAAAAAGATGAGGAGCTCCTCAGGGCTCTAAAAGAGTTCTA
TGATCATATCGCAGAAGACATTCTCGGACGTACTCAACAGTTGATGACTTCTATTTCAGAATATG
ATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTGATATATCAAAAAAAATGTTGGG
AGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGACCACGAGCAGGCTCCCAAAAG
AATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAAGGAGAAGAGAGTATAAGTCT
GGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGAGATTGCCGTGTAGATACTTATC
TTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAATCTCGTTGAGAACGTTTTTGCC
TCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCGAAGAGAATAATCTGATTCAGG
ACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATATCAGTGATCTGCAGAGGTTCTT
GAAACCTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAAAGATTTTATGGAGAGTATAAT
TATATCCGAGGAGCTCTAGATCAGGTGATCCCTCTGTACAATAAGGTAAGGAACTACCTCACTC
GGAAGCCTTATTCGACCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTAGTGGTTG
GGATAGAAATAAGGAAAAGGATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTTCTATTTG
GCTATTATGAACAATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCCCGAGTATAAGGAG
GGAGAACCTTACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCCTAATAAAATGCTTCCTAA
GGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATGATTTGCACGAACTGATCGATT
TCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGGATTCAAATTTTCTGATAC
GGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGATCAGGGGTATAAGCTCTCTT
TCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATCAAGGCAAGTTGTATTTATTTCAG
ATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCTAATCTGCATACCTTGTATTGGA
GAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAAACTGGATGGGAAGGCTGAAAT
CTTTTTCCGAGAGAAGAGTTTGAAAAATGATCATCCCACGCATCCGGCTGGTAAGCCTATCAAA
AAGAAAAGTCGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTATGATTTAGTCAAGGATAGG
CACTATACGATGGATAAGTTCCAGTTTCATGTGCCTATTACTATGAATTTTAAATGTTCTGCAGG
AAGCAAAGTCAATGATATGGTTAATGCTCATATTCGAGAGGCAAAGGATATGCATGTCATTGGA
ATTGATCGTGGAGAACGCAATCTGCTGTATATATGCGTGATAGATAGTCGAGGGACGATTTTGG
ATCAAATTTCTCTGAATACGATTAACGATATAGACTATCATGATTTATTGGAGAGTCGAGACAA
AGACCGTCAGCAGGAGCGCCGAAACTGGCAAACTATCGAAGGGATCAAGGAGCTAAAACAAGG
CTACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGCTTATAAGGCTGTAGTTGCTT
TGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAGAAAGTTCTGTTTATCAGCA
GTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGAAAAGGCCTGAAGA
TATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGTTTTAAGGAAATGGGA
AAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGCAACATAGATCCGACTACTG
GATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCGAAGAGCTTCTTTCAAAAG
TTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTTTGCATTCGATTATAAAAACTT
TACT AAAAAGGCTGAAGGAAGTCGTTCTATGTGGAT ATT ATGCACACATGGTTCCCGAATAAAG AATTTTAGAAATTCCCAGAAGAATGGTCAATGGGATTCCGAAGAATTCGCCTTGACGGAGGCTT
TTAAGTCTCTTTTTGTGCGATATGAGATAGATTATACCGCTGATTTGAAAACAGCTATTGTGGAC GAAAAGCAAAAAGACTTCTTCGTGGATCTTCTGAAGCTATTCAAATTGACAGTACAGATGCGCA ACAGCTGGAAAGAGAAGGATTTGGATTATCTAATCTCTCCTGTAGCAGGGGCTGATGGCCGTTT CTTCGATACAAGAGAGGGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAATGGAGCTTATAA TATTGCCCTAAAAGGACTTTGGGCTCTACGCCAGATTCGGCAAACTTCAGAAGGCGGTAAACTC AAATTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAGAGATCTTACGAGAAAGACt ga
SE atgaataatggaacaaataactttcagaattttatcggaatttcttctttgcagaagactcttaggaatgctctcattccaaccgaaacaacacagcaatttattgttaa
Q aaacggaataattaaagaagatgagctaagaggagaaaatcgtcagatacttaaagatatcatggatgattattacagaggtttcatttcagaaactttatcgtcaa no ttgatgaMtgactggacttctttatttgagaaaatggaaattcagttaaaaaatggagataacaaagacactcttataaaagaacagactgaataccgtaaggca
N attcataaaaaatttgcaaatgatgatagatttaaaaatatgttcagtgcaaaate
O: aaaggaagaaaaaacacaggtaattaaattattttccagatttgcaacgtcattcaaggactattttaaaaacagggctaattgtttttcggctgatgataMctte
27 cttcttgtcatagaatagttaatgataatgcagagatattttttagtaa¾^
gagatatgaaggattcattaaaggaaatgtctctggaagaaatttattcttatgaaaaatat^
gtaaagtaaattcatttatgaatttatattgccagaaaaataaagaaaacaaaaatctctataagctgcaaaagcttcataaacagatactgtgcatagcagatactt ctMgaggtgccgtataaatttgaatcagatgaagaggttMcaatcagtgaatggatttttggacaatattagttcgaaacaMcgttgaaagattgcgtaagatt ggagacaactataacggctacaatcttgataagatttaMtgttagtaaattctatgaatcagtttcacaaaagacatatagagattgggaaacaataaatactgcat tagaaattcattacaacaatatattacccggaaatggtaaatctaaagctgacaaggtaaaaaaagcggtaaagaatgatctgcaaaaaagcattactgaaatca atgagcttgttagcaattataaatMgttcggatgataatattaaagctgagacataMacatgaaaMcacatattttgaataattttgaagcacaggagcttaagt ataatcctgaaattcatctggtggaaagtgaattgaaagcatctgaattaaaaaatgttctcgatgtaataatgaatgcttttcattggtgttcggtttte gagctggtagataaagataataattttMgccgagttagaagagaMatgacgaaatatatccggtaatttcattgtataatcttgtgcgtaattatgtaacgcaga agccatatagtacaaaaaaaattaaattgaattttggtattcctacactagcggatggatggag^
ataatttgtactatttaggaatatttaatgcaaaaaataagcctgacaaaaagataattgaaggtaatacatcagaaaataaaggggattataagaagatgatttate atcttctgccaggaccaaataaaatgatccccaaggtattcctctcttcaaaaaccggagtggaaacatataagccgtctgcctatatattggagggctataaaca aaacaagcatattaaatcctctaaggattttgatataacattttgtcacgatttgattgattattttaagaactgtatagcaatacatcctgaatggaaga^ gatttttctgacacctccacatatgaagatatcagcggattttacagagaagtcgaattacaaggttataaaatcgactggacatatatcagcgaaaaggatattga tttgttgcaggaaaaaggacagttatatttattccaaatatataacaaagatttttccaagaaaagtaccggaaatgataatcttcatactatgtattt^ agtgaagagaatttaaaggatattgtactgaaattaaacggtgaggcggaaatcttctttagaaaate
tcttgttaatagaacatatgaagcagaggaaaaagatcaatttggaaatatccagatagtcagaaaaaacataccggaaaatatatatcaggagctttataaatatt tcaatgataaaagtgataaagaactttcggatgaagcagctaagcttaagaatgtagtaggtcatcatgaggctgctacaaacatagtaaaagattatagatatac atatgataaatattttcttcatatgccMtacaatcaattttaaagccaataagac^^
gtaataggcattgatcgtggtgaaagaaacctgataMgtttcagtaattgatacttgtggaaatattgttgaacaaaaatcgtttaacattgttaa^ cagattaagctcaagcagcaggagggggcgcgacaaatcgcacgaaaagaatggaaagaaatcggcaaaataaaagaaattaaagaaggctatttatctctt gtaattcatgaaatttcaaagatggttattaaatataatgccataattgcaatggaggatt
accagaagtttgagacaatgcttatcaacaaactcaactatctggtatttaaagatatatccataacggaaaacggtggtcttctaaagggataccagcttacatat attccagataaactgaaaaatgtgggtcatcaatgtggctgtatattttatgtacctgctgcctatacatcaaaaatagatcctacaaccggatttgtaaatatattcaa atttaaagatttaacagttgatgcgaagagagaatttataaaaaaatttgacagtatcagaMgattcagaaaaaaatctgttttgttttacattcgattata^ attacgcaaaatactgttatgtcaaagtcaagctggagtgtatatacgtacggagttaggataaaaagaagatttgtcaatggcaggttctcaaatgaatcggatac aattgatataacaaaagatatggaaaaaacactcgaaatgacagatataaattggagagatggtcatgatctgaggcaggatattattgattatgaaatcgtacaa cacatatttgagatttttagattgactgtacaaatgagaaacagtttaagtgaattagaagacagggatMgaccgtttgatttctccggtgctcaatgaaaataaM attttatgattcagctaaagcaggagatgcgttacctaaagacgcagatgctaatggtgcatattgtatagctctaaaaggcttgtatgaaatcaaacaaattacag
Figure imgf000118_0001
N ttgtccggaactgccatatgcattatttgttgatgacgattttacagataaagattate O: aggagacaccggatatccggttggtgtatctggcaattcatcatatgatgaagcataggggccatttcttgttatctggtgacattaatgagattaaggagttcgga
29 acgacattttcaaaattgttggagaatatcaaaaatgaggaattggattggaatcttgaactgggaaaagaagaaMgctgttgtagaaagtattttaaaagataa catgttaaaccgatccacaaagaaaaccagattaataaaagcattaaaagcaaaatcaatatgtgaaaaggctgtactgaatttattggctggtggaacggtgaa attgagtgatatatttggtcttgaagaattaaatgagacagaaagaccgaagatttcctttgctgataatggatacgatgattatatcggagaagttgaaaatgagct gggagaacaattctatattatagagacggcaaaagcagtgtatgactgggcggtattagttgaaatattgggaaaatatacgtcaatttcagaagcgaaagtagc aacgtatgaaaaacataaatcggatttacaatttttgaaaaagatagttcggaaaMctgacaaaggaggaatataaagaMttttgtaagtacgagtgacaaatt gaaaaattactctgcttatataggaatgacgaaaataaatggaaaaaaggttgatttgcagagc^
acgtacttaaaaagctagaaggacaacctgaatatgaatatttgaaagaagagctagaaagagaaacatttctaccaaaacaggtgaacagggataatggtgta ataccgMcagattcatttgtacgagttgaaaaagatattaggaaatttacgggataaaatagacctc
ttcagaattccgtattatgttggtccgctgaataagatagatgacggaaaagagggaaaatttacatgggctgtacggaaaagtaatgaaaagatatatccatgga attttgaaaatgtagttgatatagaagcaagtgcagaaaaatttatccggagaatgacaaataagtgtacatatctgatgggcgaagatgtattgccgaaggattc attgctttacagtaaataMggttttaaatgaattaaataatgtaaagttggat^^
gtatcggaaagtaactgtaaagaagataaaaaattacttgaaatgtgaaggtatcatatccggcaatgtcgaaataactggaattgatggtgattttaaggcatcgt taacggcatatcatgattttaaagaaatcttgacaggaacagaattggctaaaaaggacaaagaaaatattattaccaatatagtattgtttggagatgataaaaag ctgctgaaaaagagactgaatcgattatatcctcagattacgccgaatcagttgaagaaaatatgtgcgctatcctatacaggctggggaagattttctaaaaagtt cttagaagaaataacagctccagatccggaaacgggagaggtatggaatatcattacggcattgtgggaatcgaataataatctgatgcaattattaagtaatga atatcggtttatggaagaagtcgaaacatacaatatgggaaaacagactaaaacattgtcgtacgaaacagtagagaatatgtatgtttctccatctgtgaaaaga cagatatggcagacgctgaaaatcgtgaaagaattagaaaaagtaatgaaagaatctccgaaacgtgtatttattgagatggcgagagaaaagcaagaaagta agagaaccgaatcgcgtaaaaaacaactaatagatttgtataaggcttgtaaaaatgaagaaaaagattgggtaaaagaactgggagatcaggaagaacaga aattacgaagcgataagttgtacctaMtatacgcaaaagggtcgttgtatgtattctggcgaggtaatagaactgaaagacttatgggataatacaaaat^^ attgatcatatatatccacaatctaaaacgatggatgacagtcttaataatcgcgtattggtaaaaaagaaatataatgcaacaaaatcagataagtatccattaaat gaaaatatacgacatgagagaaaaggcttttggaagtcactgttagatggagggtttataagtaaagaaaaatatgaacgcttaataagaaatacagaattgagt ccggaagaattagcaggatttattgaaaggcagattgttgaaacgaggcagagtacaaaagctgtagcggaaatattaaagcaagtgtttccggaaagtgaaat tgtatatgtcaaagcaggtacggtttcaagattcagaaaagattttgaattactgaaagttcgagaagtgaatgatttgcatcacgcaaaggatgcgtatttaaatatt gtagttggtaatagtMMgtgaaatttactaagaatgcatcatggtttataaaagaaaatccgggacgtacttacaacttaaaaaagatgtttacatcaggtt atattgaacgaaatggagaagttgcatgggaagtcgggaaaaaaggaacaattgtaacggtaaaacaaataatgaataaaaataatatattggtgacaagacag gttcatgaagcgaaaggtgggctgtttgatcagcagattatgaaaaaaggaaaaggtcagattgctataaaggaaactgatgaacgtcttgcatcaatagaaaa gtatggaggctataataaagctgccggggcatattttatgctggtagaatctaaagataaaaaaggaaaaacaattcgaacgatagaatttataccattatatttaa agaataaaatcgagtcggatgaatcaatagcattgaactttttagaaaaaggcagaggtttgaaagaaccaaagatactattgaaaaaaattaagattgatacatt atttgatgtggacggattcaaaatgtggttgtctggaagaacaggggacagactactatt^
gaaaaaaattgtaaagtttattcaaaggagacaagaaaatagagaattaaaatMctgataaagatggaatt^
gtggataagttagaaaacacagtgtatagaatacgattatccgaacaggcaaaaacgcttatagataaacaaaaagaatttgaaaggttatcactagaggataaa agtagtactttgtttgaaattttacatatttttcagtgtcaaagtagtgcggccaatttaaaaatgataggcggacctggaaaagcaggaatattagtta atataagtaagtgtaacaaaatttctattataaatcagtctccaacaggaattttcgaaaatgagattgatttgttaaagat
SE ATGAAATCTTTCGATTCATTCACAAATCTTTATTCTCTTTCAAAAACCTTGAAATTTGAGATGAG
Q ACCTGTCGGAAATACCCAAAAAATGCTCGACAATGCAGGAGTATTTGAAAAAGACAAACTAAT
no TCAAAAAAAGTACGGAAAAACAAAGCCGTATTTCGACAGACTCCACAGAGAATTTATAGAAGA
N AGCGCTCACGGGGGTAGAGCTAATAGGACTAGATGAGAACTTTAGGACACTTGTTGACTGGCAA
O: AAAGATAAGAAAAATAATGTCGCAATGAAAGCGTATGAAAATAGTTTGCAGCGGCTGAGAACG
30 GAAATAGGTAAAATATTTAACCTAAAGGCTGAGGATTGGGTAAAGAACAAATATCCAATATTA
GGGCTGAAAAATAAAAATACCGATATTTTATTCGAAGAGGCTGTATTCGGGATATTGAAAGCCC
GATATGGAGAAGAAAAAGATACTTTTATAGAAGTAGAGGAAATAGATAAAACCGGCAAATCAA AGATCAATCAAATATCAATTTTCGATAGTTGGAAAGGATTTACAGGATATTTCAAAAAATTTTTT
GAAACCAGAAAGAATTTTTACAAAAACGACGGAACTTCTACAGCAATTGCTACAAGGATCATTG
ATCAAAATCTGAAAAGATTCATAGATAATCTGTCAATAGTTGAAAGTGTGAGACAAAAGGTTGA
TCTCGCCGAGACAGAAAAATCTTTCAGCATATCTCTATCGCAATTCTTCTCAATAGACTTTTATA
ACAAGTGTCTCCTTCAAGATGGTATTGATTACTACAACAAGATAATCGGTGGAGAAACTCTCAA
AAATGGCGAAAAACTAATAGGTCTCAATGAACTAATAAATCAATATAGGCAGAATAATAAGGA
ATGAAATAAAAAATGACACAGAACTGATCGAGGCGCTGAGTCAGTTCGCAAAAACAGCCGAAG
AAAAAACAAAAATTGTCAAAAAGCTTTTTGCCGATTTTGTAGAAAATAATTCCAAATACGATCT
TGCACAGATTTATATTTCCCAAGAAGCATTCAATACTATATCAAACAAGTGGACAAGCGAAACT
GAGACGTTCGCTAAATATCTATTCGAAGCAATGAAGAGTGGAAAACTTGCAAAGTATGAGAAA
AAAGATAATAGCTATAAATTTCCTGATTTTATTGCCCTTTCACAGATGAAGAGTGCTTTATTAAG
TATCAGCCTTGAGGGACATTTTTGGAAAGAGAAATACTACAAAATTTCAAAATTCCAAGAGAAG
ACCAATTGGGAGCAGTTTCTTGCAATTTTTCTATACGAGTTTAACTCTCTTTTCAGCGACAAAAT
AAATACAAAAGATGGAGAAACAAAGCAAGTTGGATACTATCTATTTGCCAAAGACCTGCATAA
TCTTATCTTAAGTGAGCAGATTGATATTCCAAAAGATTCAAAAGTCACAATAAAAGATTTTGCC
GATTCTGTACTCACAATCTACCAAATGGCAAAATATTTTGCGGTAGAAAAAAAACGAGCGTGGC
TTGCCGAGTATGAACTAGATTCATTTTATACCCAGCCAGACACAGGCTATTTACAGTTTTATGAT
AACGCCTACGAGGATATTGTGCAGGTATACAACAAGCTTCGAAACTATCTGACCAAAAAGCCAT
ATAGCGAGGAGAAATGGAAGTTGAATTTTGAAAATTCTACGCTGGCAAATGGATGGGATAAGA
ACAAAGAATCTGATAATTCAGCAGTTATTCTACAAAAAGGTGGAAAATATTATTTGGGACTGAT
TACTAAAGGACACAACAAAATTTTTGATGACCGTTTTCAAGAAAAATTTATTGTGGGAATTGAA
GGTGGAAAATATGAAAAAATAGTCTATAAATTTTTCCCCGACCAGGCAAAAATGTTTCCCAAAG
TGTGCTTTTCTGCAAAAGGACTCGAATTTTTTAGACCGTCTGAAGAAATTTTAAGAATTTATAAC
AATGCAGAGTTTAAAAAAGGAGAAACTTATTCAATAGATAGTATGCAGAAGTTGATTGATTTTT
ATAAAGATTGCTTGACTAAATATGAAGGCTGGGCATGTTATACCTTTCGGCATCTAAAACCCAC
AGAAGAATACCAAAACAATATTGGAGAGTTTTTTCGAGATGTTGCAGAGGACGGATACAGGATT
GATTTTCAAGGCATTTCAGATCAATATATTCATGAAAAAAACGAGAAAGGCGAACTTCACCTTT
TTGAAATCCACAATAAAGATTGGAATTTGGATAAGGCACGAGACGGAAAGTCAAAAACAACAC
AAAAAAACCTTCATACACTCTATTTCGAATCGCTCTTTTCAAACGATAATGTTGTTCAAAACTTT
CCAATAAAACTCAATGGTCAAGCTGAAATTTTTTATAGACCGAAAACGGAAAAAGACAAATTA
GAATCAAAAAAAGATAAGAAAGGGAATAAAGTGATTGACCATAAACGCTATAGTGAGAATAAG
ATTTTTTTTCATGTTCCTCTCACACTAAACCGCACTAAAAATGACTCATATCGCTTTAATGCTCAA
ATCAACAACTTTCTCGCAAATAATAAAGATATCAACATCATCGGTGTAGATAGGGGAGAAAAGC
ATTTAGTCTATTATTCGGTGATTACACAAGCTAGTGACATCTTAGAAAGTGGCTCACTAAATGAG
CTAAATGGCGTGAATTATGCTGAAAAACTGGGAAAAAAGGCAGAAAATCGAGAACAAGCACGC
AGAGACTGGCAAGACGTACAAGGGATCAAAGACCTCAAGAAAGGATATATTTCACAGGTGGTG
CGAAAGCTTGCTGATTTAGCAATTAAACACAATGCCATTATCATTCTTGAAGATTTGAATATGAG
ATTTAAACAAGTTCGGGGCGGTATCGAAAAATCCATTTATCAACAGTTAGAAAAAGCACTGATA
GATAAATTAAGCTTTCTTGTAGACAAAGGTGAAAAAAATCCCGAGCAAGCAGGACATCTTCTGA
AAGCATATCAGCTTTCGGCCCCATTTGAGACATTTCAAAAAATGGGCAAACAGACGGGTATAAT
CTTTTATACACAAGCTTCGTATACCTCAAAAAGTGACCCTGTAACAGGTTGGCGACCACACCTGT ATCTCAAATATTTCAGTGCCAAAAAAGCAAAAGACGATATTGCAAAGTTTACAAAAATAGAATT
TGTAAACGATAGGTTTGAGCTTACCTATGATATAAAGGACTTTCAGCAAGCAAAAGAATATCCA AATAAAACTGTTTGGAAAGTTTGCTCAAATGTAGAGAGATTCAGGTGGGACAAAAACCTCAATC AAAACAAAGGCGGATATACTCACTACACAAATATAACTGAGAATATCCAAGAGCTTTTTACAAA ATATGGAATTGATATCACAAAAGATTTGCTCACACAGATTTCTACAATTGATGAAAAACAAAAT
TCTGAGATTGCTAAAAAGAATGGGAAAGATGATTTTATACTGTCACCTGTTGAGCCGTTTTTCGA
TAGCCGAAAAGACAATGGAAATAAACTTCCTGAGAATGGAGATGATAACGGCGCGTATAACAT
AGCAAGAAAAGGGATTGTCATACTCAACAAAATCTCACAATATTCAGAGAAAAACGAAAATTG
CGAGAAAATGAAATGGGGGGATTTGTATGTATCAAACATTGACTGGGACAATTTTGTAACCCAA
GCTAATGCACGGCATTAA
SE ATGATTATCTTATATATTAGTACCTCGAATATGAACATGGAAGGAGTATTTATGGAAAATTTTAA
Q AAACTTGTATCCAATAAACAAAACACTTCGATTTGAATTAAGACCCTATGGAAAAACATTGGAA
no AATTTTAAAAAATCCGGACTTTTAGAAAAAGATGCCTTTAAGGCAAATAGTAGACGAAGTATGC
N AAGCTATAATCGATGAAAAATTCAAAGAGACTATCGAAGAACGCTTAAAGTACACTGAATTCA
O: GTGAATGTGATCTTGGAAACATGACATCAAAAGATAAAAAAATAACTGATAAAGCAGCTACAA 31 ATTTAAAAAAGCAAGTTATCTTATCTTTTGACGATGAAATATTTAATAATTACCTAAAACCTGAT
AAAAATATTGACGCATTATTTAAAAATGATCCTTCAAATCCTGTAATCTCTACATTTAAAGGTTT
CAATGGCATACCGAATTATAGATGAAAACCTGACAACATACTTGAATAATATTGAAAAAATAAA
AAAACTGCCAGAAGAATTAAAATCACAGCTAGAAGGCATTGATCAGATTGATAAACTTAATAAT
TATAATGAGTTCATTACACAGTCAGGTATAACACACTATAATGAAATCATCGGCGGTATATCAA
AATCAGAGAATGTCAAAATACAGGGAATTAATGAAGGAATTAATCTATACTGTCAGAAGAACA
AAGTTAAACTTCCTCGACTGACTCCGCTATACAAAATGATATTATCAGACAGAGTTTCCAACTCT
TTTGTATTAGACACTATTGAAAATGACACAGAATTAATTGAAATGATAAGTGATTTGATTAATA
AGACTGAGATTTCGCAAGATGTTATAATGTCAGATATTCAAAATATTTTCATAAAATACAAACA
ACTTGGTAATTTGCCGGGTATCTCATATTCTTCAATAGTTAATGCTATTTGCTCGGATTATGACA
ACAATTTCGGAGATGGGAAGCGAAAAAAATCTTACGAAAATGATCGCAAAAAGCATTTGGAGA
CTAATGTATACTCCATAAATTATATTTCTGAATTGCTTACAGATACCGATGTTTCATCAAATATC
AAGATGAGATATAAAGAGCTTGAGCAAAATTATCAGGTTTGCAAAGAAAATTTTAATGCCACAA
ACTGGATGAATATTAAAAATATAAAACAATCTGAAAAAACAAACCTTATTAAAGATTTGTTAGA
TATACTTAAATCGATTCAACGTTTCTATGATTTGTTTGATATTGTTGACGAAGATAAAAATCCAA
GTGCTGAATTTTATACCTGGTTATCAAAAAATGCTGAAAAGCTTGACTTTGAATTCAATTCTGTA
TATAACAAGTCACGAAACTATCTCACCAGGAAACAATACTCTGATAAAAAAATCAAGCTGAATT
TTGATTCTCCAACATTGGCCAAAGGGTGGGATGCTAACAAAGAAATAGATAACTCCACGATTAT
AATGCGTAAATTTAATAATGACAGAGGCGATTATGATTACTTCCTTGGCATATGGAATAAATCC
ACACCTGCAAATGAAAAAATAATCCCACTGGAGGATAATGGATTATTCGAAAAAATGCAATAT
AAGCTGTATCCAGATCCTAGTAAGATGTTACCGAAACAATTTCTATCAAAAATATGGAAGGCAA
AGCATCCTACGACACCTGAATTTGATAAAAAATATAAAGAGGGAAGACATAAAAAAGGTCCTG
ATTTCGAAAAAGAATTCCTGCATGAATTGATTGATTGCTTCAAACATGGTCTTGTTAATCACGAT
GAAAAATATCAGGATGTTTTTGGCTTCAATCTCCGTAACACTGAAGATTATAATTCATATACAGA
GTTTCTCGAAGATGTGGAAAGATGCAATTACAATCTTTCATTTAACAAAATTGCTGATACTTCAA ACCTTATTAATGATGGGAAATTGTATGTATTTCAGATATGGTCAAAAGACTTTTCTATTGATTCA
AAAGGTACTAAAAACTTGAATACAATCTATTTTGAATCACTATTTTCAGAAGAAAACATGATAG
AAAAAATGTTCAAGCTTTCTGGAGAGGCTGAGATATTCTATCGACCAGCATCGTTGAATTATTGT
GAAGATATCATAAAAAAAGGTCATCACCATGCAGAATTAAAAGATAAGTTTGACTATCCTATAA
TAAAAGATAAGCGATATTCACAAGATAAGTTTTTCTTTCATGTGCCAATGGTTATAAATTATAAA
TCTGAGAAACTGAATTCCAAAAGCCTTAACAACCGAACAAATGAAAACCTGGGACAGTTTACAC
ATATTATAGGTATAGACAGGGGCGAGCGGCACTTGATTTATTTAACTGTTGTTGATGTTTCCACT
GGTGAAATCGTTGAACAGAAACATCTGGACGAAATTATCAATACTGATACCAAGGGAGTTGAA
CACAAAACCCATTATTTGAATAAATTGGAAGAAAAATCTAAAACAAGAGATAACGAGCGTAAA
TCATGGGAAGCTATTGAAACTATCAAAGAATTAAAAGAAGGCTATATTTCTCATGTAATTAATG
AAATACAAAAGCTGCAAGAAAAATATAATGCCTTAATCGTAATGGAAAATCTTAACTATGGGTT
CAAAAACTCACGAATCAAAGTTGAAAAACAGGTTTATCAAAAATTCGAGACAGCATTGATTAA
AAAGTTCAATTATATTATTGATAAAAAAGATCCAGAAACCTATATACATGGTTACCAGCTTACA
AATCCTATTACCACTCTGGATAAGATTGGAAATCAATCTGGAATAGTGCTGTATATTCCTGCGTG
GAATACTTCTAAGATAGATCCCGTCACAGGATTTGTAAACCTTCTGTACGCAGATGATTTGAAGT
ATAAAAATCAGGAGCAGGCCAAATCATTCATTCAGAAAATAGACAACATATATTTTGAAAATGG
AGAGTTTAAATTTGATATTGATTTTTCCAAATGGAATAATCGCTACTCAATAAGTAAAACTAAAT
GGACGTTAACAAGTTATGGGACTCGCATCCAGACATTTAGAAATCCCCAGAAAAACAATAAGTG
GGATTCTGCTGAATATGATTTGACAGAAGAGTTTAAATTAATTTTAAATATAGACGGAACGTTA
AAGTCACAGGACGTAGAAACATACAAAAAATTCATGTCTTTATTTAAACTAATGCTACAGCTTC
GAAACTCTGTTACAGGAACCGACATTGATTATATGATCTCTCCTGTCACTGATAAAACAGGAAC
ACATTTCGATTCAAGAGAAAATATTAAAAATCTTCCTGCCGATGCAGATGCCAATGGTGCCTAC
AACATTGCGCGCAAAGGAATAATGGCTATTGAAAATATAATGAACGGTATAAGCGATCCACTA
AAAATAAGCAACGAAGACTATTTAAAGTATATTCAGAATCAACAGGAATAA
SE ATGACCCAATTTGAAGGTTTTACCAATTTATACCAAGTTTCGAAGACCCTTCGTTTTGAACTGAT
Q TCCCCAAGGAAAAACACTCAAACATATCCAGGAGCAAGGGTTCATTGAGGAGGATAAAGCTCG
no CAATGACCATTACAAAGAGTTAAAACCAATCATTGACCGCATCTATAAGACTTATGCTGATCAA
N TGTCTCCAACTGGTACAGCTTGACTGGGAGAATCTATCTGCAGCCATAGACTCCTATCGTAAGG
O: AAAAAACCGAAGAAACACGAAATGCGCTGATTGAGGAGCAAGCAACATATAGAAATGCGATTC
32 ATGACTACTTTATAGGTCGGACGGATAATCTGACAGATGCCATAAATAAGCGCCATGCTGAAAT
CTATAAAGGACTTTTTAAAGCTGAACTTTTCAATGGAAAAGTTTTAAAGCAATTAGGGACCGTA
ACCACGACAGAACATGAAAATGCTCTACTCCGTTCGTTTGACAAATTTACGACCTATTTTTCCGG
CTTTTATGAAAACCGAAAAAATGTCTTTAGCGCTGAAGATATCAGCACGGCAATTCCCCATCGA
ATCGTCCAGGACAATTTCCCTAAATTTAAGGAAAACTGCCATATTTTTACAAGATTGATAACCGC
AGTTCCTTCTTTGCGGGAGCATTTTGAAAATGTCAAAAAGGCCATTGGAATCTTTGTTAGTACGT
CTATTGAAGAAGTCTTTTCCTTTCCCTTTTATAATCAACTTCTAACCCAAACGCAAATTGATCTTT
ATAATCAACTTCTCGGCGGCATATCTAGGGAAGCAGGCACAGAAAAAATCAAGGGACTTAATG
AAGTTCTCAATCTGGCTATCCAAAAAAATGATGAAACAGCCCATATAATCGCGTCCCTGCCGCA
TCGTTTTATTCCTCTTTTTAAACAAATTCTTTCCGATCGAAATACGTTATCCTTTATTTTGGAAGA
ATTCAAAAGCGATGAGGAAGTCATCCAATCCTTCTGCAAATATAAAACCCTCTTGAGAAACGAA
AATGTACTGGAGACTGCAGAAGCCCTTTTCAATGAATTAAATTCCATTGATTTGACTCATATCTT
TATTTCCCATAAAAAGTTAGAAACCATCTCTTCAGCGCTTTGTGACCATTGGGATACCTTGCGCA ATGCACTTTACGAAAGACGGATTTCTGAACTCACTGGCAAAATAACAAAAAGTGCCAAAGAAA
AAGTTCAAAGGTCATTAAAACATGAGGATATAAATCTCCAAGAAATTATTTCTGCTGCAGGAAA
AGAACTATCAGAAGCATTCAAACAAAAAACAAGTGAAATTCTTTCCCATGCCCATGCTGCACTT
GACCAGCCTCTTCCCACAACATTAAAAAAACAGGAAGAAAAAGAAATCCTCAAATCACAGCTC
GATTCGCTTTTAGGCCTTTATCATCTTCTTGATTGGTTTGCTGTCGATGAAAGCAATGAAGTCGA
CCCAGAATTCTCAGCACGGCTGACAGGCATTAAACTAGAAATGGAACCAAGCCTTTCGTTTTAT
AATAAAGCAAGAAATTATGCGACAAAAAAGCCCTATTCGGTGGAAAAATTTAAATTGAATTTTC
AAATGCCAACCCTTGCCTCTGGTTGGGATGTCAATAAAGAAAAAAATAATGGAGCTATTTTATT
CGTAAAAAATGGTCTCTATTACCTTGGTATCATGCCTAAACAGAAGGGGCGCTATAAAGCCCTG
TCTTTTGAGCCGACAGAAAAAACATCAGAAGGATTCGATAAGATGTACTATGACTACTTCCCAG
ATGCCGCAAAAATGATTCCTAAGTGTTCCACTCAGCTAAAGGCTGTAACCGCTCATTTTCAAACT
CATACCACCCCCATTCTTCTCTCAAATAATTTCATTGAACCTCTTGAAATCACAAAAGAAATTTA
TGACCTGAACAATCCTGAAAAGGAGCCTAAAAAGTTTCAAACGGCTTATGCAAAGAAGACAGG
CGATCAAAAAGGCTATAGAGAAGCGCTTTGCAAATGGATTGACTTTACGCGGGATTTTCTCTCT
AAATATACGAAAACAACTTCAATCGATTTATCTTCACTCCGCCCTTCTTCGCAATATAAAGATTT
AGGGGAATATTACGCCGAACTGAATCCGCTTCTCTATCATATCTCCTTCCAACGAATTGCTGAAA
AGGAAATCATGGATGCTGTAGAAACGGGAAAATTGTATCTGTTCCAAATCTACAATAAGGATTT
TGCGAAGGGCCATCACGGGAAACCAAATCTCCACACCCTGTATTGGACAGGTCTCTTCAGTCCT
GAAAACCTTGCGAAAACCAGCATCAAACTTAATGGTCAAGCAGAATTGTTCTATCGACCTAAAA
GCCGCATGAAGCGGATGGCCCATCGTCTTGGGGAAAAAATGCTGAACAAAAAACTAAAGGACC
AGAAGACACCGATTCCAGATACCCTCTACCAAGAACTGTACGATTATGTCAACCACCGGCTAAG
CCATGATCTTTCCGATGAAGCAAGGGCCCTGCTTCCAAATGTTATCACCAAAGAAGTCTCCCAT
GAAATTATAAAGGATCGGCGGTTTACTTCCGATAAATTTTTCTTCCATGTTCCCATTACACTGAA
TTATCAAGCAGCCAATAGTCCCAGTAAATTCAACCAGCGTGTCAATGCCTACCTTAAGGAGCAT
CCGGAAACGCCCATCATTGGTATCGATCGTGGAGAACGCAATCTAATCTATATTACCGTCATTG
ACAGTACTGGGAAAATTTTGGAGCAGCGTTCCCTGAATACCATCCAGCAATTTGACTACCAAAA
AAAATTGGACAACAGGGAAAAAGAGCGTGTTGCCGCCCGTCAAGCCTGGTCCGTCGTCGGAAC
GATCAAAGACCTTAAACAAGGCTACTTGTCACAGGTCATCCATGAAATTGTAGACCTGATGATT
CATTACCAAGCTGTTGTCGTCCTTGAAAACCTCAACTTCGGATTTAAATCAAAACGGACAGGCA
TTGCCGAAAAAGCAGTCTACCAACAATTTGAAAAGATGCTAATAGATAAACTCAACTGTTTGGT
TCTCAAAGATTATCCTGCTGAGAAAGTGGGAGGCGTCTTAAACCCGTATCAACTTACAGATCAG
TTCACGAGCTTTGCAAAAATGGGCACGCAAAGCGGCTTCCTTTTCTATGTACCGGCCCCTTATAC
CTCAAAGATTGATCCCCTGACTGGTTTTGTCGATCCCTTTGTATGGAAGACCATTAAAAATCATG
AAAGTCGGAAGCATTTCCTAGAAGGATTTGATTTCCTGCATTATGATGTCAAAACAGGTGATTTT
ATCCTCCATTTTAAAATGAATCGGAATCTCTCTTTCCAGAGAGGGCTTCCTGGCTTCATGCCAGC
TTGGGATATTGTTTTCGAAAAGAATGAAACCCAATTTGATGCAAAAGGGACGCCCTTCATTGCA
GGAAAACGAATTGTTCCTGTAATCGAAAATCATCGTTTTACGGGTCGTTACAGAGACCTCTATCC
CGCTAATGAACTCATTGCCCTTCTGGAAGAAAAAGGCATTGTCTTTAGAGACGGAAGTAATATA
TTACCCAAACTTTTAGAAAATGATGATTCTCATGCAATTGATACGATGGTCGCCTTGATTCGCAG
TGTACTCCAAATGAGAAACAGCAATGCCGCAACGGGGGAAGACTACATCAACTCTCCCGTTAGG
GATCTGAACGGGGTGTGTTTCGACAGTCGATTCCAAAATCCAGAATGGCCAATGGATGCGGATG
CCAACGGAGCTTATCATATTGCCTTAAAAGGGCAGCTTCTTCTGAACCACCTCAAAGAAAGCAA AGATCTGAAATTACAAAACGGCATCAGCAACCAAGATTGGCTGGCCTACATTCAGGAACTGAG
AAACTGA
SE ATGGCCGTCAAATCCATCAAAGTGAAACTTCGTCTCGACGATATGCCGGAGATTCGGGCCGGTC
Q TATGGAAACTTCATAAGGAAGTCAATGCGGGGGTTCGATATTACACGGAATGGCTCAGTCTTCT
no CCGTCAAGAGAACTTGTATCGAAGAAGTCCGAATGGGGACGGAGAGCAAGAATGTGATAAGAC
N TGCAGAAGAATGCAAAGCCGAATTGTTGGAGCGGCTGCGCGCGCGTCAAGTGGAGAATGGACA
O: CCGTGGTCCGGCGGGATCGGACGATGAATTGCTGCAGTTGGCGCGTCAACTCTATGAGTTGTTG
33 GTTCCGCAGGCGATAGGTGCGAAAGGCGACGCGCAGCAAATTGCCCGCAAATTTTTGAGCCCCT
TGGCCGACAAGGACGCAGTTGGTGGGCTTGGAATCGCGAAGGCGGGGAACAAACCGCGGTGGG
TTCGCATGCGCGAAGCGGGGGAACCAGGCTGGGAAGAGGAGAAGGAGAAGGCTGAGACGAGG
AAATCTGCGGATCGGACTGCGGATGTTTTGCGCGCGCTCGCGGATTTTGGGTTAAAGCCACTGA
TGCGCGTATACACCGATTCTGAGATGTCATCGGTGGAGTGGAAACCGCTTCGGAAGGGACAAGC
CGTTCGGACGTGGGATAGGGACATGTTCCAACAAGCTATCGAACGGATGATGTCGTGGGAGTCG
TGGAATCAGCGCGTTGGGCAAGAGTACGCGAAACTCGTAGAACAAAAAAATCGATTTGAGCAG
AAGAATTTCGTCGGCCAGGAACATCTGGTCCATCTCGTCAATCAGTTGCAACAAGATATGAAAG
AAGCATCGCCCGGACTCGAATCGAAAGAGCAAACCGCGCACTATGTGACGGGACGGGCATTGC
GCGGATCGGACAAGGTATTTGAGAAGTGGGGGAAACTCGCCCCCGATGCACCTTTCGATTTGTA
CGACGCCGAAATCAAGAATGTGCAGAGACGTAACACGAGACGATTCGGATCACATGACTTGTTC
GCAAAATTGGCAGAGCCAGAGTATCAGGCCCTGTGGCGCGAAGATGCTTCGTTTCTCACGCGTT
ACGCGGTGTACAACAGCATCCTTCGCAAACTGAATCACGCCAAAATGTTCGCGACGTTTACTTT
GCCGGATGCAACGGCGCACCCGATTTGGACTCGCTTCGATAAATTGGGTGGGAATTTGCACCAG
TACACCTTTTTGTTCAACGAATTTGGAGAACGCAGGCACGCGATTCGTTTTCACAAGCTATTGAA
AGTCGAGAATGGTGTCGCAAGAGAAGTTGATGATGTCACCGTGCCCATTTCAATGTCAGAGCAA
TTGGATAATCTGCTTCCCAGAGATCCCAATGAACCGATTGCGCTATATTTTCGAGATTACGGAGC
CGAACAGCATTTCACAGGTGAATTTGGTGGCGCGAAGATCCAGTGCCGCCGGGATCAGCTGGCT
CATATGCACCGACGCAGAGGGGCGAGGGATGTTTATCTCAATGTCAGCGTACGTGTGCAGAGTC
AGTCTGAGGCGCGGGGAGAACGTCGCCCGCCGTATGCGGCAGTATTTCGTCTGGTCGGGGACAA
CCATCGCGCGTTTGTCCATTTCGATAAACTATCGGATTATCTTGCGGAACATCCGGATGATGGGA
AGCTCGGGTCGGAGGGGTTGCTTTCCGGGCTGCGGGTGATGAGTGTCGATCTCGGCCTTCGCAC
ATCTGCATCGATTTCCGTTTTTCGCGTTGCCCGGAAGGACGAGTTGAAGCCGAACTCAAAAGGT
CGTGTACCGTTTTTCTTTCCGATAAAAGGGAATGACAATCTCGTCGCGGTTCATGAGCGATCACA
ACTCTTGAAGCTGCCTGGCGAAACGGAGTCGAAGGACCTGCGTGCTATCCGAGAAGAACGCCA
ACGGACATTGCGGCAGTTGCGGACGCAACTGGCGTATTTGCGGCTGCTCGTGCGGTGTGGGTCG
GAAGATGTGGGGCGGCGTGAACGGAGTTGGGCAAAGCTTATCGAGCAGCCGGTGGATGCGGCC
AATCACATGACACCGGATTGGCGCGAGGCTTTTGAAAACGAACTTCAGAAGCTTAAGTCACTCC
ATGGTATCTGTAGCGACAAGGAATGGATGGATGCTGTCTACGAGAGCGTTCGCCGCGTGTGGCG
TCACATGGGCAAACAGGTTCGCGATTGGCGAAAGGACGTACGAAGCGGAGAGCGGCCCAAGAT
TCGCGGCTATGCGAAAGACGTGGTCGGTGGAAACTCGATTGAGCAAATCGAGTATCTGGAACGT
CAGTACAAGTTCCTCAAGAGTTGGAGCTTCTTTGGTAAGGTGTCGGGACAAGTGATTCGTGCGG
AGAAGGGATCTCGTTTTGCGATCACGCTGCGCGAACACATTGATCACGCGAAGGAAGATCGGCT
GAAGAAATTGGCGGATCGCATCATTATGGAGGCTCTCGGCTATGTGTACGCGTTGGATGAGCGC
GGCAAAGGAAAGTGGGTTGCGAAGTATCCGCCGTGCCAGCTCATCCTGCTGGAGGAATTGAGC GAGTACCAGTTCAATAACGACAGGCCTCCGAGCGAAAACAACCAGTTGATGCAATGGAGTCAT
CGCGGCGTGTTCCAGGAGTTGATAAATCAGGCCCAAGTCCATGATTTACTCGTTGGGACGATGT
ATGCAGCGTTCTCGTCGCGATTCGACGCGCGAACTGGGGCACCGGGTATCCGCTGTCGCCGGGT
TCCGGCGCGTTGCACCCAGGAGCACAATCCAGAACCATTTCCTTGGTGGCTGAACAAGTTTGTG
GTGGAACATACGTTGGATGCTTGTCCCCTACGCGCAGACGACCTCATCCCAACGGGTGAAGGAG
AGATTTTTGTCTCGCCGTTCAGCGCGGAGGAGGGGGACTTTCATCAGATTCACGCCGACCTGAA
TGCGGCGCAAAATCTGCAGCAGCGACTCTGGTCTGATTTTGATATCAGTCAAATTCGGTTGCGGT
GTGATTGGGGTGAAGTGGACGGTGAACTCGTTCTGATCCCAAGGCTTACAGGAAAACGAACGG
CGGATTCATATAGCAACAAGGTGTTTTATACCAATACAGGTGTCACCTATTATGAGCGAGAGCG
GGGGAAGAAGCGGAGAAAGGTTTTCGCGCAAGAGAAATTGTCGGAGGAAGAGGCGGAGTTGCT
CGTGGAAGCAGACGAGGCGAGGGAGAAATCGGTCGTTTTGATGCGTGATCCGTCTGGCATCATC
AATCGGGGAAATTGGACCAGGCAAAAGGAATTTTGGTCGATGGTGAACCAGCGGATCGAAGGA
TACTTGGTCAAGCAGATTCGCTCGCGCGTTCCATTACAAGATAGTGCGTGTGAAAACACGGGGG
ATATTTAA
SE ATGGCGACACGCAGTTTTATTTTAAAAATTGAACCAAATGAAGAAGTTAAAAAGGGATTATGGA
Q AGACGCATGAGGTATTGAATCATGGAATTGCCTACTACATGAATATTCTGAAACTAATTAGACA
no GGAAGCTATTTATGAACATCATGAACAAGATCCTAAAAATCCGAAAAAAGTTTCAAAAGCAGA
N AATACAAGCCGAGTTATGGGATTTTGTTTTAAAAATGCAAAAATGTAATAGTTTTACACATGAA
O: GTTGACAAAGATGTTGTTTTTAACATCCTGCGTGAACTATATGAAGAGTTGGTCCCTAGTTCAGT 34 CGAGAAAAAGGGTGAAGCCAATCAATTATCGAATAAGTTTCTGTACCCGCTAGTTGATCCGAAC
AGTCAAAGTGGGAAAGGGACGGCATCATCCGGACGTAAACCTCGGTGGTATAATTTAAAAATA
GCAGGCGACCCATCGTGGGAGGAAGAAAAGAAAAAATGGGAAGAGGATAAAAAGAAAGATCC
CCTTGCTAAAATCTTAGGTAAGTTAGCAGAATATGGGCTTATTCCGCTATTTATTCCATTTACTG
ACAGCAACGAACCAATTGTAAAAGAAATTAAATGGATGGAAAAAAGTCGTAATCAAAGTGTCC
GGCGACTTGATAAGGATATGTTTATCCAAGCATTAGAGCGTTTTCTTTCATGGGAAAGCTGGAA
CCTTAAAGTAAAGGAAGAGTATGAAAAAGTTGAAAAGGAACACAAAACACTAGAGGAAAGGA
TAAAAGAGGACATTCAAGCATTTAAATCCCTTGAACAATATGAAAAAGAACGGCAGGAGCAAC
TTCTTAGAGATACATTGAATACAAATGAATACCGATTAAGCAAAAGAGGATTACGTGGTTGGCG
TGAAATTATCCAAAAATGGCTAAAGATGGATGAAAATGAACCATCAGAAAAATATTTAGAAGT
ATTTAAAGATTATCAACGGAAACATCCACGAGAAGCCGGGGACTATTCTGTCTATGAATTTTTA
AGCAAGAAAGAAAATCATTTTATTTGGCGAAATCATCCTGAATATCCTTATTTGTATGCTACATT
TTGTGAAATTGACAAAAAAAAGAAAGACGCTAAGCAACAGGCAACTTTTACTTTGGCTGACCCG
ATTAACCATCCGTTATGGGTACGATTTGAAGAAAGAAGCGGTTCGAACTTAAACAAATATCGAA
TTTTAACAGAGCAATTACACACTGAAAAGTTAAAAAAGAAATTAACAGTTCAACTTGATCGTTT
AATTTATCCAACTGAATCCGGCGGTTGGGAGGAAAAAGGTAAAGTAGATATCGTTTTGTTGCCG
TCAAGACAATTTTATAATCAAATCTTCCTTGATATAGAAGAAAAGGGGAAACATGCTTTTACTT
ATAAGGATGAAAGTATTAAATTCCCCCTTAAAGGTACACTTGGTGGTGCAAGAGTGCAGTTTGA
CCGTGACCATTTGCGGAGATATCCGCATAAAGTAGAATCAGGAAATGTTGGACGGATTTATTTT
AACATGACAGTAAATATTGAACCAACTGAGAGCCCTGTTAGTAAGTCTTTGAAAATACATAGGG
ACGATTTCCCCAAGTTCGTTAATTTTAAACCGAAAGAGCTCACCGAATGGATAAAAGATAGTAA
AGGGAAAAAATTAAAAAGTGGTATAGAATCCCTTGAAATTGGTCTACGGGTGATGAGTATCGAC
TTAGGTCAACGTCAAGCGGCTGCTGCATCGATTTTTGAAGTAGTTGATCAGAAACCGGATATTG AAGGGAAGTTATTTTTTCCAATCAAAGGAACTGAGCTTTATGCTGTTCACCGGGCAAGTTTTAAC
ATTAAATTACCGGGTGAAACATTAGTAAAATCACGGGAAGTATTGCGGAAAGCTCGGGAGGAC
AACTTAAAATTAATGAATCAAAAGTTAAACTTTCTAAGAAATGTTCTACATTTCCAACAGTTTGA
AGATATCACAGAAAGAGAGAAGCGTGTAACTAAATGGATTTCTAGACAAGAAAATAGTGATGT
TCCTCTTGTATATCAAGATGAGCTAATTCAAATTCGTGAATTAATGTATAAACCCTATAAAGATT
GGGTTGCCTTTTTAAAACAACTCCATAAACGGCTAGAAGTCGAGATTGGCAAAGAGGTTAAGCA
TTGGCGAAAATCATTAAGTGACGGGAGAAAAGGTCTTTACGGAATCTCCCTAAAAAATATTGAT
GAAATTGATCGAACAAGGAAATTCCTTTTAAGATGGAGCTTACGTCCAACAGAACCTGGGGAAG
TAAGACGCTTGGAACCAGGACAGCGTTTTGCGATTGATCAATTAAACCACCTAAATGCATTAAA
AGAAGATCGATTAAAAAAGATGGCAAATACGATTATCATGCATGCCTTAGGTTACTGTTATGAT
GTAAGAAAGAAAAAGTGGCAGGCAAAAAATCCAGCATGTCAAATTATTTTATTTGAAGATTTAT
CTAACTACAATCCTTACGAGGAAAGGTCCCGTTTTGAAAACTCAAAACTGATGAAGTGGTCACG
GAGAGAAATTCCACGACAAGTCGCCTTACAAGGTGAAATTTACGGATTACAAGTTGGGGAAGT
AGGTGCCCAATTCAGTTCAAGATTCCATGCGAAAACCGGGTCGCCGGGAATTCGTTGCAGTGTT
GTAACGAAAGAAAAATTGCAGGATAATCGCTTTTTTAAAAATTTACAAAGAGAAGGACGACTTA
CTCTTGATAAAATCGCAGTTTTAAAAGAAGGAGACTTATATCCAGATAAAGGTGGAGAAAAGTT
TATTTCTTTATCAAAGGATCGAAAGTTGGTAACTACGCATGCTGATATTAACGCGGCCCAAAATT
TACAGAAGCGTTTTTGGACAAGAACACATGGATTTTATAAAGTTTACTGCAAAGCCTATCAGGT
TGATGGACAAACTGTTTATATTCCGGAGAGCAAGGACCAAAAACAAAAAATAATTGAAGAATT
TGGGGAAGGCTATTTTATTTTAAAAGATGGTGTATATGAATGGGGTAATGCGGGGAAACTAAAA
ATTAAAAAAGGTTCCTCTAAACAATCATCGAGTGAATTAGTAGATTCGGACATACTGAAAGATT
CATTTGATTTAGCAAGTGAACTTAAGGGAGAGAAACTCATGTTATATCGAGATCCGAGTGGAAA
CGTATTTCCTTCCGACAAGTGGATGGCAGCAGGAGTATTTTTTGGCAAATTAGAAAGAATATTG
ATTTCTAAGTTAACAAATCAATACTCAATATCAACAATAGAAGATGATTCTTCAAAACAATCAA
TGTAA
SE ATGCCCACCCGCACCATCAATCTGAAACTTGTTCTTGGGAAAAATCCTGAAAACGCAACATTGC
Q GACGCGCCCTATTTTCGACACACCGTTTGGTTAACCAAGCGACGAAACGTATTGAGGAATTCTT
no GTTGCTGTGTCGTGGAGAAGCCTACAGAACAGTGGATAATGAGGGGAAGGAAGCCGAGATTCC
N ACGTCATGCAGTCCAAGAAGAAGCTCTTGCCTTTGCCAAAGCTGCTCAACGCCACAACGGCTGT
O: ATATCCACCTATGAAGACCAAGAGATTCTTGATGTACTGCGGCAACTGTACGAACGTCTTGTTCC
35 TTCGGTCAACGAAAACAACGAGGCAGGCGATGCTCAAGCTGCTAACGCCTGGGTCAGTCCGCTC
ATGTCGGCAGAAAGCGAAGGAGGCTTGTCGGTCTACGACAAGGTGCTTGATCCACCGCCGGTTT
GGATGAAGCTTAAAGAAGAAAAGGCTCCAGGATGGGAAGCCGCTTCTCAAATTTGGATTCAGA
GTGATGAGGGACAGTCGTTACTTAATAAGCCAGGTAGCCCTCCCCGCTGGATTCGAAAACTGCG
ATCTGGGCAACCGTGGCAAGATGATTTCGTCAGTGACCAAAAGAAAAAGCAAGATGAGCTGAC
CAAAGGGAACGCACCACTTATAAAACAACTCAAAGAAATGGGGTTGTTGCCTCTTGTTAACCCA
TTTTTTAGACATCTTCTTGACCCTGAAGGTAAAGGCGTGAGTCCATGGGACCGTCTTGCTGTACG
CGCTGCAGTGGCTCACTTTATCTCCTGGGAAAGTTGGAATCATAGAACACGTGCAGAATACAAT
TCCTTGAAACTACGGCGAGACGAGTTTGAGGCAGCATCCGACGAATTCAAAGACGATTTTACTT
TGCTCCGACAATATGAAGCCAAACGCCATAGTACATTGAAAAGCATCGCGCTGGCCGACGATTC
GAACCCTTACCGGATTGGAGTACGTTCTCTGCGTGCCTGGAACCGCGTTCGTGAAGAATGGATA
GACAAGGGTGCAACAGAAGAACAACGCGTGACCATATTGTCAAAGCTTCAAACACAACTTCGG GGAAAATTCGGCGATCCCGATCTGTTCAACTGGCTAGCTCAGGATAGGCATGTCCATTTGTGGT
CTCCTCGGGACAGCGTGACACCATTGGTTCGCATCAATGCGGTAGATAAAGTTCTGCGTCGACG
AAAACCGTATGCATTGATGACCTTTGCCCATCCCCGCTTCCACCCTCGATGGATACTGTACGAGG
CTCCAGGAGGAAGCAATCTCCGTCAATATGCATTGGATTGTACAGAAAACGCTCTACACATCAC
GTTGCCTTTGCTTGTCGACGATGCGCACGGAACCTGGATTGAAAAAAAGATCAGGGTGCCGCTG
GCACCATCCGGACAAATTCAAGATTTAACTCTGGAAAAACTTGAGAAGAAAAAAAATCGTTTAT
ACTACCGTTCCGGTTTTCAGCAGTTTGCCGGCTTGGCTGGCGGAGCTGAGGTTCTTTTCCACAGA
CCCTATATGGAACACGACGAACGCAGCGAGGAGTCTCTTTTGGAACGTCCGGGAGCCGTTTGGT
TCAAATTGACCCTGGATGTGGCAACACAGGCTCCCCCGAACTGGCTTGATGGTAAGGGCCGTGT
CCGTACACCGCCGGAGGTACATCATTTTAAAACCGCATTGTCGAATAAAAGCAAACATACACGT
ACGCTGCAGCCGGGTCTCCGTGTCTTGTCAGTAGACTTGGGCATGCGAACATTCGCCTCCTGCTC
AGTATTTGAACTCATCGAGGGAAAGCCTGAGACAGGCCGTGCCTTCCCTGTTGCCGATGAGAGA
TCAATGGACAGCCCGAATAAACTGTGGGCCAAGCATGAACGTAGTTTTAAACTGACGCTCCCCG
GCGAAACCCCTTCTCGAAAGGAAGAGGAAGAGCGTAGCATAGCAAGAGCGGAAATTTATGCAC
TGAAACGCGACATACAACGCCTCAAAAGCCTACTCCGCTTAGGTGAAGAAGATAACGATAACC
GTCGTGATGCATTGCTTGAACAGTTCTTTAAAGGATGGGGAGAAGAAGACGTTGTGCCTGGACA
AGCGTTTCCACGCTCTCTTTTCCAAGGGTTGGGAGCTGCCCCGTTTCGCTCAACTCCAGAGTTAT
GGCGTCAGCATTGCCAAACATATTATGACAAAGCGGAAGCCTGTCTGGCTAAACATATCAGTGA
TTGGCGCAAGCGAACTCGTCCCCGTCCGACATCGCGGGAGATGTGGTACAAAACACGTTCCTAT
CATGGCGGCAAGTCCATTTGGATGTTGGAATATCTTGATGCCGTTCGAAAACTGCTTCTCAGTTG
GAGCTTACGTGGTCGTACTTACGGTGCCATTAATCGCCAGGATACAGCCCGGTTTGGTTCTTTGG
CATCACGGCTGCTCCACCATATCAATTCCCTAAAGGAAGACCGCATCAAAACAGGAGCCGACTC
TATCGTTCAGGCTGCTCGCGGGTATATTCCTCTCCCTCATGGCAAGGGTTGGGAACAAAGATAT
GAGCCTTGTCAGCTCATATTATTTGAAGACCTCGCACGATATCGCTTTCGCGTGGATCGACCTCG
TCGAGAGAACAGCCAACTCATGCAGTGGAACCATCGAGCCATCGTGGCAGAAACAACGATGCA
AGCCGAACTCTACGGACAAATTGTCGAAAATACTGCAGCGGGGTTCAGCAGTCGTTTTCACGCG
GCGACAGGTGCCCCCGGTGTACGTTGTCGTTTTCTTCTAGAAAGAGACTTTGATAACGATTTGCC
CAAACCGTACCTTCTCAGGGAACTTTCTTGGATGCTCGGCAATACAAAAGTCGAGTCTGAAGAA
GAAAAGCTTCGATTGCTGTCTGAAAAAATCAGGCCAGGCAGTCTTGTTCCTTGGGATGGAGGCG
AACAGTTCGCTACCCTGCATCCCAAAAGACAAACACTTTGCGTCATTCATGCCGATATGAATGC
TGCCCAAAATTTACAACGCCGGTTTTTCGGTCGATGCGGCGAGGCCTTTCGGCTTGTTTGTCAAC
CCCACGGTGACGACGTGTTACGACTCGCATCCACCCCAGGAGCTCGTCTTCTTGGAGCCCTGCA
GCAGCTTGAAAATGGACAAGGAGCTTTCGAGTTGGTTCGAGACATGGGGTCAACAAGTCAAAT
GAACCGGTTCGTCATGAAGTCTTTGGGAAAAAAGAAAATAAAACCCCTTCAGGACAACAATGG
AGACGACGAGCTTGAAGACGTGTTGTCCGTACTCCCGGAGGAAGACGACACAGGACGTATCAC
AGTCTTCCGCGATTCATCAGGAATCTTTTTTCCTTGCAACGTCTGGATACCGGCCAAACAGTTTT
GGCCAGCAGTACGCGCCATGATTTGGAAGGTCATGGCTTCCCATTCTTTGGGGTGA
SE ATGACAAAGTTAAGACACCGACAGAAAAAATTAACACACGACTGGGCTGGCTCCAAAAAGAGG
Q GAAGTATTAGGCTCAAATGGCAAGCTTCAGAATCCGTTGTTAATGCCGGTTAAAAAAGGTCAGG
no TTACTGAGTTCCGGAAAGCGTTTTCTGCGTATGCTCGCGCAACGAAAGGAGAAATGACTGACGG
N CCGAAAGAATATGTTTACGCATAGTTTCGAGCCATTTAAGACAAAGCCCTCGCTTCATCAGTGT
O: GAATTGGCAGATAAAGCATATCAATCTTTACATTCGTATCTGCCTGGTTCTCTTGCTCATTTTCTA TTATCTGCTCACGCATTAGGTTTTCGTATTTTTTCAAAATCTGGTGAAGCAACTGCATTCCAGGC
ATCCTCTAAAATTGAAGCTTACGAATCAAAATTGGCAAGCGAATTAGCTTGTGTAGATTTATCTA
TTCAAAACTTGACTATTTCAACGCTTTTTAATGCGCTTACAACGTCTGTAAGAGGGAAGGGCGA
AGAAACTAGCGCTGACCCCTTAATTGCACGATTTTACACCTTACTTACTGGCAAGCCTCTGTCTC
GAGACACTCAAGGGCCTGAACGTGATTTAGCAGAAGTTATCTCGCGTAAGATAGCTAGTTCTTT
TGGCACATGGAAAGAAATGACGGCAAACCCTCTTCAGTCATTACAATTTTTTGAAGAGGAACTC
CATGCGCTGGATGCCAATGTCTCGCTCTCACCCGCCTTCGACGTTTTAATTAAAATGAATGATTT
GCAGGGCGATTTAAAAAATCGAACCATTGTTTTTGATCCTGACGCCCCTGTTTTTGAATATAACG
CAGAAGACCCTGCCGACATAATTATTAAACTTACAGCTCGTTACGCTAAAGAAGCTGTCATCAA
AAATCAAAACGTAGGAAATTACGTTAAAAACGCTATTACTACCACAAATGCCAATGGTCTTGGT
TGGCTTTTGAACAAAGGTTTGTCGTTACTCCCTGTCTCGACCGATGACGAATTGCTAGAGTTTAT
TGGCGTTGAACGATCTCATCCCTCATGCCATGCCTTAATTGAATTGATTGCACAATTAGAAGCCC
CCGAGCTCTTTGAGAAGAACGTATTTTCAGATACTCGTTCTGAAGTTCAAGGTATGATTGATTCA
GCTGTTTCTAATCATATTGCTCGTCTTTCCAGCTCTAGAAATAGCTTGTCAATGGATAGTGAAGA
ATTAGAACGTTTAATCAAAAGCTTTCAGATACACACACCTCATTGCTCACTTTTTATTGGCGCCC
AATCACTTTCACAGCAGTTAGAATCTTTGCCTGAAGCCCTTCAATCGGGCGTTAATTCAGCCGAT
ATTTTACTAGGCTCTACTCAATATATGCTCACCAATTCTTTGGTTGAAGAGTCAATTGCAACTTA
TCAAAGAACACTTAATCGCATCAATTACTTGTCAGGTGTTGCAGGTCAGATTAACGGCGCAATA
AAGCGAAAAGCGATAGATGGAGAAAAAATTCACTTGCCTGCAGCTTGGTCAGAGTTGATATCTT
TACCATTTATAGGCCAGCCTGTTATAGATGTTGAAAGCGATTTAGCTCATCTAAAAAATCAATAC
CAAACACTTTCAAATGAGTTTGATACTCTTATATCTGCTTTGCAAAAGAATTTTGATTTGAACTT
TAATAAAGCGCTCCTTAATCGTACTCAGCATTTTGAAGCCATGTGTAGAAGCACTAAGAAAAAC
GCTTTATCCAAACCAGAGATCGTTTCCTATCGCGACCTGCTTGCTCGATTAACTTCTTGTTTGTAT
CGAGGCTCTTTAGTTTTGCGTCGTGCCGGCATTGAAGTGTTAAAAAAACATAAAATATTTGAGTC
AAACAGCGAACTTCGTGAACATGTTCATGAAAGAAAGCATTTCGTGTTTGTTAGTCCTCTAGATC
GCAAAGCCAAGAAACTCCTTCGATTAACTGATTCGCGTCCAGACTTGTTACATGTTATTGATGAA
ATATTGCAGCACGATAATCTTGAAAACAAAGACCGCGAGTCACTTTGGCTAGTTCGCTCTGGTT
ATTTGCTTGCAGGACTTCCAGATCAACTTTCTTCATCTTTTATTAACTTGCCTATCATTACTCAAA
AAGGAGATAGACGCCTTATAGACCTGATTCAGTATGATCAAATTAATCGTGATGCTTTTGTTATG
TTAGTGACCTCTGCATTCAAGTCTAATTTGTCTGGTCTGCAGTATCGTGCCAATAAGCAATCGTT
CGTTGTTACTCGCACGCTAAGCCCTTATCTCGGCTCAAAACTTGTCTACGTACCCAAGGATAAAG
ATTGGTTAGTTCCTTCTCAAATGTTTGAAGGACGATTTGCTGACATTCTTCAATCAGATTATATG
GTCTGGAAAGATGCCGGTCGTCTTTGTGTTATTGATACTGCAAAACACCTTTCTAATATAAAGAA
AGACCGAAGTTCGCGGCCTTGGCGTTAATGTCGATGGAATTGCATTTAATAATGGTGATATTCC
GTCATTAAAAACCTTTTCAAATTGCGTTCAGGTAAAAGTTTCTCGGACTAATACATCCCTAGTTC
AAACACTTAATCGTTGGTTTGAAGGAGGAAAAGTTTCTCCTCCGAGCATTCAATTTGAACGGGC
GTATTATAAAAAAGACGATCAAATTCATGAAGACGCAGCGAAAAGAAAGATACGATTCCAGAT
GCCCGCAACTGAGTTGGTTCATGCTTCTGACGATGCGGGGTGGACACCAAGTTATTTGCTCGGC
ATTGATCCTGGCGAGTATGGAATGGGTCTTTCATTGGTTTCGATTAATAACGGAGAAGTCTTAGA
TTCAGGCTTTATTCATATTAATTCTCTGATCAATTTTGCCTCTAAAAAGAGCAACCATCAAACTA
AGGTTGTTCCGCGTCAGCAGTACAAATCTCCTTATGCAAATTATTTAGAACAATCTAAAGATTCT GCTGCTGGTGATATTGCGCATATACTCGATCGACTTATATACAAATTAAATGCGTTGCCTGTTTT
TGAGGCTCTTTCAGGTAATTCTCAGAGTGCTGCTGATCAAGTTTGGACGAAAGTCTTATCGTTTT
ACACTTGGGGTGATAATGACGCTCAGAATTCTATTAGAAAGCAGCATTGGTTTGGAGCCAGTCA
TTGGGATATCAAAGGTATGTTAAGGCAACCCCCTACGGAGAAGAAGCCTAAACCGTATATTGCT
TTTCCTGGCTCTCAGGTTTCTTCGTATGGTAATTCCCAACGTTGCTCTTGCTGCGGTCGCAATCCT
ATTGAACAACTTCGAGAAATGGCAAAGGATACCTCTATTAAAGAGCTAAAAATTCGCAATTCTG
AGATACAGCTTTTTGACGGAACCATTAAATTATTTAATCCAGACCCATCCACTGTGATAGAGAG
AAGGCGACATAATCTTGGTCCATCAAGAATTCCTGTTGCTGACCGTACTTTCAAAAACATCAGTC
CATC AAGTCTAGAATTTAAAGAATTGATT ACT ATCGTGTCTCGATCTATCCGTCATTCACCTGAG
TTTATCGCTAAAAAACGCGGCATAGGGTCTGAGTATTTTTGCGCTTATTCCGATTGCAACTCATC
CTTAAATTCTGAAGCTAACGCAGCTGCTAACGTAGCGCAAAAATTTCAAAAACAGTTATTTTTTG
AGTTATAA
SE ATGAAGAGAATTCTGAACAGTCTGAAAGTTGCTGCCTTGAGACTTCTGTTTCGAGGCAAAGGTT
Q CTGAATTAGTGAAGACAGTCAAATATCCATTGGTTTCCCCGGTTCAAGGCGCGGTTGAAGAACT
no TGCTGAAGCAATTCGGCACGACAACCTGCACCTTTTTGGGCAGAAGGAAATAGTGGATCTTATG
N GAGAAAGACGAAGGAACCCAGGTGTATTCGGTTGTGGATTTTTGGTTGGATACCCTGCGTTTAG
O: GGATGTTTTTCTCACCATCAGCGAATGCGTTGAAAATCACGCTGGGAAAATTCAATTCTGATCA
37 GGTTTCACCTTTTCGTAAGGTTTTGGAGCAGTCACCTTTTTTTCTTGCGGGTCGCTTGAAGGTTGA
ACCTGCGGAAAGGATACTTTCTGTTGAAATCAGAAAGATTGGTAAAAGAGAAAACAGAGTTGA
GAACTATGCCGCCGATGTGGAGACATGCTTCATTGGTCAGCTTTCTTCAGATGAGAAACAGAGT
ATCCAGAAGCTGGCAAATGATATCTGGGATAGCAAGGATCATGAGGAACAGAGAATGTTGAAG
GCGGATTTTTTTGCTATACCTCTTATAAAAGACCCCAAAGCTGTCACAGAAGAAGATCCTGAAA
ATGAAACGGCGGGAAAACAGAAACCGCTTGAATTATGTGTTTGTCTTGTTCCTGAGTTGTATAC
CCGAGGTTTCGGCTCCATTGCTGATTTTCTGGTTCAGCGACTTACCTTGCTGCGTGACAAAATGA
GTACCGACACGGCGGAAGATTGCCTCGAGTATGTTGGCATTGAGGAAGAAAAAGGCAATGGAA
TGAATTCCTTGCTCGGCACTTTTTTGAAGAACCTGCAGGGTGATGGTTTTGAACAGATTTTTCAG
TTTATGCTTGGGTCTTATGTTGGCTGGCAGGGGAAGGAAGATGTACTGCGCGAACGATTGGATT
TGCTGGCCGAAAAAGTCAAAAGATTACCAAAGCCAAAATTTGCCGGAGAATGGAGTGGTCATC
GTATGTTTCTCCATGGTCAGCTGAAAAGCTGGTCGTCGAATTTCTTCCGTCTTTTTAATGAGACG
CGGGAACTTCTGGAAAGTATCAAGAGTGATATTCAACATGCCACCATGCTCATTAGCTATGTGG
AAGAGAAAGGAGGCTATCATCCACAGCTGTTGAGTCAGTATCGGAAGTTAATGGAACAATTACC
GGCGTTGCGGACTAAGGTTTTGGATCCTGAGATTGAGATGACGCATATGTCCGAGGCTGTTCGA
AGTTACATTATGATACACAAGTCTGTAGCGGGATTTCTGCCGGATTTACTCGAGTCTTTGGATCG
AGATAAGGATAGGGAATTTTTGCTTTCCATCTTTCCTCGTATTCCAAAGATAGATAAGAAGACG
AAAGAGATCGTTGCATGGGAGCTACCGGGCGAGCCAGAGGAAGGCTATTTGTTCACAGCAAAC
AACCTTTTCCGGAATTTTCTTGAGAATCCGAAACATGTGCCACGATTTATGGCAGAGAGGATTCC
CGAGGATTGGACGCGTTTGCGCTCGGCCCCTGTGTGGTTTGATGGGATGGTGAAGCAATGGCAG
AAGGTGGTGAATCAGTTGGTTGAATCTCCAGGCGCCCTTTATCAGTTCAATGAAAGTTTTTTGCG
TCAAAGACTGCAAGCAATGCTTACGGTCTATAAGCGGGATCTCCAGACTGAGAAGTTTCTGAAG
CTGCTGGCTGATGTCTGTCGTCCACTCGTTGATTTTTTCGGACTTGGAGGAAATGATATTATCTTC
AAGTCATGTCAGGATCCAAGAAAGCAATGGCAGACTGTTATTCCACTCAGTGTCCCAGCGGATG
TTTATACAGCATGTGAAGGCTTGGCTATTCGTCTCCGCGAAACTCTTGGATTCGAATGGAAAAAT CTGAAAGGACACGAGCGGGAAGATTTTTTACGGCTGCATCAGTTGCTGGGAAATCTGCTGTTCT
GGATCAGGGATGCGAAACTTGTCGTGAAGCTGGAAGACTGGATGAACAATCCTTGTGTTCAGGA
GTATGTGGAAGCACGAAAAGCCATTGATCTTCCCTTGGAGATTTTCGGATTTGAGGTGCCGATTT
TTCTCAATGGCTATCTCTTTTCGGAACTGCGCCAGCTGGAATTGTTGCTGAGGCGTAAGTCGGTG
ATGACGTCTTACAGCGTCAAAACGACAGGCTCGCCAAATAGGCTCTTCCAGTTGGTTTACCTAC
CTCTAAACCCTTCAGATCCGGAAAAGAAAAATTCCAACAACTTTCAGGAGCGCCTCGATACACC
TACCGGTTTGTCGCGTCGTTTTCTGGATCTTACGCTGGATGCATTTGCTGGCAAACTCTTGACGG
ATCCGGTAACTCAGGAACTGAAGACGATGGCCGGTTTTTACGATCATCTCTTTGGCTTCAAGTTG
CCGTGTAAACTGGCGGCGATGAGTAACCATCCAGGATCCTCTTCCAAAATGGTGGTTCTGGCAA
AACCAAAGAAGGGTGTTGCTAGTAACATCGGCTTTGAACCTATTCCCGATCCTGCTCATCCTGTG
TTCCGGGTGAGAAGTTCCTGGCCGGAGTTGAAGTACCTGGAGGGGTTGTTGTATCTTCCCGAAG
ATACACCACTGACCATTGAACTGGCGGAAACGTCGGTCAGTTGTCAGTCTGTGAGTTCAGTCGC
TTTCGATTTGAAGAATCTGACGACTATCTTGGGTCGTGTTGGTGAATTCAGGGTGACGGCAGATC
AACCTTTCAAGCTGACGCCCATTATTCCTGAGAAAGAGGAATCCTTCATCGGGAAGACCTACCT
CGGTCTTGATGCTGGAGAGCGATCTGGCGTTGGTTTCGCGATTGTGACGGTTGACGGCGATGGG
TATGAGGTGCAGAGGTTGGGTGTGCATGAAGATACTCAGCTTATGGCGCTTCAGCAAGTCGCCA
GCAAGTCTCTTAAGGAGCCGGTTTTCCAGCCACTCCGTAAGGGCACATTTCGTCAGCAGGAGCG
CATTCGCAAAAGCCTCCGCGGTTGCTACTGGAATTTCTATCATGCATTGATGATCAAGTACCGAG
CTAAAGTTGTGCATGAGGAATCGGTGGGTTCATCCGGTCTGGTGGGGCAGTGGCTGCGTGCATT
TCAGAAGGATCTCAAAAAGGCTGATGTTCTGCCCAAGAAGGGTGGAAAAAATGGTGTAGACAA
AAAAAAGAGAGAAAGCAGCGCTCAGGATACCTTATGGGGAGGAGCTTTCTCGAAGAAGGAAGA
GCAGCAGATAGCCTTTGAGGTTCAGGCAGCTGGATCAAGCCAGTTTTGTCTGAAGTGTGGTTGG
TGGTTTCAGTTGGGGATGCGGGAAGTAAATCGTGTGCAGGAGAGTGGCGTGGTGCTGGACTGGA
ACCGGTCCATTGTAACCTTCCTCATCGAATCCTCAGGAGAAAAGGTATATGGTTTCAGTCCTCAG
CAACTGGAAAAAGGCTTTCGTCCTGACATCGAAACGTTCAAAAAAATGGTAAGGGATTTTATGA
GACCCCCCATGTTTGATCGCAAAGGTCGGCCGGCCGCGGCGTATGAAAGATTCGTACTGGGACG
TCGTCACCGTCGTTATCGCTTTGATAAAGTTTTTGAAGAGAGATTTGGTCGCAGTGCTCTTTTCA
TCTGCCCGCGGGTCGGGTGTGGGAATTTCGATCACTCCAGTGAGCAGTCAGCCGTTGTCCTTGCC
CTTATTGGTTACATTGCTGATAAGGAAGGGATGAGTGGTAAGAAGCTTGTTTATGTGAGGCTGG
CTGAACTTATGGCTGAGTGGAAGCTGAAGAAACTGGAGAGATCAAGGGTGGAAGAACAGAGCT
CGGCACAATAA
SE ATGGCAGAAAGCAAGCAGATGCAATGCCGCAAGTGCGGCGCAAGCATGAAGTATGAAGTAATT
Q GGATTGGGCAAGAAGTCATGCAGATATATGTGCCCAGATTGCGGCAATCACACCAGCGCGCGC
no AAGATTCAGAACAAGAAAAAGCGCGACAAAAAGTATGGATCCGCAAGCAAAGCGCAGAGCCA
N GAGGATAGCTGTGGCTGGCGCGCTTTATCCAGACAAAAAAGTGCAGACCATAAAGACCTACAA
O: ATACCCAGCGGATCTTAATGGCGAAGTTCATGACAGCGGCGTCGCAGAGAAGATTGCGCAGGC
38 GATTCAGGAAGATGAGATCGGCCTGCTTGGCCCGTCCAGCGAATACGCTTGCTGGATTGCTTCA
CAAAAACAGAGCGAGCCGTATTCAGTTGTAGATTTTTGGTTTGACGCGGTGTGCGCAGGCGGAG
TATTCGCGTATTCTGGCGCGCGCCTGCTTTCCACAGTCCTCCAGTTGAGTGGCGAGGAAAGCGTT
TTGCGCGCTGCTTTAGCATCTAGCCCGTTTGTAGATGACATTAATTTGGCGCAAGCGGAAAAGTT
CCTAGCCGTTAGCCGGCGCACAGGCCAAGATAAGCTAGGCAAGCGCATTGGAGAATGTTTTGCG
GAAGGCCGGCTTGAAGCGCTTGGCATCAAAGATCGCATGCGCGAATTCGTGCAAGCGATTGATG TGGCCCAAACCGCGGGCCAGCGGTTCGCGGCCAAGCTAAAGATATTCGGCATCAGTCAGATGCC
TGAAGCCAAGCAATGGAACAATGATTCCGGGCTCACTGTATGTATTTTGCCGGATTATTATGTCC
CGGAAGAAAACCGCGCGGACCAGCTGGTTGTTTTGCTTCGGCGCTTACGCGAGATCGCGTATTG
CATGGGAATTGAGGATGAAGCAGGATTTGAGCATCTAGGCATTGACCCTGGTGCTCTTTCCAAT
TTTTCCAATGGCAATCCAAAGCGAGGATTTCTCGGCCGCCTGCTCAATAATGACATTATAGCGCT
GGCAAACAACATGTCAGCCATGACGCCGTATTGGGAAGGCAGAAAAGGCGAGTTGATTGAGCG
CCTTGCATGGCTTAAACATCGCGCTGAAGGATTGTATTTGAAAGAGCCACATTTCGGCAACTCCT
GGGCAGACCACCGCAGCAGGATTTTCAGTCGCATTGCGGGCTGGCTTTCCGGATGCGCGGGCAA
GCTCAAGATTGCCAAGGATCAGATTTCAGGCGTGCGTACGGATTTGTTTCTGCTCAAGCGCCTTC
TGGATGCGGTACCGCAAAGCGCGCCGTCGCCGGACTTTATTGCTTCCATCAGCGCGCTGGATCG
GTTTTTGGAAGCGGCAGAAAGCAGCCAGGATCCGGCAGAACAGGTACGCGCTTTGTACGCGTTT
CATCTGAACGCGCCTGCGGTCCGATCCATCGCCAACAAGGCGGTACAGAGGTCTGATTCCCAGG
AGTGGCTTATCAAGGAACTGGATGCTGTAGATCACCTTGAATTCAACAAAGCATTTCCGTTTTTT
TCGGATACAGGAAAGAAAAAGAAGAAAGGAGCGAATAGCAACGGAGCGCCTTCTGAAGAAGA
ATACACGGAAACAGAATCCATTCAACAACCAGAAGATGCAGAGCAGGAAGTGAATGGTCAAGA
AGGAAATGGCGCTTCAAAGAACCAGAAAAAGTTTCAGCGCATTCCTCGATTTTTCGGGGAAGGG
TCAAGGAGTGAGTATCGAATTTTAACAGAAGCGCCGCAATATTTTGACATGTTCTGCAATAATA
TGCGCGCGATCTTTATGCAGCTAGAGAGTCAGCCGCGCAAGGCGCCTCGTGATTTCAAATGCTT
TCTGCAGAATCGTTTGCAGAAGCTTTACAAGCAAACCTTTCTCAATGCTCGCAGTAATAAATGCC
GCGCGCTTCTGGAATCCGTCCTTATTTCATGGGGAGAATTTTATACTTATGGCGCGAATGAAAAG
AAGTTTCGTCTGCGCCATGAAGCGAGCGAGCGCAGCTCGGATCCGGACTATGTGGTTCAGCAGG
CATTGGAAATCGCGCGCCGGCTTTTCTTGTTCGGATTTGAGTGGCGCGATTGCTCTGCTGGAGAG
CGCGTGGATTTGGTTGAAATCCACAAAAAAGCAATCTCATTTTTGCTTGCAATCACTCAGGCCG
AGGTTTCAGTTGGTTCCTATAACTGGCTTGGGAATAGCACCGTGAGCCGGTATCTTTCGGTTGCT
GGCACAGACACATTGTACGGCACTCAACTGGAGGAGTTTTTGAACGCCACAGTGCTTTCACAGA
TGCGTGGGCTGGCGATTCGGCTTTCATCTCAGGAGTTAAAAGACGGATTTGATGTTCAGTTGGA
GAGTTCGTGCCAGGACAATCTCCAGCATCTGCTGGTGTATCGCGCTTCGCGCGACTTGGCTGCGT
GCAAACGCGCTACATGCCCGGCTGAATTGGATCCGAAAATTCTTGTTCTGCCGGTTGGTGCGTTT
ATCGCGAGCGTAATGAAAATGATTGAGCGTGGCGATGAACCATTAGCAGGCGCGTATTTGCGTC
ATCGGCCGCATTCATTCGGCTGGCAGATACGGGTTCGTGGAGTGGCGGAAGTAGGCATGGATCA
GGGCACAGCGCTAGCATTCCAGAAGCCGACTGAATCAGAGCCGTTTAAAATAAAGCCGTTTTCC
GCTCAATACGGCCCAGTACTTTGGCTTAATTCTTCATCCTATAGCCAGAGCCAGTATCTGGATGG
ATTTTTAAGCCAGCCAAAGAATTGGTCTATGCGGGTGCTACCTCAAGCCGGATCAGTGCGCGTG
GAACAGCGCGTTGCTCTGATATGGAATTTGCAGGCAGGCAAGATGCGGCTGGAGCGCTCTGGAG
CGCGCGCGTTTTTCATGCCAGTGCCATTCAGCTTCAGGCCGTCTGGTTCAGGAGATGAAGCAGT
ATTGGCGCCGAATCGGTACTTGGGACTTTTTCCGCATTCCGGAGGAATAGAATACGCGGTGGTG
GATGTATTAGATTCCGCGGGTTTCAAAATTCTTGAGCGCGGTACGATTGCGGTAAATGGCTTTTC
CCAGAAGCGCGGCGAACGCCAAGAGGAGGCACACAGAGAAAAACAGAGACGCGGAATTTCTG
ATATAGGCCGCAAGAAGCCGGTGCAAGCTGAAGTTGACGCAGCCAATGAATTGCACCGCAAAT
ACACCGATGTTGCCACTCGTTTAGGGTGCAGAATTGTGGTTCAGTGGGCGCCCCAGCCAAAGCC
GGGCACAGCGCCGACCGCGCAAACAGTATACGCGCGCGCAGTGCGGACCGAAGCGCCGCGATC
TGGAAATCAAGAGGATCATGCTCGTATGAAATCCTCTTGGGGATATACCTGGGGCACCTATTGG GAGAAGCGCAAACCAGAGGATATTTTGGGCATCTCAACCCAAGTATACTGGACCGGCGGTATA
GGCGAGTCATGTCCCGCAGTCGCGGTTGCGCTTTTGGGGCACATTAGGGCAACATCCACTCAAA CTGAATGGGAAAAAGAGGAGGTTGTATTCGGTCGACTGAAGAAGTTCTTTCCAAGCTAG
SE ATGGAAAAGAGAATAAACAAGATACGAAAGAAACTATCGGCCGATAATGCCACAAAGCCTGTG
Q AGCAGGAGCGGCCCCATGAAAACACTCCTTGTCCGGGTCATGACGGACGACTTGAAAAAAAGA
no CTGGAGAAGCGTCGGAAAAAGCCGGAAGTTATGCCGCAGGTTATTTCAAATAACGCAGCAAAC
N AATCTTAGAATGCTCCTTGATGACTATACAAAGATGAAGGAGGCGATACTACAAGTTTACTGGC
O: AGGAATTTAAGGACGACCATGTGGGCTTGATGTGCAAATTTGCCCAGCCTGCTTCCAAAAAAAT
39 TGACCAGAACAAACTAAAACCGGAAATGGATGAAAAAGGAAATCTAACAACTGCCGGTTTTGC
ATGTTCTCAATGCGGTCAGCCGCTATTTGTTTATAAGCTTGAACAGGTGAGTGAAAAAGGCAAG
GCTTATACAAATTACTTCGGCCGGTGTAATGTGGCCGAGCATGAGAAATTGATTCTTCTTGCTCA
ATTAAAACCTGAAAAAGACAGTGACGAAGCAGTGACATACTCCCTTGGCAAATTCGGCCAGAG
GGCATTGGACTTTTATTCAATCCACGTAACAAAAGAATCCACCCATCCAGTAAAGCCCCTGGCA
CAGATTGCGGGCAACCGCTATGCAAGCGGACCTGTTGGCAAGGCCCTTTCCGATGCCTGTATGG
GCACTATAGCCAGTTTTCTTTCGAAATATCAAGACATCATCATAGAACATCAAAAGGTTGTGAA
GGGTAATCAAAAGAGGTTAGAGAGTCTCAGGGAATTGGCAGGGAAAGAAAATCTTGAGTACCC
ATCGGTTACACTGCCGCCGCAGCCGCATACGAAAGAAGGGGTTGACGCTTATAACGAAGTTATT
GCAAGGGTACGTATGTGGGTTAATCTTAATCTGTGGCAAAAGCTGAAGCTCAGCCGTGATGACG
CAAAACCGCTACTGCGGCTAAAAGGATTCCCATCTTTCCCTGTTGTGGAGCGGCGTGAAAACGA
AGTTGACTGGTGGAATACGATTAATGAAGTAAAAAAACTGATTGACGCTAAACGAGATATGGG
ACGGGTATTCTGGAGCGGCGTTACCGCAGAAAAGAGAAATACCATCCTTGAAGGATACAACTAT
CTGCCAAATGAGAATGACCATAAAAAGAGAGAGGGCAGTTTGGAAAACCCTAAGAAGCCTGCC
AAACGCCAGTTTGGAGACCTCTTGCTGTATCTTGAAAAGAAATATGCCGGAGACTGGGGAAAGG
TCTTCGATGAGGCATGGGAGAGGATAGATAAGAAAATAGCCGGACTCACAAGCCATATAGAGC
GCGAAGAAGCAAGAAACGCGGAAGACGCTCAATCCAAAGCCGTACTTACAGACTGGCTAAGGG
CAAAGGCATCATTTGTTCTTGAAAGACTGAAGGAAATGGATGAAAAGGAATTCTATGCGTGTGA
AATCCAACTTCAAAAATGGTATGGCGATCTTCGAGGCAACCCGTTTGCCGTTGAAGCTGAGAAT
AGAGTTGTTGATATAAGCGGGTTTTCTATCGGAAGCGATGGCCATTCAATCCAATACAGAAATC
TCCTTGCCTGGAAATATCTGGAGAACGGCAAGCGTGAATTCTATCTGTTAATGAATTATGGCAA
GAAAGGGCGCATCAGATTTACAGATGGAACAGATATTAAAAAGAGCGGCAAATGGCAGGGACT
ATTATATGGCGGTGGCAAGGCAAAGGTTATTGATCTGACTTTCGACCCCGATGATGAACAGTTG
ATAATCCTGCCGCTGGCCTTTGGCACAAGGCAAGGCCGCGAGTTTATCTGGAACGATTTGCTGA
GTCTTGAAACAGGCCTGATAAAGCTCGCAAACGGAAGAGTTATCGAAAAAACAATCTATAACA
AAAAAATAGGGCGGGATGAACCGGCTCTATTCGTTGCCTTAACATTTGAGCGCCGGGAAGTTGT
TGATCCATCAAATATAAAGCCTGTAAACCTTATAGGCGTTGACCGCGGCGAAAACATCCCGGCG
GTTATTGCATTGACAGACCCTGAAGGTTGTCCTTTACCGGAATTCAAGGATTCATCAGGGGGCC
CAACAGACATCCTGCGAATAGGAGAAGGATATAAGGAAAAGCAGAGGGCTATTCAGGCAGCAA
AGGAGGTAGAGCAAAGGCGGGCTGGCGGTTATTCACGGAAGTTTGCATCCAAGTCGAGGAACC
TGGCGGACGACATGGTGAGAAATTCAGCGCGAGACCTTTTTTACCATGCCGTTACCCACGATGC
CGTCCTTGTCTTTGAAAACCTGAGCAGGGGTTTTGGAAGGCAGGGCAAAAGGACCTTCATGACG
GAAAGACAATATACAAAGATGGAAGACTGGCTGACAGCGAAGCTCGCATACGAAGGTCTTACG
TCAAAAACCTACCTTTCAAAGACGCTGGCGCAATATACGTCAAAAACATGCTCCAACTGCGGGT TTACTATAACGACTGCCGATTATGACGGGATGTTGGTAAGGCTTAAAAAGACTTCTGATGGATG
GGCAACTACCCTCAACAACAAAGAATTAAAAGCCGAAGGCCAGATAACGTATTATAACCGGTA
TAAAAGGCAAACCGTGGAAAAAGAACTCTCCGCAGAGCTTGACAGGCTTTCAGAAGAGTCGGG
CAATAATGATATTTCTAAGTGGACCAAGGGTCGCCGGGACGAGGCATTATTTTTGTTAAAGAAA
AGATTCAGCCATCGGCCTGTTCAGGAACAGTTTGTTTGCCTCGATTGCGGCCATGAAGTCCACGC
CGATGAACAGGCAGCCTTGAATATTGCAAGGTCATGGCTTTTTCTAAACTCAAATTCAACAGAA
TTCAAAAGTTATAAATCGGGTAAACAGCCCTTCGTTGGTGCTTGGCAGGCCTTTTACAAAAGGA
GGCTTAAAGAGGTATGGAAGCCCAACGCC
SE ATGAAAAGGATAAATAAAATACGAAGGAGATTGGTAAAGGATAGCAACACGAAAAAAGCCGG
Q CAAAACCGGCCCTATGAAAACCTTGCTCGTTCGGGTTATGACACCTGACCTGAGAGAAAGGTTA
no GAGAATCTTCGCAAAAAGCCGGAAAACATTCCTCAGCCCATTTCAAATACTTCACGTGCAAATT
N TAAATAAACTCCTCACTGACTATACGGAAATGAAGAAAGCAATCCTGCATGTTTATTGGGAAGA
O: GTTCCAAAAAGACCCTGTCGGATTGATGAGCAGGGTTGCACAACCAGCGCCCAAGAATATTGAT 40 CAGAGAAAATTGATTCCGGTGAAGGACGGAAATGAGAGACTAACAAGTTCTGGATTTGCCTGTT
CTCAGTGCTGTCAACCCCTCTATGTTTATAAGCTTGAACAAGTGAATGACAAGGGTAAGCCCCA
TACAAATTACTTTGGCCGTTGTAATGTCTCCGAGCATGAACGTTTGATATTGCTCTCGCCGCATA
AACCGGAGGCAAATGACGAGCTAGTAACGTATTCGTTGGGGAAGTTCGGTCAAAGGGCATTGG
ACTTTTATTCAATCCACGTAACAAGAGAATCGAACCATCCTGTAAAGCCGCTAGAACAGATCGG
TGGCAATAGCTGCGCAAGTGGTCCCGTTGGTAAGGCTTTATCTGATGCCTGTATGGGAGCAGTA
GCCAGTTTCCTTACAAAGTACCAGGACATCATCCTCGAACACCAAAAGGTTATAAAAAAAAACG
AAAAGAGATTGGCAAATCTAAAGGATATAGCAAGTGCAAACGGGCTTGCATTTCCTAAAATCAC
TCTTCCACCGCAACCGCATACAAAAGAAGGGATTGAAGCTTATAACAATGTTGTTGCTCAGATA
GTGATCTGGGTAAACCTGAATCTTTGGCAGAAACTCAAAATTGGCAGGGATGAGGCAAAGCCCT
TACAGCGGCTTAAGGGTTTTCCGTCCTTCCCTCTTGTTGAACGCCAGGCGAATGAGGTTGATTGG
TGGGATATGGTCTGTAATGTCAAAAAGTTGATTAACGAAAAGAAAGAGGACGGGAAGGTCTTC
TGGCAAAATCTTGCTGGATATAAAAGGCAGGAAGCCTTGCTTCCATATCTTTCGTCTGAAGAAG
ACCGTAAAAAAGGAAAAAAGTTTGCGCGTTATCAGTTTGGTGACCTTTTGCTTCACCTTGAAAA
GAAACACGGTGAAGATTGGGGCAAAGTTTATGATGAGGCATGGGAAAGAATAGATAAAAAAGT
TGAAGGTCTGAGTAAGCACATAAAGTTGGAGGAAGAAAGAAGGTCTGAAGATGCTCAATCAAA
GGCTGCCCTCACTGATTGGCTCAGGGCAAAGGCCTCTTTTGTTATTGAAGGGCTCAAAGAAGCT
GATAAGGATGAGTTTTGCAGGTGTGAGTTAAAGCTTCAAAAGTGGTATGGAGATTTGAGAGGAA
AACCATTTGCTATAGAAGCAGAGAACAGCATTTTAGATATAAGCGGATTTTCTAAACAGTATAA
TTGTGCATTTATATGGCAGAAAGACGGCGTAAAGAAGTTAAATCTTTATTTAATAATAAATTACT
TCAAAGGTGGTAAGCTACGCTTCAAAAAAATCAAGCCAGAAGCTTTTGAAGCAAATAGGTTTTA
TACAGTAATTAATAAAAAAAGCGGTGAGATTGTGCCTATGGAGGTCAACTTCAATTTTGATGAC
CCGAATTTGATAATTCTGCCTTTGGCCTTTGGAAAAAGGCAGGGGAGGGAGTTTATCTGGAACG
ACCTATTGAGCCTTGAGACGGGTTCATTGAAACTCGCCAATGGCAGGGTTATTGAAAAAACGCT
CTATAACAGAAGGACGAGACAGGATGAACCAGCACTTTTTGTTGCCCTGACATTTGAAAGAAGA
GAGGTGCTTGACTCATCGAATATAAAACCGATGAATCTGATAGGAATAGACCGGGGAGAAAAT
ATCCCGGCAGTCATAGCATTAACAGACCCGGAAGGATGCCCCTTGTCAAGATTCAAAGATTCAT
TGGGCAATCCAACGCATATTTTGCGAATAGGAGAAAGTTATAAGGAAAAACAACGGACTATTC
AGGCTGCTAAAGAAGTTGAACAAAGGCGGGCAGGCGGATATTCGAGAAAATATGCATCAAAGG CGAAGAATCTGGCGGACGATATGGTAAGAAATACAGCTCGTGACCTCTTATATTATGCTGTTAC
TCAAGATGCAATGCTCATTTTTGAAAATCTTTCCCGCGGTTTTGGTAGACAAGGCAAGAGGACTT
TTATGGCGGAAAGGCAGTACACGAGGATGGAAGACTGGCTGACTGCAAAGCTTGCCTATGAAG
GTCTGCCATCAAAAACCTATCTTTCAAAGACTCTGGCACAGTATACCTCAAAGACATGTTCTAAT
TGTGGTTTTACAATCACAAGTGCAGATTATGACAGGGTGCTCGAAAAGCTCAAGAAGACGGCTA
CTGGATGGATGACTACAATCAATGGAAAAGAGTTAAAAGTTGAAGGACAGATAACATACTATA
ACCGGTATAAAAGGCAGAATGTGGTAAAAGACCTCTCTGTAGAGCTGGATAGACTTTCGGAAG
AGTCGGTAAATAATGATATTTCTAGTTGGACAAAAGGCCGCAGTGGTGAAGCTTTATCTCTGCT
AAAAAAGAGATTTAGTCACAGGCCGGTGCAGGAAAAGTTTGTTTGCCTGAACTGTGGTTTTGAA
ACCCATGCAGACGAACAAGCAGCACTGAATATTGCAAGGTCGTGGCTCTTTCTCCGTTCTCAAG
AATATAAGAAGTATCAAACCAATAAAACGACCGGAAATACTGACAAAAGGGCATTTGTTGAAA
CATGGCAATCCTTTTACAGAAAGAAGCTCAAAGAAGTATGGAAACCA
SE ATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTGACCG
Q ACCCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGCGCACGTATTTGCCGC
no CGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGTTTGGACCGACGCCAA
N CAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGTCCGATCGACCCACGCTTCTT
O: CATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCGCGGAGACGGATAAACATATCTTT 41 TTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGATTACCCGACTATCCATCACCTGAT
CGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGGCTGGTGTACCTTGCAGTGGCGTGG
TTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGGACAAGGATAATATTGGAGATGTGTTGT
CGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGGACAACGGTGTATCACCGTGGGTG
TGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAACTCAGTGAACGACAAATATAAA
GCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATAACTTCGATGCCAATATTTCGGA
AGATGGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCCTCAGGAA
TCGAACGATGCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTGGGTACGC
TTACACCAGATGAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTATCATGAA
ACATGCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCAGCACCAT
CACGATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAGAATACGACGATATTT
TCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGTATTCCTATCATGTGAAAGAGGT
GAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTTTTGTAAGTATGTCCTGGGCAA
GGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTTTGATGAGATGATTCAGCGTCTT
ACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAACCGCGTTATTCCTTATCAGTTATA
TTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTACCTGCCTTTCCTGACGCAGTGTG
GAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATCATGACGTTCCGTATTCCTTACTTC
GTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCTCGAACGAAAGGCCGGTAAGATTT
ATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCAGAAGAAGCGTTCATTCGCCGAAT
GACCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTACCGTTGGATTCGCTGATCTATGAGA
AATTTATGATTTTAAATGAAATCAATAATATTCGTATTGACGGCTACCCGATTAGTGTTGACGTT
AAACAGCAGGTTTTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATTCAGAACC
TGCTGCTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCACTATCCA
CTCAAACTATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGGCGTCCTGACCCGGGATG
ACGTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGATACTAAGCGTGTGCGTCTGTGGCT GAATAACAACTATGGTACTTTAACCGCCGACGATGTGAAACACATTTCGCGTCTGCGCAAACAC
GATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTGAAGGGTGTCCATAAGGAGACCGGTG
AACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATAACCTGATGCAGCTCCTTTCCGA
ATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAGGCGTATTATGCAAAAGCCCAGTTG
TCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACGCGGTGAAACGTCCGATTTACAGAAC
TCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACGGCCCCTAAACGCATTTTCATCGAA
ATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTACACGTCGCGAGCAGATCAAAAAC
CTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGATTTTCTGGAAAAGATCCTGGAAA
ATAAATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTTTACTTTGCACAATTAGGGCGCGAT
ATGTACACGGGCGATCCAATAAAGCTGGAGCACATCAAAGATCAGAGTTTCTATAACATAGACC
ATATTTACCCGCAGTCTATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGCAAAGCGA
AATTAACGGCGAGAAAAGCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAATGAAGCC
CCTTTGGGACGCTTACTATAATCATGGCCTGATCTCCTTAAAGAAATACCAGCGTCTAACGCGCT
CGACCCCGTTTACCGATGATGAAAAATGGGACTTTATTAATCGCCAGTTAGTGGAAACCCGTCA
ATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTTCCAGACACCGAAATTGTGTATTCGA
AGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTGTAAAAAGTCGCAATATTAATGA
TTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCAATGTGTACCATGAAAGATTCA
ATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAAACTAAAACTCTTTTTACCCACAGC
ATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGATCTCGGTCGTATTGTAAAAATGC
TGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTCTCCTTCGATCGCAAAGAAGGATTATT
TGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTCCCACGAAAAGCCGGTCTGGATGTCGTT
AAATACGGCGGATATGACAAATCTACCGCGGCCTATTACCTGCTGGTGAGGTTCACGCTCGAGG
ACAAGAAAACCCAGCACAAGCTGATGATGATTCCTGTAGAAGGCCTGTACAAGGCTCGCATTGA
TCATGACAAGGAATTTCTTACCGATTATGCGCAAACGACTATAAGCGAAATCCTACAGAAAGAT
AAACAGAAAGTGATCAATATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAATTCAATGA
TTAGTATCGATGGCTTCTATCTTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAGTTCTATGT
CACGCAATGGTTCCACTGATCGTCCCTCACAAAATCGAATGTTACATTAAAGCAATGGAAAGCT
TCGCCCGGAAGTTTAAAGAAAACAACAAGCTGCGCATCGTAGAAAAATTCGATAAAATCACCG
TTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCCAAAAACTGCAGCATAATCCCTATAATAA
GTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCTACTTTCACAAAACTGTCGCCGG
AGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAAAACATGCCGCAGTTCGGGTTG
CGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATCATGATTAGCGCTGACTTAACT
GGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGTCAGCTTCTGGTTTGTTCGTATC
CAAAAGTCAGAACTTACTGGAGTATCTCTAA
SE ATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAACTCA
Q TCCCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAGATGGCGACGAACAGC
no TGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCGGGACTTCATTAATAA
N AGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGCGGATGCCCTTAATAAAGAGGA
O: TGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAATCATTGTATCCAAATTTGAAACG 42 TTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAGATTATTGACGACGACAATGATG
TTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCATTTAAATACATATTTAAAAAAA
ACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACAAACCAGGACAAGCTGAAGATTAT TAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTTTGAAAACCGGAAAAACATTTTTA
CCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTCATGATAACTTCCCGAAATTCCTT
GATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCCGCAACTAATCGTGAAAGCAGATA
ACTATCTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTTTGGCAAACTATTTTACCGTGGG
CGCGTATGACTATTTCCTGTCTCAGAATGGTATAGATTTTTACAACAATATTATAGGTGGACTGC
CAGCGTTCGCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGTGCCAAAA
AGACAGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACTGTTCAA
ACAGATACTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGAGTCGGATGCTCAAGTT
ATTGACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAACAATGTTATTTTTAACTTATT
AAATCTTATCAAGAATATCGCTTTCTTAAGTGATGACGAACTGGACGGCATATTCATTGAAGGG
AAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTGGTCAAAATTACGTAACGACATTG
AGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAGAAGATCAAAACCAACAAAG
GGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTGTCGGAACTGAACTCGATTGTACA
TGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGCATAAGGTGGCTTCTGAGAAACTGG
TGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAATAATGAAGAGAAACAAAAAATCA
AAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACTTCTGATTTTTAACTGCAAAAGCTTC
AATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGCATCAATGAACTGAGTTCGGTCGTGT
ATCTGTATAATAAAACACGTAACTATTGCACTAAAAAACCCTATAACACGGACAAGTTCAAACT
CAATTTTAACAGTCCGCAGCTCGGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTGTCTGACT
CTTTTGTTTAAAAAAGACGACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAAATCAATT
TTGATGATACACAAGCAATCGCCGATAACACCGACAATTGCATCTTTAAAATGAATTATTTCCTA
CTTAAAGACGCAAAAAAATTTATCCCGAAATGTAGCATTCAGCTGAAAGAAGTCAAGGCCCATT
TTAAGAAATCTGAAGATGATTACATTTTGTCTGATAAAGAGAAATTTGCTAGCCCGCTGGTCATT
AAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGAAAGGGAAAAAAGGCAATATCAAGAAA
TTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGCAATTCTTTAAACGAATGGATTG
CTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTTTTGATATAACCACATTGAAA
AAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGATGTCGATAATCTGTGCTACAAAC
TGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTGATAGATAACGGCGACCTGTATCT
GTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACCGGCACCAAGAACCTTCATACGTTA
TATTTACAAGCTATATTCGATGAACGTAATCTGAACAATCCGACAATTATGCTGAATGGGGGAG
CAGAACTGTTCTATCGTAAAGAAAGTATTGAGCAGAAAAACCGTATCACACACAAAGCCGGTTC
AATTCTCGTGAATAAGGTGTGTAAAGACGGTACAAGCCTGGATGATAAGATACGTAATGAAATT
TATCAATATGAGAATAAATTTATTGATACCCTGTCTGATGAAGCTAAAAAGGTGTTACCGAATG
TCATTAAAAAGGAAGCTACCCATGACATTACAAAAGATAAACGTTTCACTAGTGACAAATTCTT
CTTTCACTGCCCCCTGACAATTAATTATAAGGAAGGCGATACCAAGCAGTTCAATAACGAAGTG
CTGAGTTTTCTGCGTGGAAATCCTGACATCAACATTATCGGCATTGACCGCGGAGAGCGTAATTT
AATCTATGTAACGGTTATAAACCAGAAAGGCGAGATTCTGGATTCGGTTTCATTCAATACCGTG
ACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGATTATGAAGAGAAATTGGCAGTCCGCGAG
AAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCAAAAATTGCGACACTAAAGGAA
GGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGATTAAACACAACGCGATCGTTGT
CTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGTTTATCAGAAAAAAGTGTTTATC
AAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTGTCAGCAAGAAGGAATCCGACTG GAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGATCAGTTTGAAAGCTTCGAAAAA
CTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCTGCATATACCTCAAAGATTGATCCGAC
CACGGGCTTCGCCAATGTTCTGAATCTGTCGAAGGTACGCAATGTTGATGCGATCAAAAGCTTTT
TTTCTAACTTCAACGAAATTAGTTATAGCAAGAAAGAAGCCCTTTTCAAATTCTCATTCGATCTG
GATTCACTGAGTAAGAAAGGCTTTAGTAGCTTTGTGAAATTTAGTAAGAGTAAATGGAACGTCT
ACACCTTTGGAGAACGTATCATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACAAAAGAA
TCAACTTGACCTTCGAGATGAAGAAGTTACTTAACGAGTATAAGGTTTCTTTTGATCTTGAAAAT
AACTTGATTCCGAATCTCACGAGTGCCAACCTGAAGGATACTTTTTGGAAAGAGCTATTCTTTAT
CTTCAAGACTACGCTGCAGCTCCGTAACAGCGTTACTAACGGTAAAGAAGATGTGCTCATCTCT
CCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAACGCATAACAAGACTCTTCCGCAAG
ATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGTCTGATGATACTCGAACGTAACAA
CCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCGATTTCAAACGTGGATTGGTTCGAG
TACGTGCAGAAACGTAGAGGCGTTCTGTAA
SE ATGAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCGAACTGA
Q AACCGCAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAGACCGTGACCG
no TGCGGAAAAATACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAAAATTCATCGACGA
N ACACCTGACCAACATGTCTCTGGACTGGAACTCTCTGAAACAGATCTCTGAAAAATACTACAAA
O: TCTCGTGAAGAAAAAGACAAAAAAGTTTTCCTGTCTGAACAGAAACGTATGCGTCAGGAAATCG 43 TTTCTGAATTCAAAAAAGACGACCGTTTCAAAGACCTGTTCTCTAAAAAACTGTTCTCTGAACTG
CTGAAAGAAGAAATCTACAAAAAAGGTAACCACCAGGAAATCGACGCGCTGAAATCTTTCGAC
AAATTCTCTGGTTACTTCATCGGTCTGCACGAAAACCGTAAAAACATGTACTCTGACGGTGACG
AAATCACCGCGATCTCTAACCGTATCGTTAACGAAAACTTCCCGAAATTCCTGGACAACCTGCA
GAAATACCAGGAAGCGCGTAAAAAATACCCGGAATGGATCATCAAAGCGGAATCTGCGCTGGT
TGCGCACAACATCAAAATGGACGAAGTTTTCTCTCTGGAATACTTCAACAAAGTTCTGAACCAG
GAAGGTATCCAGCGTTACAACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGTGAAAAAATGA
TGGGTCTGAACGACGCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTCGTATCCA
CATGACCCCGCTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCCGGACGTTT
TCACCGAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAAACGACAA
AGACGGTAACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGACACCGAA
CGTATCTACATCCGTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTGAATGGGGTAC
CCTGGGTGGTCTGATGCGTGAATACAAAGCGGACTCTATCAACGACATCAACCTGGAACGTACC
TGCAAAAAAGTTGACAAATGGCTGGACTCTAAAGAATTCGCGCTGTCTGACGTTCTGGAAGCGA
TCAAACGTACCGGTAACAACGACGCGTTCAACGAATACATCTCTAAAATGCGTACCGCGCGTGA
AAAAATCGACGCGGCGCGTAAAGAAATGAAATTCATCTCTGAAAAAATCTCTGGTGACGAAGA
ATCTATCCACATCATCAAAACCCTGCTGGACTCTGTTCAGCAGTTCCTGCACTTCTTCAACCTGT
TCAAAGCGCGTCAGGACATCCCGCTGGACGGTGCGTTCTACGCGGAATTCGACGAAGTTCACTC
TAAACTGTTCGCGATCGTTCCGCTGTACAACAAAGTTCGTAACTACCTGACCAAAAACAACCTG
AACACCAAAAAAATCAAACTGAACTTCAAAAACCCGACCCTGGCGAACGGTTGGGACCAGAAC
AAAGTTTACGACTACGCGTCTCTGATCTTCCTGCGTGACGGTAACTACTACCTGGGTATCATCAA
CCCGAAACGTAAAAAAAACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTACCGTAAA
ATGGTTTACAAACAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACCTCTACCA
AAGGTAAAAAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACAAACACA TCCGTGGTGACAAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAATCTATC
GAAAAACACAAAGACTGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTACGGTGACA
TCTCTGAATTCTACCTGGACGTTGAAAAACAGGGTTACCGTATGCACTTCGAAAACATCTCTGCG
GAAACCATCGACGAATACGTTGAAAAAGGTGACCTGTTCCTGTTCCAGATCTACAACAAAGACT
TCGTTAAAGCGGCGACCGGTAAAAAAGACATGCACACCATCTACTGGAACGCGGCGTTCTCTCC
GGAAAACCTGCAGGACGTTGTTGTTAAACTGAACGGTGAAGCGGAACTGTTCTACCGTGACAAA
TCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAATCCTGGTTAACCGTACCTACAACGGTC
GTACCCCGGTTCCGGACAAAATCCACAAAAAACTGACCGACTACCACAACGGTCGTACCAAAG
ACCTGGGTGAAGCGAAAGAATACCTGGACAAAGTTCGTTACTTCAAAGCGCACTACGACATCAC
CAAAGACCGTCGTTACCTGAACGACAAAATCTACTTCCACGTTCCGCTGACCCTGAACTTCAAA
GCGAACGGTAAAAAAAACCTGAACAAAATGGTTATCGAAAAATTCCTGTCTGACGAAAAAGCG
CACATCATCGGTATCGACCGTGGTGAACGTAACCTGCTGTACTACTCTATCATCGACCGTTCTGG
TAAAATCATCGACCAGCAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAAACTGAAC
CAGCGTGAAATCGAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATCAAAGAC
CTGAAAGAAGGTTACCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAGTACAACG
CGATCGTTGTTATGGAAGAACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAACA
GATCTACCAGAAATTCGAAAACATGCTGATCGACAAAATGAACTACCTGGTTTTCAAAGACGCG
CCGGACGAATCTCCGGGTGGTGTTCTGAACGCGTACCAGCTGACCAACCCGCTGGAATCTTTCG
CGAAACTGGGTAAACAGACCGGTATCCTGTTCTACGTTCCGGCGGCGTACACCTCTAAAATCGA
CCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTTCTAAAACCAACGCGCAGGAACGTAAA
GAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAGACGGTGGTATCTTCGCGTTCGC
GTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACCACAAAAACGTTTGGACCGCGTACACC
AACGGTGAACGTATGCGTTACATCAAAGAAAAAAAACGTAACGAACTGTTCGACCCGTCTAAA
GAAATCAAAGAAGCGCTGACCTCTTCTGGTATCAAATACGACGGTGGTCAGAACATCCTGCCGG
ACATCCTGCGTTCTAACAACAACGGTCTGATCTACACCATGTACTCTTCTTTCATCGCGGCGATC
CAGATGCGTGTTTACGACGGTAAAGAAGACTACATCATCTCTCCGATCAAAAACTCTAAAGGTG
AATTCTTCCGTACCGACCCGAAACGTCGTGAACTGCCGATCGACGCGGACGCGAACGGTGCGTA
CAACATCGCGCTGCGTGGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCCGGACTCT
GAAAAAATGGCGAAACTGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACCCGTGGT
GACTAA
SE ATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGCTTTGA
Q GTTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAACGAGGGCTTGAAACGT
no GTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAGGAAATAATTGACGAT
N TACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCGGAACAGGTGAGTAAAGATGCTC
O: TTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAAAAGTTGAGGAAAGGGAAAAAG 44 CGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAAAAGTGGTGAAATGCTTCTCGG
ACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAACTGATTAAGGAAGACCTGATAA
ATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACGGTCGAAACGTTTAACAACTTCAC
CACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTACTCCAAAGATGATCACGCCACC
GCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTTTGACAACGTGATTAGCTTCAAT
AAGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGAAAGAGGATTTAGAAGTAGATT
ATGATCTGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTTCGTGACCCAAGCGGGCATAGA TCAGTATAATTATCTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGATGAA
TGAGCAAATTAATCTGTTCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCCCAAACTG
ATCCCCCTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCTAAACAATT
TGAAAGTGATCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACTGCCAGGATAAATTC
ACCGTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAAGGTCTTCATCAAAA
CCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTACAGCGTCTTTTCCGATGCACTG
AACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGGCTTTTGAGAAACTACCGGCC
CATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCCAGCCTGGACGCGGAAAAAC
AACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGATGAATTATATTCTCGCTTCATT
AAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTCGAACTGGAAGCCCTGTCATCTAA
GCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCAGGAAGGCTTCGAGCAGATCA
AGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACACTTTGCAAAGCCGTTGTATCTT
GTTAAGGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAGTCCTTTTATGAAGCGTTTGAAA
TGGCGTACCAAGAACTTGAATCGTTAATCATTCCTATCTATAACAAAGCGCGGAGCTATCTGTC
GCGGAAACCTTTCAAGGCCGATAAATTCAAGATTAATTTTGACAACAACACGCTACTGAGCGGA
TGGGATGCGAACAAGGAAACTGCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTATATTACC
TTGGAATTATGCCGAAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCGAGCGAGGATTCAGAG
AAACTGAAACAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAGGATGGTGAAAGTTAC
TTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAGATGTTACCGAAAGTCTTTTTTAG
CAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTTACGCATTCGCAACACAGCCTCTC
ACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTTTAACCTGAATGATTGTCA
TAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAATGGGGGTCTTTTGGCTTTA
CGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTCTACCGGGAAGTAGAAAACCAGGG
TTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACAGAGCCAGGTGGAACAGGGTAAT
CTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCTACAGCAAAGGCAAACCAAACCTGC
ATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCTGAATAACGTAGTGGCGAAGTTGAA
CGGTGAAGCGGAAATCTTCTTCCGTCGTCACTCCATTAAGGCCTCTGATAAAGTTGTCCATCCGG
CAAATCAGGCCATTGATAATAAGAATCCACACACGGAAAAAACGCAGTCAACCTTTGAATATG
ACCTCGTTAAAGACAAACGCTACACGCAAGATAAGTTCTTTTTCCACGTCCCAATCAGCCTCAA
CTTTAAAGCACAAGGGGTTTCAAAGTTTAATGATAAAGTCAATGGGTTCCTCAAGGGCAACCCG
GATGTCAACATTATAGGTATAGACAGGGGCGAACGCCATCTGCTTTACTTTACCGTAGTGAATC
AGAAAGGTGAAATACTGGTTCAGGAATCATTAAATACCTTGATGTCGGACAAAGGGCACGTTAA
TGATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACGTGATGCTGCGCGTAAATCGTGGAC
CACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCATGTGGTACACAAACTGGC
GCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGAATTTTGGCTTTAAACGCG
GCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGCGCTTATAGATAAACTGAA
ACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGCATTCTGTTTTACGTGCCGG
CAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAACTTCCTGGACCTGAGATATCA
GTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAATGCCATTCGTTTTAACAGCGTTCAGA
ATTACTTTGAATTCGAAATTGACTATAAAAAACTTACTCCGAAACGTAAAGTCGGAACCCAAAG
TAAATGGGTAATTTGTACGTATGGCGATGTCAGGTATCAGAACCGTCGGAATCAAAAAGGTCAT TGGGAGACCGAAGAAGTGAACGTGACCGAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCAAAA
ACTACAACTGTGATCGATTACGCAAATGATGATAACCTGATAGATGTGATTTTAGAGCAGGATA
ATCAAATCGGAAGATGATTTTATTCTGTCACCGGTCAAGAATGAGCAGGGTGAATTCTATGATA GTAGGAAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACGCCAATGGCGCCTATCATATCGCGC TCAAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGGTAAAACCCTGAATCTGGC TATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTATCAGGAATGA
SE ATGCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGTTGTCGA
Q AAACATTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGGCCTCAGGCTA
no CTTAGCGGAAGACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGTTATTGGATGACAAC
N CATCGTGCCTTCCTGAATCGTGTGTTGCCACAAATCGATATGGATTGGCACCCGATTGCGGAGG
O: CCTTTTGTAAGGTACATAAAAACCCTGGTAATAAAGAACTTGCCCAGGATTACAACCTTCAGTT 45 GTCAAAGCGCCGTAAGGAGATCAGCGCATATCTTCAGGATGCAGATGGCTATAAAGGCCTGTTC
GCGAAGCCCGCCTTAGACGAAGCTATGAAAATTGCGAAAGAAAACGGGAACGAAAGTGATATT
GAGGTTCTCGAAGCGTTTAACGGTTTTAGCGTATACTTCACCGGTTATCATGAGTCACGCGAGA
ACATTTATAGCGATGAGGATATGGTGAGCGTAGCCTACCGAATTACTGAGGATAATTTCCCGCG
CTTTGTCTCAAACGCTTTGATCTTTGATAAATTAAACGAAAGCCATCCGGATATTATCTCTGAAG
TATCGGGCAATCTTGGAGTTGATGACATTGGTAAGTACTTTGACGTGTCGAACTATAACAATTTT
CTTTCCCAGGCCGGTATAGATGACTACAATCACATTATTGGCGGCCATACAACCGAAGACGGAC
TGATACAAGCGTTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTGAAAAAAT
TCAGTTCAAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACATCCCGAAA
CAGTTTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATAGAGAAAT
CCGAAACAGTAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGCGCGGGAT
CTTTGTCAATAAAAAGAACTTGCGCATACTGAGCAACAAACTGATAGGAGATTGGGACGCGATC
GAAACCGCATTGATGCATAGTTCTTCATCAGAAAACGATAAGAAAAGCGTATATGATAGCGCGG
AGGCTTTTACGTTGGATGACATCTTTTCAAGCGTGAAAAAATTTTCTGATGCCTCTGCCGAAGAT
ATTGGCAACAGGGCGGAAGACATCTGTAGAGTGATAAGTGAGACGGCCCCTTTTATCAACGATC
TGCGAGCGGTGGACCTGGATAGCCTGAACGACGATGGTTATGAAGCGGCCGTCTCAAAAATTCG
GGAGTCGCTGGAGCCTTATATGGATCTTTTCCATGAACTGGAAATTTTCTCGGTTGGCGATGAGT
TCCCAAAATGCGCAGCATTTTACAGCGAACTGGAGGAAGTCAGCGAACAGCTGATCGAAATTAT
TCCGTTATTCAACAAGGCGCGTTCGTTCTGCACCCGGAAACGCTATAGCACCGATAAGATTAAA
GTGAACTTAAAATTCCCGACCTTGGCGGACGGGTGGGACCTGAACAAAGAGAGAGACAACAAA
GCCGCGATTCTGCGGAAAGACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAAAGATCTGT
CAAGCATTAGGACCAGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAACTGTTAC
CGAGTCCAGTAAAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAAAATATG
GCCTGACAGATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCGTTTGA
TCTTGGCTTTTGCCATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCCAGGCTGGG
ATGTGTTCGATTTCAAGTTTCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCAATGAAGAT
GTGGCCGGAGCCGGTTACTATATGAGTCTGAGAAAAATTCCGTGCAGCGAAGTGTACCGTCTGT
TAGACGAGAAATCGATTTATCTATTTCAAATTTATAACAAAGATTACTCTGAAAATGCACATGG
TAATAAGAACATGCATACCATGTACTGGGAGGGTCTCTTTTCCCCGCAAAACCTGGAGTCGCCC
GTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTTCGAAAATCCTCAATCCCTAACGATGCCAA AACAGTACACCCGAAAGGCTCAGTGCTGGTTCCACGTAATGATGTTAACGGTCGGCGTATTCCA
GATTCAATCTACCGCGAACTGACACGCTATTTTAACCGTGGCGATTGCCGAATCAGTGACGAAG
CCAAAAGTTATCTTGACAAGGTTAAGACTAAAAAAGCGGACCATGACATTGTGAAAGATCGCC
GCTTTACCGTGGATAAAATGATGTTCCACGTCCCGATTGCGATGAACTTTAAGGCGATCAGTAA
ACCGAACTTAAACAAAAAAGTCATTGATGGCATCATTGATGATCAGGATCTGAAAATCATTGGT
ATTGATCGTGGCGAGCGGAACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAATATCTTAT
ATCAGGATTCTCTTAACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGCGCGAATAT
GACAACAAGGAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAGGAAGGC
TATCTGTCATTAGCGGTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATCATCGTTAT
GGAGGACCTGAACCACGGATTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTATCAGAA
ATTTGAGAGTATGCTGATTAACAAACTGGGCTATATGGTGTTAAAAGACAAGTCAATTGACCAA
TCAGGTGGCGCGCTGCATGGATACCAGCTGGCGAACCATGTTACCACCTTAGCATCAGTTGGAA
AGCAGTGTGGGGTTATCTTTTATATACCGGCAGCGTTCACTAGTAAAATAGATCCGACCACTGG
TTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGTAGCGAGCATGCGTGAATTCTTTTCCA
AAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAATTCGCATTCACCTTTGATTACTTGGAT
TACAACGTGAAGAGCGAATGTGGTCGTACGCTGTGGACCGTTTACACCGTTGGTGAGCGCTTCA
CCTATTCCCGTGTGAACCGCGAATATGTACGTAAAGTCCCCACCGATATTATCTATGATGCCCTC
CAGAAAGCAGGCATTAGCGTCGAAGGAGACTTAAGGGACAGAATTGCCGAAAGCGATGGCGAT
ACGCTGAAGTCTATTTTTTACGCATTCAAATACGCGCTAGATATGCGCGTTGAGAATCGCGAGG
AAGACTACATTCAATCACCTGTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAAATGCTGGT
AAAAGCCTCCCACAAGATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGTATTCTTC
AATTACGCATGCTGTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGCTGATAAC
CAATAAAGCCTGGCTGACATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAG
SE ATGGATAGTTTAAAAGATTTTACGAATCTATATCCCGTAAGCAAAACTCTTCGTTTTGAACTGAA
Q ACCTGTTGGAAAAACGTTGGAGAATATCGAGAAAGCGGGCATCCTGAAAGAAGACGAGCACCG
no TGCCGAAAGCTACAGGCGTGTCAAAAAGATTATCGATACTTATCACAAAGTGTTCATTGATAGC
N AGTCTGGAGAACATGGCAAAAATGGGCATAGAAAATGAAATCAAAGCAATGCTGCAGAGCTTT
O: TGCGAGCTCTACAAGAAAGATCACCGAACGGAAGGTGAAGATAAAGCACTGGACAAAATTCGC 46 GCCGTTCTTCGCGGTCTGATTGTTGGCGCGTTCACCGGCGTGTGCGGCCGCCGTGAAAACACCGT
GCAGAACGAAAAGTACGAGTCGCTGTTCAAAGAAAAACTGATAAAAGAAATTTTGCCTGACTTT
GTGCTTTCGACCGAAGCGGAATCCCTGCCATTTTCTGTCGAAGAAGCGACCCGCAGCCTGAAAG
AATTTGACTCATTCACAAGTTACTTTGCAGGCTTCTACGAAAACCGTAAAAACATCTACAGCAC
GAAGCCACAGAGCACGGCTATTGCTTATCGCCTGATTCATGAGAACCTGCCGAAGTTCATCGAT
ACTTTTCTGCGGGTGGGTACATTAAAAAAGATGAGCGGCTGGAAGACATCTTCAGTCTAAACTA
TTATATCCACGTTCTGTCGCAGGCAGGCATTGAGAAATATAATGCGCTGATTGGTAAGATTGTC
ACAGAAGGCGATGGTGAGATGAAAGGTCTTAATGAACATATCAATCTGTATAACCAGCAGCGT
GGTCGCGAAGACCGTCTTCCACTGTTCCGCCCACTGTATAAACAGATCCTGTCTGACCGGGAAC
AGCTGTCCTACCTGCCGGAAAGCTTTGAAAAGGATGAAGAGCTACTTCGCGCATTAAAGGAGTT
TTACGACCATATTGCGGAAGACATTTTGGGTAGAACGCAGCAACTGATGACGTCAATTTCTGAA
TACGATCTGAGTAGAATCTACGTTAGGAATGATAGCCAGCTGACCGATATTAGCAAAAAAATGC
TGGGCGACTGGAACGCTATCTATATGGCACGTGAACGTGCATATGATCATGAACAAGCACCGAA ACGTATAACCGCGAAATATGAGCGTGATCGCATTAAGGCGCTAAAGGGAGAAGAAAGCATCTC
ACTCGCAAACCTGAACTCCTGTATCGCTTTCTTAGATAACGTGCGCGATTGTCGCGTCGACACGT
ATCTGTCAACCCTTGGGCAGAAAGAGGGTCCACATGGTCTGTCTAACCTGGTGGAAAATGTCTT
TGCGAGTTACCATGAAGCGGAACAACTGCTGTCTTTTCCATACCCCGAAGAAAACAATCTAATA
CAGGATAAAGATAACGTGGTGTTAATCAAAAACCTGCTGGACAACATCAGCGATCTGCAACGTT
TCCTGAAACCTTTGTGGGGTATGGGTGACGAGCCAGACAAAGACGAACGTTTTTATGGTGAGTA
TAATTATATACGTGGCGCCCTTGACCAAGTTATTCCGCTGTATAACAAAGTACGGAACTATCTGA
CCCGTAAGCCATATTCTACCCGTAAAGTGAAACTGAACTTTGGCAACTCGCAACTGCTGTCGGG
TTGGGATCGTAACAAAGAAAAAGATAATAGTTGTGTTATCCTGCGTAAGGGACAAAATTTTTAC
CTCGCGATTATGAACAACAGACACAAGCGTTCATTTGAAAATAAGGTTCTGCCGGAGTATAAAG
AGGGCGAACCGTACTTCGAGAAAATGGATTATAAGTTCTTACCAGACCCTAATAAGATGTTACC
GAAAGTCTTTCTTTCGAAAAAAGGCATAGAAATCTATAAGCCGTCCCCGAAATTACTCGAACAG
TATGGGCACGGGACCCACAAGAAAGGGGATACTTTTAGCATGGACGATCTGCACGAACTGATC
TACAGCCACATACGAGAATGTGTCTAGTTTTTATCGGGAAGTGGAGGATCAGGGCTACAAACTT AGTTTTCGTAAAGTTTCAGAGAGTTATGTTTATAGTTTAATTGATCAGGGAAAACTTTACCTGTT CCAGATCTACAACAAAGATTTCTCGCCATGTAGTAAGGGTACCCCGAATCTGCATACACTCTATT GGAGAATGTTATTCGATGAGCGTAACTTAGCGGATGTCATTTATAAATTGGACGGGAAAGCAGA
AAAAAAAAATCCCGCCAGAAAAAAGGAGAAGAGTCTCTGTTTGAATATGATCTGGTGAAAGAC
CGTCATTACACTATGGATAAATTTCAATTTCATGTTCCAATTACAATGAACTTCAAATGTTCGGC
GGGTTCCAAAGTAAATGATATGGTAAACGCCCATATTCGCGAAGCGAAAGATATGCATGTTATT
GGCATCGATAGAGGCGAAAGAAACCTGCTTTATATTTGCGTAATTGACAGCCGTGGTACCATTC
TGGACCAGATCTCTTTAAACACCATCAATGACATCGATTATCACGACCTGTTGGAGTCTCGGGA
CAAGGACCGCCAGCAGGAGCGCCGTAATTGGCAGACAATTGAAGGCATAAAAGAATTAAAACA
GGGTTACCTTTCCCAGGCCGTACACCGCATAGCGGAACTGATGGTGGCCTACAAAGCCGTAGTT
GCCCTGGAAGACTTGAATATGGGGTTTAAACGTGGCCGTCAAAAAGTCGAGAGCAGCGTGTATC
AGCAATTTGAAAAACAGTTGATTGACAAGTTGAATTATTTGGTTGATAAAAAGAAACGTCCAGA
AGATATTGGTGGCTTACTGCGTGCATACCAGTTTACGGCACCTTTTAAGTCCTTCAAAGAAATGG
GTAAACAGAACGGGTTTCTGTTTTACATCCCGGCCTGGAATACATCCAACATCGATCCTACCACC
GGGTTTGTCAACCTGTTTCATGCACAATATGAAAACGTGGATAAAGCGAAGAGTTTTTTCCAAA
AATTCGATAGTATTTCGTATAACCCAAAAAAAGATTGGTTTGAGTTTGCGTTCGATTATAAAAAT
TTTACTAAAAAGGCTGAGGGATCCCGCAGTATGTGGATCCTCTGCACCCATGGCAGTCGTATTA
AAAATTTTCGTAATTCGCAAAAGAATGGCCAGTGGGACTCGGAAGAGTTTGCCCTGACCGAAGC
GTTCAAATCGCTGTTTGTACGCTACGAAATTGACTACACAGCAGATCTGAAAACAGCCATCGTC
GATGAAAAACAGAAAGATTTTTTTGTAGATCTCCTAAAACTGTTCAAACTGACTGTTCAGATGC
GCAATTCCTGGAAAGAGAAAGACCTGGATTATCTGATTAGCCCGGTAGCCGGTGCTGATGGACG
ATTTTTCGATACTCGTGAAGGTAACAAAAGTCTCCCGAAAGATGCTGATGCCAATGGTGCATAC
AATATTGCATTAAAGGGGCTATGGGCCTTGCGACAGATCCGCCAGACCAGCGAAGGCGGCAAG
CTGAAATTGGCCATATCGAATAAGGAATGGTTACAATTTGTTCAGGAACGTAGCTATGAAAAAG
ATTGA
ATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAAACGCTGC Q GCAATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAACGGAATAATTAAAGA no AGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGATGACTACTACCGCGGA
N TTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTGGACTAGCCTGTTCGAAAAAATGGA
O: AATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTAAGGAACAGACAGAGTATCGGAA
47 AGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGAACATGTTTAGCGCCAAACTGATT
AGTGACATATTACCTGAATTTGTCATCCACAACAATAATTATTCGGCATCAGAGAAAGAGGAAA
AAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACTAGCTTTAAAGATTACTTCAAGAACCGT
GCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCTGCCATCGCATCGTCAACGACAATG
CAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATCGTAAAATCGCTGAGCAATGACGA
TATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAGAAATGAGTCTGGAAGAAATATAT
TCTTACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCATTAGCTTCTATAATGATATCTGTG
GGAAAGTGAATTCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATTTATACAA
ACTTCAGAAACTTCACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCCGTATAAA
TTTGAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGCAGCAAAC
ATATAGTCGAAAGATTACGCAAAATCGGCGATAACTATAACGGCTACAACCTGGATAAAATTTA
TATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACCTACCGCGACTGGGAAACAATTAAT
ACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTAACGGTAAAAGTAAAGCCGACAAAG
TAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCACCGAAATAAATGAACTAGTGTCAA
ACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTATATACATGAGATTAGCCATAT
CTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCGGAAATTCACCTAGTTGAATCCGAG
CTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCATGAATGCGTTTCATTGGTGTTCGG
TTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTTTTATGCGGAACTGGAGGAGATTTA
CGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTCGTAACTACGTTACCCAGAAACCGT
ACAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGACGTTAGCAGACGGTTGGTCAAAGTC
CAAAGAGTATTCTAATAACGCTATCATACTGATGCGCGACAATCTGTATTATCTGGGCATCTTTA
ATGCGAAGAATAAACCGGACAAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGGGTGACT
ACAAAAAGATGATTTATAATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTTTCTTGAG
CAGCAAGACGGGGGTGGAAACGTATAAACCGAGCGCCTATATCCTAGAGGGGTATAAACAGAA
TAAACATATCAAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGATCTGATCGACTACTTCA
AAAACTGTATTGCAATTCATCCCGAGTGGAAAAACTTCGGTTTTGATTTTAGCGACACCAGTACT
TATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTACAAGGTTACAAGATTGATTGGACAT
ACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTCAACTGTATCTGTTCCAGATATA
CTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTTAACGGCGAAGCGGAAATCTTCT
TCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAAAGGCTCGATTTTAGTCAACCGTAC
CTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAAATTGTGCGTAAAAATATTCCGGA
AAACATTTATCAGGAGCTGTACAAATACTTCAACGATAAAAGCGACAAAGAGCTGTCTGATGAA
GCAGCCAAACTGAAGAATGTAGTGGGACACCACGAGGCAGCGACGAATATAGTCAAGGACTAT
CGCTACACGTATGATAAATACTTCCTTCATATGCCTATTACGATCAATTTCAAAGCCAATAAAAC
GGGTTTTATTAATGATAGGATCTTACAGTATATCGCTAAAGAAAAAGACTTACATGTGATCGGC
ATTGATCGGGGCGAGCGTAACCTGATCTACGTGTCCGTGATTGATACTTGTGGTAATATAGTTGA
ACAGAAAAGCTTTAACATTGTAAACGGCTACGACTATCAGATAAAACTGAAACAACAGGAGGG CGCTAGACAGATTGCGCGGAAAGAATGGAAAGAAATTGGTAAAATTAAAGAGATCAAAGAGGG
CTACCTGAGCTTAGTAATCCACGAGATCTCTAAAATGGTAATCAAATACAATGCAATTATAGCG
ATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAAGGTCGAACGGCAAGTTTACCAGA
AATTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAAAGATATTTCGATTACCGAG
AATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGATAAACTTAAAAACGTGGGTC
ATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCAAAATTGATCCGACCACCGGC
TTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAAACGTGAATTCATTAAAAAAT
TTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTTACATTTGACTACAATAACTTT
ATTACGCAAAACACGGTCATGAGCAAATCATCGTGGAGTGTGTATACATACGGCGTGCGCATCA
AACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAAAGTGATACCATTGACATAACCAAAGATAT
GGAGAAAACGTTGGAAATGACGGACATTAACTGGCGCGATGGCCACGATCTTCGTCAAGACATT
ATAGATTATGAAATTGTTCAGCACATATTCGAAATTTTCCGTTTAACAGTGCAAATGCGTAACTC
CTTGTCTGAACTGGAGGACCGTGATTACGATCGTCTCATTTCACCTGTACTGAACGAAAATAAC
ATTTTTTATGACAGCGCGAAAGCGGGGGATGCACTTCCTAAGGATGCCGATGCAAATGGTGCGT
ATTGTATTGCATTAAAAGGGTTATATGAAATTAAACAAATTACCGAAAATTGGAAAGAAGATGG
TAAATTTTCGCGCGATAAACTCAAAATCAGCAATAAAGATTGGTTCGACTTTATCCAGAATAAG
CGCTATCTCTAA
SE ATGACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGATTCCGCA
Q GGGGAAAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAACAGAGGGCTGA
no ATCTTACCAAGAAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCATTGATTTAGCCTTGT
N CTAACGCCAAATTAACTCACTTGGAAACGTATCTGGAGTTATACAACAAATCTGCCGAAACTAA
O: GAAAGAACAGAAATTTAAAGACGATTTGAAAAAAGTACAGGACAATCTGCGTAAAGAAATTGT 48 CAAATCCTTCAGTGACGGCGATGCTAAAAGCATTTTTGCCATTCTGGACAAAAAAGAGTTGATT
ACTGTGGAATTAGAAAAGTGGTTTGAAAACAATGAGCAGAAAGACATCTACTTCGATGAGAAA
TTCAAAACTTTCACCACCTATTTTACAGGATTTCATCAAAACCGGAAGAACATGTACTCAGTAG
AACCGAACTCCACGGCCATTGCGTATCGTTTGATCCATGAGAATCTGCCTAAATTTCTGGAGAAT
GCGAAAGCCTTTGAAAAGATTAAGCAGGTCGAATCGCTGCAAGTGAATTTTCGTGAACTCATGG
GCGAATTTGGTGACGAAGGTCTAATCTTCGTTAACGAACTGGAAGAAATGTTTCAGATTAATTA
CTACAATGACGTGCTATCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAGGGTTCACA
AAAAACGATATAAAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACAAAGGAC
AAAAAGGATAGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGAATCTCCC
TGAGCTTTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTAT
AAGATTAACTTACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTGCTCTTGA
TCCGTCAAACCATTGAAAATCTATCATCGTTCGATACGCAGAAAATCTACCTCAAAAACGATAC
TCACCTGACTACGATCTCTCAGCAGGTTTTCGGGGATTTTAGTGTATTTTCAACAGCTCTGAACT
ACTGGTATGAAACCAAAGTCAATCCGAAATTCGAGACGGAATATTCTAAGGCCAACGAAAAAA
AACGTGAGATTCTTGATAAAGCTAAAGCCGTATTTACTAAACAGGATTACTTTTCTATTGCTTTC
CTGCAGGAAGTTTTATCGGAGTATATCCTGACCCTGGATCATACATCTGATATCGTTAAAAAAC
ACAGCAGCAATTGCATCGCTGACTATTTCAAAAACCACTTTGTCGCCAAAAAAGAAAACGAAAC
AGACAAGACTTTCGATTTCATTGCTAACATCACCGCAAAATACCAGTGTATTCAGGGTATCTTGG
AAAACGCCGACCAATACGAAGACGAACTGAAACAAGATCAGAAGCTGATCGATAATTTAAAAT
TCTTCTTAGATGCAATCCTGGAGCTGCTGCACTTCATCAAACCGCTTCATTTAAAGAGCGAGTCC ATTACCGAAAAGGACACCGCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCT
GACTCCGCTGTATAATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGAAAAAATT
AAACTGAACTTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGTGACTAC
CTCACCACCATCCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAACATAATA
AAGCATTCCAGAAATTTCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAACTCTTACC
TGGAGTTAACAAAATGTTGCCGAAAGTATTTTTTAGTAATAAGAACATCGCGTACTTTAACCCGT
CCAAAGAACTGCTGGAAAATTATAAAAAGGAGACGCATAAGAAAGGGGATACCTTTAACCTGG
AACATTGCCATACCTTAATAGACTTCTTCAAGGATTCCCTGAATAAACACGAGGATTGGAAATA
TTTCGATTTTCAGTTTAGTGAGACCAAGTCATACCAGGATCTTAGCGGCTTTTATCGCGAAGTAG
AACACCAAGGCTATAAAATTAACTTCAAAAACATCGACAGCGAATACATCGACGGTTTAGTTAA
CGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAAAGGATTTTAGCCCGTTCTCTAAAGGCAAAC
CAAATATGCATACGTTGTACTGGAAAGCACTGTTTGAAGAGCAAAACCTGCAGAATGTGATTTA
TAAACTGAACGGCCAAGCTGAGATTTTTTTCCGTAAAGCCTCGATTAAACCGAAAAATATCATC
CTTCATAAGAAGAAAATAAAGATCGCTAAAAAACACTTCATAGATAAAAAAACCAAAACCTCC
GAAATAGTGCCTGTTCAAACAATTAAGAACTTGAATATGTACTACCAGGGCAAGATATCGGAAA
AGGAGTTGACTCAAGACGATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAAAAAACAA
GACGATCGACATCATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATT
ACTATGAACTTCAAAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATACCTGCAGA
ATAACCCGGAAGTCAAAATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACTTGACCTT
AATCGATCAGCAAGGCAACATCTTAAAACAAGAATCGCTGAATACCATTACGGATTCAAAGATT
AGCACCCCGTATCATAAGCTGCTCGATAACAAGGAGAATGAGCGCGACCTGGCCCGTAAAAAC
TGGGGCACGGTGGAAAACATTAAGGAGTTAAAGGAGGGTTATATTTCCCAGGTAGTGCATAAG
ATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTGTCATGGAAGACTTAAACTTCGGATTTA
AACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGTTAGAAAAAATGCTGATTGACA
AATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAATTGGGTGGATTATACAACGCCCT
CCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGGGTAAACAGTCAGGCTTTCTTTTTTATG
TTCCTGCGTGGAACACATCCAAAATCGACCCTACAACCGGCTTCGTCAATTACTTCTATACTAAA
TATGAAAACGTCGACAAAGCAAAAGCATTCTTTGAAAAGTTCGAAGCAATACGTTTTAACGCTG
AGAAAAAATATTTCGAGTTCGAAGTCAAGAAATACTCAGACTTTAACCCCAAAGCTGAGGGCAC
ACAGCAAGCGTGGACAATCTGCACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAAAGATCA
GAATAACAAATTTGTTTCAACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAA
AATCAGATTGTTTATGGCGACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGATGATAAAG
CATTTTTCGAAACATTATTATATTGGTTCAAAATGACACTGCAGATGCGCAATAGTGAGACGCG
TACAGATATTGATTATCTTATCAGCCCGGTCATGAACGACAACGGTACTTTTTACAACTCCAGAG
ACTATGAAAAACTTGAGAATCCAACTCTCCCCAAAGATGCTGATGCGAACGGTGCTTATCACAT
CGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCGACCAAGCCGATCTGACTAAGAAAGTTGA
CCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAAAGAACAAATGA
SE ATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTG
Q ACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAATC
no TGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTAGACAGGCGCAAT
N TGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGAAAGACCCAGGCTTTT
O: TCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATATAAATGGTAACTGTCC CGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAGGATTACCATAAAAAGTTCC
CAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACCCCAGACATAAGACTAGT
TTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTTCCGGGGATATCAACG
AAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAAGAATGAAGAATTGG
ATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTATCCTGAAGGATAATAT
GCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGA
AAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAG
AATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGG
TGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGAC
TGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTA
CGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAA
GAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCTTACATCGGGAT
GACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTTCGAAGGAAGAATTTTA
TGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGAATACGAATATTTGAAA
GAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGATAATGGGGTAATTCCA
TATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGCGATAAAATTGACCTTAT
CAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATACCCTATTATGTGGGCCCA
CTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGTCCGCAAATCCAATGAA
AAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCTGCGGAGAAATTTATTC
GAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATT
ATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGT
GTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAA
AAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGA
TGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAA
CTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGACAAGAAAT
TGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGAAAATTTG
TGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATTACCGCACCTG
ATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAATCGAACAATAATCTTAT
GCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTACAACATGGGCAAACAG
ACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCTTCTGTCAAGAGACAAA
TTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAGGAGTCTCCTAAACGTGT
GTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAGTCAAGAAAGAAGCAGTT
AATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTTAAAGAATTGGGGGACCA
AGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACGCAAAAGGGACGATGTAT
GTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGACAATACAAAATATGACATAGACCAT
ATATATCCCCAATCAAAAACGATGGACGATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAA
TATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGT
TCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAA
CACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAACGAGACA
ATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGTCTATGTC
AAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAAAGGTAAGAGAAGTGAAC
GATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAACTCATATTATGTTAAATT TACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATATAACCTGAAAAAGAT
GTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGTAAGAAAGG
GACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGGCAGGTTCAT
GAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGTCAAATTGCAATA
AAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTATAATAAAGCTGCGGGT
GCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTATTAGAACTATAGAATTTA
TACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCAATCGCGTTAAATTTTCTAGAGAA
AGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAGATTAAGATTGACACCTTGTTCGAT
GTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGCGATAGACTTTTGTTTAAGTGCGCTA
ATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGAAAAAAATAGTTAAGTTTATTCAGAG
AAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGATGGTATCGACAATGAAGTTTTAAT
GGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCGTATATCGAATCAGGTTAAGTGAA
CAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCTATCACTGGAAGACAAATCC
TCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCTAATTTAAAAATGAT
TGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGTAACAAAATA
TCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATATAA
SE ATGTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAATGCGTCC
Q GGTTGGTAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACAAACTGATCCA
no GAAAAAATACGGTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAATTCATCGAAGAAGC
N GCTGACCGGTGTTGAACTGATCGGTCTGGACGAAAACTTCCGTACCCTGGTTGACTGGCAGAAA
O: GACAAAAAAAACAACGTTGCGATGAAAGCGTACGAAAACTCTCTGCAGCGTCTGCGTACCGAA 50 ATCGGTAAAATCTTCAACCTGAAAGCGGAAGACTGGGTTAAAAACAAATACCCGATCCTGGGTC
TGAAAAACAAAAACACCGACATCCTGTTCGAAGAAGCGGTTTTCGGTATCCTGAAAGCGCGTTA
CGGTGAAGAAAAAGACACCTTCATCGAAGTTGAAGAAATCGACAAAACCGGTAAATCTAAAAT
CAACCAGATCTCTATCTTCGACTCTTGGAAAGGTTTCACCGGTTACTTCAAAAAATTCTTCGAAA
CCCGTAAAAACTTCTACAAAAACGACGGTACCTCTACCGCGATCGCGACCCGTATCATCGACCA
GAACCTGAAACGTTTCATCGACAACCTGTCTATCGTTGAATCTGTTCGTCAGAAAGTTGACCTGG
CGGAAACCGAAAAATCTTTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCTACAACAAAT
GCCTGCTGCAGGACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGAAAAACG
GTGAAAAACTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAGACCAGA
AAATCCCGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCCTGGACGA
AATCAAAAACGACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGAAGAAAA
AACCAAAATCGTTAAAAAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACGACCTGGCG
CAGATCTACATCTCTCAGGAAGCGTTCAACACCATCTCTAACAAATGGACCTCTGAAACCGAAA
CCTTCGCGAAATACCTGTTCGAAGCGATGAAATCTGGTAAACTGGCGAAATACGAAAAAAAAG
ACAACTCTTACAAATTCCCGGACTTCATCGCGCTGTCTCAGATGAAATCTGCGCTGCTGTCTATC
TCTCTGGAAGGTCACTTCTGGAAAGAAAAATACTACAAAATCTCTAAATTCCAGGAAAAAACCA
ACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAATTCAACTCTCTGTTCTCTGACAAAATCAAC
ACCAAAGACGGTGAAACCAAACAGGTTGGTTACTACCTGTTCGCGAAAGACCTGCACAACCTGA
TCCTGTCTGAACAGATCGACATCCCGAAAGACTCTAAAGTTACCATCAAAGACTTCGCGGACTC
TGTTCTGACCATCTACCAGATGGCGAAATACTTCGCGGTTGAAAAAAAACGTGCGTGGCTGGCG
GAATACGAACTGGACTCTTTCTACACCCAGCCGGACACCGGTTACCTGCAGTTCTACGACAACG CGTACGAAGACATCGTTCAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGTACTC
TGAAGAAAAATGGAAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAAAAACAA
AGAATCTGACAACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCTGATCACC
AAAGGTCACAACAAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATCGAAGGTG
GTAAATACGAAAAAATCGTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGAAAGTTTG
CTTCTCTGCGAAAGGTCTGGAATTCTTCCGTCCGTCTGAAGAAATCCTGCGTATCTACAACAACG
CGGAATTCAAAAAAGGTGAAACCTACTCTATCGACTCTATGCAGAAACTGATCGACTTCTACAA
AGACTGCCTGACCAAATACGAAGGTTGGGCGTGCTACACCTTCCGTCACCTGAAACCGACCGAA
GAATACCAGAACAACATCGGTGAATTCTTCCGTGACGTTGCGGAAGACGGTTACCGTATCGACT
TCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAACGAAAAAGGTGAACTGCACCTGTTCGA
AATCCACAACAAAGACTGGAACCTGGACAAAGCGCGTGACGGTAAATCTAAAACCACCCAGAA
AAACCTGCACACCCTGTACTTCGAATCTCTGTTCTCTAACGACAACGTTGTTCAGAACTTCCCGA
TCAAACTGAACGGTCAGGCGGAAATCTTCTACCGTCCGAAAACCGAAAAAGACAAACTGGAAT
CTAAAAAAGACAAAAAAGGTAACAAAGTTATCGACCACAAACGTTACTCTGAAAACAAAATCT
TCTTCCACGTTCCGCTGACCCTGAACCGTACCAAAAACGACTCTTACCGTTTCAACGCGCAGATC
AACAACTTCCTGGCGAACAACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAAAAACACC
TGGTTTACTACTCTGTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGAACGAACTG
AACGGTGTTAACTACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCGCGTCGT
GACTGGCAGGACGTTCAGGGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTTGTTCGTA
AACTGGCGGACCTGGCGATCAAACACAACGCGATCATCATCCTGGAAGACCTGAACATGCGTTT
CAAACAGGTTCGTGGTGGTATCGAAAAATCTATCTACCAGCAGCTGGAAAAAGCGCTGATCGAC
AAACTGTCTTTCCTGGTTGACAAAGGTGAAAAAAACCCGGAACAGGCGGGTCACCTGCTGAAA
GCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAGAAAATGGGTAAACAGACCGGTATCATCT
TCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTACCGGTTGGCGTCCGCACCTGTAC
CTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCGCGAAATTCACCAAAATCGAATTCG
TTAACGACCGTTTCGAACTGACCTACGACATCAAAGACTTCCAGCAGGCGAAAGAATACCCGAA
CAAAACCGTTTGGAAAGTTTGCTCTAACGTTGAACGTTTCCGTTGGGACAAAAACCTGAACCAG
AACAAAGGTGGTTACACCCACTACACCAACATCACCGAAAACATCCAGGAACTGTTCACCAAAT
ACGGTATCGACATCACCAAAGACCTGCTGACCCAGATCTCTACCATCGACGAAAAACAGAACAC
CTCTTTCTTCCGTGACTTCATCTTCTACTTCAACCTGATCTGCCAGATCCGTAACACCGACGACTC
TGAAATCGCGAAAAAAAACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTTCTTCGAC
TCTCGTAAAGACAACGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTACAACATC
GCGCGTAAAGGTATCGTTATCCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAAAACTGCG
AAAAAATGAAATGGGGTGACCTGTACGTTTCTAACATCGACTGGGACAACTTCGTT
SE ATGGAAAACTTTAAAAACTTATACCCAATAAACAAAACGTTACGTTTTGAACTGCGTCCATATG
Q GTAAAACACTGGAAAACTTTAAAAAAAGCGGTTTGTTGGAGAAGGATGCATTTAAAGCGAACT
no CTCGCAGATCCATGCAGGCCATCATTGATGAAAAATTTAAAGAGACGATCGAAGAACGTCTGAA
N ATACACGGAATTTAGTGAGTGTGACTTAGGTAATATGACTTCTAAAGATAAGAAAATCACCGAT
O: AAGGCGGCGACCAACCTGAAGAAGCAAGTCATTTTATCTTTTGATGATGAAATCTTTAACAACT 51 ATTTGAAACCGGACAAAAACATCGATGCCTTATTTAAAAATGACCCTTCGAACCCGGTGATTAG
CACATTTAAGGGCTTCACAACGTATTTTGTCAATTTTTTTGAAATTCGTAAACATATCTTCAAAG
GAGAATCAAGCGGCTCTATGGCTTATCGCATTATTGATGAAAACCTGACGACCTATTTGAATAA CATTGAAAAAATCAAAAAACTGCCAGAGGAATTAAAGTCTCAGTTAGAAGGCATCGACCAGAT
CGACAAACTCAACAACTATAACGAATTTATTACGCAGTCTGGTATCACCCACTATAATGAAATT
ATTGGAGGTATCAGTAAATCAGAAAATGTGAAAATCCAAGGGATTAATGAAGGCATTAACCTCT
ATTGCCAGAAAAATAAAGTGAAACTGCCGAGGCTGACTCCACTCTACAAAATGATCCTGTCTGA
CCGCGTCTCGAATAGCTTTGTCCTGGACACAATTGAAAACGATACGGAATTGATTGAGATGATA
AGCGATCTGATTAACAAAACCGAAATTTCACAGGATGTAATCATGAGTGATATACAAAACATCT
TTATTAAATATAAACAGCTTGGTAATCTGCCTGGAATTAGCTATTCGTCAATAGTGAACGCAATC
TGTTCTGATTATGATAACAATTTTGGCGACGGTAAGCGTAAAAAGAGTTATGAAAACGATAGGA
AAAAACACCTGGAAACTAACGTGTATTCTATCAACTATATCAGCGAACTGCTTACGGACACCGA
TGTGAGTTCAAACATTAAGATGCGGTATAAGGAGCTTGAACAGAACTACCAGGTCTGTAAGGAA
AACTTCAACGCAACCAACTGGATGAACATTAAAAATATCAAACAATCCGAGAAGACCAACTTA
ATCAAAGATCTGCTGGATATTTTGAAGAGCATTCAACGTTTTTATGATCTGTTCGATATCGTTGA
TGAAGACAAGAATCCTAGTGCGGAATTTTATACATGGCTGTCTAAAAATGCGGAGAAATTGGAT
TTCGAATTCAATTCTGTTTATAATAAATCACGCAACTATTTGACCCGCAAACAATACAGCGACA
AAAAGATAAAACTAAACTTCGACAGTCCGACATTGGCAAAGGGCTGGGACGCAAATAAGGAAA
TCGATAACTCTACGATAATTATGCGTAAGTTCAATAATGATCGAGGTGATTATGATTATTTCTTA
GGCATTTGGAACAAAAGCACCCCGGCCAACGAAAAGATAATTCCACTGGAGGATAACGGTCTG
TTCGAAAAAATGCAGTACAAATTATATCCGGATCCAAGCAAGATGCTTCCAAAGCAGTTTCTGT
CTAAAATTTGGAAAGCTAAGCATCCGACCACCCCAGAATTTGACAAGAAATATAAGGAAGGCC
GCCATAAGAAAGGTCCCGATTTTGAAAAAGAATTCTTGCACGAACTGATTGATTGCTTTAAACA
TGGCTTAGTCAATCACGATGAAAAGTATCAAGATGTTTTTGGATTCAATTTGAGAAACACAGAA
GACTACAATTCCTACACTGAGTTTCTCGAAGATGTGGAACGATGTAATTATAATCTGAGCTTTAA
CAAAATCGCGGACACCTCGAATCTGATTAACGATGGTAAACTTTATGTTTTCCAGATCTGGAGC
AAGGATTTCTCTATTGACAGCAAAGGCACCAAAAACCTGAACACCATTTACTTTGAAAGTCTCT
TCAGCGAAGAAAATATGATTGAGAAAATGTTTAAACTTAGCGGTGAAGCTGAAATATTCTATCG
CCCGGCAAGCCTGAACTATTGCGAAGACATTATCAAAAAGGGTCATCACCACGCTGAACTGAAA
GATAAATTTGATTATCCTATCATAAAAGATAAACGCTATAGCCAGGATAAATTTTTTTTTCATGT
TCCTATGGTCATTAACTACAAATCAGAAAAACTGAACTCTAAAAGCCTCAATAATCGAACCAAT
GAAAACCTTGGGCAGTTTACCCATATAATTGGAATTGATCGCGGAGAGCGTCATTTAATCTACC
TGACCGTAGTCGATGTATCGACCGGCGAGATCGTCGAGCAGAAGCACTTAGACGAGATTATCAA
CACTGATACCAAAGGTGTTGAGCATAAGACGCACTATCTAAACAAGCTGGAGGAAAAATCGAA
AACCCGTGATAATGAACGTAAGAGTTGGGAGGCAATTGAAACGATTAAAGAACTGAAGGAGGG
TTATATCAGCCACGTAATCAATGAAATTCAAAAACTGCAGGAAAAATACAACGCCCTGATCGTT
ATGGAAAATCTGAATTACGGTTTCAAAAATTCTCGCATCAAAGTGGAAAAACAGGTATATCAGA
AGTTCGAGACGGCATTAATTAAAAAGTTTAATTACATCATTGACAAAAAAGATCCGGAAACTTA
TATTCATGGCTATCAGCTGACGAACCCGATCACCACACTGGATAAAATTGGTAACCAGTCTGGT
ATCGTGCTTTACATCCCTGCCTGGAATACCAGTAAAATCGATCCGGTAACGGGATTCGTCAACCT
TCTATATGCAGATGACCTCAAATATAAGAATCAGGAACAGGCCAAGTCTTTTATTCAGAAAATC
GATAACATTTACTTTGAGAATGGGGAATTCAAATTTGATATTGATTTTTCTAAATGGAACAATCG
TTATAGTATATCTAAGACGAAATGGACGCTCACCTCGTACGGAACCCGAATCCAGACATTCCGC
AATCCGCAGAAGAACAATAAATGGGACAGCGCCGAGTATGATCTCACTGAAGAATTCAAATTG
ATTCTGAACATTGACGGTACCCTGAAAAGCCAGGATGTCGAAACCTATAAAAAATTTATGTCTC TGTTCAAGCTGATGCTGCAACTTAGGAACTCTGTTACCGGCACTGATATCGATTATATGATCTCC
CCTGTCACTGATAAAACAGGTACGCATTTCGATTCGCGCGAAAATATCAAAAATCTGCCCGCAG ATGCCGACGCCAATGGGGCGTACAATATTGCACGCAAGGGTATCATGGCGATCGAAAACATTAT GAATGGTATCAGCGACCCGCTGAAAATCTCAAACGAAGATTATTTGAAATATATCCAAAACCAG CAGGAATAA
SE ATGACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCGAACTGAT
Q CCCGCAGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAGACAAAGCGCG
no TAACGACCACTACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAACCTACGCGGACCA
N GTGCCTGCAGCTGGTTCAGCTGGACTGGGAAAACCTGTCTGCGGCGATCGACTCTTACCGTAAA
O: GAAAAAACCGAAGAAACCCGTAACGCGCTGATCGAAGAACAGGCGACCTACCGTAACGCGATC 52 CACGACTACTTCATCGGTCGTACCGACAACCTGACCGACGCGATCAACAAACGTCACGCGGAAA
TCTACAAAGGTCTGTTCAAAGCGGAACTGTTCAACGGTAAAGTTCTGAAACAGCTGGGTACCGT
TACCACCACCGAACACGAAAACGCGCTGCTGCGTTCTTTCGACAAATTCACCACCTACTTCTCTG
GTTTCTACGAAAACCGTAAAAACGTTTTCTCTGCGGAAGACATCTCTACCGCGATCCCGCACCGT
ATCGTTCAGGACAACTTCCCGAAATTCAAAGAAAACTGCCACATCTTCACCCGTCTGATCACCG
CGGTTCCGTCTCTGCGTGAACACTTCGAAAACGTTAAAAAAGCGATCGGTATCTTCGTTTCTACC
TCTATCGAAGAAGTTTTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACCCAGATCGACCT
GTACAACCAGCTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGGTCTGAAC
GAAGTTCTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCTCTGCCGC
ACCGTTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCATCCTGGAA
GAATTCAAATCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGCTGCGTAACG
AAAACGTTCTGGAAACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCGACCTGACCCACAT
CTTCATCTCTCACAAAAAACTGGAAACCATCTCTTCTGCGCTGTGCGACCACTGGGACACCCTGC
GTAACGCGCTGTACGAACGTCGTATCTCTGAACTGACCGGTAAAATCACCAAATCTGCGAAAGA
AAAAGTTCAGCGTTCTCTGAAACACGAAGACATCAACCTGCAGGAAATCATCTCTGCGGCGGGT
AAAGAACTGTCTGAAGCGTTCAAACAGAAAACCTCTGAAATCCTGTCTCACGCGCACGCGGCGC
TGGACCAGCCGCTGCCGACCACCCTGAAAAAACAGGAAGAAAAAGAAATCCTGAAATCTCAGC
TGGACTCTCTGCTGGGTCTGTACCACCTGCTGGACTGGTTCGCGGTTGACGAATCTAACGAAGTT
GACCCGGAATTCTCTGCGCGTCTGACCGGTATCAAACTGGAAATGGAACCGTCTCTGTCTTTCTA
CAACAAAGCGCGTAACTACGCGACCAAAAAACCGTACTCTGTTGAAAAATTCAAACTGAACTTC
CAGATGCCGACCCTGGCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGGTGCGATCCTGT
TCGTTAAAAACGGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCT
GTCTTTCGAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTACTTCCCG
GACGCGGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAGA
CCCACACCACCCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCAAAGAAAT
CTACGACCTGAACAACCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACGCGAAAAAAAC
CGGTGACCAGAAAGGTTACCGTGAAGCGCTGTGCAAATGGATCGACTTCACCCGTGACTTCCTG
TCTAAATACACCAAAACCACCTCTATCGACCTGTCTTCTCTGCGTCCGTCTTCTCAGTACAAAGA
CCTGGGTGAATACTACGCGGAACTGAACCCGCTGCTGTACCACATCTCTTTCCAGCGTATCGCG
GAAAAAGAAATCATGGACGCGGTTGAAACCGGTAAACTGTACCTGTTCCAGATCTACAACAAA
GACTTCGCGAAAGGTCACCACGGTAAACCGAACCTGCACACCCTGTACTGGACCGGTCTGTTCT
CTCCGGAAAACCTGGCGAAAACCTCTATCAAACTGAACGGTCAGGCGGAACTGTTCTACCGTCC GAAATCTCGTATGAAACGTATGGCGCACCGTCTGGGTGAAAAAATGCTGAACAAAAAACTGAA
AGACCAGAAAACCCCGATCCCGGACACCCTGTACCAGGAACTGTACGACTACGTTAACCACCGT
CTGTCTCACGACCTGTCTGACGAAGCGCGTGCGCTGCTGCCGAACGTTATCACCAAAGAAGTTT
CTCACGAAATCATCAAAGACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTCCGATCACC
CTGAACTACCAGGCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTACCTGAAAG
AACACCCGGAAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACATCACCGT
TATCGACTCTACCGGTAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTTCGACTAC
CAGAAAAAACTGGACAACCGTGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCTGTTGTT
GGTACCATCAAAGACCTGAAACAGGGTTACCTGTCTCAGGTTATCCACGAAATCGTTGACCTGA
TGATCCACTACCAGGCGGTTGTTGTTCTGGAAAACCTGAACTTCGGTTTCAAATCTAAACGTACC
GGTATCGCGGAAAAAGCGGTTTACCAGCAGTTCGAAAAAATGCTGATCGACAAACTGAACTGC
CTGGTTCTGAAAGACTACCCGGCGGAAAAAGTTGGTGGTGTTCTGAACCCGTACCAGCTGACCG
ACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTGGTTTCCTGTTCTACGTTCCGGCGCCG
TACACCTCTAAAATCGACCCGCTGACCGGTTTCGTTGACCCGTTCGTTTGGAAAACCATCAAAA
ACCACGAATCTCGTAAACACTTCCTGGAAGGTTTCGACTTCCTGCACTACGACGTTAAAACCGG
TGACTTCATCCTGCACTTCAAAATGAACCGTAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTCA
TGCCGGCGTGGGACATCGTTTTCGAAAAAAACGAAACCCAGTTCGACGCGAAAGGTACCCCGTT
CATCGCGGGTAAACGTATCGTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTACCGTGACC
TGTACCCGGCGAACGAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTC
TAACATCCTGCCGAAACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGTTGCGCTG
ATCCGTTCTGTTCTGCAGATGCGTAACTCTAACGCGGCGACCGGTGAAGACTACATCAACTCTCC
GGTTCGTGACCTGAACGGTGTTTGCTTCGACTCTCGTTTCCAGAACCCGGAATGGCCGATGGAC
GCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCAGCTGCTGCTGAACCACCTGAAA
GAATCTAAAGACCTGAAACTGCAGAACGGTATCTCTAACCAGGACTGGCTGGCGTACATCCAGG
AACTGCGTAACTA
SE ATGGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTGCGGGTC
Q TGTGGAAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGCTGTCTCTGCT
no GCGTCAGGAAAACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGGAATGCGACAAAAC
N CGCGGAAGAATGCAAAGCGGAACTGCTGGAACGTCTGCGTGCGCGTCAGGTTGAAAACGGTCA
O: CCGTGGTCCGGCGGGTTCTGACGACGAACTGCTGCAGCTGGCGCGTCAGCTGTACGAACTGCTG
53 GTTCCGCAGGCGATCGGTGCGAAAGGTGACGCGCAGCAGATCGCGCGTAAATTCCTGTCTCCGC
TGGCGGACAAAGACGCGGTTGGTGGTCTGGGTATCGCGAAAGCGGGTAACAAACCGCGTTGGG
TTCGTATGCGTGAAGCGGGTGAACCGGGTTGGGAAGAAGAAAAAGAAAAAGCGGAAACCCGTA
AATCTGCGGACCGTACCGCGGACGTTCTGCGTGCGCTGGCGGACTTCGGTCTGAAACCGCTGAT
GCGTGTTTACACCGACTCTGAAATGTCTTCTGTTGAATGGAAACCGCTGCGTAAAGGTCAGGCG
GTTCGTACCTGGGACCGTGACATGTTCCAGCAGGCGATCGAACGTATGATGTCTTGGGAATCTT
GGAACCAGCGTGTTGGTCAGGAATACGCGAAACTGGTTGAACAGAAAAACCGTTTCGAACAGA
AAAACTTCGTTGGTCAGGAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACATGAAAGA
AGCGTCTCCGGGTCTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGCGCTGCGT
GGTTCTGACAAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGACCTGTACG
ACGCGGAAATCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACCTGTTCGC
GAAACTGGCGGAACCGGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGACCCGTTAC GCGGTTTACAACTCTATCCTGCGTAAACTGAACCACGCGAAAATGTTCGCGACCTTCACCCTGCC
GGACGCGACCGCGCACCCGATCTGGACCCGTTTCGACAAACTGGGTGGTAACCTGCACCAGTAC
ACCTTCCTGTTCAACGAATTCGGTGAACGTCGTCACGCGATCCGTTTCCACAAACTGCTGAAAGT
TGAAAACGGTGTTGCGCGTGAAGTTGACGACGTTACCGTTCCGATCTCTATGTCTGAACAGCTG
GACAACCTGCTGCCGCGTGACCCGAACGAACCGATCGCGCTGTACTTCCGTGACTACGGTGCGG
AACAGCACTTCACCGGTGAATTCGGTGGTGCGAAAATCCAGTGCCGTCGTGACCAGCTGGCGCA
CATGCACCGTCGTCGTGGTGCGCGTGACGTTTACCTGAACGTTTCTGTTCGTGTTCAGTCTCAGT
CTGAAGCGCGTGGTGAACGTCGTCCGCCGTACGCGGCGGTTTTCCGTCTGGTTGGTGACAACCA
CCGTGCGTTCGTTCACTTCGACAAACTGTCTGACTACCTGGCGGAACACCCGGACGACGGTAAA
CTGGGTTCTGAAGGTCTGCTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCT
GCGTCTATCTCTGTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAAGGTCGTGT
TCCGTTCTTCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGC
TGAAACTGCCGGGTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTCAGCGTA
CCCTGCGTCAGCTGCGTACCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTTCTGAAGAC
GTTGGTCGTCGTGAACGTTCTTGGGCGAAACTGATCGAACAGCCGGTTGACGCGGCGAACCACA
TGACCCCGGACTGGCGTGAAGCGTTCGAAAACGAACTGCAGAAACTGAAATCTCTGCACGGTAT
CTGCTCTGACAAAGAATGGATGGACGCGGTTTACGAATCTGTTCGTCGTGTTTGGCGTCACATG
GGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCGTTCTGGTGAACGTCCGAAAATCCGTGGTT
ACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAACAGATCGAATACCTGGAACGTCAGTACAA
ATTCCTGAAATCTTGGTCTTTCTTCGGTAAAGTTTCTGGTCAGGTTATCCGTGCGGAAAAAGGTT
CTCGTTTCGCGATCACCCTGCGTGAACACATCGACCACGCGAAAGAAGACCGTCTGAAAAAACT
GGCGGACCGTATCATCATGGAAGCGCTGGGTTACGTTTACGCGCTGGACGAACGTGGTAAAGGT
AAATGGGTTGCGAAATACCCGCCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAATACCAGT
TCAACAACGACCGTCCGCCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTT
CCAGGAACTGATCAACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGCGGCGTTC
TCTTCTCGTTTCGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTG
CACCCAGGAACACAACCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGAACACACC
CTGGACGCGTGCCCGCTGCGTGCGGACGACCTGATCCCGACCGGTGAAGGTGAAATCTTCGTTT
CTCCGTTCTCTGCGGAAGAAGGTGACTTCCACCAGATCCACGCGGACCTGAACGCGGCGCAGAA
CCTGCAGCAGCGTCTGTGGTCTGACTTCGACATCTCTCAGATCCGTCTGCGTTGCGACTGGGGTG
AAGTTGACGGTGAACTGGTTCTGATCCCGCGTCTGACCGGTAAACGTACCGCGGACTCTTACTCT
AACAAAGTTTTCTACACCAACACCGGTGTTACCTACTACGAACGTGAACGTGGTAAAAAACGTC
GTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAGAAGCGGAACTGCTGGTTGAAGCGGACG
AAGCGCGTGAAAAATCTGTTGTTCTGATGCGTGACCCGTCTGGTATCATCAACCGTGGTAACTG
GACCCGTCAGAAAGAATTCTGGTCTATGGTTAACCAGCGTATCGAAGGTTACCTGGTTAAACAG
ATCCGTTCTCGTGTTCCGCTGCAGGACTCTGCGTGCGAAAACACCGGTGACATCTAA
SE ATGGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTCTGTGGA
Q AAACCCACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAACTGATCCGTCA
no GGAAGCGATCTACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAGTTTCTAAAGCGGA
N AATCCAGGCGGAACTGTGGGACTTCGTTCTGAAAATGCAGAAATGCAACTCTTTCACCCACGAA
O: GTTGACAAAGACGTTGTTTTCAACATCCTGCGTGAACTGTACGAAGAACTGGTTCCGTCTTCTGT 54 TGAAAAAAAAGGTGAAGCGAACCAGCTGTCTAACAAATTCCTGTACCCGCTGGTTGACCCGAAC TCTCAGTCTGGTAAAGGTACCGCGTCTTCTGGTCGTAAACCGCGTTGGTACAACCTGAAAATCG
CGGGTGACCCGTCTTGGGAAGAAGAAAAAAAAAAATGGGAAGAAGACAAAAAAAAAGACCCG
CTGGCGAAAATCCTGGGTAAACTGGCGGAATACGGTCTGATCCCGCTGTTCATCCCGTTCACCG
ACTCTAACGAACCGATCGTTAAAGAAATCAAATGGATGGAAAAATCTCGTAACCAGTCTGTTCG
TCGTCTGGACAAAGACATGTTCATCCAGGCGCTGGAACGTTTCCTGTCTTGGGAATCTTGGAACC
TGAAAGTTAAAGAAGAATACGAAAAAGTTGAAAAAGAACACAAAACCCTGGAAGAACGTATCA
AAGAAGACATCCAGGCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAACAGCTGC
TGCGTGACACCCTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGA
AATCATCCAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTT
CAAAGACTACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCT
AAAAAAGAAAACCACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCGACCTTCT
GCGAAATCGACAAAAAAAAAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGGCGGACCCGA
TCAACCACCCGCTGTGGGTTCGTTTCGAAGAACGTTCTGGTTCTAACCTGAACAAATACCGTATC
CTGACCGAACAGCTGCACACCGAAAAACTGAAAAAAAAACTGACCGTTCAGCTGGACCGTCTG
ATCTACCCGACCGAATCTGGTGGTTGGGAAGAAAAAGGTAAAGTTGACATCGTTCTGCTGCCGT
CTCGTCAGTTCTACAACCAGATCTTCCTGGACATCGAAGAAAAAGGTAAACACGCGTTCACCTA
CAAAGACGAATCTATCAAATTCCCGCTGAAAGGTACCCTGGGTGGTGCGCGTGTTCAGTTCGAC
CGTGACCACCTGCGTCGTTACCCGCACAAAGTTGAATCTGGTAACGTTGGTCGTATCTACTTCAA
CATGACCGTTAACATCGAACCGACCGAATCTCCGGTTTCTAAATCTCTGAAAATCCACCGTGAC
GACTTCCCGAAATTCGTTAACTTCAAACCGAAAGAACTGACCGAATGGATCAAAGACTCTAAAG
GTAAAAAACTGAAATCTGGTATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTG
GGTCAGCGTCAGGCGGCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAG
GTAAACTGTTCTTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATC
AAACTGCCGGGTGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACC
TGAAACTGATGAACCAGAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAAGA
CATCACCGAACGTGAAAAACGTGTTACCAAATGGATCTCTCGTCAGGAAAACTCTGACGTTCCG
CTGGTTTACCAGGACGAACTGATCCAGATCCGTGAACTGATGTACAAACCGTACAAAGACTGGG
TTGCGTTCCTGAAACAGCTGCACAAACGTCTGGAAGTTGAAATCGGTAAAGAAGTTAAACACTG
GCGTAAATCTCTGTCTGACGGTCGTAAAGGTCTGTACGGTATCTCTCTGAAAAACATCGACGAA
ATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTGCGTCCGACCGAACCGGGTGAAGTTCG
TCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACCAGCTGAACCACCTGAACGCGCTGAAAGAA
GACCGTCTGAAAAAAATGGCGAACACCATCATCATGCACGCGCTGGGTTACTGCTACGACGTTC
GTAAAAAAAAATGGCAGGCGAAAAACCCGGCGTGCCAGATCATCCTGTTCGAAGACCTGTCTA
ACTACAACCCGTACGAAGAACGTTCTCGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCG
TGAAATCCCGCGTCAGGTTGCGCTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGT
GCGCAGTTCTCTTCTCGTTTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACC
AAAGAAAAACTGCAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGG
ACAAAATCGCGGTTCTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTC
TCTGTCTAAAGACCGTAAACTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAG
AAACGTTTCTGGACCCGTACCCACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTTGACG
GTCAGACCGTTTACATCCCGGAATCTAAAGACCAGAAACAGAAAATCATCGAAGAATTCGGTG
AAGGTTACTTCATCCTGAAAGACGGTGTTTACGAATGGGGTAACGCGGGTAAACTGAAAATCAA AAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGTTGACTCTGACATCCTGAAAGACTCTTTCG
ACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTACCGTGACCCGTCTGGTAACGTTTT
CCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCGGTAAACTGGAACGTATCCTGATCTCTA
AACTGACCAACCAGTACTCTATCTCTACCATCGAAGACGACTCTTCTAAACAGTCTATGTAA
SE ATGCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGACCCTGC
Q GTCGTGCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCGAAGAATTCCTG
no CTGCTGTGCCGTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAGAAGCGGAAATCCCG
N CGTCACGCGGTTCAGGAAGAAGCGCTGGCGTTCGCGAAAGCGGCGCAGCGTCACAACGGTTGC
O: ATCTCTACCTACGAAGACCAGGAAATCCTGGACGTTCTGCGTCAGCTGTACGAACGTCTGGTTC 55 CGTCTGTTAACGAAAACAACGAAGCGGGTGACGCGCAGGCGGCGAACGCGTGGGTTTCTCCGCT
GATGTCTGCGGAATCTGAAGGTGGTCTGTCTGTTTACGACAAAGTTCTGGACCCGCCGCCGGTTT
GGATGAAACTGAAAGAAGAAAAAGCGCCGGGTTGGGAAGCGGCGTCTCAGATCTGGATCCAGT
CTGACGAAGGTCAGTCTCTGCTGAACAAACCGGGTTCTCCGCCGCGTTGGATCCGTAAACTGCG
TTCTGGTCAGCCGTGGCAGGACGACTTCGTTTCTGACCAGAAAAAAAAACAGGACGAACTGACC
AAAGGTAACGCGCCGCTGATCAAACAGCTGAAAGAAATGGGTCTGCTGCCGCTGGTTAACCCGT
TCTTCCGTCACCTGCTGGACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTCTGGCGGTTCGT
GCGGCGGTTGCGCACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAATACAACT
CTCTGAAACTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACTTCACCCT
GCTGCGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGACGACTCT
AACCCGTACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAATGGATCG
ACAAAGGTGCGACCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCCAGCTGCGTGG
TAAATTCGGTGACCCGGACCTGTTCAACTGGCTGGCGCAGGACCGTCACGTTCACCTGTGGTCTC
CGCGTGACTCTGTTACCCCGCTGGTTCGTATCAACGCGGTTGACAAAGTTCTGCGTCGTCGTAAA
CCGTACGCGCTGATGACCTTCGCGCACCCGCGTTTCCACCCGCGTTGGATCCTGTACGAAGCGCC
GGGTGGTTCTAACCTGCGTCAGTACGCGCTGGACTGCACCGAAAACGCGCTGCACATCACCCTG
CCGCTGCTGGTTGACGACGCGCACGGTACCTGGATCGAAAAAAAAATCCGTGTTCCGCTGGCGC
CGTCTGGTCAGATCCAGGACCTGACCCTGGAAAAACTGGAAAAAAAAAAAAACCGTCTGTACT
ACCGTTCTGGTTTCCAGCAGTTCGCGGGTCTGGCGGGTGGTGCGGAAGTTCTGTTCCACCGTCCG
TACATGGAACACGACGAACGTTCTGAAGAATCTCTGCTGGAACGTCCGGGTGCGGTTTGGTTCA
AACTGACCCTGGACGTTGCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGTCGTGTTCG
TACCCCGCCGGAAGTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACACCCGTACC
CTGCAGCCGGGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTT
TTCGAACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCTA
TGGACTCTCCGAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGCCGGGTGA
AACCCCGTCTCGTAAAGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCTACGCGCTGAA
ACGTGACATCCAGCGTCTGAAATCTCTGCTGCGTCTGGGTGAAGAAGACAACGACAACCGTCGT
GACGCGCTGCTGGAACAGTTCTTCAAAGGTTGGGGTGAAGAAGACGTTGTTCCGGGTCAGGCGT
TCCCGCGTTCTCTGTTCCAGGGTCTGGGTGCGGCGCCGTTCCGTTCTACCCCGGAACTGTGGCGT
CAGCACTGCCAGACCTACTACGACAAAGCGGAAGCGTGCCTGGCGAAACACATCTCTGACTGGC
GTAAACGTACCCGTCCGCGTCCGACCTCTCGTGAAATGTGGTACAAAACCCGTTCTTACCACGG
TGGTAAATCTATCTGGATGCTGGAATACCTGGACGCGGTTCGTAAACTGCTGCTGTCTTGGTCTC
TGCGTGGTCGTACCTACGGTGCGATCAACCGTCAGGACACCGCGCGTTTCGGTTCTCTGGCGTCT CGTCTGCTGCACCACATCAACTCTCTGAAAGAAGACCGTATCAAAACCGGTGCGGACTCTATCG
TTCAGGCGGCGCGTGGTTACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTTACGAACC
GTGCCAGCTGATCCTGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTG
AAAACTCTCAGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGG
AACTGTACGGTCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACC
GGTGCGCCGGGTGTTCGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTGCCGAAAC
CGTACCTGCTGCGTGAACTGTCTTGGATGCTGGGTAACACCAAAGTTGAATCTGAAGAAGAAAA
ACTGCGTCTGCTGTCTGAAAAAATCCGTCCGGGTTCTCTGGTTCCGTGGGACGGTGGTGAACAG
TTCGCGACCCTGCACCCGAAACGTCAGACCCTGTGCGTTATCCACGCGGACATGAACGCGGCGC
AGAACCTGCAGCGTCGTTTCTTCGGTCGTTGCGGTGAAGCGTTCCGTCTGGTTTGCCAGCCGCAC
GGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTGCGCGTCTGCTGGGTGCGCTGCAGCAGC
TGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGTGACATGGGTTCTACCTCTCAGATGAACCG
TTTCGTTATGAAATCTCTGGGTAAAAAAAAAATCAAACCGCTGCAGGACAACAACGGTGACGAC
GAACTGGAAGACGTTCTGTCTGTTCTGCCGGAAGAAGACGACACCGGTCGTATCACCGTTTTCC
GTGACTCTTCTGGTATCTTCTTCCCGTGCAACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGCG
GTTCGTGCGATGATCTGGAAAGTTATGGCGTCTCACTCTCTGGGTTAA
SE ATGACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAAAACGT
Q GAAGTTCTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAAAAGGTCAGG
no TTACCGAATTCCGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTGAAATGACCGACGG
N TCGTAAAAACATGTTCACCCACTCTTTCGAACCGTTCAAAACCAAACCGTCTCTGCACCAGTGCG
O: AACTGGCGGACAAAGCGTACCAGTCTCTGCACTCTTACCTGCCGGGTTCTCTGGCGCACTTCCTG 56 CTGTCTGCGCACGCGCTGGGTTTCCGTATCTTCTCTAAATCTGGTGAAGCGACCGCGTTCCAGGC
GTCTTCTAAAATCGAAGCGTACGAATCTAAACTGGCGTCTGAACTGGCGTGCGTTGACCTGTCT
ATCCAGAACCTGACCATCTCTACCCTGTTCAACGCGCTGACCACCTCTGTTCGTGGTAAAGGTGA
AGAAACCTCTGCGGACCCGCTGATCGCGCGTTTCTACACCCTGCTGACCGGTAAACCGCTGTCTC
GTGACACCCAGGGTCCGGAACGTGACCTGGCGGAAGTTATCTCTCGTAAAATCGCGTCTTCTTTC
GGTACCTGGAAAGAAATGACCGCGAACCCGCTGCAGTCTCTGCAGTTCTTCGAAGAAGAACTGC
ACGCGCTGGACGCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAATGAACGACCT
GCAGGGTGACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGAATACAAC
GCGGAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATC
AAAAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAACGGTCTG
GGTTGGCTGCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAACTGCTGGAATT
CATCGGTGTTGAACGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGATCGCGCAGCTGGAA
GCGCCGGAACTGTTCGAAAAAAACGTTTTCTCTGACACCCGTTCTGAAGTTCAGGGTATGATCG
ACTCTGCGGTTTCTAACCACATCGCGCGTCTGTCTTCTTCTCGTAACTCTCTGTCTATGGACTCTG
AAGAACTGGAACGTCTGATCAAATCTTTCCAGATCCACACCCCGCACTGCTCTCTGTTCATCGGT
GCGCAGTCTCTGTCTCAGCAGCTGGAATCTCTGCCGGAAGCGCTGCAGTCTGGTGTTAACTCTGC
GGACATCCTGCTGGGTTCTACCCAGTACATGCTGACCAACTCTCTGGTTGAAGAATCTATCGCGA
CCTACCAGCGTACCCTGAACCGTATCAACTACCTGTCTGGTGTTGCGGGTCAGATCAACGGTGC
GATCAAACGTAAAGCGATCGACGGTGAAAAAATCCACCTGCCGGCGGCGTGGTCTGAACTGAT
CTCTCTGCCGTTCATCGGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGCACCTGAAAAACC
AGTACCAGACCCTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACTTCGACCT GAACTTCAACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAA
AAAAACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTGACCTCTTG
CCTGTACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAACACAAAATCT
TCGAATCTAACTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCGTTTTCGTTTCTCCG
CTGGACCGTAAAGCGAAAAAACTGCTGCGTCTGACCGACTCTCGTCCGGACCTGCTGCACGTTA
TCGACGAAATCCTGCAGCACGACAACCTGGAAAACAAAGACCGTGAATCTCTGTGGCTGGTTCG
TTCTGGTTACCTGCTGGCGGGTCTGCCGGACCAGCTGTCTTCTTCTTTCATCAACCTGCCGATCAT
CACCCAGAAAGGTGACCGTCGTCTGATCGACCTGATCCAGTACGACCAGATCAACCGTGACGCG
TTCGTTATGCTGGTTACCTCTGCGTTCAAATCTAACCTGTCTGGTCTGCAGTACCGTGCGAACAA
ACAGTCTTTCGTTGTTACCCGTACCCTGTCTCCGTACCTGGGTTCTAAACTGGTTTACGTTCCGAA
AGACAAAGACTGGCTGGTTCCGTCTCAGATGTTCGAAGGTCGTTTCGCGGACATCCTGCAGTCT
GACTACATGGTTTGGAAAGACGCGGGTCGTCTGTGCGTTATCGACACCGCGAAACACCTGTCTA
ACATCAAAAAATCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACTGCCGCACCGT
ACCTTCATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTCAACAACG
GTGACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTACCAACACC
TCTCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGTCTATCCAGTT
CGAACGTGCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGAAACGTAAAATCCG
TTTCCAGATGCCGGCGACCGAACTGGTTCACGCGTCTGACGACGCGGGTTGGACCCCGTCTTAC
CTGCTGGGTATCGACCCGGGTGAATACGGTATGGGTCTGTCTCTGGTTTCTATCAACAACGGTGA
AGTTCTGGACTCTGGTTTCATCCACATCAACTCTCTGATCAACTTCGCGTCTAAAAAATCTAACC
ACCAGACCAAAGTTGTTCCGCGTCAGCAGTACAAATCTCCGTACGCGAACTACCTGGAACAGTC
TAAAGACTCTGCGGCGGGTGACATCGCGCACATCCTGGACCGTCTGATCTACAAACTGAACGCG
CTGCCGGTTTTCGAAGCGCTGTCTGGTAACTCTCAGTCTGCGGCGGACCAGGTTTGGACCAAAG
TTCTGTCTTTCTACACCTGGGGTGACAACGACGCGCAGAACTCTATCCGTAAACAGCACTGGTTC
GGTGCGTCTCACTGGGACATCAAAGGTATGCTGCGTCAGCCGCCGACCGAAAAAAAACCGAAA
CCGTACATCGCGTTCCCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCGTTGCTCTTGCTGC
GGTCGTAACCCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGAACTGAAA
ATCCGTAACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGACCCGTCTAC
CGTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCGTACCTTCA
AAAACATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTCGTTCTATCCGT
CACTCTCCGGAATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACTTCTGCGCGTACTCTGA
CTGCAACTCTTCTCTGAACTCTGAAGCGAACGCGGCGGCGAACGTTGCGCAGAAATTCCAGAAA
CAGCTGTTCTTCGAACTGTAA
SE ATGAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTAAAGGTTC
Q TGAACTGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGGTTGAAGAACTG
no GCGGAAGCGATCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAATCGTTGACCTGATGG
N AAAAAGACGAAGGTACCCAGGTTTACTCTGTTGTTGACTTCTGGCTGGACACCCTGCGTCTGGG
O: TATGTTCTTCTCTCCGTCTGCGAACGCGCTGAAAATCACCCTGGGTAAATTCAACTCTGACCAGG
57 TTTCTCCGTTCCGTAAAGTTCTGGAACAGTCTCCGTTCTTCCTGGCGGGTCGTCTGAAAGTTGAA
CCGGCGGAACGTATCCTGTCTGTTGAAATCCGTAAAATCGGTAAACGTGAAAACCGTGTTGAAA
ACTACGCGGCGGACGTTGAAACCTGCTTCATCGGTCAGCTGTCTTCTGACGAAAAACAGTCTAT
CCAGAAACTGGCGAACGACATCTGGGACTCTAAAGACCACGAAGAACAGCGTATGCTGAAAGC GGACTTCTTCGCGATCCCGCTGATCAAAGACCCGAAAGCGGTTACCGAAGAAGACCCGGAAAA
CGAAACCGCGGGTAAACAGAAACCGCTGGAACTGTGCGTTTGCCTGGTTCCGGAACTGTACACC
CGTGGTTTCGGTTCTATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGACAAAATGTC
TACCGACACCGCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAACGGTAT
GAACTCTCTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGATCTTCCAG
TTCATGCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGTCTGGACCT
GCTGGCGGAAAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTGGTCACCGT
ATGTTCCTGCACGGTCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGTTCAACGAAACCCG
TGAACTGCTGGAATCTATCAAATCTGACATCCAGCACGCGACCATGCTGATCTCTTACGTTGAA
GAAAAAGGTGGTTACCACCCGCAGCTGCTGTCTCAGTACCGTAAACTGATGGAACAGCTGCCGG
CGCTGCGTACCAAAGTTCTGGACCCGGAAATCGAAATGACCCACATGTCTGAAGCGGTTCGTTC
TTACATCATGATCCACAAATCTGTTGCGGGTTTCCTGCCGGACCTGCTGGAATCTCTGGACCGTG
ACAAAGACCGTGAATTCCTGCTGTCTATCTTCCCGCGTATCCCGAAAATCGACAAAAAAACCAA
AGAAATCGTTGCGTGGGAACTGCCGGGTGAACCGGAAGAAGGTTACCTGTTCACCGCGAACAA
CCTGTTCCGTAACTTCCTGGAAAACCCGAAACACGTTCCGCGTTTCATGGCGGAACGTATCCCG
GAAGACTGGACCCGTCTGCGTTCTGCGCCGGTTTGGTTCGACGGTATGGTTAAACAGTGGCAGA
AAGTTGTTAACCAGCTGGTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTTTCCTGCGT
CAGCGTCTGCAGGCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTCCTGAAAC
TGCTGGCGGACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACATCATCTTC
AAATCTTGCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCGGCGGACG
TTTACACCGCGTGCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAATGGAAAAA
CCTGAAAGGTCACGAACGTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTAACCTGCTGTTC
TGGATCCGTGACGCGAAACTGGTTGTTAAACTGGAAGACTGGATGAACAACCCGTGCGTTCAGG
AATACGTTGAAGCGCGTAAAGCGATCGACCTGCCGCTGGAAATCTTCGGTTTCGAAGTTCCGAT
CTTCCTGAACGGTTACCTGTTCTCTGAACTGCGTCAGCTGGAACTGCTGCTGCGTCGTAAATCTG
TTATGACCTCTTACTCTGTTAAAACCACCGGTTCTCCGAACCGTCTGTTCCAGCTGGTTTACCTGC
CGCTGAACCCGTCTGACCCGGAAAAAAAAAACTCTAACAACTTCCAGGAACGTCTGGACACCCC
GACCGGTCTGTCTCGTCGTTTCCTGGACCTGACCCTGGACGCGTTCGCGGGTAAACTGCTGACCG
ACCCGGTTACCCAGGAACTGAAAACCATGGCGGGTTTCTACGACCACCTGTTCGGTTTCAAACT
GCCGTGCAAACTGGCGGCGATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTGTTCTGGCGA
AACCGAAAAAAGGTGTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGCACCCGGT
TTTCCGTGTTCGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCTGCCGGAAG
ACACCCCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCG
TTCGACCTGAAAAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACCGCGGACC
AGCCGTTCAAACTGACCCCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTAAAACCTACCT
GGGTCTGGACGCGGGTGAACGTTCTGGTGTTGGTTTCGCGATCGTTACCGTTGACGGTGACGGTT
ACGAAGTTCAGCGTCTGGGTGTTCACGAAGACACCCAGCTGATGGCGCTGCAGCAGGTTGCGTC
TAAATCTCTGAAAGAACCGGTTTTCCAGCCGCTGCGTAAAGGTACCTTCCGTCAGCAGGAACGT
ATCCGTAAATCTCTGCGTGGTTGCTACTGGAACTTCTACCACGCGCTGATGATCAAATACCGTGC
GAAAGTTGTTCACGAAGAATCTGTTGGTTCTTCTGGTCTGGTTGGTCAGTGGCTGCGTGCGTTCC
AGAAAGACCTGAAAAAAGCGGACGTTCTGCCGAAAAAAGGTGGTAAAAACGGTGTTGACAAAA
AAAAACGTGAATCTTCTGCGCAGGACACCCTGTGGGGTGGTGCGTTCTCTAAAAAAGAAGAACA GCAGATCGCGTTCGAAGTTCAGGCGGCGGGTTCTTCTCAGTTCTGCCTGAAATGCGGTTGGTGGT
TCCAGCTGGGTATGCGTGAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACTGGAACCGT
TCTATCGTTACCTTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCT
GGAAAAAGGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCATGCGTCCG
CCGATGTTCGACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGTCGTCGTC
ACCGTCGTTACCGTTTCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGTTCATCTGC
CCGCGTGTTGGTTGCGGTAACTTCGACCACTCTTCTGAACAGTCTGCGGTTGTTCTGGCGCTGAT
CGGTTACATCGCGGACAAAGAAGGTATGTCTGGTAAAAAACTGGTTTACGTTCGTCTGGCGGAA
CTGATGGCGGAATGGAAACTGAAAAAACTGGAACGTTCTCGTGTTGAAGAACAGTCTTCTGCGC
AGTAA
SE ATGGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAGTTATCG
Q GTCTGGGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCTCTGCGCGTAA
no AATCCAGAACAAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAGCGCAGTCTCAGCG
N TATCGCGGTTGCGGGTGCGCTGTACCCGGACAAAAAAGTTCAGACCATCAAAACCTACAAATAC
O: CCGGCGGACCTGAACGGTGAAGTTCACGACTCTGGTGTTGCGGAAAAAATCGCGCAGGCGATCC 58 AGGAAGACGAAATCGGTCTGCTGGGTCCGTCTTCTGAATACGCGTGCTGGATCGCGTCTCAGAA
ACAGTCTGAACCGTACTCTGTTGTTGACTTCTGGTTCGACGCGGTTTGCGCGGGTGGTGTTTTCG
CGTACTCTGGTGCGCGTCTGCTGTCTACCGTTCTGCAGCTGTCTGGTGAAGAATCTGTTCTGCGT
GCGGCGCTGGCGTCTTCTCCGTTCGTTGACGACATCAACCTGGCGCAGGCGGAAAAATTCCTGG
CGGTTTCTCGTCGTACCGGTCAGGACAAACTGGGTAAACGTATCGGTGAATGCTTCGCGGAAGG
TCGTCTGGAAGCGCTGGGTATCAAAGACCGTATGCGTGAATTCGTTCAGGCGATCGACGTTGCG
CAGACCGCGGGTCAGCGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGATGCCGGAAG
CGAAACAGTGGAACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACGTTCCGGA
AGAAAACCGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTACTGCATG
GGTATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCTAACTTCT
CTAACGGTAACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCGCGCTGGC
GAACAACATGTCTGCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGATCGAACGTCTG
GCGTGGCTGAAACACCGTGCGGAAGGTCTGTACCTGAAAGAACCGCACTTCGGTAACTCTTGGG
CGGACCACCGTTCTCGTATCTTCTCTCGTATCGCGGGTTGGCTGTCTGGTTGCGCGGGTAAACTG
AAAATCGCGAAAGACCAGATCTCTGGTGTTCGTACCGACCTGTTCCTGCTGAAACGTCTGCTGG
ACGCGGTTCCGCAGTCTGCGCCGTCTCCGGACTTCATCGCGTCTATCTCTGCGCTGGACCGTTTC
CTGGAAGCGGCGGAATCTTCTCAGGACCCGGCGGAACAGGTTCGTGCGCTGTACGCGTTCCACC
TGAACGCGCCGGCGGTTCGTTCTATCGCGAACAAAGCGGTTCAGCGTTCTGACTCTCAGGAATG
GCTGATCAAAGAACTGGACGCGGTTGACCACCTGGAATTCAACAAAGCGTTCCCGTTCTTCTCT
GACACCGGTAAAAAAAAAAAAAAAGGTGCGAACTCTAACGGTGCGCCGTCTGAAGAAGAATAC
ACCGAAACCGAATCTATCCAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAGGAAGGT
AACGGTGCGTCTAAAAACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTC
GTTCTGAATACCGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACAACATGCG
TGCGATCTTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATGCTTCCTGC
AGAACCGTCTGCAGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAATGCCGTGC
GCTGCTGGAATCTGTTCTGATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACGAAAAAAAA
TTCCGTCTGCGTCACGAAGCGTCTGAACGTTCTTCTGACCCGGACTACGTTGTTCAGCAGGCGCT GGAAATCGCGCGTCGTCTGTTCCTGTTCGGTTTCGAATGGCGTGACTGCTCTGCGGGTGAACGTG
TTGACCTGGTTGAAATCCACAAAAAAGCGATCTCTTTCCTGCTGGCGATCACCCAGGCGGAAGT
TTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACCGTTTCTCGTTACCTGTCTGTTGCGGGTAC
CGACACCCTGTACGGTACCCAGCTGGAAGAATTCCTGAACGCGACCGTTCTGTCTCAGATGCGT
GGTCTGGCGATCCGTCTGTCTTCTCAGGAACTGAAAGACGGTTTCGACGTTCAGCTGGAATCTTC
TTGCCAGGACAACCTGCAGCACCTGCTGGTTTACCGTGCGTCTCGTGACCTGGCGGCGTGCAAA
CGTGCGACCTGCCCGGCGGAACTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCGTTCATCG
CGTCTGTTATGAAAATGATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGCGTCACCG
TCCGCACTCTTTCGGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGACCAGGGTA
CCGCGCTGGCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCTCTGCGCA
GTACGGTCCGGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGACGGTTTCCT
GTCTCAGCCGAAAAACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTGTTGAACAGC
GTGTTGCGCTGATCTGGAACCTGCAGGCGGGTAAAATGCGTCTGGAACGTTCTGGTGCGCGTGC
GTTCTTCATGCCGGTTCCGTTCTCTTTCCGTCCGTCTGGTTCTGGTGACGAAGCGGTTCTGGCGCC
GAACCGTTACCTGGGTCTGTTCCCGCACTCTGGTGGTATCGAATACGCGGTTGTTGACGTTCTGG
ACTCTGCGGGTTTCAAAATCCTGGAACGTGGTACCATCGCGGTTAACGGTTTCTCTCAGAAACGT
GGTGAACGTCAGGAAGAAGCGCACCGTGAAAAACAGCGTCGTGGTATCTCTGACATCGGTCGT
AAAAAACCGGTTCAGGCGGAAGTTGACGCGGCGAACGAACTGCACCGTAAATACACCGACGTT
GCGACCCGTCTGGGTTGCCGTATCGTTGTTCAGTGGGCGCCGCAGCCGAAACCGGGTACCGCGC
CGACCGCGCAGACCGTTTACGCGCGTGCGGTTCGTACCGAAGCGCCGCGTTCTGGTAACCAGGA
AGACCACGCGCGTATGAAATCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAAACGTAAA
CCGGAAGACATCCTGGGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAATCTTGCCC
GGCGGTTGCGGTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATGGGAAAAA
GAAGAAGTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAA
SE ATGGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAACCGGTT
Q TCTCGTTCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGAAAAAACGTCT
no GGAAAAACGTCGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACAACGCGGCGAACAA
N CCTGCGTATGCTGCTGGACGACTACACCAAAATGAAAGAAGCGATCCTGCAGGTTTACTGGCAG
O: GAATTCAAAGACGACCACGTTGGTCTGATGTGCAAATTCGCGCAGCCGGCGTCTAAAAAAATCG 59 ACCAGAACAAACTGAAACCGGAAATGGACGAAAAAGGTAACCTGACCACCGCGGGTTTCGCGT
GCTCTCAGTGCGGTCAGCCGCTGTTCGTTTACAAACTGGAACAGGTTTCTGAAAAAGGTAAAGC
GTACACCAACTACTTCGGTCGTTGCAACGTTGCGGAACACGAAAAACTGATCCTGCTGGCGCAG
CTGAAACCGGAAAAAGACTCTGACGAAGCGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTG
CGCTGGACTTCTACTCTATCCACGTTACCAAAGAATCTACCCACCCGGTTAAACCGCTGGCGCA
GATCGCGGGTAACCGTTACGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGT
ACCATCGCGTCTTTCCTGTCTAAATACCAGGACATCATCATCGAACACCAGAAAGTTGTTAAAG
GTAACCAGAAACGTCTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAATACCCGTC
TGTTACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGTTATCGCG
CGTGTTCGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGACGACGCGA
AACCGCTGCTGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAAACGAAGTT
GACTGGTGGAACACCATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACATGGGTCGT
GTTTTCTGGTCTGGTGTTACCGCGGAAAAACGTAACACCATCCTGGAAGGTTACAACTACCTGC CGAACGAAAACGACCACAAAAAACGTGAAGGTTCTCTGGAAAACCCGAAAAAACCGGCGAAAC
GTCAGTTCGGTGACCTGCTGCTGTACCTGGAAAAAAAATACGCGGGTGACTGGGGTAAAGTTTT
CGACGAAGCGTGGGAACGTATCGACAAAAAAATCGCGGGTCTGACCTCTCACATCGAACGTGA
AGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAAGCGGTTCTGACCGACTGGCTGCGTGCGAA
AGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGGACGAAAAAGAATTCTACGCGTGCGAAATC
CAGCTGCAGAAATGGTACGGTGACCTGCGTGGTAACCCGTTCGCGGTTGAAGCGGAAAACCGTG
TTGTTGACATCTCTGGTTTCTCTATCGGTTCTGACGGTCACTCTATCCAGTACCGTAACCTGCTGG
CGTGGAAATACCTGGAAAACGGTAAACGTGAATTCTACCTGCTGATGAACTACGGTAAAAAAG
GTCGTATCCGTTTCACCGACGGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTA
CGGTGGTGGTAAAGCGAAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCTGATCATC
CTGCCGCTGGCGTTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGA
AACCGGTCTGATCAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAAAAAAATC
GGTCGTGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCGTC
TAACATCAAACCGGTTAACCTGATCGGTGTTGACCGTGGTGAAAACATCCCGGCGGTTATCGCG
CTGACCGACCCGGAAGGTTGCCCGCTGCCGGAATTCAAAGACTCTTCTGGTGGTCCGACCGACA
TCCTGCGTATCGGTGAAGGTTACAAAGAAAAACAGCGTGCGATCCAGGCGGCGAAAGAAGTTG
AACAGCGTCGTGCGGGTGGTTACTCTCGTAAATTCGCGTCTAAATCTCGTAACCTGGCGGACGA
CATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCACGCGGTTACCCACGACGCGGTTCTGGTTT
TCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTACCTTCATGACCGAACGTCAGTA
CACCAAAATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAGGTCTGACCTCTAAAACCTA
CCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCATCACCA
CCGCGGACTACGACGGTATGCTGGTTCGTCTGAAAAAAACCTCTGACGGTTGGGCGACCACCCT
GAACAACAAAGAACTGAAAGCGGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGAC
CGTTGAAAAAGAACTGTCTGCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAACGACATC
TCTAAATGGACCAAAGGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACC
GTCCGGTTCAGGAACAGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACGAACAGGC
GGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAAATCTTACA
AATCTGGTAAACAGCCGTTCGTTGGTGCGTGGCAGGCGTTCTACAAACGTCGTCTGAAAGAAGT
TTGGAAACCGAACGCG
SE ATGAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAGCGGGTA
Q AAACCGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTGAACGTCTGGA
no AAACCTGCGTAAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCTCTCGTGCGAACCTG
N AACAAACTGCTGACCGACTACACCGAAATGAAAAAAGCGATCCTGCACGTTTACTGGGAAGAA
O: TTCCAGAAAGACCCGGTTGGTCTGATGTCTCGTGTTGCGCAGCCGGCGCCGAAAAACATCGACC 60 AGCGTAAACTGATCCCGGTTAAAGACGGTAACGAACGTCTGACCTCTTCTGGTTTCGCGTGCTCT
CAGTGCTGCCAGCCGCTGTACGTTTACAAACTGGAACAGGTTAACGACAAAGGTAAACCGCACA
CCAACTACTTCGGTCGTTGCAACGTTTCTGAACACGAACGTCTGATCCTGCTGTCTCCGCACAAA
CCGGAAGCGAACGACGAACTGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACT
TCTACTCTATCCACGTTACCCGTGAATCTAACCACCCGGTTAAACCGCTGGAACAGATCGGTGGT
AACTCTTGCGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTGCGGTTGCGTC
TTTCCTGACCAAATACCAGGACATCATCCTGGAACACCAGAAAGTTATCAAAAAAAACGAAAA
ACGTCTGGCGAACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAATCACCCTG CCGCCGCAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTA
TCTGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAACCGCTGCA
GCGTCTGAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTGACTGGTGG
GACATGGTTTGCAACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTAAAGTTTTCTGG
CAGAACCTGGCGGGTTACAAACGTCAGGAAGCGCTGCTGCCGTACCTGTCTTCTGAAGAAGACC
GTAAAAAAGGTAAAAAATTCGCGCGTTACCAGTTCGGTGACCTGCTGCTGCACCTGGAAAAAAA
ACACGGTGAAGACTGGGGTAAAGTTTACGACGAAGCGTGGGAACGTATCGACAAAAAAGTTGA
AGGTCTGTCTAAACACATCAAACTGGAAGAAGAACGTCGTTCTGAAGACGCGCAGTCTAAAGC
GGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTATCGAAGGTCTGAAAGAAGCGGAC
AAAGACGAATTCTGCCGTTGCGAACTGAAACTGCAGAAATGGTACGGTGACCTGCGTGGTAAAC
CGTTCGCGATCGAAGCGGAAAACTCTATCCTGGACATCTCTGGTTTCTCTAAACAGTACAACTGC
GCGTTCATCTGGCAGAAAGACGGTGTTAAAAAACTGAACCTGTACCTGATCATCAACTACTTCA
AAGGTGGTAAACTGCGTTTCAAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCGTTTCTACAC
CGTTATCAACAAAAAATCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGACGACCCG
AACCTGATCATCCTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGGAACGACC
TGCTGTCTCTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTA
CAACCGTCGTACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAA
GTTCTGGACTCTTCTAACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAAAACATCC
CGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAGACTCTCTGGGT
AACCCGACCCACATCCTGCGTATCGGTGAATCTTACAAAGAAAAACAGCGTACCATCCAGGCGG
CGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATACGCGTCTAAAGCGAAAA
ACCTGGCGGACGACATGGTTCGTAACACCGCGCGTGACCTGCTGTACTACGCGGTTACCCAGGA
CGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTACCTTCATGG
CGGAACGTCAGTACACCCGTATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAGGTCTGC
CGTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTAACTGCGGT
TTCACCATCACCTCTGCGGACTACGACCGTGTTCTGGAAAAACTGAAAAAAACCGCGACCGGTT
GGATGACCACCATCAACGGTAAAGAACTGAAAGTTGAAGGTCAGATCACCTACTACAACCGTTA
CAAACGTCAGAACGTTGTTAAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGAATCTGTT
AACAACGACATCTCTTCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAAC
GTTTCTCTCACCGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAACCCACGCG
GACGAACAGGCGGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAATACAAAA
AATACCAGACCAACAAAACCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCTGGCAGT
CTTTCTACCGTAAAAAACTGAAAGAAGTTTGGAAACCG
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa 61 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGG
GCTACGCGGTGACCGACCCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGC
GCACGTATTTGCCGCCGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGT TTGGACCGACGCCAACAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGTCCGA
TCGACCCACGCTTCTTCATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCGCGGAGACG
GATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGATTACCCGAC
TATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGGCTGGTGTAC
CTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGGACAAGGATAATA
TTGGAGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGGACAACGGT
GTATCACCGTGGGTGTGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAACTCAGTGA
ACGACAAATATAAAGCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATAACTTCGA
TGCCAATATTTCGGAAGATGGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAA
CTGTTCCCTCAGGAATCGAACGATGCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAG
AAATCCTGGGTACGCTTACACCAGATGAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGA
CTGGGCTATCATGAAACATGCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTG
TATGAGCAGCACCATCACGATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAG
AATACGACGATATTTTCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGTATTCCTA
TCATGTGAAAGAGGTGAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTTTTGTAA
GTATGTCCTGGGCAAGGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTTTGATGAG
ATGATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAACCGCGTTAT
TCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTACCTGCCTT
TCCTGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATCATGACGTT
CCGTATTCCTTACTTCGTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCTCGAACGA
AAGGCCGGTAAGATTTATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCAGAAGAA
GCGTTCATTCGCCGAATGACCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTACCGTTGGA
TTCGCTGATCTATGAGAAATTTATGATTTTAAATGAAATCAATAATATTCGTATTGACGGCTACC
CGATTAGTGTTGACGTTAAACAGCAGGTTTTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGT
GAAAGATATTCAGAACCTGCTGCTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGC
ATCGATACCACTATCCACTCAAACTATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGG
CGTCCTGACCCGGGATGACGTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGATACTAA
GCGTGTGCGTCTGTGGCTGAATAACAACTATGGTACTTTAACCGCCGACGATGTGAAACACATT
TCGCGTCTGCGCAAACACGATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTGAAGGGTGT
CCATAAGGAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATAACCTG
ATGCAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAGGCGTATT
ATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACGCGGTGAAA
CGTCCGATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACGGCCCCTA
AACGCATTTTCATCGAAATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTACACGTCG
CGAGCAGATCAAAAACCTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGATTTTCTG
GAAAAGATCCTGGAAAATAAATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTTTACTTTGC
ACAATTAGGGCGCGATATGTACACGGGCGATCCAATAAAGCTGGAGCACATCAAAGATCAGAG
TTTCTATAACATAGACCATATTTACCCGCAGTCTATGGTGAAAGACGATTCCCTAGATAACAAA
GTGCTGGTGCAAAGCGAAATTAACGGCGAGAAAAGCTCGCGATACCCTTTGGACGCCGCGATCC
GCAATAAAATGAAGCCCCTTTGGGACGCTTACTATAATCATGGCCTGATCTCCTTAAAGAAATA
CCAGCGTCTAACGCGCTCGACCCCGTTTACCGATGATGAAAAATGGGACTTTATTAATCGCCAG
TTAGTGGAAACCCGTCAATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTTCCAGACA CCGAAATTGTGTATTCGAAGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTGTAAA
AAGTCGCAATATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCAAT
GTGTACCATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAAACTA
AAACTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGATCT
CGGTCGTATTGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTCTCCTTC
GATCGCAAAGAAGGATTATTTGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTCCCACGAA
AAGCCGGTCTGGATGTCGTTAAATACGGCGGATATGACAAATCTACCGCGGCCTATTACCTGCT
GGTGAGGTTCACGCTCGAGGACAAGAAAACCCAGCACAAGCTGATGATGATTCCTGTAGAAGG
CCTGTACAAGGCTCGCATTGATCATGACAAGGAATTTCTTACCGATTATGCGCAAACGACTATA
AGCGAAATCCTACAGAAAGATAAACAGAAAGTGATCAATATTATGTTTCCAATGGGTACGAGG
CATATAAAACTCAATTCAATGATTAGTATCGATGGCTTCTATCTTAGTATCGGCGGAAAGTCCTC
TAAAGGTAAGTCAGTTCTATGTCACGCAATGGTTCCACTGATCGTCCCTCACAAAATCGAATGTT
ACATTAAAGCAATGGAAAGCTTCGCCCGGAAGTTTAAAGAAAACAACAAGCTGCGCATCGTAG
AAAAATTCGATAAAATCACCGTTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCCAAAAACT
GCAGCATAATCCCTATAATAAGTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCTA
CTTTCACAAAACTGTCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAA
AACATGCCGCAGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATC
ATGATTAGCGCTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGT
CAGCTTCTGGTTTGTTCGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAAGAAATCATCCTT
AGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTT
AGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTATG
TGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATT
ACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa 62 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCA
TTAAGAATGAACTCATCCCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAG
ATGGCGACGAACAGCTGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCG
GGACTTCATTAATAAAGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGCGGATGC
CCTTAATAAAGAGGATGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAATCATTGT
ATCCAAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAGATTATTG
ACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCATTTAAAT
ACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACAAACCAGGA
CAAGCTGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTTTGAAAACC
GGAAAAACATTTTTACCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTCATGATAA
CTTCCCGAAATTCCTTGATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCCGCAACTAA
TCGTGAAAGCAGATAACTATCTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTTTGGCAA
ACTATTTTACCGTGGGCGCGTATGACTATTTCCTGTCTCAGAATGGTATAGATTTTTACAACAAT ATTATAGGTGGACTGCCAGCGTTCGCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTCATCA
ATCAAGAGTGCCAAAAAGACAGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAA TGGCGGTACTGTTCAAACAGATACTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGA GTCGGATGCTCAAGTTATTGACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAACAAT
CATATTCATTGAAGGGAAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTGGTCAAAA
TTACGTAACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAGAAG
ATCAAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTGTCGGAA
CTGAACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGCATAAGGT
GGCTTCTGAGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAATAATGA
AGAGAAACAAAAAATCAAAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACTTCTGATT
TTTAACTGCAAAAGCTTCAATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGCATCAATG
AACTGAGTTCGGTCGTGTATCTGTATAATAAAACACGTAACTATTGCACTAAAAAACCCTATAA
CACGGACAAGTTCAAACTCAATTTTAACAGTCCGCAGCTCGGTGAAGGCTTTTCCAAGTCGAAA
GAAAATGACTGTCTGACTCTTTTGTTTAAAAAAGACGACAACTATTATGTAGGCATTATCCGCA
AAGGTGCAAAAATCAATTTTGATGATACACAAGCAATCGCCGATAACACCGACAATTGCATCTT
TAAAATGAATTATTTCCTACTTAAAGACGCAAAAAAATTTATCCCGAAATGTAGCATTCAGCTG
AAAGAAGTCAAGGCCCATTTTAAGAAATCTGAAGATGATTACATTTTGTCTGATAAAGAGAAAT
TTGCTAGCCCGCTGGTCATTAAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGAAAGGGAA
AAAAGGCAATATCAAGAAATTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGCAA
TTCTTTAAACGAATGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTT
TTGATATAACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGATGT
CGATAATCTGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTGATA
GATAACGGCGACCTGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACCGGCA
CCAAGAACCTTCATACGTTATATTTACAAGCTATATTCGATGAACGTAATCTGAACAATCCGAC
AATTATGCTGAATGGGGGAGCAGAACTGTTCTATCGTAAAGAAAGTATTGAGCAGAAAAACCG
TATCACACACAAAGCCGGTTCAATTCTCGTGAATAAGGTGTGTAAAGACGGTACAAGCCTGGAT
GATAAGATACGTAATGAAATTTATCAATATGAGAATAAATTTATTGATACCCTGTCTGATGAAG
CTAAAAAGGTGTTACCGAATGTCATTAAAAAGGAAGCTACCCATGACATTACAAAAGATAAAC
GTTTCACTAGTGACAAATTCTTCTTTCACTGCCCCCTGACAATTAATTATAAGGAAGGCGATACC
AAGCAGTTCAATAACGAAGTGCTGAGTTTTCTGCGTGGAAATCCTGACATCAACATTATCGGCA
TTGACCGCGGAGAGCGTAATTTAATCTATGTAACGGTTATAAACCAGAAAGGCGAGATTCTGGA
TTCGGTTTCATTCAATACCGTGACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGATTATGAA
GAGAAATTGGCAGTCCGCGAGAAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCA
AAAATTGCGACACTAAAGGAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGA
TTAAACACAACGCGATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGT
TTATCAGAAAAAAGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTG
TCAGCAAGAAGGAATCCGACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGA
TCAGTTTGAAAGCTTCGAAAAACTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCTGCAT
ATACCTCAAAGATTGATCCGACCACGGGCTTCGCCAATGTTCTGAATCTGTCGAAGGTACGCAA
TGTTGATGCGATCAAAAGCTTTTTTTCTAACTTCAACGAAATTAGTTATAGCAAGAAAGAAGCC
CTTTTCAAATTCTCATTCGATCTGGATTCACTGAGTAAGAAAGGCTTTAGTAGCTTTGTGAAATT TAGTAAGAGTAAATGGAACGTCTACACCTTTGGAGAACGTATCATAAAGCCAAAGAATAAGCA
AGGTTATCGGGAGGACAAAAGAATCAACTTGACCTTCGAGATGAAGAAGTTACTTAACGAGTAT
AAGGTTTCTTTTGATCTTGAAAATAACTTGATTCCGAATCTCACGAGTGCCAACCTGAAGGATAC
TTTTTGGAAAGAGCTATTCTTTATCTTCAAGACTACGCTGCAGCTCCGTAACAGCGTTACTAACG
GTAAAGAAGATGTGCTCATCTCTCCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAAC
GCATAACAAGACTCTTCCGCAAGATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGT
CTGATGATACTCGAACGTAACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCG
ATTTCAAACGTGGATTGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAAGAAATCATCC
TTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTT
TTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTA
TGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGA
TTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
63 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATAACAACTACGACGAATTCACCAAACTG
TACCCGATCCAGAAAACCATCCGTTTCGAACTGAAACCGCAGGGTCGTACCATGGAACACCTGG
AAACCTTCAACTTCTTCGAAGAAGACCGTGACCGTGCGGAAAAATACAAAATCCTGAAAGAAG
CGATCGACGAATACCACAAAAAATTCATCGACGAACACCTGACCAACATGTCTCTGGACTGGAA
CTCTCTGAAACAGATCTCTGAAAAATACTACAAATCTCGTGAAGAAAAAGACAAAAAAGTTTTC
CTGTCTGAACAGAAACGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGACCGTTTCA
AAGACCTGTTCTCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAAAAGGTAA
CCACCAGGAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGGTCTGCACG
AAAACCGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTATCGTTAA
CGAAAACTTCCCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAAAATACCC
GGAATGGATCATCAAAGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGGACGAAGTTTTC
TCTCTGGAATACTTCAACAAAGTTCTGAACCAGGAAGGTATCCAGCGTTACAACCTGGCGCTGG
GTGGTTACGTTACCAAATCTGGTGAAAAAATGATGGGTCTGAACGACGCGCTGAACCTGGCGCA
CCAGTCTGAAAAATCTTCTAAAGGTCGTATCCACATGACCCCGCTGTTCAAACAGATCCTGTCTG
AAAAAGAATCTTTCTCTTACATCCCGGACGTTTTCACCGAAGACTCTCAGCTGCTGCCGTCTATC
GGTGGTTTCTTCGCGCAGATCGAAAACGACAAAGACGGTAACATCTTCGACCGTGCGCTGGAAC
TGATCTCTTCTTACGCGGAATACGACACCGAACGTATCTACATCCGTCAGGCGGACATCAACCG
TGTTTCTAACGTTATCTTCGGTGAATGGGGTACCCTGGGTGGTCTGATGCGTGAATACAAAGCG
GACTCTATCAACGACATCAACCTGGAACGTACCTGCAAAAAAGTTGACAAATGGCTGGACTCTA
AAGAATTCGCGCTGTCTGACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACGCGTTCAA
CGAATACATCTCTAAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGAAATGAA
ATTCATCTCTGAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCTGCTGGAC
TCTGTTCAGCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCGCTGGACGG
TGCGTTCTACGCGGAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCTGTACAACA AAGTTCGTAACTACCTGACCAAAAACAACCTGAACACCAAAAAAATCAAACTGAACTTCAAAA
ACCCGACCCTGGCGAACGGTTGGGACCAGAACAAAGTTTACGACTACGCGTCTCTGATCTTCCT
GCGTGACGGTAACTACTACCTGGGTATCATCAACCCGAAACGTAAAAAAAACATCAAATTCGAA
CAGGGTTCTGGTAACGGTCCGTTCTACCGTAAAATGGTTTACAAACAGATCCCGGGTCCGAACA
AAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGGTAAAAAAGAATACAAACCGTCTAAAGA
AATCATCGAAGGTTACGAAGCGGACAAACACATCCGTGGTGACAAATTCGACCTGGACTTCTGC
CACAAACTGATCGACTTCTTCAAAGAATCTATCGAAAAACACAAAGACTGGTCTAAATTCAACT
TCTACTTCTCTCCGACCGAATCTTACGGTGACATCTCTGAATTCTACCTGGACGTTGAAAAACAG
GGTTACCGTATGCACTTCGAAAACATCTCTGCGGAAACCATCGACGAATACGTTGAAAAAGGTG
ACCTGTTCCTGTTCCAGATCTACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAAAAGACAT
GCACACCATCTACTGGAACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGTTAAACTG
AACGGTGAAGCGGAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCACCGTGAAG
GTGAAATCCTGGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCCACAAAAA
ACTGACCGACTACCACAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCTGGACAA
AGTTCGTTACTTCAAAGCGCACTACGACATCACCAAAGACCGTCGTTACCTGAACGACAAAATC
TACTTCCACGTTCCGCTGACCCTGAACTTCAAAGCGAACGGTAAAAAAAACCTGAACAAAATGG
TTATCGAAAAATTCCTGTCTGACGAAAAAGCGCACATCATCGGTATCGACCGTGGTGAACGTAA
CCTGCTGTACTACTCTATCATCGACCGTTCTGGTAAAATCATCGACCAGCAGTCTCTGAACGTTA
TCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTGAAATCGAAATGAAAGACGCGCGTC
AGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAGAAGGTTACCTGTCTAAAGCGGTTCA
CGAAATCACCAAAATGGCGATCCAGTACAACGCGATCGTTGTTATGGAAGAACTGAACTACGGT
TTCAAACGTGGTCGTTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAACATGCTGATCG
ACAAAATGAACTACCTGGTTTTCAAAGACGCGCCGGACGAATCTCCGGGTGGTGTTCTGAACGC
GTACCAGCTGACCAACCCGCTGGAATCTTTCGCGAAACTGGGTAAACAGACCGGTATCCTGTTC
TACGTTCCGGCGGCGTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACCTGTTCAACAC
CTCTTCTAAAACCAACGCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTATCTCTTAC
TCTGCGAAAGACGGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACCTCTAAAAC
CGACCACAAAAACGTTTGGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAAAGAAAA
AAAACGTAACGAACTGTTCGACCCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTCTGGTATC
AAATACGACGGTGGTCAGAACATCCTGCCGGACATCCTGCGTTCTAACAACAACGGTCTGATCT
ACACCATGTACTCTTCTTTCATCGCGGCGATCCAGATGCGTGTTTACGACGGTAAAGAAGACTA
CATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTCTTCCGTACCGACCCGAAACGTCGTGAA
CTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCGCTGCGTGGTGAACTGACCATGC
GTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGGCGAAACTGGAACTGAAACACA
AAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAAGAAATCATCCTTAGCGAAAGCTAAGG
ATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCA
GGAAGCAAAGAGGATTACA
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAA
AACGGTACGCTTTGAGTTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAAC
GAGGGCTTGAAACGTGTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAG
GAAATAATTGACGATTACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCGGAACAGG
TGAGTAAAGATGCTCTTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAAAAGTTGA
GGAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAAAAGTGG
TGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAACTGATTAA
GGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACGGTCGAAACG
TTTAACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTACTCCAAAGA
TGATCACGCCACCGCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTTTGACAACG
TGATTAGCTTCAATAAGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGAAAGAGGA
TTTAGAAGTAGATTATGATCTGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTTCGTGACCC
AAGCGGGCATAGATCAGTATAATTATCTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAA
AACAAGGGATGAATGAGCAAATTAATCTGTTCAAACAACAGCAAACGCGAGATAAAGCGCGTC
AGATTCCCAAACTGATCCCCCTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTT
TATTCCTAAACAATTTGAAAGTGATCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACT
GCCAGGATAAATTCACCGTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAA
GGTCTTCATCAAAACCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTACAGCGTCT
TTTCCGATGCACTGAACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGGCTTTTG
AGAAACTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCCAGCCTG
GACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGATGAATTA
TATTCTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTCGAACTGGA
AGCCCTGTCATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCAGGAAGG
CTTCGAGCAGATCAAGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACACTTTGCA
AAGCCGTTGTATCTTGTTAAGGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAGTCCTTTT
ATGAAGCGTTTGAAATGGCGTACCAAGAACTTGAATCGTTAATCATTCCTATCTATAACAAAGC
GCGGAGCTATCTGTCGCGGAAACCTTTCAAGGCCGATAAATTCAAGATTAATTTTGACAACAAC
ACGCTACTGAGCGGATGGGATGCGAACAAGGAAACTGCTAACGCGTCCATTCTGTTTAAGAAAG
ACGGGTTATATTACCTTGGAATTATGCCGAAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCG
AGCGAGGATTCAGAGAAACTGAAACAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAG
GATGGTGAAAGTTACTTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAGATGTTAC
CGAAAGTCTTTTTTAGCAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTTACGCATT
CGCAACACAGCCTCTCACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTTTA
ACCTGAATGATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAATG
GGGGTCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTCTACCGGG
AAGTAGAAAACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACAGAGCC
AGGTGGAACAGGGTAATCTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCTACAGCAA
AGGCAAACCAAACCTGCATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCTGAATAAC
GTAGTGGCGAAGTTGAACGGTGAAGCGGAAATCTTCTTCCGTCGTCACTCCATTAAGGCCTCTG
ATAAAGTTGTCCATCCGGCAAATCAGGCCATTGATAATAAGAATCCACACACGGAAAAAACGC
AGTCAACCTTTGAATATGACCTCGTTAAAGACAAACGCTACACGCAAGATAAGTTCTTTTTCCAC GTCCCAATCAGCCTCAACTTTAAAGCACAAGGGGTTTCAAAGTTTAATGATAAAGTCAATGGGT
TCCTCAAGGGCAACCCGGATGTCAACATTATAGGTATAGACAGGGGCGAACGCCATCTGCTTTA
CTTTACCGTAGTGAATCAGAAAGGTGAAATACTGGTTCAGGAATCATTAAATACCTTGATGTCG
GACAAAGGGCACGTTAATGATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACGTGATGCT
GCGCGTAAATCGTGGACCACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCAT
GTGGTACACAAACTGGCGCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGA
ATTTTGGCTTTAAACGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGC
GCTTATAGATAAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGGGCACTAC
TTGACAGCTTATCAACTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGCA
TTCTGTTTTACGTGCCGGCAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAACTTC
CTGGACCTGAGATATCAGTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAATGCCATTC
GTTTTAACAGCGTTCAGAATTACTTTGAATTCGAAATTGACTATAAAAAACTTACTCCGAAACGT
AAAGTCGGAACCCAAAGTAAATGGGTAATTTGTACGTATGGCGATGTCAGGTATCAGAACCGTC
GGAATCAAAAAGGTCATTGGGAGACCGAAGAAGTGAACGTGACCGAAAAGCTGAAGGCTCTGT
TCGCCAGCGATTCAAAAACTACAACTGTGATCGATTACGCAAATGATGATAACCTGATAGATGT
GATTTTAGAGCAGGATAAAGCCAGCTTTTTTAAAGAACTGTTGTGGCTCCTGAAACTTACGATG
ACCTTACGACATTCCAAGATCAAATCGGAAGATGATTTTATTCTGTCACCGGTCAAGAATGAGC
AGGGTGAATTCTATGATAGTAGGAAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACGCCAATG
GCGCCTATCATATCGCGCTCAAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGG
TAAAACCCTGAATCTGGCTATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTAT
CAGGAATGAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGC
TTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTA CTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC 65 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATCATACAGGCGGTCTTCTTAGTATGGAC
GCGAAAGAGTTCACAGGTCAGTATCCGTTGTCGAAAACATTACGATTCGAACTTCGGCCCATCG
GCCGCACGTGGGATAACCTGGAGGCCTCAGGCTACTTAGCGGAAGACCGCCATCGTGCCGAATG
TTATCCTCGTGCGAAAGAGTTATTGGATGACAACCATCGTGCCTTCCTGAATCGTGTGTTGCCAC
AAATCGATATGGATTGGCACCCGATTGCGGAGGCCTTTTGTAAGGTACATAAAAACCCTGGTAA
TAAAGAACTTGCCCAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAGCGCATAT
CTTCAGGATGCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCTATGAAAA
TTGCGAAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTTTTAGCGT
ATACTTCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGTGAGCGTA
GCCTACCGAATTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCTTTGATAAATT
AAACGAAAGCCATCCGGATATTATCTCTGAAGTATCGGGCAATCTTGGAGTTGATGACATTGGT
AAGTACTTTGACGTGTCGAACTATAACAATTTTCTTTCCCAGGCCGGTATAGATGACTACAATCA CATTATTGGCGGCCATACAACCGAAGACGGACTGATACAAGCGTTTAATGTCGTATTGAACTTA
CGTCACCAAAAAGACCCTGGCTTTGAAAAAATTCAGTTCAAACAGCTCTACAAACAAATCCTGA
GCGTGCGTACCAGCAAAAGCTACATCCCGAAACAGTTTGACAACTCTAAGGAGATGGTTGACTG
CATTTGCGATTATGTCAGCAAAATAGAGAAATCCGAAACAGTAGAACGGGCCCTGAAACTAGTC
CGTAATATCAGTTCTTTCGACTTGCGCGGGATCTTTGTCAATAAAAAGAACTTGCGCATACTGAG
CAACAAACTGATAGGAGATTGGGACGCGATCGAAACCGCATTGATGCATAGTTCTTCATCAGAA
AACGATAAGAAAAGCGTATATGATAGCGCGGAGGCTTTTACGTTGGATGACATCTTTTCAAGCG
TGAAAAAATTTTCTGATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCTGTAGAGT
GATAAGTGAGACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCTGAACGAC
GATGGTTATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGATCTTTTCC
ATGAACTGGAAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACAGCGAACT
GGAGGAAGTCAGCGAACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTTCGTTCTGC
ACCCGGAAACGCTATAGCACCGATAAGATTAAAGTGAACTTAAAATTCCCGACCTTGGCGGACG
GGTGGGACCTGAACAAAGAGAGAGACAACAAAGCCGCGATTCTGCGGAAAGACGGTAAGTATT
ATCTGGCAATTCTGGATATGAAGAAAGATCTGTCAAGCATTAGGACCAGCGACGAAGATGAATC
CAGCTTCGAAAAGATGGAGTATAAACTGTTACCGAGTCCAGTAAAAATGCTGCCAAAGATATTC
GTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCTGACAGATCGTATGCTTGAATGCTACGATA
AAGGTATGCATAAGTCGGGTAGTGCGTTTGATCTTGGCTTTTGCCATGAACTCATTGATTATTAC
AAGCGTTGTATCGCGGAGTACCCAGGCTGGGATGTGTTCGATTTCAAGTTTCGCGAAACTTCCG
ATTATGGGTCCATGAAAGAGTTCAATGAAGATGTGGCCGGAGCCGGTTACTATATGAGTCTGAG
AAAAATTCCGTGCAGCGAAGTGTACCGTCTGTTAGACGAGAAATCGATTTATCTATTTCAAATTT
ATAACAAAGATTACTCTGAAAATGCACATGGTAATAAGAACATGCATACCATGTACTGGGAGG
GTCTCTTTTCCCCGCAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTC
TTTCGAAAATCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTGCTGGTTC
CACGTAATGATGTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACACGCTATTTT
AACCGTGGCGATTGCCGAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAGACTAAA
AAAGCGGACCATGACATTGTGAAAGATCGCCGCTTTACCGTGGATAAAATGATGTTCCACGTCC
CGATTGCGATGAACTTTAAGGCGATCAGTAAACCGAACTTAAACAAAAAAGTCATTGATGGCAT
CATTGATGATCAGGATCTGAAAATCATTGGTATTGATCGTGGCGAGCGGAACTTAATTTACGTC
ACGATGGTTGACAGAAAAGGGAATATCTTATATCAGGATTCTCTTAACATCCTCAATGGCTACG
ACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACAAGGAAGCGCGTCGTAACTGGACTAA
AGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATCTGTCATTAGCGGTCTCGAAATTAGCGGAT
ATGATTATCGAAAATAACGCCATCATCGTTATGGAGGACCTGAACCACGGATTCAAAGCGGGCC
GCTCAAAGATTGAAAAACAAGTTTATCAGAAATTTGAGAGTATGCTGATTAACAAACTGGGCTA
TATGGTGTTAAAAGACAAGTCAATTGACCAATCAGGTGGCGCGCTGCATGGATACCAGCTGGCG
AACCATGTTACCACCTTAGCATCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATACCGGCAGC
GTTCACTAGTAAAATAGATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAA
ACGTAGCGAGCATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAGCTGAAGG
CAAATTCGCATTCACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCGTACGCTGT
GGACCGTTTACACCGTTGGTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATGTACGTAA
AGTCCCCACCGATATTATCTATGATGCCCTCCAGAAAGCAGGCATTAGCGTCGAAGGAGACTTA
AGGGACAGAATTGCCGAAAGCGATGGCGATACGCTGAAGTCTATTTTTTACGCATTCAAATACG CGCTAGATATGCGCGTTGAGAATCGCGAGGAAGACTACATTCAATCACCTGTGAAAAATGCCTC
TGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAAGCCTCCCACAAGATAGCGATGCAAACGGT
GCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCATGCTGTCTGAGCAGTACGACCCCA
ACGCGGAATCTATTAGACTTCCGCTGATAACCAATAAAGCCTGGCTGACATTCATGCAGTCTGG
CATGAAGACCTGGAAAAATTAGGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAA
ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGAT
TACA
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa
66 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccatgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTG
AGATTTGAATTAAAGCCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAG
AGGATGAGCATCGTGCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGG
TATTTATCGATTCTTCTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAAAAGCAAT
GCTCCAAAGTTTCTGCGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAAGGCATTA
GATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGCGGAAGAC
GGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATAAAAGAAA
TTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTGAAGAAGCTACG
AGGTCACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAATAGAAAGA
ATATATACTCGACGAAACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGAACTTGCCG
AAGTTCATTGATAATATTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAGCTGGAAC
ATATTCGTGCGGACTTTTCTGCCGGGGGGTACATAAAAAAGGATGAGAGATTGGAGGATATTTT
TTCGTTGAACTATTATATCCACGTGTTATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTG
GGAAGATTGTGACAGAAGGAGATGGAGAGATGAAAGGGCTCAATGAACACATCAACCTTTACA
ACCAACAAAGAGGCAGAGAGGATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAG
TGACAGAGAGCAATTATCATACTTGCCTGAGAGTTTTGAAAAAGATGAGGAGCTCCTCAGGGCT
CTAAAAGAGTTCTATGATCATATCGCAGAAGACATTCTCGGACGTACTCAACAGTTGATGACTT
CTATTTCAGAATATGATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTGATATATCA
AAAAAAATGTTGGGAGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGACCACGAG
CAGGCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAAGGAGAA
GAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGAGATTGCCG
TGTAGATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAATCTCGTTG
AGAACGTTTTTGCCTCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCGAAGAGAA
TAATCTGATTCAGGACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATATCAGTGAT
CTGCAGAGGTTCTTGAAACCTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAAAGATTTT
ATGGAGAGTATAATTATATCCGAGGAGCTCTAGATCAGGTGATCCCTCTGTACAATAAGGTAAG
GAACTACCTCACTCGGAAGCCTTATTCGACCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAA
TTGCTTAGTGGTTGGGATAGAAATAAGGAAAAGGATAATAGCTGTGTGATTTTGCGTAAGGGGC
AGAACTTCTATTTGGCTATTATGAACAATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCC CGAGTATAAGGAGGGAGAACCTTACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCCTAAT
AAAATGCTTCCTAAGGTTTTTCTTTCGAAAAAAGGAATAGAGATATACAAACCAAGTCCGAAGC
TTTTAGAACAATATGGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATGATTTGCA
CGAACTGATCGATTTCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGGATTC
AAATTTTCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGATCAGG
GGTATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATCAAGGCAAG
TTGTATTTATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCTAATCTGCA
TACCTTGTATTGGAGAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAAACTGGATG
TAAGCCTATCAAAAAGAAAAGTCGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTATGATTT
AGTCAAGGATAGGCACTATACGATGGATAAGTTCCAGTTTCATGTGCCTATTACTATGAATTTTA
AATGTTCTGCAGGAAGCAAAGTCAATGATATGGTTAATGCTCATATTCGAGAGGCAAAGGATAT
GCATGTCATTGGAATTGATCGTGGAGAACGCAATCTGCTGTATATATGCGTGATAGATAGTCGA
GGGACGATTTTGGATCAAATTTCTCTGAATACGATTAACGATATAGACTATCATGATTTATTGGA
GAGTCGAGACAAAGACCGTCAGCAGGAGCGCCGAAACTGGCAAACTATCGAAGGGATCAAGGA
GCTAAAACAAGGCTACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGCTTATAAG
GCTGTAGTTGCTTTGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAGAAAGTT
CTGTTTATCAGCAGTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGAA
AAGGCCTGAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGTTTT
AAGGAAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGCAACATAG
ATCCGACTACTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCGAAGAG
CTTCTTTCAAAAGTTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTTTGCATTCG
ATTATAAAAACTTTACTAAAAAGGCTGAAGGAAGTCGTTCTATGTGGATATTATGCACACATGG
TTCCCGAATAAAGAATTTTAGAAATTCCCAGAAGAATGGTCAATGGGATTCCGAAGAATTCGCC
TTGACGGAGGCTTTTAAGTCTCTTTTTGTGCGATATGAGATAGATTATACCGCTGATTTGAAAAC
AGCTATTGTGGACGAAAAGCAAAAAGACTTCTTCGTGGATCTTCTGAAGCTATTCAAATTGACA
GTACAGATGCGCAACAGCTGGAAAGAGAAGGATTTGGATTATCTAATCTCTCCTGTAGCAGGGG
CTGATGGCCGTTTCTTCGATACAAGAGAGGGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAA
TGGAGCTTATAATATTGCCCTAAAAGGACTTTGGGCTCTACGCCAGATTCGGCAAACTTCAGAA
GGCGGTAAACTCAAATTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAGAGATCTT
ACGAGAAAGACtgaGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATA
TCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATG
AATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTT
ATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTC
C
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa
67 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTT TGCAGAAAACGCTGCGCAATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAA
CGGAATAATTAAAGAAGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGA
TGACTACTACCGCGGATTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTGGACTAGCC
TGTTCGAAAAAATGGAAATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTAAGGAAC
AGACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGAACATGT
TTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCACAACAATAATTATTCGGCA
TCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACTAGCTTTAAAG
ATTACTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCTGCCATCGC
ATCGTCAACGACAATGCAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATCGTAAAAT
CGCTGAGCAATGACGATATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAGAAATGA
GTCTGGAAGAAATATATTCTTACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCATTAGCTT
CTATAATGATATCTGTGGGAAAGTGAATTCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAA
AACAAAAATTTATACAAACTTCAGAAACTTCACAAACAGATTCTATGCATTGCGGACACTAGCT
ATGAGGTCCCGTATAAATTTGAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGA
TAACATTAGCAGCAAACATATAGTCGAAAGATTACGCAAAATCGGCGATAACTATAACGGCTAC
AACCTGGATAAAATTTATATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACCTACCGCG
ACTGGGAAACAATTAATACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTAACGGTAA
AAGTAAAGCCGACAAAGTAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCACCGAAAT
AAATGAACTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTATATA
CATGAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCGGAAATTC
ACCTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCATGAATGC
GTTTCATTGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTTTTATGCGG
AACTGGAGGAGATTTACGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTCGTAACTA
CGTTACCCAGAAACCGTACAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGACGTTAGCA
GACGGTTGGTCAAAGTCCAAAGAGTATTCTAATAACGCTATCATACTGATGCGCGACAATCTGT
ATTATCTGGGCATCTTTAATGCGAAGAATAAACCGGACAAGAAGATTATCGAGGGTAATACGTC
AGAAAATAAGGGTGACTACAAAAAGATGATTTATAATTTGCTCCCGGGTCCCAACAAAATGATC
CCGAAAGTTTTCTTGAGCAGCAAGACGGGGGTGGAAACGTATAAACCGAGCGCCTATATCCTAG
AGGGGTATAAACAGAATAAACATATCAAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGA
TCTGATCGACTACTTCAAAAACTGTATTGCAATTCATCCCGAGTGGAAAAACTTCGGTTTTGATT
TTAGCGACACCAGTACTTATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTACAAGGTTA
CAAGATTGATTGGACATACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTCAACT
GTATCTGTTCCAGATATATAACAAAGATTTTTCGAAAAAATCAACCGGGAATGACAACCTTCAC
ACCATGTACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTTAACG
GCGAAGCGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAAAGGCT
CGATTTTAGTCAACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAAATTGT
GCGTAAAAATATTCCGGAAAACATTTATCAGGAGCTGTACAAATACTTCAACGATAAAAGCGAC
AAAGAGCTGTCTGATGAAGCAGCCAAACTGAAGAATGTAGTGGGACACCACGAGGCAGCGACG
AATATAGTCAAGGACTATCGCTACACGTATGATAAATACTTCCTTCATATGCCTATTACGATCAA
TTTCAAAGCCAATAAAACGGGTTTTATTAATGATAGGATCTTACAGTATATCGCTAAAGAAAAA
GACTTACATGTGATCGGCATTGATCGGGGCGAGCGTAACCTGATCTACGTGTCCGTGATTGATA
CTTGTGGTAATATAGTTGAACAGAAAAGCTTTAACATTGTAAACGGCTACGACTATCAGATAAA ACTGAAACAACAGGAGGGCGCTAGACAGATTGCGCGGAAAGAATGGAAAGAAATTGGTAAAAT
TAAAGAGATCAAAGAGGGCTACCTGAGCTTAGTAATCCACGAGATCTCTAAAATGGTAATCAAA
TACAATGCAATTATAGCGATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAAGGTCG
AACGGCAAGTTTACCAGAAATTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAA
AGATATTTCGATTACCGAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGAT
AAACTTAAAAACGTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCA
AAATTGATCCGACCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAA
ACGTGAATTCATTAAAAAATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTTA
CATTTGACTACAATAACTTTATTACGCAAAACACGGTCATGAGCAAATCATCGTGGAGTGTGTA
TACATACGGCGTGCGCATCAAACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAAAGTGATACC
ATTGACATAACCAAAGATATGGAGAAAACGTTGGAAATGACGGACATTAACTGGCGCGATGGC
CACGATCTTCGTCAAGACATTATAGATTATGAAATTGTTCAGCACATATTCGAAATTTTCCGTTT
AACAGTGCAAATGCGTAACTCCTTGTCTGAACTGGAGGACCGTGATTACGATCGTCTCATTTCAC
CTGTACTGAACGAAAATAACATTTTTTATGACAGCGCGAAAGCGGGGGATGCACTTCCTAAGGA
TGCCGATGCAAATGGTGCGTATTGTATTGCATTAAAAGGGTTATATGAAATTAAACAAATTACC
GAAAATTGGAAAGAAGATGGTAAATTTTCGCGCGATAAACTCAAAATCAGCAATAAAGATTGG
TTCGACTTTATCCAGAATAAGCGCTATCTCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTT
TTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATA
TATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTT
AAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAA
GTGTTAAGGGATGTTATTTCC
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC 68 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATACCAATAAATTCACTAACCAGTATTCT
CTCTCTAAGACCCTGCGCTTTGAACTGATTCCGCAGGGGAAAACCTTGGAGTTCATTCAAGAAA
AAGGCCTCTTGTCTCAGGATAAACAGAGGGCTGAATCTTACCAAGAAATGAAGAAAACTATTGA
TAAGTTTCATAAATATTTCATTGATTTAGCCTTGTCTAACGCCAAATTAACTCACTTGGAAACGT
ATCTGGAGTTATACAACAAATCTGCCGAAACTAAGAAAGAACAGAAATTTAAAGACGATTTGA
AAAAAGTACAGGACAATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATGCTAAAA
GCATTTTTGCCATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGTTTGAAAA
CAATGAGCAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTTTACAGGA
TTTCATCAAAACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCGTATCGTT
TGATCCATGAGAATCTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTAAGCAGGT
CGAATCGCTGCAAGTGAATTTTCGTGAACTCATGGGCGAATTTGGTGACGAAGGTCTAATCTTC
GTTAACGAACTGGAAGAAATGTTTCAGATTAATTACTACAATGACGTGCTATCGCAGAACGGTA
TCACAATCTACAATAGTATTATCTCAGGGTTCACAAAAAACGATATAAAATACAAAGGCCTGAA
CGAGTATATCAATAACTACAACCAAACAAAGGACAAAAAGGATAGGCTTCCGAAACTGAAGCA
GTTATACAAACAGATTTTATCTGACAGAATCTCCCTGAGCTTTCTGCCGGATGCTTTCACTGATG GGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTATAAGATTAACTTACTGAGCTACACGATTGA
AGGTCAAGAAGAATCTCAAAACTTACTGCTCTTGATCCGTCAAACCATTGAAAATCTATCATCG
TTCGATACGCAGAAAATCTACCTCAAAAACGATACTCACCTGACTACGATCTCTCAGCAGGTTTT
CGGGGATTTTAGTGTATTTTCAACAGCTCTGAACTACTGGTATGAAACCAAAGTCAATCCGAAA
TTCGAGACGGAATATTCTAAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCTAAAGCC
GTATTTACTAAACAGGATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAGTATATCCTG
ACCCTGGATCATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGACTATTTCA
AAAACCACTTTGTCGCCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTGCTAACAT
CACCGCAAAATACCAGTGTATTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGACGAACT
GAAACAAGATCAGAAGCTGATCGATAATTTAAAATTCTTCTTAGATGCAATCCTGGAGCTGCTG
CACTTCATCAAACCGCTTCATTTAAAGAGCGAGTCCATTACCGAAAAGGACACCGCCTTCTATG
ACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCTGACTCCGCTGTATAATATGGTACGCAAT
TACGTAACCCAGAAACCATATTCTACCGAAAAAATTAAACTGAACTTTGAAAACGCACAGCTGC
TCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCACCACCATCCTGAAAAAAGATGGTA
ACTATTTTCTGGCAATTATGGATAAGAAACATAATAAAGCATTCCAGAAATTTCCTGAAGGGAA
AGAAAATTACGAAAAGATGGTGTACAAACTCTTACCTGGAGTTAACAAAATGTTGCCGAAAGTA
TTTTTTAGTAATAAGAACATCGCGTACTTTAACCCGTCCAAAGAACTGCTGGAAAATTATAAAA
AGGAGACGCATAAGAAAGGGGATACCTTTAACCTGGAACATTGCCATACCTTAATAGACTTCTT
CAAGGATTCCCTGAATAAACACGAGGATTGGAAATATTTCGATTTTCAGTTTAGTGAGACCAAG
TCATACCAGGATCTTAGCGGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATTAACTTCA
AAAACATCGACAGCGAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGTTCCAGAT
CTATTCAAAGGATTTTAGCCCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTACTGGAAA
GCACTGTTTGAAGAGCAAAACCTGCAGAATGTGATTTATAAACTGAACGGCCAAGCTGAGATTT
TTTTCCGTAAAGCCTCGATTAAACCGAAAAATATCATCCTTCATAAGAAGAAAATAAAGATCGC
TAAAAAACACTTCATAGATAAAAAAACCAAAACCTCCGAAATAGTGCCTGTTCAAACAATTAAG
AACTTGAATATGTACTACCAGGGCAAGATATCGGAAAAGGAGTTGACTCAAGACGATCTTCGCT
ATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGATCGACATCATCAAAGATAAACG
CTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGAACTTCAAAGCTACCGGGGGTA
GCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATAACCCGGAAGTCAAAATCATTGGGCT
GGACCGCGGAGAACGTCACCTTGTGTACTTGACCTTAATCGATCAGCAAGGCAACATCTTAAAA
CAAGAATCGCTGAATACCATTACGGATTCAAAGATTAGCACCCCGTATCATAAGCTGCTCGATA
ACAAGGAGAATGAGCGCGACCTGGCCCGTAAAAACTGGGGCACGGTGGAAAACATTAAGGAGT
TAAAGGAGGGTTATATTTCCCAGGTAGTGCATAAGATCGCCACTCTCATGCTCGAGGAAAATGC
GATCGTTGTCATGGAAGACTTAAACTTCGGATTTAAACGTGGGCGATTTAAAGTAGAGAAACAA
ATCTACCAGAAGTTAGAAAAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAAGACAAAC
AGCCGCAAGAATTGGGTGGATTATACAACGCCCTCCAACTTACCAATAAATTCGAAAGTTTTCA
GAAAATGGGTAAACAGTCAGGCTTTCTTTTTTATGTTCCTGCGTGGAACACATCCAAAATCGACC
CTACAACCGGCTTCGTCAATTACTTCTATACTAAATATGAAAACGTCGACAAAGCAAAAGCATT
CTTTGAAAAGTTCGAAGCAATACGTTTTAACGCTGAGAAAAAATATTTCGAGTTCGAAGTCAAG
AAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAGCAAGCGTGGACAATCTGCACCTACG
GCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAAATTTGTTTCAACACCTATCA
ACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTTATGGCGACGGTAACTG TATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCGAAACATTATTATATTGGTTCA
AAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAGATATTGATTATCTTATCAGCCCGGT
CATGAACGACAACGGTACTTTTTACAACTCCAGAGACTATGAAAAACTTGAGAATCCAACTCTC
CCCAAAGATGCTGATGCGAACGGTGCTTATCACATCGCGAAAAAAGGTCTGATGCTGCTGAACA
AAATCGACCAAGCCGATCTGACTAAGAAAGTTGACCTAAGCATTTCAAATCGGGACTGGTTACA
GTTTGTTCAAAAGAACAAATGAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAA
ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGAT
TACA
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA
no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa
69 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCG
GCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGT
AAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGG
CTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGA
AAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATAT
AAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAGGATT
ACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACCCC
AGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTT
CCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAA
GAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTAT
CCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGC
CAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACA
TTTTTGGTTTGGAAGAATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTA
CGATGATTACATTGGTGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCT
AAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAG
CGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAA
ATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTAC
TCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTT
CGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGA
ATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGA
TAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGC
GATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATAC
CCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGT
CCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCT
GCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGC
CTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGA
CGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTACAGA
AAAGTGACAGTTAAAAAAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAG AGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAAT
CCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTC
GGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATC
AACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAA
GAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAAT
CGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTA
CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCT
TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAG
GAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAG
TCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTT
AAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACG
CAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGACAATACA
AAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGACGATAGCTTGAACAATAGA
GTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAAAATATCA
GACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAGAAAAGT
ACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTGAGAGGCA
AATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAG
TCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAA
AGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAA
CTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACA
TATAACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGG
AAGTTGGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCG
TTACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGA
AAGGTCAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCT
ATAATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTAT
TAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCAATCGCG
TTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAGATTAAG
ATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGCGATAGAC
TTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGAAAAAAATA
GTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGATGGTATCG
ACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCGTATATCG
AATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCTATC
ACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAG
CTAATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTC
CAAGTGTAACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGAC
TTGCTTAAGATATAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTA
TATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAA
TGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAG
TTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATT
TCC
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA E) CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC 70 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT AAGAGGAGGATATACCATGCACCATCATCATCACCATTCTTTCGACTCTTTCACCAACCTGTACT CTCTGTCTAAAACCCTGAAATTCGAAATGCGTCCGGTTGGTAACACCCAGAAAATGCTGGACAA CGCGGGTGTTTTCGAAAAAGACAAACTGATCCAGAAAAAATACGGTAAAACCAAACCGTACTT CGACCGTCTGCACCGTGAATTCATCGAAGAAGCGCTGACCGGTGTTGAACTGATCGGTCTGGAC GAAAACTTCCGTACCCTGGTTGACTGGCAGAAAGACAAAAAAAACAACGTTGCGATGAAAGCG TACGAAAACTCTCTGCAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAGCGGAAG ACTGGGTTAAAAACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGTTCGA AGAAGCGGTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGAAGTT GAAGAAATCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGGAAAG GTTTCACCGGTTACTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACGACGGTAC CTCTACCGCGATCGCGACCCGTATCATCGACCAGAACCTGAAACGTTTCATCGACAACCTGTCT ATCGTTGAATCTGTTCGTCAGAAAGTTGACCTGGCGGAAACCGAAAAATCTTTCTCTATCTCTCT GTCTCAGTTCTTCTCTATCGACTTCTACAACAAATGCCTGCTGCAGGACGGTATCGACTACTACA ACAAAATCATCGGTGGTGAAACCCTGAAAAACGGTGAAAAACTGATCGGTCTGAACGAACTGA TCAACCAGTACCGTCAGAACAACAAAGACCAGAAAATCCCGTTCTTCAAACTGCTGGACAAACA GATCCTGTCTGAAAAAATCCTGTTCCTGGACGAAATCAAAAACGACACCGAACTGATCGAAGCG CTGTCTCAGTTCGCGAAAACCGCGGAAGAAAAAACCAAAATCGTTAAAAAACTGTTCGCGGACT TCGTTGAAAACAACTCTAAATACGACCTGGCGCAGATCTACATCTCTCAGGAAGCGTTCAACAC CATCTCTAACAAATGGACCTCTGAAACCGAAACCTTCGCGAAATACCTGTTCGAAGCGATGAAA TCTGGTAAACTGGCGAAATACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCATCGCGC TGTCTCAGATGAAATCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAAAATAC TACAAAATCTCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTGTACG AATTCAACTCTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTGGTTA CTACCTGTTCGCGAAAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGAAAGAC TCTAAAGTTACCATCAAAGACTTCGCGGACTCTGTTCTGACCATCTACCAGATGGCGAAATACTT CGCGGTTGAAAAAAAACGTGCGTGGCTGGCGGAATACGAACTGGACTCTTTCTACACCCAGCCG GACACCGGTTACCTGCAGTTCTACGACAACGCGTACGAAGACATCGTTCAGGTTTACAACAAAC TGCGTAACTACCTGACCAAAAAACCGTACTCTGAAGAAAAATGGAAACTGAACTTCGAAAACTC TACCCTGGCGAACGGTTGGGACAAAAACAAAGAATCTGACAACTCTGCGGTTATCCTGCAGAAA GGTGGTAAATACTACCTGGGTCTGATCACCAAAGGTCACAACAAAATCTTCGACGACCGTTTCC AGGAAAAATTCATCGTTGGTATCGAAGGTGGTAAATACGAAAAAATCGTTTACAAATTCTTCCC GGACCAGGCGAAAATGTTCCCGAAAGTTTGCTTCTCTGCGAAAGGTCTGGAATTCTTCCGTCCGT CTGAAGAAATCCTGCGTATCTACAACAACGCGGAATTCAAAAAAGGTGAAACCTACTCTATCGA CTCTATGCAGAAACTGATCGACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGGGCGTGC TACACCTTCCGTCACCTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTCCGTG ACGTTGCGGAAGACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACGAAAA AAACGAAAAAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAAAGC GCGTGACGGTAAATCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCTGTTC TCTAACGACAACGTTGTTCAGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCTTCTACC
GTCCGAAAACCGAAAAAGACAAACTGGAATCTAAAAAAGACAAAAAAGGTAACAAAGTTATCG
ACCACAAACGTTACTCTGAAAACAAAATCTTCTTCCACGTTCCGCTGACCCTGAACCGTACCAA
AAACGACTCTTACCGTTTCAACGCGCAGATCAACAACTTCCTGGCGAACAACAAAGACATCAAC
ATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTTTACTACTCTGTTATCACCCAGGCGTCTGA
CATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTGTTAACTACGCGGAAAAACTGGGTAAA
AAAGCGGAAAACCGTGAACAGGCGCGTCGTGACTGGCAGGACGTTCAGGGTATCAAAGACCTG
AAAAAAGGTTACATCTCTCAGGTTGTTCGTAAACTGGCGGACCTGGCGATCAAACACAACGCGA
TCATCATCCTGGAAGACCTGAACATGCGTTTCAAACAGGTTCGTGGTGGTATCGAAAAATCTAT
CTACCAGCAGCTGGAAAAAGCGCTGATCGACAAACTGTCTTTCCTGGTTGACAAAGGTGAAAAA
AACCCGGAACAGGCGGGTCACCTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCC
AGAAAATGGGTAAACAGACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTAAATCTGA
CCCGGTTACCGGTTGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGCGAAAGAC
GACATCGCGAAATTCACCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTACGACATCA
AAGACTTCCAGCAGGCGAAAGAATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTAACGTTGA
ACGTTTCCGTTGGGACAAAAACCTGAACCAGAACAAAGGTGGTTACACCCACTACACCAACATC
ACCGAAAACATCCAGGAACTGTTCACCAAATACGGTATCGACATCACCAAAGACCTGCTGACCC
AGATCTCTACCATCGACGAAAAACAGAACACCTCTTTCTTCCGTGACTTCATCTTCTACTTCAAC
CTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATCGCGAAAAAAAACGGTAAAGACGAC
TTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAGACAACGGTAACAAACTGCCGGA
AAACGGTGACGACAACGGTGCGTACAACATCGCGCGTAAAGGTATCGTTATCCTGAACAAAATC
TCTCAGTACTCTGAAAAAAACGAAAACTGCGAAAAAATGAAATGGGGTGACCTGTACGTTTCTA
ACATCGACTGGGACAACTTCGTTGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAA
ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGAT
TACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC 71 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATAACAAATTCGAAAACTTCACCGGTCTG
TACCCGATCTCTAAAACCCTGCGTTTCGAACTGATCCCGCAGGGTAAAACCCTGGAATACATCG
AAAAATCTGAAATCCTGGAAAACGACAACTACCGTGCGGAAAAATACGAAGAAGTTAAAGACA
TCATCGACGGTTACCACAAATGGTTCATCAACGAAACCCTGCACGACCTGCACATCAACTGGTC
TGAACTGAAAGTTGCGCTGGAAAACAACCGTATCGAAAAATCTGACGCGTCTAAAAAAGAACT
GCAGCGTGTTCAGAAAATCAAACGTGAAGAAATCTACAACGCGTTCATCGAACACGAAGCGTTC
CAGTACCTGTTCAAAGAAAACCTGCTGTCTGACCTGCTGCCGATCCAGATCGAACAGTCTGAAG
ACCTGGACGCGGAAAAAAAAAAACAGGCGGTTGAAACCTTCAACCGTTTCTCTACCTACTTCAC
CGGTTTCCACGAAAACCGTAAAAACATCTACTCTAAAGAAGGTATCTCTACCTCTGTTACCTACC
GTATCGTTCACGACAACTTCCCGAAATTCCTGGAAAACATGAAAGTTTTCGAAATCCTGCGTAA
CGAATGCCCGGAAGTTATCTCTGACACCGCGAACGAACTGGCGCCGTTCATCGACGGTGTTCGT ATCGAAGACATCTTCCTGATCGACTTCTTCAACTCTACCTTCTCTCAGAACGGTATCGACTACTA
CAACCGTATCCTGGGTGGTGTTACCACCGAAACCGGTGAAAAATACCGTGGTATCAACGAATTC
ACCAACCTGTACCGTCAGCAGCACCCGGAATTCGGTAAATCTAAAAAAGCGACCAAAATGGTTG
TTCTGTTCAAACAGATCCTGTCTGACCGTGACACCCTGTCTTTCATCCCGGAAATGTTCGGTAAC
GACAAACAGGTTCAGAACTCTATCCAGCTGTTCTACAACCGTGAAATCTCTCAGTTCGAAAACG
AAGGTGTTAAAACCGACGTTTGCACCGCGCTGGCGACCCTGACCTCTAAAATCGCGGAATTCGA
CACCGAAAAAATCTACATCCAGCAGCCGGAACTGCCGAACGTTTCTCAGCGTCTGTTCGGTTCTT
GGAACGAACTGAACGCGTGCCTGTTCAAATACGCGGAACTGAAATTCGGTACCGCGGAAAAAG
TTGCGAACCGTAAAAAAATCGACAAATGGCTGAAATCTGACCTGTTCTCTTTCACCGAACTGAA
CAAAGCGCTGGAATTCTCTGGTAAAGACGAACGTATCGAAAACTACTTCTCTGAAACCGGTATC
TTCGCGCAGCTGGTTAAAACCGGTTTCGACGAAGCGCAGTCTATCCTGGAAACCGAATACACCT
CTGAAGTTCACCTGAAAGACCAGCAGACCGACATCGAAAAAATCAAAACCTTCCTGGACGCGCT
GCAGAACCTGATGCACCTGCTGAAATCTCTGTGCGTTTCTGAAGAAGCGGACCGTGACGCGGCG
TTCTACAACGAATTCGACATGCTGTACAACCAGCTGAAACTGGTTGTTCCGCTGTACAACAAAG
TTCGTAACTACATCACCCAGAAACTGTTCCGTTCTGACAAAATCAAAATCTACTTCGAAAACAA
AGGTCAGTTCCTGGGTGGTTGGGTTGACTCTCAGACCGAAAACTCTGACAACGGTACCCAGGCG
GGTGGTTACATCTTCCGTAAAGAAAACGTTATCAACGAATACGACTACTACCTGGGTATCTGCT
CTGACCCGAAACTGTTCCGTCGTACCACCATCGTTTCTGAAAACGACCGTTCTTCTTTCGAACGT
CTGGACTACTACCAGCTGAAAACCGCGTCTGTTTACGGTAACTCTTACTGCGGTAAACACCCGT
ACACCGAAGACAAAAACGAACTGGTTAACTCTATCGACCGTTTCGTTCACCTGTCTGGTAACAA
CATCCTGATCGAAAAAATCGCGAAAGACAAAGTTAAATCTAACCCGACCACCAACACCCCGTCT
GGTTACCTGAACTTCATCCACCGTGAAGCGCCGAACACCTACGAATGCCTGCTGCAGGACGAAA
ACTTCGTTTCTCTGAACCAGCGTGTTGTTTCTGCGCTGAAAGCGACCCTGGCGACCCTGGTTCGT
GTTCCGAAAGCGCTGGTTTACGCGAAAAAAGACTACCACCTGTTCTCTGAAATCATCAACGACA
TCGACGAACTGTCTTACGAAAAAGCGTTCTCTTACTTCCCGGTTTCTCAGACCGAATTCGAAAAC
TCTTCTAACCGTACCATCAAACCGCTGCTGCTGTTCAAAATCTCTAACAAAGACCTGTCTTTCGC
GGAAAACTTCGAAAAAGGTAACCGTCAGAAAATCGGTAAAAAAAACCTGCACACCCTGTACTT
CGAAGCGCTGATGAAAGGTAACCAGGACACCATCGACATCGGTACCGGTATGGTTTTCCACCGT
GTTAAATCTCTGAACTACAACGAAAAAACCCTGAAATACGGTCACCACTCTACCCAGCTGAACG
AAAAATTCTCTTACCCGATCATCAAAGACAAACGTTTCGCGTCTGACAAATTCCTGTTCCACCTG
TCTACCGAAATCAACTACAAAGAAAAACGTAAACCGCTGAACAACTCTATCATCGAATTCCTGA
CCAACAACCCGGACATCAACATCATCGGTCTGGACCGTGGTGAACGTCACCTGATCTACCTGAC
CCTGATCAACCAGAAAGGTGAAATCCTGCGTCAGAAAACCTTCAACATCGTTGGTAACACCAAC
TACCACGAAAAACTGAACCAGCGTGAAAAAGAACGTGACAACGCGCGTAAATCTTGGGCGACC
ATCGGTAAAATCAAAGAACTGAAAGAAGGTTTCCTGTCTCTGGTTATCCACGAAATCGCGAAAA
TCATGGTTGAAAACAACGCGATCGTTGTTCTGGAAGACCTGAACTTCGGTTTCAAACGTGGTCG
TTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAAAATGCTGATCGACAAACTGAACTAC
CTGGTTTTCAAAGACAAAAAAGCGAACGAAGCGGGTGGTGTTCTGAAAGGTTACCAGCTGGCG
GAAAAATTCGAATCTTTCCAGAAAATGGGTAAACAGTCTGGTTTCCTGTTCTACGTTCCGGCGGC
GTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACATGCTGAACCTGAACTACACCAAC
ATGAAAGACGCGCAGACCCTGCTGTCTGGTATGGACAAAATCTCTTTCAACGCGGACGCGAACT
ACTTCGAATTCGAACTGGACTACGAAAAATTCAAAACCAACCAGACCGACCACACCAACAAAT GGACCATCTGCACCGTTGGTGAAAAACGTTTCACCTACAACTCTGCGACCAAAGAAACCACCAC
CGTTAACGTTACCGAAGACCTGAAAAAACTGCTGGACAAATTCGAAGTTAAATACTCTAACGGT
GACAACATCAAAGACGAAATCTGCCGTCAGACCGACGCGAAATTCTTCGAAATCATCCTGTGGC
TGCTGAAACTGACCATGCAGATGCGTAACTCTAACACCAAAACCGAAGAAGACTTCATCCTGTC
TCCGGTTAAAAACTCTAACGGTGAATTCTTCCGTTCTAACGACGACGCGAACGGTATCTGGCCG
GCGGACGCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCTGTACCTGGTTAAAGAA
TGCTTCAACAAAAACGAAAAATCTCTGAAAATCGAACACAAAAACTGGTTCAAATTCGCGCAG
ACCCGTTTCAACGGTTCTCTGACCAAAAACGGTTAAGAAATCATCCTTAGCGAAAGCTAAGGAT
TTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGG
AAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
72 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATACCCAGTTCGAAGGTTTCACCAACCTG
TACCAGGTTTCTAAAACCCTGCGTTTCGAACTGATCCCGCAGGGTAAAACCCTGAAACACATCC
AGGAACAGGGTTTCATCGAAGAAGACAAAGCGCGTAACGACCACTACAAAGAACTGAAACCGA
TCATCGACCGTATCTACAAAACCTACGCGGACCAGTGCCTGCAGCTGGTTCAGCTGGACTGGGA
AAACCTGTCTGCGGCGATCGACTCTTACCGTAAAGAAAAAACCGAAGAAACCCGTAACGCGCT
GATCGAAGAACAGGCGACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTACCGACAAC
CTGACCGACGCGATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCGGAACTGT
TCAACGGTAAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACGCGCTGCT
GCGTTCTTTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAACGTTTTCT
CTGCGGAAGACATCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGAAATTCAA
AGAAAACTGCCACATCTTCACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTGAACACTTCGAAA
ACGTTAAAAAAGCGATCGGTATCTTCGTTTCTACCTCTATCGAAGAAGTTTTCTCTTTCCCGTTCT
ACAACCAGCTGCTGACCCAGACCCAGATCGACCTGTACAACCAGCTGCTGGGTGGTATCTCTCG
TGAAGCGGGTACCGAAAAAATCAAAGGTCTGAACGAAGTTCTGAACCTGGCGATCCAGAAAAA
CGACGAAACCGCGCACATCATCGCGTCTCTGCCGCACCGTTTCATCCCGCTGTTCAAACAGATCC
TGTCTGACCGTAACACCCTGTCTTTCATCCTGGAAGAATTCAAATCTGACGAAGAAGTTATCCAG
TCTTTCTGCAAATACAAAACCCTGCTGCGTAACGAAAACGTTCTGGAAACCGCGGAAGCGCTGT
TCAACGAACTGAACTCTATCGACCTGACCCACATCTTCATCTCTCACAAAAAACTGGAAACCAT
CTCTTCTGCGCTGTGCGACCACTGGGACACCCTGCGTAACGCGCTGTACGAACGTCGTATCTCTG
AACTGACCGGTAAAATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAACACGAAG
ACATCAACCTGCAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCAAACAGAA
AACCTCTGAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCACCCTGAAA
AAACAGGAAGAAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTACCACCTGC
TGGACTGGTTCGCGGTTGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTCTGACCGG
TATCAAACTGGAAATGGAACCGTCTCTGTCTTTCTACAACAAAGCGCGTAACTACGCGACCAAA
AAACCGTACTCTGTTGAAAAATTCAAACTGAACTTCCAGATGCCGACCCTGGCGTCTGGTTGGG ACGTTAACAAAGAAAAAAACAACGGTGCGATCCTGTTCGTTAAAAACGGTCTGTACTACCTGGG
TATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCTGTCTTTCGAACCGACCGAAAAAACCTCT
GAAGGTTTCGACAAAATGTACTACGACTACTTCCCGGACGCGGCGAAAATGATCCCGAAATGCT
CTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAGACCCACACCACCCCGATCCTGCTGTCTAA
CAACTTCATCGAACCGCTGGAAATCACCAAAGAAATCTACGACCTGAACAACCCGGAAAAAGA
ACCGAAAAAATTCCAGACCGCGTACGCGAAAAAAACCGGTGACCAGAAAGGTTACCGTGAAGC
GCTGTGCAAATGGATCGACTTCACCCGTGACTTCCTGTCTAAATACACCAAAACCACCTCTATCG
ACCTGTCTTCTCTGCGTCCGTCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGGAACTGAAC
CCGCTGCTGTACCACATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCGGTTGAAA
CCGGTAAACTGTACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACGGTAAACC
GAACCTGCACACCCTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAACCTCTATC
AAACTGAACGGTCAGGCGGAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATGGCGCACC
GTCTGGGTGAAAAAATGCTGAACAAAAAACTGAAAGACCAGAAAACCCCGATCCCGGACACCC
TGTACCAGGAACTGTACGACTACGTTAACCACCGTCTGTCTCACGACCTGTCTGACGAAGCGCG
TGCGCTGCTGCCGAACGTTATCACCAAAGAAGTTTCTCACGAAATCATCAAAGACCGTCGTTTC
ACCTCTGACAAATTCTTCTTCCACGTTCCGATCACCCTGAACTACCAGGCGGCGAACTCTCCGTC
TAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGAACACCCGGAAACCCCGATCATCGGTATC
GACCGTGGTGAACGTAACCTGATCTACATCACCGTTATCGACTCTACCGGTAAAATCCTGGAAC
AGCGTTCTCTGAACACCATCCAGCAGTTCGACTACCAGAAAAAACTGGACAACCGTGAAAAAG
AACGTGTTGCGGCGCGTCAGGCGTGGTCTGTTGTTGGTACCATCAAAGACCTGAAACAGGGTTA
CCTGTCTCAGGTTATCCACGAAATCGTTGACCTGATGATCCACTACCAGGCGGTTGTTGTTCTGG
AAAACCTGAACTTCGGTTTCAAATCTAAACGTACCGGTATCGCGGAAAAAGCGGTTTACCAGCA
GTTCGAAAAAATGCTGATCGACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGCGGAAAA
AGTTGGTGGTGTTCTGAACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAAAATGGGT
ACCCAGTCTGGTTTCCTGTTCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCGCTGACCGG
TTTCGTTGACCCGTTCGTTTGGAAAACCATCAAAAACCACGAATCTCGTAAACACTTCCTGGAA
GGTTTCGACTTCCTGCACTACGACGTTAAAACCGGTGACTTCATCCTGCACTTCAAAATGAACCG
TAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTCATGCCGGCGTGGGACATCGTTTTCGAAAAAA
ACGAAACCCAGTTCGACGCGAAAGGTACCCCGTTCATCGCGGGTAAACGTATCGTTCCGGTTAT
CGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTGTACCCGGCGAACGAACTGATCGCGCTG
CTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATCCTGCCGAAACTGCTGGAAAACG
ACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCCGTTCTGTTCTGCAGATGCGTAACTCT
AACGCGGCGACCGGTGAAGACTACATCAACTCTCCGGTTCGTGACCTGAACGGTGTTTGCTTCG
ACTCTCGTTTCCAGAACCCGGAATGGCCGATGGACGCGGACGCGAACGGTGCGTACCACATCGC
GCTGAAAGGTCAGCTGCTGCTGAACCACCTGAAAGAATCTAAAGACCTGAAACTGCAGAACGG
TATCTCTAACCAGGACTGGCTGGCGTACATCCAGGAACTGCGTAACTAGAAATCATCCTTAGCG
AAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAA
GTTATTACTCAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
73 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGGTTAAATCTATCAAAGTTAAACTG
CGTCTGGACGACATGCCGGAAATCCGTGCGGGTCTGTGGAAACTGCACAAAGAAGTTAACGCG
GGTGTTCGTTACTACACCGAATGGCTGTCTCTGCTGCGTCAGGAAAACCTGTACCGTCGTTCTCC
GAACGGTGACGGTGAACAGGAATGCGACAAAACCGCGGAAGAATGCAAAGCGGAACTGCTGG
AACGTCTGCGTGCGCGTCAGGTTGAAAACGGTCACCGTGGTCCGGCGGGTTCTGACGACGAACT
GCTGCAGCTGGCGCGTCAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAAAGGTGAC
GCGCAGCAGATCGCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGTGGTCTGG
GTATCGCGAAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAACCGGGTT
GGGAAGAAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACGTTCTGC
GTGCGCTGGCGGACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAATGTCTTCT
GTTGAATGGAAACCGCTGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACATGTTCCAGC
AGGCGATCGAACGTATGATGTCTTGGGAATCTTGGAACCAGCGTGTTGGTCAGGAATACGCGAA
ACTGGTTGAACAGAAAAACCGTTTCGAACAGAAAAACTTCGTTGGTCAGGAACACCTGGTTCAC
CTGGTTAACCAGCTGCAGCAGGACATGAAAGAAGCGTCTCCGGGTCTGGAATCTAAAGAACAG
ACCGCGCACTACGTTACCGGTCGTGCGCTGCGTGGTTCTGACAAAGTTTTCGAAAAATGGGGTA
AACTGGCGCCGGACGCGCCGTTCGACCTGTACGACGCGGAAATCAAAAACGTTCAGCGTCGTAA
CACCCGTCGTTTCGGTTCTCACGACCTGTTCGCGAAACTGGCGGAACCGGAATACCAGGCGCTG
TGGCGTGAAGACGCGTCTTTCCTGACCCGTTACGCGGTTTACAACTCTATCCTGCGTAAACTGAA
CCACGCGAAAATGTTCGCGACCTTCACCCTGCCGGACGCGACCGCGCACCCGATCTGGACCCGT
TTCGACAAACTGGGTGGTAACCTGCACCAGTACACCTTCCTGTTCAACGAATTCGGTGAACGTC
GTCACGCGATCCGTTTCCACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAGTTGACGA
CGTTACCGTTCCGATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCCGAACGAA
CCGATCGCGCTGTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTCGGTGGTG
CGAAAATCCAGTGCCGTCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGCGTGACGT
TTACCTGAACGTTTCTGTTCGTGTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCGTCCGCCGT
ACGCGGCGGTTTTCCGTCTGGTTGGTGACAACCACCGTGCGTTCGTTCACTTCGACAAACTGTCT
GACTACCTGGCGGAACACCCGGACGACGGTAAACTGGGTTCTGAAGGTCTGCTGTCTGGTCTGC
GTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCTGCGTCTATCTCTGTTTTCCGTGTTGCGCGTA
AAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCCGTTCTTCTTCCCGATCAAAGGTAACGA
CAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGCTGAAACTGCCGGGTGAAACCGAATCTAAA
GACCTGCGTGCGATCCGTGAAGAACGTCAGCGTACCCTGCGTCAGCTGCGTACCCAGCTGGCGT
ACCTGCGTCTGCTGGTTCGTTGCGGTTCTGAAGACGTTGGTCGTCGTGAACGTTCTTGGGCGAAA
CTGATCGAACAGCCGGTTGACGCGGCGAACCACATGACCCCGGACTGGCGTGAAGCGTTCGAA
AACGAACTGCAGAAACTGAAATCTCTGCACGGTATCTGCTCTGACAAAGAATGGATGGACGCG
GTTTACGAATCTGTTCGTCGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGGCGTAAAG
ACGTTCGTTCTGGTGAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTGGTAACTC
TATCGAACAGATCGAATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTTCTTCGGTA
AAGTTTCTGGTCAGGTTATCCGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGCGTGAACAC
ATCGACCACGCGAAAGAAGACCGTCTGAAAAAACTGGCGGACCGTATCATCATGGAAGCGCTG
GGTTACGTTTACGCGCTGGACGAACGTGGTAAAGGTAAATGGGTTGCGAAATACCCGCCGTGCC AGCTGATCCTGCTGGAAGAACTGTCTGAATACCAGTTCAACAACGACCGTCCGCCGTCTGAAAA
CAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCCAGGAACTGATCAACCAGGCGCAGGTT
CACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTCGTTTCGACGCGCGTACCGGTGC
GCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCACCCAGGAACACAACCCGGAACCGTTC
CCGTGGTGGCTGAACAAATTCGTTGTTGAACACACCCTGGACGCGTGCCCGCTGCGTGCGGACG
ACCTGATCCCGACCGGTGAAGGTGAAATCTTCGTTTCTCCGTTCTCTGCGGAAGAAGGTGACTTC
CACCAGATCCACGCGGACCTGAACGCGGCGCAGAACCTGCAGCAGCGTCTGTGGTCTGACTTCG
ACATCTCTCAGATCCGTCTGCGTTGCGACTGGGGTGAAGTTGACGGTGAACTGGTTCTGATCCCG
CGTCTGACCGGTAAACGTACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAACACCGGTGT
TACCTACTACGAACGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAAACTGTCT
GAAGAAGAAGCGGAACTGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTTCTGATG
CGTGACCCGTCTGGTATCATCAACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGGTCTATGG
TTAACCAGCGTATCGAAGGTTACCTGGTTAAACAGATCCGTTCTCGTGTTCCGCTGCAGGACTCT
GCGTGCGAAAACACCGGTGACATCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTAT
CTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAG
AGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
74 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGACCCGTTCTTTCATCCTGAAAATC
GAACCGAACGAAGAAGTTAAAAAAGGTCTGTGGAAAACCCACGAAGTTCTGAACCACGGTATC
GCGTACTACATGAACATCCTGAAACTGATCCGTCAGGAAGCGATCTACGAACACCACGAACAG
GACCCGAAAAACCCGAAAAAAGTTTCTAAAGCGGAAATCCAGGCGGAACTGTGGGACTTCGTT
CTGAAAATGCAGAAATGCAACTCTTTCACCCACGAAGTTGACAAAGACGTTGTTTTCAACATCC
TGCGTGAACTGTACGAAGAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGAACCAGCT
GTCTAACAAATTCCTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTACCGCGTCTT
CTGGTCGTAAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAGAAGAAA
AAAAAAAATGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAACTGGCG
GAATACGGTCTGATCCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTTAAAGAAA
TCAAATGGATGGAAAAATCTCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGTTCATCCA
GGCGCTGGAACGTTTCCTGTCTTGGGAATCTTGGAACCTGAAAGTTAAAGAAGAATACGAAAAA
GTTGAAAAAGAACACAAAACCCTGGAAGAACGTATCAAAGAAGACATCCAGGCGTTCAAATCT
CTGGAACAGTACGAAAAAGAACGTCAGGAACAGCTGCTGCGTGACACCCTGAACACCAACGAA
TACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGAAATCATCCAGAAATGGCTGAAAATGG
ACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCAAAGACTACCAGCGTAAACACCCGC
GTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCTAAAAAAGAAAACCACTTCATCTGGCG
TAACCACCCGGAATACCCGTACCTGTACGCGACCTTCTGCGAAATCGACAAAAAAAAAAAAGA
CGCGAAACAGCAGGCGACCTTCACCCTGGCGGACCCGATCAACCACCCGCTGTGGGTTCGTTTC
GAAGAACGTTCTGGTTCTAACCTGAACAAATACCGTATCCTGACCGAACAGCTGCACACCGAAA AACTGAAAAAAAAACTGACCGTTCAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTGGTTG
GGAAGAAAAAGGTAAAGTTGACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCAGATCTTC
CTGGACATCGAAGAAAAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAATTCCCGC
TGAAAGGTACCCTGGGTGGTGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTTACCCGCA
CAAAGTTGAATCTGGTAACGTTGGTCGTATCTACTTCAACATGACCGTTAACATCGAACCGACC
GAATCTCCGGTTTCTAAATCTCTGAAAATCCACCGTGACGACTTCCCGAAATTCGTTAACTTCAA
ACCGAAAGAACTGACCGAATGGATCAAAGACTCTAAAGGTAAAAAACTGAAATCTGGTATCGA
ATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTGGGTCAGCGTCAGGCGGCGGCGGCG
TCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGTAAACTGTTCTTCCCGATCAAAG
GTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAACTGCCGGGTGAAACCCTGGT
TAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACCTGAAACTGATGAACCAGAAACTG
AACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAAGACATCACCGAACGTGAAAAACGTG
TTACCAAATGGATCTCTCGTCAGGAAAACTCTGACGTTCCGCTGGTTTACCAGGACGAACTGAT
CCAGATCCGTGAACTGATGTACAAACCGTACAAAGACTGGGTTGCGTTCCTGAAACAGCTGCAC
AAACGTCTGGAAGTTGAAATCGGTAAAGAAGTTAAACACTGGCGTAAATCTCTGTCTGACGGTC
GTAAAGGTCTGTACGGTATCTCTCTGAAAAACATCGACGAAATCGACCGTACCCGTAAATTCCT
GCTGCGTTGGTCTCTGCGTCCGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGGTCAGCGT
TTCGCGATCGACCAGCTGAACCACCTGAACGCGCTGAAAGAAGACCGTCTGAAAAAAATGGCG
AACACCATCATCATGCACGCGCTGGGTTACTGCTACGACGTTCGTAAAAAAAAATGGCAGGCGA
AAAACCCGGCGTGCCAGATCATCCTGTTCGAAGACCTGTCTAACTACAACCCGTACGAAGAACG
TTCTCGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCGTGAAATCCCGCGTCAGGTTGCGC
TGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGTGCGCAGTTCTCTTCTCGTTTCCAC
GCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAGAAAAACTGCAGGACAACC
GTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAATCGCGGTTCTGAAAGA
AGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTCTGTCTAAAGACCGTAAACTG
GTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAGAAACGTTTCTGGACCCGTACCC
ACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTTGACGGTCAGACCGTTTACATCCCGGA
ATCTAAAGACCAGAAACAGAAAATCATCGAAGAATTCGGTGAAGGTTACTTCATCCTGAAAGA
CGGTGTTTACGAATGGGGTAACGCGGGTAAACTGAAAATCAAAAAAGGTTCTTCTAAACAGTCT
TCTTCTGAACTGGTTGACTCTGACATCCTGAAAGACTCTTTCGACCTGGCGTCTGAACTGAAAGG
TGAAAAACTGATGCTGTACCGTGACCCGTCTGGTAACGTTTTCCCGTCTGACAAATGGATGGCG
GCGGGTGTTTTCTTCGGTAAACTGGAACGTATCCTGATCTCTAAACTGACCAACCAGTACTCTAT
CTCTACCATCGAAGACGACTCTTCTAAACAGTCTATGTAAGAAATCATCCTTAGCGAAAGCTAA
CAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
75 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATCCGACCCGTACCATCAACCTGAAACTG GTTCTGGGTAAAAACCCGGAAAACGCGACCCTGCGTCGTGCGCTGTTCTCTACCCACCGTCTGG
TTAACCAGGCGACCAAACGTATCGAAGAATTCCTGCTGCTGTGCCGTGGTGAAGCGTACCGTAC
CGTTGACAACGAAGGTAAAGAAGCGGAAATCCCGCGTCACGCGGTTCAGGAAGAAGCGCTGGC
GTTCGCGAAAGCGGCGCAGCGTCACAACGGTTGCATCTCTACCTACGAAGACCAGGAAATCCTG
GACGTTCTGCGTCAGCTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAAGCGGGTG
ACGCGCAGGCGGCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTGGTCTGTC
TGTTTACGACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAAAGCGCC
GGGTTGGGAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCTGAACAAA
CCGGGTTCTCCGCCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGACGACTTCGT
TTCTGACCAGAAAAAAAAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGATCAAACAGCT
GAAAGAAATGGGTCTGCTGCCGCTGGTTAACCCGTTCTTCCGTCACCTGCTGGACCCGGAAGGT
AAAGGTGTTTCTCCGTGGGACCGTCTGGCGGTTCGTGCGGCGGTTGCGCACTTCATCTCTTGGGA
ATCTTGGAACCACCGTACCCGTGCGGAATACAACTCTCTGAAACTGCGTCGTGACGAATTCGAA
GCGGCGTCTGACGAATTCAAAGACGACTTCACCCTGCTGCGTCAGTACGAAGCGAAACGTCACT
CTACCCTGAAATCTATCGCGCTGGCGGACGACTCTAACCCGTACCGTATCGGTGTTCGTTCTCTG
CGTGCGTGGAACCGTGTTCGTGAAGAATGGATCGACAAAGGTGCGACCGAAGAACAGCGTGTT
ACCATCCTGTCTAAACTGCAGACCCAGCTGCGTGGTAAATTCGGTGACCCGGACCTGTTCAACT
GGCTGGCGCAGGACCGTCACGTTCACCTGTGGTCTCCGCGTGACTCTGTTACCCCGCTGGTTCGT
ATCAACGCGGTTGACAAAGTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTCGCGCACC
CGCGTTTCCACCCGCGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTCAGTACGC
GCTGGACTGCACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGCGCACGGT
ACCTGGATCGAAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGACCTGACCC
TGGAAAAACTGGAAAAAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGTTCGCGGG
TCTGGCGGGTGGTGCGGAAGTTCTGTTCCACCGTCCGTACATGGAACACGACGAACGTTCTGAA
GAATCTCTGCTGGAACGTCCGGGTGCGGTTTGGTTCAAACTGACCCTGGACGTTGCGACCCAGG
CGCCGCCGAACTGGCTGGACGGTAAAGGTCGTGTTCGTACCCCGCCGGAAGTTCACCACTTCAA
AACCGCGCTGTCTAACAAATCTAAACACACCCGTACCCTGCAGCCGGGTCTGCGTGTTCTGTCTG
TTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTTTCGAACTGATCGAAGGTAAACCGGAA
ACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCTATGGACTCTCCGAACAAACTGTGGGCGA
AACACGAACGTTCTTTCAAACTGACCCTGCCGGGTGAAACCCCGTCTCGTAAAGAAGAAGAAGA
ACGTTCTATCGCGCGTGCGGAAATCTACGCGCTGAAACGTGACATCCAGCGTCTGAAATCTCTG
CTGCGTCTGGGTGAAGAAGACAACGACAACCGTCGTGACGCGCTGCTGGAACAGTTCTTCAAAG
GTTGGGGTGAAGAAGACGTTGTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGGGTCTGGGT
GCGGCGCCGTTCCGTTCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTACGACAAAG
CGGAAGCGTGCCTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTCCGACCTC
TCGTGAAATGTGGTACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCTGGAATAC
CTGGACGCGGTTCGTAAACTGCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGTGCGATCAA
CCGTCAGGACACCGCGCGTTTCGGTTCTCTGGCGTCTCGTCTGCTGCACCACATCAACTCTCTGA
AAGAAGACCGTATCAAAACCGGTGCGGACTCTATCGTTCAGGCGGCGCGTGGTTACATCCCGCT
GCCGCACGGTAAAGGTTGGGAACAGCGTTACGAACCGTGCCAGCTGATCCTGTTCGAAGACCTG
GCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTGAAAACTCTCAGCTGATGCAGTGGAACC
ACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTGTACGGTCAGATCGTTGAAAACAC CGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACCGGTGCGCCGGGTGTTCGTTGCCGTTTCC
TGCTGGAACGTGACTTCGACAACGACCTGCCGAAACCGTACCTGCTGCGTGAACTGTCTTGGAT
GCTGGGTAACACCAAAGTTGAATCTGAAGAAGAAAAACTGCGTCTGCTGTCTGAAAAAATCCGT
CCGGGTTCTCTGGTTCCGTGGGACGGTGGTGAACAGTTCGCGACCCTGCACCCGAAACGTCAGA
CCCTGTGCGTTATCCACGCGGACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCTTCGGTCG
TTGCGGTGAAGCGTTCCGTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCTGGCGTCTA
CCCCGGGTGCGCGTCTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGTTCGAACT
GGTTCGTGACATGGGTTCTACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGGTAAAAAAA
AAATCAAACCGCTGCAGGACAACAACGGTGACGACGAACTGGAAGACGTTCTGTCTGTTCTGCC
GGAAGAAGACGACACCGGTCGTATCACCGTTTTCCGTGACTCTTCTGGTATCTTCTTCCCGTGCA
ACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGCGGTTCGTGCGATGATCTGGAAAGTTATGGC
GTCTCACTCTCTGGGTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGT
AGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
76 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATACCAAACTGCGTCACCGTCAGAAAAA
ACTGACCCACGACTGGGCGGGTTCTAAAAAACGTGAAGTTCTGGGTTCTAACGGTAAACTGCAG
AACCCGCTGCTGATGCCGGTTAAAAAAGGTCAGGTTACCGAATTCCGTAAAGCGTTCTCTGCGT
ACGCGCGTGCGACCAAAGGTGAAATGACCGACGGTCGTAAAAACATGTTCACCCACTCTTTCGA
ACCGTTCAAAACCAAACCGTCTCTGCACCAGTGCGAACTGGCGGACAAAGCGTACCAGTCTCTG
CACTCTTACCTGCCGGGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGTTTCCGTAT
CTTCTCTAAATCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTACGAATCT
AAACTGGCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCTACCCTGTT
CAACGCGCTGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCTGATCGCG
CGTTTCTACACCCTGCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGGAACGTGACC
TGGCGGAAGTTATCTCTCGTAAAATCGCGTCTTCTTTCGGTACCTGGAAAGAAATGACCGCGAA
CCCGCTGCAGTCTCTGCAGTTCTTCGAAGAAGAACTGCACGCGCTGGACGCGAACGTTTCTCTGT
CTCCGGCGTTCGACGTTCTGATCAAAATGAACGACCTGCAGGGTGACCTGAAAAACCGTACCAT
CGTTTTCGACCCGGACGCGCCGGTTTTCGAATACAACGCGGAAGACCCGGCGGACATCATCATC
AAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATCAAAAACCAGAACGTTGGTAACTACGTT
AAAAACGCGATCACCACCACCAACGCGAACGGTCTGGGTTGGCTGCTGAACAAAGGTCTGTCTC
TGCTGCCGGTTTCTACCGACGACGAACTGCTGGAATTCATCGGTGTTGAACGTTCTCACCCGTCT
TGCCACGCGCTGATCGAACTGATCGCGCAGCTGGAAGCGCCGGAACTGTTCGAAAAAAACGTTT
TCTCTGACACCCGTTCTGAAGTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACATCGCGCGT
CTGTCTTCTTCTCGTAACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATCAAATCTTTC
CAGATCCACACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAGCTGGAATC
TCTGCCGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTACCCAGTACA
TGCTGACCAACTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACCGTATCAA CTACCTGTCTGGTGTTGCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGATCGACGGTGAA
AAAATCCACCTGCCGGCGGCGTGGTCTGAACTGATCTCTCTGCCGTTCATCGGTCAGCCGGTTAT
CGACGTTGAATCTGACCTGGCGCACCTGAAAAACCAGTACCAGACCCTGTCTAACGAATTCGAC
ACCCTGATCTCTGCGCTGCAGAAAAACTTCGACCTGAACTTCAACAAAGCGCTGCTGAACCGTA
CCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAAAAAAACGCGCTGTCTAAACCGGAAATCGT
TTCTTACCGTGACCTGCTGGCGCGTCTGACCTCTTGCCTGTACCGTGGTTCTCTGGTTCTGCGTCG
TGCGGGTATCGAAGTTCTGAAAAAACACAAAATCTTCGAATCTAACTCTGAACTGCGTGAACAC
GTTCACGAACGTAAACACTTCGTTTTCGTTTCTCCGCTGGACCGTAAAGCGAAAAAACTGCTGC
GTCTGACCGACTCTCGTCCGGACCTGCTGCACGTTATCGACGAAATCCTGCAGCACGACAACCT
GGAAAACAAAGACCGTGAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGGTCTGCCG
GACCAGCTGTCTTCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGTCGTCTGAT
CGACCTGATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTCTGCGTTCA
AATCTAACCTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCCGTACCCTG
TCTCCGTACCTGGGTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGGTTCCGTCTCA
GATGTTCGAAGGTCGTTTCGCGGACATCCTGCAGTCTGACTACATGGTTTGGAAAGACGCGGGT
CGTCTGTGCGTTATCGACACCGCGAAACACCTGTCTAACATCAAAAAATCTGTTTTCTCTTCTGA
AGAAGTTCTGGCGTTCCTGCGTGAACTGCCGCACCGTACCTTCATCCAGACCGAAGTTCGTGGTC
TGGGTGTTAACGTTGACGGTATCGCGTTCAACAACGGTGACATCCCGTCTCTGAAAACCTTCTCT
AACTGCGTTCAGGTTAAAGTTTCTCGTACCAACACCTCTCTGGTTCAGACCCTGAACCGTTGGTT
CGAAGGTGGTAAAGTTTCTCCGCCGTCTATCCAGTTCGAACGTGCGTACTACAAAAAAGACGAC
CAGATCCACGAAGACGCGGCGAAACGTAAAATCCGTTTCCAGATGCCGGCGACCGAACTGGTTC
ACGCGTCTGACGACGCGGGTTGGACCCCGTCTTACCTGCTGGGTATCGACCCGGGTGAATACGG
TATGGGTCTGTCTCTGGTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCATCCACATCA
ACTCTCTGATCAACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGCGTCAGCA
GTACAAATCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGACATCGCG
CACATCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTGTCTGGTA
ACTCTCAGTCTGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGGGTGACAAC
GACGCGCAGAACTCTATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGGACATCAAAGGTA
TGCTGCGTCAGCCGCCGACCGAAAAAAAACCGAAACCGTACATCGCGTTCCCGGGTTCTCAGGT
TTCTTCTTACGGTAACTCTCAGCGTTGCTCTTGCTGCGGTCGTAACCCGATCGAACAGCTGCGTG
AAATGGCGAAAGACACCTCTATCAAAGAACTGAAAATCCGTAACTCTGAAATCCAGCTGTTCGA
CGGTACCATCAAACTGTTCAACCCGGACCCGTCTACCGTTATCGAACGTCGTCGTCACAACCTG
GGTCCGTCTCGTATCCCGGTTGCGGACCGTACCTTCAAAAACATCTCTCCGTCTTCTCTGGAATT
CAAAGAACTGATCACCATCGTTTCTCGTTCTATCCGTCACTCTCCGGAATTCATCGCGAAAAAAC
GTGGTATCGGTTCTGAATACTTCTGCGCGTACTCTGACTGCAACTCTTCTCTGAACTCTGAAGCG
AACGCGGCGGCGAACGTTGCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGTAAGAAATCA
TCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCA
CTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
77 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATAAACGTATCCTGAACTCTCTGAAAGTT
GCGGCGCTGCGTCTGCTGTTCCGTGGTAAAGGTTCTGAACTGGTTAAAACCGTTAAATACCCGCT
GGTTTCTCCGGTTCAGGGTGCGGTTGAAGAACTGGCGGAAGCGATCCGTCACGACAACCTGCAC
CTGTTCGGTCAGAAAGAAATCGTTGACCTGATGGAAAAAGACGAAGGTACCCAGGTTTACTCTG
TTGTTGACTTCTGGCTGGACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCTGCGAACGCGCTG
AAAATCACCCTGGGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTGGAACAGTC
TCCGTTCTTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGTTGAAATCC
GTAAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCTGCTTCAT
CGGTCAGCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCTGGGACTCT
AAAGACCACGAAGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGCTGATCAAAGAC
CCGAAAGCGGTTACCGAAGAAGACCCGGAAAACGAAACCGCGGGTAAACAGAAACCGCTGGA
ACTGTGCGTTTGCCTGGTTCCGGAACTGTACACCCGTGGTTTCGGTTCTATCGCGGACTTCCTGG
TTCAGCGTCTGACCCTGCTGCGTGACAAAATGTCTACCGACACCGCGGAAGACTGCCTGGAATA
CGTTGGTATCGAAGAAGAAAAAGGTAACGGTATGAACTCTCTGCTGGGTACCTTCCTGAAAAAC
CTGCAGGGTGACGGTTTCGAACAGATCTTCCAGTTCATGCTGGGTTCTTACGTTGGTTGGCAGGG
TAAAGAAGACGTTCTGCGTGAACGTCTGGACCTGCTGGCGGAAAAAGTTAAACGTCTGCCGAAA
CCGAAATTCGCGGGTGAATGGTCTGGTCACCGTATGTTCCTGCACGGTCAGCTGAAATCTTGGTC
TTCTAACTTCTTCCGTCTGTTCAACGAAACCCGTGAACTGCTGGAATCTATCAAATCTGACATCC
AGCACGCGACCATGCTGATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCGCAGCTGCTGTC
TCAGTACCGTAAACTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCCGGAAATC
GAAATGACCCACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTTGCGGGTTT
CCTGCCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTCTATCTTCC
CGCGTATCCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGGGTGAAC
CGGAAGAAGGTTACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAAACCCGAAACA
CGTTCCGCGTTTCATGGCGGAACGTATCCCGGAAGACTGGACCCGTCTGCGTTCTGCGCCGGTTT
GGTTCGACGGTATGGTTAAACAGTGGCAGAAAGTTGTTAACCAGCTGGTTGAATCTCCGGGTGC
GCTGTACCAGTTCAACGAATCTTTCCTGCGTCAGCGTCTGCAGGCGATGCTGACCGTTTACAAAC
GTGACCTGCAGACCGAAAAATTCCTGAAACTGCTGGCGGACGTTTGCCGTCCGCTGGTTGACTT
CTTCGGTCTGGGTGGTAACGACATCATCTTCAAATCTTGCCAGGACCCGCGTAAACAGTGGCAG
ACCGTTATCCCGCTGTCTGTTCCGGCGGACGTTTACACCGCGTGCGAAGGTCTGGCGATCCGTCT
GCGTGAAACCCTGGGTTTCGAATGGAAAAACCTGAAAGGTCACGAACGTGAAGACTTCCTGCGT
CTGCACCAGCTGCTGGGTAACCTGCTGTTCTGGATCCGTGACGCGAAACTGGTTGTTAAACTGG
AAGACTGGATGAACAACCCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATCGACCTGC
CGCTGGAAATCTTCGGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTGAACTGCGT
CAGCTGGAACTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACCACCGGTTC
TCCGAACCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAAAAAAAAC
TCTAACAACTTCCAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTGGACCTGAC
CCTGGACGCGTTCGCGGGTAAACTGCTGACCGACCCGGTTACCCAGGAACTGAAAACCATGGCG
GGTTTCTACGACCACCTGTTCGGTTTCAAACTGCCGTGCAAACTGGCGGCGATGTCTAACCACCC
GGGTTCTTCTTCTAAAATGGTTGTTCTGGCGAAACCGAAAAAAGGTGTTGCGTCTAACATCGGTT TCGAACCGATCCCGGACCCGGCGCACCCGGTTTTCCGTGTTCGTTCTTCTTGGCCGGAACTGAAA
TACCTGGAAGGTCTGCTGTACCTGCCGGAAGACACCCCGCTGACCATCGAACTGGCGGAAACCT
CTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCGTTCGACCTGAAAAACCTGACCACCATCCTGGGTC
GTGTTGGTGAATTCCGTGTTACCGCGGACCAGCCGTTCAAACTGACCCCGATCATCCCGGAAAA
AGAAGAATCTTTCATCGGTAAAACCTACCTGGGTCTGGACGCGGGTGAACGTTCTGGTGTTGGT
TTCGCGATCGTTACCGTTGACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTTCACGAAGACA
CCCAGCTGATGGCGCTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCCAGCCGCT
GCGTAAAGGTACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTACTGGAAC
TTCTACCACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTTGGTTCTTC
TGGTCTGGTTGGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGTTCTGCCG
AAAAAAGGTGGTAAAAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGGACACCCTG
TGGGGTGGTGCGTTCTCTAAAAAAGAAGAACAGCAGATCGCGTTCGAAGTTCAGGCGGCGGGTT
CTTCTCAGTTCTGCCTGAAATGCGGTTGGTGGTTCCAGCTGGGTATGCGTGAAGTTAACCGTGTT
CAGGAATCTGGTGTTGTTCTGGACTGGAACCGTTCTATCGTTACCTTCCTGATCGAATCTTCTGG
TGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCTGGAAAAAGGTTTCCGTCCGGACATCGAAACC
TTCAAAAAAATGGTTCGTGACTTCATGCGTCCGCCGATGTTCGACCGTAAAGGTCGTCCGGCGG
CGGCGTACGAACGTTTCGTTCTGGGTCGTCGTCACCGTCGTTACCGTTTCGACAAAGTTTTCGAA
GAACGTTTCGGTCGTTCTGCGCTGTTCATCTGCCCGCGTGTTGGTTGCGGTAACTTCGACCACTC
TTCTGAACAGTCTGCGGTTGTTCTGGCGCTGATCGGTTACATCGCGGACAAAGAAGGTATGTCT
GGTAAAAAACTGGTTTACGTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAAAAACTG
GAACGTTCTCGTGTTGAAGAACAGTCTTCTGCGCAGTAAGAAATCATCCTTAGCGAAAGCTAAG
AGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
78 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGGAATCTAAACAGATGCAGTGCCGT
AAATGCGGTGCGTCTATGAAATACGAAGTTATCGGTCTGGGTAAAAAATCTTGCCGTTACATGT
GCCCGGACTGCGGTAACCACACCTCTGCGCGTAAAATCCAGAACAAAAAAAAACGTGACAAAA
AATACGGTTCTGCGTCTAAAGCGCAGTCTCAGCGTATCGCGGTTGCGGGTGCGCTGTACCCGGA
CAAAAAAGTTCAGACCATCAAAACCTACAAATACCCGGCGGACCTGAACGGTGAAGTTCACGA
CTCTGGTGTTGCGGAAAAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCTGGGTCCG
TCTTCTGAATACGCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTTGTTGACTT
CTGGTTCGACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCTGTCTACCG
TTCTGCAGCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGTTCGTTGAC
GACATCAACCTGGCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTCAGGACAAAC
TGGGTAAACGTATCGGTGAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGGGTATCAAAGACCG
TATGCGTGAATTCGTTCAGGCGATCGACGTTGCGCAGACCGCGGGTCAGCGTTTCGCGGCGAAA
CTGAAAATCTTCGGTATCTCTCAGATGCCGGAAGCGAAACAGTGGAACAACGACTCTGGTCTGA CCGTTTGCATCCTGCCGGACTACTACGTTCCGGAAGAAAACCGTGCGGACCAGCTGGTTGTTCT
GCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGGGTATCGAAGACGAAGCGGGTTTCGAACAC
CTGGGTATCGACCCGGGTGCGCTGTCTAACTTCTCTAACGGTAACCCGAAACGTGGTTTCCTGGG
TCGTCTGCTGAACAACGACATCATCGCGCTGGCGAACAACATGTCTGCGATGACCCCGTACTGG
GAAGGTCGTAAAGGTGAACTGATCGAACGTCTGGCGTGGCTGAAACACCGTGCGGAAGGTCTG
TACCTGAAAGAACCGCACTTCGGTAACTCTTGGGCGGACCACCGTTCTCGTATCTTCTCTCGTAT
CGCGGGTTGGCTGTCTGGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTCTGGTGTT
CGTACCGACCTGTTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCGTCTCCGGA
CTTCATCGCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCAGGACCCGG
CGGAACAGGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTATCGCGAA
CAAAGCGGTTCAGCGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGGTTGACCAC
CTGGAATTCAACAAAGCGTTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAAAAAAAGGTGCGA
ACTCTAACGGTGCGCCGTCTGAAGAAGAATACACCGAAACCGAATCTATCCAGCAGCCGGAAG
ACGCGGAACAGGAAGTTAACGGTCAGGAAGGTAACGGTGCGTCTAAAAACCAGAAAAAATTCC
AGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTCGTTCTGAATACCGTATCCTGACCGAAGCGCCG
CAGTACTTCGACATGTTCTGCAACAACATGCGTGCGATCTTCATGCAGCTGGAATCTCAGCCGC
GTAAAGCGCCGCGTGACTTCAAATGCTTCCTGCAGAACCGTCTGCAGAAACTGTACAAACAGAC
CTTCCTGAACGCGCGTTCTAACAAATGCCGTGCGCTGCTGGAATCTGTTCTGATCTCTTGGGGTG
AATTCTACACCTACGGTGCGAACGAAAAAAAATTCCGTCTGCGTCACGAAGCGTCTGAACGTTC
TTCTGACCCGGACTACGTTGTTCAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCTGTTCGGTT
TCGAATGGCGTGACTGCTCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAAAAGCGAT
CTCTTTCCTGCTGGCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCTGGGTAACT
CTACCGTTTCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGCTGGAAGAA
TTCCTGAACGCGACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCTCAGGAACT
GAAAGACGGTTTCGACGTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACCTGCTGGTT
TACCGTGCGTCTCGTGACCTGGCGGCGTGCAAACGTGCGACCTGCCCGGCGGAACTGGACCCGA
AAATCCTGGTTCTGCCGGTTGGTGCGTTCATCGCGTCTGTTATGAAAATGATCGAACGTGGTGAC
GAACCGCTGGCGGGTGCGTACCTGCGTCACCGTCCGCACTCTTTCGGTTGGCAGATCCGTGTTCG
TGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCGCGCTGGCGTTCCAGAAACCGACCGAATCT
GAACCGTTCAAAATCAAACCGTTCTCTGCGCAGTACGGTCCGGTTCTGTGGCTGAACTCTTCTTC
TTACTCTCAGTCTCAGTACCTGGACGGTTTCCTGTCTCAGCCGAAAAACTGGTCTATGCGTGTTC
TGCCGCAGGCGGGTTCTGTTCGTGTTGAACAGCGTGTTGCGCTGATCTGGAACCTGCAGGCGGG
TAAAATGCGTCTGGAACGTTCTGGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTCTTTCCGTCC
GTCTGGTTCTGGTGACGAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCCGCACTCTG
GTGGTATCGAATACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGGAACGTGGT
ACCATCGCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCACCGTGAAA
AACAGCGTCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTGACGCGGC
GAACGAACTGCACCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCGTTGTTCAG
TGGGCGCCGCAGCCGAAACCGGGTACCGCGCCGACCGCGCAGACCGTTTACGCGCGTGCGGTTC
GTACCGAAGCGCCGCGTTCTGGTAACCAGGAAGACCACGCGCGTATGAAATCTTCTTGGGGTTA
CACCTGGGGTACCTACTGGGAAAAACGTAAACCGGAAGACATCCTGGGTATCTCTACCCAGGTT
TACTGGACCGGTGGTATCGGTGAATCTTGCCCGGCGGTTGCGGTTGCGCTGCTGGGTCACATCC GTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAGAAGTTGTTTTCGGTCGTCTGAAAAAATT
CTTCCCGTCTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAG ACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC
79 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATGAAAAACGTATCAACAAAATCCGTAA
AAAACTGTCTGCGGACAACGCGACCAAACCGGTTTCTCGTTCTGGTCCGATGAAAACCCTGCTG
GTTCGTGTTATGACCGACGACCTGAAAAAACGTCTGGAAAAACGTCGTAAAAAACCGGAAGTT
ATGCCGCAGGTTATCTCTAACAACGCGGCGAACAACCTGCGTATGCTGCTGGACGACTACACCA
AAATGAAAGAAGCGATCCTGCAGGTTTACTGGCAGGAATTCAAAGACGACCACGTTGGTCTGAT
GTGCAAATTCGCGCAGCCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGAAATGGA
CGAAAAAGGTAACCTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCTGTTCGTT
TACAAACTGGAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGTTGCAACG
TTGCGGAACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTGACGAAG
CGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACC
AAAGAATCTACCCACCCGGTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACGCGTCTGGTC
CGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTACCATCGCGTCTTTCCTGTCTAAATACCAG
GACATCATCATCGAACACCAGAAAGTTGTTAAAGGTAACCAGAAACGTCTGGAATCTCTGCGTG
AACTGGCGGGTAAAGAAAACCTGGAATACCCGTCTGTTACCCTGCCGCCGCAGCCGCACACCAA
AGAAGGTGTTGACGCGTACAACGAAGTTATCGCGCGTGTTCGTATGTGGGTTAACCTGAACCTG
TGGCAGAAACTGAAACTGTCTCGTGACGACGCGAAACCGCTGCTGCGTCTGAAAGGTTTCCCGT
CTTTCCCGGTTGTTGAACGTCGTGAAAACGAAGTTGACTGGTGGAACACCATCAACGAAGTTAA
AAAACTGATCGACGCGAAACGTGACATGGGTCGTGTTTTCTGGTCTGGTGTTACCGCGGAAAAA
CGTAACACCATCCTGGAAGGTTACAACTACCTGCCGAACGAAAACGACCACAAAAAACGTGAA
GGTTCTCTGGAAAACCCGAAAAAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTGTACCTGG
AAAAAAAATACGCGGGTGACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCGACAAAA
AAATCGCGGGTCTGACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACGCGCAGT
CTAAAGCGGTTCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTCTGAAAGA
AATGGACGAAAAAGAATTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGACCTGCG
TGGTAACCCGTTCGCGGTTGAAGCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTCTATCGGTT
CTGACGGTCACTCTATCCAGTACCGTAACCTGCTGGCGTGGAAATACCTGGAAAACGGTAAACG
TGAATTCTACCTGCTGATGAACTACGGTAAAAAAGGTCGTATCCGTTTCACCGACGGTACCGAC
ATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTACGGTGGTGGTAAAGCGAAAGTTATCGACC
TGACCTTCGACCCGGACGACGAACAGCTGATCATCCTGCCGCTGGCGTTCGGTACCCGTCAGGG
TCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGTCTGATCAAACTGGCGAACGGT
CGTGTTATCGAAAAAACCATCTACAACAAAAAAATCGGTCGTGACGAACCGGCGCTGTTCGTTG
CGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCGTCTAACATCAAACCGGTTAACCTGATCGGT
GTTGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGC CGGAATTCAAAGACTCTTCTGGTGGTCCGACCGACATCCTGCGTATCGGTGAAGGTTACAAAGA
AAAACAGCGTGCGATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCG
TAAATTCGCGTCTAAATCTCGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCGTGACCTGT
TCTACCACGCGGTTACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTTTCGGTCGT
CAGGGTAAACGTACCTTCATGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTGACCGCG
AAACTGGCGTACGAAGGTCTGACCTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCT
CTAAAACCTGCTCTAACTGCGGTTTCACCATCACCACCGCGGACTACGACGGTATGCTGGTTCGT
CTGAAAAAAACCTCTGACGGTTGGGCGACCACCCTGAACAACAAAGAACTGAAAGCGGAAGGT
CAGATCACCTACTACAACCGTTACAAACGTCAGACCGTTGAAAAAGAACTGTCTGCGGAACTGG
ACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTAAATGGACCAAAGGTCGTCGTGACGA
AGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAGGAACAGTTCGTTTGCCTGG
ACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGCTGAACATCGCGCGTTCTTGGCTGTT
CCTGAACTCTAACTCTACCGAATTCAAATCTTACAAATCTGGTAAACAGCCGTTCGTTGGTGCGT
GGCAGGCGTTCTACAAACGTCGTCTGAAAGAAGTTTGGAAACCGAACGCGTAAGAAATCATCCT
TAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCA
GGAAGTTATTACTCAGGAAGCAAAGAGGATTACA
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACT
Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAA
N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGC 80 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTT
AAGAGGAGGATATACCATGCACCATCATCATCACCATAAACGTATCAACAAAATCCGTCGTCGT
CTGGTTAAAGACTCTAACACCAAAAAAGCGGGTAAAACCGGTCCGATGAAAACCCTGCTGGTTC
GTGTTATGACCCCGGACCTGCGTGAACGTCTGGAAAACCTGCGTAAAAAACCGGAAAACATCCC
GCAGCCGATCTCTAACACCTCTCGTGCGAACCTGAACAAACTGCTGACCGACTACACCGAAATG
AAAAAAGCGATCCTGCACGTTTACTGGGAAGAATTCCAGAAAGACCCGGTTGGTCTGATGTCTC
GTGTTGCGCAGCCGGCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAAGACGGTA
ACGAACGTCTGACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACGTTTACAAA
CTGGAACAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAACGTTTCTG
AACACGAACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGGTTACCTA
CTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCCGTGAATCTA
ACCACCCGGTTAAACCGCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTGGTCCGGTTGGTAA
AGCGCTGTCTGACGCGTGCATGGGTGCGGTTGCGTCTTTCCTGACCAAATACCAGGACATCATC
CTGGAACACCAGAAAGTTATCAAAAAAAACGAAAAACGTCTGGCGAACCTGAAAGACATCGCG
TCTGCGAACGGTCTGGCGTTCCCGAAAATCACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTA
TCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTATCTGGGTTAACCTGAACCTGTGGCAGAA
ACTGAAAATCGGTCGTGACGAAGCGAAACCGCTGCAGCGTCTGAAAGGTTTCCCGTCTTTCCCG
CTGGTTGAACGTCAGGCGAACGAAGTTGACTGGTGGGACATGGTTTGCAACGTTAAAAAACTGA
TCAACGAAAAAAAAGAAGACGGTAAAGTTTTCTGGCAGAACCTGGCGGGTTACAAACGTCAGG
AAGCGCTGCTGCCGTACCTGTCTTCTGAAGAAGACCGTAAAAAAGGTAAAAAATTCGCGCGTTA
CCAGTTCGGTGACCTGCTGCTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAAAGTTTAC GACGAAGCGTGGGAACGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTGGAA
GAAGAACGTCGTTCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGTGCGAAA
GCGTCTTTCGTTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGCGAACTGA
AACTGCAGAAATGGTACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAAACTCTAT
CCTGGACATCTCTGGTTTCTCTAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGACGGTGTTA
AAAAACTGAACCTGTACCTGATCATCAACTACTTCAAAGGTGGTAAACTGCGTTTCAAAAAAAT
CAAACCGGAAGCGTTCGAAGCGAACCGTTTCTACACCGTTATCAACAAAAAATCTGGTGAAATC
GTTCCGATGGAAGTTAACTTCAACTTCGACGACCCGAACCTGATCATCCTGCCGCTGGCGTTCGG
TAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGTTCTCTGAAA
CTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACAACCGTCGTACCCGTCAGGACGAACCGG
CGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTCTGGACTCTTCTAACATCAAACCGATG
AACCTGATCGGTATCGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAG
GTTGCCCGCTGTCTCGTTTCAAAGACTCTCTGGGTAACCCGACCCACATCCTGCGTATCGGTGAA
TCTTACAAAGAAAAACAGCGTACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGT
GGTTACTCTCGTAAATACGCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGTAACACCG
CGCGTGACCTGCTGTACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACCTGTCTCGT
GGTTTCGGTCGTCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATGGAAGACT
GGCTGACCGCGAAACTGGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAACCCTGGC
GCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCATCACCTCTGCGGACTACGACCGTG
TTCTGGAAAAACTGAAAAAAACCGCGACCGGTTGGATGACCACCATCAACGGTAAAGAACTGA
AAGTTGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGAACGTTGTTAAAGACCTGTC
TGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAACAACGACATCTCTTCTTGGACCAAAGGTC
GTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAGGAAAAATTC
GTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACGAACAGGCGGCGCTGAACATCGCGCGTT
CTTGGCTGTTCCTGCGTTCTCAGGAATACAAAAAATACCAGACCAACAAAACCACCGGTAACAC
CGACAAACGTGCGTTCGTTGAAACCTGGCAGTCTTTCTACCGTAAAAAACTGAAAGAAGTTTGG
AAACCGGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTC
AGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA
SE tgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacg
Q cgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcct no acctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAG
N GAGatatacc
O:
81
SE TGCCGTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG Q CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCA
ID CGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTAT N CCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGT
O: TTTTTTGGGTAGCGGATCCTACCTGAC
82
SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTTCTAGAGC
Q ACAGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTTGCTGGATAACTTTA no CGGGCATGCATAAGGCTCGTAATATATATTCAGGGAGACCACAACGGTTTCCCTCTACAAATAA
N TTTTGTTTAACTTTTACTAGAGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGA
0: GATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCA
83
SE GTTTGAGAGATATGTAAATTCAAAGGATAATCAAAC
Q
no
N
0:
84
SE actacattttttaagacctaattttgagt
Q
no
N
0:
85
SE ctcaaaactcattcgaatctctactctttgtagat
Q
no
N
0:
86
SE CTCTAGCAGGCCTGGCAAATTTCTACTGTTGTAGAT
Q
no
N
0:
87
SE CCGTCTAAAACTCATTCAGAATTTCTACTAGTGTAGAT
Q
no
N
0:
88
SE GTCTAGGTACTCTCTTTAATTTCTACTATTGT
Q
no
N
0:
89
SE gttaagttatatagaataatttctactgttgtaga Q
no
N
0:
90
SE gtttaaaaccactttaaaatttctactattgta
Q
no
N
0:
91
SE GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACATCACT
Q CTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT
no
N
0:
92
SE CTCTACAACTGATAAAGAATTTCTACTTTTGTAGAT
Q
no
N
0:
93
SE GTCTGGCCCCAAATTTTAATTTCTACTGTTGTAGAT
Q
no
N
0:
94
SE GTCAAAAGACCTTTTTAATTTCTACTCTTGTAGAT
Q
no
N
0:
95
SE GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTT
Q GAGCTTCTACGGAAGTGGCAC
no
N
0:
96 SE CGAGGTTCTGTCTTTTGGTCAGGACAACCGTCTAGCTATAAGTGCTGCAGGGGTGTGAGAAACT
Q CCTATTGCTGGACGATGTCTCTTTTAACGAGGCATTAGCAC
no
N
0:
97
SE GAACGAGGGACGTTTTGTCTCCAATGATTTTGCTATGACGACCTCGAACTGTGCCTTCAAGTCTG
Q AGGCGAAAAAGAAATGGAAAAAAGTGTCTCATCGCTCTACCTCGTAGTTAGAGG
no
N
0:
98
SE AATTACTGATGTTGTGATGAAGG
Q
no
N
0:
99
SE TATACCATAAGGATTTAAAGACT
Q
no
N
0:
10
0
SE GTCTTTACTCTCACCTTTCCACCTG
Q
no
N
0:
10
1
SE ATTTGAAGGTATCTCCGATAAGTAAAACGCATCAAAG
Q
no
N
0:
10
2
SE GTTTGAAGATATCTCCGATAAATAAGAAGCATCAAAG
Q
no N
0:
10
3
SE
Q
ID
N
0:
10
4
SE AAAGAACGCTCGCTCAGTGTTCTGACCTTTCGAGCGCCTGTTCAGGGCGAAAACCCTGGGAGGC
Q GCTCGAATCATAGGTGGGACAAGGGATTCGCGGCGAAAA
ID
N
0:
10
5
SE GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACATCACT
Q CTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT
ID
N
0:
10
6
SE GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTT
Q GAGCTTCTACGGAAGTGGCAC
ID
N
0:
10
7
SE MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVC
Q ISEDLLQNYSDWFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDL
ID IL N WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPK
0: FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFN YLNQSGI 10 TK
8 FNTIIGGKFWGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDV VT
TMQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVL EY ITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHPJ^IDKQCPJEEILA FAAIPMIFD
EIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDK DEH
FYL EECYFELAMWLYNKIPJvTYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKY YL
GVMNKKNNKIFDDKAIKENKGEGYKKIW TKN
GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENI S
ESYIDSVVNQGKLYLFQIYN DFSAYSKGPJ'NLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQS IPKK
ITHPAKEAIANKN DNPKKES EYDLIKDKJ FTEDKFFFHCPITINFKSSGAN FND D
VHILSIDRGEPJiLAYYTLVDGKGNIIKQDTFNIIGNDPJVKTNYHDKLAAIEKDRDSAPJ DWKKINNI KEM
KEGYLSQVVHEIAKLVIEYNAIV EDLNFGFKRGRFKVEKQWQKLEKMLIEKLNYLVFKDNEFDK TGG
VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYN LD
KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYG HGEC
IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADAN GAY
HIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
SE MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVC
Q ISEDLLQNYSDWFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDL
no IL
N WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSDDIPTSIIYRIVDDNLPK
O: FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFN YLNQSGI 10 TK
9 FNTIIGGKFWGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDV VT
TMQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVL EY
ITQQVAPKNLDNPSKKEQDLIAKKTEKAKYLSLETIKLALEEFN HRDIDKQCRFEEILA FAAIPMIF D
EIAQNKDNLAQISLKYQNQGKKDLLQASAEEDVKAIKDLLDQTN LLHRLKIFHISQSEDKANILDK DEH
FYL EECYFELAMWLYNKIR YITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKY YL
GVMNKXNNKIFDDKAIKENKGEGYKKIWKLLPGANKMLPK FSAKSIKFYNPSEDILR^
TKN GNPQKGYEKFEFNIEDCRKFIDFYKESISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENI
S
ESYIDSVVNQGKLYLFQIYN DFSAYSKGPJ'NLHTLYWKALFDERNLQDVWKLNGEAELFYRKQS IPKK
ITHPAKEAIANKN DNPKKES EYDLIKDKJ FTEDKFFFHCPITINFKSSGAN F D
VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNI KEM
KEGYLSQVVHEIAKLVIEHNAIV EDLNFGFKRGRFKVEKQWQKLEKMLIEKLNYLVFKDNEFDK TGG
VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYN LD
KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYG HGEC
IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADAN GAY
HIGLKGLMLLDRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
SE MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRT
Q ARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTI
no YHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINA
N SGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTY
O: DDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKAL 11 WQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
0 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITP
WNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTWNELTKVKYVTEGMRKPAFLS
GEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDN
EENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSG
KTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKL
YLYYLQNGRDMYVDQELDINRLSDYDVDHIWQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVK
KMKNY WRQLLN AKLITQRKFDNLTK AERGGL SELDK AGFIKRQL VETRQITKH V AQILD SRMNTKY
DENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN YHHAHDAYLNAVVGTALIKKYPKLESEFVY
GDYKWDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR
DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL
VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR
MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR
VILADANLDKVLSAYN HRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL
IHQSITGLYETRIDLSQLGGD
SE PKKKRKV
Q
ID
N 0:
11
1
SE KRPAATKKAGQAKKKK
Q
ID
N
0:
11
2
SE PAAKRVKLD
Q
ID
N
0:
11
3
SE RQRRNELKRSP
Q
ID
N
0:
11
4
SE NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY
Q
ID
N
0:
11
5
SE RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV
Q
ID
N
0:
11
6
SE VSRKRPRP
Q
ID
N 0:
11
7
SE PPKKARED
Q
ID
N
0:
11
8
SE PQPKKKPL
Q
ID
N
0:
11
9
SE SALIKKKKKMAP
Q
ID
N
0:
12
0
SE DRLRR
Q
ID
N
0:
12
1
SE PKQKKRK
Q
ID
N
0:
12
2
SE RKLKKKIKKL
Q
ID
N 0:
12
3
SE REKKKFLKRR
Q
ID
N
0:
12
4
SE KRKGDEVDGVDEVAKKKSKK
Q
ID
N
0:
12
5
SE RKCLQAGMNLEARKTKK
Q
ID
N
0:
12
6
SE ATGGGTAAGATGTATTATCTGGGTTTGGATATAGGCACTAACTCTGTGGGATATGCAGTAACTG
Q ATCCCTCGTATCACTTGTTAAAGTTCAAAGGCGAACCCATGTGGGGAGCACATGTATTTGCTGC
ID GGGTAATCAGAGTGCCGAAAGGCGATCTTTCAGAACATCCAGGAGGCGATTAGATAGGAGACA N GCAAAGAGTAAAGCTTGTGCAAGAGATCTTTGCTCCTGTCATTTCACCTATAGACCCTCGTTTTT
0: TTATAAGATTGCACGAATCGGCTCTATGGAGAGACGATGTTGCCGAAACAGATAAACATATCTT 12 TTTCAATGATCCCACTTATACAGACAAGGAATACTACTCCGACTACCCGACAATTCATCATTTGA
7 TCGTCGATCTTATGGAGAGCTCTGAAAAGCATGACCCCCGACTTGTCTATTTGGCTGTAGCTTGG
TTAGTTGCTCATAGAGGTCATTTCTTGAATGAAGTAGATAAAGACAATATAGGTGATGTACTTTC
TTTTGATGCTTTCTACCCGGAATTTTTGGCCTTTTTGTCAGACAATGGCGTCAGTCCCTGGGTCTG
TGAGTCGAAGGCCCTTCAAGCTACTCTGCTGTCTAGGAATAGCGTCAACGACAAATATAAAGCA
TTAAAATCGCTGATATTCGGATCGCAAAAACCGGAAGATAACTTTGACGCTAACATCTCTGAAG
ATGGTTTAATCCAATTGCTGGCGGGTAAGAAAGTTAAAGTAAACAAACTATTCCCACAAGAGTC
CAACGATGCTAGCTTTACGTTGAATGATAAAGAAGACGCTATTGAAGAAATTCTAGGTACTTTA
ACGCCTGACGAGTGCGAATGGATCGCTCATATTCGCAGATTGTTCGATTGGGCCATCATGAAAC
ACGCGCTAAAGGATGGCAGGACGATATCTGAATCAAAAGTGAAGCTATACGAGCAGCATCATC
ATGACTTGACTCAGTTAAAGTACTTTGTGAAGACCTACCTAGCTAAAGAGTATGATGATATCTTC
AGAAACGTAGACTCCGAGACAACTAAAAATTATGTAGCTTATTCTTACCATGTGAAGGAAGTGA
AAGGCACATTACCAAAAAATAAAGCAACGCAAGAAGAATTTTGTAAATACGTCCTTGGCAAAG TCAAAAACATTGAATGTTCCGAAGCAGACAAGGTTGATTTTGATGAAATGATACAACGACTTAC
GGACAATTCTTTTATGCCAAAGCAAGTCTCAGGTGAAAATAGAGTAATACCATACCAGTTGTAC
TACTATGAATTAAAGACAATTTTAAACAAAGCCGCCTCATATCTACCTTTTTTGACACAATGCGG
TAAAGATGCTATTTCTAACCAAGACAAATTACTGTCTATAATGACATTTCGCATACCATATTTCG
TCGGCCCTTTAAGGAAAGATAATTCAGAACATGCCTGGTTGGAACGTAAAGCGGGTAAAATTTA
CCCGTGGAACTTTAATGATAAAGTAGATCTTGATAAATCGGAGGAAGCCTTTATCCGTAGGATG
ACCAATACTTGCACGTATTACCCAGGAGAAGACGTGTTACCATTAGATTCACTTATCTATGAAA
AGTTTATGATCTTGAATGAGATAAACAATATTAGGATTGACGGATACCCCATTTCTGTTGATGTG
AAACAACAAGTATTTGGTTTATTTGAGAAGAAAAGGCGAGTAACAGTTAAGGATATTCAAAATC
TACT ATT ATCTCTTGGAGCGTTGGATAAACACGGTAAGCTGACTGGTATTGACACGACAATACA
CTCTAATTATAACACTTATCATCATTTTAAATCTCTTATGGAGCGGGGAGTATTGACCAGAGATG
ATGTGGAAAGAATAGTGGAAAGAATGACATATTCTGACGATACTAAGAGGGTCAGACTGTGGT
TAAATAATAATTATGGAACTCTAACAGCTGACGATGTTAAGCATATCTCAAGACTCAGAAAACA
CGATTTCGGCCGTTTGTCTAAAATGTTTTTGACAGGATTGAAAGGTGTTCATAAGGAGACAGGC
GAGAGAGCAAGTATACTGGATTTTATGTGGAATACTAACGACAATTTAATGCAACTACTGTCCG
AATGTTACACATTCTCGGATGAGATCACCAAATTACAAGAGGCCTACTACGCAAAAGCTCAATT
ATCGCTAAATGACTTCTTGGACTCTATGTATATATCAAACGCCGTTAAGAGACCTATTTATCGGA
CCTTAGCGGTAGTAAATGATATTAGAAAGGCATGCGGGACGGCACCTAAAAGAATTTTCATCGA
GATGGCGCGAGATGGAGAGTCTAAGAAGAAAAGATCTGTGACTCGTAGAGAGCAAATTAAAAA
TCTCTATAGATCAATTCGTAAAGACTTTCAACAAGAAGTTGATTTTCTGGAAAAGATATTGGAA
AATAAGAGTGACGGGCAGCTTCAGTCTGACGCTTTATATTTGTATTTTGCTCAATTAGGCAGAGA
CATGTACACAGGTGATCCAATCAAATTAGAACATATTAAAGACCAATCTTTTTACAACATTGAT
CATATTTATCCTCAATCGATGGTGAAAGATGACAGTTTGGATAACAAGGTACTAGTCCAAAGCG
AAATCAATGGCGAAAAGAGTTCGCGCTATCCATTAGACGCAGCCATTAGAAACAAAATGAAGC
CGTTGTGGGATGCCTACTATAATCATGGATTAATTTCTCTTAAGAAATACCAGCGTTTGACGAGA
TCTACTCCATTTACGGACGACGAGAAGTGGGATTTTATCAATCGTCAGCTAGTTGAAACTAGGC
AATCTACTAAAGCTTTAGCAATATTGTTAAAGCGTAAGTTTCCAGATACTGAAATAGTTTACTCA
AAGGCTGGACTATCCAGCGATTTTAGACATGAATTCGGCCTGGTTAAGAGTAGGAATATTAATG
ATCTACACCATGCTAAAGATGCCTTTCTCGCAATAGTTACTGGGAACGTTTATCATGAAAGATTT
AATAGAAGATGGTTTATGGTTAACCAGCCATACTCTGTGAAAACTAAGACATTGTTTACCCATTC
AATTAAGAATGGCAACTTTGTCGCTTGGAATGGAGAAGAAGATCTTGGACGTATCGTAAAGATG
TTGAAACAAAACAAGAACACAATCCACTTCACCAGGTTTTCCTTTGATAGGAAGGAGGGATTGT
TCGATATTCAACCTCTCAAAGCTTCTACCGGATTGGTTCCACGAAAAGCAGGGTTGGATGTTGTT
AAATATGGAGGATACGATAAAAGCACTGCCGCGTATTATTTATTAGTACGTTTTACACTCGAGG
ATAAGAAGACTCAACACAAATTGATGATGATTCCTGTTGAAGGTCTCTACAAAGCACGTATTGA
CCATGATAAAGAGTTTTTAACAGATTATGCTCAGACCACGATCAGCGAAATTCTTCAAAAGGAC
AAGCAGAAAGTGATCAACATCATGTTCCCTATGGGCACGAGACATATCAAACTGAATTCGATGA
TTTCTATTGATGGATTCTATCTTTCTATTGGTGGGAAGAGTAGCAAAGGTAAGTCAGTACTATGT
CATGCTATGGTGCCATTAATCGTCCCACACAAGATAGAATGTTATATCAAGGCTATGGAATCGT
TTGCAAGAAAATTCAAAGAAAATAATAAATTGAGGATCGTTGAAAAGTTTGATAAAATAACTGT
TGAAGATAACTTGAACTTATACGAGCTTTTTCTACAAAAGTTGCAACATAACCCATATAATAAA
TTTTTCTCTACACAATTTGATGTGTTGACGAACGGTAGAAGTACATTCACCAAATTGTCTCCAGA GGAGCAAGTCCAGACTTTACTTAATATACTGAGTATATTTAAAACTTGTCGTTCTTCTGGGTGTG
ATTTAAAATCAATAAATGGTTCCGCTCAAGCGGCTAGAATTATGATATCCGCTGATTTAACTGGC TTATCAAAAAAGTATTCAGATATTAGATTAGTTGAGCAAAGCGCATCAGGTCTATTTGTTTCAAA ATCTCAAAATCTCTTGGAATACTTGCCAAAAAAGAAAAGGAAAGTTTAG
SE ATGAGTAGTTTAACAAAGTTTACCAATAAATATAGTAAGCAACTAACTATAAAGAACGAATTGA
Q TACCGGTCGGTAAGACTTTGGAAAACATAAAAGAAAATGGGTTGATTGATGGAGACGAGCAAT
no TGAATGAGAATTATCAAAAAGCAAAGATAATAGTAGATGATTTTTTGAGAGACTTTATTAATAA
N AGCTCTAAATAACACTCAAATTGGTAACTGGAGAGAGCTAGCCGACGCCTTGAACAAGGAAGA
O: TGAGGATAATATTGAGAAATTACAAGATAAGATTAGAGGGATTATCGTGTCTAAGTTTGAGACT 12 TTTGATCTGTTCAGTTCGTATTCGATTAAAAAGGACGAGAAAATCATCGATGATGATAACGATG 8 TGGAAGAAGAGGAGCTAGACCTTGGGAAGAAGACATCTAGCTTCAAATACATATTCAAGAAAA
ATTTGTTCAAACTTGTCCTTCCTTCATATTTAAAAACAACAAATCAAGATAAGTTAAAAATCATT
TCTTCCTTCGATAATTTTAGTACTTATTTTCGTGGTTTTTTCGAAAACAGGAAAAATATATTCACT
AAAAAGCCTATATCTACCTCTATAGCTTATAGAATTGTTCACGATAATTTCCCAAAATTTCTAGA
TAATATCAGGTGTTTTAATGTTTGGCAAACCGAGTGTCCTCAGTTAATAGTCAAGGCCGACAACT
ACCTTAAAAGCAAGAATGTGATTGCAAAAGATAAGTCTTTGGCTAACTATTTTACAGTCGGTGC
CTATGATTATTTTCTGAGTCAAAATGGTATCGATTTCTATAACAACATTATTGGCGGCTTACCAG
CTTTTGCCGGGCATGAGAAGATTCAGGGTTTGAACGAATTTATCAATCAAGAATGTCAAAAGGA
TTCTGAATTAAAGTCTAAGCTCAAGAATAGGCACGCTTTCAAAATGGCAGTCTTATTCAAACAA
ATCCTTTCAGACAGAGAAAAGTCATTTGTGATTGACGAGTTCGAATCAGACGCTCAGGTAATTG
ATGCTGTTAAAAATTTTTACGCGGAACAATGCAAAGATAATAACGTCATATTTAATTTATTGAAT
CTGATCAAGAATATTGCTTTTTTGTCGGATGATGAGTTAGACGGCATTTTCATAGAGGGTAAATA
CCTGTCCTCTGTGTCTCAAAAATTGTATAGTGATTGGTCAAAGTTGAGAAATGATATTGAAGATT
CGGCTAATTCTAAACAGGGTAACAAAGAATTAGCGAAGAAAATCAAAACTAACAAGGGTGATG
TTGAAAAGGCTATAAGTAAGTACGAGTTCAGTTTATCTGAACTAAATTCAATTGTTCATGATAAC
ACAAAATTTTCCGATCTTTTATCATGCACATTACATAAAGTTGCAAGTGAAAAATTAGTCAAAGT
AAACGAAGGTGATTGGCCAAAACATCTAAAAAACAACGAGGAAAAACAGAAGATAAAAGAAC
CTCTTGACGCTTTATTGGAAATATACAATACTCTATTAATATTTAACTGTAAAAGTTTTAACAAA
AATGGTAATTTCTATGTCGACTACGATCGCTGCATTAATGAGTTGTCCAGTGTTGTGTACTTGTA
TAATAAAACTCGTAATTATTGTACGAAAAAGCCGTACAACACTGACAAATTTAAGTTGAATTTC
AACTCCCCACAACTGGGTGAGGGCTTCTCTAAAAGTAAAGAGAATGATTGCCTTACATTATTAT
TTAAAAAAGATGATAATTATTATGTCGGAATCATAAGAAAGGGGGCAAAGATCAACTTCGATG
ACACTCAGGCCATAGCAGACAACACAGATAACTGTATATTCAAAATGAATTATTTTTTGCTGAA
GGATGCTAAAAAATTTATCCCCAAATGTTCAATACAATTAAAAGAGGTTAAGGCCCATTTCAAA
AAGTCGGAAGATGACTATATTTTGTCCGATAAGGAAAAATTCGCTAGTCCGCTTGTTATTAAAA
AATCCACATTTCTTCTCGCTACGGCTCATGTGAAAGGAAAGAAGGGCAATATTAAGAAATTTCA
GAAAGAATACTCCAAAGAAAATCCTACGGAGTATAGAAATAGTCTGAACGAATGGATAGCATT
CTGCAAAGAGTTCTTGAAGACCTATAAAGCTGCCACCATCTTTGATATTACAACTTTGAAAAAG
GCCGAGGAATACGCTGACATTGTGGAATTCTATAAGGATGTAGATAATCTTTGTTACAAGTTAG
AATTTTGCCCTATCAAAACTTCTTTTATCGAAAATCTTATAGATAATGGCGATTTATACCTGTTTA
GAATTAATAACAAGGACTTTTCTTCAAAAAGTACAGGCACGAAAAACTTACACACATTATACTT
GCAGGCTATATTTGACGAGCGAAACTTAAACAACCCCACGATAATGTTGAATGGAGGTGCAGA GTTATTCTACAGAAAAGAATCTATAGAACAGAAAAATCGGATCACGCACAAAGCCGGTAGTAT
CTTAGTGAATAAAGTGTGCAAAGATGGTACAAGTCTAGATGACAAAATCCGTAACGAAATTTAC
CAGTATGAAAACAAATTCATTGATACTCTTTCGGACGAAGCTAAAAAGGTTCTGCCAAACGTTA
TTAAGAAAGAGGCTACGCATGATATAACAAAAGATAAACGTTTCACTAGCGACAAATTCTTCTT
TCATTGTCCTTTAACAATCAACTACAAGGAAGGTGACACCAAACAATTTAATAATGAAGTGCTC
TCATTCCTTAGAGGTAACCCCGATATCAATATTATCGGCATTGATAGAGGAGAAAGAAACCTAA
TCTATGTAACAGTCATTAACCAAAAAGGCGAAATATTGGATAGCGTCTCCTTCAATACTGTCAC
CAATAAGTCATCGAAGATAGAACAAACTGTTGATTACGAAGAAAAATTGGCCGTTAGAGAAAA
GGAACGTATCGAAGCGAAGAGATCTTGGGATAGCATATCCAAGATTGCCACCTTGAAGGAGGG
TTATCTAAGCGCGATCGTACATGAAATCTGCTTATTAATGATTAAGCATAATGCTATTGTCGTGT
TAGAAAACCTGAATGCCGGTTTTAAAAGGATTAGAGGTGGTTTGTCAGAAAAGTCAGTATATCA
AAAGTTTGAAAAGATGCTTATTAATAAACTCAACTACTTCGTTAGCAAGAAAGAAAGTGATTGG
AATAAACCGTCAGGTTTGCTCAATGGTCTTCAGTTAAGTGATCAATTTGAGTCTTTCGAAAAATT
CCGGATTTGCCAACGTCTTGAATTTGTCCAAGGTCAGAAATGTTGACGCCATCAAAAGTTTTTTT
AGCAACTTCAATGAAATCTCTTATTCCAAAAAGGAAGCCCTTTTCAAGTTTTCTTTTGACCTAGA
CTCGTTATCGAAGAAAGGATTTTCATCTTTCGTAAAGTTTAGCAAGTCCAAGTGGAATGTATACA
CATTCGGCGAGAGAATTATCAAGCCCAAGAACAAACAGGGCTATAGAGAAGACAAGAGAATCA
ACTTGACTTTTGAGATGAAAAAATTACTCAACGAATACAAGGTTTCATTTGATTTGGAGAACAA
CTTGATTCCCAATTTGACATCAGCTAACTTGAAGGATACGTTCTGGAAGGAGTTATTCTTTATAT
TCAAAACGACATTACAACTGCGTAATAGTGTTACAAACGGTAAAGAAGATGTATTAATCTCACC
TGTAAAGAATGCCAAAGGAGAATTTTTCGTATCCGGTACTCACAATAAGACACTACCACAGGAT
TGCGACGCTAACGGTGCGTATCATATTGCGTTGAAAGGATTAATGATACTTGAAAGAAATAACC
TTGTTCGCGAAGAAAAAGACACCAAGAAGATCATGGCTATTAGCAATGTTGATTGGTTTGAATA
CGTGCAAAAGAGGAGAGGTGTTTTGTAA
SE ATGAACAATTATGACGAGTTCACAAAGCTATACCCTATCCAAAAAACTATCAGGTTCGAATTGA
Q AACCACAAGGGAGAACAATGGAACATCTGGAGACATTCAACTTTTTTGAAGAGGACAGAGACA
no GAGCGGAGAAATACAAAATTTTAAAAGAGGCCATCGATGAATATCACAAAAAGTTTATCGACG
N AGCATTTAACAAACATGTCTTTGGACTGGAATTCACTTAAACAAATTTCTGAGAAATATTATAA
O: GTCTCGGGAGGAAAAAGACAAAAAGGTCTTTTTGTCCGAGCAAAAGAGAATGAGACAAGAAAT 12 TGTCTCGGAGTTTAAAAAAGATGATCGGTTCAAAGATTTGTTTAGCAAGAAATTGTTTTCTGAAT
9 TGTTGAAGGAGGAGATATACAAGAAAGGCAACCATCAAGAAATAGATGCTTTGAAATCGTTTG
ACAAGTTCAGCGGTTACTTCATTGGTTTACATGAAAATAGGAAGAACATGTATAGCGACGGCGA
TGAGATCACCGCTATATCGAATAGAATCGTTAACGAAAATTTTCCGAAATTTTTGGATAATTTGC
AAAAATACCAGGAAGCTAGGAAAAAGTACCCTGAATGGATAATAAAGGCGGAATCAGCTTTGG
TGGCTCACAACATAAAGATGGATGAAGTCTTCTCGCTGGAATATTTTAACAAAGTATTAAATCA
GGAAGGAATCCAAAGATACAACTTAGCCTTGGGTGGATACGTAACCAAATCAGGTGAGAAAAT
GATGGGCTTAAATGATGCACTTAATCTAGCTCACCAATCCGAAAAGTCCTCTAAAGGGAGGATA
CACATGACACCATTGTTTAAGCAAATCCTTTCGGAGAAAGAATCTTTTTCATATATCCCCGATGT
TTTCACTGAGGATAGTCAATTGTTGCCCAGCATTGGTGGATTTTTTGCACAAATAGAAAATGATA
AAGATGGTAACATCTTCGATAGAGCCTTGGAATTGATAAGCTCCTATGCAGAATACGATACGGA
ACGAATATACATTAGACAAGCTGACATCAACAGAGTAAGCAATGTTATTTTTGGTGAGTGGGGA ACTTTAGGTGGATTAATGCGGGAGTACAAAGCTGACTCAATCAATGATATTAATTTGGAACGTA
CGTGCAAAAAAGTCGATAAGTGGCTTGATAGTAAGGAGTTTGCTCTGTCGGATGTACTAGAAGC
AATTAAGAGAACAGGAAACAATGATGCATTTAATGAATATATTAGTAAAATGAGGACGGCTAG
AGAAAAGATAGACGCCGCACGTAAGGAAATGAAGTTTATTTCCGAGAAAATATCTGGCGATGA
AGAGTCGATTCACATCATCAAGACCCTACTCGATTCTGTTCAGCAATTTCTCCATTTTTTTAACCT
CTTCAAAGCAAGACAAGACATTCCCTTAGATGGGGCTTTTTATGCCGAATTTGATGAAGTTCATT
CAAAGTTGTTTGCTATTGTTCCTCTTTACAATAAGGTCCGTAATTACCTTACTAAAAATAACTTG
AACACCAAGAAAATAAAGTTAAACTTCAAGAATCCGACTCTTGCCAACGGGTGGGATCAGAAT
AAAGTTTATGATTATGCTAGCTTAATATTTCTAAGAGATGGGAATTATTACTTAGGAATCATCAA
TCCAAAGCGTAAGAAAAACATTAAATTTGAACAAGGGTCAGGCAATGGCCCATTCTATAGAAA
AATGGTGTATAAGCAAATACCAGGACCTAACAAGAACTTGCCTCGCGTATTTTTAACTTCAACA
AAGGGTAAAAAAGAATATAAACCAAGCAAAGAAATTATTGAAGGTTACGAAGCAGATAAACAC
ATCAGAGGTGATAAGTTCGATCTGGATTTCTGCCATAAATTGATTGACTTTTTTAAGGAATCTAT
AGAAAAACATAAGGACTGGTCCAAATTTAATTTCTACTTCTCACCTACAGAAAGTTATGGTGAC
ATTTCAGAATTTTATTTAGACGTTGAGAAACAAGGATATAGGATGCATTTTGAAAATATTTCAGC
GGAAACCATCGACGAATACGTTGAGAAGGGTGATTTATTCTTGTTCCAAATTTACAATAAAGAC
TTCGTTAAAGCTGCAACCGGAAAGAAGGATATGCATACCATATATTGGAACGCTGCATTCTCGC
CAGAAAACTTACAAGATGTCGTTGTAAAGCTTAATGGAGAAGCTGAGCTGTTCTATAGAGACAA
GAGTGATATAAAAGAGATTGTGCATCGGGAAGGTGAAATTCTGGTGAACAGAACTTACAATGG
TCGTACACCCGTTCCAGACAAAATACATAAAAAACTGACCGATTATCATAATGGTAGGACAAAG
GACTTGGGCGAGGCCAAGGAGTACCTCGATAAAGTTAGATATTTCAAGGCACACTATGATATTA
CGAAAGACAGGAGATATTTAAACGATAAAATTTACTTTCATGTCCCTTTGACCCTTAACTTTAAA
GCTAATGGTAAAAAGAATTTGAACAAAATGGTAATTGAGAAGTTTTTATCGGACGAAAAAGCTC
ACATAATCGGAATCGACCGCGGAGAGAGAAATTTACTGTATTATAGTATCATCGACAGAAGTGG
AAAGATTATTGATCAGCAATCTTTGAACGTCATTGATGGGTTTGACTATCGGGAAAAGTTAAAT
CAAAGGGAAATTGAAATGAAGGATGCGAGACAATCATGGAATGCCATTGGTAAAATTAAAGAT
CTCAAGGAGGGGTACTTATCAAAAGCTGTACACGAGATAACTAAAATGGCTATCCAATATAATG
CAATTGTTGTAATGGAAGAATTGAATTATGGTTTTAAACGCGGCAGGTTTAAAGTCGAAAAACA
AATATACCAAAAGTTTGAAAACATGTTAATTGATAAGATGAACTATCTTGTTTTCAAAGATGCA
CCTGATGAGAGTCCTGGCGGTGTGCTGAACGCCTATCAATTAACAAACCCATTAGAGTCCTTTG
CTAAACTGGGTAAACAAACTGGCATTCTATTTTATGTTCCAGCCGCTTACACCTCAAAGATCGAT
CCAACGACCGGTTTTGTAAACTTATTTAATACTTCTTCCAAAACAAACGCGCAAGAACGCAAAG
AATTCCTACAAAAATTTGAATCAATATCCTATAGCGCAAAAGATGGAGGTATATTCGCTTTCGCT
TTTGACTACAGAAAGTTTGGCACTTCCAAGACAGATCATAAAAATGTGTGGACCGCTTATACCA
ACGGAGAAAGGATGCGTTATATTAAAGAAAAAAAGAGGAACGAACTATTTGATCCATCGAAAG
AAATTAAAGAAGCTTTGACAAGCAGCGGAATCAAATATGATGGAGGTCAAAACATACTTCCAG
ATATTCTCAGATCTAATAATAACGGTCTTATTTACACGATGTATTCATCTTTTATCGCTGCCATCC
AAATGCGTGTGTATGATGGCAAGGAAGATTATATTATATCTCCTATTAAAAATTCAAAGGGTGA
ATTTTTTCGCACGGATCCAAAAAGAAGAGAGCTTCCAATTGACGCCGATGCTAACGGTGCTTAC
AATATTGCATTGCGTGGTGAACTTACTATGAGAGCCATCGCCGAAAAGTTTGATCCGGACAGTG
AAAAAATGGCGAAATTGGAGCTAAAGCACAAGGATTGGTTTGAATTCATGCAGACCCGTGGCG
ATTGA SE ATGACTAAAACGTTCGACTCCGAGTTTTTTAATCTCTATTCCTTGCAAAAGACCGTTAGGTTTGA
Q ATTGAAACCAGTTGGTGAAACTGCCTCATTTGTCGAAGACTTTAAAAACGAGGGATTGAAAAGA
no GTGGTTAGTGAAGATGAAAGAAGGGCAGTAGACTATCAAAAGGTTAAAGAAATCATTGACGAT
N TACCACAGAGATTTTATAGAAGAATCTCTGAACTATTTTCCAGAGCAGGTTTCAAAAGATGCTCT
O: AGAGCAAGCGTTTCATTTGTATCAAAAGTTGAAAGCAGCGAAGGTGGAAGAAAGGGAAAAAGC 13 TTTAAAAGAATGGGAAGCATTACAGAAAAAATTGCGAGAAAAAGTCGTCAAATGTTTCAGCGA 0 CTCTAATAAAGCTCGCTTTTCTAGAATCGATAAAAAAGAATTGATTAAGGAAGATTTAATAAAT
TGGCTGGTAGCACAAAACAGAGAGGATGATATTCCTACTGTTGAAACGTTCAATAATTTTACTA
CTTACTTCACTGGTTTCCATGAGAACAGGAAGAATATTTACTCTAAAGATGATCACGCTACTGCT
ATAAGTTTTAGGTTGATTCACGAAAACTTGCCTAAATTTTTTGACAATGTCATCAGTTTTAACAA
GTTGAAAGAAGGTTTCCCGGAATTAAAATTCGACAAAGTTAAAGAAGATTTAGAAGTAGATTAC
GACTTGAAGCATGCGTTTGAAATTGAATATTTCGTTAATTTCGTCACACAAGCTGGTATCGACCA
ATATAATTACCTGCTTGGAGGCAAAACTCTAGAAGACGGTACGAAGAAACAAGGAATGAATGA
ACAGATTAATTTATTTAAGCAACAACAAACTCGCGATAAAGCTAGACAGATTCCAAAACTGATT
CCACTTTTCAAACAGATTCTATCTGAGAGAACTGAATCTCAGAGTTTTATCCCTAAGCAGTTCGA
GTCTGATCAGGAACTATTCGATTCCCTGCAGAAATTGCATAACAACTGTCAAGATAAGTTTACC
GTTTTGCAACAGGCGATCTTGGGATTGGCTGAGGCAGATCTTAAAAAGGTCTTTATTAAAACTA
GTGATCTAAACGCATTGTCTAACACTATTTTTGGAAATTATTCTGTGTTCTCAGACGCGCTCAAT
TTATATAAAGAGTCGCTAAAAACTAAAAAGGCTCAAGAAGCTTTTGAAAAGTTGCCTGCACATA
GTATTCATGATTTAATCCAATACTTAGAACAATTTAATTCGTCTCTCGATGCTGAAAAGCAACAG
TCTACCGATACTGTATTAAACTACTTTATTAAAACCGACGAATTATATAGTCGTTTCATTAAATC
CACCTCTGAGGCATTCACCCAAGTACAACCTCTCTTTGAACTGGAAGCTTTGAGCTCCAAAAGA
AGACCCCCAGAAAGTGAAGATGAGGGGGCTAAAGGCCAAGAAGGTTTCGAACAAATTAAGAGA
ATCAAAGCTTATCTAGACACTCTAATGGAGGCTGTCCACTTTGCTAAGCCTTTGTATCTTGTCAA
GGGTAGAAAGATGATAGAGGGTCTAGACAAGGATCAAAGCTTCTACGAAGCGTTTGAAATGGC
CTACCAGGAGTTGGAGTCTTTAATCATCCCCATTTACAATAAGGCCAGATCTTACCTGTCTAGGA
AGCCATTTAAAGCGGATAAATTCAAAATTAATTTTGACAATAATACACTTCTATCTGGGTGGGA
TGCTAACAAGGAGACGGCTAACGCCAGCATATTGTTTAAGAAGGATGGTTTATACTACCTGGGA
ATCATGCCAAAAGGCAAAACTTTCTTGTTCGATTATTTCGTTAGTTCAGAAGATTCTGAAAAGTT
GAAACAACGGAGACAGAAAACCGCAGAGGAAGCGCTCGCACAGGATGGAGAATCCTATTTTGA
AAAAATACGGTATAAACTCCTACCAGGTGCTAGTAAGATGTTGCCAAAGGTATTTTTTAGCAAT
AAAAATATTGGGTTTTACAATCCCTCAGATGATATTCTACGAATTCGGAATACGGCCTCTCATAC
TAAGAATGGTACTCCCCAGAAGGGTCATTCCAAGGTAGAATTTAACTTGAATGACTGTCACAAA
TCTGATACGTCGGACTTTGAAGATATGAGTGCTTTCTACCGAGAAGTTGAAAATCAAGGTTACG
TTATAAGTTTTGATAAAATAAAAGAAACTTACATTCAGTCTCAAGTTGAGCAAGGTAACTTATA
TTTATTTCAAATTTACAACAAAGATTTTAGTCCGTATTCAAAGGGAAAGCCAAACCTGCACACTT
TATACTGGAAAGCTCTGTTTGAAGAGGCTAATTTGAATAACGTAGTGGCTAAGCTAAACGGCGA
AGCAGAAATCTTTTTCAGAAGACACAGTATCAAAGCATCTGATAAAGTGGTACATCCTGCTAAT
CAAGCTATAGATAATAAGAATCCCCATACTGAGAAGACGCAGTCCACATTTGAATATGACTTGG
GCTCAGGGCGTTTCAAAGTTTAATGATAAGGTAAATGGATTCTTAAAGGGCAATCCCGACGTTA ATATAATCGGTATAGATCGAGGTGAGAGACATCTTTTATACTTTACCGTGGTGAATCAAAAAGG
AGAAATATTAGTGCAAGAGTCCTTGAATACATTAATGTCTGACAAGGGTCATGTCAACGATTAT
CAACAGAAATTGGACAAGAAGGAACAGGAAAGGGACGCTGCCAGGAAGTCCTGGACGACAGT
AGAAAATATTAAAGAATTAAAAGAAGGTTATTTATCACATGTGGTTCATAAACTTGCACATTTA
ATCATCAAATATAACGCAATAGTGTGCTTGGAAGATCTTAATTTTGGCTTCAAGAGGGGTAGGT
TCAAGGTCGAAAAACAGGTCTACCAGAAGTTCGAGAAAGCTCTGATCGATAAATTGAATTATCT
TGTTTTCAAAGAAAAAGAATTAGGAGAAGTTGGTCATTATCTTACAGCATACCAACTCACTGCA
CCATTTGAAAGCTTCAAAAAGCTAGGCAAGCAATCTGGGATTTTGTTCTATGTTCCGGCTGATTA
TACATCAAAGATAGATCCTACCACAGGCTTTGTAAATTTTTTAGATCTTAGGTACCAATCCGTTG
AAAAAGCTAAACAGTTGCTGTCCGATTTTAATGCGATAAGATTTAATAGTGTTCAGAATTATTTT
GAGTTCGAAATTGATTATAAAAAATTGACACCAAAACGTAAAGTAGGAACACAATCTAAATGG
GTTATTTGTACCTATGGAGATGTTAGATACCAAAACAGAAGAAATCAGAAAGGTCACTGGGAA
ACTGAAGAAGTTAACGTTACTGAAAAACTTAAAGCTCTATTTGCGAGCGATTCAAAAACGACGA
CGGTGATCGATTATGCAAATGATGATAACCTTATTGATGTAATTCTGGAACAAGATAAGGCATC
ATTTTTTAAAGAACTACTATGGTTGTTAAAGCTAACCATGACCCTAAGGCACTCCAAGATAAAG
TCAGAGGATGATTTTATCCTCTCTCCAGTGAAAAACGAACAAGGTGAGTTTTACGACTCAAGAA
AGGCGGGTGAAGTCTGGCCTAAGGATGCTGATGCCAATGGAGCTTATCACATCGCTCTGAAGGG
GCTATGGAACTTACAGCAAATTAACCAATGGGAAAAAGGTAAAACTTTAAACCTCGCCATAAA
GAACCAGGATTGGTTCAGCTTTATCCAAGAAAAACCATATCAAGAATAA
SE ATGCACACAGGAGGTCTACTCTCGATGGATGCTAAGGAATTTACCGGTCAATATCCGCTGTCCA
Q AAACTTTGCGTTTTGAGCTTAGACCTATTGGCCGAACGTGGGATAACCTAGAGGCTTCTGGTTAT
no TTGGCGGAAGATAGACATAGAGCTGAGTGTTATCCCCGAGCTAAAGAATTGCTGGATGATAACC
N ACAGGGCGTTCCTGAATAGAGTTCTACCGCAAATCGATATGGATTGGCATCCAATTGCTGAAGC
O: TTTCTGCAAGGTGCACAAAAATCCAGGTAATAAAGAATTGGCTCAGGATTATAATTTGCAGCTT 13 AGTAAGAGAAGAAAAGAAATTTCCGCTTATTTGCAGGATGCTGATGGATACAAGGGGTTGTTCG 1 CGAAACCTGCCCTGGACGAAGCTATGAAAATAGCTAAGGAAAACGGCAATGAATCTGATATTG
AAGTTTTGGAAGCCTTCAATGGATTTTCCGTTTATTTCACTGGTTATCATGAGAGTAGGGAGAAT
ATATACTCAGACGAAGATATGGTATCCGTCGCCTATCGCATAACTGAAGATAATTTTCCAAGGT
TCGTGTCGAACGCGTTAATTTTTGATAAACTAAATGAATCGCACCCGGATATTATTTCGGAAGTG
TCCGGTAATCTGGGGGTAGACGATATTGGTAAATATTTTGATGTGTCCAACTACAATAATTTCCT
TAGTCAAGCAGGAATTGATGACTACAACCATATTATAGGAGGGCATACAACTGAAGACGGTCTC
ATTCAAGCTTTTAACGTAGTGTTAAACCTAAGGCACCAAAAAGACCCAGGTTTTGAGAAAATTC
AATTTAAGCAACTCTACAAGCAGATACTGAGCGTTAGGACTAGTAAGTCATATATCCCAAAGCA
ATTCGATAACTCAAAGGAAATGGTCGACTGTATATGCGACTACGTCTCAAAAATAGAAAAATCT
GAAACAGTAGAAAGAGCTCTGAAATTGGTAAGAAATATATCTTCTTTTGATTTAAGAGGTATTT
TCGTAAATAAAAAAAACCTTCGAATTTTGTCTAATAAGTTAATTGGAGACTGGGACGCAATAGA
GACAGCTTTGATGCACAGTTCCAGCAGTGAAAACGATAAGAAATCAGTGTATGACTCTGCAGAG
GCATTCACCCTTGATGATATCTTCAGTTCTGTGAAAAAGTTCAGCGACGCCTCCGCTGAGGATAT
AGGAAACCGCGCTGAAGACATATGTCGTGTTATCTCAGAAACAGCTCCTTTCATTAACGACTTA
AGGGCTGTAGATTTGGATTCTTTAAATGATGACGGCTATGAAGCGGCCGTGTCTAAAATACGGG
AATCTCTTGAACCCTACATGGATCTATTTCACGAATTGGAGATCTTTAGCGTGGGTGATGAGTTT
CCTAAATGTGCTGCCTTTTATAGCGAGTTGGAAGAGGTCTCAGAACAACTGATTGAAATCATTC CTTTATTTAACAAAGCAAGAAGTTTTTGCACAAGGAAAAGGTATTCAACCGACAAAATCAAAGT
CAATTTAAAATTCCCTACTCTGGCAGATGGATGGGATCTAAATAAAGAAAGGGATAACAAAGCC
GCAATTCTAAGAAAAGACGGTAAATACTACCTGGCAATTTTAGACATGAAGAAAGATCTCAGTA
GTATTCGTACGAGCGATGAGGACGAGTCTTCTTTTGAAAAGATGGAATATAAATTGCTCCCTTCT
CCTGTGAAAATGCTTCCAAAAATTTTTGTTAAATCGAAAGCCGCCAAAGAAAAGTACGGGTTGA
CCGATAGAATGTTAGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCTTTTGATTTGGG
TTTTTGTCATGAATTGATCGATTACTATAAGCGCTGCATTGCCGAGTACCCAGGCTGGGATGTTT
TCGACTTTAAATTTCGTGAGACAAGCGATTACGGATCCATGAAAGAATTTAATGAAGACGTCGC
TGGCGCAGGTTACTATATGTCACTTAGAAAGATTCCATGTTCCGAAGTTTATCGTTTACTGGACG
AGAAGTCAATTTACTTGTTTCAAATATATAATAAGGATTATAGCGAAAACGCACATGGGAATAA
GAATATGCATACGATGTATTGGGAGGGCTTGTTCTCACCACAAAATTTGGAATCACCAGTCTTC
AAATTGTCCGGAGGCGCAGAACTTTTTTTCAGAAAGTCATCTATTCCTAATGACGCTAAAACGG
TACATCCGAAAGGTTCAGTTCTTGTTCCCAGAAACGACGTCAATGGTAGAAGAATACCAGACTC
GATCTACAGAGAGTTGACAAGGTATTTTAACCGTGGGGATTGCAGGATCAGTGATGAAGCTAAG
TCTTACCTGGACAAGGTCAAGACAAAAAAAGCGGACCATGACATTGTTAAGGATAGAAGATTT
ACTGTAGATAAGATGATGTTCCATGTTCCGATTGCCATGAATTTTAAAGCTATAAGTAAACCAA
ATCTTAATAAGAAAGTTATTGATGGCATAATAGATGATCAAGATTTGAAAATCATCGGTATCGA
TCGTGGTGAGAGAAATCTTATTTATGTGACCATGGTCGATAGGAAGGGGAATATATTGTATCAA
GACAGTCTTAATATTTTAAATGGATACGATTACCGCAAAGCTTTAGACGTGAGGGAATATGATA
ACAAAGAAGCTAGAAGGAATTGGACTAAAGTAGAAGGTATTAGAAAAATGAAAGAAGGTTATT
TATCTTTAGCTGTTAGTAAATTGGCCGATATGATCATCGAAAATAATGCTATAATCGTAATGGAA
GATTTGAATCACGGGTTTAAGGCAGGTCGTTCCAAAATTGAAAAGCAGGTGTATCAAAAATTCG
AATCAATGTTAATCAACAAGTTAGGATACATGGTGCTAAAAGACAAGTCCATTGACCAGTCTGG
TGGAGCCCTTCATGGTTACCAATTAGCCAATCATGTTACGACCTTAGCTAGCGTGGGTAAACAA
TGATTTATTCGCTCTCTCTAATGTGAAGAATGTCGCTTCTATGAGAGAGTTCTTCTCCAAAATGA
AGTCAGTAATATATGACAAGGCGGAAGGCAAATTCGCCTTTACATTTGATTATTTGGATTATAA
CGTTAAAAGCGAATGTGGACGTACCTTATGGACTGTGTATACAGTTGGTGAACGCTTCACCTAC
TCTAGAGTAAACCGAGAGTATGTTCGGAAAGTCCCAACAGATATCATCTATGATGCATTACAAA
AAGCTGGTATTAGCGTCGAAGGTGACCTTAGAGATAGAATCGCGGAAAGCGACGGTGACACAT
TAAAGTCTATATTCTACGCTTTTAAATACGCGTTGGATATGAGAGTCGAAAACAGAGAGGAAGA
CTATATACAGTCACCTGTGAAGAATGCTTCTGGTGAGTTCTTTTGTTCAAAAAACGCCGGAAAGT
CTTTGCCGCAGGATTCAGATGCAAATGGTGCCTATAATATAGCTCTGAAAGGGATCCTACAACT
CAGAATGTTGAGCGAACAATACGATCCAAATGCAGAATCGATTAGATTGCCACTTATAACTAAC
AAGGCATGGTTAACTTTTATGCAATCCGGTATGAAAACTTGGAAGAATTAA
SE ATGGATTCTCTTAAGGATTTCACTAATTTATATCCAGTCTCGAAAACATTGCGGTTCGAATTGAA
Q ACCAGTTGGGAAAACTCTAGAAAACATTGAAAAAGCCGGTATATTGAAAGAAGATGAACACAG
no AGCGGAATCCTACCGCCGGGTAAAAAAGATAATTGACACATACCATAAAGTGTTTATTGACAGC
N TCCTTAGAGAACATGGCTAAAATGGGGATAGAAAATGAAATCAAGGCTATGCTGCAGTCTTTTT
O: GTGAACTCTATAAGAAAGACCACAGGACAGAAGGAGAAGATAAAGCTCTTGATAAAATTAGAG 13 CTGTTCTTAGAGGTTTAATCGTTGGGGCTTTCACTGGTGTATGTGGAAGACGAGAAAACACAGT 2 ACAAAATGAAAAGTACGAGAGTTTGTTCAAAGAAAAATTGATAAAGGAAATTTTGCCAGATTTC GTGTTGTCCACCGAGGCTGAGTCTCTTCCATTCAGCGTTGAAGAAGCAACAAGGAGCTTAAAAG
AGTTTGACTCATTCACTTCTTATTTTGCTGGTTTTTACGAAAATAGAAAGAATATTTATTCCACG
AAACCGCAAAGTACTGCGATAGCCTACAGATTAATTCATGAAAACTTGCCTAAATTTATAGATA
ATATTTTGGTCTTCCAGAAGATTAAAGAACCAATCGCTAAAGAACTTGAGCACATAAGAGCAGA
TTTTAGCGCAGGCGGATATATCAAAAAAGATGAACGGCTAGAAGACATATTCTCATTAAATTAC
TACATTCATGTCCTTTCTCAAGCTGGTATAGAAAAATATAATGCTTTAATCGGGAAGATAGTGAC
GGAAGGTGATGGTGAAATGAAAGGTCTTAATGAACATATTAACTTATATAACCAACAGAGGGG
TCGAGAGGATAGGTTGCCCTTGTTTAGGCCTCTATACAAGCAAATCCTGTCCGATAGAGAGCAA
TTGTCTTATTTACCTGAATCATTTGAAAAAGATGAAGAGCTGCTTAGAGCACTTAAGGAATTTTA
CGATCACATCGCCGAAGACATCTTGGGTAGAACACAGCAATTGATGACTTCAATTTCTGAATAC
GACTTGTCCCGTATTTATGTCAGAAATGATTCTCAACTTACAGACATCTCGAAGAAAATGCTAG
GAGATTGGAACGCCATTTATATGGCTAGAGAACGAGCCTACGACCACGAACAGGCTCCTAAAC
GTATTACTGCTAAATACGAACGTGATAGAATCAAGGCCTTAAAAGGTGAAGAGTCAATTTCATT
GGCGAATCTGAACAGCTGTATAGCTTTCTTGGACAATGTAAGGGATTGTCGAGTTGACACATAC
CTATCAACTTTGGGGCAGAAAGAGGGTCCTCATGGCTTAAGTAACTTGGTGGAAAACGTCTTCG
CCTCATATCATGAAGCAGAACAGTTATTGTCGTTTCCTTACCCCGAAGAGAACAACCTTATTCAG
GACAAAGACAATGTAGTTTTGATCAAAAACCTATTGGATAATATAAGTGATTTACAACGTTTCC
TTAAACCTTTGTGGGGAATGGGCGATGAACCTGACAAAGACGAAAGGTTTTACGGTGAATACAA
CTATATTAGAGGAGCGCTTGACCAGGTAATACCTTTGTACAATAAAGTAAGGAACTACTTGACT
CGTAAACCATATTCTACTAGAAAAGTTAAATTGAACTTTGGTAATTCACAGCTGCTGAGTGGTTG
GGATCGTAATAAAGAAAAAGATAACTCCTGTGTTATCTTGCGAAAAGGACAAAACTTTTACTTG
GCAATTATGAACAACCGTCACAAAAGGTCCTTCGAGAACAAAGTTCTGCCTGAATACAAAGAA
GGTGAACCATATTTTGAAAAAATGGACTATAAATTCCTGCCAGATCCTAATAAAATGTTGCCTA
AGGTCTTCTTGTCTAAAAAAGGTATAGAAATATATAAACCATCCCCGAAGTTGCTGGAGCAATA
TGGTCATGGAACGCACAAAAAAGGTGACACTTTTAGTATGGATGACTTGCACGAGTTGATTGAT
TTTTTTAAACATTCCATTGAAGCGCACGAAGATTGGAAACAATTTGGTTTCAAGTTCTCTGACAC
AGCCACTTACGAAAATGTATCGTCCTTTTATAGAGAAGTGGAAGATCAGGGTTATAAACTGTCA
TTCCGTAAGGTTAGTGAAAGCTATGTGTACTCGTTGATCGATCAAGGGAAGCTTTATCTTTTTCA
AATCTATAATAAAGATTTCTCTCCTTGTTCAAAGGGCACACCTAATCTTCATACACTATACTGGA
GAATGCTTTTCGATGAAAGAAATTTGGCTGATGTGATCTATAAATTAGACGGTAAAGCTGAGAT
TTTTTTCAGAGAGAAATCCCTGAAAAACGACCATCCAACTCATCCGGCAGGTAAACCGATTAAA
AAGAAATCCCGGCAAAAAAAGGGCGAAGAGAGTTTATTCGAGTATGATTTAGTTAAGGACAGA
CATTATACAATGGACAAATTTCAATTTCATGTGCCCATTACTATGAACTTTAAGTGTAGTGCAGG
GTCTAAGGTTAATGATATGGTAAACGCACATATTAGAGAAGCTAAAGATATGCACGTCATCGGT
ATTGATCGCGGAGAAAGAAATTTACTTTACATTTGCGTTATCGATTCTAGGGGCACCATCTTGGA
TCAAATCTCTTTGAACACTATAAATGATATTGACTATCATGATCTACTAGAGAGTCGGGATAAA
GACAGGCAACAAGAAAGAAGAAATTGGCAAACAATTGAAGGTATTAAAGAATTAAAGCAAGG
CTATCTAAGCCAGGCTGTACACAGAATTGCCGAATTAATGGTAGCATATAAAGCTGTCGTAGCT
CTAGAAGACTTGAACATGGGTTTCAAAAGAGGGCGCCAGAAGGTCGAAAGTAGTGTTTATCAA
CAATTTGAAAAACAGTTAATAGATAAGTTGAATTATCTAGTGGATAAAAAAAAGCGTCCTGAGG
ACATTGGCGGTTTATTAAGAGCCTACCAATTCACTGCGCCATTTAAATCGTTCAAAGAAATGGG
TAAACAAAACGGTTTTCTATTCTACATCCCCGCATGGAATACCTCAAATATAGATCCAACTACCG GTTTCGTCAACTTATTTCATGCTCAATATGAGAATGTGGACAAAGCAAAATCATTCTTTCAAAAA
TTTGATAGCATTAGCTACAATCCTAAAAAAGATTGGTTTGAATTTGCGTTCGATTATAAAAATTT
CACCAAGAAGGCTGAAGGTTCCAGATCTATGTGGATATTGTGCACCCACGGAAGTAGAATTAAG
AACTTCCGTAATTCACAGAAAAACGGCCAGTGGGACAGCGAAGAATTCGCCCTAACCGAAGCTT
TCAAAAGTCTTTTCGTAAGATACGAGATAGACTATACAGCTGATCTAAAGACAGCTATTGTGGA
TGAGAAGCAAAAAGACTTCTTTGTCGACCTTCTTAAGTTGTTCAAGTTAACTGTGCAGATGAGA
AATAGTTGGAAGGAAAAAGACCTAGATTACTTGATTAGCCCAGTCGCTGGTGCAGATGGCAGAT
TTTTTGATACACGTGAAGGCAATAAATCACTACCAAAAGACGCGGACGCTAATGGCGCATACAA
CATCGCATTGAAGGGTTTGTGGGCTCTCAGGCAGATTAGGCAGACAAGTGAGGGTGGTAAGCTT
AAGCTGGCGATTTCTAATAAGGAATGGTTACAGTTTGTTCAAGAAAGATCCTACGAAAAAGATT
AA
SE ATGAACAATGGTACTAATAATTTTCAAAACTTCATAGGGATTTCTAGCCTTCAAAAGACATTGA
Q GAAATGCTTTAATTCCAACAGAAACGACTCAACAATTCATAGTGAAAAATGGTATTATAAAAGA
no AGACGAGTTGCGTGGCGAGAATAGACAAATTTTGAAAGATATCATGGATGACTACTACAGAGG
N GTTCATCTCCGAAACATTGTCTTCTATTGACGACATTGACTGGACCAGCTTATTCGAAAAAATGG
O: AAATACAGCTGAAGAACGGAGATAACAAGGACACTCTTATAAAGGAGCAAACGGAATATAGAA 13 AGGCTATACACAAAAAGTTTGCTAATGACGATAGATTTAAAAACATGTTTAGTGCGAAGTTAAT
3 TTCTGATATTCTACCCGAGTTTGTCATTCATAATAATAACTACTCTGCATCTGAAAAAGAGGAGA
AGACCCAGGTTATAAAGTTGTTTTCAAGATTTGCCACATCATTTAAAGACTACTTCAAGAACAG
GGCGAATTGCTTCTCTGCTGATGATATTAGCTCTTCCAGCTGTCATAGAATTGTTAACGATAATG
ATAAACAAGATTAGTGGTGATATGAAAGATAGCCTTAAAGAAATGAGCCTTGAAGAGATATATT
CATATGAGAAGTACGGTGAATTTATAACTCAAGAAGGAATTTCTTTTTATAACGATATTTGTGGT
AAGGTTAATTCTTTTATGAATTTGTATTGCCAGAAGAACAAGGAAAATAAGAATCTATATAAAC
TACAAAAGTTGCATAAACAGATTTTGTGTATAGCTGATACATCCTACGAAGTTCCGTATAAATTT
GAATCTGATGAGGAAGTTTATCAATCGGTAAACGGTTTTCTTGACAACATTTCCAGCAAACATA
TCGTTGAGAGACTACGTAAAATTGGAGACAACTATAATGGTTACAATCTAGATAAAATATACAT
AGTGTCCAAGTTTTATGAGTCTGTCTCTCAAAAGACATATCGTGATTGGGAGACCATTAATACTG
CACTTGAAATTCATTATAACAACATATTGCCTGGTAACGGGAAGAGTAAAGCTGATAAGGTTAA
AAAGGCCGTCAAAAACGACTTGCAAAAGTCTATTACCGAGATAAATGAATTAGTGTCAAACTAC
AAACTATGCTCAGATGATAATATTAAAGCGGAAACATACATCCACGAAATTTCCCACATACTGA
ATAACTTTGAAGCTCAGGAGCTTAAATATAACCCGGAAATACACTTGGTTGAGAGCGAGTTAAA
AGCATCTGAGTTGAAAAATGTATTAGACGTCATCATGAATGCGTTTCATTGGTGTTCAGTTTTCA
TGACTGAAGAATTAGTCGACAAAGATAACAATTTTTATGCCGAATTAGAGGAAATATATGATGA
AATTTATCCCGTAATTAGTTTATACAATCTAGTTAGAAATTATGTTACACAAAAGCCGTATAGTA
CCAAGAAAATAAAGCTTAATTTCGGAATACCTACGCTTGCTGATGGTTGGTCAAAAAGTAAAGA
ATATAGCAATAATGCAATAATTTTAATGAGAGATAACCTATATTATTTGGGTATTTTTAACGCTA
AGAACAAACCAGACAAGAAAATAATTGAAGGTAATACATCTGAAAACAAGGGCGACTATAAAA
AGATGATATACAATTTGCTCCCAGGTCCTAATAAAATGATTCCTAAGGTTTTCCTGAGTAGCAAG
ACTGGCGTTGAAACTTACAAGCCTAGTGCGTATATCCTGGAGGGTTATAAACAGAACAAGCATA
TCAAATCCTCTAAGGACTTCGATATCACCTTTTGCCATGACTTAATCGATTATTTTAAAAATTGT
ATCGCAATTCATCCAGAATGGAAAAATTTCGGATTTGATTTTAGTGATACCAGCACTTACGAGG ATATCTCTGGGTTCTACAGAGAAGTGGAGTTGCAGGGCTACAAAATCGATTGGACTTACATATC
TGAAAAGGACATAGATTTGCTGCAGGAGAAAGGTCAGCTATATTTGTTTCAAATCTACAACAAA
GACTTTTCTAAAAAGTCTACCGGTAATGACAATCTGCACACAATGTACTTGAAGAACTTATTCTC
CGAGGAGAACTTAAAGGACATTGTACTCAAGTTGAATGGAGAAGCCGAGATTTTTTTTAGAAAG
AGCAGTATAAAGAATCCTATAATCCACAAGAAGGGCTCAATTCTCGTGAATAGGACGTATGAGG
CAGAAGAAAAGGACCAATTTGGGAATATACAAATTGTAAGAAAAAACATCCCAGAAAATATCT
ACCAGGAATTATATAAGTATTTTAATGACAAATCTGATAAGGAACTGTCTGACGAAGCCGCTAA
GCTCAAGAATGTTGTGGGCCACCATGAAGCTGCTACTAATATAGTGAAGGACTACAGATATACC
TACGATAAATATTTCCTGCATATGCCAATTACTATAAACTTCAAAGCAAATAAAACAGGTTTTAT
AAATGATAGAATCCTGCAGTATATTGCTAAAGAAAAGGATTTACATGTAATTGGGATTGATAGA
GGTGAACGCAATCTGATCTATGTCAGCGTAATAGATACTTGTGGTAATATTGTGGAACAAAAGT
CCTTTAATATTGTGAACGGATATGATTACCAAATCAAGTTGAAACAACAAGAGGGAGCACGCCA
AATTGCCCGTAAGGAATGGAAAGAGATAGGTAAGATCAAGGAAATTAAGGAAGGTTATCTTTC
ATTAGTTATTCACGAAATTTCGAAGATGGTAATCAAATACAACGCAATAATTGCTATGGAGGAC
CTGTCATATGGATTTAAGAAAGGTAGATTCAAGGTTGAGAGACAGGTATACCAGAAATTTGAAA
CTATGTTGATCAACAAATTAAATTACTTAGTCTTTAAGGACATATCAATAACGGAAAACGGCGG
GCTTTTAAAAGGGTATCAACTTACATACATACCTGATAAGTTGAAAAATGTGGGTCATCAGTGT
GGGTGCATCTTTTATGTTCCAGCCGCTTACACATCAAAAATCGATCCTACTACTGGGTTCGTAAA
CATATTTAAATTTAAAGATCTAACCGTTGATGCAAAAAGAGAGTTTATCAAGAAATTTGATAGC
ATTAGGTACGATTCAGAAAAAAATCTATTCTGTTTTACTTTTGACTACAACAACTTTATAACGCA
GAATACAGTGATGTCAAAATCGTCCTGGTCAGTGTATACTTATGGTGTTAGAATTAAGAGACGT
TTCGTAAACGGTCGTTTTTCTAACGAGTCCGATACAATCGACATCACTAAAGATATGGAAAAAA
CTTTGGAAATGACAGATATAAACTGGAGAGATGGTCACGACCTTAGACAAGATATAATCGATTA
TGAAATCGTACAGCATATTTTTGAAATTTTTCGCTTAACAGTTCAGATGCGTAACTCTCTTAGTG
AGCTAGAAGATAGAGATTATGATAGACTTATCTCGCCTGTTCTTAACGAAAATAATATCTTCTAT
GACTCGGCAAAAGCCGGTGATGCACTTCCAAAAGATGCTGATGCAAATGGCGCGTACTGCATCG
CATTGAAGGGGCTCTACGAGATTAAACAAATCACCGAAAACTGGAAAGAAGATGGTAAATTTT
CTAGGGATAAGTTGAAAATCAGTAATAAAGATTGGTTCGATTTTATACAAAATAAGCGATACTT
ATAG
SE ATGACCAATAAGTTTACTAATCAATACTCATTGTCTAAAACGTTAAGATTCGAGTTAATTCCCCA
Q GGGAAAGACACTAGAATTTATTCAAGAAAAAGGTCTTCTCTCTCAGGATAAACAAAGAGCAGA
no ATCATACCAGGAGATGAAAAAAACCATAGATAAATTTCATAAGTACTTCATCGACTTGGCACTA
N TCGAACGCCAAGCTAACACATTTGGAAACCTACCTGGAGTTGTATAATAAATCGGCAGAGACGA
O: AAAAGGAACAAAAATTCAAGGATGACCTGAAGAAGGTTCAAGATAATCTGCGAAAGGAAATAG 13 TGAAGTCGTTTAGTGATGGTGATGCAAAGTCAATCTTTGCTATTTTAGACAAGAAGGAATTAAT 4 AACCGTGGAACTTGAAAAGTGGTTTGAAAATAACGAACAGAAAGATATTTACTTCGACGAAAA
ATTTAAAACGTTTACTACGTACTTTACAGGGTTCCATCAGAACCGCAAAAACATGTACTCCGTTG
AACCAAACTCTACTGCAATCGCCTACAGATTAATACACGAAAATTTGCCTAAGTTTTTAGAAAA
TGCAAAGGCTTTTGAAAAGATAAAGCAAGTCGAATCGTTACAGGTAAACTTTCGCGAATTAATG
GGCGAATTTGGAGATGAAGGTCTTATTTTTGTCAATGAATTAGAGGAAATGTTTCAAATTAATTA
TTATAACGATGTCTTGAGTCAGAACGGCATTACTATCTACAACTCAATTATCAGTGGTTTCACTA
AGAATGATATAAAATATAAAGGTTTGAATGAATACATTAATAATTATAATCAAACTAAAGATAA GAAGGACAGGCTTCCGAAATTGAAGCAATTGTACAAGCAGATTCTAAGTGATAGGATTAGTTTG
TCTTTCTTGCCAGACGCATTTACTGATGGCAAGCAAGTCTTAAAGGCTATATTCGATTTCTACAA
GATTAACCTACTTTCGTACACAATTGAAGGTCAAGAAGAATCTCAAAATCTGCTGCTTTTGATTA
GGCAAACTATAGAAAATTTGTCGTCCTTTGACACTCAAAAAATTTACCTGAAGAATGATACACA
CCTGACTACAATATCACAGCAGGTCTTTGGGGATTTTTCTGTCTTCTCCACGGCCCTAAACTATT
GGTATGAGACAAAAGTTAATCCAAAATTTGAAACAGAATATAGTAAGGCGAATGAAAAAAAGA
GAGAAATTTTGGATAAAGCGAAGGCAGTATTCACAAAACAAGACTATTTTTCTATCGCATTTCT
CCAAGAAGTCTTATCCGAATATATTTTGACACTCGATCACACCTCTGATATAGTTAAGAAACATT
CGTCCAACTGCATCGCAGATTACTTCAAGAATCACTTCGTGGCTAAGAAAGAAAACGAAACGGA
TAAAACTTTTGACTTCATTGCTAACATAACCGCTAAATACCAATGTATTCAGGGCATATTAGAAA
ATGCAGACCAGTACGAAGACGAGTTAAAACAGGACCAAAAGTTAATAGATAATCTAAAGTTTTT
CTTAGATGCTATACTTGAGTTATTACATTTTATAAAGCCATTGCATCTAAAATCGGAAAGTATTA
CTGAAAAAGACACTGCGTTCTATGATGTGTTCGAAAATTATTATGAGGCTTTATCTTTATTGACC
CCCCTTTACAACATGGTCCGCAATTATGTTACTCAGAAGCCTTACTCTACTGAAAAGATCAAATT
AAACTTTGAAAATGCTCAGTTGCTGAATGGTTGGGATGCCAATAAGGAAGGTGACTACCTGACG
ACTATTCTAAAAAAAGACGGTAATTATTTCTTAGCAATCATGGATAAAAAACATAACAAGGCAT
TTCAAAAATTTCCAGAAGGAAAAGAAAACTATGAAAAGATGGTTTATAAATTGTTGCCTGGAGT
TAATAAAATGTTGCCAAAAGTTTTTTTTAGCAATAAGAACATAGCTTACTTTAATCCATCTAAGG
AACTGCTCGAGAACTACAAGAAGGAAACACATAAAAAAGGTGATACATTTAATTTGGAACATT
GCCATACTCTGATTGATTTTTTTAAGGACTCTCTTAATAAACATGAAGACTGGAAATATTTTGAT
TTTCAATTTTCGGAAACTAAATCATACCAAGATCTAAGTGGATTTTACAGAGAAGTTGAACACC
AAGGTTATAAGATTAACTTCAAGAATATAGATTCTGAATACATTGATGGTCTTGTAAACGAGGG
TAAACTATTCCTGTTCCAAATCTACTCTAAGGACTTCTCACCTTTTTCCAAAGGAAAACCTAATA
TGCATACGTTGTACTGGAAGGCTCTATTTGAAGAACAAAATTTGCAAAATGTAATCTACAAACT
GAACGGCCAAGCTGAAATATTCTTCAGAAAAGCCTCAATTAAGCCAAAAAACATTATTCTTCAT
AAAAAGAAGATCAAGATTGCGAAGAAACATTTTATTGATAAGAAGACCAAGACTTCCGAAATT
GTACCAGTACAAACAATCAAGAATCTCAATATGTATTATCAAGGCAAGATAAGTGAGAAAGAG
TTAACCCAGGATGATTTACGTTATATAGACAATTTCTCTATATTCAACGAGAAGAACAAAACAA
TAGACATTATCAAAGATAAAAGGTTTACTGTTGACAAATTTCAATTTCATGTGCCTATCACAATG
AACTTTAAGGCCACAGGTGGTTCGTACATTAATCAAACTGTTTTAGAATATCTGCAAAATAACC
CAGAGGTCAAGATCATCGGTCTTGATAGGGGTGAGAGACATCTGGTGTATCTAACACTCATTGA
TCAACAAGGCAACATCTTGAAGCAAGAATCATTGAACACTATCACAGACTCCAAGATCTCGACT
CCATATCACAAACTCCTTGACAATAAAGAAAACGAAAGGGATCTTGCCAGAAAAAATTGGGGT
ACAGTTGAAAATATTAAGGAACTAAAAGAAGGTTACATTTCGCAAGTAGTTCACAAGATTGCAA
CACTCATGTTGGAAGAAAACGCAATCGTTGTCATGGAAGATTTAAATTTCGGATTTAAGAGAGG
AAGATTTAAAGTAGAAAAGCAAATCTACCAGAAGTTGGAGAAGATGTTAATTGACAAATTGAA
CTACTTAGTGCTGAAAGACAAACAGCCTCAAGAATTGGGCGGTCTATACAACGCTTTACAACTG
ACAAATAAATTTGAGTCATTCCAAAAGATGGGTAAGCAGAGTGGTTTTTTGTTTTATGTTCCGGC
ATGGAACACATCCAAAATCGATCCAACTACAGGCTTCGTGAATTATTTCTACACTAAATATGAA
AATGTGGATAAAGCAAAAGCTTTCTTTGAGAAGTTCGAGGCGATCCGTTTTAACGCTGAAAAGA
AGTACTTCGAGTTCGAGGTCAAAAAGTATTCAGATTTTAACCCCAAGGCTGAAGGCACCCAGCA
AGCATGGACTATTTGCACGTACGGTGAGCGAATCGAAACTAAAAGGCAAAAGGATCAAAATAA TAAGTTTGTAAGCACACCCATTAACTTGACAGAAAAGATAGAAGATTTTCTTGGAAAAAACCAA
ATTGTATATGGTGACGGTAACTGTATCAAGTCACAAATTGCTTCTAAAGACGATAAGGCCTTCTT CGAAACTCTGCTATACTGGTTTAAAATGACGTTGCAAATGAGAAACAGTGAAACTAGAACTGAT ATCGACTATTTAATATCACCCGTGATGAACGATAATGGTACCTTTTACAATTCAAGAGATTACGA GAAATTGGAGAACCCCACACTACCAAAAGACGCAGACGCTAATGGTGCCTACCATATTGCTAAA AAGGGACTGATGTTGTTGAACAAGATAGATCAAGCCGACTTAACTAAAAAAGTTGATTTGTCAA TTTCGAATAGAGATTGGTTGCAATTCGTCCAGAAAAATAAGTAA
SE ATGGAACAGGAATACTACTTGGGTTTGGATATGGGAACTGGTTCAGTCGGTTGGGCTGTTACGG
Q ACTCCGAGTACCACGTGTTGAGAAAACACGGAAAGGCTTTATGGGGTGTCAGACTATTCGAATC
no AGCATCGACCGCGGAAGAGAGAAGAATGTTTAGAACTTCAAGAAGAAGGCTGGATCGTAGGAA
N TTGGCGGATAGAAATTTTACAAGAAATATTCGCCGAAGAAATCTCTAAAAAAGATCCAGGATTT
O: TTTCTACGTATGAAGGAATCCAAATACTATCCGGAAGATAAACGTGATATTAATGGCAATTGTC 13 CAGAGTTACCCTATGCTTTATTTGTGGACGACGATTTCACCGATAAAGATTACCATAAGAAGTTC 5 CCAACAATTTACCATCTGAGAAAGATGTTAATGAACACTGAAGAAACCCCGGATATAAGACTGG
TCTATCTAGCCATTCATCATATGATGAAACACAGGGGACACTTCTTGCTATCAGGGGATATAAA
TGAAATTAAAGAATTTGGTACAACATTTTCTAAATTATTGGAAAATATTAAAAACGAAGAATTA
GATTGGAATTTAGAATTAGGCAAGGAGGAATACGCAGTTGTCGAATCGATTCTGAAAGATAACA
TGTTGAACAGATCAACGAAAAAAACAAGGCTGATCAAGGCTTTAAAAGCGAAATCAATATGCG
AAAAAGCAGTATTGAATTTGTTAGCTGGGGGGACTGTCAAGTTGTCTGATATTTTCGGATTGGA
AGAATTGAATGAAACAGAGAGACCGAAGATATCCTTCGCCGATAATGGCTACGATGATTATATA
GGCGAAGTCGAAAATGAGCTGGGCGAACAATTCTACATTATCGAGACTGCCAAGGCTGTTTATG
ATTGGGCGGTGTTAGTCGAAATCCTTGGCAAATACACTTCCATCTCCGAAGCTAAGGTGGCAAC
CTACGAAAAGCATAAAAGTGATTTGCAATTCCTTAAGAAAATTGTCCGAAAGTACTTGACCAAA
GAAGAGTACAAGGATATTTTCGTATCAACATCGGACAAACTGAAGAATTATTCAGCTTATATTG
GCATGACGAAAATTAATGGTAAGAAAGTTGATTTGCAATCCAAGAGATGTTCTAAAGAAGAATT
TTACGATTTCATTAAAAAAAATGTCCTAAAAAAGTTGGAGGGACAACCTGAATATGAGTATTTA
AAGGAAGAACTGGAAAGAGAAACTTTCCTACCAAAGCAAGTTAATCGTGATAATGGCGTTATTC
CATACCAAATACACTTGTACGAATTAAAGAAGATCTTGGGTAACTTGAGGGACAAAATTGATTT
AATCAAGGAAAATGAAGACAAACTGGTACAATTATTTGAATTTAGAATACCTTACTACGTGGGC
CCTTTAAACAAAATAGACGATGGTAAGGAAGGGAAGTTCACATGGGCAGTCAGAAAGTCCAAT
GAAAAAATTTACCCATGGAATTTCGAAAACGTTGTAGATATTGAAGCTTCTGCTGAGAAATTTA
TTAGGAGAATGACAAATAAATGCACTTATCTTATGGGGGAAGACGTGTTGCCTAAAGATAGTTT
ATTATATTCAAAGTATATGGTCTTAAATGAATTAAACAATGTTAAATTAGATGGTGAAAAACTTT
CCGTCGAATTGAAACAAAGATTGTATACAGATGTATTCTGCAAATATAGAAAAGTAACTGTAAA
GAAGATTAAAAACTACCTTAAATGTGAAGGCATTATCAGCGGAAATGTTGAGATCACTGGTATC
GATGGTGATTTTAAGGCATCTTTAACCGCATATCACGACTTTAAGGAAATATTGACGGGTACTG
AGCTTGCTAAAAAAGACAAAGAGAACATTATCACCAATATCGTGCTCTTCGGAGACGACAAGA
AATTATTGAAAAAGAGATTGAACCGCCTATACCCTCAGATTACCCCTAACCAATTGAAGAAAAT
CTGCGCTCTGTCTTATACTGGATGGGGTCGTTTTAGCAAGAAGTTTCTAGAAGAAATTACTGCTC
CGGATCCTGAAACTGGGGAAGTCTGGAATATAATTACCGCGCTATGGGAATCGAATAATAATTT
AATGCAATTACTATCTAATGAATACAGATTTATGGAAGAAGTCGAAACTTACAATATGGGAAAA
CAAACAAAAACTTTGAGCTACGAAACAGTAGAGAATATGTATGTCTCACCATCTGTAAAGCGGC AGATCTGGCAAACCTTGAAGATAGTTAAAGAATTAGAAAAAGTGATGAAGGAAAGTCCAAAAA
AACTTATAGATCTATATAAAGCCTGCAAAAATGAAGAAAAAGATTGGGTAAAGGAATTAGGTG
ACCAGGAAGAGCAAAAATTGAGATCTGACAAGCTGTACTTGTATTATACGCAAAAGGGCCGGT
GTATGTATTCGGGTGAGGTAATAGAATTGAAAGATTTATGGGATAACACTAAGTATGACATTGA
CCATATTTACCCCCAGTCTAAGACAATGGACGATTCATTAAATAACCGAGTTCTTGTCAAAAAG
AAGTACAATGCCACAAAGAGCGATAAGTACCCATTGAACGAAAATATAAGACATGAACGAAAA
GGTTTCTGGAAATCATTGTTGGACGGTGGATTTATTTCCAAAGAAAAATACGAGAGATTGATTA
GAAACACTGAACTATCTCCAGAGGAGTTAGCTGGCTTTATCGAAAGACAAATTGTTGAAACTAG
ACAGTCTACAAAAGCAGTTGCAGAAATCTTAAAACAAGTATTTCCAGAATCCGAAATTGTGTAC
GTCAAAGCCGGAACAGTAAGTAGATTTAGAAAAGACTTTGAATTATTGAAAGTACGAGAGGTT
AACGACCTACATCATGCTAAGGATGCTTATTTAAATATAGTCGTTGGTAATTCGTATTACGTGAA
ATTCACAAAAAACGCATCTTGGTTCATCAAGGAGAATCCTGGTAGGACATACAACTTGAAAAAG
ATGTTTACATCAGGATGGAATATCGAAAGAAATGGTGAGGTTGCGTGGGAGGTAGGCAAGAAG
GGAACCATTGTTACTGTAAAGCAAATTATGAATAAAAACAATATACTTGTTACGAGACAGGTGC
ACGAAGCCAAAGGAGGGTTGTTTGACCAGCAAATCATGAAGAAAGGTAAAGGTCAGATAGCAA
TAAAAGAGACTGATGAGCGTTTAGCTAGTATAGAAAAATATGGGGGCTACAATAAGGCAGCTG
GTGCTTACTTCATGTTGGTCGAATCAAAGGATAAAAAAGGGAAGACGATCCGGACCATAGAGTT
TATCCCTCTGTACTTGAAGAATAAGATTGAGTCTGACGAAAGCATCGCATTGAATTTCTTGGAA
AAGGGGCGCGGTCTAAAGGAGCCAAAAATATTGTTAAAGAAAATTAAAATAGACACCCTATTC
GACGTCGATGGGTTTAAGATGTGGCTTAGTGGTCGTACTGGGGACAGATTATTATTCAAGTGTG
CCAATCAGTTAATCCTTGACGAGAAAATCATTGTTACAATGAAAAAAATTGTTAAGTTTATTCA
AAGGCGACAAGAAAATAGAGAACTAAAGTTGAGTGATAAGGATGGAATCGATAATGAAGTGTT
AATGGAGATTTATAACACTTTTGTCGACAAATTGGAGAATACGGTGTACAGAATTAGGCTATCT
GAACAGGCTAAAACCCTAATTGATAAACAGAAGGAGTTTGAGCGACTTTCTCTTGAAGACAAAT
CTTCAACTCTTTTCGAGATCCTACATATCTTTCAGTGTCAATCTTCTGCAGCTAATTTGAAAATGA
TTGGAGGTCCTGGTAAGGCTGGTATATTAGTCATGAACAACAACATATCTAAGTGTAATAAGAT
TAGTATAATTAACCAATCACCGACAGGTATCTTTGAAAATGAAATTGATTTACTTAAA
SE ATGAAATCATTCGACTCGTTCACCAACTTGTACTCCCTGTCTAAAACATTGAAATTTGAAATGCG
Q ACCTGTTGGTAACACCCAAAAGATGTTAGATAATGCAGGAGTTTTCGAAAAGGATAAACTGATC
no CAGAAAAAATACGGTAAAACGAAACCATATTTCGATAGGTTGCATCGGGAATTTATAGAAGAA
N GCTTTGACTGGTGTAGAATTAATTGGCTTAGATGAGAATTTCCGTACTCTAGTCGATTGGCAAAA
O: AGATAAAAAGAACAATGTTGCCATGAAGGCATACGAAAATAGTCTACAAAGACTAAGAACAGA 13 GATCGGGAAAATTTTCAATTTGAAGGCAGAAGACTGGGTGAAGAACAAATATCCAATATTGGGT 6 CTTAAGAATAAGAATACTGATATATTGTTCGAGGAGGCCGTTTTCGGTATTCTTAAGGCAAGAT
ATGGTGAAGAGAAAGACACGTTTATTGAAGTTGAGGAGATTGATAAAACCGGTAAGTCCAAAA
TCAACCAGATCTCTATCTTCGACAGTTGGAAGGGCTTCACTGGTTATTTTAAGAAGTTCTTCGAA
ACTAGGAAGAACTTCTATAAAAACGATGGTACTTCCACGGCTATTGCTACAAGAATTATCGACC
AAAACCTTAAGCGTTTTATTGATAACCTATCAATTGTTGAAAGTGTTCGACAGAAAGTAGATTTG
GCTGAAACTGAAAAATCTTTTAGTATCTCCTTATCCCAGTTTTTCTCTATAGATTTTTATAATAAA
TGTTTGCTGCAAGATGGCATTGACTACTATAATAAAATAATTGGTGGAGAGACATTGAAAAACG
GAGAGAAGCTGATTGGCCTTAATGAGTTGATAAATCAATATAGACAAAATAATAAGGACCAGA AAATCCCTTTCTTTAAATTGCTAGACAAACAGATTTTGTCTGAAAAGATCCTATTCTTGGATGAA
ATAAAGAACGATACTGAATTGATTGAAGCTTTGTCCCAGTTTGCTAAAACAGCTGAAGAAAAGA
CAAAGATTGTGAAAAAATTGTTTGCTGATTTCGTAGAAAACAATTCTAAATATGATCTAGCCCA
GATTTATATAAGTCAAGAAGCTTTCAATACAATAAGTAATAAGTGGACAAGTGAAACAGAAACT
TTTGCTAAGTATTTATTCGAAGCCATGAAGTCTGGTAAACTTGCCAAATACGAAAAAAAAGATA
ACAGTTATAAATTTCCAGACTTTATAGCCCTTTCACAGATGAAGTCTGCCTTATTGTCGATATCC
TTAGAAGGTCATTTTTGGAAGGAAAAATATTATAAGATAAGCAAGTTCCAAGAAAAGACTAATT
GGGAACAATTTTTGGCTATATTTCTATATGAGTTCAATTCATTATTTTCCGATAAAATCAACACT
AAGGATGGAGAGACTAAGCAAGTTGGCTACTATTTGTTCGCAAAAGATCTGCACAATTTGATTC
TATCAGAACAAATAGATATACCAAAAGATTCAAAGGTAACTATAAAGGATTTCGCAGATTCCGT
CCTCACCATTTATCAAATGGCTAAATATTTTGCCGTTGAAAAAAAGAGAGCGTGGTTAGCAGAA
TACGAGTTGGACTCGTTTTATACTCAGCCAGATACTGGATACTTGCAATTCTACGATAATGCATA
CGAAGACATTGTACAGGTATACAATAAACTTAGAAATTACTTAACCAAGAAGCCCTACAGTGAA
GAAAAATGGAAGCTGAACTTTGAAAATTCGACTTTGGCAAATGGTTGGGATAAAAATAAAGAA
AGTGACAACTCCGCAGTGATTTTGCAAAAGGGTGGGAAATATTACTTGGGTTTAATCACAAAAG
GCCACAATAAGATTTTTGATGATAGATTTCAAGAAAAATTCATAGTTGGTATAGAAGGTGGCAA
ATACGAGAAAATTGTCTATAAATTCTTCCCTGATCAAGCCAAAATGTTCCCAAAAGTTTGCTTTT
CTGCTAAAGGATTGGAGTTTTTCCGGCCTAGCGAGGAGATCCTTCGTATCTACAACAATGCTGA
ATTCAAAAAAGGAGAAACCTATAGCATAGATTCTATGCAAAAACTGATAGATTTTTATAAGGAT
TGTTTAACAAAGTACGAAGGCTGGGCCTGCTATACATTTAGACATTTAAAGCCCACAGAAGAAT
ACCAAAATAACATTGGTGAATTCTTTCGGGACGTTGCCGAAGACGGCTATAGGATCGATTTTCA
AGGTATCTCAGATCAATATATCCACGAAAAGAACGAGAAGGGTGAGCTGCACCTTTTCGAAATT
CATAATAAGGACTGGAATTTGGATAAGGCGAGAGATGGTAAATCGAAGACCACTCAAAAGAAC
TTGCATACTTTATATTTTGAGTCCTTGTTTTCTAATGATAACGTCGTCCAAAATTTTCCAATAAAG
TTGAATGGACAAGCGGAAATTTTCTATCGGCCTAAGACAGAGAAAGACAAATTAGAATCAAAG
AAAGATAAAAAGGGAAATAAAGTCATTGATCACAAACGATACTCTGAGAATAAAATATTTTTCC
ACGTACCATTGACACTCAACAGGACTAAGAATGACTCTTATAGATTTAATGCTCAGATTAATAA
TTTTTTGGCAAATAACAAGGATATTAACATAATTGGGGTGGATAGAGGTGAAAAGCACTTGGTA
TATTACTCTGTCATCACTCAGGCTTCTGATATATTGGAAAGCGGGTCTCTAAATGAATTGAACGG
TGTTAACTACGCCGAAAAGCTAGGTAAAAAAGCTGAAAACAGAGAGCAGGCTCGGCGCGATTG
GCAAGATGTTCAAGGAATTAAAGACCTTAAAAAAGGCTACATTAGTCAAGTAGTTAGAAAGTTA
GCCGATCTTGCTATTAAACATAACGCAATCATTATTCTGGAGGACCTAAATATGCGTTTTAAGCA
AGTTAGGGGTGGCATAGAAAAAAGTATTTATCAGCAGCTTGAGAAGGCTTTGATAGATAAGTTA
TCGTTCCTAGTTGACAAAGGTGAAAAAAATCCTGAACAAGCTGGTCATCTGTTGAAAGCTTATC
AGCTGAGCGCACCTTTTGAAACATTTCAAAAAATGGGAAAACAAACAGGTATTATTTTCTATAC
TCAAGCGAGTTATACAAGTAAATCTGACCCAGTGACAGGATGGAGACCACACCTTTATCTAAAA
ATAGATTTGAATTGACTTACGATATTAAAGATTTTCAGCAAGCAAAAGAATACCCAAATAAGAC AGTGTGGAAAGTATGCTCCAATGTGGAGAGATTTAGATGGGATAAAAATCTCAATCAAAACAA GGGTGGTTACACACATTATACTAATATAACTGAAAATATTCAAGAATTGTTTACTAAGTACGGA ATTGACATAACCAAAGACTTACTAACTCAGATTTCAACTATTGACGAAAAACAAAATACCTCAT TTGCCAAGAAGAACGGAAAAGATGATTTCATCCTATCTCCAGTGGAACCATTTTTTGACTCAAG
AAAAGATAATGGTAATAAGTTGCCTGAGAACGGAGATGATAACGGCGCTTATAATATCGCTCGG AAGGGTATTGTAATTCTTAATAAAATATCTCAGTACTCTGAAAAGAACGAAAACTGCGAGAAAA TGAAGTGGGGCGACTTGTATGTATCTAATATAGATTGGGATAATTTCGTTACTCAAGCCAACGC GAGACATTGA
SE ATGGAAAATTTTAAAAACCTATATCCAATTAATAAGACACTTAGATTCGAGCTTAGGCCATACG
Q GCAAAACACTAGAAAATTTTAAGAAGTCAGGCCTATTAGAAAAAGACGCCTTTAAGGCAAATTC
no CAGAAGATCAATGCAGGCAATTATTGATGAGAAATTTAAAGAGACTATCGAGGAAAGGTTGAA
N ATACACTGAATTCTCTGAGTGCGATCTGGGAAACATGACTTCCAAGGATAAAAAGATTACCGAT
O: AAGGCTGCTACCAACCTCAAAAAGCAAGTCATCTTATCGTTTGATGATGAAATTTTTAATAACTA 13 CTTAAAGCCGGACAAAAACATTGACGCCCTATTCAAAAATGATCCGTCCAACCCCGTAATTTCA
7 ACTTTTAAGGGTTTTACCACGTACTTTGTAAATTTTTTTGAGATTCGTAAACATATCTTCAAAGG
AGAATCGTCGGGTTCCATGGCCTATAGGATAATTGATGAAAATCTTACGACTTACTTAAACAAT
ATCGAAAAGATAAAAAAGTTACCAGAAGAATTAAAGTCTCAATTGGAAGGTATTGACCAAATA
GACAAATTAAATAACTATAATGAGTTCATAACTCAAAGCGGTATCACACATTACAATGAAATTA
TCGGTGGTATATCTAAAAGTGAGAACGTAAAAATACAGGGAATAAACGAGGGGATCAATCTAT
ACTGTCAGAAGAATAAAGTAAAATTACCAAGACTAACGCCATTATACAAAATGATTCTGTCTGA
TAGAGTTTCCAACTCGTTCGTGCTTGATACTATAGAAAATGATACTGAATTAATTGAGATGATTA
GCGACTTGATTAATAAAACAGAAATATCTCAAGACGTAATAATGTCAGACATTCAGAACATTTT
CATAAAATATAAACAGCTTGGTAATTTACCGGGGATAAGTTACTCTAGCATCGTGAATGCTATTT
GCTCCGATTATGACAATAATTTTGGTGACGGAAAAAGAAAAAAATCATATGAGAACGATAGGA
AGAAACACCTTGAAACAAACGTATACTCAATTAACTATATATCGGAACTGTTAACAGACACCGA
TGTATCATCTAATATAAAAATGAGATATAAGGAACTTGAACAAAATTACCAGGTGTGTAAGGAG
AATTTCAATGCTACCAACTGGATGAACATTAAGAATATTAAACAGAGTGAAAAGACAAACTTGA
TTAAAGATCTACTAGATATACTGAAATCAATACAGAGATTCTACGATCTGTTTGATATAGTTGAT
GAAGACAAAAATCCTAGTGCTGAGTTTTACACGTGGCTAAGTAAAAATGCGGAAAAGTTAGATT
TCGAGTTCAACTCTGTTTATAATAAATCTAGGAATTATTTAACTAGAAAGCAGTATTCTGATAAA
AAGATAAAATTGAACTTCGACTCCCCTACGTTGGCAAAGGGTTGGGATGCAAACAAAGAAATC
GATAACTCCACCATAATAATGCGTAAGTTTAACAATGATAGGGGGGATTACGATTATTTTTTGG
GAATTTGGAACAAATCTACCCCAGCGAATGAAAAAATTATTCCCCTTGAAGACAATGGTCTTTT
TGAAAAAATGCAGTATAAATTATATCCAGACCCATCCAAGATGCTTCCAAAGCAATTTCTGTCA
AAAATTTGGAAGGCTAAACACCCTACTACTCCTGAATTTGATAAGAAGTATAAGGAGGGCCGAC
ACAAAAAGGGTCCAGATTTTGAAAAAGAATTCCTGCATGAATTGATAGATTGTTTTAAGCATGG
TTTGGTAAATCATGATGAAAAATATCAGGATGTCTTTGGATTCAATTTGAGAAATACAGAGGAT
TACAACTCATATACAGAATTTCTCGAGGACGTCGAACGTTGCAATTATAATCTCAGTTTCAACAA
GATCGCAGACACTTCAAACTTAATTAACGACGGAAAATTGTACGTTTTTCAAATCTGGTCGAAA
GACTTTAGTATTGATTCAAAGGGTACAAAAAACCTAAATACAATATATTTCGAAAGTCTATTCTC
GGAAGAAAACATGATCGAAAAAATGTTCAAACTGTCAGGCGAAGCTGAAATATTCTACCGTCCC
GCAAGCCTTAATTATTGTGAGGATATCATTAAAAAAGGACATCACCATGCAGAGTTAAAAGATA
AATTCGATTACCCAATAATTAAAGATAAAAGATACTCCCAGGATAAGTTCTTTTTCCATGTACCT
ATGGTTATTAACTACAAGTCGGAAAAACTAAACTCGAAGTCATTAAATAATAGAACTAACGAGA
ACTTGGGACAATTCACACATATAATTGGTATTGATCGTGGCGAAAGACATTTAATATATCTGACT GTTGTTGATGTTTCAACAGGAGAAATTGTTGAACAGAAACATCTTGATGAAATTATAAACACAG
ATACAAAAGGCGTTGAGCATAAAACTCATTATCTAAATAAATTGGAGGAAAAGTCGAAGACTC
GCGATAACGAGAGAAAGAGTTGGGAAGCAATTGAAACCATAAAAGAGCTTAAAGAAGGTTACA
TTAGTCACGTCATCAATGAAATACAAAAGTTACAAGAAAAGTATAACGCTTTGATTGTAATGGA
AAATCTAAATTATGGTTTTAAGAATTCAAGAATCAAAGTCGAAAAGCAGGTCTATCAGAAATTT
GAAACGGCACTTATTAAAAAGTTTAACTACATTATTGATAAAAAGGACCCAGAAACTTATATTC
ATGGTTACCAACTGACGAACCCAATCACAACATTGGACAAAATTGGAAACCAAAGTGGAATTGT
TTTATACATTCCAGCTTGGAATACATCCAAAATAGACCCTGTCACGGGGTTTGTCAACTTGTTAT
ATGCCGACGATTTAAAGTATAAAAACCAAGAACAAGCAAAGTCTTTTATTCAAAAGATTGATAA
TATTTATTTCGAAAACGGTGAATTTAAATTCGACATAGATTTTTCTAAATGGAACAACCGTTATT
CAATAAGTAAAACTAAATGGACACTCACCTCATACGGCACTCGTATCCAAACCTTTCGGAATCC
CCAAAAAAATAACAAATGGGATTCTGCAGAATACGACTTGACCGAGGAATTTAAATTAATTCTT
AATATAGACGGTACACTCAAAAGTCAAGACGTGGAGACATACAAGAAGTTTATGTCGTTATTCA
AGCTTATGCTTCAGTTGAGGAACTCCGTTACAGGCACTGATATTGATTACATGATTTCACCAGTA
ACGGATAAGACTGGGACTCATTTCGATTCTAGGGAAAATATTAAAAATTTACCTGCTGACGCAG
ACGCAAACGGCGCATACAATATAGCAAGAAAAGGGATTATGGCCATTGAGAATATTATGAATG
GCATATCAGATCCATTAAAGATAAGCAATGAAGACTACTTAAAATACATTCAGAATCAGCAAGA
ATAA
SE ATGACCCAGTTTGAAGGTTTCACCAATTTGTACCAAGTAAGTAAAACCTTGAGGTTCGAATTGA
Q TCCCACAGGGCAAGACATTGAAGCATATTCAAGAGCAAGGATTTATAGAAGAAGATAAAGCGA
no GAAACGATCACTATAAAGAGTTAAAACCCATTATTGACAGGATCTATAAAACATACGCCGATCA
N ATGCCTTCAATTAGTGCAATTAGATTGGGAAAACTTGAGCGCTGCCATCGATTCCTACAGGAAG
O: GAAAAAACAGAAGAAACAAGAAATGCCTTAATCGAGGAACAAGCAACCTATAGAAACGCTATA 13 CACGATTACTTCATCGGTAGAACTGATAATCTAACAGATGCAATAAATAAGAGACATGCTGAGA 8 TATATAAAGGACTATTTAAAGCAGAATTATTCAACGGAAAGGTGTTGAAACAGTTAGGTACCGT
TACAACTACTGAGCATGAAAATGCCTTGCTGAGAAGCTTTGACAAGTTTACTACCTACTTTTCGG
GTTTCTACGAAAATCGCAAAAATGTATTTTCTGCGGAAGATATTTCAACTGCAATCCCTCATAGG
ATTGTTCAAGATAATTTCCCTAAGTTTAAAGAGAACTGTCACATTTTTACAAGGTTAATTACTGC
GGTTCCAAGTCTAAGAGAACATTTTGAGAATGTAAAAAAAGCGATTGGTATATTTGTATCCACT
GTACAACCAATTGTTAGGTGGTATATCGAGGGAGGCTGGTACGGAAAAGATTAAAGGATTAAA
TGAAGTTCTTAATTTGGCCATACAAAAAAATGATGAAACCGCGCACATTATCGCATCTTTACCA
CATAGGTTTATACCGTTATTCAAGCAAATATTATCTGATCGTAATACCTTATCGTTCATATTAGA
GGAGTTTAAATCTGACGAAGAAGTTATACAATCTTTTTGCAAGTATAAGACGCTATTGAGAAAC
GAAAACGTTCTGGAAACAGCCGAAGCACTGTTCAATGAATTAAACAGTATCGACTTGACTCATA
TTTTTATATCGCATAAAAAGTTGGAGACAATTTCTTCAGCATTGTGCGATCACTGGGACACTTTA
AGGAACGCACTATATGAACGTAGGATCTCAGAATTGACAGGTAAGATAACGAAGTCTGCTAAA
GAGAAAGTGCAGAGATCCCTAAAACACGAGGATATAAATTTGCAGGAGATAATTTCAGCTGCA
GGTAAAGAGTTGTCTGAAGCGTTCAAGCAAAAGACTTCCGAAATCTTGTCACACGCACACGCCG
CATTAGATCAACCTTTACCCACTACTTTGAAAAAACAAGAAGAGAAGGAGATATTAAAATCACA
ACTTGATTCTTTACTTGGCCTTTATCATCTTTTAGATTGGTTCGCTGTTGACGAGAGCAATGAAGT
GGATCCAGAGTTTTCCGCAAGATTGACCGGTATAAAGTTGGAAATGGAACCTTCGTTATCATTTT ACAACAAAGCTAGGAACTATGCTACAAAAAAACCTTATTCTGTCGAAAAATTTAAACTGAACTT
CCAAATGCCTACTCTAGCAAGTGGCTGGGATGTTAATAAAGAAAAGAACAATGGCGCTATTTTG
TTTGTAAAAAATGGCCTATACTATCTTGGAATTATGCCTAAACAAAAAGGTCGCTACAAGGCTT
TGTCATTTGAACCTACTGAAAAGACTAGCGAAGGTTTCGATAAGATGTATTACGATTATTTCCCG
GATGCCGCTAAAATGATCCCCAAGTGCTCTACTCAATTGAAGGCAGTAACTGCTCATTTCCAAA
CGCATACCACGCCAATACTGCTTTCTAACAACTTTATAGAACCACTAGAAATAACGAAAGAAAT
TTACGACCTAAATAACCCAGAGAAAGAACCAAAAAAGTTCCAGACGGCCTACGCCAAAAAGAC
AGGGGACCAAAAAGGTTACCGCGAGGCGTTATGTAAATGGATTGATTTTACTAGGGACTTTTTA
TCAAAATACACTAAAACGACGTCTATTGATCTTAGCTCCTTACGCCCGTCCTCCCAATACAAGGA
TCTAGGTGAGTATTACGCAGAGTTGAACCCGCTATTATACCATATTTCCTTCCAAAGGATTGCTG
AAAAGGAAATTATGGACGCTGTTGAAACTGGGAAATTGTACCTGTTTCAGATTTATAATAAGGA
CTTCGCAAAGGGTCACCATGGTAAGCCTAACCTTCACACTTTGTACTGGACCGGACTATTCTCGC
CTGAAAATTTGGCTAAAACAAGTATCAAGTTAAACGGTCAGGCCGAGTTATTTTATAGACCCAA
ATCTAGAATGAAAAGAATGGCCCATAGATTAGGCGAAAAGATGTTAAACAAGAAATTAAAGGA
CCAAAAAACCCCGATACCAGACACTCTATACCAAGAACTGTACGACTATGTGAATCACAGGCTT
AGTCACGATTTATCAGATGAAGCGAGGGCTTTATTGCCAAATGTCATCACCAAGGAAGTATCAC
ATGAAATAATTAAGGATAGAAGGTTCACATCTGATAAATTCTTTTTTCATGTCCCAATTACATTG
AATTATCAAGCAGCGAACTCACCATCTAAATTTAATCAGCGCGTCAACGCCTATTTGAAAGAAC
ATCCCGAAACACCAATCATCGGCATAGATCGAGGTGAGAGAAACTTAATATATATAACTGTGAT
TGATTCTACAGGAAAAATCCTGGAGCAACGATCTTTAAATACCATACAACAGTTTGATTATCAA
AAAAAGTTGGATAACAGAGAAAAAGAACGTGTTGCCGCTAGGCAGGCTTGGTCTGTGGTAGGA
ACAATTAAGGACTTAAAGCAGGGCTATCTGTCCCAAGTTATTCATGAAATAGTCGATCTGATGA
TACATTATCAGGCAGTTGTCGTGTTGGAAAATTTGAATTTTGGCTTTAAATCAAAAAGAACTGGC
ATAGCAGAAAAAGCTGTGTACCAGCAGTTTGAAAAGATGTTAATCGATAAGCTAAACTGCCTTG
TTCTTAAAGATTACCCCGCAGAAAAAGTAGGTGGTGTTCTTAATCCATATCAGTTGACAGACCA
ATTTACATCCTTTGCGAAAATGGGTACGCAAAGCGGGTTCTTATTCTACGTACCGGCCCCCTATA
CTTCTAAGATCGACCCACTAACAGGTTTTGTGGACCCTTTTGTTTGGAAGACGATAAAGAACCA
CGAGTCACGCAAACATTTCTTAGAGGGCTTTGATTTCTTGCACTACGACGTGAAAACTGGTGATT
TTATCTTACACTTTAAAATGAACAGAAATCTCTCTTTCCAACGTGGACTGCCCGGATTCATGCCG
GCTTGGGACATCGTTTTTGAAAAGAATGAAACGCAGTTTGACGCCAAAGGTACACCATTTATAG
CGGGTAAGAGAATTGTGCCGGTCATAGAAAACCATAGATTTACAGGTAGATATAGGGATCTGTA
CCCTGCTAATGAATTGATTGCATTACTCGAAGAGAAAGGAATTGTGTTTCGAGATGGATCGAAT
ATTTTACCTAAGTTGTTGGAAAATGATGATTCACACGCAATTGATACTATGGTTGCCCTCATAAG
ATCGGTATTGCAAATGAGAAACTCAAATGCTGCTACGGGAGAGGATTATATAAACAGCCCCGTT
CGCGATCTTAATGGTGTTTGTTTTGATTCACGTTTTCAGAACCCCGAATGGCCAATGGATGCCGA
CGCAAACGGAGCATATCATATTGCTCTTAAAGGCCAACTACTATTAAATCACTTAAAGGAATCC
AAAGACCTAAAATTGCAAAACGGGATATCTAATCAGGATTGGCTGGCTTACATACAAGAACTAC
GTAACTAG
SE ATGGCCGTTAAGTCAATCAAAGTGAAACTTAGACTGGATGACATGCCAGAGATTCGTGCGGGGT
Q TATGGAAACTTCATAAGGAAGTTAACGCAGGGGTAAGATATTATACCGAATGGTTATCATTACT
no TCGACAAGAGAATTTGTACAGAAGGTCCCCGAACGGCGACGGTGAGCAAGAATGCGATAAGAC
N GGCTGAAGAATGTAAGGCAGAACTTTTGGAGCGCCTGAGAGCCCGTCAGGTTGAAAATGGCCA TAGAGGTCCTGCGGGATCTGATGATGAGCTTTTACAGCTAGCTAGACAATTGTATGAATTGTTG
GTCCCTCAGGCTATTGGGGCTAAAGGAGACGCTCAACAAATCGCCAGAAAGTTCTTGTCACCTC
TGGCTGACAAAGATGCCGTGGGAGGATTAGGTATCGCTAAAGCAGGTAATAAACCAAGATGGG
TTAGAATGAGAGAAGCAGGCGAACCTGGTTGGGAAGAAGAGAAAGAAAAGGCCGAAACTAGA
AAAAGCGCTGACAGAACCGCAGATGTTTTACGGGCCTTGGCTGATTTTGGACTGAAGCCTTTGA
TGAGAGTGTATACTGATTCAGAAATGTCTTCCGTTGAATGGAAGCCCCTAAGGAAGGGACAAGC
GGTCAGAACCTGGGATAGGGATATGTTTCAACAGGCTATTGAAAGGATGATGTCATGGGAATCC
TGGAATCAAAGAGTAGGTCAAGAATACGCTAAACTGGTCGAACAAAAGAATAGATTTGAACAA
AAAAATTTTGTAGGTCAAGAACATTTAGTACATTTGGTTAATCAACTTCAACAAGATATGAAAG
AGGCATCTCCTGGTTTGGAATCAAAAGAACAAACAGCACACTATGTTACCGGCCGAGCTTTGCG
AGGTTCTGACAAAGTATTTGAAAAGTGGGGGAAATTAGCTCCCGATGCCCCCTTTGATCTATAT
GATGCTGAAATTAAAAACGTTCAAAGAAGGAACACTAGACGTTTTGGATCCCATGATCTTTTTG
CAAAGCTAGCTGAGCCAGAATACCAGGCTCTATGGCGTGAAGACGCCTCGTTTTTGACTAGATA
CGCAGTATACAATTCAATACTCAGAAAACTAAACCATGCCAAGATGTTTGCTACATTCACCCTG
CCCGATGCTACCGCTCATCCTATTTGGACTAGATTTGACAAGTTGGGGGGGAATCTACATCAGT
ACACATTTTTATTTAATGAATTCGGTGAAAGAAGACACGCTATTAGATTCCACAAGCTCCTAAA
GGTTGAAAACGGCGTTGCGAGAGAAGTTGATGATGTAACAGTTCCCATTTCTATGTCGGAGCAA
TTGGATAATCTATTGCCTAGAGACCCTAATGAACCAATTGCTTTGTACTTTCGTGACTACGGTGC
AGAACAACACTTTACAGGTGAATTCGGCGGAGCCAAGATTCAATGTAGACGTGATCAACTCGCA
CACATGCATAGAAGAAGAGGCGCTCGTGATGTTTATTTAAATGTGTCTGTTAGAGTTCAATCCC
AATCGGAGGCTAGAGGTGAAAGAAGGCCACCATACGCAGCAGTTTTTAGGTTAGTAGGTGATA
ATCATAGGGCATTTGTCCACTTCGACAAATTAAGTGATTATTTAGCAGAGCACCCTGATGATGG
AAAGTTGGGCAGTGAGGGATTATTAAGTGGGTTGAGGGTAATGTCTGTAGATCTTGGTCTTCGT
ACTTCTGCGAGTATCTCTGTCTTTAGAGTAGCACGTAAGGATGAGTTGAAACCTAATAGCAAAG
CAACTTTTGAAATTGCCAGGAGAAACGGAGTCCAAGGACTTGAGGGCAATTAGAGAGGAACGT
CAGCGTACATTGCGACAGCTGAGAACTCAATTGGCTTATTTGAGGTTGTTGGTTAGGTGTGGTTC
CGAGGATGTTGGCAGAAGAGAAAGGTCTTGGGCCAAATTGATAGAACAACCAGTGGACGCCGC
AAATCACATGACACCAGATTGGAGAGAAGCTTTCGAAAATGAACTCCAGAAATTAAAGAGCCT
ACATGGCATATGCTCTGATAAAGAGTGGATGGATGCCGTATACGAATCCGTTCGTAGAGTCTGG
CGCCACATGGGTAAGCAAGTACGGGACTGGAGAAAGGATGTTCGTTCCGGCGAAAGACCGAAG
ATAAGGGGGTATGCAAAGGACGTTGTAGGCGGTAATTCTATTGAACAGATTGAGTATTTGGAAA
GGCAGTACAAATTTCTTAAATCCTGGAGCTTCTTCGGCAAAGTGTCAGGACAAGTCATCAGGGC
TGAAAAAGGTTCCAGATTTGCTATTACGCTAAGGGAACATATTGATCATGCGAAAGAAGATAGA
CTGAAAAAACTAGCAGATAGAATAATTATGGAAGCACTTGGTTACGTCTATGCACTTGATGAAA
GAGGCAAGGGGAAATGGGTAGCTAAATACCCGCCTTGTCAACTTATTTTATTAGAAGAATTAAG
CGAGTACCAATTTAACAACGATAGACCTCCATCCGAAAATAATCAGCTGATGCAATGGTCCCAT
AGGGGTGTTTTTCAAGAATTGATAAATCAAGCTCAAGTACACGATTTGCTGGTAGGTACTATGT
ACGCAGCGTTTTCGAGCCGTTTTGATGCAAGAACTGGTGCCCCAGGTATCAGATGTCGACGTGT
TCCGGCCAGATGTACACAGGAACATAACCCTGAGCCATTTCCGTGGTGGCTTAATAAGTTTGTT
GTCGAGCACACATTAGACGCATGCCCTCTGAGAGCAGATGACCTTATACCCACTGGAGAAGGCG
AAATATTTGTTAGTCCATTCTCTGCAGAAGAAGGTGACTTTCACCAGATACATGCAGACTTAAAT GCAGCACAGAATCTCCAACAAAGGTTGTGGTCGGATTTTGATATTTCGCAAATAAGACTAAGAT
GCGATTGGGGAGAGGTTGATGGAGAATTGGTGCTGATTCCAAGATTAACCGGAAAGCGAACTG
CCGATTCCTATTCTAACAAGGTGTTTTACACAAATACTGGTGTTACCTATTACGAAAGAGAAAG
GGGTAAGAAGAGACGTAAAGTATTTGCTCAAGAAAAATTGTCAGAAGAGGAGGCAGAACTGTT
AGTAGAAGCAGACGAAGCCAGAGAAAAATCAGTTGTGCTTATGCGTGACCCTTCCGGCATTATA
AATCGTGGTAATTGGACACGACAAAAAGAATTTTGGTCTATGGTCAATCAACGTATCGAAGGCT
ACCTAGTTAAGCAAATCAGGTCTAGGGTTCCACTACAAGATAGCGCATGTGAAAATACGGGTGA
TATATAA
SE ATGGCTACTAGATCTTTCATTTTAAAAATTGAACCTAATGAAGAAGTGAAGAAGGGTCTCTGGA
Q AAACTCACGAAGTACTTAATCATGGCATTGCCTATTATATGAATATCCTGAAGCTTATTCGTCAA
no GAAGCTATATACGAGCATCATGAGCAAGATCCTAAGAACCCTAAGAAAGTAAGCAAAGCGGAA
N ATTCAGGCTGAATTGTGGGACTTCGTCTTGAAGATGCAGAAGTGTAACAGTTTTACGCACGAAG
O: TTGATAAAGATGTGGTGTTTAATATTTTGAGGGAGCTATATGAGGAGTTGGTGCCCTCGAGTGTC 14 GAAAAAAAAGGAGAAGCTAATCAGCTGTCAAATAAATTTTTATATCCTCTGGTGGATCCAAACT 0 CTCAATCAGGTAAAGGCACTGCCAGTAGTGGTCGAAAACCGAGATGGTATAATTTGAAAATCGC
AGGTGATCCATCGTGGGAAGAAGAAAAAAAAAAATGGGAAGAAGATAAAAAAAAAGATCCCC
TTGCCAAAATACTAGGTAAGCTAGCCGAGTATGGACTTATACCATTATTCATTCCTTTCACGGAC
TCTAATGAACCAATTGTGAAGGAAATCAAATGGATGGAAAAATCACGTAATCAGTCTGTTAGGA
GGTTGGACAAAGATATGTTTATACAGGCTCTTGAGAGGTTTTTGTCGTGGGAGTCCTGGAATTTG
AAAGTGAAAGAAGAATATGAAAAAGTGGAAAAGGAGCATAAGACGTTGGAAGAAAGGATTAA
GGAAGATATTCAGGCCTTTAAGAGTCTGGAACAGTACGAAAAAGAAAGACAGGAACAGTTATT
GAGAGATACTCTAAACACTAATGAATATAGGCTTTCCAAGAGGGGCTTGCGAGGATGGAGAGA
GATAATTCAGAAATGGTTGAAAATGGATGAGAACGAGCCATCGGAGAAATATCTAGAGGTGTT
TAAAGATTACCAAAGAAAGCACCCTCGCGAAGCTGGTGATTACTCTGTTTATGAATTCCTTTCGA
AGAAGGAAAATCACTTCATCTGGCGAAATCATCCAGAGTACCCATATTTATATGCTACATTTTGC
GAAATTGACAAGAAAAAAAAAGATGCTAAACAGCAAGCGACATTCACCCTCGCTGATCCCATC
AACCACCCATTATGGGTCAGGTTCGAAGAGAGATCAGGCTCGAACCTGAATAAGTACAGGATCT
TGACTGAGCAATTGCATACTGAGAAGTTAAAAAAGAAATTGACGGTCCAACTTGACAGATTGAT
TTATCCCACTGAATCTGGTGGATGGGAGGAGAAAGGTAAGGTTGATATTGTCCTATTGCCTTCTC
GTCAATTTTACAACCAAATATTTCTGGACATCGAAGAGAAGGGTAAACATGCTTTTACCTATAA
GGATGAGAGTATTAAATTTCCATTGAAGGGAACGCTTGGCGGCGCTAGAGTTCAGTTCGATAGA
GATCATTTGAGAAGATACCCGCATAAAGTGGAATCTGGTAATGTAGGTCGGATCTACTTTAACA
TGACGGTAAATATTGAACCTACCGAGTCACCAGTCAGTAAGTCTTTAAAGATTCATAGGGATGA
TTTCCCTAAATTTGTCAACTTCAAGCCTAAGGAACTAACCGAGTGGATCAAAGACAGTAAAGGC
AAAAAGTTAAAGAGCGGTATTGAGTCCCTGGAGATAGGTCTTAGAGTCATGTCTATCGATTTGG
GTCAAAGACAAGCAGCCGCAGCATCTATTTTCGAAGTTGTTGACCAAAAACCGGATATCGAGGG
AACTGCCAGGAGAAACACTAGTAAAATCTAGAGAGGTCTTGCGTAAAGCACGTGAGGACAATC
TCAAATTAATGAATCAGAAGTTAAATTTCCTTAGGAACGTGTTGCATTTCCAACAGTTCGAGGA
CATAACTGAACGCGAGAAAAGAGTCACTAAGTGGATCTCAAGACAAGAAAATAGTGATGTGCC
ATTAGTGTATCAAGACGAACTTATTCAAATAAGAGAGCTAATGTATAAACCATATAAAGACTGG
GTGGCATTCTTAAAACAATTACACAAGCGGCTTGAAGTAGAAATAGGAAAAGAAGTAAAGCAT TGGAGGAAGAGTCTGTCCGATGGTCGCAAAGGCCTGTACGGGATATCACTTAAAAATATTGATG
AAATTGACAGAACACGAAAATTTTTGTTAAGATGGTCATTGAGACCAACCGAACCAGGTGAGGT
TAGAAGGTTGGAACCAGGCCAAAGGTTTGCCATCGATCAATTAAACCATCTTAACGCACTGAAA
GAAGATAGATTGAAGAAGATGGCGAACACTATTATTATGCACGCTCTAGGTTATTGCTATGATG
TGAGAAAGAAAAAATGGCAAGCCAAGAACCCTGCATGCCAAATTATTTTGTTTGAAGATCTTTC
TAATTACAATCCATACGAAGAGCGTTCACGTTTTGAAAACTCTAAATTGATGAAATGGTCTAGA
AGAGAGATTCCGAGACAGGTCGCTCTACAAGGGGAGATTTACGGTCTTCAAGTCGGTGAGGTTG
GTGCTCAATTTTCTTCCAGATTTCATGCAAAAACTGGGTCTCCAGGCATTAGGTGTTCGGTCGTT
ACTAAGGAAAAGTTACAGGACAACCGTTTCTTCAAAAATTTGCAACGTGAAGGCCGTTTAACAC
TTGATAAGATAGCTGTCCTTAAGGAAGGCGATCTGTACCCAGATAAAGGTGGTGAGAAATTCAT
ATCTTTGAGTAAAGACAGGAAACTGGTTACAACACACGCCGACATTAACGCAGCTCAGAACTTG
CAAAAGAGATTCTGGACAAGGACCCACGGCTTCTATAAGGTGTACTGTAAAGCTTATCAAGTAG
ATGGACAAACGGTTTATATTCCTGAATCAAAGGACCAGAAACAAAAAATTATAGAAGAATTTG
GTGAAGGATACTTTATCTTGAAGGATGGAGTTTATGAGTGGGGCAATGCAGGTAAGTTAAAGAT
AAAGAAAGGTTCATCAAAGCAATCAAGTAGCGAACTGGTCGATTCGGATATTTTAAAGGATAGC
TTTGATCTAGCTAGTGAATTGAAGGGAGAAAAGTTAATGTTATACAGAGATCCCAGTGGGAATG
TATTTCCATCTGATAAGTGGATGGCCGCCGGAGTGTTTTTTGGCAAATTAGAGAGAATCTTGATT
TCTAAACTGACCAATCAATACTCAATTTCGACCATCGAAGACGACTCTTCAAAACAATCCATGT
GA
SE ATGCCTACTCGCACCATCAATCTGAAGTTAGTTTTGGGGAAGAACCCAGAAAATGCGACTCTAA
Q GACGGGCACTATTCTCTACACATAGACTTGTCAACCAAGCGACTAAGAGAATTGAAGAATTTTT
no ACTGTTGTGTAGAGGAGAAGCTTATCGTACCGTAGATAATGAAGGTAAAGAAGCTGAGATCCCA
N CGCCATGCTGTTCAAGAAGAGGCGCTTGCTTTTGCAAAAGCTGCACAACGACATAACGGCTGTA
O: TCTCCACATATGAGGACCAGGAAATCTTGGATGTGCTTAGACAATTGTATGAAAGATTAGTACC 14 TAGCGTCAATGAAAACAACGAGGCTGGGGATGCCCAAGCCGCTAACGCTTGGGTGAGTCCATTA 1 ATGAGTGCAGAGTCCGAAGGTGGACTATCGGTCTATGATAAAGTGTTAGACCCGCCGCCAGTAT
GGATGAAACTCAAAGAAGAGAAAGCGCCTGGTTGGGAAGCTGCTTCTCAGATTTGGATACAGTC
CGACGAAGGTCAATCGCTGCTAAATAAACCGGGTAGCCCACCACGTTGGATTAGAAAACTTAGA
TCTGGTCAACCGTGGCAAGATGACTTCGTTTCAGACCAAAAAAAAAAGCAAGATGAACTAACG
AAAGGTAACGCACCACTCATAAAACAATTGAAAGAGATGGGCCTCTTGCCTTTAGTTAATCCCT
TTTTTAGACATTTGTTGGATCCCGAGGGTAAGGGTGTATCCCCATGGGACAGATTGGCCGTAAG
GGCCGCGGTGGCGCACTTCATCTCTTGGGAAAGTTGGAACCACAGAACAAGAGCTGAGTATAAC
AGTTTGAAACTGCGAAGAGATGAATTTGAGGCCGCATCTGATGAATTCAAGGACGATTTTACAT
TGCTACGACAATATGAGGCTAAGCGACATAGTACGCTTAAGTCAATTGCCTTAGCTGATGACTC
TAACCCGTACCGAATTGGTGTAAGGTCCTTGAGAGCCTGGAATAGGGTTAGAGAAGAATGGATT
GACAAAGGCGCAACCGAGGAACAAAGGGTTACCATCCTTAGTAAGCTTCAAACACAATTACGG
GGTAAATTCGGTGATCCAGACCTATTTAATTGGCTAGCCCAAGATAGACACGTACACCTGTGGT
CCCCGAGAGATTCCGTCACGCCCCTCGTAAGGATTAATGCCGTCGACAAAGTGCTTAGAAGACG
TAAGCCTTATGCACTGATGACTTTTGCACATCCGAGATTCCATCCAAGATGGATTCTATACGAAG
CGCCTGGTGGTTCTAACTTGCGACAATACGCTTTAGATTGTACTGAAAATGCTCTGCATATTACA
CTTCCATTACTCGTCGACGACGCCCATGGTACATGGATTGAGAAAAAAATCCGCGTACCACTCG
CTCCTAGTGGACAAATACAAGATTTAACTTTAGAAAAACTTGAAAAGAAAAAAAACAGATTAT ACTATAGATCAGGATTCCAACAATTTGCTGGATTAGCCGGTGGTGCTGAGGTGTTGTTTCATAGG
CCGTATATGGAACATGATGAGAGATCAGAAGAATCTCTGTTGGAAAGGCCAGGCGCTGTGTGGT
TCAAATTAACCTTAGATGTTGCTACCCAAGCACCACCTAACTGGTTAGATGGTAAAGGCAGAGT
TAGGACACCTCCAGAAGTTCATCATTTCAAAACCGCTCTGTCAAATAAATCTAAACATACGAGA
ACCTTGCAACCAGGATTGAGAGTCCTTTCTGTTGATTTGGGTATGAGAACATTTGCTTCTTGTTC
TGTTTTCGAATTGATCGAAGGTAAACCTGAAACAGGTAGAGCATTCCCTGTTGCTGACGAAAGA
TCAATGGATAGTCCAAATAAGTTATGGGCCAAGCACGAGAGAAGCTTTAAACTAACTCTGCCTG
GAGAAACACCGAGCAGAAAGGAGGAAGAAGAGAGAAGCATTGCTAGGGCAGAGATTTACGCG
CTGAAAAGAGATATTCAAAGACTGAAATCACTCCTAAGATTAGGTGAGGAAGATAATGATAAT
AGAAGAGATGCTTTGTTAGAGCAATTCTTTAAAGGATGGGGTGAAGAGGACGTAGTTCCTGGTC
AAGCTTTCCCTAGAAGCCTCTTTCAGGGATTAGGCGCTGCACCCTTTAGGTCAACACCCGAATTG
TGGAGACAGCACTGTCAGACGTATTACGACAAAGCGGAAGCTTGCCTGGCAAAGCATATTTCCG
ACTGGAGGAAGAGAACTAGACCTCGTCCGACTTCGAGAGAGATGTGGTATAAGACAAGATCTT
ACCATGGTGGCAAAAGTATTTGGATGCTAGAATACTTAGATGCTGTCCGCAAATTACTACTTTCA
TGGTCGTTAAGAGGTCGTACTTACGGAGCTATTAATAGACAAGACACCGCTCGTTTTGGTTCCTT
AGCTTCTAGATTGTTGCATCATATCAACTCTTTAAAGGAAGACCGCATCAAAACCGGTGCAGAT
AGTATTGTGCAGGCCGCAAGGGGCTATATTCCTCTCCCACATGGCAAGGGTTGGGAACAGCGTT
ATGAACCCTGTCAGTTGATATTATTTGAAGATCTAGCTAGGTACAGATTTCGTGTAGACAGACCT
CGGAGAGAGAATTCGCAATTGATGCAGTGGAATCATCGAGCTATAGTAGCAGAAACGACGATG
CAAGCTGAACTATACGGTCAAATAGTCGAAAATACCGCTGCTGGTTTCTCCTCAAGATTTCATGC
TGCAACTGGTGCTCCTGGTGTCAGATGTCGCTTTTTGTTAGAACGAGATTTCGATAATGACCTAC
CAAAGCCGTACTTACTGAGAGAACTAAGTTGGATGTTAGGTAACACAAAGGTTGAATCAGAGG
AAGAAAAATTGCGTCTTCTAAGCGAGAAAATTAGACCAGGTTCATTAGTCCCTTGGGATGGGGG
TGAACAATTCGCGACATTACACCCGAAAAGACAAACTCTTTGTGTCATTCACGCAGATATGAAC
GCTGCTCAAAACCTGCAACGCAGATTTTTCGGAAGGTGTGGGGAAGCCTTTCGCCTTGTGTGTC
AGCCACATGGTGATGATGTTTTGAGGCTAGCGTCTACACCAGGTGCAAGACTTTTGGGTGCATT
ACAACAACTGGAAAATGGTCAGGGAGCTTTCGAATTAGTTCGTGATATGGGTAGCACATCACAA
ATGAATCGTTTCGTCATGAAGTCGTTGGGCAAAAAAAAGATCAAGCCATTACAAGACAATAACG
GGGATGATGAACTAGAAGACGTGCTATCTGTTTTACCTGAAGAAGATGATACCGGACGAATTAC
TGTATTTCGGGACTCTTCGGGTATATTCTTCCCTTGTAACGTTTGGATCCCGGCAAAACAGTTCT
GGCCTGCGGTCCGTGCTATGATTTGGAAGGTTATGGCATCACATTCATTGGGTTAG
SE ATGACAAAGTTAAGGCATAGACAGAAGAAGTTAACTCACGATTGGGCGGGGTCTAAAAAGAGA
Q GAAGTTCTAGGGAGCAATGGTAAATTACAGAATCCATTGCTAATGCCCGTCAAAAAAGGTCAGG
no TGACAGAATTTCGAAAAGCATTTTCCGCATACGCCCGAGCAACCAAAGGGGAAATGACGGATG
N GCAGAAAAAATATGTTTACTCACTCATTTGAACCATTCAAGACCAAGCCTTCGTTACATCAGTGC
O: GAACTGGCTGACAAAGCCTACCAGAGCTTGCATTCATATTTACCGGGTTCTTTGGCGCATTTTCT 14 TTTATCTGCCCATGCACTTGGTTTTAGGATTTTTAGCAAATCAGGGGAAGCCACTGCATTCCAAG 2 CGTCCTCAAAGATTGAAGCTTACGAAAGCAAGTTAGCTAGCGAGCTTGCTTGTGTTGATTTGTCT
ATTCAGAACTTGACTATTTCAACTTTGTTCAACGCATTAACGACTTCCGTAAGAGGTAAAGGTGA
GGAGACATCGGCAGATCCACTGATAGCTAGATTTTACACCTTACTTACCGGTAAACCACTAAGC
AGAGACACTCAGGGCCCAGAACGAGATTTAGCCGAGGTGATAAGCAGAAAAATTGCAAGTTCT
TTTGGAACTTGGAAGGAGATGACTGCCAATCCACTTCAATCTCTTCAATTTTTTGAAGAGGAGTT GCATGCGCTAGATGCAAATGTTAGTTTGTCACCTGCCTTCGATGTTCTGATTAAGATGAACGACC
TGCAGGGTGACTTGAAGAACAGAACGATAGTTTTTGATCCAGATGCTCCTGTGTTTGAATATAA
TGCTGAGGATCCTGCTGACATCATCATTAAACTGACAGCTAGATATGCGAAAGAAGCAGTGATT
AAAAATCAAAATGTCGGGAATTATGTTAAGAACGCTATTACGACAACTAACGCAAACGGACTA
GGTTGGTTGCTGAACAAAGGCCTTTCCTTATTGCCTGTCTCCACTGATGACGAACTATTGGAGTT
TATTGGGGTCGAGAGATCCCATCCTAGCTGTCATGCGTTGATAGAACTTATCGCTCAGTTAGAA
GCACCTGAACTGTTCGAAAAAAATGTTTTTTCTGATACTCGTTCCGAGGTTCAAGGTATGATAGA
TTCAGCTGTAAGCAATCATATCGCCAGGCTGTCAAGCTCTCGTAATTCATTGAGCATGGACTCAG
AGGAACTTGAGAGATTGATAAAATCTTTTCAAATTCATACACCACATTGTTCATTATTTATAGGG
GCTCAATCCTTATCTCAACAATTGGAAAGCCTACCCGAAGCATTGCAGTCAGGAGTGAACAGTG
CTGATATTCTGCTCGGCTCAACCCAATACATGTTGACAAATTCTTTGGTCGAGGAGTCAATCGCT
ACGTATCAGAGAACCTTAAATAGAATTAACTACCTGTCCGGCGTTGCAGGACAGATTAACGGTG
CTATTAAGAGGAAAGCTATTGATGGTGAGAAGATACATTTACCCGCTGCTTGGTCAGAGTTAAT
TTCTTTACCCTTTATTGGGCAACCAGTGATTGATGTTGAATCAGATTTAGCCCACTTAAAGAACC
AATACCAGACATTGTCTAACGAATTTGATACGCTGATTTCCGCACTGCAAAAGAATTTCGACTTA
AATTTTAATAAAGCCTTGCTTAATCGAACACAACATTTCGAGGCTATGTGTAGATCAACAAAAA
AGAATGCCCTTTCTAAGCCTGAGATCGTTAGTTATAGAGATTTGCTAGCCAGGTTGACTTCTTGT
CTTTATAGGGGCTCTCTAGTCTTGAGGAGGGCGGGTATAGAAGTACTGAAAAAGCACAAGATAT
TTGAGTCCAACTCTGAATTAAGAGAGCACGTTCATGAAAGAAAACACTTCGTATTTGTTTCTCCG
CTCGATAGAAAAGCCAAGAAGCTCCTACGTTTGACTGACTCTAGGCCTGATTTATTGCACGTAA
TTGATGAAATACTACAACATGATAATTTAGAGAACAAGGATAGAGAATCTTTGTGGTTAGTTCG
ATCTGGTTATTTACTGGCCGGCCTACCAGACCAACTCTCCTCTTCCTTTATAAATCTTCCAATCAT
TACTCAAAAAGGCGATCGTCGCTTGATAGATCTCATTCAATACGACCAAATTAATAGAGATGCT
TTTGTGATGTTGGTAACTTCCGCTTTTAAGTCGAACTTAAGTGGGCTGCAGTACAGAGCAAACA
AACAATCTTTTGTGGTTACGCGCACTTTGTCACCATATTTGGGATCTAAATTGGTTTATGTGCCC
AAAGATAAAGATTGGCTGGTCCCTTCCCAAATGTTCGAGGGGAGATTTGCGGACATTTTGCAAT
CCGATTATATGGTGTGGAAGGACGCTGGAAGATTGTGTGTTATTGACACAGCTAAGCATTTGTC
TAACATTAAAAAATCTGTATTCTCAAGTGAAGAAGTCCTCGCGTTTTTAAGAGAATTGCCACAC
CGTACGTTTATCCAAACTGAGGTCAGGGGTTTAGGGGTGAATGTGGACGGTATTGCATTTAATA
ACGGGGATATACCCTCTCTGAAGACGTTTAGCAATTGCGTGCAAGTCAAAGTGAGTCGGACAAA
CACTAGTCTGGTCCAAACATTAAATAGATGGTTTGAAGGCGGTAAGGTCTCGCCGCCTAGCATC
CAATTTGAGAGAGCATATTACAAAAAAGATGATCAAATCCACGAGGACGCTGCAAAAAGGAAG
ATAAGGTTTCAAATGCCAGCTACAGAGTTGGTACACGCGTCAGACGACGCAGGATGGACCCCCT
CCTATTTACTTGGTATCGATCCCGGTGAATATGGTATGGGTTTGTCATTGGTCTCAATAAATAAT
GGCGAAGTTTTAGATAGCGGATTTATACACATAAATTCATTGATAAATTTCGCTTCTAAGAAATC
AAATCATCAAACCAAAGTTGTTCCGAGGCAGCAATACAAGTCACCATACGCCAACTATCTAGAA
CAATCTAAAGATTCTGCAGCAGGAGACATAGCTCATATTTTGGATAGACTTATCTACAAGTTGA
ACGCCCTACCCGTTTTCGAAGCTCTATCTGGCAATAGTCAAAGCGCAGCGGATCAGGTTTGGAC
AAAAGTCCTCAGCTTCTACACCTGGGGAGATAATGATGCACAAAATTCAATTCGTAAGCAACAT
TGGTTCGGTGCTTCACACTGGGACATTAAAGGCATGTTGAGGCAACCGCCAACAGAAAAAAAG
CCCAAACCATACATTGCCTTTCCCGGTTCACAAGTTTCTTCTTATGGTAATTCTCAAAGGTGTTC
ATGTTGTGGACGTAACCCAATTGAACAATTGCGCGAAATGGCGAAGGACACATCCATTAAGGA GTTGAAGATTAGAAATTCAGAAATTCAATTGTTCGACGGTACTATAAAGTTATTTAATCCAGAC
CCGTCAACGGTCATAGAAAGAAGAAGACATAATTTAGGGCCATCAAGAATTCCTGTAGCTGATA
GAACTTTCAAAAATATAAGTCCAAGCTCACTAGAATTCAAAGAACTAATAACGATTGTGTCACG
GTCTATACGTCATTCCCCAGAATTTATTGCTAAAAAAAGAGGTATAGGTAGTGAGTACTTTTGTG
CTTATAGTGATTGTAATTCCTCCTTAAATTCAGAAGCAAATGCGGCTGCGAACGTTGCCCAAAA
GTTCCAAAAGCAATTGTTTTTCGAATTATAG
SE ATGAAAAGAATCTTGAACTCTTTAAAGGTTGCCGCCCTGCGTTTGTTATTTAGAGGTAAAGGATC
Q TGAACTTGTCAAGACTGTTAAATACCCTTTGGTCTCGCCGGTTCAGGGTGCAGTTGAGGAGTTAG
no CTGAGGCGATCCGCCATGATAACCTACATCTGTTTGGTCAAAAAGAAATTGTTGACCTTATGGA
N AAAGGATGAAGGTACGCAAGTTTACTCAGTGGTTGATTTCTGGTTAGATACCCTTCGTTTGGGG
O: ATGTTTTTCAGTCCATCAGCAAACGCATTAAAAATCACGCTGGGTAAGTTTAATTCTGATCAGGT 14 TAGCCCTTTTAGGAAAGTGTTAGAGCAGTCTCCATTCTTCTTGGCTGGTAGGCTGAAGGTTGAAC
3 CGGCAGAACGTATATTATCTGTCGAGATCCGTAAGATTGGGAAGAGGGAAAACAGAGTTGAGA
ACTATGCTGCTGACGTAGAAACGTGTTTTATAGGCCAATTAAGTTCAGATGAGAAACAGTCAAT
ACAAAAATTAGCTAATGATATCTGGGATAGTAAAGATCATGAAGAGCAAAGAATGTTAAAGGC
AGATTTCTTCGCTATCCCTTTGATTAAGGATCCAAAGGCTGTGACCGAAGAGGATCCTGAAAAT
GAAACTGCTGGTAAACAAAAACCCTTGGAGTTGTGTGTCTGCCTTGTCCCAGAACTTTACACAA
GAGGATTCGGGTCAATAGCCGATTTTTTGGTTCAACGCTTAACTCTTTTAAGGGATAAAATGTCT
ACAGATACTGCAGAAGATTGTTTAGAATATGTCGGGATTGAGGAGGAAAAAGGTAACGGCATG
AACTCATTGTTGGGAACGTTCTTAAAGAATTTGCAAGGCGATGGATTTGAGCAGATTTTCCAATT
TATGTTAGGGAGCTATGTCGGTTGGCAAGGGAAGGAAGATGTTTTAAGAGAGAGATTAGACTTA
TTGGCTGAAAAAGTGAAGAGGTTACCGAAACCAAAATTTGCTGGCGAATGGTCTGGTCATAGGA
TGTTCTTGCATGGCCAATTGAAGTCTTGGTCTTCAAATTTTTTTAGACTATTTAACGAGACAAGG
GAACTTCTAGAGTCTATTAAGTCAGATATACAGCATGCCACAATGCTAATATCATATGTAGAAG
AAAAAGGTGGTTATCATCCTCAATTACTTAGTCAATATAGAAAACTTATGGAACAACTACCAGC
TTTGCGTACCAAGGTATTGGACCCTGAGATTGAAATGACACATATGTCCGAAGCAGTTCGCTCTT
ATATAATGATACATAAATCTGTTGCGGGTTTTTTACCGGATTTATTAGAATCATTAGATAGAGAC
AAGGATCGTGAGTTTCTGCTTAGTATTTTTCCAAGAATCCCAAAAATTGATAAAAAAACCAAGG
AAATTGTAGCTTGGGAACTGCCGGGAGAACCAGAAGAAGGTTATTTATTTACTGCTAATAACTT
GTTCAGAAACTTCTTAGAGAATCCGAAACATGTCCCGAGATTTATGGCCGAAAGGATCCCAGAA
GATTGGACTCGATTACGCTCTGCTCCTGTCTGGTTCGATGGAATGGTAAAACAATGGCAAAAAG
TCGTTAACCAGTTAGTAGAATCACCAGGTGCTTTATATCAATTTAACGAATCCTTCTTGAGACAA
AGGTTACAGGCCATGTTAACTGTGTATAAGAGGGACTTACAAACTGAAAAATTTCTTAAACTTT
TGGCGGATGTTTGTAGGCCTCTTGTAGATTTTTTTGGTTTGGGTGGAAATGATATTATTTTTAAG
AGCTGTCAAGACCCAAGAAAACAATGGCAAACCGTTATTCCTCTCTCTGTTCCGGCAGATGTCT
ATACTGCTTGCGAAGGTTTGGCGATTAGACTAAGGGAGACATTAGGATTCGAATGGAAGAATTT
GAAAGGTCACGAGAGAGAAGATTTCTTAAGATTGCACCAGTTATTGGGCAATTTACTTTTCTGG
ATTCGTGATGCTAAATTGGTAGTAAAATTAGAGGATTGGATGAACAACCCATGTGTTCAGGAAT
ATGTAGAAGCCCGGAAAGCTATCGATCTTCCACTAGAAATATTCGGTTTTGAAGTGCCTATCTTC
CTGAATGGCTATCTATTTTCGGAGTTGAGACAATTAGAACTTTTGCTTAGGAGAAAAAGTGTGA
TGACTAGCTACAGTGTAAAGACTACTGGATCTCCTAATAGGCTATTTCAGCTAGTTTATTTACCT
CTAAACCCTAGTGACCCCGAAAAGAAGAACTCAAATAACTTTCAAGAACGTTTGGATACCCCAA CTGGTTTGTCCCGTCGTTTCCTAGACCTAACCCTTGATGCATTCGCAGGTAAGTTACTTACCGAT
CCAGTTACACAAGAATTGAAGACAATGGCAGGTTTTTACGATCATCTTTTTGGATTCAAATTGCC
ATGTAAACTCGCCGCCATGTCGAATCATCCAGGTTCTTCTTCAAAGATGGTTGTGTTAGCGAAAC
CCAAAAAAGGTGTTGCTTCTAATATAGGGTTTGAACCGATCCCAGATCCCGCTCATCCCGTATTT
AGGGTTAGATCCAGTTGGCCAGAGTTGAAGTACCTCGAGGGGCTATTGTATTTGCCAGAAGACA
CACCTTTGACCATCGAATTAGCAGAGACCTCCGTATCGTGCCAAAGTGTCTCGTCAGTTGCATTC
GATTTGAAAAACTTGACAACGATCTTAGGTCGTGTGGGAGAATTTAGGGTCACAGCTGATCAAC
CCTTTAAACTAACGCCTATAATCCCGGAGAAAGAAGAATCTTTTATTGGTAAAACTTATTTGGGT
CTCGACGCGGGTGAAAGGAGCGGCGTCGGTTTCGCTATTGTTACAGTGGACGGAGATGGGTACG
AAGTGCAAAGATTGGGGGTCCACGAGGATACACAGCTTATGGCCTTGCAGCAAGTTGCTAGTAA
ATCCTTAAAAGAGCCAGTATTTCAGCCTCTAAGAAAAGGCACCTTTAGACAACAAGAAAGAATA
CGGAAATCCTTACGTGGTTGCTACTGGAATTTTTATCATGCCTTGATGATAAAATATAGGGCCAA
AGTAGTACATGAGGAATCTGTCGGAAGTAGTGGTCTTGTGGGTCAATGGTTGAGGGCTTTTCAG
AAGGATTTGAAGAAAGCCGATGTTCTCCCCAAGAAGGGCGGTAAAAACGGTGTAGATAAGAAG
AAGAGAGAGTCCTCAGCTCAAGACACTCTTTGGGGTGGTGCTTTCTCTAAAAAGGAGGAGCAAC
AGATTGCGTTTGAGGTGCAAGCTGCAGGTTCTTCGCAATTTTGTTTGAAGTGCGGATGGTGGTTC
CAACTAGGCATGCGTGAAGTAAACAGGGTACAAGAATCGGGCGTCGTGTTAGATTGGAATAGA
AGCATAGTTACCTTTTTAATAGAATCATCCGGCGAAAAAGTTTATGGTTTCTCCCCACAGCAATT
AGAGAAGGGTTTCAGACCAGACATCGAAACTTTTAAAAAGATGGTAAGAGACTTTATGAGACCT
CCTATGTTTGATAGAAAAGGCAGACCGGCCGCAGCTTACGAGAGATTTGTTTTAGGAAGGAGAC
ATCGAAGGTACAGGTTTGATAAAGTATTTGAGGAAAGATTTGGGAGGTCTGCTCTTTTCATTTGT
CCTAGAGTAGGTTGTGGAAATTTTGACCACAGCTCCGAACAGTCCGCGGTTGTTTTGGCCTTGAT
CGGATATATTGCCGATAAGGAGGGAATGTCAGGTAAGAAGTTGGTTTATGTACGGCTGGCCGAA
CTTATGGCCGAATGGAAACTAAAAAAATTAGAAAGATCCAGAGTTGAAGAACAATCATCCGCT
CAATAA
SE ATGGCAGAAAGCAAACAAATGCAGTGTAGGAAATGTGGAGCTAGTATGAAGTACGAAGTCATC
Q GGTTTGGGTAAAAAGTCATGTAGATACATGTGTCCCGATTGTGGCAACCATACCTCGGCAAGAA
no AGATACAAAACAAAAAAAAAAGAGATAAAAAATATGGGTCAGCCAGTAAAGCCCAATCTCAAA
N GAATTGCTGTAGCAGGTGCTCTTTACCCTGACAAAAAAGTACAAACTATCAAAACCTATAAATA
O: TCCAGCAGACTTGAATGGTGAGGTGCATGATAGCGGTGTTGCCGAGAAAATCGCACAAGCAAT 14 ACAAGAGGACGAGATTGGACTTTTGGGACCAAGCTCAGAATATGCATGCTGGATTGCATCTCAA 4 AAACAGTCTGAGCCTTACAGTGTAGTCGATTTCTGGTTTGATGCAGTGTGCGCAGGGGGAGTCT
TCGCCTACTCTGGCGCTAGATTATTGAGTACAGTTTTACAGTTATCCGGTGAGGAATCGGTGCTT
AGAGCTGCCTTAGCCTCGTCTCCATTCGTTGACGATATAAACTTAGCGCAAGCCGAAAAGTTTTT
GGCGGTTAGCAGGCGTACAGGTCAAGATAAGTTAGGTAAGAGAATTGGGGAGTGCTTTGCAGA
AGGAAGATTGGAAGCTTTAGGGATAAAAGATAGAATGAGGGAATTTGTTCAAGCTATCGATGTT
GCACAGACCGCCGGACAACGTTTCGCTGCCAAATTGAAGATATTCGGTATAAGTCAGATGCCAG
AAGCTAAGCAATGGAATAACGATTCCGGACTGACTGTCTGTATACTACCTGATTATTATGTTCCC
GAAGAGAATCGCGCGGACCAACTTGTAGTGTTGTTAAGAAGACTTCGCGAGATTGCATATTGCA
TGGGTATTGAAGATGAAGCGGGTTTCGAACATCTTGGAATAGATCCTGGTGCTCTTTCGAATTTT
TCAAACGGTAACCCTAAGAGAGGATTTCTAGGGAGGCTGTTAAATAACGATATTATTGCGTTGG
CAAACAATATGAGTGCGATGACTCCATATTGGGAAGGGCGTAAGGGTGAACTCATAGAAAGGC TTGCGTGGTTAAAGCACAGGGCAGAAGGGCTGTATCTTAAAGAACCTCATTTCGGTAACTCCTG
GGCCGATCATAGGTCACGAATTTTCTCAAGGATCGCAGGCTGGTTATCTGGTTGCGCTGGCAAG
TTGAAAATTGCGAAAGACCAAATTTCTGGAGTACGTACAGATCTATTTCTGCTAAAAAGACTGC
TGGACGCAGTTCCGCAATCGGCGCCATCCCCCGATTTTATTGCGTCAATTTCGGCACTTGACAGG
TTTTTAGAAGCTGCAGAATCGAGCCAGGACCCTGCTGAACAAGTGAGGGCTCTCTACGCTTTTC
ACTTGAACGCACCTGCAGTCCGAAGTATAGCCAATAAAGCAGTGCAAAGGTCCGACAGCCAAG
AATGGCTGATAAAAGAACTAGACGCTGTTGACCATTTAGAATTTAACAAAGCGTTCCCATTTTTC
TCTGACACAGGAAAAAAAAAAAAAAAAGGTGCTAATAGCAACGGTGCTCCATCGGAAGAAGAG
TACACTGAAACGGAATCAATACAACAACCTGAGGACGCGGAACAGGAAGTAAACGGACAAGA
AGGGAACGGAGCGTCTAAAAATCAAAAGAAATTTCAAAGAATACCTAGATTCTTCGGTGAAGG
CTCCAGATCTGAATACAGAATTTTAACGGAAGCTCCACAGTATTTCGATATGTTTTGTAATAACA
TGAGGGCTATATTTATGCAGTTAGAAAGTCAACCCCGTAAAGCTCCCAGAGATTTTAAATGTTTC
CTACAAAATCGATTACAAAAATTATACAAACAGACTTTCTTGAATGCACGAAGCAACAAGTGTC
GCGCTCTGCTTGAGTCAGTTTTAATCTCTTGGGGAGAATTTTATACATACGGTGCCAACGAAAAG
AAATTTAGATTAAGACATGAAGCTTCAGAACGCAGCAGTGACCCAGATTACGTAGTTCAGCAAG
CCTTGGAAATCGCGCGTCGTCTATTCCTTTTTGGCTTCGAATGGAGAGATTGCTCCGCTGGTGAA
AGAGTGGATTTGGTTGAAATTCACAAAAAGGCTATCAGTTTTTTGTTGGCTATTACTCAAGCTGA
GGTCTCTGTTGGTTCATACAATTGGCTTGGCAACTCAACAGTATCGAGATATTTATCCGTTGCGG
GAACTGATACCTTATACGGTACCCAATTGGAAGAATTCCTGAACGCTACAGTGTTGAGTCAAAT
GCGTGGTCTGGCCATTAGATTGAGTTCTCAAGAACTTAAGGACGGTTTTGATGTGCAGCTCGAG
TCTTCCTGCCAGGACAATCTGCAACACCTATTGGTGTATAGGGCTTCGAGAGATTTGGCGGCTTG
CAAGCGCGCTACTTGTCCAGCCGAACTCGATCCTAAGATTTTAGTTTTACCGGTAGGTGCATTCA
TCGCTTCCGTAATGAAAATGATAGAAAGAGGTGACGAACCTTTAGCTGGTGCTTATTTACGGCA
TAGGCCACACTCTTTCGGATGGCAAATTAGGGTCCGCGGTGTTGCTGAGGTAGGGATGGATCAG
GGTACAGCATTGGCCTTTCAAAAGCCAACAGAGTCAGAACCTTTTAAAATTAAGCCCTTCTCTG
CACAGTATGGACCAGTTCTGTGGTTGAACAGTAGTAGTTATTCTCAATCACAATATTTGGACGGT
TTTCTATCTCAACCAAAAAATTGGAGTATGAGGGTGTTGCCTCAGGCGGGTTCAGTTCGCGTCG
AACAACGAGTTGCTTTGATATGGAACTTACAAGCAGGCAAGATGAGACTAGAACGCTCCGGTGC
GAGGGCCTTTTTCATGCCTGTACCGTTTTCATTTAGGCCATCCGGCAGTGGGGACGAAGCAGTTT
TGGCGCCCAACCGGTACTTGGGTCTGTTCCCTCATTCCGGAGGTATAGAATACGCTGTAGTGGAT
GTCCTGGATTCTGCTGGATTTAAAATTCTTGAAAGAGGCACTATTGCTGTCAATGGTTTCTCTCA
GAAAAGGGGAGAGCGCCAAGAAGAAGCCCATCGTGAAAAACAAAGAAGGGGGATAAGTGATA
TAGGGCGAAAGAAGCCTGTGCAGGCAGAAGTCGATGCGGCGAACGAATTGCATAGAAAGTACA
CTGATGTTGCCACAAGATTAGGTTGTAGAATCGTCGTTCAATGGGCACCACAACCTAAACCAGG
GACAGCACCGACAGCGCAAACTGTTTACGCGAGGGCTGTTAGGACAGAAGCTCCGAGGAGCGG
CAACCAAGAAGATCATGCAAGAATGAAAAGTTCTTGGGGTTACACCTGGGGTACGTATTGGGA
GAAACGAAAACCAGAAGATATTTTAGGGATTTCTACACAGGTGTATTGGACAGGAGGTATAGG
CGAATCCTGTCCTGCTGTAGCAGTCGCTTTATTAGGTCATATTAGAGCAACTTCAACACAAACGG
AGTGGGAAAAGGAAGAAGTTGTCTTTGGAAGACTGAAGAAGTTCTTTCCGAGTTAA
SE ATGGAGAAGAGAATTAATAAGATACGGAAAAAATTATCTGCGGATAATGCAACAAAGCCAGTC
Q TCTCGTTCAGGCCCCATGAAAACCCTGCTTGTAAGAGTAATGACGGATGATTTAAAAAAGAGGT
no TGGAAAAGCGTAGAAAAAAACCAGAAGTGATGCCGCAAGTGATCTCAAATAACGCAGCTAATA N ATCTAAGGATGCTACTTGATGATTATACAAAAATGAAAGAAGCAATCCTGCAAGTTTACTGGCA
O: GGAATTCAAGGATGACCATGTTGGACTAATGTGCAAATTCGCACAACCAGCGTCTAAGAAAATT 14 GACCAAAATAAATTGAAACCCGAAATGGACGAAAAAGGGAATTTAACAACTGCCGGGTTTGCC 5 TGCTCGCAATGTGGGCAACCATTATTTGTTTATAAATTAGAGCAGGTTTCGGAAAAAGGAAAGG CTTACACAAATTACTTCGGCAGATGTAATGTTGCCGAACACGAAAAACTCATATTGTTAGCTCA GTTGAAGCCTGAGAAAGACTCTGATGAGGCCGTTACTTACTCGTTGGGGAAGTTTGGTCAAAGA GCTCTCGATTTTTATTCTATTCATGTGACAAAGGAGTCCACACATCCCGTCAAGCCCTTGGCACA AATTGCGGGTAATAGATACGCTTCGGGTCCAGTTGGGAAGGCCCTTTCTGATGCATGTATGGGC ACAATTGCTAGCTTTCTTAGTAAATACCAGGATATCATAATAGAGCATCAAAAAGTTGTAAAGG GTAACCAAAAGAGATTAGAATCGCTGCGTGAGTTGGCGGGTAAAGAAAACTTGGAATATCCAT CTGTCACTCTGCCTCCTCAACCTCATACTAAGGAAGGTGTAGATGCGTACAATGAAGTTATCGCT AGAGTCCGTATGTGGGTGAATTTAAATTTGTGGCAAAAATTGAAGTTATCGCGTGATGATGCAA AACCTCTTCTTAGACTAAAGGGCTTTCCTAGCTTCCCTGTAGTGGAAAGACGCGAAAATGAAGT CGATTGGTGGAATACAATTAACGAAGTCAAAAAACTGATCGATGCAAAGCGAGATATGGGTCG AGTTTTTTGGTCTGGTGTTACAGCTGAAAAAAGGAATACGATCTTAGAAGGTTACAACTACTTG CCAAATGAGAACGATCATAAAAAAAGAGAAGGCAGTTTAGAAAATCCAAAAAAGCCAGCTAAG AGACAATTTGGTGATTTGCTACTTTACCTAGAAAAAAAGTACGCCGGAGATTGGGGGAAAGTCT TTGACGAAGCTTGGGAGAGAATAGATAAAAAAATAGCAGGATTGACGTCACACATTGAAAGAG AAGAGGCGAGAAATGCAGAAGATGCTCAGTCCAAAGCTGTCCTCACCGACTGGTTGAGAGCCA AAGCGTCCTTTGTTCTCGAACGCCTAAAAGAAATGGATGAGAAGGAATTTTATGCCTGCGAAAT CCAGCTACAAAAATGGTACGGAGACTTGAGAGGTAACCCCTTTGCCGTGGAAGCAGAGAACCG TGTTGTAGATATCTCCGGTTTCTCAATCGGTAGCGATGGACACTCCATTCAGTATCGCAACTTGT TGGCCTGGAAATATTTGGAAAACGGTAAGAGGGAATTCTATTTACTTATGAATTATGGCAAGAA AGGTAGAATCAGGTTTACTGACGGAACAGACATTAAAAAGAGTGGTAAGTGGCAAGGCCTTTT GTACGGTGGTGGCAAGGCCAAAGTAATAGACTTAACATTTGACCCCGACGACGAACAACTGAT AATACTGCCTTTAGCTTTTGGTACTCGACAGGGGCGAGAGTTCATTTGGAATGATCTTTTGTCAC TCGAGACTGGTTTGATAAAACTTGCAAATGGAAGAGTCATCGAGAAGACAATTTACAACAAAA AGATAGGTCGCGATGAGCCTGCACTATTTGTGGCCTTGACCTTTGAGAGAAGGGAAGTTGTCGA CCCATCCAATATTAAACCAGTCAACCTAATCGGTGTAGATAGAGGTGAAAACATCCCAGCTGTT ATCGCTCTGACAGACCCTGAAGGTTGCCCTTTGCCAGAATTTAAAGATTCGTCTGGTGGACCAA CAGATATATTACGTATTGGGGAAGGCTATAAAGAGAAACAACGTGCTATTCAGGCTGCAAAAG AAGTTGAACAGAGGAGAGCTGGAGGTTACAGTAGAAAATTCGCCAGTAAAAGTAGAAACTTAG CAGATGACATGGTTAGAAACTCTGCCCGGGATTTGTTCTATCATGCGGTTACTCACGATGCAGTC TTAGTCTTTGAAAATCTATCGCGCGGTTTTGGTAGGCAAGGCAAGAGGACTTTTATGACAGAGA GACAATATACAAAAATGGAAGATTGGTTAACCGCGAAGCTCGCATATGAAGGTCTTACTTCGAA AACGTACCTCAGCAAAACGCTGGCTCAATATACTTCTAAAACTTGTTCAAATTGTGGTTTTACTA TTACCACGGCAGACTACGACGGGATGTTGGTGAGATTGAAGAAGACGAGCGATGGTTGGGCAA CAACATTGAATAATAAGGAATTAAAAGCAGAAGGACAGATTACGTATTACAATCGTTATAAAC GCCAAACGGTTGAGAAAGAGTTGTCAGCCGAGTTGGATAGACTAAGTGAAGAGAGCGGTAACA ATGATATCTCAAAGTGGACTAAAGGGAGGCGGGATGAAGCCCTCTTTTTACTAAAGAAGAGATT CTCACATAGACCTGTGCAAGAACAATTCGTTTGTTTAGATTGTGGCCATGAGGTTCATGCAGAC GAACAGGCTGCGTTAAATATTGCGAGAAGCTGGCTATTTCTAAATTCTAATTCAACAGAGTTCA AGAGCTATAAATCCGGAAAACAACCTTTCGTAGGCGCGTGGCAAGCCTTCTATAAAAGGAGATT
AAAAGAGGTTTGGAAACCAAATGCA
SE ATGAAAAGAATTAACAAAATTAGAAGGAGGCTGGTCAAAGATTCTAATACCAAGAAAGCTGGT
Q AAGACTGGTCCGATGAAAACCCTATTAGTCAGAGTTATGACCCCAGATTTGAGAGAAAGATTGG
no AGAACCTCAGGAAAAAGCCCGAAAACATCCCACAACCCATTAGTAACACATCAAGAGCTAATT
N TAAACAAGTTATTAACTGACTACACTGAAATGAAAAAAGCAATATTGCATGTTTACTGGGAAGA
O: GTTCCAGAAAGATCCTGTTGGGTTGATGTCTAGAGTTGCTCAACCGGCCCCAAAGAATATAGAT 14 CAAAGGAAACTTATTCCTGTGAAGGACGGCAATGAAAGATTAACCAGCTCCGGTTTCGCTTGCT
6 CCCAGTGCTGCCAACCCCTGTATGTATACAAACTGGAACAAGTAAATGATAAAGGTAAGCCACA
TACTAACTACTTTGGTAGGTGTAATGTATCCGAGCATGAAAGATTGATCTTGTTAAGTCCCCATA
AACCAGAAGCTAATGATGAGTTAGTAACTTATAGTTTAGGTAAGTTCGGACAACGAGCTTTAGA
TTTCTATAGCATCCATGTTACAAGAGAAAGCAATCACCCCGTCAAACCACTGGAACAAATCGGT
GGTAATAGTTGTGCGTCAGGTCCAGTAGGCAAAGCTTTATCAGACGCTTGCATGGGTGCCGTGG
AAAGAGACTCGCTAACTTAAAAGATATTGCAAGTGCCAATGGTTTAGCTTTTCCTAAAATTACCT
TGCCACCTCAGCCACATACAAAGGAGGGAATTGAAGCTTACAATAATGTAGTAGCCCAAATAGT
TATTTGGGTGAACCTTAACCTATGGCAAAAGTTAAAAATTGGTAGAGACGAAGCCAAACCCCTG
CAGAGGCTGAAGGGTTTTCCCTCCTTCCCCTTAGTAGAGAGACAAGCTAATGAAGTGGACTGGT
GGGATATGGTGTGCAATGTTAAAAAATTGATTAATGAGAAGAAAGAGGATGGTAAAGTGTTTTG
GCAGAATCTTGCTGGCTACAAGAGACAGGAAGCTTTACTGCCTTATTTATCTTCTGAGGAAGAT
AGGAAAAAAGGTAAAAAATTTGCTAGATATCAATTCGGAGACCTACTTCTGCATTTAGAAAAAA
AACATGGCGAAGATTGGGGTAAAGTTTATGATGAAGCCTGGGAAAGAATTGATAAGAAGGTAG
AAGGTCTCTCCAAACATATTAAATTAGAGGAAGAACGTAGGTCCGAAGACGCTCAATCAAAGG
CAGCATTAACTGATTGGTTGAGAGCAAAAGCCTCTTTCGTTATTGAAGGATTAAAAGAAGCCGA
CAAAGATGAATTTTGTAGATGTGAGTTAAAGTTGCAAAAGTGGTATGGAGACCTCCGTGGTAAA
CCTTTTGCTATTGAGGCTGAAAATTCTATACTCGATATCTCTGGATTTTCAAAACAATATAACTG
CGCATTTATATGGCAGAAAGATGGTGTTAAAAAGCTAAATCTATACTTAATTATCAATTACTTTA
AAGGTGGTAAATTGCGTTTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCAAACCGTTTTTACAC
TGTTATCAATAAAAAATCTGGGGAAATCGTACCAATGGAAGTTAATTTCAATTTCGATGATCCT
AATCTTATTATTTTACCTCTTGCTTTCGGCAAAAGGCAAGGTAGGGAGTTTATTTGGAATGATTT
ATTGTCGCTGGAAACGGGGTCTCTCAAACTCGCAAACGGTAGGGTGATAGAAAAAACATTATAC
AACAGGAGAACTCGGCAGGATGAGCCAGCTCTTTTTGTGGCTCTGACATTCGAGAGAAGGGAA
GTTTTAGATTCATCTAACATCAAACCAATGAATTTAATAGGTATTGACCGGGGTGAAAATATAC
CTGCAGTTATTGCTTTAACTGATCCTGAGGGATGTCCTCTTAGCAGATTCAAGGACTCGTTGGGT
AACCCTACTCACATCTTAAGGATTGGAGAAAGTTACAAGGAGAAACAAAGGACAATACAAGCT
GCTAAAGAAGTAGAACAAAGGAGGGCGGGTGGATATAGTCGGAAATATGCCAGCAAGGCCAA
GAATTTAGCTGACGACATGGTTAGGAATACAGCTAGAGACCTTTTATACTATGCCGTCACCCAG
GATGCCATGTTGATATTTGAAAATTTAAGTAGAGGCTTCGGTAGACAAGGTAAGCGCACCTTCA
TGGCAGAGAGACAATATACTAGAATGGAAGATTGGTTGACTGCCAAATTGGCATACGAAGGTCT
ACCTAGTAAGACGTACTTATCTAAAACACTAGCGCAGTATACTTCCAAGACATGCAGTAATTGT
GGTTTCACAATCACTTCTGCCGATTACGATCGCGTCTTGGAAAAACTAAAAAAAACAGCGACAG
GTTGGATGACTACTATTAATGGGAAAGAATTGAAGGTCGAAGGACAAATAACTTACTATAATAG ATATAAACGGCAAAACGTTGTAAAAGACCTGTCAGTCGAACTCGATCGACTTAGTGAAGAATCT
GTTAATAATGATATTAGTTCGTGGACAAAAGGTAGATCCGGTGAAGCTTTGAGCCTCCTGAAAA
AACGTTTTAGCCATAGGCCTGTCCAAGAAAAGTTTGTATGTTTAAACTGTGGTTTTGAGACCCAT
GCAGACGAGCAGGCCGCTCTTAATATTGCTAGATCATGGTTATTTTTAAGATCTCAGGAATACA
AGAAGTACCAGACTAACAAGACAACAGGCAACACAGATAAGCGAGCATTCGTTGAGACTTGGC
AATCTTTTTATAGAAAGAAATTGAAGGAAGTCTGGAAACCA
SE ATGGGAAAAATGTATTATCTAGGCCTGGACATAGGGACCAATTCAGTAGGCTACGCTGTCACTG
Q ACCCCTCCTACCATTTGCTGAAGTTCAAGGGGGAACCCATGTGGGGAGCACACGTGTTTGCGGC
no CGGCAACCAGAGCGCAGAGCGGAGAAGCTTCCGCACCTCCAGGAGAAGGCTGGATCGCAGGCA
N GCAGCGTGTGAAGCTGGTCCAAGAGATATTTGCCCCAGTGATTTCCCCCATCGATCCGCGCTTCT
O: TTATTAGGCTCCACGAGTCCGCTCTCTGGCGCGACGACGTGGCCGAAACTGATAAACATATTTTC 14 TTTAATGACCCAACATACACTGACAAGGAGTACTATTCAGATTACCCAACAATTCACCATTTGAT
7 CGTGGACCTTATGGAAAGTTCGGAGAAGCATGATCCTCGACTTGTCTATTTGGCCGTGGCGTGG
CTCGTGGCACATAGGGGCCACTTCTTGAACGAGGTGGACAAGGATAACATCGGGGATGTGTTAT
CTTTCGACGCTTTCTATCCTGAATTCCTTGCTTTTCTGTCTGACAATGGCGTCAGCCCGTGGGTCT
GCGAATCCAAGGCCCTCCAGGCTACGCTATTGTCAAGAAATAGCGTGAACGACAAGTACAAGG
GGACGGGCTGATTCAGCTCCTCGCTGGGAAAAAGGTCAAGGTCAATAAGCTGTTTCCACAGGAG
TCAAATGACGCGAGCTTCACCCTTAACGACAAAGAGGATGCCATTGAAGAGATCCTGGGGACA
CTCACCCCAGACGAGTGCGAGTGGATAGCCCATATTAGGCGCCTCTTTGATTGGGCCATAATGA
AACATGCGCTTAAGGACGGGCGCACGATATCCGAAAGCAAGGTCAAATTGTACGAGCAGCACC
ACCATGATCTGACCCAGCTAAAATATTTTGTAAAAACATATCTGGCCAAGGAGTACGATGATAT
CTTCCGCAACGTGGATAGTGAGACCACCAAAAACTACGTCGCGTACTCATACCACGTGAAAGAA
GTTAAGGGCACGCTGCCTAAGAACAAGGCAACACAAGAGGAGTTCTGCAAGTACGTTCTCGGG
AAAGTTAAAAATATAGAGTGCAGCGAGGCCGACAAAGTGGATTTTGACGAGATGATTCAACGC
CTGACCGACAATTCGTTTATGCCTAAACAGGTGAGTGGAGAGAATCGCGTGATTCCATATCAGC
TCTATTACTATGAACTCAAGACTATTCTGAATAAGGCCGCTAGCTATTTACCCTTCCTTACGCAG
TGCGGGAAGGATGCCATTTCTAACCAGGATAAACTCTTGAGTATAATGACATTTCGAATTCCCT
ATTTCGTGGGTCCGCTTCGTAAGGATAACAGTGAGCACGCTTGGCTGGAGCGGAAGGCTGGCAA
AATTTATCCATGGAATTTCAACGACAAGGTGGATCTGGACAAATCCGAAGAAGCCTTTATCCGC
AGGATGACCAATACTTGCACATACTATCCTGGGGAGGATGTCCTTCCACTGGACTCTCTGATCTA
CGAAAAGTTCATGATTTTGAATGAAATTAACAACATAAGGATCGATGGGTATCCTATTTCCGTC
GACGTGAAGCAGCAGGTGTTCGGGCTCTTTGAGAAGAAGCGACGGGTGACCGTGAAGGATATT
CAGAATCTTCTCTTATCGCTGGGAGCCCTGGATAAACACGGAAAACTGACCGGGATAGATACTA
CGATTCATTCTAATTACAACACGTATCACCATTTTAAGTCACTGATGGAGAGGGGCGTCCTAAC
AAGAGATGACGTGGAGAGAATAGTGGAACGAATGACATATTCTGATGACACCAAGAGAGTGCG
GCTTTGGCTGAATAACAACTACGGCACTCTGACGGCGGATGATGTAAAGCATATTTCCCGACTC
CGTAAGCATGACTTCGGGCGGCTGTCTAAGATGTTTCTAACAGGCCTCAAGGGTGTGCATAAGG
AAACTGGGGAGCGCGCTAGCATCCTGGATTTTATGTGGAACACCAATGATAACCTGATGCAGCT
CCTGTCAGAATGCTACACATTTTCGGACGAAATCACCAAGCTGCAGGAGGCTTACTATGCCAAG
GCCCAACTAAGCTTGAATGATTTCCTGGATTCTATGTACATCAGCAACGCCGTAAAACGACCAA
TTTATAGGACACTGGCAGTGGTTAACGACATTAGGAAAGCATGCGGAACAGCTCCCAAGCGAAT CTTTATCGAGATGGCCCGCGACGGCGAGAGTAAGAAGAAAAGGTCAGTGACTAGGCGGGAGCA
GATCAAGAACCTTTACCGCTCTATCCGAAAAGACTTCCAGCAAGAGGTTGATTTCCTTGAGAAG
ATCTTAGAGAACAAGTCAGATGGACAGCTCCAATCCGATGCTCTGTATCTGTACTTCGCTCAGCT
GGGACGAGATATGTACACTGGCGACCCCATTAAACTAGAACATATCAAGGACCAATCGTTTTAT
AATATCGACCACATCTACCCTCAGTCCATGGTGAAAGACGATAGTCTGGACAATAAGGTGCTCG
TCCAAAGTGAGATTAACGGAGAAAAGTCGAGCAGATATCCTTTGGACGCTGCGATCCGCAACA
AGATGAAGCCCCTGTGGGATGCTTACTACAATCATGGACTGATCAGCCTGAAGAAGTATCAGAG
ACTGACCCGGAGTACCCCTTTCACAGACGATGAGAAGTGGGATTTTATCAATAGACAACTGGTG
GAAACCAGGCAGTCCACGAAAGCTCTGGCCATTCTTCTGAAGAGAAAGTTTCCAGACACAGAG
ATCGTCTATTCAAAGGCCGGCCTCAGTTCCGACTTTAGACATGAGTTCGGACTCGTTAAATCACG
AAATATAAACGATCTCCACCATGCAAAGGACGCATTCCTCGCGATTGTGACTGGAAATGTCTAT
CACGAAAGATTTAATAGGCGGTGGTTCATGGTTAACCAGCCATACTCAGTGAAGACCAAGACCC
TTTTCACTCACTCTATTAAAAATGGCAACTTCGTGGCTTGGAATGGTGAGGAGGATCTTGGAAG
AATTGTGAAGATGTTAAAACAGAATAAGAATACCATCCACTTTACTAGATTCAGCTTTGACCGA
AAAGAGGGGCTATTCGATATTCAACCGTTAAAGGCTTCAACAGGTCTCGTTCCACGAAAGGCCG
GACTGGACGTAGTGAAATACGGCGGCTATGATAAGAGCACCGCAGCTTACTACCTCCTTGTGCG
ATTTACGCTCGAGGATAAGAAGACCCAACACAAGCTGATGATGATTCCCGTGGAGGGACTGTAC
AAAGCTCGAATTGACCATGATAAAGAGTTTCTCACAGATTACGCACAAACCACCATCTCTGAGA
TTCTCCAGAAAGACAAACAAAAAGTTATAAACATAATGTTTCCAATGGGTACAAGGCATATTAA
ACTGAACAGCATGATCTCCATTGATGGCTTTTATTTGTCCATTGGAGGAAAGTCTAGTAAAGGC
AAGTCTGTCCTCTGCCATGCCATGGTACCCCTAATCGTCCCACACAAGATTGAATGCTACATCAA
GGCTATGGAGAGTTTTGCTCGGAAATTTAAAGAGAATAATAAGCTGCGTATTGTGGAAAAATTC
GACAAGATAACCGTTGAAGACAATCTGAATCTGTACGAGCTCTTTCTGCAGAAGCTGCAGCATA
ACCCCTATAATAAGTTCTTCTCCACACAGTTCGATGTACTGACCAACGGGCGATCAACTTTCACA
GATCTTCAGGATGCGACTTGAAGAGCATTAACGGGAGCGCACAGGCAGCTAGGATCATGATCTC AGCTGACCTGACAGGGCTGAGTAAAAAATACTCCGACATTCGGCTTGTAGAGCAAAGCGCCAGT GGGTTGTTCGTTAGTAAGTCGCAGAACCTGCTGGAATACCTGTAA
SE ATGTCTTCTTTGACGAAGTTTACAAACAAATACTCTAAGCAGCTTACAATTAAGAACGAACTGA
Q TTCCCGTAGGAAAGACTCTGGAAAACATCAAAGAGAATGGGCTGATAGACGGCGACGAACAAC
no TGAATGAGAACTATCAGAAGGCCAAAATTATCGTGGATGACTTCCTGAGGGATTTTATTAACAA
N GGCCCTGAATAATACCCAGATCGGCAATTGGCGGGAACTGGCCGACGCTCTGAACAAAGAAGA
O: TGAGGACAATATCGAAAAATTACAAGACAAAATCAGGGGCATTATTGTCAGTAAGTTCGAGAC 14 ATTCGATCTGTTCTCTTCGTACTCCATTAAGAAGGACGAGAAAATCATCGATGATGACAATGAC 8 GTTGAGGAAGAAGAACTGGACTTGGGTAAAAAGACCTCATCCTTCAAGTATATTTTTAAAAAAA
ATCTGTTTAAATTAGTGCTCCCCAGTTATTTAAAGACAACTAACCAGGACAAGCTTAAGATTATC
TCCTCTTTTGACAACTTTAGCACCTATTTTAGAGGCTTCTTTGAAAATCGCAAGAATATTTTCACT
AAGAAGCCCATAAGCACCTCTATTGCCTACAGAATCGTACATGATAACTTCCCAAAATTTTTGG
ATAACATTAGATGTTTTAATGTATGGCAGACCGAATGTCCTCAGTTAATTGTGAAGGCGGATAA
CTACCTCAAATCCAAGAATGTGATCGCCAAAGATAAGTCTCTTGCTAACTACTTTACGGTCGGA
GCCTACGATTACTTCTTATCTCAAAACGGTATTGACTTTTACAATAACATTATCGGGGGATTGCC
TGCCTTCGCCGGCCATGAGAAAATTCAGGGCTTAAACGAGTTCATAAATCAGGAATGTCAAAAG GACTCAGAGCTGAAATCAAAGCTTAAGAATCGACACGCATTTAAAATGGCGGTCTTGTTCAAAC
AGATCCTCAGCGATAGAGAGAAAAGCTTCGTTATTGATGAATTCGAGAGCGACGCACAGGTGAT
TGATGCCGTGAAGAACTTCTATGCGGAACAGTGTAAAGACAATAATGTTATTTTCAACCTATTA
AACTTGATTAAGAATATCGCGTTTTTAAGTGACGATGAACTCGACGGTATCTTTATAGAAGGCA
AGTACCTGTCCTCTGTCAGCCAAAAACTCTACTCAGATTGGTCCAAGCTAAGAAATGACATCGA
GGACAGTGCTAACAGCAAACAGGGCAATAAAGAGCTGGCAAAGAAAATCAAGACTAATAAAG
GGGATGTGGAGAAGGCGATATCTAAATATGAGTTCTCCCTCTCCGAACTGAACTCCATCGTCCA
CGATAATACCAAGTTTAGTGATCTGTTGTCGTGTACACTGCACAAAGTGGCCAGTGAAAAACTC
GTCAAGGTGAACGAAGGCGATTGGCCCAAACACCTGAAAAATAATGAGGAGAAACAGAAGATC
AAAGAACCTTTGGATGCGTTGCTCGAAATATATAACACACTGTTGATCTTCAACTGTAAAAGCTT
CAACAAGAACGGGAACTTTTATGTAGACTACGATCGATGTATAAATGAACTGAGCAGCGTCGTT
TACCTGTACAACAAGACTCGCAATTATTGTACGAAAAAACCATATAACACCGATAAGTTCAAGC
TTAATTTCAACAGTCCCCAGCTGGGAGAAGGGTTCAGCAAATCAAAAGAAAACGATTGCCTGAC
ATTACTCTTTAAAAAGGATGATAATTATTATGTTGGGATTATTAGGAAAGGCGCTAAGATCAAC
TTTGACGACACACAGGCCATAGCTGACAACACTGATAACTGCATCTTTAAAATGAATTACTTTCT
GTTGAAGGACGCCAAAAAATTCATTCCAAAATGCTCTATTCAGCTCAAGGAGGTTAAGGCCCAT
TTCAAGAAGTCTGAAGATGACTACATCCTCTCTGACAAGGAAAAATTCGCTAGTCCTCTGGTTAT
CAAAAAAAGTACCTTCTTGCTGGCTACAGCTCACGTGAAAGGCAAGAAAGGGAACATTAAGAA
GTTCCAAAAGGAATACAGCAAAGAGAATCCAACCGAGTACAGAAATTCTCTGAACGAATGGAT
CGCATTCTGTAAAGAATTTCTAAAGACGTACAAGGCCGCTACCATTTTCGATATTACCACCTTGA
AAAAAGCCGAGGAGTACGCCGACATCGTCGAATTCTATAAAGACGTGGATAACCTGTGTTACAA
ATTGGAATTCTGCCCAATTAAGACCTCTTTCATTGAAAACCTCATCGACAATGGGGACCTCTACT
TATTTAGAATTAACAATAAGGATTTTTCTTCGAAATCTACCGGAACTAAAAATCTGCACACACTG
TATCTGCAAGCAATCTTCGATGAACGTAATCTCAACAACCCTACAATAATGCTGAACGGCGGTG
CTGAACTGTTCTACCGTAAAGAGAGTATTGAACAGAAGAATCGAATCACACACAAAGCGGGCA
GTATTCTCGTCAATAAGGTGTGCAAAGACGGGACCAGCCTGGACGATAAGATCAGGAATGAAA
TATATCAGTATGAGAACAAGTTTATCGACACCTTGTCGGATGAGGCAAAGAAGGTGCTACCTAA
CGTTATCAAGAAGGAAGCTACCCATGACATAACCAAGGATAAGCGGTTCACTTCTGACAAGTTC
TTCTTCCACTGTCCTCTGACCATTAACTACAAGGAAGGAGACACTAAACAATTCAATAATGAAG
TACTTAGCTTTTTGCGGGGTAATCCCGATATTAACATAATTGGTATCGACCGGGGAGAACGGAA
CCTGATATACGTGACAGTAATTAATCAGAAAGGAGAAATCCTGGATTCCGTATCCTTCAATACC
GTGACTAATAAATCTAGTAAAATCGAGCAGACGGTCGACTACGAGGAAAAGTTAGCAGTCAGA
GAGAAGGAGAGAATCGAGGCCAAACGTTCCTGGGATAGTATCAGCAAGATTGCTACTCTGAAA
GAAGGATATCTGTCCGCTATCGTCCATGAGATCTGTTTGTTGATGATCAAGCACAATGCTATAGT
GGTTCTGGAGAACCTGAACGCAGGCTTCAAGCGAATTAGAGGGGGCCTGTCGGAAAAAAGCGT
TTACCAGAAGTTTGAAAAGATGCTAATCAATAAGTTAAATTACTTTGTAAGTAAAAAAGAAAGC
GATTGGAATAAGCCATCAGGACTTTTAAACGGGCTGCAACTGAGCGACCAGTTTGAGTCATTCG
AAAAACTGGGTATTCAGAGTGGTTTCATATTCTACGTACCTGCCGCTTACACTTCAAAGATCGAT
CCTACAACTGGTTTTGCGAATGTCCTGAATCTGTCTAAGGTGAGGAATGTGGACGCAATCAAGT
CTTTCTTCAGCAACTTCAACGAGATATCTTACAGCAAGAAAGAGGCTCTGTTTAAATTCAGTTTT
GATCTGGATAGCCTGAGCAAGAAAGGATTCTCTTCTTTCGTAAAGTTTTCTAAGTCCAAATGGA
ACGTCTACACGTTCGGAGAGAGAATCATTAAACCAAAGAACAAGCAGGGGTATCGGGAAGACA AAAGGATCAATCTGACTTTCGAAATGAAGAAACTATTGAATGAGTACAAAGTCTCATTCGATTT
GGAGAACAATCTGATCCCCAATCTGACCAGCGCTAACCTCAAAGACACATTCTGGAAGGAGCTG
TTTTTCATCTTTAAGACCACCCTGCAGCTACGGAATAGTGTCACAAATGGGAAAGAGGATGTAC
TGATCTCACCTGTGAAAAACGCCAAGGGGGAGTTCTTTGTGTCCGGCACCCATAACAAAACCCT
GCCTCAGGACTGTGACGCGAACGGGGCCTACCACATCGCGCTAAAGGGGTTAATGATTCTCGAA
CGTAATAATCTGGTGCGCGAAGAAAAAGACACAAAGAAAATTATGGCCATCAGCAACGTTGAC
TGGTTTGAGTACGTGCAGAAGCGTCGAGGAGTTTTGTAA
SE ATGAACAACTATGACGAGTTCACTAAACTTTACCCCATTCAGAAAACCATCAGATTTGAACTGA
Q AGCCTCAGGGTCGTACCATGGAACACTTGGAAACTTTCAACTTTTTCGAGGAGGACAGGGATAG
no AGCTGAGAAATACAAGATCTTGAAAGAGGCCATCGACGAGTATCACAAAAAATTCATCGATGA
N GCATCTCACCAACATGTCGCTGGATTGGAACAGTCTCAAGCAGATTTCCGAGAAGTACTATAAA
O: TCTCGGGAGGAGAAAGATAAAAAGGTGTTTTTGAGCGAGCAAAAGCGAATGCGACAGGAGATA 14 GTCTCTGAATTTAAGAAAGATGATCGGTTTAAAGACCTATTTTCCAAAAAGCTTTTTTCAGAGCT
9 GCTGAAGGAAGAGATCTATAAAAAAGGCAATCACCAAGAAATTGATGCCCTGAAATCATTCGA
CAAATTCAGTGGGTATTTCATAGGACTGCATGAGAACCGGAAGAATATGTATAGTGATGGAGAC
GAGATCACAGCCATAAGCAATCGAATCGTTAACGAGAATTTCCCGAAGTTCCTGGATAACCTGC
AGAAGTATCAAGAGGCTAGGAAAAAGTACCCTGAGTGGATCATCAAGGCTGAATCAGCTCTGG
TGGCTCACAATATCAAGATGGATGAAGTCTTTAGTCTTGAGTACTTTAATAAAGTCCTTAACCAG
GAGGGCATCCAGCGCTATAACCTGGCTCTCGGTGGCTACGTCACAAAAAGCGGAGAAAAGATG
ATGGGTCTCAACGATGCACTGAATTTGGCTCATCAGTCGGAGAAGTCATCTAAGGGACGCATAC
ACATGACACCACTGTTTAAACAAATCCTGAGCGAAAAGGAATCATTTTCCTACATTCCCGACGT
ATTCACCGAGGACTCACAACTGCTGCCTAGTATAGGGGGGTTTTTCGCTCAGATAGAGAACGAC
AAAGATGGCAACATTTTTGACAGAGCCTTGGAGTTGATTTCATCTTACGCCGAGTACGATACGG
AGCGCATTTATATTCGCCAGGCGGATATCAACAGGGTTTCCAATGTGATCTTTGGCGAGTGGGG
AACGCTGGGCGGGCTGATGCGGGAATACAAAGCCGACTCGATCAATGACATCAACCTGGAGAG
AACATGCAAGAAGGTCGATAAATGGTTGGATAGCAAAGAGTTCGCCCTGAGTGACGTCTTGGA
AGCTATCAAAAGAACCGGAAATAATGACGCGTTCAACGAGTATATCTCTAAAATGAGGACCGC
GAGAGAAAAAATTGATGCAGCAAGGAAGGAGATGAAGTTTATATCTGAGAAGATCTCAGGCGA
TGAAGAGTCCATCCATATTATTAAAACTCTTCTGGACTCAGTGCAGCAATTCCTGCACTTTTTTA
ACCTCTTCAAGGCCAGGCAGGATATACCGTTAGACGGGGCTTTTTATGCCGAGTTTGATGAAGT
TCATTCGAAACTTTTTGCTATAGTGCCTCTCTATAATAAAGTTCGCAATTACCTGACAAAGAATA
ACTTAAACACAAAGAAAATCAAGCTCAACTTCAAAAACCCAACACTGGCAAACGGATGGGATC
AGAACAAGGTATATGATTACGCCTCATTGATTTTCCTCCGGGACGGGAATTACTATCTGGGGAT
CATCAACCCTAAGCGCAAAAAGAACATTAAGTTCGAACAGGGATCTGGCAATGGTCCCTTCTAT
AGGAAAATGGTATACAAACAGATTCCTGGCCCCAACAAGAATCTCCCACGCGTCTTTCTGACGT
CCACTAAGGGAAAGAAGGAGTACAAGCCGTCTAAAGAAATTATCGAGGGCTATGAGGCAGACA
AGCATATTAGGGGTGACAAGTTTGACCTAGACTTTTGTCATAAGCTTATCGACTTTTTCAAGGAG
TCCATAGAGAAGCACAAAGATTGGTCAAAGTTTAATTTCTATTTTTCTCCAACAGAGTCCTACGG
GGATATCTCTGAGTTCTATCTGGATGTTGAAAAGCAGGGGTACAGAATGCACTTCGAAAATATC
TCAGCAGAAACTATCGATGAGTACGTAGAGAAAGGAGATCTGTTTCTTTTCCAAATCTACAATA
AGGATTTTGTGAAGGCCGCCACTGGGAAGAAGGACATGCACACTATTTACTGGAACGCTGCATT
TTCCCCTGAAAATCTGCAGGACGTAGTAGTGAAATTAAATGGTGAGGCAGAACTGTTTTACCGC GATAAATCAGACATCAAGGAAATAGTGCACCGGGAAGGCGAGATTCTTGTTAACCGAACATAT
AATGGCAGGACACCTGTCCCTGATAAAATTCATAAGAAACTGACCGATTACCACAACGGTCGAA
CCAAGGATCTGGGCGAGGCCAAGGAATACCTCGATAAGGTGAGGTACTTCAAAGCCCATTATG
ACATCACCAAGGACCGAAGATACCTTAACGACAAAATCTACTTCCATGTCCCACTCACCTTGAA
CTTCAAAGCTAACGGTAAGAAGAACCTCAATAAAATGGTGATTGAAAAATTTCTGTCCGATGAG
AAGGCCCATATCATCGGCATTGATCGCGGCGAGAGAAATCTCCTTTACTATTCTATCATTGATCG
GTCGGGAAAGATTATCGACCAACAATCACTGAATGTCATCGACGGATTCGACTATAGAGAGAA
GCTGAACCAACGGGAAATCGAGATGAAGGACGCGCGCCAGTCCTGGAACGCTATCGGCAAAAT
TAAAGATTTGAAAGAAGGTTACCTCTCCAAAGCAGTGCACGAAATTACCAAAATGGCAATCCAG
TACAATGCTATTGTGGTAATGGAGGAGTTAAATTACGGATTTAAGCGCGGGAGGTTCAAGGTTG
AAAAGCAAATTTACCAAAAATTTGAGAACATGTTGATTGATAAGATGAACTACCTGGTGTTCAA
GGACGCACCTGACGAGTCGCCAGGCGGCGTGTTAAATGCATATCAGCTGACAAATCCACTGGAG
AGCTTTGCCAAGCTAGGAAAGCAGACTGGCATTCTCTTTTACGTCCCTGCAGCGTATACATCCAA
AATTGACCCCACCACTGGCTTCGTCAATCTGTTTAACACCTCCTCCAAAACCAACGCACAAGAA
CGGAAAGAATTTTTGCAAAAGTTTGAGTCCATTAGCTACTCTGCCAAAGACGGCGGGATCTTTG
CTTTCGCATTCGACTACAGGAAATTCGGGACGAGTAAGACAGACCACAAGAACGTCTGGACCGC
GTACACTAATGGGGAACGCATGCGCTACATCAAAGAGAAAAAGAGGAATGAACTTTTTGACCC
TTCAAAGGAAATCAAGGAAGCTCTCACCTCAAGCGGTATCAAATACGATGGCGGGCAGAATATT
TTGCCAGATATCCTCAGATCGAACAATAATGGACTTATCTATACTATGTACTCCTCCTTCATTGC
AGCAATTCAAATGAGAGTGTACGATGGAAAGGAGGATTACATTATATCGCCAATTAAGAACTCC
AAAGGCGAATTCTTCCGCACGGATCCTAAGCGAAGAGAACTCCCAATCGACGCTGATGCGAAC
GGCGCCTATAATATAGCCCTGCGGGGTGAATTAACAATGCGCGCTATTGCCGAGAAGTTCGACC
CCGATTCAGAAAAAATGGCTAAGCTTGAGCTGAAACACAAAGATTGGTTCGAATTCATGCAGAC
AAGAGGCGACTAA
SE ATGACTAAGACCTTCGATTCCGAGTTCTTCAACCTTTATTCCCTGCAGAAAACTGTAAGGTTTGA
Q GCTGAAGCCGGTGGGCGAGACAGCCAGCTTCGTAGAGGATTTCAAGAATGAGGGTCTCAAACG
no GGTAGTTAGTGAGGATGAGAGGAGAGCAGTGGACTATCAGAAGGTGAAAGAGATCATCGATGA
N CTATCACCGGGATTTCATAGAGGAGTCGTTGAATTACTTCCCTGAGCAAGTATCCAAAGACGCG
O: CTGGAACAGGCCTTTCATCTTTACCAGAAACTGAAGGCAGCGAAGGTTGAGGAGCGGGAAAAG 15 GCCTTGAAAGAGTGGGAAGCCCTGCAGAAAAAGCTCAGAGAAAAGGTTGTCAAATGCTTCAGC 0 GACAGCAACAAAGCCAGGTTCAGTAGGATCGATAAGAAAGAACTGATCAAAGAAGACTTGATC
AATTGGCTGGTTGCACAGAACCGGGAAGATGATATTCCCACCGTAGAGACCTTCAACAACTTCA
CAACTTACTTCACCGGCTTCCATGAGAATCGTAAAAACATCTACAGTAAAGATGATCATGCAAC
CGCCATCTCCTTCCGGTTGATCCACGAGAATCTCCCCAAGTTCTTTGACAACGTGATAAGTTTCA
ATAAGTTGAAAGAGGGATTTCCCGAACTCAAGTTCGATAAAGTGAAGGAGGATCTGGAAGTGG
ATTATGACCTTAAGCACGCTTTCGAGATAGAGTACTTCGTGAACTTTGTGACTCAGGCCGGCATC
GATCAGTATAACTACCTCCTCGGGGGTAAGACGCTCGAGGACGGTACTAAGAAGCAAGGAATG
AATGAGCAAATTAATCTATTTAAACAGCAGCAGACCAGGGATAAGGCTAGACAGATCCCCAAG
CTTATTCCTCTTTTTAAACAGATCCTAAGTGAAAGGACAGAAAGTCAAAGCTTCATACCTAAGC
AATTTGAAAGTGATCAGGAGCTGTTTGACTCCCTGCAAAAGCTGCACAACAATTGCCAGGACAA
GTTTACCGTGCTGCAGCAGGCTATCCTCGGACTGGCTGAGGCGGATCTTAAGAAGGTATTCATT
AAGACTAGCGACCTCAATGCCCTTAGTAACACCATCTTTGGAAATTACTCCGTTTTCAGCGATGC CCTCAATCTATACAAAGAGAGCTTGAAGACTAAAAAAGCTCAGGAAGCTTTTGAAAAATTACCG
GCACATTCTATACACGACCTTATACAATACTTAGAGCAGTTCAACAGCAGCCTCGACGCTGAGA AACAGCAATCCACAGACACCGTCCTGAATTACTTCATCAAAACCGATGAACTGTACTCCCGATT TATCAAGAGCACTTCAGAAGCCTTCACGCAAGTTCAGCCTCTGTTCGAGCTGGAGGCACTGTCC AGCAAGAGACGACCGCCAGAGTCTGAAGACGAGGGAGCCAAGGGTCAAGAGGGGTTTGAACA GATAAAGCGAATTAAGGCTTACTTGGATACTCTCATGGAGGCGGTGCATTTCGCTAAGCCTTTGT
TGAAATGGCCTACCAGGAATTGGAATCCTTGATCATTCCAATCTATAATAAAGCCCGGAGTTAT
CTGAGCAGGAAGCCCTTCAAAGCCGACAAGTTCAAAATAAATTTTGACAATAATACGCTACTGT
CTGGTTGGGACGCTAACAAGGAAACAGCCAATGCTTCCATCCTGTTTAAGAAAGACGGCCTGTA
CTACCTGGGAATTATGCCAAAAGGCAAAACTTTTTTGTTCGATTACTTTGTGTCATCAGAGGATA
GCGAGAAGTTAAAGCAAAGACGGCAGAAGACCGCCGAAGAAGCCCTCGCACAAGACGGAGAA
TCATATTTCGAGAAAATTCGATATAAGCTCCTGCCTGGCGCATCAAAGATGTTGCCAAAAGTCTT
CTTTTCCAACAAAAACATCGGCTTTTATAACCCCAGCGATGATATCCTTCGCATCCGGAACACCG
CCTCACATACCAAAAATGGAACTCCACAGAAGGGCCACTCGAAGGTTGAATTCAACCTTAACGA
TTGTCACAAAATGATTGATTTTTTTAAGAGCTCCATTCAGAAACACCCCGAATGGGGGTCCTTTG
GCTTCACCTTTTCTGATACTTCAGACTTCGAGGACATGTCCGCCTTCTACAGGGAGGTGGAGAAC
CAGGGCTATGTCATCTCCTTCGACAAAATAAAAGAGACATACATTCAGAGCCAGGTCGAGCAGG
GAAATCTGTACCTGTTTCAGATCTATAACAAGGATTTCAGTCCCTATAGCAAGGGCAAGCCCAA
TTTACATACCCTGTACTGGAAGGCCCTGTTCGAAGAGGCAAACCTTAACAATGTAGTTGCTAAG
CTGAATGGGGAAGCAGAGATCTTCTTCCGAAGGCACAGCATCAAGGCAAGCGACAAAGTTGTA
CATCCTGCTAACCAGGCCATCGATAACAAGAACCCGCATACAGAAAAGACACAGTCAACCTTTG
AATACGACCTCGTGAAGGACAAGAGGTACACACAAGATAAATTCTTCTTCCACGTGCCCATCAG
CTTGAATTTTAAAGCGCAGGGAGTGAGCAAATTTAACGACAAGGTCAACGGCTTCCTGAAGGGA
AACCCCGACGTGAATATCATCGGAATTGATCGCGGTGAAAGACATCTCCTCTACTTTACTGTGGT
GAACCAGAAGGGTGAGATCCTAGTACAGGAGAGCCTGAACACCCTTATGAGTGATAAGGGCCA
TGTGAATGATTACCAGCAGAAGCTGGACAAGAAGGAACAGGAAAGGGACGCAGCGCGGAAGT
CCTGGACCACTGTTGAGAATATCAAAGAACTGAAGGAGGGATATCTTAGCCATGTGGTACACAA
ACTTGCACATCTGATTATCAAGTATAATGCCATAGTCTGCCTGGAAGACTTGAACTTCGGTTTCA
AGCGAGGAAGGTTTAAAGTGGAGAAGCAGGTGTACCAGAAGTTTGAGAAAGCCCTTATTGATA
AGCTAAACTACCTTGTCTTTAAGGAAAAAGAACTCGGCGAAGTTGGCCACTATTTAACCGCCTA
CCAACTAACCGCCCCTTTCGAGTCTTTTAAGAAACTGGGAAAGCAGAGCGGAATACTCTTCTAT
GTGCCTGCAGACTACACCTCTAAGATCGACCCCACTACCGGCTTTGTAAACTTTCTAGATCTCCG
CTATCAGTCAGTAGAAAAAGCCAAACAGCTCTTGTCAGATTTTAACGCCATCCGATTTAATTCCG
TCCAAAATTACTTCGAGTTCGAAATCGACTATAAAAAACTTACCCCCAAGAGAAAGGTTGGGAC
GCAGTCTAAGTGGGTAATCTGCACTTACGGTGACGTGAGATACCAGAACCGCCGAAACCAGAA
AGGTCATTGGGAAACCGAGGAAGTGAATGTGACTGAGAAGCTCAAGGCCCTCTTCGCTAGCGA
CAGTAAAACAACAACAGTTATCGATTACGCCAATGACGATAATCTTATAGACGTGATCTTGGAA
CAAGACAAAGCCTCTTTTTTTAAGGAATTGTTGTGGTTGCTGAAACTTACAATGACCCTTAGGCA
CAGCAAGATCAAATCAGAGGATGACTTCATCCTCAGCCCGGTGAAGAATGAACAGGGAGAGTT
CTACGATTCACGGAAGGCTGGAGAGGTGTGGCCCAAGGATGCCGACGCGAACGGGGCCTACCA
CATAGCTCTAAAAGGTCTGTGGAACCTGCAACAAATCAATCAATGGGAGAAAGGTAAGACACT GAACCTGGCCATCAAAAATCAAGATTGGTTCTCATTCATCCAGGAAAAGCCTTATCAAGAGTGA
SE ATGCATACGGGAGGCCTTTTATCAATGGACGCAAAAGAGTTCACCGGGCAGTATCCATTATCTA
Q AGACACTCCGCTTCGAGCTGAGGCCCATTGGCAGGACCTGGGACAACCTGGAGGCGTCGGGCTA
no CCTGGCTGAGGACAGACATCGCGCAGAATGCTATCCGAGAGCTAAGGAGCTTTTGGACGACAAT
N CATCGCGCGTTCCTTAACCGGGTGCTCCCACAGATCGATATGGACTGGCACCCGATCGCTGAGG
O: CTTTTTGCAAGGTCCATAAGAACCCTGGGAACAAAGAGCTCGCCCAGGACTACAACTTGCAGCT 15 GAGCAAGCGACGGAAAGAGATTTCTGCCTACCTTCAAGACGCCGATGGCTACAAAGGGCTCTTC 1 GCAAAGCCCGCATTGGATGAGGCCATGAAAATCGCCAAGGAGAACGGGAATGAAAGTGACATC
GAAGTTCTCGAAGCGTTTAACGGATTTAGCGTGTACTTTACCGGCTATCATGAGTCAAGGGAGA
ATATTTATAGCGATGAGGACATGGTCTCTGTGGCCTACCGGATTACCGAGGATAATTTCCCGAG
GTTTGTTTCAAATGCACTAATATTCGACAAGTTAAATGAGAGCCACCCAGACATCATCTCGGAG
GTCAGCGGCAACCTCGGAGTTGACGATATTGGCAAATACTTCGACGTGAGCAACTATAACAACT
TCCTCTCACAGGCTGGCATCGACGACTATAATCATATTATAGGCGGCCACACTACTGAGGATGG
TCTCATTCAGGCATTCAATGTAGTCTTGAATCTTAGGCACCAGAAGGACCCTGGGTTTGAAAAG
ATACAGTTCAAGCAGCTGTATAAGCAGATATTATCCGTGCGAACATCTAAAAGTTACATCCCCA
AACAGTTTGATAACTCAAAGGAGATGGTGGATTGCATATGCGATTATGTGTCAAAAATTGAAAA
GAGCGAGACTGTGGAGCGGGCTCTGAAGCTCGTCAGGAACATTAGCTCCTTTGACCTTAGAGGA
ATTTTCGTCAATAAAAAGAATCTGAGGATCCTGAGCAATAAGCTAATAGGAGATTGGGACGCCA
TAGAGACAGCATTGATGCATTCCAGCTCAAGCGAGAATGATAAGAAGTCTGTCTACGATAGCGC
TGAAGCCTTCACGCTGGACGATATCTTCTCTTCCGTGAAAAAATTTAGTGATGCGTCCGCAGAA
GATATCGGGAATCGAGCCGAAGATATCTGCAGGGTAATTTCAGAGACCGCCCCTTTCATCAATG
ACCTGCGCGCCGTGGACCTGGATAGCCTGAATGACGATGGTTACGAAGCTGCAGTTTCTAAGAT
CAGGGAGTCTCTGGAGCCATATATGGACTTGTTTCACGAACTTGAGATCTTTAGCGTGGGCGAC
GAGTTCCCGAAATGCGCAGCTTTCTATAGCGAGTTAGAGGAGGTCAGCGAGCAATTAATCGAGA
TCATACCCCTGTTTAATAAGGCACGGAGCTTTTGTACTCGCAAGCGCTACAGCACCGACAAGAT
TAAAGTTAATCTGAAATTTCCAACTCTCGCAGACGGGTGGGACCTAAACAAGGAACGCGATAAT
AAAGCCGCCATCCTTAGAAAGGACGGAAAGTACTATCTTGCCATCCTAGATATGAAAAAAGATC
TGAGTTCCATTCGTACTAGCGATGAAGACGAATCTTCTTTCGAAAAAATGGAGTATAAGCTGCT
CCCCTCGCCAGTCAAGATGCTACCCAAGATCTTTGTGAAGAGCAAAGCAGCCAAGGAAAAGTA
CGGGCTGACGGACAGGATGCTGGAGTGCTACGATAAGGGAATGCATAAATCAGGGTCAGCTTTT
GACTTGGGCTTTTGCCATGAGCTAATCGATTACTACAAGCGCTGTATCGCCGAGTATCCAGGAT
GGGACGTTTTCGACTTTAAATTTCGGGAGACTTCTGATTATGGTTCAATGAAGGAGTTCAACGA
AGATGTCGCTGGTGCCGGTTACTACATGAGCCTTCGCAAGATTCCTTGTTCCGAAGTCTACCGGC
TACTGGACGAGAAATCTATATATTTGTTCCAGATATATAACAAGGACTACAGTGAGAATGCACA
TGGGAATAAGAATATGCATACTATGTATTGGGAAGGTCTCTTTTCACCCCAAAATTTGGAGTCA
CCCGTGTTCAAACTTAGCGGTGGCGCAGAGCTGTTCTTTAGGAAATCCAGTATACCCAATGACG
CCAAGACAGTCCACCCAAAGGGTAGCGTCCTGGTGCCCAGAAACGATGTGAACGGCAGGAGAA
TCCCTGACAGCATTTACCGAGAACTTACCAGGTACTTCAACCGCGGCGACTGTAGAATCTCTGA
TGAGGCAAAGTCTTATCTGGATAAGGTGAAGACTAAGAAGGCAGATCATGACATTGTGAAAGA
CCGCCGCTTTACTGTCGACAAAATGATGTTTCACGTGCCTATCGCAATGAATTTTAAGGCAATCT
CAAAACCGAATCTGAACAAGAAGGTGATAGATGGCATTATCGATGACCAGGACCTCAAGATCA
TCGGAATCGACAGAGGTGAGCGAAACCTGATATACGTCACAATGGTAGATCGGAAGGGTAATA TTCTGTACCAGGATTCACTAAACATCCTCAATGGATATGACTATCGAAAAGCTCTCGATGTCAG
GGAATACGACAACAAGGAGGCGCGACGGAATTGGACAAAGGTGGAAGGCATACGGAAGATGA
AGGAAGGCTATCTGTCACTAGCTGTCTCCAAATTGGCTGATATGATTATAGAGAACAACGCCAT
TATCGTGATGGAAGATCTCAACCATGGATTCAAGGCAGGAAGAAGTAAAATTGAGAAGCAGGT
GTATCAGAAGTTCGAAAGCATGCTTATTAATAAGTTGGGTTATATGGTCTTAAAGGACAAGTCT
ATCGATCAGAGCGGCGGCGCACTCCATGGGTATCAGCTGGCTAACCATGTCACCACACTAGCAT
CCGTAGGCAAACAGTGTGGCGTGATTTTCTACATTCCTGCTGCGTTCACTTCTAAGATCGATCCT
ACCACGGGATTCGCAGACCTGTTCGCACTGAGCAATGTTAAAAACGTGGCCTCCATGAGGGAGT
TCTTTAGCAAAATGAAAAGCGTGATTTATGACAAGGCCGAGGGCAAGTTCGCTTTCACATTTGA
CTACCTGGACTACAATGTGAAATCAGAGTGCGGGAGAACCCTGTGGACCGTATACACGGTAGG
GGAAAGATTCACTTACAGTCGAGTTAATCGGGAGTATGTCCGTAAAGTGCCAACTGACATCATC
TACGATGCCCTTCAGAAGGCTGGCATAAGTGTTGAGGGGGATCTAAGGGACAGGATCGCTGAAT
CGGATGGCGATACTCTCAAATCAATCTTCTACGCCTTCAAGTATGCCCTCGACATGAGGGTAGA
GAACCGGGAGGAGGACTATATACAGTCTCCCGTGAAGAATGCGTCGGGAGAGTTCTTCTGCTCA
AAAAACGCCGGGAAATCTTTGCCGCAGGATTCTGATGCAAATGGGGCTTATAACATTGCTCTCA
AAGGCATCCTGCAGCTGCGCATGCTATCTGAACAATATGACCCAAACGCTGAAAGCATTAGATT
GCCATTGATCACCAATAAGGCTTGGCTGACTTTCATGCAGAGCGGTATGAAGACATGGAAAAAC
TAA
SE ATGGATTCCCTTAAGGACTTCACAAATCTTTACCCCGTGAGTAAAACCCTGAGATTTGAACTCAA
Q GCCCGTGGGAAAGACTCTCGAGAATATCGAGAAGGCCGGGATTTTGAAGGAAGACGAGCATCG
no GGCGGAAAGTTACAGACGGGTGAAGAAGATTATAGATACTTATCACAAGGTCTTTATAGACAGC
N TCTTTAGAGAACATGGCAAAGATGGGCATCGAGAACGAAATCAAGGCCATGCTGCAGTCCTTCT
O: GCGAGCTGTATAAAAAGGATCATCGGACCGAAGGCGAAGACAAGGCGCTGGATAAGATCAGGG 15 CAGTGCTGCGCGGCCTCATTGTGGGTGCCTTCACTGGGGTGTGCGGGCGGAGAGAGAACACTGT 2 GCAGAATGAGAAATACGAGAGTTTGTTCAAAGAGAAACTCATCAAGGAAATCCTGCCCGACTTC
GTCTTAAGCACAGAAGCCGAATCTCTCCCATTTTCTGTCGAGGAGGCCACGCGTTCCCTTAAAG
AGTTCGACAGTTTCACTTCATACTTTGCCGGATTTTATGAAAACCGTAAAAATATATACTCCACT
AAACCACAGTCAACTGCAATAGCTTACAGGTTAATCCACGAAAACCTGCCAAAATTCATCGACA
ATATACTCGTCTTTCAAAAAATCAAGGAACCAATCGCGAAGGAACTTGAACACATCCGGGCTGA
CTTTAGTGCGGGAGGATACATCAAAAAAGACGAGCGCCTGGAGGATATATTTTCACTAAATTAT
TATATTCATGTACTGAGCCAGGCTGGCATAGAAAAGTACAACGCTCTAATTGGGAAAATCGTGA
CAGAAGGTGACGGGGAAATGAAAGGGCTAAACGAACATATTAACTTATATAACCAACAGCGGG
GTCGAGAAGATCGTCTGCCCCTGTTCAGACCTCTGTATAAGCAAATACTCTCCGACAGAGAGCA
GCTATCATATCTGCCCGAGTCCTTTGAGAAAGATGAAGAGCTGCTCCGGGCGCTCAAGGAGTTC
TATGATCATATAGCCGAGGACATTTTGGGCAGAACTCAGCAACTCATGACGTCTATTTCTGAAT
ATGATCTGTCTCGTATCTATGTCAGGAATGATAGCCAGCTGACCGATATATCCAAGAAGATGCT
GGGGGACTGGAACGCCATTTATATGGCGAGGGAGCGAGCATACGATCACGAGCAGGCACCCAA
GAGAATCACAGCCAAATATGAGAGAGACCGCATTAAGGCGCTGAAGGGCGAAGAAAGTATCAG
TCTGGCCAATCTGAACTCCTGCATAGCTTTCCTTGATAACGTGAGGGATTGCAGAGTTGATACTT
ACCTGAGTACCCTGGGCCAGAAGGAAGGGCCTCACGGCCTCTCTAATCTAGTGGAGAATGTATT
TGCCTCCTACCACGAAGCTGAGCAGCTGCTGTCATTTCCGTACCCAGAGGAAAATAATTTAATA
CAGGATAAGGACAACGTAGTGCTTATCAAAAATCTACTGGATAACATTTCCGACCTCCAGCGCT TTCTCAAACCACTTTGGGGGATGGGCGACGAGCCTGATAAGGATGAGCGCTTTTACGGCGAGTA
CAACTACATCAGGGGCGCCTTGGACCAGGTGATTCCCCTCTATAATAAAGTCAGGAATTACCTG
ACCCGAAAGCCATACAGTACAAGAAAGGTGAAATTAAATTTCGGCAATAGTCAGCTGCTGTCTG
GTTGGGACCGAAATAAGGAGAAAGACAACAGCTGCGTAATTCTCAGAAAAGGACAGAACTTTT
ATTTGGCCATCATGAATAACAGACACAAGAGATCTTTCGAGAACAAAGTGCTCCCTGAGTATAA
GGAGGGGGAACCCTACTTCGAGAAGATGGACTATAAATTCCTTCCTGATCCAAATAAAATGCTG
CCTAAAGTATTTCTGTCAAAAAAAGGTATAGAAATCTACAAACCTTCACCTAAGCTACTTGAAC
AGTATGGCCACGGCACCCATAAAAAAGGGGACACGTTCAGCATGGACGACCTACACGAACTGA
TTGACTTCTTTAAGCACAGCATAGAAGCTCATGAGGACTGGAAACAGTTCGGATTCAAATTCTC
AGATACCGCGACCTACGAAAACGTGTCTAGTTTTTACCGGGAAGTCGAGGACCAGGGCTACAAG
CTCAGCTTCAGAAAAGTTAGCGAATCTTACGTCTACTCCCTTATAGATCAAGGTAAGCTGTATCT
CTTTCAAATCTACAACAAGGACTTTTCCCCATGTAGCAAGGGCACCCCCAATCTGCACACTCTCT
ACTGGCGGATGCTGTTCGACGAGCGTAACCTGGCAGACGTGATCTACAAATTAGATGGTAAAGC
TGAGATCTTCTTTCGTGAAAAGAGCCTAAAGAACGATCACCCCACTCACCCCGCCGGAAAGCCC
ATTAAGAAGAAAAGTAGGCAGAAGAAAGGAGAAGAATCGCTATTTGAGTACGACCTCGTCAAG
GATCGGCATTATACAATGGATAAGTTCCAGTTCCATGTGCCAATAACTATGAATTTCAAGTGCA
GTGCTGGCAGTAAGGTGAATGACATGGTAAACGCTCATATCCGGGAGGCAAAGGACATGCATG
TTATTGGAATTGATAGGGGTGAGCGTAATCTCCTCTACATCTGTGTTATTGACTCCCGCGGCACA
ATCCTCGATCAGATTTCCTTGAATACAATTAATGATATAGACTACCATGACTTGCTTGAGTCTCG
CGACAAAGATAGACAGCAGGAGAGAAGAAATTGGCAGACCATCGAAGGCATCAAGGAACTCA
AGCAAGGCTACCTTTCTCAGGCAGTGCATCGAATAGCCGAGCTGATGGTGGCTTATAAAGCCGT
CGTGGCACTAGAAGACCTAAATATGGGATTTAAACGAGGCAGGCAGAAGGTGGAATCATCCGT
ATACCAGCAGTTCGAAAAACAGTTGATAGACAAACTCAATTACCTTGTAGACAAGAAGAAGCG
GCCTGAGGACATAGGGGGCCTGCTTAGAGCGTATCAATTTACAGCCCCATTCAAGTCTTTCAAA
GAAATGGGTAAACAGAACGGTTTTCTGTTTTACATCCCAGCGTGGAACACCAGCAATATAGATC
CAACCACTGGCTTCGTCAATCTGTTTCATGCTCAGTATGAAAATGTGGACAAGGCCAAATCCTTC
TTTCAGAAATTTGACAGCATCTCCTATAACCCAAAGAAAGACTGGTTTGAATTCGCCTTTGACTA
TAAGAATTTCACTAAGAAGGCCGAGGGATCAAGAAGCATGTGGATATTGTGCACGCATGGCTCA
CGTATAAAGAACTTTAGAAACTCGCAAAAAAACGGGCAGTGGGACTCAGAAGAATTCGCACTC
ACCGAGGCTTTCAAATCCCTCTTCGTCCGGTATGAGATCGATTACACCGCCGATCTGAAGACGG
CAATCGTCGACGAGAAACAGAAAGACTTCTTTGTAGATCTACTTAAGCTCTTTAAGCTAACCGTT
CAGATGCGAAACAGTTGGAAAGAAAAGGATCTCGACTATCTCATTAGTCCAGTGGCTGGCGCGG
ATGGTAGATTTTTCGATACCCGGGAAGGTAACAAGTCCCTTCCCAAAGACGCCGACGCGAATGG
TGCCTACAATATTGCACTAAAGGGGCTCTGGGCGCTGCGGCAAATTAGACAGACATCTGAAGGG
GGCAAGCTTAAGCTGGCTATTTCTAATAAAGAGTGGTTGCAGTTTGTGCAGGAAAGGAGTTATG
AGAAGGACTAG
SE ATGAACAACGGCACCAACAACTTCCAGAACTTCATCGGCATATCGTCTCTGCAGAAAACACTTA
Q GGAATGCCCTGATTCCAACTGAGACAACACAGCAGTTTATTGTGAAGAATGGGATCATCAAAGA
no GGACGAATTGCGCGGGGAGAATAGGCAGATCCTGAAGGACATCATGGACGATTACTACAGGGG
N TTTTATCTCCGAAACGCTGAGCTCGATTGACGATATTGACTGGACGTCCCTCTTTGAGAAGATGG
O: AAATCCAACTTAAAAATGGCGATAATAAAGATACCCTGATAAAGGAACAAACCGAATATAGAA 15 AGGCTATACACAAAAAATTCGCAAATGACGACCGCTTTAAGAACATGTTTTCTGCAAAACTGAT TAGCGATATTCTGCCCGAGTTTGTGATTCACAATAATAACTATTCCGCTTCGGAGAAGGAGGAA
AAGACTCAGGTGATTAAACTGTTTTCTCGGTTCGCCACTTCTTTCAAAGATTATTTCAAAAATCG
CGCCAACTGTTTTTCCGCTGACGACATCTCCTCCTCTTCCTGCCACCGGATCGTAAACGACAATG
CCGAGATCTTTTTTAGTAACGCCCTTGTGTATCGGAGGATAGTGAAGAGCCTGTCCAATGATGA
CATAAACAAAATTTCTGGCGATATGAAGGATAGCCTCAAAGAGATGAGCCTTGAAGAAATTTAC
TCCTACGAGAAGTATGGGGAGTTCATCACCCAGGAGGGGATTTCCTTCTATAATGACATCTGTG
GCAAGGTGAACAGCTTCATGAACCTGTACTGCCAGAAGAATAAGGAAAACAAAAATCTGTACA
AGCTTCAGAAGTTACATAAGCAGATCCTGTGTATCGCGGATACCTCATATGAGGTTCCTTATAA
GTTCGAGAGTGATGAAGAAGTGTACCAGTCTGTAAATGGATTCTTAGACAATATTTCGTCCAAA
CATATAGTGGAGAGACTGAGAAAGATCGGGGACAATTACAATGGGTACAATCTCGACAAGATT
TATATCGTGTCGAAGTTTTACGAATCTGTGAGCCAGAAAACATACAGGGATTGGGAAACCATTA
ATACCGCGCTTGAAATTCACTACAATAATATTCTGCCTGGCAACGGAAAAAGCAAGGCCGATAA
GGTAAAAAAGGCAGTCAAAAATGACCTTCAGAAAAGTATCACCGAAATCAATGAGTTGGTGAG
CAACTACAAATTGTGTTCAGACGATAATATTAAAGCGGAAACGTACATACATGAAATTAGCCAT
ATTCTGAATAACTTTGAGGCGCAGGAACTTAAGTACAACCCTGAAATTCATCTCGTCGAAAGCG
AATTGAAGGCCTCTGAATTGAAAAACGTTCTTGACGTGATAATGAACGCTTTCCATTGGTGCTCT
GTGTTTATGACTGAAGAGCTGGTTGATAAGGACAACAACTTTTATGCTGAACTTGAGGAAATCT
ACGACGAGATCTACCCTGTGATTAGCTTGTATAACCTCGTCAGAAACTACGTTACCCAGAAGCC
GTACAGCACGAAAAAAATAAAGCTGAACTTTGGTATTCCGACTCTCGCCGATGGATGGAGCAAG
TCGAAGGAATATTCCAACAATGCCATCATTCTTATGCGAGACAATCTGTATTACCTCGGCATCTT
TAACGCCAAAAACAAGCCGGATAAGAAAATCATTGAAGGGAATACGAGCGAGAATAAGGGCG
ACTATAAGAAAATGATCTACAACTTACTGCCAGGTCCCAATAAAATGATTCCTAAGGTGTTTCT
GTCATCGAAAACAGGTGTAGAAACATATAAGCCCAGCGCATACATCCTGGAAGGCTACAAGCA
AAACAAACACATCAAAAGCAGCAAGGACTTTGATATCACATTCTGCCACGATCTAATCGACTAC
TTCAAAAATTGCATCGCCATTCACCCTGAGTGGAAGAACTTCGGCTTTGACTTCTCCGACACCAG
TACCTACGAAGACATTTCTGGATTCTACCGTGAGGTTGAGCTGCAGGGTTATAAAATTGACTGG
ACATACATCAGTGAAAAAGACATCGATCTACTGCAGGAGAAGGGGCAGCTCTATCTCTTCCAGA
TTTATAATAAGGATTTCAGCAAGAAGTCCACTGGAAACGACAATCTGCATACAATGTATCTTAA
GAACTTGTTTAGCGAAGAGAATTTGAAAGATATCGTTCTAAAGTTAAACGGGGAAGCCGAGATT
TTCTTTCGAAAGTCTTCCATTAAGAATCCAATTATTCACAAGAAGGGCAGTATCCTGGTCAACAG
AACCTATGAGGCCGAGGAAAAGGACCAGTTCGGTAATATACAAATTGTGCGCAAGAACATCCC
CGAGAACATTTACCAGGAGCTCTATAAATACTTCAACGACAAAAGCGATAAGGAGCTTTCCGAC
GAGGCTGCCAAGCTGAAAAACGTGGTGGGACACCATGAAGCAGCCACCAACATCGTCAAAGAT
TATCGTTATACATATGACAAATATTTTCTGCACATGCCTATTACAATAAACTTTAAGGCAAACAA
GACCGGGTTCATCAATGACCGGATACTCCAGTACATCGCAAAAGAGAAGGACCTGCATGTGATC
GGCATCGACCGCGGTGAAAGAAATCTCATTTACGTCAGCGTTATCGACACTTGTGGAAACATTG
TGGAGCAGAAGTCCTTCAACATTGTTAACGGCTATGACTATCAGATCAAGCTCAAACAGCAGGA
AGGTGCTCGTCAGATTGCGAGGAAAGAATGGAAAGAGATCGGCAAGATCAAGGAGATCAAAGA
AGGGTATCTGAGCTTGGTCATTCACGAGATCTCCAAAATGGTCATCAAGTACAACGCTATTATC
GCGATGGAAGACCTCTCTTACGGCTTTAAGAAGGGGCGCTTTAAAGTGGAGCGCCAGGTCTATC
AGAAGTTCGAGACTATGCTTATCAATAAGCTGAATTACTTGGTCTTTAAGGATATCAGTATCACC
GAGAACGGAGGACTGCTGAAAGGTTACCAGCTCACATATATTCCCGATAAGCTCAAGAATGTGG GCCACCAATGCGGTTGTATTTTTTACGTTCCAGCTGCCTACACATCTAAGATCGATCCTACCACC
GGATTCGTCAATATATTTAAATTTAAAGATCTAACCGTTGATGCCAAGCGTGAGTTTATTAAGAA
ATTTGATTCAATCAGGTACGACAGCGAAAAGAACCTCTTCTGTTTCACTTTCGACTACAACAACT
TCATCACACAAAATACTGTGATGAGCAAGTCATCATGGAGCGTTTATACTTATGGTGTAAGGAT
AAAAAGGCGCTTTGTTAATGGAAGGTTTTCCAATGAAAGCGATACAATAGACATCACAAAAGA
CATGGAGAAGACACTGGAGATGACAGATATTAATTGGAGGGACGGGCATGACCTTAGACAGGA
CATCATCGACTACGAAATCGTCCAACACATTTTTGAGATATTCAGACTCACTGTCCAGATGCGA
AACAGCCTGTCGGAACTCGAAGACCGGGACTACGATAGACTGATCTCCCCGGTGTTAAACGAAA
ATAATATTTTCTACGATTCTGCTAAGGCAGGAGACGCTCTTCCTAAAGATGCGGACGCCAATGG
CGCTTACTGTATAGCGTTGAAGGGATTGTATGAGATTAAACAGATCACTGAGAATTGGAAAGAA
GACGGTAAATTCTCCAGAGACAAGCTGAAAATCTCCAACAAAGACTGGTTTGATTTTATTCAAA
ATAAGCGCTACCTGTAA
SE ATGACAAACAAATTTACTAATCAGTACAGCCTGTCAAAGACCCTCCGCTTCGAACTGATTCCAC
Q AAGGGAAGACCCTTGAATTCATCCAGGAAAAGGGTTTATTATCCCAGGATAAACAACGCGCAG
no AAAGCTATCAAGAGATGAAGAAGACGATCGATAAATTTCATAAGTATTTCATAGATTTAGCCCT
N GAGCAACGCTAAATTGACCCACCTGGAAACCTATTTGGAGCTGTACAACAAGTCAGCCGAGACA
O: AAGAAAGAGCAGAAGTTTAAGGACGACCTGAAAAAAGTACAGGACAATTTGCGAAAAGAGATC 15 GTCAAGTCTTTTTCCGACGGAGACGCCAAGTCAATATTTGCCATCCTGGACAAAAAGGAACTCA 4 TCACTGTGGAGTTGGAGAAGTGGTTTGAGAATAATGAGCAGAAGGACATCTATTTTGACGAAAA
GTTCAAGACATTTACTACTTACTTCACCGGATTTCACCAAAACCGGAAGAACATGTACTCTGTTG
AGCCGAACTCAACCGCCATCGCCTACCGCCTTATTCACGAAAATCTGCCAAAGTTTCTCGAGAA
TGCTAAAGCCTTTGAGAAAATTAAGCAGGTCGAGTCGCTCCAGGTGAACTTTCGAGAGCTGATG
GGTGAATTCGGGGACGAGGGCCTGATTTTCGTGAATGAACTCGAAGAGATGTTTCAGATCAACT
ACTATAATGATGTACTCTCACAGAACGGGATCACTATCTACAACAGCATTATCTCTGGATTCACT
AAGAACGATATCAAGTATAAAGGGCTGAATGAATACATCAACAATTATAATCAGACTAAGGAC
AAAAAGGACAGGCTGCCTAAATTGAAACAGCTGTATAAGCAGATCCTCAGTGATAGAATTAGCT
TGTCATTTCTCCCAGATGCCTTCACTGACGGAAAGCAGGTGCTTAAGGCGATATTCGATTTCTAT
AAGATCAACCTCCTCTCTTATACAATCGAGGGCCAGGAGGAGTCACAGAACCTCCTGCTCCTGA
TTCGACAAACTATTGAAAATCTGTCCTCTTTCGATACGCAGAAGATATACCTGAAAAATGACAC
CCATCTCACTACAATATCCCAACAGGTATTCGGAGATTTCTCCGTCTTCAGTACAGCCCTGAATT
ACTGGTACGAGACAAAGGTGAACCCTAAGTTCGAAACAGAGTACAGCAAGGCGAACGAAAAGA
AGAGGGAGATCCTGGACAAAGCCAAAGCCGTTTTCACCAAGCAAGATTACTTTAGCATCGCATT
TCTGCAGGAAGTCCTGTCTGAGTACATACTGACACTCGATCACACAAGCGACATAGTTAAGAAG
CACTCTTCCAATTGTATCGCGGACTACTTCAAAAATCATTTTGTCGCGAAAAAGGAGAACGAGA
CAGATAAGACCTTCGATTTTATCGCGAATATTACCGCAAAGTATCAATGCATTCAGGGTATCTTG
GAGAACGCCGACCAGTACGAAGACGAGCTTAAACAGGATCAGAAGCTCATCGACAACCTAAAG
TTCTTTTTGGACGCTATACTGGAACTCCTTCATTTTATTAAGCCACTACATCTGAAGAGTGAGTC
TAACCCCTCTGTATAACATGGTGAGAAACTATGTGACACAGAAACCTTATAGTACCGAGAAGAT TAAGTTGAACTTCGAGAACGCACAATTGCTGAATGGGTGGGATGCAAACAAAGAGGGTGATTA CCTCACAACAATCCTCAAGAAAGATGGCAATTACTTCCTGGCCATTATGGATAAAAAACATAAC AAGGCATTTCAGAAATTTCCCGAGGGGAAGGAAAATTATGAAAAGATGGTATACAAGTTGCTG CCCGGGGTGAACAAAATGCTCCCGAAGGTGTTTTTCTCGAATAAGAATATCGCGTACTTTAACC
CGTCCAAGGAACTGTTGGAAAATTATAAAAAGGAAACACACAAGAAGGGGGACACTTTTAATT
TGGAGCACTGCCACACACTCATTGACTTCTTTAAAGATAGTCTCAACAAACATGAGGATTGGAA
ATATTTTGACTTTCAGTTTAGCGAGACCAAGTCTTATCAGGATCTGTCGGGATTTTATAGGGAAG
TTGAGCACCAGGGTTACAAGATAAATTTCAAGAACATCGATAGCGAGTACATTGACGGACTGGT
GAACGAAGGGAAGCTGTTCCTGTTTCAGATTTACAGCAAAGATTTCTCTCCTTTCTCAAAAGGCA
AGCCGAACATGCATACCCTGTATTGGAAGGCCCTGTTCGAGGAGCAAAACCTTCAGAATGTGAT
TTACAAGCTGAACGGTCAGGCCGAGATTTTTTTTAGGAAGGCCTCTATCAAGCCCAAAAACATC
ATTCTGCACAAGAAAAAGATAAAGATCGCCAAAAAACACTTCATTGATAAAAAGACAAAGACT
TCTGAGATCGTACCTGTTCAGACAATCAAGAATCTCAACATGTATTATCAGGGGAAGATTAGCG
AGAAAGAGCTGACACAGGACGATTTGAGGTACATCGACAACTTCTCTATCTTTAACGAGAAGAA
CAAGACAATCGATATCATCAAGGACAAGCGGTTTACCGTCGATAAATTCCAGTTCCATGTGCCT
ATCACGATGAATTTCAAGGCCACCGGTGGGAGTTATATCAACCAGACTGTGCTGGAGTATCTGC
AGAACAACCCCGAAGTAAAAATTATTGGCCTGGACAGAGGAGAGCGGCATCTGGTGTACTTGA
CCCTCATCGATCAGCAGGGAAATATCCTGAAACAAGAATCTCTGAATACTATTACGGACTCCAA
AATCAGCACACCTTACCACAAGCTGCTTGATAATAAAGAGAATGAGAGGGACTTGGCCCGCAA
AAATTGGGGCACCGTCGAGAATATTAAGGAATTGAAAGAAGGATACATCTCACAGGTGGTTCA
CAAAATCGCAACCCTGATGTTAGAAGAGAACGCTATTGTGGTGATGGAGGACTTAAACTTCGGA
TTTAAAAGAGGAAGATTTAAAGTCGAGAAACAGATTTATCAGAAACTGGAAAAAATGCTCATT
GACAAATTAAATTACCTGGTGCTGAAAGATAAACAGCCACAGGAGCTGGGTGGCCTGTATAATG
CTCTGCAGCTGACCAACAAGTTCGAGTCGTTTCAGAAAATGGGCAAGCAGTCAGGCTTCCTTTTT
TACGTGCCCGCTTGGAACACCTCAAAAATCGACCCTACAACAGGCTTTGTGAATTATTTCTATAC
CAAGTATGAAAACGTGGACAAGGCAAAGGCCTTTTTCGAGAAGTTTGAAGCAATCAGGTTCAAT
GCCGAGAAAAAATACTTTGAGTTCGAGGTCAAAAAATATAGCGACTTCAACCCTAAGGCCGAA
GGCACGCAACAAGCCTGGACAATATGCACGTATGGGGAGAGAATTGAGACTAAGCGGCAGAAG
GATCAGAATAACAAATTCGTGAGCACACCGATTAACCTGACAGAGAAGATAGAGGACTTCCTC
GGCAAGAATCAGATCGTGTACGGCGACGGCAATTGCATCAAGTCACAAATTGCATCTAAAGATG
ACAAAGCATTCTTCGAAACACTGCTGTATTGGTTCAAGATGACACTCCAGATGCGAAATAGCGA
AACAAGAACAGATATTGACTACCTCATCAGCCCTGTGATGAATGATAACGGCACGTTTTACAAT
TCCCGGGACTATGAAAAATTAGAGAACCCGACACTGCCAAAAGACGCCGACGCAAATGGTGCA
TATCACATCGCAAAGAAAGGTTTGATGCTGTTGAACAAAATTGATCAGGCTGATCTGACAAAAA
AGGTCGATCTGAGTATCAGTAACCGCGACTGGTTGCAGTTTGTCCAGAAGAACAAATAA
SE ATGGAACAAGAGTACTATCTGGGCCTGGACATGGGCACCGGGAGTGTCGGATGGGCAGTCACC
Q GACTCAGAGTACCACGTCCTCAGAAAGCACGGTAAGGCACTTTGGGGAGTGCGACTCTTCGAGT
no CCGCTAGTACTGCTGAAGAGAGGAGGATGTTTCGAACTTCCAGGCGCAGGCTGGATCGGCGAA
N ACTGGAGAATAGAGATTCTCCAGGAGATATTTGCTGAAGAGATTTCAAAGAAGGATCCTGGTTT
O: TTTCCTGCGCATGAAAGAATCTAAGTATTACCCCGAAGATAAACGCGACATCAACGGCAATTGT 15 CCTGAACTGCCCTATGCTCTGTTTGTCGACGACGATTTCACCGACAAAGATTACCACAAGAAATT 5 CCCCACCATATACCACCTGAGAAAGATGTTGATGAACACCGAGGAGACACCCGACATACGTCTG
GTTTACCTGGCTATCCATCATATGATGAAGCACCGCGGGCATTTCCTGCTGTCTGGAGACATCAA
TGAGATAAAGGAATTTGGTACTACGTTCTCCAAGTTGTTAGAAAACATTAAGAATGAAGAGTTG
GACTGGAATCTTGAACTGGGAAAGGAAGAGTATGCAGTTGTAGAGTCGATTTTGAAAGATAAC ATGTTAAACCGGTCAACTAAGAAAACCAGGTTAATTAAGGCACTAAAGGCCAAATCGATATGC
GAGAAGGCTGTGCTAAATCTGCTGGCTGGAGGCACCGTGAAACTGTCTGATATTTTCGGCCTGG
AAGAGCTCAATGAAACCGAGCGGCCTAAAATTTCTTTCGCCGATAACGGATACGATGACTATAT
TGGGGAGGTGGAAAACGAGCTCGGAGAACAATTCTACATTATTGAAACCGCTAAGGCAGTCTAT
GACTGGGCCGTGCTCGTCGAGATTTTAGGCAAGTACACCAGCATTAGCGAAGCAAAGGTGGCTA
CCTATGAAAAGCACAAATCTGACCTCCAGTTTCTGAAAAAGATTGTGCGCAAATACTTAACAAA
AGAAGAGTACAAGGACATCTTTGTGAGCACATCAGATAAGCTCAAGAATTACTCAGCATACATT
GGAATGACAAAGATTAACGGGAAGAAGGTGGATCTCCAAAGCAAACGTTGTTCAAAGGAGGAG
TTTTACGATTTCATAAAGAAGAACGTGCTGAAGAAACTGGAGGGACAACCGGAGTACGAGTATT
TAAAGGAGGAGCTCGAGCGAGAAACTTTCCTGCCCAAGCAAGTGAACAGAGACAATGGTGTCA
TTCCTTACCAGATTCACTTATATGAGCTGAAGAAAATCCTGGGGAACTTGAGAGACAAGATAGA
CCTCATCAAGGAAAATGAAGATAAGTTGGTCCAGTTGTTCGAATTCAGAATCCCATATTACGTC
GGCCCGCTCAATAAGATCGACGACGGCAAGGAAGGCAAATTCACTTGGGCGGTGCGAAAAAGC
AACGAAAAAATATACCCATGGAACTTTGAGAACGTCGTTGACATCGAGGCCAGCGCCGAGAAA
TTTATAAGACGCATGACTAATAAGTGTACTTACCTCATGGGCGAGGATGTTCTGCCCAAGGACA
GCCTGCTGTATTCCAAGTACATGGTGCTTAACGAGCTGAATAATGTAAAGTTAGATGGTGAGAA
GCTCAGCGTGGAGCTTAAACAGAGGCTGTACACTGATGTGTTTTGCAAGTATCGGAAAGTTACC
GTTAAGAAGATAAAGAATTACCTGAAATGCGAAGGGATCATTTCCGGCAACGTGGAAATTACC
GGAATCGACGGCGATTTTAAGGCGTCGTTGACCGCTTATCATGATTTCAAGGAGATTTTAACCG
GCACGGAGCTCGCGAAGAAAGACAAGGAGAACATAATCACGAATATAGTTCTGTTTGGGGACG
ATAAAAAACTTCTTAAAAAACGACTCAATCGACTGTATCCGCAGATTACCCCCAACCAGCTGAA
GAAGATTTGCGCTCTGAGCTATACCGGGTGGGGCCGGTTCTCTAAGAAATTCCTCGAGGAGATC
ACAGCACCAGACCCAGAGACTGGTGAGGTGTGGAATATTATTACAGCTCTGTGGGAATCCAATA
ATAACCTTATGCAATTGTTGAGCAATGAATATAGGTTCATGGAGGAAGTGGAAACCTACAATAT
GGGCAAGCAGACAAAGACCCTATCTTACGAGACCGTTGAGAATATGTATGTCTCCCCTTCAGTG
AAACGGCAAATCTGGCAAACTTTGAAGATCGTGAAGGAGCTCGAAAAGGTGATGAAAGAGAGC
CCGAAGAGGGTTTTTATTGAAATGGCCAGAGAGAAACAGGAGAGCAAGAGAACAGAGTCTAGG
AAGAAGCAGCTAATCGATTTGTATAAAGCCTGCAAGAACGAGGAAAAAGACTGGGTCAAGGAG
CTAGGCGATCAGGAAGAACAGAAGTTGCGCTCTGATAAGCTGTACTTATATTATACCCAGAAAG
GACGGTGCATGTACTCAGGTGAGGTCATTGAGCTGAAAGATCTGTGGGACAATACTAAGTATGA
TATTGATCACATCTACCCTCAGTCAAAAACTATGGACGACTCCCTCAACAACAGGGTGTTGGTT
AAGAAGAAATACAATGCTACAAAGTCCGATAAATACCCTCTTAACGAAAACATCCGGCACGAA
AGAAAGGGCTTCTGGAAGTCCCTGCTGGATGGGGGTTTTATCAGTAAAGAAAAGTATGAGAGG
CTGATCCGAAATACCGAGCTCTCCCCCGAGGAACTGGCTGGCTTTATCGAAAGGCAGATCGTAG
AGACTAGGCAATCTACAAAGGCAGTCGCTGAGATCCTGAAGCAAGTGTTTCCTGAGTCAGAAAT
CGTGTACGTCAAAGCTGGCACAGTGTCACGGTTCCGAAAGGACTTTGAGTTGTTAAAAGTTCGG
GAGGTGAATGACCTGCACCACGCTAAAGACGCCTATCTGAATATCGTTGTGGGGAACTCCTATT
ATGTTAAGTTTACTAAGAATGCGTCCTGGTTTATTAAGGAGAACCCGGGGCGCACCTATAACCT
GAAGAAGATGTTCACCTCCGGCTGGAACATAGAACGGAACGGAGAAGTCGCGTGGGAGGTGGG
TAAGAAAGGGACCATTGTGACCGTCAAACAGATTATGAACAAAAACAACATATTGGTAACTCG
CCAGGTGCATGAGGCCAAAGGGGGCCTCTTTGATCAGCAGATTATGAAAAAGGGCAAAGGACA
GATCGCAATCAAGGAAACCGACGAGCGCCTGGCATCCATTGAGAAGTACGGAGGCTACAACAA GGCGGCAGGTGCGTACTTCATGCTCGTCGAGTCCAAAGATAAGAAAGGCAAAACTATTAGAAC
AATCGAGTTCATCCCTCTATATTTGAAAAATAAGATCGAAAGTGACGAAAGCATCGCCCTTAAC
TTCTTGGAGAAGGGCCGGGGCTTAAAGGAACCAAAGATTCTGCTCAAGAAGATCAAGATCGAC
ACACTCTTCGATGTGGATGGTTTTAAGATGTGGCTGTCAGGCAGGACAGGGGATCGCTTGCTGT
TCAAATGCGCAAATCAGTTGATTCTGGACGAAAAGATCATTGTGACGATGAAGAAGATCGTTAA
ATTCATTCAGCGGAGACAGGAAAACAGAGAACTGAAACTCTCCGATAAGGATGGAATTGACAA
TGAAGTCCTCATGGAGATTTACAATACCTTTGTGGACAAGCTTGAGAACACAGTCTATCGGATC
CGACTGTCCGAACAGGCAAAGACTCTGATCGACAAACAGAAAGAATTCGAAAGACTAAGCTTA
GAGGACAAAAGTTCAACTCTCTTTGAAATTCTCCACATCTTCCAATGTCAAAGTAGTGCAGCCA
ACTTGAAGATGATCGGGGGTCCCGGCAAGGCTGGAATCTTAGTCATGAACAACAACATCTCCAA
ATGTAACAAAATCTCCATCATAAACCAGTCTCCCACCGGCATTTTCGAGAACGAAATTGATTTA
CTCAAG
SE ATGAAATCTTTCGATTCTTTCACCAACCTCTACTCCCTTAGCAAAACCCTTAAGTTTGAAATGAG
Q GCCGGTGGGGAATACACAGAAGATGCTTGACAATGCTGGCGTCTTTGAAAAGGACAAATTAATC
no CAGAAGAAGTATGGTAAAACAAAGCCATATTTTGACCGATTGCATCGGGAATTCATTGAAGAGG
N CTCTTACAGGAGTAGAATTGATCGGACTGGACGAGAACTTCCGTACCTTAGTAGACTGGCAGAA
O: GGACAAGAAGAACAACGTGGCAATGAAGGCCTATGAGAACTCACTCCAGCGCCTTAGAACCGA 15 GATCGGAAAGATCTTTAATCTTAAGGCGGAAGATTGGGTAAAAAATAAGTACCCGATCCTGGGA
6 CTGAAAAACAAAAACACAGACATCCTGTTTGAAGAAGCCGTCTTTGGTATCTTGAAGGCCAGGT
ATGGAGAGGAGAAAGACACGTTTATAGAGGTAGAGGAGATTGATAAAACAGGCAAGAGTAAG
ATTAATCAGATCAGTATCTTTGATTCTTGGAAGGGGTTCACAGGCTACTTTAAGAAGTTTTTCGA
AACCAGGAAAAATTTCTATAAGAACGATGGCACCTCCACAGCTATCGCGACACGCATCATAGAT
CAGAATCTGAAACGGTTCATTGATAATCTGAGCATTGTTGAATCCGTGCGCCAGAAGGTCGACC
TAGCTGAGACTGAGAAGTCTTTCTCTATATCACTCTCCCAGTTCTTCTCAATAGATTTTTATAATA
AGTGCCTTCTGCAAGATGGCATAGACTACTATAACAAGATCATCGGCGGCGAAACTCTCAAAAA
CGGTGAAAAGCTCATTGGCCTGAATGAGCTCATCAACCAATATAGACAAAATAACAAGGATCA
GAAAATCCCATTCTTTAAGCTGCTAGATAAACAGATCCTATCAGAAAAAATCCTGTTCCTCGAC
GAAATCAAAAACGACACCGAACTCATCGAGGCTCTCTCGCAGTTTGCCAAGACGGCTGAGGAG
AAGACGAAGATTGTGAAAAAGCTGTTTGCAGACTTTGTGGAGAACAACTCTAAATACGATTTGG
CTCAGATTTATATCTCCCAGGAAGCATTTAACACAATCTCCAATAAGTGGACTAGCGAGACTGA
AACCTTCGCCAAATACCTGTTCGAGGCCATGAAAAGCGGCAAGCTCGCCAAATACGAGAAGAA
GGACAATTCCTATAAGTTTCCCGATTTCATCGCATTATCTCAGATGAAGTCCGCGCTACTTAGCA
TTAGCCTGGAAGGCCATTTTTGGAAGGAGAAATACTATAAGATTTCCAAATTCCAAGAAAAGAC
CAATTGGGAGCAGTTCTTGGCTATTTTTCTATACGAGTTCAACTCTTTGTTCAGTGACAAGATCA
ACACTAAGGACGGTGAGACCAAACAAGTGGGGTACTACCTCTTCGCCAAAGATCTTCATAACCT
GATACTGTCCGAACAGATCGACATACCCAAGGATTCAAAGGTGACCATCAAGGATTTTGCGGAT
TCGGTATTGACGATCTATCAGATGGCGAAGTATTTCGCTGTCGAGAAAAAGCGGGCATGGCTGG
CCGAATACGAGTTGGACTCCTTCTATACTCAACCCGATACAGGGTACCTGCAGTTTTACGATAAT
GCATACGAGGATATAGTCCAGGTGTACAATAAACTCAGGAACTACCTCACTAAGAAACCATACT
CCGAAGAAAAATGGAAACTTAATTTTGAGAATAGTACACTGGCCAATGGATGGGACAAGAACA
AGGAATCAGACAACTCCGCTGTAATTCTCCAGAAGGGTGGCAAGTATTATCTGGGACTGATAAC
AAAGGGCCATAACAAGATTTTCGATGACCGTTTTCAGGAGAAGTTTATAGTGGGCATAGAGGGT GGCAAGTATGAAAAAATAGTCTACAAGTTCTTTCCCGATCAGGCGAAGATGTTCCCCAAAGTAT
GCTTCAGTGCTAAAGGCCTCGAGTTTTTCCGGCCATCTGAAGAGATACTCCGCATCTATAATAAC
GCAGAGTTTAAAAAGGGAGAGACGTACTCAATCGACTCGATGCAGAAACTCATTGACTTCTACA
AAGATTGTCTCACAAAATACGAGGGCTGGGCTTGCTACACGTTTCGGCACTTGAAGCCAACCGA
GGAATATCAAAACAACATCGGGGAGTTCTTCCGTGACGTCGCCGAAGACGGCTATAGAATTGAC
TTTCAGGGCATAAGTGATCAGTATATTCACGAGAAGAATGAGAAAGGTGAGTTGCATCTTTTCG
AAATCCACAATAAAGACTGGAATCTTGACAAGGCTCGCGATGGAAAATCAAAGACTACCCAGA
AGAATCTTCATACACTTTACTTCGAGTCCCTCTTTTCCAACGACAACGTCGTACAGAATTTCCCA
ATAAAACTGAACGGCCAGGCCGAAATTTTTTACAGGCCCAAAACCGAAAAAGATAAACTGGAA
TCCAAGAAAGACAAGAAGGGAAATAAGGTGATAGATCACAAAAGGTATTCCGAGAACAAGATT
TTTTTCCACGTACCTCTTACCCTGAACAGAACGAAGAACGACTCTTATAGATTCAATGCCCAGAT
AAACAACTTTCTCGCAAACAACAAAGATATCAATATTATCGGCGTCGATAGAGGTGAGAAGCAC
TTGGTATATTATTCTGTGATCACGCAAGCATCCGATATCTTGGAGTCCGGTTCTTTGAACGAACT
GAATGGTGTCAACTACGCCGAGAAACTCGGTAAGAAAGCTGAGAATCGGGAGCAGGCTAGAAG
GGACTGGCAGGACGTTCAGGGTATCAAGGACCTGAAGAAGGGCTACATTTCTCAGGTGGTTCGA
AAACTGGCTGATTTGGCCATTAAGCACAATGCAATCATCATTTTAGAAGATTTGAACATGCGGT
TTAAACAAGTCAGGGGGGGGATAGAGAAATCAATTTACCAACAGCTGGAAAAAGCTCTGATTG
AGCCTATCAACTGAGCGCACCTTTCGAGACATTCCAGAAGATGGGAAAGCAAACCGGCATCATT
TTCTATACCCAGGCTTCCTATACATCCAAGTCTGATCCAGTGACTGGGTGGAGACCCCATCTCTA
CCTCAAGTACTTTTCTGCCAAAAAAGCTAAGGACGACATTGCTAAGTTCACAAAAATCGAGTTC
GTGAACGACAGGTTCGAGCTGACTTATGACATAAAAGATTTCCAGCAGGCCAAGGAGTACCCA
AACAAGACAGTTTGGAAAGTGTGTTCCAATGTGGAGAGGTTTCGGTGGGACAAGAATCTGAATC
AGAATAAAGGGGGATATACTCACTACACCAACATTACCGAGAACATCCAAGAGTTGTTCACCAA
ATACGGCATCGACATTACTAAAGATCTGCTGACACAGATCTCCACCATCGATGAGAAGCAGAAC
ACATCTTTCTTCCGGGATTTCATCTTTTATTTTAACTTGATCTGTCAGATTAGAAATACCGACGAC
AGTGAGATAGCTAAAAAAAACGGGAAAGACGATTTCATTCTCTCTCCCGTGGAGCCGTTTTTTG
ACTCCCGCAAAGACAATGGCAATAAGCTTCCGGAAAACGGGGACGATAACGGCGCCTACAACA
TCGCTCGTAAGGGAATCGTTATCCTCAATAAAATAAGCCAGTATTCCGAGAAGAACGAGAATTG
TGAAAAAATGAAGTGGGGGGACCTTTACGTCAGCAACATCGATTGGGATAACTTTGTGACACAA
GCCAATGCGAGACACTAG
SE ATGGAAAACTTCAAAAACCTCTACCCCATCAACAAGACCTTGAGGTTTGAGCTCCGGCCATATG
Q GGAAGACACTGGAGAACTTCAAAAAGTCCGGTCTGCTGGAAAAGGATGCTTTTAAGGCTAACTC
no TAGGAGGTCTATGCAGGCCATTATCGATGAGAAATTCAAGGAGACCATAGAGGAGCGTCTGAA
N ATATACTGAGTTTTCCGAGTGTGACCTAGGAAATATGACCAGTAAGGACAAAAAGATCACCGAC
O: AAGGCAGCGACAAACCTGAAGAAACAGGTGATTTTAAGCTTTGATGATGAGATTTTCAATAACT 15 ACTTGAAGCCGGACAAAAACATCGACGCTCTGTTCAAGAATGATCCAAGCAACCCGGTCATCTC
7 TACTTTCAAGGGCTTCACCACATACTTTGTAAATTTCTTCGAAATACGGAAACACATCTTCAAGG
GAGAGTCTTCCGGTAGCATGGCTTACAGAATAATCGATGAGAACCTAACTACATATCTAAACAA
TATCGAGAAGATCAAGAAATTGCCTGAAGAACTGAAATCTCAGCTTGAGGGAATCGATCAAATT
GACAAACTGAACAACTATAACGAGTTCATCACCCAGTCCGGCATTACTCATTATAACGAAATTA
TTGGAGGGATTTCGAAGTCTGAAAATGTCAAAATTCAAGGCATTAACGAAGGGATTAATCTTTA CTGTCAAAAGAATAAAGTGAAGCTACCACGCTTAACTCCTCTGTATAAGATGATTCTCTCTGATC
GGGTCTCTAATTCCTTTGTGCTGGATACCATTGAAAATGATACCGAGTTAATTGAAATGATCTCT
GATCTGATAAATAAGACAGAGATAAGTCAGGATGTTATTATGTCCGACATCCAAAATATTTTCA
TCAAATATAAACAACTCGGCAACTTGCCGGGGATTAGCTACTCATCTATAGTGAATGCTATCTGT
TCGGATTACGACAATAACTTTGGTGACGGCAAACGTAAAAAAAGCTATGAGAATGATCGCAAA
AAACACCTCGAGACTAACGTGTATAGCATTAACTATATCTCAGAGTTACTGACAGACACCGACG
TCTCCAGCAACATAAAGATGCGGTACAAAGAGCTGGAGCAGAATTATCAGGTATGCAAGGAAA
ATTTCAACGCCACTAACTGGATGAACATCAAAAACATTAAGCAGTCTGAGAAAACCAATCTGAT
CAAGGACCTTCTTGACATCCTCAAGAGCATCCAGCGGTTTTATGATTTGTTTGACATCGTGGATG
AAGACAAAAATCCTAGTGCTGAGTTCTATACCTGGCTGTCTAAAAACGCGGAGAAACTGGACTT
CGAGTTTAATTCAGTGTACAACAAGAGCAGGAACTACCTCACGAGAAAGCAGTACTCCGATAA
AAAGATTAAGTTGAACTTCGATAGTCCTACTCTCGCCAAGGGGTGGGATGCGAACAAAGAAATT
GATAATAGCACAATTATCATGAGGAAGTTCAACAACGACCGGGGCGATTACGATTACTTCTTGG
GGATCTGGAATAAGAGCACACCTGCCAACGAAAAGATCATCCCATTAGAGGATAATGGACTGTT
TGAAAAAATGCAATATAAGCTGTATCCCGATCCTAGTAAAATGCTGCCAAAGCAATTCCTTTCT
AAGATCTGGAAAGCTAAACATCCAACTACACCCGAGTTTGATAAGAAGTACAAAGAAGGTCGG
CACAAGAAGGGGCCTGATTTTGAGAAAGAGTTTCTGCACGAGTTGATCGATTGCTTTAAGCATG
GATTGGTAAACCACGACGAAAAATATCAGGATGTGTTCGGGTTCAATCTGCGCAACACGGAAG
ACTACAACTCTTATACAGAGTTTCTGGAGGACGTCGAAAGGTGCAACTATAATCTTAGTTTCAAT
AAAATCGCTGACACGTCTAACTTGATAAATGATGGGAAACTCTATGTTTTTCAGATCTGGAGCA
AGGATTTCAGCATAGATAGCAAGGGAACAAAAAACTTGAACACAATATACTTTGAATCCCTCTT
CTCGGAGGAAAATATGATCGAGAAGATGTTCAAGCTCTCAGGGGAAGCCGAAATATTCTATCGT
CCAGCAAGTTTGAATTATTGTGAAGATATTATCAAGAAGGGACACCACCACGCCGAACTGAAGG
ACAAATTCGACTATCCCATCATCAAGGACAAGCGATATAGCCAGGACAAATTTTTTTTTCATGTC
CCCATGGTTATCAACTACAAAAGCGAGAAGTTAAACTCCAAATCACTTAACAATAGGACGAACG
AAAATTTAGGCCAATTCACGCACATCATCGGTATCGACCGCGGAGAGCGACATCTCATCTACCT
GACCGTGGTGGATGTGTCCACCGGTGAGATCGTTGAGCAAAAGCACCTGGATGAAATTATAAAT
ACAGATACAAAAGGCGTCGAGCATAAAACTCATTATCTCAATAAATTAGAAGAGAAGTCCAAG
ACGCGGGATAATGAAAGAAAGTCCTGGGAAGCAATCGAGACGATTAAGGAGCTGAAAGAAGG
CTATATTAGCCACGTGATCAATGAAATCCAGAAATTGCAGGAAAAGTATAACGCACTGATAGTG
ATGGAGAACCTCAATTATGGGTTTAAGAACTCGCGTATCAAAGTGGAAAAGCAGGTCTACCAGA
AATTCGAGACCGCCCTGATTAAAAAGTTTAATTACATCATTGACAAGAAAGATCCTGAAACCTA
CATTCATGGATACCAACTGACGAATCCAATCACTACACTCGATAAAATTGGTAACCAGAGCGGT
ATTGTGTTGTACATTCCGGCTTGGAATACAAGCAAGATTGATCCAGTCACTGGTTTCGTTAACCT
CCTGTATGCAGACGATTTGAAATACAAGAACCAGGAGCAGGCTAAAAGCTTTATCCAGAAAATC
GATAATATCTACTTCGAAAATGGTGAGTTTAAATTTGATATAGATTTCAGCAAATGGAACAACC
GCTACTCAATTAGCAAGACGAAATGGACACTGACAAGCTACGGAACCCGGATACAGACGTTCC
GAAACCCCCAGAAAAATAACAAGTGGGACAGCGCCGAGTATGACCTGACCGAAGAGTTTAAAT
TAATCCTGAACATCGATGGTACTCTGAAATCTCAGGATGTGGAAACCTATAAGAAATTCATGTC
TTTATTCAAGCTGATGTTGCAGCTGCGAAACTCCGTTACTGGAACAGACATTGACTACATGATTA
GCCCTGTGACAGATAAAACTGGAACCCACTTTGATTCACGGGAGAATATCAAGAACCTGCCCGC
CGATGCTGATGCGAACGGAGCTTACAACATTGCTAGGAAGGGCATCATGGCAATCGAGAATATT ATGAACGGCATTAGCGACCCTCTGAAGATCAGTAATGAGGACTACCTGAAGTACATTCAGAACC
AACAAGAGTAA
SE ATGACCCAGTTTGAGGGTTTCACCAATCTTTATCAGGTGTCAAAAACACTCAGATTTGAGCTCAT
Q CCCACAGGGTAAAACTTTAAAGCATATTCAAGAGCAGGGCTTTATAGAGGAAGACAAAGCCAG
no AAACGACCATTATAAGGAACTAAAACCGATCATTGACCGCATCTACAAAACCTATGCCGACCAA
N TGCCTTCAGCTCGTCCAACTCGATTGGGAGAATCTGAGCGCCGCTATTGACAGCTACAGGAAGG
O: AGAAGACCGAGGAGACTAGAAACGCCCTGATCGAGGAGCAGGCGACCTATAGAAACGCTATTC 15 ACGATTATTTTATCGGCCGCACCGACAATTTGACAGATGCCATCAACAAGCGGCACGCCGAAAT 8 TTATAAGGGGTTATTTAAGGCCGAGCTGTTCAATGGAAAAGTACTGAAACAGCTGGGCACCGTA
ACAACCACCGAACACGAGAATGCTCTGTTGAGGTCCTTCGACAAGTTTACTACCTACTTTAGCG
GCTTCTACGAAAACCGTAAAAACGTGTTTTCCGCGGAGGATATTTCAACAGCCATTCCTCATAG
GATCGTGCAGGATAATTTCCCCAAGTTTAAGGAGAACTGCCATATCTTTACCAGACTTATCACTG
CTGTGCCAAGTTTACGAGAACACTTCGAGAATGTTAAGAAGGCTATAGGCATATTCGTTTCCAC
CTCCATCGAAGAAGTATTCAGTTTTCCATTCTACAATCAGTTACTCACGCAGACCCAGATAGATC
TCTACAATCAGCTGCTCGGAGGCATTTCTAGAGAAGCAGGCACGGAAAAGATCAAGGGCTTAA
ATGAAGTACTCAATCTTGCAATTCAGAAGAACGATGAGACAGCACACATTATTGCATCTCTCCC
TCACAGATTCATTCCCCTGTTCAAACAGATCCTGTCCGATCGCAACACACTAAGCTTTATACTTG
AGGAGTTTAAGTCAGATGAGGAAGTGATCCAGAGCTTCTGTAAGTATAAGACTTTGCTCCGTAA
TGAAAACGTGCTTGAGACAGCAGAGGCTCTCTTTAACGAGTTGAATTCCATCGACCTGACACAC
ATTTTTATCAGCCATAAAAAGCTGGAAACGATTAGCTCTGCCTTGTGCGACCACTGGGACACCC
TGCGTAACGCCCTCTATGAAAGGCGCATTTCCGAGCTCACCGGGAAGATCACAAAAAGTGCCAA
GGAAAAAGTCCAGAGGTCCCTTAAACATGAAGACATCAACCTACAAGAGATCATCTCTGCGGCT
GGGAAAGAGCTGTCAGAAGCATTTAAACAGAAGACTTCCGAGATCCTGAGCCACGCACACGCC
GCATTAGACCAGCCCCTGCCTACAACTCTTAAAAAACAGGAGGAGAAGGAGATTTTAAAGAGC
CAGCTGGACTCATTACTCGGCCTGTATCATCTCCTGGACTGGTTCGCCGTGGACGAATCCAACGA
GGTGGACCCAGAATTTAGCGCCAGGCTGACAGGAATTAAACTGGAAATGGAGCCAAGTTTGAG
CTTTTACAACAAGGCTCGGAACTATGCCACTAAAAAGCCCTACAGCGTGGAAAAGTTCAAGCTG
AATTTTCAGATGCCGACCCTGGCTTCCGGGTGGGATGTTAATAAGGAAAAGAATAATGGGGCTA
TACTGTTCGTCAAAAATGGTCTCTACTACCTGGGAATCATGCCCAAACAGAAGGGCAGGTACAA
AGCCCTTTCGTTTGAGCCGACCGAAAAAACCAGCGAAGGCTTTGATAAGATGTATTACGACTAT
TTCCCAGATGCAGCCAAGATGATCCCAAAATGTAGCACTCAGTTGAAGGCGGTAACCGCTCACT
TTCAGACACACACCACTCCTATCTTGCTCTCCAACAACTTTATTGAGCCGCTGGAGATCACGAAG
GAAATCTACGACCTTAACAACCCAGAGAAGGAACCCAAGAAATTCCAAACAGCTTATGCTAAG
AAGACTGGGGATCAAAAGGGCTATCGAGAGGCTTTGTGTAAGTGGATTGACTTTACACGGGATT
TCCTGAGTAAGTATACCAAGACCACATCTATTGACCTGTCCTCACTGAGACCTTCCTCACAATAT
AAGGATCTCGGAGAGTATTATGCCGAACTCAACCCTCTACTCTATCACATCTCTTTCCAGAGGAT
CGCCGAAAAGGAAATTATGGACGCCGTCGAGACAGGCAAGCTGTACCTCTTCCAGATTTACAAC
AAGGATTTCGCAAAGGGCCACCACGGAAAACCCAATTTGCACACTTTGTACTGGACAGGGCTCT
TCTCTCCCGAAAATTTGGCCAAAACTTCAATAAAACTGAACGGGCAAGCCGAGCTGTTCTATCG
GCCCAAGTCACGTATGAAGCGGATGGCCCACCGGCTGGGCGAGAAGATGCTCAACAAGAAACT
GAAGGATCAGAAGACGCCCATACCAGACACTCTTTACCAAGAGCTGTATGACTACGTGAATCAC
AGACTGAGTCACGACCTGTCTGATGAAGCCCGGGCTCTTCTTCCAAATGTGATTACCAAAGAAG TTTCCCACGAAATTATCAAGGACCGGCGCTTCACCTCTGACAAATTCTTTTTCCACGTCCCAATC
ACCCTCAACTACCAGGCAGCCAATTCCCCTTCAAAGTTTAACCAGCGTGTGAATGCCTACCTGA
AAGAGCATCCGGAGACCCCCATCATAGGGATAGACAGAGGAGAGCGGAATCTTATCTACATTA
CTGTGATTGACAGCACAGGTAAGATCTTGGAGCAGAGATCTTTAAATACAATCCAGCAGTTTGA
CTACCAGAAGAAACTGGATAACCGAGAGAAGGAAAGGGTTGCTGCAAGACAGGCCTGGTCAGT
GGTCGGCACCATCAAAGACCTGAAGCAGGGCTACTTATCCCAAGTAATTCACGAAATTGTCGAT
CTTATGATTCATTATCAAGCCGTTGTTGTGCTGGAGAACCTGAATTTTGGCTTCAAAAGCAAACG
AACAGGTATCGCCGAGAAAGCCGTGTATCAGCAGTTCGAAAAGATGCTCATAGACAAGCTGAA
CTGCTTAGTGCTGAAGGATTATCCTGCTGAGAAGGTCGGCGGCGTACTTAACCCATACCAGCTG
ACCGATCAGTTCACTAGTTTCGCCAAGATGGGAACGCAAAGTGGCTTCCTTTTCTACGTGCCCGC
TCCCTACACGAGTAAGATCGACCCTCTGACCGGCTTCGTCGACCCATTCGTCTGGAAGACCATC
AAGAATCACGAATCACGGAAACACTTCTTAGAGGGGTTTGACTTCCTGCACTACGACGTGAAGA
CAGGGGACTTCATCTTACACTTTAAGATGAATCGAAACCTCTCCTTCCAGCGGGGCCTGCCTGGT
TTCATGCCCGCATGGGACATCGTGTTTGAGAAAAACGAGACACAGTTTGACGCTAAGGGAACCC
CCTTTATTGCGGGGAAGCGGATTGTCCCAGTCATCGAAAACCATCGGTTCACCGGGCGATACCG
GGATCTGTACCCGGCCAACGAGCTCATCGCGCTGCTGGAGGAGAAGGGTATTGTGTTTAGGGAT
GGATCCAACATTCTGCCTAAGTTGCTGGAAAATGATGATTCGCACGCCATTGATACCATGGTTG
CACTGATTAGATCCGTACTGCAGATGAGGAATAGCAATGCTGCAACCGGGGAGGATTATATTAA
TTCCCCAGTGCGAGATCTGAATGGTGTCTGTTTTGACTCGCGCTTTCAGAATCCAGAATGGCCAA
TGGATGCAGACGCTAACGGGGCGTACCACATTGCTCTGAAAGGCCAGCTACTCCTGAACCACCT
CAAGGAGAGCAAAGATCTGAAGCTGCAGAACGGCATTTCCAACCAAGACTGGCTCGCCTACAT
ACAAGAACTGCGCAATTAA
SE ATGGCTGTCAAATCCATCAAGGTTAAATTACGGCTTGATGACATGCCCGAGATCCGCGCCGGGC
Q TCTGGAAACTCCATAAAGAAGTGAATGCTGGCGTTAGATACTACACAGAATGGCTCTCCCTGCT
no GCGCCAGGAAAATTTGTACCGCCGGTCACCTAATGGAGATGGAGAGCAGGAATGCGATAAAAC
N AGCAGAAGAGTGCAAAGCCGAATTGCTGGAGCGACTGCGGGCACGGCAGGTTGAGAATGGACA
O: CCGAGGTCCGGCGGGATCGGACGACGAGCTGCTCCAGCTCGCCAGACAATTATATGAACTGCTG 15 GTGCCTCAGGCTATTGGGGCAAAGGGTGACGCACAGCAGATTGCTAGAAAATTTCTGTCTCCCC
9 TCGCCGACAAAGACGCTGTCGGCGGCCTTGGGATAGCCAAAGCCGGCAACAAACCCCGATGGG
TGCGCATGAGGGAGGCTGGTGAGCCTGGCTGGGAGGAAGAAAAGGAAAAGGCCGAAACCAGA
AAGTCCGCCGACAGGACCGCGGACGTACTCCGAGCATTGGCCGATTTTGGGCTGAAGCCCTTAA
TGCGAGTCTACACCGATAGTGAAATGTCTAGCGTGGAGTGGAAGCCATTACGCAAAGGGCAGG
CAGTGCGGACGTGGGACCGTGACATGTTCCAGCAAGCCATCGAGCGAATGATGAGCTGGGAGA
GCTGGAACCAGAGAGTGGGGCAGGAGTATGCCAAGCTGGTCGAGCAGAAAAACCGGTTTGAGC
AAAAAAATTTTGTAGGTCAGGAACACCTGGTGCATCTCGTTAACCAGCTCCAGCAAGATATGAA
GGAAGCTTCGCCTGGATTAGAGAGCAAAGAGCAGACTGCACACTATGTAACCGGAAGAGCACT
GAGGGGCAGTGACAAAGTGTTCGAAAAATGGGGAAAACTGGCTCCCGATGCCCCCTTTGACCTG
TACGACGCAGAAATAAAAAACGTGCAGCGGCGAAACACCAGGCGATTTGGTAGCCATGATCTG
TTCGCCAAATTGGCAGAGCCGGAATATCAGGCTCTTTGGCGAGAAGACGCATCATTTCTCACTA
GGTACGCGGTCTATAACTCCATTTTGAGGAAATTGAACCACGCAAAAATGTTTGCCACCTTCAC
GTTGCCTGACGCCACCGCTCATCCCATTTGGACACGGTTTGATAAGCTGGGCGGCAATCTGCATC
AGTATACATTCCTGTTTAACGAGTTTGGAGAGCGAAGACATGCGATACGATTCCACAAGCTACT GAAGGTCGAAAATGGCGTGGCACGTGAGGTGGACGATGTCACCGTGCCCATCAGCATGAGCGA
ACAGCTGGATAATTTGTTGCCGCGGGACCCAAATGAACCTATAGCCCTTTATTTTAGGGACTAC
GGGGCGGAGCAACATTTCACTGGGGAGTTTGGCGGCGCAAAAATTCAGTGCCGACGCGACCAG
CTCGCCCACATGCATAGAAGACGCGGGGCCCGGGACGTATACCTTAACGTCTCTGTGAGGGTGC
AGTCCCAGTCAGAGGCAAGAGGGGAACGCAGACCACCTTACGCAGCAGTATTCAGGCTGGTAG
GCGATAACCACCGGGCGTTTGTACACTTTGATAAACTTTCTGACTACCTGGCCGAACACCCGGA
TGACGGCAAATTAGGATCGGAGGGGCTGCTTAGCGGCCTGCGTGTGATGAGCGTCGATCTGGGG
CTACGGACCTCTGCTTCCATCTCTGTGTTCCGTGTGGCCCGAAAGGACGAGTTGAAACCTAATTC
GAAGGGCCGTGTACCATTCTTTTTCCCTATTAAGGGAAATGATAATCTCGTCGCGGTGCACGAG
CGTTCCCAACTGCTGAAACTGCCTGGCGAGACCGAGTCCAAAGATCTCAGAGCAATCCGGGAGG
AGCGACAACGTACACTTAGGCAACTCCGCACCCAGCTGGCCTATCTGCGCTTGCTGGTGCGGTG
CGGCTCCGAGGATGTAGGGAGAAGAGAGCGAAGCTGGGCAAAGCTGATAGAGCAACCAGTTGA
CGCCGCGAATCACATGACCCCCGACTGGCGCGAAGCGTTTGAAAATGAGCTGCAGAAGTTGAA
ATCTCTGCATGGGATTTGCTCAGATAAGGAGTGGATGGACGCCGTATACGAGTCTGTTCGCCGG
GTATGGCGGCACATGGGGAAGCAGGTGAGAGATTGGAGAAAGGACGTTCGCTCTGGGGAACGG
CCGAAAATTCGGGGATACGCAAAGGATGTCGTGGGCGGCAATAGCATTGAGCAGATCGAGTAC
CTGGAAAGGCAATACAAATTTCTGAAATCTTGGTCTTTCTTTGGGAAGGTAAGCGGACAAGTTA
TCAGAGCCGAAAAGGGATCTCGCTTTGCTATCACATTGAGGGAACACATTGATCACGCCAAAGA
AGACAGGTTGAAAAAGTTGGCTGATCGCATTATCATGGAAGCACTCGGTTACGTCTACGCCCTT
GATGAGCGCGGTAAAGGGAAGTGGGTAGCCAAGTATCCCCCATGTCAGCTGATCCTGCTCGAGG
AACTTTCTGAGTATCAGTTCAATAACGACCGTCCTCCCTCCGAAAATAATCAGCTCATGCAATGG
TCCCACCGGGGTGTGTTCCAAGAACTGATCAATCAGGCTCAGGTGCACGACCTCCTCGTAGGCA
CTATGTATGCAGCCTTTAGCTCCCGTTTTGACGCGCGCACAGGCGCCCCTGGAATACGATGTAG
GCGAGTTCCCGCACGGTGCACTCAAGAACATAACCCGGAGCCTTTCCCATGGTGGCTCAATAAG
TTTGTTGTGGAGCATACCCTCGACGCTTGCCCATTGAGGGCGGATGACTTGATTCCCACAGGCG
AGGGGGAGATCTTCGTGAGCCCATTTTCTGCCGAAGAAGGGGATTTCCACCAAATACATGCCGA
CTTGAATGCTGCCCAAAATCTGCAGCAAAGGCTGTGGTCAGACTTCGACATCTCGCAAATCAGA
CTGCGGTGTGACTGGGGCGAAGTAGACGGCGAGCTGGTGCTGATACCTAGACTGACGGGTAAG
CGTACCGCCGATAGCTATAGTAATAAGGTTTTTTATACGAATACGGGGGTGACATATTACGAGC
GTGAGAGAGGCAAGAAGCGTCGGAAGGTGTTCGCGCAGGAGAAGCTGAGCGAAGAGGAGGCG
GAGCTACTGGTAGAGGCAGATGAGGCAAGAGAAAAGTCCGTCGTCCTGATGCGGGATCCTAGC
GGGATTATTAACAGAGGTAATTGGACACGGCAGAAAGAATTCTGGAGCATGGTGAATCAAAGA
ATCGAGGGTTACCTGGTGAAGCAAATTCGAAGCCGGGTGCCCCTTCAAGACAGCGCATGTGAAA
ACACTGGGGACATCTAG
SE ATGGCTACTCGGTCCTTCATCCTGAAAATCGAGCCAAATGAAGAGGTGAAAAAGGGCCTGTGGA
Q AGACCCATGAGGTACTTAACCACGGCATAGCATACTATATGAATATCCTAAAACTTATACGGCA
no GGAGGCTATCTACGAGCATCACGAGCAAGATCCTAAAAATCCAAAGAAGGTTAGTAAGGCTGA
N AATCCAGGCTGAATTGTGGGACTTCGTGCTGAAGATGCAGAAATGCAACAGTTTCACGCATGAA
O: GTTGATAAGGACGTCGTGTTTAATATACTCCGGGAGCTGTACGAAGAACTGGTACCAAGCTCTG 16 TGGAAAAGAAAGGAGAGGCCAACCAGCTAAGTAATAAGTTCCTCTATCCTCTCGTGGACCCCAA 0 TTCACAGAGCGGCAAAGGTACCGCATCTTCTGGGAGGAAACCACGCTGGTACAACTTGAAGATC
GCTGGCGATCCCAGCTGGGAGGAGGAAAAGAAGAAATGGGAAGAGGATAAAAAGAAAGACCC CCTGGCCAAAATCTTAGGCAAGCTCGCCGAGTACGGTCTGATTCCACTTTTCATCCCGTTCACAG
ATAGCAATGAGCCGATCGTCAAGGAGATTAAGTGGATGGAAAAGAGCCGCAATCAGAGTGTGC
GGAGGCTGGACAAAGACATGTTTATTCAGGCCCTGGAACGCTTCCTTAGCTGGGAAAGCTGGAA
CCTGAAGGTTAAGGAAGAGTACGAAAAAGTCGAGAAGGAGCATAAGACTTTGGAGGAGCGCAT
CAAAGAAGACATCCAGGCCTTTAAGTCTCTAGAACAGTATGAGAAAGAACGGCAGGAACAGCT
GCTGCGTGATACACTGAACACAAACGAATATCGCCTGAGCAAGAGGGGACTCAGAGGCTGGAG
AGAAATCATTCAAAAGTGGCTCAAAATGGATGAAAATGAGCCGTCTGAAAAATACCTTGAAGTT
TTCAAGGACTACCAGCGGAAGCACCCTAGAGAAGCCGGCGACTATAGTGTTTACGAATTCTTGA
GCAAGAAGGAGAATCATTTTATATGGAGGAATCACCCGGAGTACCCATATCTGTACGCAACCTT
CTGCGAAATCGACAAGAAAAAAAAAGACGCCAAGCAACAGGCTACATTTACTCTGGCCGACCC
TATCAATCACCCTCTATGGGTCCGGTTTGAGGAGCGCTCCGGAAGCAATCTGAATAAATATCGT
ATTCTGACTGAACAGTTACACACAGAGAAGCTCAAGAAGAAACTTACGGTGCAGCTGGACCGC
CTGATATACCCAACAGAGTCCGGAGGATGGGAAGAGAAAGGAAAGGTTGACATCGTACTGCTT
CCATCTCGTCAGTTTTACAACCAGATATTCCTGGACATCGAGGAGAAGGGGAAACACGCCTTCA
CATACAAGGACGAGTCCATAAAGTTCCCACTGAAGGGTACTTTAGGCGGTGCTAGGGTGCAGTT
CGACCGCGATCACCTGAGACGGTACCCCCACAAGGTGGAGAGCGGGAACGTGGGACGAATCTA
CTTTAATATGACAGTGAACATTGAACCCACAGAGAGTCCAGTTAGTAAATCCCTGAAAATTCAC
CGTGACGACTTTCCGAAATTTGTGAATTTCAAGCCAAAGGAGCTTACGGAGTGGATCAAGGATT
CAAAGGGAAAGAAGCTGAAATCTGGTATCGAATCTCTCGAGATCGGTCTCCGTGTCATGAGCAT
CGATCTGGGACAGCGCCAGGCAGCTGCCGCCAGTATATTCGAGGTGGTAGACCAAAAGCCTGA
CATCGAGGGAAAGCTCTTCTTCCCAATCAAAGGCACAGAGCTGTATGCGGTGCACCGGGCGTCC
TTTAATATAAAGCTGCCCGGTGAAACCCTGGTGAAGTCACGGGAGGTGCTTAGAAAAGCGCGA
GAGGATAACCTCAAACTGATGAACCAAAAACTGAACTTTCTGAGGAACGTCCTGCACTTTCAGC
AGTTCGAAGATATTACCGAACGCGAAAAGAGAGTAACCAAGTGGATATCTCGTCAAGAGAACA
GCGACGTCCCGTTAGTCTATCAGGACGAACTCATCCAAATACGGGAGTTGATGTATAAGCCCTA
CAAGGATTGGGTCGCCTTTCTTAAGCAGCTTCACAAACGCCTAGAGGTCGAAATAGGTAAAGAG
GTGAAACATTGGCGGAAGTCGCTCAGCGACGGGAGGAAGGGACTTTATGGCATCTCTTTGAAGA
ACATTGACGAAATCGATAGAACCAGAAAATTTTTGTTGAGATGGTCCCTCCGACCCACCGAGCC
TGGAGAGGTGAGGCGGTTAGAACCAGGACAGAGGTTCGCTATCGATCAGCTGAATCACCTCAAT
GCTCTGAAGGAGGACCGCCTCAAGAAAATGGCCAATACAATCATAATGCACGCCCTTGGCTACT
GCTACGACGTCCGAAAGAAGAAGTGGCAGGCCAAGAATCCCGCCTGTCAAATTATCCTTTTTGA
GGATCTTAGCAATTACAACCCCTATGAAGAGCGGTCCAGATTCGAAAATAGTAAGCTCATGAAG
TGGAGCCGCAGGGAGATCCCGCGCCAAGTGGCCCTTCAGGGGGAAATTTATGGGCTGCAGGTA
GGCGAGGTCGGGGCCCAATTCTCCTCGCGCTTTCATGCGAAAACTGGAAGTCCTGGAATCCGGT
GCTCAGTGGTGACAAAGGAGAAGTTGCAAGACAATCGGTTTTTTAAAAACTTACAGCGGGAGG
GAAGGCTGACCCTGGATAAGATAGCCGTACTTAAGGAAGGAGATCTGTACCCTGACAAAGGCG
GTGAAAAGTTCATTAGCTTGAGCAAGGACCGAAAACTTGTGACCACCCACGCTGACATCAATGC
GGCACAGAACCTGCAGAAGAGATTTTGGACTCGCACCCACGGATTCTACAAAGTTTACTGCAAA
GCATATCAAGTAGACGGACAGACCGTATACATCCCCGAGTCCAAAGATCAGAAGCAGAAAATT
ATTGAAGAGTTTGGGGAAGGGTACTTTATCCTGAAGGATGGTGTCTACGAATGGGGCAACGCTG
GTAAACTTAAAATTAAGAAGGGCAGCTCTAAACAGTCCTCCAGCGAGTTAGTTGATTCTGATAT
TCTGAAAGACAGTTTCGACCTGGCCAGCGAACTTAAAGGGGAAAAATTAATGCTGTACCGGGAC CCCAGCGGAAACGTCTTTCCATCCGATAAGTGGATGGCCGCTGGAGTGTTCTTTGGCAAGTTAG
AGAGGATTCTCATAAGTAAGCTGACCAACCAATACTCAATCTCCACAATCGAGGATGACTCATC CAAGCAGTCTATGTGA
SE ATGCCTACACGCACTATCAACCTGAAACTGGTTCTTGGCAAGAATCCAGAGAATGCTACCCTTC
Q GTCGGGCACTATTTTCAACGCATAGACTGGTGAATCAGGCTACCAAACGGATTGAAGAGTTCCT
no CTTGCTTTGTCGGGGGGAAGCATATAGGACGGTGGATAATGAGGGGAAAGAGGCTGAAATTCC
N GAGACACGCCGTGCAGGAGGAAGCTCTTGCGTTTGCAAAGGCCGCTCAACGGCACAATGGTTGC
O: ATCTCTACTTATGAAGACCAGGAAATCCTGGATGTGCTCCGGCAACTGTATGAAAGGCTGGTGC 16 CTTCTGTGAATGAAAATAATGAAGCAGGGGACGCTCAAGCCGCAAACGCGTGGGTGTCGCCACT 1 GATGTCCGCCGAGTCCGAGGGAGGGCTCAGCGTTTACGACAAGGTGCTGGACCCACCCCCAGTG
TGGATGAAACTCAAAGAGGAAAAAGCTCCGGGCTGGGAGGCTGCTTCCCAGATCTGGATCCAG
TCCGACGAAGGGCAGTCCCTTCTTAACAAGCCTGGTTCGCCCCCGCGGTGGATTAGGAAACTGA
GGTCAGGCCAGCCTTGGCAGGACGATTTTGTTAGCGACCAGAAAAAGAAGCAGGACGAGCTGA
CAAAGGGGAATGCGCCACTGATCAAACAATTAAAGGAAATGGGCTTATTGCCTCTTGTGAATCC
CTTTTTTAGACATCTGCTTGACCCGGAGGGGAAGGGGGTGTCACCTTGGGACAGACTCGCTGTT
AGGGCCGCTGTCGCTCATTTCATATCATGGGAATCATGGAACCACCGGACACGCGCCGAATACA
ATAGTTTGAAGCTGCGGAGGGATGAGTTCGAAGCAGCTTCCGACGAATTCAAGGACGACTTCAC
GCTGCTTCGGCAGTACGAGGCTAAGAGGCACTCCACACTGAAGAGTATAGCTTTAGCCGATGAT
TCAAACCCTTATAGGATCGGCGTACGCTCCCTCCGCGCTTGGAACCGCGTCCGCGAGGAGTGGA
TCGACAAGGGAGCGACCGAGGAGCAGCGGGTCACCATTCTCAGCAAGTTGCAGACCCAACTAA
GGGGCAAATTTGGAGATCCTGACTTGTTCAACTGGCTGGCGCAGGACCGGCACGTGCACCTCTG
GAGCCCTAGAGATAGTGTTACCCCACTGGTTAGGATCAACGCTGTTGACAAAGTATTGCGACGG
AGAAAACCGTACGCCTTGATGACTTTTGCCCACCCAAGATTCCACCCTCGGTGGATACTTTACGA
AGCCCCAGGGGGCAGCAATCTCCGCCAGTATGCACTGGATTGTACCGAAAATGCTCTGCACATT
ACACTGCCTCTGCTGGTTGACGATGCACATGGCACATGGATTGAGAAAAAAATTAGGGTTCCTC
TTGCCCCCAGCGGCCAGATTCAGGACCTGACACTAGAAAAGCTCGAGAAGAAGAAAAATCGTC
TCTACTACCGTTCTGGGTTCCAGCAGTTTGCCGGCCTGGCCGGAGGTGCCGAGGTGCTTTTCCAT
CGACCATACATGGAGCACGATGAGAGGAGCGAGGAGAGCTTATTAGAACGCCCTGGTGCTGTTT
GGTTCAAACTCACCTTGGACGTGGCAACCCAGGCCCCTCCAAACTGGTTGGACGGAAAGGGCCG
CGTCCGAACGCCCCCCGAGGTTCACCACTTCAAGACAGCCCTCAGTAACAAGTCTAAGCACACA
CGGACCCTCCAGCCCGGACTCAGAGTGTTATCCGTGGATCTGGGAATGCGCACCTTCGCCTCTTG
CTCCGTATTTGAGCTGATCGAGGGCAAACCAGAGACTGGCAGAGCGTTCCCTGTGGCCGACGAA
CGTTCCATGGATTCACCAAACAAGCTGTGGGCCAAGCACGAAAGATCCTTTAAACTCACGCTCC
CCGGCGAAACCCCCAGTCGGAAAGAAGAGGAGGAACGGAGCATTGCAAGAGCCGAAATCTATG
CGTTGAAAAGAGATATTCAGAGATTAAAAAGTCTTCTGCGCCTGGGGGAAGAGGATAACGATA
ATAGACGCGATGCACTTCTTGAGCAATTTTTCAAGGGCTGGGGCGAGGAAGACGTGGTTCCAGG
TCAGGCCTTTCCCCGGAGTCTGTTCCAGGGGCTGGGGGCCGCCCCATTCAGATCCACCCCTGAGT
TGTGGAGACAACACTGTCAAACCTATTATGATAAAGCAGAGGCGTGCCTGGCTAAACACATCAG
CGATTGGCGCAAGAGAACCAGGCCTAGGCCTACCTCACGTGAGATGTGGTACAAGACACGCTCT
TATCACGGCGGAAAGTCAATCTGGATGCTGGAATACCTCGACGCTGTGAGGAAACTGCTCTTAT
CCTGGAGCCTCAGAGGCCGGACCTACGGGGCTATCAACAGACAGGACACAGCAAGGTTCGGGA
GCTTAGCCAGCCGGCTCCTTCACCACATTAACTCACTCAAAGAGGATCGAATAAAGACCGGAGC CGACTCGATCGTGCAGGCAGCCCGAGGGTACATCCCCCTGCCTCATGGGAAGGGCTGGGAGCA
GCGATATGAACCCTGCCAGCTGATCTTGTTTGAGGACCTTGCCCGTTATAGATTTCGCGTTGATA
GACCTCGCCGTGAGAATTCTCAGCTGATGCAGTGGAACCACAGAGCGATCGTGGCTGAGACCAC
TATGCAGGCCGAGCTGTATGGACAGATCGTGGAGAACACCGCCGCAGGGTTCAGTTCTCGGTTT
CATGCTGCCACCGGAGCTCCCGGCGTCCGGTGCCGCTTCCTCTTAGAGCGTGATTTTGACAATGA
CCTCCCAAAGCCCTATCTGCTGAGGGAACTGAGCTGGATGCTGGGGAACACAAAAGTAGAATC
GGAGGAGGAGAAGCTACGGCTCCTCTCCGAAAAGATACGTCCAGGCTCTCTGGTACCATGGGAC
GGAGGAGAGCAGTTCGCGACACTGCATCCTAAGAGACAGACGTTATGTGTGATTCACGCCGATA
TGAACGCCGCTCAGAATCTGCAGCGAAGATTCTTTGGCCGCTGCGGCGAAGCCTTCAGGCTGGT
ATGTCAGCCCCACGGGGATGATGTGCTGCGGCTGGCCTCAACCCCTGGGGCTAGACTCTTGGGG
GCACTCCAGCAGCTGGAAAATGGCCAAGGGGCTTTCGAACTCGTTCGGGACATGGGCAGCACA
AGCCAGATGAACAGATTCGTCATGAAGAGCCTGGGAAAGAAAAAGATCAAACCCTTACAGGAC
AATAATGGCGACGACGAACTGGAGGACGTGTTGTCCGTGCTGCCAGAGGAAGACGACACAGGC
CGCATCACTGTCTTCCGCGACTCAAGTGGGATATTCTTTCCTTGCAACGTGTGGATTCCGGCCAA
ACAGTTCTGGCCTGCCGTCAGAGCCATGATTTGGAAAGTGATGGCTAGTCATTCATTGGGATGA
SE ATGACAAAGCTGAGGCACAGACAAAAGAAGCTTACACACGACTGGGCAGGGAGCAAGAAACG
Q TGAGGTCCTTGGGTCAAATGGAAAACTGCAGAACCCCTTGCTCATGCCTGTAAAGAAGGGGCAG
no GTAACAGAATTTAGAAAAGCATTCTCCGCGTACGCTCGGGCAACTAAGGGGGAAATGACCGAT
N GGACGGAAGAACATGTTCACCCATTCTTTCGAGCCATTCAAAACAAAGCCGTCATTGCACCAAT
O: GCGAGCTGGCCGATAAGGCTTACCAGTCTTTGCATAGTTACCTCCCCGGTTCCCTGGCCCATTTC 16 TTGCTTTCCGCACACGCACTGGGCTTTCGTATTTTCTCTAAATCTGGGGAGGCAACTGCCTTCCA 2 GGCCAGCTCAAAAATCGAGGCCTATGAGTCCAAGCTCGCTTCGGAGCTAGCCTGTGTCGATTTG
AGTATCCAGAATTTGACGATTAGTACTCTTTTCAACGCTCTCACAACTTCAGTTCGGGGCAAGGG
GGAGGAAACTTCAGCAGATCCCCTTATCGCACGGTTCTACACTCTCCTGACGGGCAAGCCCCTG
AGCCGAGACACACAGGGCCCAGAACGGGACTTGGCAGAGGTCATCTCCAGAAAGATCGCCTCG
TCCTTCGGCACATGGAAGGAAATGACTGCCAACCCTCTGCAGAGCCTCCAGTTCTTCGAAGAAG
AGCTTCATGCACTAGATGCCAACGTGTCTTTATCTCCAGCTTTTGATGTGTTAATCAAGATGAAT
GATCTCCAAGGTGATCTGAAGAACCGTACTATAGTGTTCGACCCAGATGCACCCGTGTTCGAGT
ACAACGCTGAGGATCCAGCCGATATCATCATAAAGCTGACAGCTCGGTATGCGAAGGAGGCCG
TCATCAAGAATCAGAACGTGGGCAATTATGTGAAAAACGCCATTACCACCACTAATGCCAATGG
GCTGGGGTGGCTCCTCAATAAAGGGCTTTCACTACTGCCAGTTTCTACTGACGATGAGCTGCTCG
AATTCATTGGGGTGGAGAGAAGCCATCCCAGCTGTCACGCGCTGATAGAGCTGATTGCCCAGCT
AGAGGCGCCGGAACTGTTTGAGAAGAATGTGTTTAGTGACACCCGTTCCGAGGTTCAGGGTATG
ATCGACAGTGCAGTGTCGAACCACATTGCTCGGCTGTCCAGCAGCCGAAACTCCCTGAGCATGG
ACAGCGAGGAATTGGAACGCTTGATTAAATCTTTCCAGATTCATACTCCCCATTGTTCTCTGTTC
ATAGGCGCTCAGTCCTTATCTCAGCAGCTGGAGAGCTTACCTGAGGCGCTGCAGTCCGGAGTGA
ACAGCGCTGATATCTTATTAGGCAGCACACAGTATATGCTGACCAACTCTCTCGTTGAAGAGTC
AATTGCAACATATCAAAGGACATTAAATAGGATCAATTACCTGAGTGGGGTGGCTGGGCAGATT
AACGGTGCTATCAAAAGAAAGGCAATCGACGGCGAAAAAATACACCTGCCTGCCGCCTGGAGT
GAGCTCATCTCCTTACCTTTCATTGGACAGCCGGTGATTGATGTGGAGAGCGACCTGGCACACTT
AAAAAACCAGTACCAGACCCTGTCCAATGAATTTGACACCCTCATTTCGGCCCTGCAGAAGAAC
TTCGATTTGAATTTCAACAAAGCACTCCTTAACCGCACGCAGCATTTCGAGGCAATGTGCCGGA GCACAAAAAAAAATGCTTTATCTAAGCCCGAGATCGTGTCCTACAGAGATCTGCTGGCGCGGCT
GACCAGTTGCCTTTATCGAGGCTCGCTGGTTCTCAGAAGGGCGGGAATCGAAGTTCTGAAAAAG
CACAAAATCTTTGAGTCGAATAGTGAGCTGAGAGAACACGTCCACGAGCGAAAGCACTTCGTGT
TCGTTAGTCCATTGGACAGAAAGGCAAAAAAACTGTTGCGCCTGACCGATTCCCGCCCTGACTT
GCTCCATGTGATCGATGAGATCCTGCAACATGACAATCTGGAGAATAAGGACAGAGAGTCCCTT
TGGCTGGTCCGGTCTGGGTACCTCCTTGCTGGTCTGCCGGACCAGCTGAGTTCTTCGTTTATCAA
TCTCCCCATAATCACGCAAAAGGGCGATCGCCGGCTGATTGACCTGATTCAGTATGACCAGATC
AATCGCGATGCTTTCGTAATGTTGGTGACAAGTGCTTTCAAAAGCAATCTCTCTGGGTTGCAGTA
CCGCGCTAACAAGCAGTCTTTCGTGGTCACCCGCACCCTGTCTCCTTACCTGGGTAGTAAGCTCG
TATACGTCCCTAAAGACAAAGATTGGCTGGTCCCATCCCAGATGTTTGAGGGAAGATTCGCCGA
TATTCTGCAGAGTGACTACATGGTCTGGAAGGATGCCGGACGCCTGTGCGTGATCGACACTGCC
AAACATCTCTCTAACATTAAAAAAAGCGTGTTTAGTAGCGAAGAAGTCCTTGCTTTTCTTCGAGA
GCTGCCTCACCGGACCTTCATCCAGACCGAGGTACGGGGGTTAGGAGTGAACGTCGATGGAATC
GCATTTAATAACGGGGATATCCCGAGCTTGAAGACATTCTCGAATTGTGTGCAGGTGAAGGTGA
GTAGGACTAATACTAGTCTCGTGCAGACTCTAAACAGGTGGTTCGAGGGTGGCAAAGTGTCACC
TCCCTCTATTCAGTTCGAAAGAGCTTACTACAAAAAAGACGATCAGATTCACGAGGACGCAGCC
AAGAGAAAGATACGCTTCCAGATGCCAGCAACGGAATTAGTGCACGCCAGCGATGACGCTGGT
TGGACCCCCAGCTACCTGCTGGGCATCGACCCCGGTGAGTACGGAATGGGTCTCAGTTTGGTGT
CCATCAACAATGGAGAGGTCCTGGATTCTGGATTCATCCACATTAATTCCCTGATCAATTTCGCG
TCCAAAAAAAGCAATCACCAGACCAAAGTAGTCCCCCGCCAGCAGTACAAGTCCCCCTACGCG
AATTATCTCGAGCAGTCAAAGGATTCAGCAGCAGGGGATATAGCTCACATTCTGGATCGGCTAA
TCTACAAATTGAACGCCTTGCCTGTGTTCGAGGCGCTGTCTGGCAACAGTCAGAGTGCTGCTGAT
CAGGTATGGACCAAAGTTCTATCCTTCTATACATGGGGAGACAACGACGCACAGAACAGTATAC
GGAAGCAGCACTGGTTCGGTGCCTCACACTGGGATATTAAGGGGATGCTGCGCCAACCCCCAAC
CGAAAAAAAACCCAAACCATATATAGCCTTTCCCGGGAGTCAAGTGTCATCCTATGGAAATAGT
CAAAGGTGTAGTTGTTGCGGCCGCAATCCCATTGAGCAGTTGCGTGAGATGGCAAAGGACACGA
GTATCAAGGAGCTGAAAATCCGAAATAGTGAGATCCAACTATTCGATGGTACAATCAAGCTGTT
TAACCCCGACCCTTCCACCGTCATCGAGAGGCGGCGGCATAACCTAGGACCCTCACGCATTCCT
GTGGCAGACCGAACTTTCAAGAATATTAGCCCTTCTTCGTTAGAGTTCAAGGAGCTCATTACTAT
CGTTTCTCGAAGCATCCGCCATAGCCCCGAATTTATTGCTAAGAAACGGGGTATCGGGTCTGAG
TACTTTTGTGCTTATTCTGACTGCAACTCCTCACTGAACTCAGAGGCCAATGCCGCGGCCAATGT
GGCACAGAAGTTTCAGAAGCAACTCTTTTTCGAACTCTGA
SE ATGAAACGTATTCTGAACTCTCTGAAAGTCGCCGCACTGAGGCTGCTGTTTCGAGGAAAGGGCT
Q CAGAGCTGGTGAAGACCGTCAAGTACCCTCTGGTTTCGCCCGTCCAGGGTGCTGTGGAAGAACT
no CGCCGAAGCAATACGCCACGACAACCTACATTTATTTGGGCAGAAGGAAATCGTAGATCTGATG
N GAGAAGGACGAGGGCACCCAGGTCTACTCGGTGGTGGACTTTTGGCTCGACACACTCCGTCTAG
O: GGATGTTCTTCAGTCCAAGTGCTAATGCCCTTAAGATCACTCTGGGGAAGTTTAACAGCGACCA 16 AGTTTCCCCTTTCAGGAAGGTTCTGGAGCAGTCCCCTTTCTTTCTCGCGGGTAGACTCAAAGTGG
3 AGCCCGCTGAACGTATCCTCAGCGTGGAGATCCGCAAGATCGGTAAGAGGGAGAATAGAGTGG
AGAACTACGCCGCAGATGTAGAGACTTGTTTTATCGGTCAGCTGTCTAGTGATGAAAAGCAGTC
TATCCAGAAGCTCGCTAACGATATCTGGGACTCTAAGGATCACGAAGAGCAAAGGATGCTTAAG
GCGGATTTCTTTGCCATTCCCCTCATCAAAGACCCAAAGGCAGTGACCGAGGAAGATCCCGAGA ATGAAACCGCAGGCAAACAGAAGCCTCTCGAATTATGTGTGTGCTTAGTGCCCGAGTTGTACAC
CCGCGGGTTCGGTTCAATAGCGGACTTCCTGGTCCAGCGTCTGACACTATTAAGAGACAAAATG
AGCACAGACACAGCAGAAGACTGCCTTGAGTATGTCGGCATAGAGGAGGAGAAGGGTAATGGG
ATGAACTCGCTGCTGGGGACGTTCCTCAAGAACCTGCAGGGAGACGGGTTCGAACAGATCTTCC
AATTTATGCTCGGCAGTTACGTGGGATGGCAAGGTAAGGAAGACGTCCTACGCGAACGGCTTGA
TTTGCTAGCGGAGAAGGTTAAAAGACTGCCGAAACCTAAGTTTGCCGGCGAGTGGTCCGGCCAT
CGGATGTTCCTGCATGGTCAATTGAAGAGCTGGTCCTCTAACTTTTTCCGCCTGTTTAACGAGAC
TAGGGAGCTCCTCGAAAGCATAAAATCCGACATCCAACACGCGACCATGTTAATCAGCTACGTC
GAAGAGAAAGGGGGATACCACCCACAACTCTTGTCACAGTACAGGAAACTAATGGAGCAGCTG
CCAGCTCTCAGAACAAAGGTGTTAGATCCAGAGATAGAAATGACTCACATGAGCGAGGCGGTA
AGGTCGTACATTATGATCCACAAGTCGGTAGCAGGATTTCTGCCTGACTTACTCGAGTCCCTCGA
TAGGGACAAGGACAGGGAATTCCTGCTGAGTATATTTCCAAGGATCCCCAAAATTGACAAAAA
AACTAAGGAAATCGTGGCCTGGGAGCTCCCAGGCGAGCCCGAAGAAGGATACCTGTTCACTGC
CAATAATCTTTTTCGCAACTTTCTGGAGAATCCTAAACATGTTCCACGTTTCATGGCAGAAAGGA
TCCCGGAAGATTGGACGCGCCTGCGGTCCGCTCCCGTATGGTTTGACGGCATGGTGAAACAATG
GCAGAAAGTGGTAAACCAGCTGGTGGAGTCACCTGGAGCATTGTATCAGTTCAATGAAAGCTTT
CTCCGACAACGTTTACAGGCAATGCTGACAGTGTATAAGAGAGACCTGCAGACAGAGAAATTCC
TTAAGTTGTTGGCTGATGTCTGCAGGCCTCTGGTGGACTTCTTTGGGCTGGGGGGAAACGATATC
ATCTTCAAAAGCTGCCAGGACCCGAGGAAACAATGGCAAACTGTCATTCCCTTGAGTGTCCCCG
CTGATGTGTACACCGCGTGTGAGGGGCTGGCAATCCGGCTTCGTGAGACATTGGGATTTGAGTG
GAAGAACCTTAAGGGCCATGAAAGGGAGGACTTTCTAAGACTGCACCAGCTTTTAGGGAATCTG
CTTTTCTGGATTCGAGATGCCAAACTGGTGGTGAAATTGGAAGATTGGATGAATAATCCCTGTG
TTCAGGAGTACGTTGAGGCTCGTAAGGCCATTGATCTCCCACTGGAGATCTTCGGCTTTGAGGTC
CCCATCTTCCTGAACGGATATCTGTTTAGTGAACTGAGGCAGTTAGAACTGCTGCTCCGCCGTAA
GTCGGTTATGACCAGCTATTCGGTTAAGACAACTGGCAGTCCAAACAGGCTTTTCCAGTTAGTCT
ACCTGCCATTAAATCCTTCCGACCCTGAGAAAAAAAATTCTAATAACTTTCAGGAACGCCTGGA
CACCCCCACTGGCTTATCACGTCGCTTCCTGGACCTTACTCTGGACGCCTTCGCCGGCAAGTTGC
TGACAGACCCCGTGACTCAAGAGCTTAAAACTATGGCTGGGTTCTACGATCACCTGTTTGGTTTC
AAGCTCCCATGTAAGCTGGCAGCCATGTCTAACCACCCTGGCTCTAGCAGCAAGATGGTCGTGT
TGGCCAAACCTAAAAAAGGGGTTGCATCTAATATAGGATTCGAACCAATCCCTGATCCCGCGCA
CCCCGTATTCCGGGTGAGATCATCATGGCCAGAGCTGAAGTATCTGGAGGGGTTACTGTATCTT
CCAGAAGACACTCCACTGACAATAGAGCTCGCAGAGACAAGTGTTAGTTGTCAGAGCGTCAGTA
GCGTGGCATTCGATCTGAAAAATCTGACTACTATCCTTGGACGCGTGGGTGAGTTCCGTGTGAC
CGCAGACCAGCCTTTTAAGTTGACCCCCATCATCCCTGAGAAGGAGGAGTCCTTCATAGGAAAA
ACATATCTAGGCCTTGATGCCGGGGAACGCTCAGGCGTAGGGTTCGCTATCGTCACAGTCGACG
GGGATGGGTACGAGGTACAGCGCCTGGGGGTGCATGAAGATACACAGCTGATGGCCCTACAGC
AGGTGGCCTCTAAAAGCTTGAAGGAGCCGGTGTTCCAGCCGCTCAGAAAGGGTACTTTTCGGCA
GCAGGAACGTATTAGAAAATCTCTCAGAGGATGTTATTGGAACTTCTATCACGCTCTGATGATT
AAGTACCGCGCCAAGGTAGTGCACGAAGAGAGCGTGGGCAGTTCCGGCCTGGTTGGGCAGTGG
TTACGAGCATTCCAGAAGGACCTCAAGAAAGCCGATGTGTTGCCAAAAAAGGGAGGCAAAAAC
GGAGTCGATAAGAAAAAGAGAGAGTCTTCTGCACAAGACACATTGTGGGGAGGGGCTTTTAGC
AAGAAGGAAGAACAGCAGATAGCTTTCGAAGTCCAAGCTGCTGGTTCTAGCCAGTTCTGCCTGA AGTGCGGATGGTGGTTCCAACTCGGAATGCGTGAGGTTAATCGCGTGCAGGAATCCGGCGTCGT
GCTGGATTGGAATCGGAGTATTGTCACATTCCTGATTGAGAGCTCTGGCGAGAAAGTGTATGGG TTCTCCCCTCAGCAACTCGAAAAGGGGTTCAGACCAGACATTGAAACCTTCAAGAAGATGGTTC GGGATTTCATGCGCCCGCCTATGTTTGACCGGAAGGGTCGCCCAGCAGCTGCCTACGAAAGGTT TGTCTTGGGACGCCGGCATCGGCGGTATAGATTCGACAAGGTTTTTGAAGAACGATTCGGACGA TCCGCGCTATTCATTTGCCCGAGGGTTGGCTGTGGCAACTTTGACCACAGCAGCGAGCAGTCAG CCGTAGTGCTGGCTCTAATCGGATATATTGCCGACAAAGAGGGGATGAGCGGAAAAAAGCTAG TCTACGTGCGTCTGGCAGAACTAATGGCGGAATGGAAATTGAAGAAACTGGAGAGGAGTAGAG TTGAGGAGCAAAGCTCCGCTCAGTGA
SE ATGGCGGAGTCGAAGCAAATGCAGTGCAGGAAGTGTGGAGCCTCTATGAAGTACGAAGTGATC
Q GGCCTCGGGAAGAAAAGCTGCAGATATATGTGTCCCGACTGCGGGAATCACACATCTGCAAGA
no AAGATTCAGAATAAGAAGAAAAGGGACAAGAAGTATGGATCTGCCAGTAAAGCACAAAGCCA
N ACGAATCGCAGTTGCAGGGGCCTTATACCCGGATAAAAAGGTTCAGACCATCAAGACTTATAAG
O: TATCCAGCCGACCTGAATGGTGAGGTCCATGACTCAGGGGTGGCCGAAAAAATAGCCCAAGCA 16 ATCCAGGAGGATGAAATAGGGCTCCTCGGCCCCTCTTCCGAGTACGCCTGTTGGATCGCTAGCC 4 AGAAACAGAGCGAGCCCTACAGTGTTGTAGACTTTTGGTTTGACGCTGTGTGCGCCGGAGGCGT
GTTCGCCTATTCTGGGGCTAGATTGCTGTCTACCGTCCTGCAGCTATCTGGGGAGGAGAGCGTCC
TACGCGCAGCCCTGGCATCCTCCCCTTTTGTCGACGATATCAATCTGGCACAGGCCGAAAAATTT
CTGGCGGTGTCCAGGCGAACCGGCCAAGATAAGCTGGGGAAGCGCATTGGAGAGTGCTTCGCA
GAGGGCCGACTTGAGGCCCTAGGCATCAAGGACCGGATGCGTGAATTTGTCCAGGCTATCGATG
TCGCTCAGACCGCTGGGCAGCGTTTTGCCGCGAAACTGAAAATCTTTGGGATTTCTCAGATGCCC
GAGGCAAAGCAGTGGAACAATGACAGCGGACTCACCGTGTGCATCCTGCCCGACTATTACGTCC
CAGAAGAAAATCGCGCAGATCAGTTGGTCGTCCTGCTAAGACGACTGAGAGAGATAGCATACT
GTATGGGGATCGAAGATGAGGCCGGTTTTGAACATCTTGGAATTGATCCTGGCGCACTATCAAA
TTTTTCCAATGGCAATCCTAAACGCGGATTTTTGGGCCGCCTGCTGAACAATGATATTATTGCCT
TAGCGAACAACATGTCCGCCATGACGCCTTACTGGGAGGGCAGGAAGGGAGAACTGATTGAAA
GATTGGCTTGGCTGAAGCACCGTGCAGAGGGGCTTTATCTGAAGGAACCGCATTTTGGAAATAG
TTGGGCCGACCATAGGTCTAGAATTTTTTCCAGAATAGCCGGGTGGCTTTCTGGGTGCGCTGGG
AAGCTAAAGATCGCCAAAGACCAGATCAGCGGAGTGCGTACTGATCTGTTCCTTCTGAAGAGAC
TGCTGGATGCGGTCCCGCAGTCCGCCCCTTCTCCCGACTTCATAGCCTCTATCTCTGCCTTGGAT
CGCTTCCTGGAGGCCGCAGAATCTAGTCAGGATCCTGCCGAACAGGTGAGGGCCCTATACGCCT
TTCATCTGAACGCACCCGCGGTGCGAAGCATCGCCAACAAGGCAGTCCAGCGATCCGACAGCCA
AGAATGGCTTATAAAGGAACTGGACGCTGTGGACCACCTGGAGTTTAACAAGGCCTTTCCCTTC
TTCTCTGATACGGGAAAGAAGAAAAAGAAAGGGGCTAACTCGAATGGCGCTCCGTCCGAGGAG
GAGTACACCGAGACTGAGAGCATCCAGCAGCCCGAGGACGCTGAGCAAGAGGTTAATGGTCAG
GAAGGCAACGGGGCCTCGAAGAACCAGAAGAAGTTTCAGAGAATCCCCCGATTCTTCGGCGAG
GGGAGTCGCAGCGAGTATCGCATCCTCACTGAAGCCCCGCAGTACTTCGACATGTTCTGTAACA
ACATGCGGGCCATCTTTATGCAATTAGAATCCCAACCGCGTAAAGCTCCCAGGGATTTTAAGTG
TTTCCTGCAGAATCGGCTGCAGAAATTGTATAAGCAGACATTCCTGAACGCTCGATCCAACAAG
TGCCGGGCATTACTAGAGTCCGTATTGATTAGTTGGGGAGAGTTTTACACCTACGGGGCTAACG
AGAAAAAATTTCGACTGCGTCATGAAGCTTCTGAGCGCTCCTCGGACCCAGATTACGTGGTGCA
ACAGGCGCTGGAGATCGCTCGGAGGCTGTTTCTCTTCGGCTTTGAGTGGAGGGACTGTAGCGCA GGTGAAAGAGTGGATCTGGTCGAAATACATAAGAAAGCCATATCTTTCCTGTTGGCCATCACTC
AGGCTGAGGTGTCTGTGGGCAGCTATAACTGGCTGGGCAATTCTACCGTGAGTCGGTACCTGTC
CGTGGCAGGGACTGATACCCTTTACGGCACCCAGCTGGAAGAATTCTTAAATGCAACCGTGTTA
TCTCAGATGCGGGGGCTGGCTATCAGGTTATCATCTCAGGAACTGAAGGATGGATTTGACGTAC
AGCTGGAGTCTAGTTGCCAGGATAATCTGCAACACTTGCTCGTGTACAGGGCTTCACGAGACCT
TGCCGCCTGCAAGCGCGCTACTTGTCCAGCTGAGTTGGATCCTAAGATTCTGGTACTGCCCGTGG
GGGCCTTTATCGCTAGCGTGATGAAAATGATTGAAAGAGGGGATGAGCCTTTAGCTGGAGCTTA
TCTGAGACACAGACCCCATAGTTTCGGGTGGCAGATCCGCGTTCGAGGTGTGGCAGAGGTGGGA
ATGGACCAAGGGACCGCCCTGGCGTTCCAGAAACCGACCGAGAGCGAACCCTTCAAGATAAAG
CCGTTTTCCGCTCAATACGGCCCCGTTCTATGGCTGAACAGCTCCAGTTATAGCCAGAGCCAGTA
CCTGGACGGGTTCCTATCACAGCCCAAGAACTGGAGTATGCGGGTGCTGCCACAGGCCGGCTCA
GTGCGGGTAGAACAGCGCGTCGCCTTGATTTGGAATCTCCAGGCCGGAAAGATGAGGCTGGAA
CGGAGCGGAGCGCGGGCTTTCTTCATGCCCGTCCCATTCAGTTTCCGCCCCAGTGGCAGCGGCG
ACGAGGCAGTCCTGGCTCCAAATAGGTACCTGGGACTCTTTCCACACAGCGGCGGCATAGAGTA
CGCTGTGGTCGATGTTCTTGACTCTGCCGGCTTCAAAATACTCGAGAGAGGAACAATAGCCGTC
AATGGCTTCTCCCAGAAACGAGGAGAAAGACAAGAGGAAGCCCATCGCGAAAAACAAAGACG
CGGTATCTCCGATATTGGGCGCAAGAAGCCAGTCCAGGCCGAAGTCGATGCGGCCAACGAGCTC
CATCGAAAATACACCGATGTTGCTACTCGGCTGGGGTGTCGAATTGTCGTTCAATGGGCACCCC
AACCCAAACCAGGCACTGCGCCGACCGCTCAGACTGTGTACGCTAGGGCCGTGAGGACTGAAG
CACCAAGATCCGGCAATCAGGAAGATCACGCCAGGATGAAATCTTCCTGGGGATACACATGGG
GTACGTATTGGGAAAAAAGGAAGCCCGAGGACATCCTCGGCATTAGTACCCAGGTGTATTGGAC
AGGCGGGATCGGCGAGTCCTGCCCGGCTGTCGCCGTCGCGCTATTGGGACACATCAGGGCCACC
TCAACCCAGACTGAATGGGAGAAAGAGGAAGTCGTGTTTGGGCGATTGAAAAAGTTCTTCCCAT
CCTGA
SE ATGGAGAAGCGCATCAATAAAATTCGCAAGAAGCTGTCTGCCGATAACGCCACAAAACCAGTT
Q AGTCGAAGCGGCCCAATGAAGACCCTGCTAGTTCGAGTGATGACTGATGATCTGAAGAAAAGG
no CTCGAAAAGCGACGCAAGAAGCCTGAGGTAATGCCTCAGGTTATAAGTAACAATGCAGCAAAC
N AATCTGCGGATGCTGCTTGACGATTACACAAAGATGAAGGAAGCCATTCTCCAGGTGTATTGGC
O: AGGAGTTCAAGGATGATCACGTAGGCCTGATGTGTAAATTCGCGCAACCTGCAAGCAAGAAGA 16 TCGACCAAAACAAGCTGAAACCCGAGATGGATGAAAAAGGCAATTTAACAACCGCCGGATTCG 5 CTTGTTCCCAGTGTGGGCAGCCACTGTTCGTGTACAAGTTAGAACAGGTGTCGGAAAAAGGAAA
GGCATACACTAACTACTTTGGACGGTGCAATGTTGCAGAACACGAAAAGCTGATACTGCTTGCC
CAGCTTAAGCCCGAAAAAGACAGCGACGAAGCGGTGACCTACAGCCTGGGAAAATTCGGGCAG
CGGGCACTGGACTTCTATTCTATCCACGTTACCAAGGAGAGCACCCACCCAGTGAAGCCGTTGG
CCCAAATCGCTGGAAACCGGTACGCCAGCGGACCAGTCGGCAAGGCCCTGTCCGATGCCTGTAT
GGGCACAATTGCTTCTTTCCTGTCCAAGTACCAGGACATCATAATCGAGCACCAAAAAGTTGTG
AAAGGGAATCAGAAACGCCTGGAATCCCTTCGAGAACTGGCCGGCAAGGAGAACCTTGAGTAC
CCGTCCGTGACCCTGCCTCCACAGCCACATACCAAAGAGGGCGTAGACGCGTATAATGAGGTCA
TTGCCCGCGTTCGCATGTGGGTTAATTTAAACCTGTGGCAGAAATTAAAACTAAGCCGAGATGA
TGCTAAACCGTTACTGAGATTGAAGGGATTCCCTAGCTTTCCTGTGGTGGAGAGAAGGGAAAAC
GAGGTTGATTGGTGGAATACTATTAATGAGGTGAAAAAGCTTATTGACGCCAAGAGGGATATGG
GCAGGGTGTTCTGGAGCGGGGTGACTGCCGAAAAGAGAAATACCATCCTCGAGGGATACAATT ACCTCCCCAACGAGAATGATCATAAGAAAAGAGAGGGGAGCTTAGAGAATCCAAAGAAACCTG
CAAAGAGGCAATTCGGTGATCTCCTGCTCTACCTCGAGAAGAAATACGCGGGGGACTGGGGAA
AAGTTTTTGACGAAGCCTGGGAGCGCATTGACAAGAAGATCGCCGGGCTGACGTCTCACATTGA
ACGGGAAGAGGCACGGAATGCAGAGGACGCCCAGTCTAAGGCCGTGCTGACTGACTGGCTGCG
CGCAAAGGCCTCCTTCGTGCTCGAACGTCTGAAGGAAATGGATGAGAAAGAGTTTTACGCGTGT
GAAATACAGCTGCAGAAGTGGTACGGCGATCTAAGGGGAAATCCCTTCGCAGTGGAAGCCGAG
AATAGGGTAGTTGACATCAGTGGGTTCTCCATCGGCAGTGATGGACATTCTATCCAGTATAGAA
ACCTGCTCGCCTGGAAGTACTTAGAGAACGGCAAGAGAGAGTTCTATCTGCTGATGAACTACGG
GAAAAAAGGTAGAATTCGCTTTACAGATGGCACCGACATAAAGAAGTCCGGAAAGTGGCAAGG
CCTCTTATACGGAGGCGGCAAAGCAAAGGTGATAGACTTGACTTTTGACCCTGACGACGAACAG
CTGATAATCTTGCCGCTGGCCTTTGGCACAAGACAAGGTAGGGAATTTATCTGGAATGATCTTCT
TTCTCTCGAGACCGGACTCATCAAGCTCGCAAACGGAAGGGTCATCGAGAAGACAATCTACAAT
AAAAAGATAGGCCGAGACGAGCCAGCCCTGTTTGTGGCTTTGACATTTGAGCGGAGAGAGGTC
GTAGATCCCAGCAACATCAAACCCGTGAACCTGATCGGTGTTGACAGGGGCGAGAACATCCCG
GCGGTTATCGCACTGACGGATCCAGAAGGATGTCCTCTGCCCGAGTTCAAAGATTCATCGGGAG
GGCCAACCGACATTTTGAGGATAGGGGAGGGGTACAAGGAGAAGCAGCGAGCTATCCAGGCGG
CCAAAGAAGTGGAGCAACGAAGAGCTGGTGGTTATTCTCGCAAGTTCGCTTCCAAAAGTCGTAA
CCTGGCTGACGATATGGTGCGCAATTCTGCCCGTGACCTTTTCTACCACGCCGTTACACACGACG
CCGTGTTAGTGTTTGAAAATCTTAGTCGAGGCTTCGGGCGACAGGGGAAGCGGACCTTTATGAC
CGAGAGACAGTATACAAAAATGGAGGATTGGCTGACCGCCAAACTGGCGTATGAAGGACTCAC
ATCCAAGACCTATCTCTCAAAAACTTTGGCCCAGTATACATCTAAGACGTGCAGTAACTGTGGC
TTCACCATTACCACAGCTGACTACGATGGCATGCTGGTCCGCTTAAAAAAGACATCTGACGGCT
GGGCTACTACCCTCAACAATAAAGAGCTCAAAGCCGAAGGACAAATTACCTATTATAACAGGTA
TAAAAGACAGACTGTCGAGAAGGAGTTGAGCGCGGAGCTGGACCGCCTATCAGAGGAGTCAGG
GAACAACGATATCTCTAAGTGGACTAAGGGACGCCGAGACGAGGCGTTGTTCTTGCTGAAAAA
GCGGTTCTCTCATCGACCCGTGCAGGAGCAGTTCGTGTGTCTGGACTGCGGCCACGAGGTTCAT
GCTGATGAGCAAGCTGCTCTAAATATTGCCCGTAGTTGGTTGTTCCTGAACAGCAATTCAACAG
AGTTCAAGTCATACAAGAGCGGAAAGCAGCCGTTTGTGGGCGCATGGCAGGCATTTTACAAAA
GACGCCTGAAGGAAGTGTGGAAGCCAAACGCC
SE ATGAAAAGGATTAACAAAATCCGAAGGCGGCTTGTAAAGGATTCTAACACCAAAAAGGCTGGC
Q AAGACGGGGCCCATGAAAACATTACTCGTTAGAGTTATGACCCCCGACCTCAGAGAGCGACTGG
no AAAATTTACGCAAGAAGCCAGAGAACATACCTCAGCCAATTAGTAATACCTCTCGGGCAAACCT
N AAACAAGTTGCTTACTGATTACACGGAGATGAAAAAGGCCATACTGCATGTGTACTGGGAGGA
O: GTTTCAAAAGGACCCTGTCGGGCTAATGAGCAGGGTGGCTCAGCCTGCACCTAAAAACATCGAC 16 CAGCGGAAACTCATCCCAGTTAAGGACGGAAATGAGAGATTGACAAGTTCAGGTTTCGCCTGCT
6 CACAGTGCTGTCAACCGCTGTACGTTTATAAGTTAGAACAAGTGAATGACAAAGGAAAGCCTCA
CACAAATTATTTTGGCCGGTGTAATGTCTCTGAGCATGAGCGTCTGATTCTGTTGTCCCCGCATA
AACCGGAAGCTAATGACGAGCTCGTAACCTACAGCTTGGGGAAGTTTGGCCAAAGAGCATTGG
ACTTCTATTCAATCCATGTGACCCGCGAATCCAATCATCCCGTCAAGCCCTTGGAGCAGATAGG
GGGCAATAGTTGCGCTTCTGGCCCTGTGGGCAAAGCCCTGTCCGACGCCTGTATGGGAGCCGTG
GCTTCATTCCTGACCAAATATCAGGATATCATCTTGGAGCACCAGAAAGTGATCAAGAAAAATG
AAAAAAGGTTAGCAAACCTCAAGGATATTGCAAGCGCTAACGGCTTGGCTTTTCCTAAAATCAC ACTTCCACCTCAGCCTCACACAAAGGAAGGCATCGAGGCATACAACAATGTGGTGGCCCAGATC
GTCATCTGGGTTAACTTAAACCTGTGGCAGAAACTTAAAATTGGCAGGGATGAGGCAAAACCCT
TACAGCGCCTGAAAGGATTCCCCAGCTTTCCACTGGTGGAGCGCCAGGCTAACGAAGTGGACTG
GTGGGATATGGTGTGTAACGTCAAGAAGCTCATCAATGAAAAGAAAGAGGACGGTAAAGTCTT
CTGGCAGAACCTCGCCGGTTACAAACGGCAGGAGGCGCTGTTACCTTATCTGTCGAGTGAAGAG
GACCGGAAAAAAGGCAAGAAATTTGCTCGTTATCAGTTTGGTGATTTGCTCCTACATTTGGAGA
AGAAGCACGGCGAGGACTGGGGAAAAGTATACGATGAGGCCTGGGAGAGGATTGACAAAAAG
GTGGAGGGACTGTCAAAGCACATCAAGCTCGAAGAAGAGCGCAGAAGCGAGGACGCCCAATCC
AAAGCAGCGCTGACTGACTGGCTGCGGGCGAAGGCCAGTTTTGTAATCGAAGGCCTTAAAGAA
GCCGACAAGGATGAATTCTGCAGATGCGAATTAAAACTCCAGAAGTGGTACGGCGATCTCCGA
GGTAAGCCTTTCGCAATCGAGGCCGAGAATTCCATACTGGACATTAGTGGATTCAGTAAACAGT
ATAATTGTGCCTTTATATGGCAGAAGGATGGTGTCAAGAAACTCAACCTGTACCTTATTATTAAT
TATTTCAAAGGCGGGAAACTGAGATTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCGAACCGA
TTCTACACAGTTATTAACAAGAAATCTGGTGAAATTGTACCCATGGAGGTAAACTTCAACTTCG
ATGATCCCAATCTGATTATATTGCCACTAGCTTTTGGCAAGCGGCAGGGTAGGGAATTCATTTGG
AACGATTTGCTTTCACTGGAAACAGGGTCCCTTAAGCTGGCAAACGGGAGAGTGATTGAAAAGA
CATTGTACAATCGGAGGACACGTCAGGATGAACCTGCCCTTTTCGTGGCTCTGACATTCGAGCG
CAGGGAGGTTCTGGACTCTAGCAATATCAAGCCAATGAACCTGATCGGCATAGACCGAGGAGA
GAATATTCCGGCTGTGATCGCACTCACCGATCCCGAAGGATGTCCCCTTTCTCGGTTCAAGGACT
CCTTAGGCAATCCAACTCATATCCTGAGAATCGGCGAGTCATACAAGGAGAAGCAGCGAACAA
TTCAGGCCGCCAAGGAAGTCGAGCAGAGGCGAGCTGGCGGCTACAGCCGTAAATACGCTAGTA
AAGCTAAGAACCTGGCCGACGATATGGTGCGCAATACTGCTAGAGACCTGCTGTACTATGCAGT
GACGCAGGACGCAATGCTGATATTCGAGAATCTGTCCAGAGGATTCGGAAGGCAGGGCAAGCG
GACGTTCATGGCCGAGCGCCAGTATACAAGGATGGAGGATTGGTTAACGGCCAAGCTTGCCTAT
GAGGGGCTACCTAGTAAGACCTATCTGTCTAAGACGCTGGCTCAATACACCAGTAAGACCTGCT
CAAACTGTGGCTTTACAATCACTTCTGCTGATTATGATAGAGTGCTCGAGAAGCTAAAAAAAAC
TGCCACCGGCTGGATGACTACTATTAATGGGAAGGAACTGAAAGTGGAAGGACAGATTACCTAT
TATAATCGCTACAAGCGTCAAAACGTCGTCAAGGACCTGTCGGTGGAATTGGACAGACTCAGTG
AAGAGTCCGTGAACAATGATATCAGCTCCTGGACAAAAGGGCGCAGTGGGGAGGCACTCAGCT
TGCTTAAAAAGAGGTTTTCACATCGGCCGGTCCAGGAGAAATTTGTCTGCCTGAACTGCGGATT
CGAGACACACGCCGACGAGCAGGCAGCACTGAACATTGCCAGATCCTGGCTGTTCCTTAGGTCC
CAGGAATATAAGAAGTACCAGACTAACAAAACCACGGGAAACACAGATAAAAGGGCCTTTGTC
GAAACTTGGCAATCCTTTTACCGGAAGAAGTTAAAGGAAGTGTGGAAGCCC
SE ATGGATAAGAAATACTCAATAGGCTTAGCAATCGGCACAAATAGCGTCGGATGGGCGGTGATC
Q ACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTA
no TCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCT
N CAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATT
O: TTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGT 16 GGAAGAAGACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTAT
7 CATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGG
ATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGG
GAGATTTAAATCCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAA TCAATTATTTGAAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCA
CGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATG
GCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATT
TGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATT
GGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTT
TACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATT
AAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCC
AGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGG
GGAGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTG
AGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGG
CTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTT
ATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTAT
GTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAA
TTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGC
ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATG
AGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATGCGAAAACC
AGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAATCGAAAA
GTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAA
TTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATTATT
AAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAACAT
TGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGA
TGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAA
TTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATG
GTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACATTTAAAGAAGACATT
CAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTAGCTGGTA
GCCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAAGTAAT
GGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAACTCAAAA
GGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAG
TCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATT
ATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTA
TGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTCTTAA
CGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGAT
GAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTA
ACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGG
TTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATA
CGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCT
GACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATG
ATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGA
GTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAA
TAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATT
ACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAA
ATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCA ATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAA
GAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGA
TAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAG
TTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATC
CGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACC
TAAATATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTA
CAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATT
ATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATA
AGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGAT
GCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAG
CAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTG
ATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCA
TCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA
SE ATGGATAAGAAGTATTCAATTGGACTTGCGATTGGCACTAACAGTGTGGGCTGGGCGGTGATTA
Q CAGACGAGTATAAGGTGCCGTCAAAAAAGTTTAAAGTTCTGGGCAACACTGATCGCCATTCCAT
no CAAGAAAAACCTAATCGGGGCCCTTCTTTTTGATAGTGGCGAAACGGCCGAGGCGACGCGTCTA
N AAACGTACCGCGCGGCGTCGCTACACCCGACGAAAAAACCGTATTTGTTACCTTCAGGAGATCT
O: TCAGTAACGAAATGGCTAAGGTGGACGATTCATTCTTCCACCGTCTGGAGGAGTCCTTTTTAGTT 16 GAAGAAGACAAGAAGCATGAGCGACACCCAATTTTTGGTAACATTGTCGACGAAGTCGCCTATC 8 ACGAAAAATATCCGACCATTTATCACCTGCGCAAAAAACTGGTCGATAGCACGGATAAAGCGG
ATCTGCGGCTTATTTACCTGGCGCTTGCCCACATGATCAAGTTCCGCGGCCACTTCCTGATAGAA
GGAGACCTGAACCCGGATAATAGCGATGTAGACAAACTGTTTATTCAGCTGGTCCAGACCTACA
ACCAGCTGTTTGAAGAAAATCCGATTAATGCGTCAGGCGTGGATGCGAAAGCGATACTGAGTGC
CCGCCTGTCGAAATCTCGCCGTCTCGAAAATCTGATTGCACAGCTGCCCGGCGAAAAAAAAAAC
CCTGGCAGAGGATGCGAAGCTTCAACTGTCGAAGGACACCTATGACGATGATCTGGATAATCTT
CTGGCACAAATCGGTGATCAGTATGCGGATTTATTCCTTGCAGCGAAAAACCTATCTGACGCAA
TTCTGTTGAGCGATATCCTCCGCGTCAACACCGAAATCACTAAAGCCCCCCTGTCAGCGTCGATG
ATTAAACGTTATGATGAGCACCATCAGGATCTGACCTTGCTAAAGGCGCTGGTGCGACAGCAGC
TTCCCGAAAAATATAAAGAGATCTTTTTTGATCAATCGAAGAATGGTTATGCCGGATACATTGA
TGGCGGAGCCAGTCAGGAAGAATTTTACAAATTCATCAAACCGATCCTGGAAAAAATGGATGG
CACAGAAGAACTGCTTGTGAAATTGAACCGGGAAGATTTACTGCGCAAACAGCGTACGTTCGAC
AACGGCTCCATACCCCATCAGATTCACTTAGGTGAGCTGCATGCAATACTCCGTCGCCAGGAAG
ATTTTTATCCATTTTTAAAAGACAACCGTGAGAAGATTGAAAAAATTTTAACTTTTCGTATTCCA
TATTACGTCGGGCCTTTGGCCCGAGGTAACTCTCGATTCGCCTGGATGACGAGAAAAAGCGAGG
AGACCATCACTCCGTGGAATTTTGAAGAGGTTGTTGATAAAGGCGCGAGCGCCCAGTCGTTTAT
CGAACGTATGACCAACTTTGATAAAAATCTGCCGAATGAAAAAGTGCTTCCGAAGCATTCTCTG
TTGTATGAATATTTCACTGTGTACAATGAGTTAACGAAAGTGAAATATGTGACCGAAGGCATGC
GGAAACCTGCTTTTCTGTCCGGAGAACAGAAAAAAGCAATTGTGGACCTGCTGTTCAAAACGAA
CCGGAAAGTAACTGTGAAGCAGCTGAAAGAGGACTACTTCAAAAAAATCGAATGCTTCGACTC
AGTAGAGATCTCTGGTGTTGAAGATCGCTTCAACGCGAGTCTGGGAACGTACCATGATTTGTTG
AAAATCATCAAAGATAAAGACTTTCTGGATAACGAAGAGAATGAGGACATTCTTGAAGATATTG TTTTGACACTGACTCTGTTTGAGGATCGCGAAATGATTGAAGAGCGCCTGAAAACGTATGCCCA
TTTATTCGATGACAAAGTCATGAAGCAGCTGAAACGTCGCCGCTATACTGGGTGGGGCAGACTT
TCACGTAAATTGATCAATGGTATAAGAGACAAACAGAGCGGCAAAACTATCTTAGATTTCCTGA
AGAGTGATGGATTTGCCAACCGGAATTTTATGCAGCTTATACATGATGACTCGCTAACGTTTAA
AGAAGACATTCAGAAGGCGCAGGTCAGCGGCCAGGGTGATTCGCTGCATGAACACATTGCAAA
TCTTGCCGGATCGCCAGCGATCAAAAAAGGCATCCTTCAGACAGTAAAAGTTGTGGATGAACTG
GTGAAAGTAATGGGTCGTCACAAGCCAGAAAATATTGTGATCGAAATGGCCCGGGAAAATCAG
ACTACTCAAAAAGGTCAGAAAAATTCTCGCGAGCGTATGAAACGTATTGAAGAAGGCATCAAA
GAGCTAGGCAGCCAGATATTAAAGGAACATCCGGTTGAGAACACTCAGCTGCAGAATGAAAAA
CTGTATCTGTATTATCTTCAGAACGGCCGTGACATGTATGTTGATCAAGAACTGGATATCAATCG
CTTGTCCGATTATGACGTGGATCATATTGTTCCGCAAAGCTTTCTGAAAGACGATTCTATTGACA
ATAAAGTACTGACACGTTCGGACAAAAACCGTGGTAAAAGCGATAACGTACCGTCGGAAGAAG
TTGTTAAGAAAATGAAAAATTATTGGCGCCAACTCCTGAATGCTAAATTGATTACCCAGCGGAA
ATTTGATAACTTAACCAAAGCCGAGCGGGGTGGCTTAAGTGAACTGGATAAAGCGGGTTTTATT
AAACGCCAACTGGTAGAAACCCGCCAGATAACGAAACATGTAGCTCAAATCCTCGATAGTCGC
ATGAATACGAAATATGACGAAAATGATAAATTGATCCGTGAAGTAAAAGTGATTACTCTTAAAA
GCAAATTGGTATCTGATTTTCGGAAAGATTTCCAATTCTATAAGGTGAGAGAAATTAACAATTA
CCATCATGCACATGATGCGTATTTAAATGCAGTTGTTGGCACCGCCTTAATCAAAAAATATCCG
AAATTAGAATCTGAGTTCGTGTATGGTGATTATAAAGTTTATGATGTTCGAAAAATGATTGCTAA
GTCTGAACAGGAAATCGGCAAAGCGACCGCAAAGTATTTTTTTTATAGCAATATTATGAATTTTT
TTAAAACTGAGATTACCCTGGCGAATGGCGAAATTCGCAAACGTCCTCTGATTGAAACCAATGG
CGAAACCGGCGAGATAGTATGGGACAAGGGCCGTGATTTTGCGACCGTCCGGAAAGTCCTGTCA
ATGCCGCAGGTGAATATTGTCAAGAAAACAGAAGTTCAGACAGGCGGTTTTAGTAAAGAGTCTA
TTCTGCCCAAACGTAATTCGGATAAATTGATTGCCCGCAAGAAAGATTGGGATCCGAAGAAATA
TGGTGGATTCGATTCTCCGACGGTCGCCTATAGCGTTCTAGTCGTCGCCAAGGTCGAAAAAGGT
AAATCCAAAAAACTGAAATCTGTGAAAGAACTGTTAGGCATTACAATCATGGAACGTAGTAGTT
TTGAAAAGAACCCGATCGACTTCCTCGAGGCGAAAGGCTACAAAGAAGTCAAGAAGGATTTGA
TTATTAAACTCCCAAAATATTCATTATTTGAGTTAGAAAACGGTAGGAAGCGTATGCTGGCGAG
TGCTGGGGAATTACAGAAAGGGAATGAGTTAGCACTGCCGTCAAAATATGTGAACTTTCTGTAT
CTGGCCTCCCATTACGAGAAACTGAAAGGTAGCCCGGAAGATAATGAACAGAAACAACTATTT
GTCGAGCAACACAAACATTATCTGGATGAAATTATTGAACAGATTAGTGAATTCTCTAAACGTG
TTATTTTAGCGGATGCCAACCTTGACAAGGTGCTGAGCGCATATAATAAACACCGTGATAAACC
CATTCGTGAACAGGCTGAAAATATCATACATCTGTTCACGTTAACCAACTTGGGAGCTCCTGCC
GCTTTTAAATATTTCGATACCACAATTGACCGCAAACGTTATACGTCTACAAAAGAGGTGCTCG
ATGCGACCCTGATCCACCAGTCTATTACAGGCCTGTATGAAACTCGTATCGACCTGTCACAACTG
GGCGGCGACTGA
SE ATGGACAAGAAATATTCAATCGGTTTAGCAATAGGAACTAACTCAGTAGGTTGGGCTGTAATTA
Q CAGACGAATACAAGGTACCGTCCAAAAAGTTTAAGGTGTTGGGGAACACAGATAGACACTCTA
no TAAAAAAAAATTTAATAGGCGCTTTACTTTTCGATTCAGGCGAAACTGCAGAAGCGACACGTCT
N GAAGAGAACCGCTAGACGTAGATACACGAGGAGAAAGAACAGAATATGTTACCTACAAGAAAT
O: TTTTTCTAATGAGATGGCTAAGGTGGATGATTCGTTTTTTCATAGACTCGAAGAATCTTTCTTAG 16 TTGAAGAAGATAAAAAACACGAAAGGCATCCTATCTTTGGAAACATAGTTGATGAGGTGGCTTA CCATGAAAAATATCCCACTATATATCACCTTAGAAAAAAGTTGGTTGATTCAACCGACAAAGCG
GATCTAAGGTTAATTTACCTCGCGTTGGCTCACATGATAAAATTTAGAGGACATTTCTTGATCGA
AGGTGATTTAAATCCCGATAACTCTGATGTAGATAAACTGTTCATCCAGTTGGTTCAAACATATA
ATCAGTTGTTCGAAGAGAACCCCATTAACGCATCAGGTGTTGATGCTAAAGCAATCTTATCAGC
AAGGTTGAGCAAGAGCAGACGTCTGGAAAACTTGATTGCCCAATTGCCAGGTGAAAAGAAGAA
CGGTCTTTTTGGAAATTTAATTGCACTTTCACTTGGGTTGACACCGAATTTTAAAAGCAATTTCG
ACCTCGCTGAGGATGCTAAACTCCAGTTATCTAAGGATACATATGACGATGATTTGGATAATCT
ATTGGCCCAGATAGGTGATCAGTATGCAGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCA
ATTCTACTGAGCGATATTTTAAGGGTGAATACAGAAATAACTAAAGCACCTTTGTCTGCATCTAT
GATAAAAAGATACGATGAACACCATCAAGATCTCACACTATTAAAAGCTTTAGTTAGACAACAA
TTACCAGAAAAATATAAAGAAATCTTTTTCGATCAGTCCAAGAACGGATACGCCGGCTATATAG
ATGGCGGTGCCTCCCAAGAAGAATTTTACAAATTTATCAAACCCATTTTGGAAAAGATGGATGG
TACTGAAGAATTATTGGTCAAATTAAACAGGGAAGATTTATTAAGAAAACAAAGGACCTTTGAT
AATGGTTCTATTCCACACCAAATCCATCTAGGGGAATTACATGCGATTCTTAGAAGACAAGAAG
ATTTTTATCCATTCTTGAAAGATAACAGGGAAAAGATAGAGAAAATCTTAACTTTTAGAATTCC
CTACTACGTCGGGCCCTTAGCTAGGGGGAATTCTAGATTCGCCTGGATGACACGCAAATCAGAA
GAAACAATTACGCCTTGGAATTTTGAAGAAGTTGTTGATAAAGGAGCCTCTGCTCAATCTTTTAT
TGAACGAATGACCAATTTTGATAAGAATTTACCCAATGAAAAGGTCTTACCCAAACATTCACTC
CTATACGAGTACTTTACTGTTTACAATGAGTTGACAAAAGTGAAGTATGTTACCGAGGGTATGC
GAAAACCTGCTTTCTTGAGTGGTGAACAAAAGAAGGCCATTGTTGACTTGTTATTCAAAACTAA
CAGAAAGGTCACTGTGAAGCAGCTTAAAGAAGATTATTTCAAAAAGATCGAATGTTTCGACTCG
GTAGAAATTAGTGGTGTGGAAGATAGATTTAATGCTTCTCTTGGAACATATCATGATCTACTAA
AGATCATCAAAGATAAAGATTTCTTGGACAATGAAGAAAATGAAGATATTCTTGAAGACATCGT
GTTGACACTTACATTGTTTGAGGACAGAGAAATGATTGAAGAAAGGCTGAAGACCTACGCCCAT
TTGTTTGATGATAAAGTCATGAAACAGTTAAAGAGGAGAAGGTATACCGGATGGGGTAGGCTGT
CTCGCAAATTGATTAATGGTATTCGTGATAAACAATCGGGTAAAACAATCCTAGATTTCCTGAA
GTCCGATGGTTTCGCCAACAGGAATTTTATGCAATTGATTCATGACGATTCTTTGACTTTTAAAG
AGGATATTCAGAAAGCACAGGTCTCAGGACAGGGCGATTCACTCCATGAACATATAGCTAACCT
GGCTGGCTCCCCTGCTATTAAGAAAGGTATCTTGCAAACCGTCAAAGTAGTAGACGAACTTGTT
AAAGTTATGGGAAGACACAAACCTGAAAATATCGTTATTGAAATGGCTCGCGAAAACCAGACA
ACACAAAAGGGTCAAAAGAATTCGAGAGAGAGAATGAAGCGTATCGAAGAAGGTATTAAAGA
ACTTGGGTCCCAAATACTTAAAGAACATCCAGTAGAAAACACTCAGCTTCAAAATGAAAAATTA
TACTTATATTATCTTCAGAATGGCCGCGATATGTATGTTGACCAAGAGTTAGATATAAATAGGTT
GTCTGATTACGACGTGGATCATATTGTACCTCAATCTTTTCTAAAAGATGATTCAATTGATAATA
AGGTATTAACGAGAAGTGATAAAAATAGAGGTAAATCTGACAACGTGCCAAGCGAAGAGGTGG
TGAAGAAAATGAAAAATTATTGGCGTCAACTGTTGAACGCCAAGTTAATTACGCAGAGAAAGTT
TGATAATCTAACAAAAGCTGAAAGAGGAGGCCTATCTGAGTTAGATAAGGCCGGTTTTATCAAA
CGTCAGTTAGTTGAAACCAGGCAAATCACGAAGCACGTTGCCCAAATTCTAGATTCAAGGATGA
ATACCAAATACGATGAAAACGATAAACTGATTCGGGAAGTCAAGGTTATAACTCTAAAAAGCA
AACTAGTTTCAGATTTTCGCAAAGATTTTCAATTTTACAAAGTTCGAGAAATCAATAATTATCAT
CATGCTCACGACGCGTACTTGAACGCGGTCGTTGGTACAGCTTTAATAAAGAAATATCCTAAAC
TGGAATCGGAATTTGTATATGGGGATTACAAAGTATACGACGTGAGAAAGATGATCGCTAAATC TGAACAAGAAATTGGGAAAGCAACTGCCAAATATTTTTTTTACAGCAACATAATGAATTTTTTTA
AAACGGAAATTACATTGGCAAATGGCGAAATTAGAAAGCGCCCATTGATAGAGACCAATGGAG
AGACTGGGGAAATCGTGTGGGATAAAGGACGTGATTTTGCCACAGTGAGGAAAGTGTTAAGTA
TGCCACAAGTTAATATTGTAAAAAAGACCGAGGTCCAAACGGGTGGATTTAGCAAAGAATCAA
TTTTACCTAAGAGAAATTCAGATAAATTAATTGCCCGCAAAAAGGATTGGGATCCTAAAAAATA
TGGTGGTTTTGATTCCCCAACAGTTGCTTACTCCGTCCTAGTTGTTGCTAAGGTTGAAAAAGGAA
AGTCTAAGAAACTTAAATCCGTAAAAGAGTTACTGGGAATTACAATAATGGAAAGATCCTCTTT
CGAAAAGAACCCTATTGACTTCTTGGAGGCGAAAGGTTATAAAGAAGTCAAAAAAGATTTGATC
ATAAAACTACCAAAGTATTCTCTATTTGAATTGGAAAACGGCAGAAAAAGGATGTTGGCAAGCG
CTGGTGAACTACAAAAGGGTAACGAATTGGCATTGCCGAGTAAATACGTGAATTTTCTATATTT
GGCATCACATTACGAAAAGTTAAAGGGATCACCCGAGGATAACGAGCAGAAACAACTGTTTGT
TGAACAACACAAACATTATCTTGATGAAATTATAGAACAAATTAGTGAGTTCAGTAAGAGAGTT
ATTTTAGCCGATGCAAATTTAGACAAAGTTTTATCTGCTTATAACAAACATAGAGATAAGCCTAT
AAGGGAACAAGCCGAAAATATTATTCATTTGTTTACGTTAACAAATTTAGGGGCACCAGCAGCA
TTCAAGTACTTCGATACGACTATCGATCGTAAGCGTTACACATCTACCAAAGAAGTTCTTGATGC
AACTTTGATTCATCAATCTATAACAGGCTTATATGAAACTAGAATCGATCTGTCACAACTTGGTG
GTGACTAA
SE ATGGACAAGAAGTACTCAATTGGGCTTGCTATCGGCACTAACAGCGTTGGCTGGGCGGTCATCA
Q CAGACGAATATAAGGTCCCATCAAAGAAATTCAAAGTCCTTGGCAATACGGACCGACATTCAAT
no CAAGAAGAACCTGATTGGAGCTCTGCTGTTTGATTCCGGTGAAACCGCCGAGGCAACACGATTG
N AAACGTACCGCTCGTAGGAGGTATACGCGGCGGAAAAATAGGATCTGCTATCTGCAGGAAATA
O: TTTAGCAACGAAATGGCCAAGGTAGACGACAGCTTCTTCCACCGGCTCGAGGAATCTTTCCTCG 17 TGGAAGAAGACAAAAAGCACGAGCGCCACCCCATTTTCGGCAATATCGTGGACGAGGTAGCTT 0 ACCATGAAAAGTATCCAACTATTTACCACTTACGTAAGAAGTTAGTGGACAGCACCGATAAAGC
CGACCTTCGCCTGATTTACCTAGCACTTGCACACATGATTAAGTTCCGAGGCCACTTCTTGATAG
AGGGAGACCTGAATCCTGACAATTCCGATGTGGATAAATTGTTCATCCAGCTGGTACAGACATA
CAATCAGTTGTTTGAGGAAAATCCGATTAATGCCAGTGGCGTGGACGCCAAGGCTATCCTGTCT
GCTCGGCTTAGTAAGAGTAGACGCCTGGAAAATCTAATCGCACAGCTGCCCGGCGAAAAGAAA
AATGGACTGTTCGGTAATTTGATCGCCCTGAGCCTGGGCCTCACCCCTAACTTTAAGTCTAACTT
CGACCTGGCCGAAGATGCTAAGCTCCAGCTGTCCAAAGATACTTACGATGACGATCTCGATAAT
CTACTGGCTCAGATCGGGGACCAGTACGCTGACCTGTTTCTAGCTGCCAAGAACCTCAGTGACG
CCATTCTCCTGTCCGATATTCTGAGGGTTAACACTGAAATTACAAAGGCCCCGCTGAGCGCGAG
CATGATCAAAAGGTACGACGAGCATCACCAGGACCTCACGCTGCTGAAGGCCTTAGTCAGACA
GCAACTGCCCGAAAAGTACAAAGAAATCTTTTTCGACCAATCCAAGAACGGGTACGCCGGCTAC
ATTGATGGCGGGGCTTCACAAGAGGAGTTTTACAAGTTTATCAAGCCCATCCTGGAGAAAATGG
ACGGCACTGAAGAACTGCTTGTGAAACTCAATAGGGAAGACTTACTGAGGAAACAGCGCACAT
TCGATAATGGCTCCATACCCCACCAAATCCATCTGGGAGAGTTGCATGCCATCTTGCGAAGGCA
GGAGGACTTCTACCCCTTTCTTAAGGACAACAGGGAGAAAATCGAGAAAATTCTGACTTTCCGT
ATCCCCTACTACGTGGGCCCACTTGCTCGCGGAAACTCACGATTCGCATGGATGACCAGAAAGT
CCGAGGAAACAATTACACCCTGGAATTTTGAGGAGGTAGTAGACAAGGGAGCCAGCGCTCAAT
CTTTCATTGAGAGGATGACGAATTTCGACAAGAACCTTCCAAACGAGAAAGTGCTTCCTAAGCA
CAGCCTGCTGTATGAGTATTTCACGGTGTACAACGAACTTACGAAGGTCAAGTATGTGACAGAG GGTATGCGGAAACCTGCTTTTCTGTCTGGTGAACAGAAGAAAGCTATCGTCGATCTCCTGTTTAA
AACCAACCGAAAGGTGACGGTGAAACAGTTGAAGGAGGATTACTTCAAGAAGATCGAGTGTTT
TGATTCTGTTGAAATTTCTGGGGTCGAGGATAGATTCAACGCCAGCCTGGGCACCTACCATGATT
TGCTGAAGATTATCAAGGATAAGGATTTTCTGGATAATGAGGAGAATGAAGACATTTTGGAGGA
TATAGTGCTGACCCTCACCCTGTTCGAGGACCGGGAGATGATCGAGGAGAGACTGAAAACATAC
GCTCACCTGTTTGACGACAAGGTCATGAAGCAGCTTAAGAGACGCCGTTACACAGGCTGGGGAA
GATTATCCCGCAAATTAATCAACGGGATACGCGATAAACAAAGTGGCAAGACCATACTCGACTT
CCTAAAGAGCGATGGATTCGCAAATCGCAATTTCATGCAGTTGATCCACGACGATAGCCTGACC
TTCAAAGAGGACATTCAGAAAGCGCAGGTGAGTGGTCAAGGGGATTCCCTGCACGAACACATT
GCTAACTTGGCTGGATCACCAGCCATTAAGAAAGGCATACTGCAGACCGTTAAAGTGGTAGATG
AGCTTGTGAAAGTCATGGGAAGACATAAGCCAGAGAACATAGTGATCGAAATGGCCAGGGAAA
ATCAGACCACGCAAAAGGGGCAGAAGAACTCAAGAGAGCGTATGAAGAGGATCGAGGAGGGC
ATCAAGGAGCTGGGTAGCCAGATCCTTAAAGAGCACCCAGTTGAGAATACCCAGCTGCAGAAT
GAGAAACTTTATCTCTATTATCTCCAGAACGGAAGGGATATGTATGTCGACCAGGAACTGGACA
TCAATCGGCTGAGTGATTATGACGTCGACCACATTGTGCCTCAAAGCTTTCTGAAGGATGATTCC
ATCGACAATAAAGTTCTGACCCGGTCTGATAAAAATAGAGGCAAATCCGACAACGTACCTAGCG
AAGAAGTCGTCAAAAAAATGAAGAACTATTGGAGGCAGTTGCTGAATGCCAAGCTGATTACAC
AACGCAAGTTTGACAATCTCACCAAGGCAGAAAGGGGGGGCCTGTCAGAACTCGACAAAGCAG
GTTTCATTAAAAGGCAGCTAGTTGAAACTAGGCAGATTACTAAGCACGTGGCCCAGATCCTCGA
CTCACGGATGAATACAAAGTATGATGAGAATGATAAGCTAATCCGGGAGGTGAAGGTGATTAC
TCTGAAATCTAAGCTGGTGTCAGATTTCAGAAAAGACTTCCAGTTCTACAAAGTCAGAGAGATC
AACAATTATCACCATGCCCACGATGCATATCTTAATGCAGTAGTGGGGACAGCTCTGATCAAAA
AATATCCTAAACTGGAGTCTGAATTCGTTTATGGTGACTATAAAGTCTATGACGTCAGAAAAAT
GATCGCAAAGAGCGAGCAGGAGATAGGGAAGGCCACAGCAAAGTACTTCTTTTACAGTAATAT
GAGACTAACGGAGAGACAGGGGAGATTGTTTGGGATAAGGGCCGTGACTTCGCCACCGTTAGG
AAAGTGCTGTCCATGCCCCAGGTGAACATTGTGAAGAAGACAGAAGTGCAGACGGGTGGGTTC
TCAAAAGAGTCTATTCTGCCTAAGCGGAATAGTGACAAACTGATCGCACGTAAAAAGGACTGG
GATCCAAAAAAGTACGGCGGATTCGACAGTCCTACCGTTGCATATTCCGTGCTTGTGGTCGCTA
AGGTGGAGAAGGGAAAAAGCAAGAAACTGAAGTCAGTCAAAGAACTACTGGGCATAACGATC
ATGGAGCGCTCCAGTTTCGAAAAAAACCCAATCGATTTTCTTGAAGCCAAGGGATACAAGGAGG
TAAAGAAAGACCTTATCATTAAGCTGCCTAAGTACAGTCTGTTCGAACTGGAGAATGGGAGGAA
GCGCATGCTGGCATCAGCTGGAGAACTCCAAAAAGGGAACGAGTTGGCCCTCCCCTCAAAGTAT
GTCAATTTTCTCTACCTGGCTTCTCACTACGAGAAGTTAAAGGGGTCTCCAGAGGATAATGAGC
AGAAACAGCTGTTTGTGGAACAGCACAAGCACTATTTGGACGAAATCATCGAACAAATTTCCGA
GTTCAGTAAGAGGGTGATTCTGGCCGACGCAAACCTTGACAAAGTTCTGTCCGCATACAATAAG
CACAGAGACAAACCAATCCGCGAGCAAGCCGAGAATATAATTCACCTTTTCACTCTGACTAATC
TGGGGGCCCCCGCAGCATTTAAATATTTCGATACAACAATCGACCGGAAGCGGTATACATCTAC
TAAGGAAGTCCTCGATGCGACACTGATCCACCAGTCAATTACAGGTTTATATGAAACAAGAATC
GACCTGTCCCAGCTGGGCGGCGACTAG
SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAAT
Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTA E) TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATG
N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa 17 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga 1 actttaagAAGGAGatataccATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCG GCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGT AAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGG CTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGA AAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATAT AAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAGGATT ACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACCCC AGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTT CCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAA GAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTAT CCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGC CAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACA TTTTTGGTTTGGAAGAATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTA CGATGATTACATTGGTGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCT AAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAG CGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAA ATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTAC TCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTT CGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGA ATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGA TAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGC GATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATAC CCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGT CCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCT GCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGC CTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGA CGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTACAGA AAAGTGACAGTTAAAAAAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAG AGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAAT CCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTC GGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATC AACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAA GAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAAT CGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTA CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCT TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAG GAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAG TCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTT AAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACG
CAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGACAATACA
AAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGACGATAGCTTGAACAATAGA
GTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAAAATATCA
GACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAGAAAAGT
ACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTGAGAGGCA
AATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAG
TCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAA
AGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAA
CTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACA
TATAACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGG
AAGTTGGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCG
TTACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGA
AAGGTCAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCT
ATAATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTAT
TAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCAATCGCG
TTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAGATTAAG
ATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGCGATAGAC
TTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGAAAAAAATA
GTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGATGGTATCG
ACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCGTATATCG
AATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCTATC
ACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAG
CTAATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTC
CAAGTGTAACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGAC
TTGCTTAAGATATAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTA
TATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAA
TGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAG
TTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATT
TCC
SE AATTCAAAGGATAATCAAAC
Q
no
N
O:
17
2
SE AATCTCTACTCTTTGTAGAT
Q
no
N
O:
Figure imgf000266_0001
17
9
SE AATTTCTACTGTTGTAGAT
Q
no
N
0:
18
0
SE AATTTCTACTCTTGTAGAT
Q
ID
N
0:
18
1

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A composition comprising:
i) a first donor nucleic acid comprising:
a) a modified first target nucleic acid sequence;
b) a first protospacer adjacent motif (PAM) mutation; and
c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and
ii) a second donor nucleic acid comprising:
a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid.
2. The composition of claim 1, wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid.
3. The composition of claim 1, wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease.
4. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.
5. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.
6. The composition of claim 1, wherein the second donor nucleic acid comprises a second PAM mutation.
7. The composition of claim 1, wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off.
8. The composition of claim 1, wherein the second donor nucleic acid sequence targets a unique landing site.
9. A method of genome engineering, the method comprising:
a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease,
wherein the polynucleotide comprises
1) an editing cassette comprising:
i) a modified first target nucleic acid sequence;
ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and
2) a recorder cassette comprising
i) a barcode corresponding to the modified first target nucleic acid sequence; and
ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease;
b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid-guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid.
10. The method of claim 9, further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a).
11. The method of claim 9, wherein the nucleic acid-guided nuclease is a CRISPR nuclease.
12. The method of claim 9, wherein the PAM mutation is not recognized by the nucleic acid- guided nuclease.
13. The method of claim 9, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.
14. The method of claim 9, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.
15. The method of claim 9, wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.
16. A method of selectable recursive genetic engineering comprising
a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising
i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and
ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and
b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site.
17. The method of claim 16, wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off.
18. The method of claim 16, wherein the nucleic acid sequence further comprises a PAM
mutation that is not compatible with the nucleic acid-guided nuclease.
19. The method of claim 16, wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds.
20. The method of claim 16, wherein the polynucleotide further comprises an editing cassette comprising
a) a modified first target nucleic acid sequence;
b) a first protospacer adjacent motif (PAM) mutation; and
c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid,
wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.
PCT/US2017/039146 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries WO2017223538A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK17816357.2T DK3474669T3 (en) 2016-06-24 2017-06-23 Method for generating barcode combinatorial libraries
JP2019519616A JP2019518478A (en) 2016-06-24 2017-06-23 How to generate a barcoded combinatorial library
CN201780052145.8A CN109688820B (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries
ES17816357T ES2915562T3 (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries
AU2017280353A AU2017280353B2 (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries
EP17816357.2A EP3474669B1 (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries
LTEPPCT/US2017/039146T LT3474669T (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries
CA3029254A CA3029254A1 (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662354516P 2016-06-24 2016-06-24
US62/354,516 2016-06-24
US201662367386P 2016-07-27 2016-07-27
US62/367,386 2016-07-27
US201762483930P 2017-04-10 2017-04-10
US62/483,930 2017-04-10

Publications (2)

Publication Number Publication Date
WO2017223538A1 true WO2017223538A1 (en) 2017-12-28
WO2017223538A9 WO2017223538A9 (en) 2018-07-19

Family

ID=60676029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/039146 WO2017223538A1 (en) 2016-06-24 2017-06-23 Methods for generating barcoded combinatorial libraries

Country Status (10)

Country Link
US (5) US10017760B2 (en)
EP (1) EP3474669B1 (en)
JP (1) JP2019518478A (en)
CN (1) CN109688820B (en)
AU (1) AU2017280353B2 (en)
CA (1) CA3029254A1 (en)
DK (1) DK3474669T3 (en)
ES (1) ES2915562T3 (en)
LT (1) LT3474669T (en)
WO (1) WO2017223538A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US10017760B2 (en) 2016-06-24 2018-07-10 Inscripta, Inc. Methods for generating barcoded combinatorial libraries
US10047358B1 (en) 2015-12-07 2018-08-14 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
WO2019055878A3 (en) * 2017-09-15 2019-04-25 The Board Of Trustees Of The Leland Stanford Junior University Multiplex production and barcoding of genetically engineered cells
US10435715B2 (en) 2014-02-11 2019-10-08 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
WO2020011985A1 (en) * 2018-07-12 2020-01-16 Keygene N.V. Type v crispr/nuclease-system for genome editing in plant cells
US10544411B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a glucose permease library and uses thereof
US10544390B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a bacterial hemoglobin library and uses thereof
KR20200020903A (en) * 2017-06-23 2020-02-26 인스크립타 인코포레이티드 Nucleic Acid Guide Nucleases
WO2020041456A1 (en) * 2018-08-22 2020-02-27 The Regents Of The University Of California Variant type v crispr/cas effector polypeptides and methods of use thereof
EP3532089A4 (en) * 2016-09-30 2020-05-13 The Regents of The University of California Rna-guided nucleic acid modifying enzymes and methods of use thereof
WO2020252378A1 (en) * 2019-06-14 2020-12-17 Arbor Biotechnologies, Inc. Novel crispr dna targeting enzymes and systems
JP2021522250A (en) * 2018-04-24 2021-08-30 インスクリプタ, インコーポレイテッド Automated instrument for the production of T cell receptor peptide libraries
US11174470B2 (en) 2019-01-04 2021-11-16 Mammoth Biosciences, Inc. Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection
US11180743B2 (en) 2017-11-01 2021-11-23 The Regents Of The University Of California CasZ compositions and methods of use
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
US11273442B1 (en) 2018-08-01 2022-03-15 Mammoth Biosciences, Inc. Programmable nuclease compositions and methods of use thereof
US11293029B2 (en) 2015-12-07 2022-04-05 Zymergen Inc. Promoters from Corynebacterium glutamicum
EP3861112A4 (en) * 2018-10-04 2022-09-21 The Regents of the University of Colorado, A Body Corporate Engineered chimeric nucleic acid guided nuclease constructs and uses thereof
US11459600B2 (en) 2016-06-16 2022-10-04 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11795472B2 (en) 2016-09-30 2023-10-24 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
US11970719B2 (en) 2017-11-01 2024-04-30 The Regents Of The University Of California Class 2 CRISPR/Cas compositions and methods of use
WO2024094050A1 (en) 2022-11-02 2024-05-10 Centre For Virology, Vaccinology And Therapeutics Limited Interferon-producing universal sarbecovirus vaccines, and uses thereof

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273248A3 (en) * 2016-05-20 2024-01-10 Braingene AB Destabilising domains for conditionally stabilising a protein
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US11359234B2 (en) * 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
US20180004537A1 (en) * 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US10892034B2 (en) 2016-07-01 2021-01-12 Microsoft Technology Licensing, Llc Use of homology direct repair to record timing of a molecular event
CN109477130B (en) 2016-07-01 2022-08-30 微软技术许可有限责任公司 Storage by iterative DNA editing
US20200216837A1 (en) * 2016-08-17 2020-07-09 Katholieke Universiteit Leuven Drug-target identification by rapid selection of drug resistance mutations
JP2020530979A (en) 2017-06-30 2020-11-05 インスクリプタ, インコーポレイテッド Automatic cell processing methods, modules, equipment and systems
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
WO2019068022A1 (en) 2017-09-30 2019-04-04 Inscripta, Inc. Flow through electroporation instrumentation
WO2019152932A1 (en) * 2018-02-05 2019-08-08 The Regents Of The University Of Colorado, A Body Corporate Construction and methods of use of a barcoded and gene edited dna library
EP3775159A4 (en) 2018-03-29 2022-01-19 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
EP3775266A4 (en) * 2018-04-05 2021-06-30 Massachusetts Eye and Ear Infirmary Methods of making and using combinatorial barcoded nucleic acid libraries having defined variation
US10376889B1 (en) 2018-04-13 2019-08-13 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
WO2019209926A1 (en) 2018-04-24 2019-10-31 Inscripta, Inc. Automated instrumentation for production of peptide libraries
US11142740B2 (en) 2018-08-14 2021-10-12 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US10752874B2 (en) 2018-08-14 2020-08-25 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10533152B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11718847B2 (en) * 2018-08-29 2023-08-08 Agilent Technologies, Inc. Amplifying oligonucleotides and producing libraries of dual guide constructs
WO2020081149A2 (en) 2018-08-30 2020-04-23 Inscripta, Inc. Improved detection of nuclease edited sequences in automated modules and instruments
EP3870697A4 (en) 2018-10-22 2022-11-09 Inscripta, Inc. Engineered enzymes
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
CA3118440A1 (en) * 2018-11-03 2020-05-07 Blueallele, Llc Methods for comparing efficacy of donor molecules
JP2022520063A (en) * 2019-02-08 2022-03-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Production and tracking of engineered cells with combined genetic modifications
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
WO2020198174A1 (en) 2019-03-25 2020-10-01 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
EP3958671A4 (en) * 2019-04-24 2023-01-18 Spotlight Therapeutics Methods and compositions for nucleic acid-guided nuclease cell targeting screen
CN113939593A (en) 2019-06-06 2022-01-14 因思科瑞普特公司 Treatment for recursive nucleic acid-guided cell editing
SG11202113253SA (en) 2019-06-07 2021-12-30 Scribe Therapeutics Inc Engineered casx systems
US10907125B2 (en) 2019-06-20 2021-02-02 Inscripta, Inc. Flow through electroporation modules and instrumentation
WO2020257395A1 (en) 2019-06-21 2020-12-24 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in e. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
EP4028522A1 (en) 2019-09-09 2022-07-20 Scribe Therapeutics Inc. Compositions and methods for the targeting of sod1
EP4028523A1 (en) * 2019-09-09 2022-07-20 Scribe Therapeutics Inc. Compositions and methods for use in immunotherapy
WO2021048291A1 (en) * 2019-09-12 2021-03-18 Glaxosmithkline Intellectual Property Development Limited Method for screening libraries
EP4041879A1 (en) * 2019-10-10 2022-08-17 Inscripta, Inc. Split crispr nuclease tethering system
BR112022009584A2 (en) * 2019-11-18 2022-10-04 Shanghai Bluecross Medical Science Inst FLAVOBACTERIUM-DERIVED GENE EDITING SYSTEM
US11203762B2 (en) 2019-11-19 2021-12-21 Inscripta, Inc. Methods for increasing observed editing in bacteria
EP4069845A1 (en) 2019-12-06 2022-10-12 Scribe Therapeutics Inc. Compositions and methods for the targeting of rhodopsin
KR20220110778A (en) 2019-12-10 2022-08-09 인스크립타 인코포레이티드 Novel MAD nuclease
US10704033B1 (en) * 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
US11008557B1 (en) 2019-12-18 2021-05-18 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
EP4081641A4 (en) * 2019-12-24 2023-12-27 Asklepios Biopharmaceutical, Inc. Method for identifying regulatory elements conformationally
WO2021142394A1 (en) * 2020-01-11 2021-07-15 Inscripta, Inc. Cell populations with rationally designed edits
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
CA3157061A1 (en) 2020-01-27 2021-08-05 Christian SILTANEN Electroporation modules and instrumentation
US20210317444A1 (en) * 2020-04-08 2021-10-14 Inscripta, Inc. System and method for gene editing cassette design
US20230159955A1 (en) * 2020-04-16 2023-05-25 Zymergen Inc. Circular-permuted nucleic acids for homology-directed editing
US20210332388A1 (en) 2020-04-24 2021-10-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
WO2021247942A2 (en) * 2020-06-04 2021-12-09 Inscripta, Inc. Methods and compositions for crispr editing of cells and correlating the edits to a resulting cellular nucleic acid profile
JP7419168B2 (en) * 2020-06-10 2024-01-22 株式会社東芝 Modified piggyBac transposase polypeptide, polynucleotide encoding it, introduction carrier, kit, method for integrating a target sequence into the genome of a cell, and cell production method
US20230265404A1 (en) * 2020-06-16 2023-08-24 Bio-Techne Corporation Engineered mad7 directed endonuclease
WO2022060749A1 (en) * 2020-09-15 2022-03-24 Inscripta, Inc. Crispr editing to embed nucleic acid landing pads into genomes of live cells
US11566241B2 (en) * 2020-10-02 2023-01-31 Inscripta, Inc. Methods and systems for modeling of design representation in a library of editing cassettes
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
AU2021415461A1 (en) 2021-01-04 2023-08-17 Inscripta, Inc. Mad nucleases
EP4274890A1 (en) 2021-01-07 2023-11-15 Inscripta, Inc. Mad nucleases
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
CA3209070A1 (en) * 2021-03-09 2022-09-22 Hongxia Xu Analyzing expression of protein-coding variants in cells
US20240209447A1 (en) * 2021-04-20 2024-06-27 The Board Of Trustees Of The Leland Stanford Junior University Compressive molecular probes for genomic editing and tracking
EP4351660A2 (en) 2021-06-09 2024-04-17 Scribe Therapeutics Inc. Particle delivery systems
WO2023288018A2 (en) * 2021-07-14 2023-01-19 Ultima Genomics, Inc. Barcode selection
KR20240047475A (en) * 2021-09-02 2024-04-12 유니버시티 오브 워싱톤 Multiple, temporally resolved molecular signal recorders and related methods
WO2023076134A1 (en) * 2021-10-26 2023-05-04 Inscripta, Inc. Processes for measuring strain fitness and/or genotype selection in bioreactors
CN114022491B (en) * 2021-10-27 2022-05-10 安徽医科大学 Small data set esophageal cancer target area image automatic delineation method based on improved spatial pyramid model
WO2023137233A2 (en) * 2022-01-17 2023-07-20 Danmarks Tekniske Universitet Compositions and methods for editing genomes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123339A1 (en) 2014-02-11 2015-08-20 The Regents Of The University Of Colorado, A Body Corporate Crispr enabled multiplexed genome engineering
WO2016070037A2 (en) * 2014-10-31 2016-05-06 Massachusetts Institute Of Technology Massively parallel combinatorial genetics for crispr

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1001760A (en) 1911-03-16 1911-08-29 William F Mcgregor Floating fish-trap.
US1001184A (en) 1911-04-20 1911-08-22 Charles M Coover Non-slipping device.
US6562594B1 (en) 1999-09-29 2003-05-13 Diversa Corporation Saturation mutagenesis in directed evolution
US20030044866A1 (en) 2001-08-15 2003-03-06 Charles Boone Yeast arrays, methods of making such arrays, and methods of analyzing such arrays
KR20050010053A (en) 2002-06-14 2005-01-26 다이버사 코포레이션 Xylanases, nucleic acids encoding them and methods for making and using them
JP4447977B2 (en) 2004-06-30 2010-04-07 富士通マイクロエレクトロニクス株式会社 Secure processor and program for secure processor.
EP3284833B1 (en) 2005-08-26 2021-12-01 DuPont Nutrition Biosciences ApS Use of crispr associated genes (cas)
EP2034848B1 (en) 2006-06-16 2016-10-19 DuPont Nutrition Biosciences ApS Streptococcus thermophilus bacterium
WO2008052101A2 (en) 2006-10-25 2008-05-02 President And Fellows Of Harvard College Multiplex automated genome engineering
US9309511B2 (en) 2007-08-28 2016-04-12 The Johns Hopkins University Functional assay for identification of loss-of-function mutations in genes
US20140121118A1 (en) 2010-11-23 2014-05-01 Opx Biotechnologies, Inc. Methods, systems and compositions regarding multiplex construction protein amino-acid substitutions and identification of sequence-activity relationships, to provide gene replacement such as with tagged mutant genes, such as via efficient homologous recombination
WO2012142591A2 (en) 2011-04-14 2012-10-18 The Regents Of The University Of Colorado Compositions, methods and uses for multiplex protein sequence activity relationship mapping
CA3226329A1 (en) 2011-12-16 2013-06-20 Targetgene Biotechnologies Ltd Compositions and methods for modifying a predetermined target nucleic acid sequence
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
UA118014C2 (en) 2012-05-25 2018-11-12 Те Ріджентс Оф Те Юніверсіті Оф Каліфорнія METHOD OF METHOD MODIFICATION
EA201492222A1 (en) 2012-05-25 2015-05-29 Селлектис METHODS OF CONSTRUCTING NONALLOACTIVE AND SUSTAINABLE T-CELL IMMUNOSUPRESSION FOR IMMUNOTHERAPY
EP2880171B1 (en) 2012-08-03 2018-10-03 The Regents of The University of California Methods and compositions for controlling gene expression by rna processing
CN110669746B (en) 2012-10-23 2024-04-16 基因工具股份有限公司 Composition for cleaving target DNA and use thereof
IL300199A (en) 2012-12-06 2023-03-01 Sigma Aldrich Co Llc Crispr-based genome modification and regulation
PL2921557T3 (en) 2012-12-12 2017-03-31 Broad Inst Inc Engineering of systems, methods and optimized guide compositions for sequence manipulation
SG10201912327SA (en) 2012-12-12 2020-02-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
CA2894668A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas systems and methods for altering expression of gene products in eukaryotic cells
DK2921557T3 (en) 2012-12-12 2016-11-07 Broad Inst Inc Design of systems, methods and optimized sequence manipulation guide compositions
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
RU2721275C2 (en) 2012-12-12 2020-05-18 Те Брод Инститьют, Инк. Delivery, construction and optimization of systems, methods and compositions for sequence manipulation and use in therapy
ES2741951T3 (en) 2012-12-17 2020-02-12 Harvard College Genetic engineering modification of the human genome guided by RNA
CA2897390A1 (en) 2013-01-10 2014-07-17 Ge Healthcare Dharmacon, Inc. Templates, libraries, kits and methods for generating molecules
AU2014207618A1 (en) 2013-01-16 2015-08-06 Emory University Cas9-nucleic acid complexes and uses related thereto
WO2014143381A1 (en) 2013-03-09 2014-09-18 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple crispr/cas selections of recombineering events
AU2014235794A1 (en) 2013-03-14 2015-10-22 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
CA3161835A1 (en) 2013-03-15 2014-09-25 The General Hospital Corporation Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
CN105518146B (en) 2013-04-04 2022-07-15 哈佛学院校长同事会 Therapeutic uses of genome editing with CRISPR/Cas systems
DK3309248T3 (en) 2013-05-29 2021-08-02 Cellectis Method for manipulating T cells for immunotherapy using an RNA-guided CAS nuclease system
AU2014281027A1 (en) * 2013-06-17 2016-01-28 Massachusetts Institute Of Technology Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
RU2764637C2 (en) 2013-07-09 2022-01-19 Президент Энд Фэллоуз Оф Харвард Коллидж Multiplex genomic engineering guided by rna
PT3019619T (en) 2013-07-11 2021-11-11 Modernatx Inc Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
WO2015017866A1 (en) 2013-08-02 2015-02-05 Enevolv, Inc. Processes and host cells for genome, pathway, and biomolecular engineering
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
EP3041498B1 (en) 2013-09-05 2022-02-16 Massachusetts Institute of Technology Tuning microbial populations with programmable nucleases
US20150079680A1 (en) 2013-09-18 2015-03-19 Kymab Limited Methods, cells & organisms
US20160237455A1 (en) 2013-09-27 2016-08-18 Editas Medicine, Inc. Crispr-related methods and compositions
WO2015048690A1 (en) 2013-09-27 2015-04-02 The Regents Of The University Of California Optimized small guide rnas and methods of use
US20150098954A1 (en) 2013-10-08 2015-04-09 Elwha Llc Compositions and Methods Related to CRISPR Targeting
US10752906B2 (en) 2013-11-05 2020-08-25 President And Fellows Of Harvard College Precise microbiota engineering at the cellular level
US20160264995A1 (en) 2013-11-06 2016-09-15 Hiroshima University Vector for Nucleic Acid Insertion
US11326209B2 (en) 2013-11-07 2022-05-10 Massachusetts Institute Of Technology Cell-based genomic recorded accumulative memory
EP3375877A1 (en) 2013-11-18 2018-09-19 Crispr Therapeutics AG Crispr-cas system materials and methods
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
KR102170502B1 (en) 2013-12-11 2020-10-28 리제너론 파마슈티칼스 인코포레이티드 Methods and compositions for the targeted modification of a genome
CA2932436A1 (en) 2013-12-12 2015-06-18 The Broad Institute, Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
CN113215219A (en) 2014-02-13 2021-08-06 宝生物工程(美国) 有限公司 Methods of depleting target molecules from an initial collection of nucleic acids, and compositions and kits for practicing same
US10507232B2 (en) 2014-04-02 2019-12-17 University Of Florida Research Foundation, Incorporated Materials and methods for the treatment of latent viral infection
GB201406968D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Deletion mutants
GB201406970D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Targeted mutations
WO2015168600A2 (en) 2014-05-02 2015-11-05 Tufts University Methods and apparatus for transformation of naturally competent cells
JP2017517256A (en) 2014-05-20 2017-06-29 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ How to edit gene sequences
KR101886381B1 (en) 2014-05-28 2018-08-10 기초과학연구원 A method for isolating target DNA using inactivated site-specific nuclease
EP3152319A4 (en) 2014-06-05 2017-12-27 Sangamo BioSciences, Inc. Methods and compositions for nuclease design
CA2951707A1 (en) 2014-06-10 2015-12-17 Massachusetts Institute Of Technology Method for gene editing
EP3157328B1 (en) 2014-06-17 2021-08-04 Poseida Therapeutics, Inc. A method for directing proteins to specific loci in the genome and uses thereof
US20150376586A1 (en) 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
GB201411344D0 (en) 2014-06-26 2014-08-13 Univ Leicester Cloning
US11254933B2 (en) 2014-07-14 2022-02-22 The Regents Of The University Of California CRISPR/Cas transcriptional modulation
US20160053272A1 (en) 2014-07-18 2016-02-25 Whitehead Institute For Biomedical Research Methods Of Modifying A Sequence Using CRISPR
US20160053304A1 (en) 2014-07-18 2016-02-25 Whitehead Institute For Biomedical Research Methods Of Depleting Target Sequences Using CRISPR
US20160076093A1 (en) 2014-08-04 2016-03-17 University Of Washington Multiplex homology-directed repair
KR20180015731A (en) 2014-08-06 2018-02-13 주식회사 툴젠 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
US10513711B2 (en) 2014-08-13 2019-12-24 Dupont Us Holding, Llc Genetic targeting in non-conventional yeast using an RNA-guided endonuclease
WO2016040594A1 (en) 2014-09-10 2016-03-17 The Regents Of The University Of California Reconstruction of ancestral cells by enzymatic recording
EP3998344A1 (en) 2014-10-09 2022-05-18 Life Technologies Corporation Crispr oligonucleotides and gene editing
CA2969619A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
CN107250363B (en) 2014-12-17 2021-03-30 纳幕尔杜邦公司 Compositions and methods for efficient gene editing in E.coli
CA2971444A1 (en) 2014-12-20 2016-06-23 Arc Bio, Llc Compositions and methods for targeted depletion, enrichment, and partitioning of nucleic acids using crispr/cas system proteins
GB201506509D0 (en) 2015-04-16 2015-06-03 Univ Wageningen Nuclease-mediated genome editing
CA2985506A1 (en) 2015-05-15 2016-11-24 Pioneer Hi-Bred International, Inc. Guide rna/cas endonuclease systems
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
RU2021120582A (en) 2015-06-18 2021-09-02 Те Брод Инститьют, Инк. CRISPR ENZYME MUTATIONS TO REDUCE NON-TARGET EFFECTS
JP2018519811A (en) 2015-06-29 2018-07-26 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
WO2017015015A1 (en) 2015-07-17 2017-01-26 Emory University Crispr-associated protein from francisella and uses related thereto
EP3329001B1 (en) 2015-07-28 2021-09-22 Danisco US Inc. Genome editing systems and methods of use
WO2017031483A1 (en) 2015-08-20 2017-02-23 Applied Stemcell, Inc. Nuclease with enhanced efficiency of genome editing
JP6799058B2 (en) 2015-09-21 2020-12-09 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. Allele selective gene editing and its use
EP3353309A4 (en) 2015-09-25 2019-04-10 Tarveda Therapeutics, Inc. Compositions and methods for genome editing
WO2017068120A1 (en) 2015-10-22 2017-04-27 Institut National De La Sante Et De La Recherche Medicale (Inserm) Endonuclease-barcoding
US9677090B2 (en) 2015-10-23 2017-06-13 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US11905521B2 (en) 2015-11-17 2024-02-20 The Chinese University Of Hong Kong Methods and systems for targeted gene manipulation
EP3380634A1 (en) 2015-11-26 2018-10-03 Dnae Group Holdings Limited Single molecule controls
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
DK3386550T3 (en) 2015-12-07 2021-04-26 Arc Bio Llc Methods for preparing and using guide nucleic acids
KR102006320B1 (en) 2015-12-07 2019-08-02 지머젠 인코포레이티드 Microbial Strain Improvement by HTP Genome Engineering Platform
WO2017109167A2 (en) 2015-12-24 2017-06-29 B.R.A.I.N. Ag Reconstitution of dna-end repair pathway in prokaryotes
LT3474669T (en) 2016-06-24 2022-06-10 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123339A1 (en) 2014-02-11 2015-08-20 The Regents Of The University Of Colorado, A Body Corporate Crispr enabled multiplexed genome engineering
WO2016070037A2 (en) * 2014-10-31 2016-05-06 Massachusetts Institute Of Technology Massively parallel combinatorial genetics for crispr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474669A4

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465207B2 (en) 2014-02-11 2019-11-05 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US11639511B2 (en) 2014-02-11 2023-05-02 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US11345933B2 (en) 2014-02-11 2022-05-31 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11702677B2 (en) 2014-02-11 2023-07-18 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11795479B2 (en) 2014-02-11 2023-10-24 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11078498B2 (en) 2014-02-11 2021-08-03 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10731180B2 (en) 2014-02-11 2020-08-04 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US10711284B2 (en) 2014-02-11 2020-07-14 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US10669559B2 (en) 2014-02-11 2020-06-02 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10435715B2 (en) 2014-02-11 2019-10-08 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10808243B2 (en) 2015-12-07 2020-10-20 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US10647980B2 (en) 2015-12-07 2020-05-12 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US10968445B2 (en) 2015-12-07 2021-04-06 Zymergen Inc. HTP genomic engineering platform
US11352621B2 (en) 2015-12-07 2022-06-07 Zymergen Inc. HTP genomic engineering platform
US11312951B2 (en) 2015-12-07 2022-04-26 Zymergen Inc. Systems and methods for host cell improvement utilizing epistatic effects
US11293029B2 (en) 2015-12-07 2022-04-05 Zymergen Inc. Promoters from Corynebacterium glutamicum
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
US10047358B1 (en) 2015-12-07 2018-08-14 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US11155808B2 (en) 2015-12-07 2021-10-26 Zymergen Inc. HTP genomic engineering platform
US10883101B2 (en) 2015-12-07 2021-01-05 Zymergen Inc. Automated system for HTP genomic engineering
US11155807B2 (en) 2015-12-07 2021-10-26 Zymergen Inc. Automated system for HTP genomic engineering
US10336998B2 (en) 2015-12-07 2019-07-02 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US10745694B2 (en) 2015-12-07 2020-08-18 Zymergen Inc. Automated system for HTP genomic engineering
US11085040B2 (en) 2015-12-07 2021-08-10 Zymergen Inc. Systems and methods for host cell improvement utilizing epistatic effects
US10457933B2 (en) 2015-12-07 2019-10-29 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US11827919B2 (en) 2016-06-16 2023-11-28 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11459599B2 (en) 2016-06-16 2022-10-04 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11459600B2 (en) 2016-06-16 2022-10-04 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11840725B2 (en) 2016-06-16 2023-12-12 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US10287575B2 (en) 2016-06-24 2019-05-14 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10294473B2 (en) 2016-06-24 2019-05-21 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US11584928B2 (en) 2016-06-24 2023-02-21 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10017760B2 (en) 2016-06-24 2018-07-10 Inscripta, Inc. Methods for generating barcoded combinatorial libraries
US10544390B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a bacterial hemoglobin library and uses thereof
US10544411B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a glucose permease library and uses thereof
US11371062B2 (en) 2016-09-30 2022-06-28 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
US11795472B2 (en) 2016-09-30 2023-10-24 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
EP3532089A4 (en) * 2016-09-30 2020-05-13 The Regents of The University of California Rna-guided nucleic acid modifying enzymes and methods of use thereof
US11873504B2 (en) 2016-09-30 2024-01-16 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
US10626416B2 (en) 2017-06-23 2020-04-21 Inscripta, Inc. Nucleic acid-guided nucleases
JP2020530264A (en) * 2017-06-23 2020-10-22 インスクリプタ, インコーポレイテッド Nucleic acid-induced nuclease
AU2018289077B2 (en) * 2017-06-23 2022-03-10 Inscripta, Inc. Nucleic acid-guided nucleases
US11697826B2 (en) 2017-06-23 2023-07-11 Inscripta, Inc. Nucleic acid-guided nucleases
EP3642334B1 (en) * 2017-06-23 2023-12-27 Inscripta, Inc. Nucleic acid-guided nucleases
US10435714B2 (en) 2017-06-23 2019-10-08 Inscripta, Inc. Nucleic acid-guided nucleases
KR102321388B1 (en) 2017-06-23 2021-11-03 인스크립타 인코포레이티드 Nucleic Acid Guide Nuclease
KR20200020903A (en) * 2017-06-23 2020-02-26 인스크립타 인코포레이티드 Nucleic Acid Guide Nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US10337028B2 (en) 2017-06-23 2019-07-02 Inscripta, Inc. Nucleic acid-guided nucleases
US20200231987A1 (en) * 2017-06-23 2020-07-23 Inscripta, Inc. Nucleic acid-guided nucleases
JP7136816B2 (en) 2017-06-23 2022-09-13 インスクリプタ, インコーポレイテッド nucleic acid-guided nuclease
JP2022169775A (en) * 2017-06-23 2022-11-09 インスクリプタ, インコーポレイテッド Nucleic acid-guided nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
WO2019055878A3 (en) * 2017-09-15 2019-04-25 The Board Of Trustees Of The Leland Stanford Junior University Multiplex production and barcoding of genetically engineered cells
US11453866B2 (en) 2017-11-01 2022-09-27 The Regents Of The University Of California CASZ compositions and methods of use
US11441137B2 (en) 2017-11-01 2022-09-13 The Regents Of The University Of California CasZ compositions and methods of use
US11371031B2 (en) 2017-11-01 2022-06-28 The Regents Of The University Of California CasZ compositions and methods of use
US11970719B2 (en) 2017-11-01 2024-04-30 The Regents Of The University Of California Class 2 CRISPR/Cas compositions and methods of use
US11180743B2 (en) 2017-11-01 2021-11-23 The Regents Of The University Of California CasZ compositions and methods of use
JP2021522250A (en) * 2018-04-24 2021-08-30 インスクリプタ, インコーポレイテッド Automated instrument for the production of T cell receptor peptide libraries
WO2020011985A1 (en) * 2018-07-12 2020-01-16 Keygene N.V. Type v crispr/nuclease-system for genome editing in plant cells
JP7396770B2 (en) 2018-07-12 2023-12-12 キージーン ナムローゼ フェンノートシャップ Type V CRISPR/nuclease system for genome editing in plant cells
JP2021524266A (en) * 2018-07-12 2021-09-13 キージーン ナムローゼ フェンノートシャップ V-type CRISPR / nuclease system for genome editing in plant cells
US11273442B1 (en) 2018-08-01 2022-03-15 Mammoth Biosciences, Inc. Programmable nuclease compositions and methods of use thereof
US11761029B2 (en) 2018-08-01 2023-09-19 Mammoth Biosciences, Inc. Programmable nuclease compositions and methods of use thereof
WO2020041456A1 (en) * 2018-08-22 2020-02-27 The Regents Of The University Of California Variant type v crispr/cas effector polypeptides and methods of use thereof
EP3861112A4 (en) * 2018-10-04 2022-09-21 The Regents of the University of Colorado, A Body Corporate Engineered chimeric nucleic acid guided nuclease constructs and uses thereof
US11174470B2 (en) 2019-01-04 2021-11-16 Mammoth Biosciences, Inc. Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection
WO2020252378A1 (en) * 2019-06-14 2020-12-17 Arbor Biotechnologies, Inc. Novel crispr dna targeting enzymes and systems
WO2024094050A1 (en) 2022-11-02 2024-05-10 Centre For Virology, Vaccinology And Therapeutics Limited Interferon-producing universal sarbecovirus vaccines, and uses thereof

Also Published As

Publication number Publication date
EP3474669B1 (en) 2022-04-06
DK3474669T3 (en) 2022-06-27
US20180230460A1 (en) 2018-08-16
EP3474669A4 (en) 2019-05-08
US11584928B2 (en) 2023-02-21
WO2017223538A9 (en) 2018-07-19
US20190194650A1 (en) 2019-06-27
AU2017280353A1 (en) 2019-01-24
ES2915562T3 (en) 2022-06-23
US10294473B2 (en) 2019-05-21
CN109688820A (en) 2019-04-26
US20170369870A1 (en) 2017-12-28
US10017760B2 (en) 2018-07-10
JP2019518478A (en) 2019-07-04
EP3474669A1 (en) 2019-05-01
US20230227810A1 (en) 2023-07-20
CA3029254A1 (en) 2017-12-28
LT3474669T (en) 2022-06-10
CN109688820B (en) 2023-01-10
US20180230461A1 (en) 2018-08-16
US10287575B2 (en) 2019-05-14
AU2017280353B2 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
AU2017280353B2 (en) Methods for generating barcoded combinatorial libraries
AU2018271257B2 (en) Crispr enabled multiplexed genome engineering
CN105408497B (en) The specificity of the genome editor of RNA guidance is improved using truncated guidance RNA (tru-gRNA)
US11242513B2 (en) Thermostable Cas9 nucleases
WO2019006471A2 (en) Novel crispr rna targeting enzymes and systems and uses thereof
Fernández‐Cabezón et al. Evolutionary approaches for engineering industrially relevant phenotypes in bacterial cell factories
EP3414333B1 (en) Replicative transposon system
Schroeder et al. Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome
Escudero et al. Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions
US11608570B2 (en) Targeted in situ protein diversification by site directed DNA cleavage and repair
Lale et al. A universal approach to gene expression engineering
US20200347441A1 (en) Transposase compositions, methods of making, and methods of screening
EP1838851A1 (en) Polypeptide mutagenesis method
Venetz Development of a Standardized Assembly Technology for Large-Scale DNA Constructs and Demonstration of its Applicability to Build Synthetic Chromosomes
Vidal et al. Chemical Biology
Merritt Efforts Towards the Directed Evolution of a Protein Fold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17816357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519616

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3029254

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017280353

Country of ref document: AU

Date of ref document: 20170623

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017816357

Country of ref document: EP

Effective date: 20190124