WO2017222004A1 - Refrigerating machine oil and composition for refrigerating machines - Google Patents

Refrigerating machine oil and composition for refrigerating machines Download PDF

Info

Publication number
WO2017222004A1
WO2017222004A1 PCT/JP2017/022949 JP2017022949W WO2017222004A1 WO 2017222004 A1 WO2017222004 A1 WO 2017222004A1 JP 2017022949 W JP2017022949 W JP 2017022949W WO 2017222004 A1 WO2017222004 A1 WO 2017222004A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating machine
machine oil
group
refrigerant
structural unit
Prior art date
Application number
PCT/JP2017/022949
Other languages
French (fr)
Japanese (ja)
Inventor
中島 聡
知也 松本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2017222004A1 publication Critical patent/WO2017222004A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • C10M129/18Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters

Definitions

  • the present invention relates to a refrigerator oil and a refrigerator composition containing a refrigerant and a refrigerator oil.
  • a compression refrigerator includes at least a compressor, a condenser, an expansion mechanism (an expansion valve, etc.), an evaporator, and the like, and a sealed system is mixed with a mixture of refrigerant and refrigerating machine oil (hereinafter, “ It also has a structure in which the composition for the refrigerator is also circulated.
  • a refrigerant used in a compression refrigerator HFC (hydrofluorocarbon) that does not destroy the ozone layer is widely used.
  • HFC, R134a and the like are often used, but in recent years, the use of difluoromethane (R32) having a lower global warming potential is being studied.
  • difluoromethane (R32) is also referred to as “R32 refrigerant”.
  • R32 refrigerant difluoromethane
  • additives such as antioxidants, acid scavengers, extreme pressure agents, etc. are blended with polyvinyl ether compounds such as polyethyl vinyl ether, copolymers of ethyl vinyl ether and isobutyl vinyl ether, etc.
  • polyvinyl ether compounds such as polyethyl vinyl ether, copolymers of ethyl vinyl ether and isobutyl vinyl ether, etc.
  • the R32 refrigerant has a compressor discharge temperature of 20 ° C. or higher compared to R134a or the like. Therefore, the refrigerating machine oil used for the R32 refrigerant is likely to increase in acid value due to decomposition at a high temperature. In order to suppress such an increase in acid value, refrigerating machine oils are required to have excellent high-temperature oxidation stability. Moreover, since the inside of a compressor becomes high temperature, the refrigerating machine oil also needs lubricity under high temperature. Furthermore, the refrigeration oil is generally required to circulate in the system of the compression refrigeration machine without phase separation from the refrigerant. In a compression refrigerator, the inside of a compressor becomes high temperature and the inside of a cooler becomes low temperature. Therefore, the refrigerating machine oil is required to have a property compatible with the refrigerant from a high temperature to a low temperature.
  • the present inventors have found that a refrigerating machine oil containing a polyvinyl ether-based compound having a methoxyethyl group and a specific additive can solve the above problems, and completed the present invention. That is, the present invention provides the following [1] and [2].
  • a refrigerating machine composition comprising the refrigerating machine oil according to the above [1] and a refrigerant.
  • the refrigerating machine oil of the present invention is excellent in oxidation stability and lubricity even at high temperatures and has good compatibility with a refrigerant containing R32 over a wide temperature range from high temperature to low temperature.
  • the refrigerating machine oil is a refrigerating machine oil for refrigerant containing R32 refrigerant, and includes a polyvinyl ether compound (A) containing a structural unit (a1) having a methoxyethyl group in the side chain, and an oxidation product.
  • a refrigerating machine oil comprising at least one selected from the group consisting of an inhibitor (B) and an acid scavenger (C).
  • the polyvinyl ether compound (A) is a compound having a polyvinyl ether structure and includes a structural unit (a1) having a methoxyethyl group in the side chain.
  • a polyvinyl ether type compound (A) comprises the base oil of refrigerating machine oil.
  • the refrigerating machine oil contains the polyvinyl ether compound (A) as a base oil, so that it is excellent in compatibility with the R32 refrigerant even in a low temperature environment, and can suppress the phase separation between the refrigerating machine oil and the refrigerant. is there.
  • the content of the polyvinyl ether compound (A) is preferably 70 to 99.7% by mass, more preferably 75 to 99.3% by mass, and still more preferably 80 to 80%, based on the total amount (100% by mass) of the refrigerating machine oil. It is 98.4 mass%.
  • a polyvinyl ether type compound (A) may be contained individually by 1 type in refrigerating machine oil, and may be contained in combination of 2 or more type.
  • the kinematic viscosity at 40 ° C. of the polyvinyl ether compound (A) is preferably 10 to 400 mm 2 / s, more preferably 15 to 220 mm 2 / s, and still more preferably 28 to 110 mm 2 / s.
  • the viscosity index (VI) of the polyvinyl ether compound (A) is preferably 90 or more, more preferably 100 or more, and still more preferably 110 or more.
  • the polyvinyl ether compound (A) contains the structural unit (a1) having a methoxyethyl group in the side chain, the viscosity index tends to increase. Therefore, it becomes easy to improve the lubricity of the refrigerating machine oil, such that the kinematic viscosity becomes an appropriate value both at a low temperature and a high temperature, and the wear resistance of the refrigerating machine oil at a high temperature is improved.
  • the kinematic viscosity and the viscosity index mean values measured according to JIS K2283: 2000.
  • the number average molecular weight (Mn) of the polyvinyl ether compound (A) may be in the range where the kinematic viscosity at 40 ° C. falls within the above range, but from the viewpoint of improving the lubricating performance of the refrigerating machine oil, preferably 300 to 3000, More preferably, it is 350-2500, and still more preferably 400-2000.
  • the number average molecular weight is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically means a value measured by the method described in Examples. To do.
  • the structural unit (a1) of the polyvinyl ether compound (A) is preferably one represented by the following general formula (1).
  • R 1 to R 3 each independently represent a hydrogen atom or a carbon number of 1 to 8 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2).
  • a hydrocarbon group is shown.
  • Examples of the hydrocarbon group that can be selected as R 1 to R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 1 to R 3 are preferably either a hydrogen atom or an alkyl group, and more preferably all are hydrogen atoms.
  • R 1 to R 3 in the general formula (1) may be the same or different for each structural unit. That is, the polyvinyl ether compound (A) can include copolymers in which any or all of R 1 to R 3 are different for each structural unit.
  • a polyvinyl ether type compound (A) has another structural unit different from a structural unit (a1) with a structural unit (a1).
  • the content of the structural unit (a1) is all structural units (100 mol%) of the polyvinyl ether compound (A) from the viewpoint of compatibility with the R32 solvent and a refrigerating machine oil excellent in lubricity at high temperatures. On the basis, it is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more. Further, the content of the structural unit (a1) is preferably 100 mol% or less, more preferably 70 mol% or less, and still more preferably 50 mol% or less, from the viewpoint of increasing the volume resistivity of the refrigerating machine oil.
  • the polyvinyl ether compound (A) preferably contains a structural unit (a2) represented by the following general formula (2), which is different from the structural unit (a1), together with the structural unit (a1).
  • a structural unit (a2) represented by the following general formula (2), which is different from the structural unit (a1), together with the structural unit (a1).
  • R 4 to R 6 are each independently a hydrogen atom or a carbon number of 1 to 8 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2).
  • a hydrocarbon group is shown.
  • examples of the hydrocarbon group that can be selected as R 4 to R 6 include the same hydrocarbon groups as those described above as R 1 to R 3 .
  • all of R 4 to R 6 are preferably either a hydrogen atom or an alkyl group, and more preferably all are hydrogen atoms.
  • R 7 represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
  • R represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, still more preferably 0 to 1, and still more preferably 0.
  • the plurality of R 7 may be the same or different from each other.
  • Examples of the divalent hydrocarbon group that can be selected as R 7 include an ethylene group, a phenylethylene group, a 1,2-propylene group, a 2-phenyl-1,2-propylene group, a 1,3-propylene group, and various types.
  • Alkylene groups such as butylene group, various pentylene groups, various hexylene groups, various heptylene groups, various octylene groups, various nonylene groups, various decylene groups; cyclohexylene group, methylcyclohexylene group, ethylcyclohexylene group, dimethylcyclohexylene group, Divalent alicyclic hydrocarbon groups such as propylcyclohexylene group; divalent aromatic hydrocarbon groups such as various phenylene groups, various methylphenylene groups, various ethylphenylene groups, various dimethylphenylene groups and various naphthylene groups; toluene Alkyl groups and aromatics of alkyl aromatic hydrocarbons such as ethylbenzene A divalent alkyl aromatic hydrocarbon group having a monovalent bonding site in each moiety; a divalent alkyl aromatic hydrocarbon group having a bonding site in the alkyl group moiety of a polyalky
  • R 8 represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4).
  • the hydrocarbon group that can be selected as R 8 includes, for example, various nonyl groups and various decyl groups in addition to the groups exemplified as the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 1 to R 3 described above.
  • Alkyl groups such as: various propyl cyclohexyl groups, cycloalkyl groups such as various trimethyl cyclohexyl groups; aryl groups such as various propyl phenyl groups, various trimethyl phenyl groups, various butyl phenyl groups, various naphthyl groups; various phenyl propyl groups, various phenyls Arylalkyl groups such as butyl group; and the like.
  • R 8 an alkyl group is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • R 7 in the general formula (2) is an ethylene group (—CH 2 CH 2 —), and When R 8 is a methyl group, r is not 1.
  • the structural unit (a2) is more preferably a structural unit (a2-1) represented by the following general formula (2-1).
  • a2-1 a structural unit represented by the following general formula (2-1).
  • R 8 is the same as defined in the general formula (2).
  • the content of the structural unit (a2-1) is preferably 70 based on the total amount (100 mol%) of the structural unit (a2) contained in the polyvinyl ether compound (A). To 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%.
  • the content of the structural unit in which R 8 in the general formulas (2) and (2-1) is an ethyl group is the total amount (100 mol%) of the structural unit (a2) contained in the polyvinyl ether compound (A). ), Preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%, particularly preferably 100 mol%. Further, when the polyvinyl ether compound (A) is the structural unit (a2-1) represented by the general formula (2-1), the structural unit (a1) represented by the general formula (1) is used. In particular, all of R 1 to R 3 are preferably hydrogen atoms.
  • the content of the structural unit (a2) is preferably 0 to 99 mol%, more preferably 30 to 90 mol%, still more preferably 50, based on the total structural unit (100 mol%) of the polyvinyl ether compound (A). ⁇ 80 mol%.
  • the polyvinyl ether compound (A) may have other structural units other than the structural unit (a1) and the structural unit (a2).
  • the total content of the structural unit (a1) and the structural unit (a2) is preferably 70 to 100 mol%, more preferably based on the total structural unit (100 mol%) of the polyvinyl ether compound (A). It is 80 to 100 mol%, more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%, particularly preferably 100 mol%.
  • a monovalent group derived from a saturated hydrocarbon, ether, alcohol, ketone, amide, nitrile or the like may be introduced into the terminal portion of the polyvinyl ether compound (A).
  • at least one of the terminal portions of the polyvinyl ether compound (A) is preferably a group represented by the following general formula (3-1).
  • R 11 to R 13 are each independently a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2).
  • R 14 represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
  • r1 represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1. When r1 is 2 or more, the plurality of R 14 may be the same or different from each other.
  • R 15 represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4). * Represents a binding moiety.
  • one of the terminal portions of the polyvinyl ether compound (A) is a group represented by the general formula (3-1), and the other is the following general formula (3-1a), A group having any one of (3-1b) and (3-1c) or a group having an olefinically unsaturated bond is preferable, and a group of the following general formula (3-1a) is more preferable.
  • R 11a to R 13a are each independently a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2).
  • R 14a represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
  • r2 represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1. When r2 is 2 or more, the plurality of R 14a may be the same or different from each other.
  • R 15a represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4). * Represents a binding moiety.
  • R 11b to R 13b each independently represent a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2).
  • R 14b and R 16b each independently represent a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
  • r3 and r4 each independently represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1.
  • the plurality of R 14b and R 16b may be the same or different from each other.
  • R 15b and R 17b each independently represent a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and further preferably 1 to 4). * Represents a binding moiety.
  • R 11c to R 13c each independently represents a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). Represents a hydrocarbon group.
  • R 11 to R 13 , R 11a to R 13a , R 11b to R 13b , and the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 11c to R 13c is the same as the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 4 to R 6 in the general formula (2).
  • suitable groups are the same.
  • the divalent hydrocarbon group having 2 to 10 carbon atoms that can be selected as R 14 , R 14a , R 14b , and R 16b includes 2 carbon atoms that can be selected as R 7 in the general formula (2).
  • the same as the divalent hydrocarbon group of ⁇ 10 can be mentioned, and preferable groups are also the same. Furthermore, as the hydrocarbon group having 1 to 10 carbon atoms that can be selected as R 15 , R 15a , R 15b , and R 17b , the hydrocarbon group having 1 to 10 carbon atoms that can be selected as R 8 in the general formula (2). The same thing as a hydrocarbon group is mentioned, A suitable group is also the same.
  • the vinyl ether type monomer represented by the following general formula (I) is mentioned, for example.
  • R 1 to R 3 are the same as defined in the general formula (1).
  • the vinyl ether type monomer represented by the following general formula (II) is mentioned, for example.
  • R 4 to R 8 and r are the same as defined in the general formula (2).
  • the synthesis method of the polyvinyl ether compound (A) is to add a raw material monomer into the system in the presence of a polymerization catalyst and a polymerization initiator, A method of allowing the polymerization reaction to proceed is preferred.
  • Examples of the polymerization catalyst include Bronsted acids, Lewis acids, and organometallic compounds, and Lewis acids are preferable.
  • Examples of Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, trifluoroacetic acid, and the like.
  • Examples of Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, ferric chloride and the like, and boron trifluoride is preferable.
  • Examples of the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc and the like.
  • polymerization initiator examples include water, alcohols, phenols, acetals, adducts of vinyl ethers and carboxylic acids, and these may be used alone or in combination of two or more. Depending on the type of these polymerization initiators, the terminal portion of the resulting polyvinyl ether compound (A) is formed.
  • alcohols include saturated fats having 1 to 20 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, and various octanols.
  • An unsaturated alcohol having 3 to 10 carbon atoms such as allyl alcohol; an ether-bonded oxygen-containing alcohol having 14 or less carbon atoms such as ethylene glycol monoalkyl ether and ethylene glycol monoaryl ether;
  • phenols include phenol and various cresols.
  • acetals include acetaldehyde dimethyl acetal, acetaldehyde diethyl acetal, acetaldehyde methyl ethyl acetal, acetaldehyde bis (methoxyethyl) acetal, and the like.
  • adduct of vinyl ethers and carboxylic acid include adducts such as acetic acid, propionic acid, n-butyric acid, isobutyric acid, and 3,5,5-trimethylcaproic acid.
  • the polymerization initiation terminal of the obtained polyvinyl ether compound (A) is bonded with hydrogen when water, alcohols or phenols are used.
  • acetals When acetals are used, one alkoxy group eliminated from the acetals is bonded.
  • an adduct of vinyl ethers and carboxylic acid When an adduct of vinyl ethers and carboxylic acid is used, an alkylcarbonyloxy group derived from the carboxylic acid moiety eliminated from the adduct of vinyl ethers and carboxylic acid is bonded.
  • the stop terminal of the polyvinyl ether compound (A) becomes an acetal, an olefin, or an aldehyde when water, alcohols, phenols, or acetals are used.
  • an adduct of vinyl ethers and carboxylic acid it becomes a carboxylic acid ester of hemiacetal, and becomes an aldehyde when hydrolyzed in the presence of an acid.
  • the polymerization reaction depends on the type of raw material monomer and polymerization initiator used, it is usually at a temperature of ⁇ 80 to 150 ° C. (preferably 0 to 100 ° C.) and about 10 seconds to 10 hours after the reaction starts. It is preferable to end.
  • the said polymerization reaction is normally performed in presence of a solvent.
  • the solvent to be used is not particularly limited as long as it can dissolve the required amount of the reaction raw material and is inert to the polymerization reaction.
  • hydrocarbon solvents such as hexane, benzene and toluene
  • ether solvents such as ether, 1,2-dimethoxyethane, tetrahydrofuran and the like.
  • the polymer obtained after the polymerization reaction has an unsaturated bond, an acetal, and an aldehyde
  • the hydrogenation treatment is performed at a reaction temperature of 10 to 250 ° C. (preferably 50 to 200 ° C.) by introducing hydrogen gas at a hydrogen pressure of 0.1 to 10 MPa (preferably 1 to 6 MPa) in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst include metal catalysts such as nickel-based catalysts, platinum-based catalysts, palladium-based catalysts, and ruthenium-based catalysts. Catalysts in which these metal catalysts are supported on alumina or diatomaceous earth, Raney-type catalysts, and the like Can also be used.
  • the refrigerating machine oil may contain only the polyvinyl ether compound (A) as the base oil, but may contain a base oil other than the polyvinyl ether compound (A) as long as the effects of the present invention are not impaired.
  • Other base oils include, for example, polyvinyl ether compounds not containing the structural unit (a1), polyalkylene glycol compounds, poly (oxy) alkylene glycol or monoethers thereof, and polyvinyl ethers not containing the structural unit (a1) And a copolymer of polyol ester and the like. These other base oils may be used alone or in combination of two or more. These other base oils may be those having the same 40 ° C.
  • kinematic viscosity as the polyvinyl ether compound (A), and the specific 40 ° C. kinematic viscosity is preferably 10 to 400 mm 2 / s, more preferably. Is 15 to 220 mm 2 / s, more preferably 28 to 110 mm 2 / s.
  • the content of the base oil other than the polyvinyl ether compound (A) is based on 100 parts by mass of the polyvinyl ether compound (A) from the viewpoint of a refrigerating machine oil excellent in compatibility with the R32 refrigerant.
  • the amount is preferably 0 to 30 parts by mass, more preferably 0 to 20 parts by mass, still more preferably 0 to 10 parts by mass, and still more preferably 0 to 3 parts by mass.
  • the refrigerating machine oil which concerns on one Embodiment of this invention contains an additive.
  • the refrigerating machine oil contains an antioxidant (B), an acid scavenger (C), or both as an additive, but preferably contains both.
  • Refrigerating machine oil contains an antioxidant (B) or an acid scavenger (C), thereby preventing the acid value of the refrigerating machine oil from increasing at high temperatures and improving the high-temperature oxidation stability of the refrigerating machine oil. Is possible.
  • the refrigerating machine oil contains both the antioxidant (B) and the acid scavenger (C), thereby further suppressing the increase in the acid value of the refrigerating machine oil and further improving the high-temperature oxidation stability of the refrigerating machine oil. It becomes possible to make it.
  • antioxidant (B) examples include phenolic antioxidants and amine antioxidants.
  • examples of phenolic antioxidants include monophenolic antioxidants and polyphenolic antioxidants.
  • Monophenol antioxidants include n-octyl-3- (3,5-di-t-butyl 4-hydroxyphenyl) propionate, 6-methylheptyl-3- (3,5-di-t-butyl- Alkyl-3- (3,5-di-t-butyl-4-hydroxy) such as 4-hydroxyphenyl) propionate and n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate
  • Phenyl) propionate alkyl groups include those having 4 to 20 carbon atoms, preferably 8 to 18 carbon atoms); 2,6-di-t-butyl-4-methylphenol, 2,6 -2,6-di-t-butyl-4-alkylphenol (dialkyl having 1 to 4 carbon atoms) such as di-t-butyl-4-ethylphenol; 2,4-dimethyl-6-t- Butylphenol, 2,6-di -t- amy
  • Polyphenol antioxidants include 4,4′-methylenebis (2,6-di-t-butylphenol), 4,4′-bis (2,6-di-t-butylphenol), 4,4 ′.
  • -Bis (2-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-6) -Nonylphenol), 2,2'-isobutylidenebis (4,6-dimethylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 4, '-Thiobis (2-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-buty
  • amine-based antioxidants examples include dialkyldiphenylamines such as 4,4′-dibutyldiphenylamine and 4,4′-dioctyldiphenylamine, and phenyl- ⁇ -naphthylamines such as alkylphenyl- ⁇ -naphthylamine and phenyl- ⁇ -naphthylamine. N, N′-di-phenyl-p-phenylenediamine and the like.
  • antioxidant (B) a phenolic antioxidant is preferable.
  • 2,6-di-t-butyl-4-alkylphenol is more preferable, and 2,6-di-t-butyl-4-methylphenol is most preferable.
  • the content of the antioxidant (B) in the refrigerating machine oil is preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the refrigerating machine oil, and 0.15 More preferably, it is ⁇ 1% by mass.
  • the antioxidant sufficiently suppresses an increase in the acid value of the refrigerating machine oil and facilitates enhancing high-temperature stability. Moreover, it becomes easy to exhibit the effect corresponding to content by setting it as these upper limit values or less.
  • an antioxidant (B) may be used individually by 1 type, and may use 2 or more types together.
  • acid scavenger (C) examples include epoxy compounds, and more specifically, glycidyl ether compounds, cyclohexene oxide, ⁇ -olefin oxide, epoxidized soybean oil, and the like, with glycidyl ether compounds being preferred.
  • examples of the glycidyl ether compound include aliphatic mono- or polyhydric alcohols having 3 to 30, preferably 4 to 24, more preferably 6 to 16 carbon atoms, or an aromatic compound-derived glycidyl derived from an aromatic compound. Ether.
  • the aliphatic mono- or polyhydric alcohol may be linear, branched or cyclic, and may be saturated or unsaturated, but is preferably a saturated aliphatic monoalcohol.
  • an aromatic polyhydric alcohol or an aromatic compound containing two or more hydroxyl groups it is preferable that all of the hydroxyl groups are glycidyl etherified from the viewpoint of suppressing the stability of the refrigerating machine oil and the hydroxyl value.
  • the glycidyl ether compound include phenyl glycidyl ether, alkyl glycidyl ether, and alkylene glycol glycidyl ether.
  • glycidyl ether that is, alkyl glycidyl ether having an alkyl group having 6 to 16 carbon atoms
  • examples of such glycidyl ether include 2-ethylhexyl glycidyl ether, isononyl glycidyl ether, decyl glycidyl ether, lauryl glycidyl ether, myristyl glycidyl ether, and 2-ethylhexyl glycidyl ether is most preferable.
  • an alkyl glycidyl ether such as 2-ethylhexyl glycidyl ether, an increase in the acid value of the refrigerating machine oil can be appropriately prevented, and oxidation stability at high temperatures can be easily improved.
  • the content of the acid scavenger (C) in the refrigerating machine oil is preferably 0.1 to 10% by mass based on the total amount of the refrigerating machine oil.
  • the content of the acid scavenger (C) is more preferably 0.4 to 5% by mass, further preferably 0.5 to 5% by mass, particularly preferably 0.5 to 3% by mass, and most preferably 0.5 to 2% by mass.
  • an acid capture agent (C) may be used individually by 1 type, and may use 2 or more types together.
  • an acid scavenger (C) can further suppress an increase in acid value by using together with the above-mentioned antioxidant (B).
  • the refrigerating machine oil preferably further contains an extreme pressure agent (D).
  • the refrigerating machine oil has good wear resistance at high temperatures and can further improve lubricity.
  • the extreme pressure agent (D) include phosphorus-based extreme pressure agents.
  • the phosphorus extreme pressure agent include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, acidic phosphorous acid esters, and amine salts thereof.
  • phosphate esters include triaryl phosphate, trialkyl phosphate, monoalkyl diaryl phosphate, dialkyl monoaryl phosphate, and trialkenyl phosphate.
  • the “aryl” described in the extreme pressure agent (D) is a concept including not only a functional group consisting of only an aromatic ring but also alkylaryl and arylalkyl.
  • phosphate esters include triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, propyl phenyl diphenyl phosphate, dipropyl phenyl phenyl phosphate, and ethyl phenyl diphenyl phosphate.
  • Examples of acidic phosphate esters include various alkyl acid phosphates and dialkyl acid phosphates.
  • Examples of phosphites include various trialkyl phosphites, triaryl phosphites, monoalkyl diaryl phosphites, dialkyl monoaryl phosphites, and trialkenyl phosphites.
  • Examples of the acidic phosphite include various dialkyl hydrogen phosphites, dialkenyl hydrogen phosphites, and diaryl hydrogen phosphites.
  • the phosphorus extreme pressure agent may be a phosphate ester containing a sulfur atom such as trithiophenyl phosphate.
  • the amine salt of acidic phosphate ester or acidic phosphite is mentioned.
  • the amine salt that forms the amine salt may be a primary, secondary, or tertiary amine.
  • phosphate esters are preferable, triaryl phosphate is more preferable, and tricresyl phosphate is most preferable.
  • a triaryl phosphate such as tricresyl phosphate
  • lubricity at a high temperature tends to be good.
  • Other preferable examples include trithiophenyl phosphate, tri (nonylphenyl) phosphite, dioleyl hydrogen phosphite, and 2-ethylhexyl diphenyl phosphite.
  • the content of the extreme pressure agent (D) in the refrigeration oil is preferably 0.1 to 5% by mass based on the total amount of the refrigeration oil.
  • the content of the extreme pressure agent (D) is more preferably 0.3 to 3% by mass, further preferably 0.5 to 3% by mass, and most preferably 0.5 to 2% by mass.
  • the extreme pressure agent (D) is added to the refrigerating machine oil, the acid value tends to increase, but by using the antioxidant (B) and the acid scavenger (C) in combination, the extreme pressure agent (D ) Can be suppressed more appropriately.
  • the refrigerating machine oil in the present embodiment particularly preferably contains any of the antioxidant (B), the acid scavenger (C), and the extreme pressure agent (D).
  • the contents of the components (D) to (D) are also as described above. That is, the content of each of the polyvinyl ether compound (A), the antioxidant (B), the acid scavenger (C), and the extreme pressure agent (D) is 70 to 99.7% by mass based on the total amount of refrigerating machine oil, It is preferably 0.1 to 5% by mass, 0.1 to 10% by mass, and 0.1 to 5% by mass, preferably 75 to 99.3% by mass, 0.1 to 3% by mass, 0.4 to 5%.
  • the antioxidant (B) is a phenolic antioxidant
  • the acid scavenger (C) is a glycidyl ether compound
  • the extreme pressure agent (D) is a phosphate ester
  • the antioxidant (B) is 2 , 6-di-t-butyl-4-alkylphenol
  • the acid scavenger (C) is preferably alkyl glycidyl ether
  • the extreme pressure agent (D) is triaryl phosphate
  • the antioxidant (B) is 2, More preferably, 6-di-t-butyl-4-methylphenol
  • the acid scavenger (C) is 2-ethylhexyl glycidyl ether
  • the extreme pressure agent (D) is tricresyl phosphate.
  • the refrigerating machine oil may be composed of a base oil and (B) or (C) component or both, or from a base oil, (B) or (C) component or both, and (D) component.
  • additives other than these components (B) to (D) may be further contained. Examples of such additives include oxygen scavengers, oiliness improvers, copper deactivators, rust inhibitors, and antifoaming agents. These additives may be used alone or in combination of two or more.
  • oxygen scavenger examples include 4,4′-thiobis (3-methyl-6-tert-butylphenol), diphenyl sulfide, dioctyl diphenyl sulfide, dialkyl diphenylene sulfide, benzothiophene, dibenzothiophene, phenothiazine, benzothiapyran, thiapyran, thianthrene, Examples thereof include sulfur-containing aromatic compounds such as dibenzothiapyran and diphenylene disulfide, aliphatic unsaturated compounds such as various olefins, dienes and trienes, and terpenes having a double bond.
  • oil improvers include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid, Aliphatic saturated and unsaturated monoalcohols such as lauryl alcohol, oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine, oleylamine, aliphatic saturated and unsaturated monocarboxylic amides such as lauric acid amide, oleic acid amide, Examples thereof include partial esters of polyhydric alcohols such as glycerin and sorbitol and aliphatic saturated or unsaturated monocarboxylic acids.
  • Examples of the copper deactivator include N- [N, N′-dialkyl (alkyl group having 3 to 12 carbon atoms) aminomethyl] triazole.
  • Examples of the rust inhibitor include metal sulfonates, aliphatic amines, organic sulfonic acid metal salts, organic phosphoric acid metal salts, alkenyl succinic acid esters, and polyhydric alcohol esters.
  • Examples of the antifoaming agent include silicone oils such as dimethylpolysiloxane, polymethacrylates, and the like. The content of each of these refrigerating machine oil additives is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total amount (100% by mass) of the refrigerating machine oil.
  • Refrigerating machine oil is excellent in compatibility with R32 refrigerant having a low global warming potential even in a low temperature environment.
  • the two-layer separation temperature on the low temperature side of the refrigerating machine oil with the R32 refrigerant is preferably ⁇ 15 ° C. or lower, more preferably ⁇ 30 ° C. or lower, and further preferably ⁇ 40 ° C. or lower.
  • the manufacturing method of the refrigerating machine oil which concerns on one Embodiment of this invention is a manufacturing method of the refrigerating machine oil for refrigerant
  • a refrigerating machine oil is produced by blending at least one selected from the group consisting of an antioxidant (B) and an acid scavenger (C) with an ether compound (A).
  • the polyvinyl ether compound (A) is further blended with additives other than the antioxidant (B) and the acid scavenger (C) such as the extreme pressure agent (D) as described above.
  • a base oil other than the compound (A) may be blended.
  • the details of the components (A) to (D), other additives, other base oils, and the obtained refrigerating machine oil are as described above.
  • composition for refrigerator The refrigerating machine oil is used by being mixed with a refrigerant.
  • a mixture of refrigerant in refrigeration oil is referred to as a “composition for a refrigeration machine”. That is, the composition for refrigerators which concerns on one Embodiment of this invention contains the refrigerant
  • the content ratio between the refrigerator oil and the refrigerant is preferably 1/99 to 99/1, more preferably 5/95 to 60/40, in mass ratio. .
  • the refrigerant may be composed of the R32 refrigerant alone, but may be a mixture of the R32 refrigerant and other refrigerants.
  • refrigerants include fluorinated hydrocarbon refrigerants, natural refrigerants such as hydrocarbon refrigerants, carbon dioxide, and ammonia.
  • Other refrigerants may be used alone or in combination of two or more.
  • the content of the R32 refrigerant is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, still more preferably 30 to 100% by mass, and still more preferably, based on the total amount (100% by mass) of the refrigerant. Is 50 to 100% by mass, particularly preferably 70 to 100% by mass.
  • coolant of R32 independent is the most preferable.
  • Examples of the fluorinated hydrocarbon refrigerant include a saturated fluorinated hydrocarbon refrigerant and an unsaturated fluorinated hydrocarbon refrigerant.
  • Examples of the saturated fluorinated hydrocarbon refrigerant include fluorides of alkanes having 1 to 4 carbon atoms other than R32, preferably fluorides of alkanes having 2 to 3 carbon atoms, and fluorides of alkane (ethane) having 2 carbon atoms. Is more preferable.
  • 1,1,1,2,2-pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1 , 1,1-trifluoroethane (R143a), 1,1,2-trifluoroethane (R143), 1,1-difluoroethane (R152a), among which R125 and R134a are preferred.
  • These saturated fluorinated hydrocarbon refrigerants can be used as a mixture of two or more.
  • the refrigerant used in this embodiment is specifically a mixture of R32, R125, and R134a such as R407A, R407C, and R407E, and a mixture of R32 and R125 such as R410A. Etc. are mentioned as preferred examples, and among these, R410A is more preferred.
  • Examples of the unsaturated fluorinated hydrocarbon refrigerant include those having a carbon-carbon double bond, such as a linear or branched chain olefin having 2 to 6 carbon atoms and a fluorinated product of a cyclic olefin having 4 to 6 carbon atoms. It is done. Of these, propene fluoride is preferred, propene having 3 to 5 fluorine atoms introduced therein is more preferred, and propene having 4 fluorine atoms introduced is most preferred. As other than propene fluoride, ethylene fluoride is also preferred, ethylene having 1 to 3 fluorine atoms introduced is more preferred, and ethylene having 3 fluorine atoms introduced is most preferred.
  • preferable unsaturated fluorinated hydrocarbon refrigerants include 1,2,3,3,3-pentafluoropropene (R1225ye), 2,3,3,3-tetrafluoropropene (R1234yf), 1,3,3, 3,3-tetrafluoropropene (R1234ze), 1,2,3,3-tetrafluoropropene (R1234yz), 1,1,2-trifluoroethylene (R1123) and the like, among which R1234yf, R1234ze , R1123 is preferred.
  • the content is preferably 20% by mass or more based on the total amount of refrigerant (100% by mass).
  • These unsaturated fluorinated hydrocarbon refrigerants may be used in combination with the above-mentioned saturated fluorinated hydrocarbon refrigerant.
  • Natural refrigerants include hydrocarbon refrigerants such as propane (R290), n-butane, isobutane (R600a), 2-methylbutane, n-pentane, cyclopentaneisobutane, normal butane, carbon dioxide (carbon dioxide), and ammonia. Among these, propane, isobutane, carbon dioxide, and ammonia are preferable. These natural refrigerants may be used in combination with the above-mentioned fluorinated hydrocarbon refrigerant.
  • a refrigerator according to an embodiment of the present invention uses the above-described refrigerator oil or refrigerator oil composition, and the refrigerator oil or refrigerator oil composition is used by filling the refrigerator. That is, the refrigerator which concerns on one Embodiment of this invention is a refrigerator containing the above-mentioned refrigerator oil or refrigerator oil composition.
  • a compression type refrigerator is preferable, and a refrigeration cycle including a compressor, a condenser, an expansion mechanism (an expansion valve, etc.), and an evaporator, or a compressor, a condenser, an expansion mechanism, a dryer, and evaporation It is more preferable to have a refrigeration cycle equipped with a vessel.
  • Refrigerator oil is used, for example, to lubricate sliding portions provided in a compressor or the like.
  • the sliding portion is not particularly limited, but any of the sliding portions preferably contains a metal such as iron, and preferably slides between metal and metal.
  • the refrigerator for example, it is applied to a car air conditioner, an air conditioner, a gas heat pump (GHP), a refrigerator, a vending machine, a refrigeration system such as a showcase, a hot water supply system such as a water heater, floor heating, a heating system, etc. However, it is preferably applied to air conditioning applications.
  • the temperature was raised from room temperature at a rate of 1 ° C./min, and the two-layer separation temperature on the high temperature side was measured.
  • the acid value was measured by the indicator method according to “Lubricating oil neutralization test method” defined in JIS K 2501: 2003.
  • (6) Lubricity test Using a sealed block-on-ring friction tester (LFW-1), the amount of ring wear when each refrigeration oil was used was measured under the following conditions in an R32 refrigerant environment.
  • Ring FC250 Block: SKH51 Rotation speed: 1000rpm Familiarization: Load 300N x 1min Load: 500N Time: 60min Oil temperature: 80 ° C Refrigerant pressure: 0.4MPa
  • Preparation Example 1 [Preparation of catalyst] 6 g of nickel diatomaceous earth catalyst (manufactured by JGC Catalysts & Chemicals, trade name “N113”) and 300 g of isooctane were added to a 2 L autoclave made of SUS316L. The inside of the autoclave was purged with nitrogen and then purged with hydrogen, then heated to 140 ° C. with a hydrogen pressure of 3.0 MPaG, held at 140 ° C. for 30 minutes, and then cooled to room temperature.
  • Ni113 nickel diatomaceous earth catalyst
  • Example 1 Synthesis of polyvinyl ether (A) (PVE1)
  • PVE1 polyvinyl ether
  • the stirrer was activated, and the monomer mixture in the Erlenmeyer flask was supplied to the stirred system of the 300 mL flask by a pump over 4 hours, and stirring was further continued for 5 minutes after the completion of the supply.
  • the system was constantly stirred, and the temperature in the system was controlled at 25 ° C. using a water bath.
  • 5 g of an adsorbent manufactured by Kyowa Chemical Industry Co., Ltd., product name “KYOWARD 500SH” was added to the 300 mL flask system and stirred for 1 hour.
  • reaction liquid was filtered, the solvent and the light part were removed from the said filtrate using the rotary evaporator, and the crude product was obtained.
  • 120 g of the obtained crude product and 300 g of isooctane were added to the 2 L autoclave containing the catalyst prepared in Preparation Example 1, and the atmosphere inside the autoclave was replaced with hydrogen.
  • the hydrogen pressure was maintained at 3.5 MPa, and the system was stirred.
  • the temperature was raised to 140 ° C. over 30 minutes, and further reacted at 140 ° C. for 3 hours.
  • the reaction solution was cooled to room temperature and depressurized to normal pressure. And the reaction liquid was filtered, the solvent, the water
  • PVE1 includes a structural unit (a1) in which R 1 to R 3 in general formula (1) are hydrogen atoms, R 4 to R 6 in general formula (2) are hydrogen atoms, r is 0, and R 8 is The structural unit (a2) which is an ethyl group is included. Further, the content of the structural unit (a1) is 10 mol% and the content of the structural unit (a2) is 90 mol% with respect to all the structural units (100 mol%) of PVE1 estimated from the charged amount. .
  • Examples 2-8 The amount of methoxyethyl vinyl ether added to the Erlenmeyer flask was changed to 0.4 to 2.0 mol so that each structural unit in the polyvinyl ether compound (A) would be the mol% shown in Table 1, The same operation as in Example 1 was carried out except that the addition amount was changed to 1.6 to 0 mol to obtain PVE2 to PVE8.
  • Table 1 shows the properties of PVE2 to PVE8 used in Examples 2 to 8, respectively.
  • Comparative Examples 1 and 2 It implemented like Example 1 except having changed the base oil to be used to the following PVE9 and 10 as shown in Table 1, respectively.
  • the properties of the base oils used in Comparative Examples 1 and 2 are as shown in Table 1.
  • PVE10 Polyethyl vinyl ether
  • MeOEt represents the structural unit (a1) in which R 1 to R 3 in the general formula (1) are hydrogen atoms
  • Et represents R 4 to R 6 in the general formula (2)
  • iBu is a hydrogen atom
  • r is 0, and R 8 is an isobutyl group in R 4 to R 6 in the general formula (2) Is the structural unit (a2).
  • Examples 15 to 18 and Comparative Example 4 Using the above-described PVE3, PVE10, antioxidant, acid scavenger, and extreme pressure agent, refrigerating machine oils having the composition shown in Table 3 were prepared, and a lubricity test was performed on each refrigerating machine oil. Table 3 shows the ring wear after the lubricity test.
  • the polyvinyl ether compound constituting the base oil of the refrigerating machine oil contains the structural unit (a1) having a methoxyethyl group in the side chain, whereby the R32 refrigerant is used. It was possible to improve the compatibility, particularly in a low temperature environment. Moreover, as shown in Table 2, even after the refrigeration oil is heat-degraded by blending an antioxidant, an acid scavenger, or both of them into the base oil composed of the polyvinyl ether compound (A). The acid value was lowered and the high-temperature oxidation stability was improved. When an extreme pressure agent is blended, the high-temperature oxidation stability tends to be low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

This refrigerating machine oil is a refrigerating machine oil for refrigerants containing difluoromethane (R32), and contains: a polyvinyl ether compound (A) comprising a constituent unit (a1) that has a methoxyethyl group in a side chain; and at least one agent selected from the group consisting of antioxidants (B) and acid scavengers (C).

Description

冷凍機油、及び冷凍機用組成物Refrigerator oil and composition for refrigerator
 本発明は、冷凍機油、及び冷媒と冷凍機油を含有する冷凍機用組成物に関する。 The present invention relates to a refrigerator oil and a refrigerator composition containing a refrigerant and a refrigerator oil.
 一般に、圧縮型冷凍機は、少なくとも圧縮機、凝縮器、膨張機構(膨張弁等)、蒸発器等で構成されると共に、密閉された系内を、冷媒と冷凍機油との混合物(以下、「冷凍機用組成物」ともいう)が循環する構造となっている。圧縮型冷凍機に用いられる冷媒としては、オゾン層を破壊しないHFC(ハイドロフルオロカーボン)が広く使用されている。HFCとしては、R134a等が多く使用されているが、近年、より地球温暖化係数が低いジフルオロメタン(R32)の使用も検討されつつある。以下、ジフルオロメタン(R32)を「R32冷媒」ともいう。
 従来、R32冷媒に使用される冷凍機油としては、ポリエチルビニルエーテル、エチルビニルエーテルとイソブチルビニルエーテルの共重合体等のポリビニルエーテル化合物に、酸化防止剤、酸捕捉剤、極圧剤等の添加剤を配合したものが知られている(例えば、特許文献1、2参照)。
In general, a compression refrigerator includes at least a compressor, a condenser, an expansion mechanism (an expansion valve, etc.), an evaporator, and the like, and a sealed system is mixed with a mixture of refrigerant and refrigerating machine oil (hereinafter, “ It also has a structure in which the composition for the refrigerator is also circulated. As a refrigerant used in a compression refrigerator, HFC (hydrofluorocarbon) that does not destroy the ozone layer is widely used. As HFC, R134a and the like are often used, but in recent years, the use of difluoromethane (R32) having a lower global warming potential is being studied. Hereinafter, difluoromethane (R32) is also referred to as “R32 refrigerant”.
Conventionally, as refrigerating machine oil used for R32 refrigerants, additives such as antioxidants, acid scavengers, extreme pressure agents, etc. are blended with polyvinyl ether compounds such as polyethyl vinyl ether, copolymers of ethyl vinyl ether and isobutyl vinyl ether, etc. (For example, refer to Patent Documents 1 and 2).
特開2013-14672号公報JP 2013-14672 A 特開2013-14673号公報JP 2013-14673 A
 R32冷媒は、R134a等に比べて圧縮機の吐出温度が20℃以上高くなる。したがって、R32冷媒に使用される冷凍機油は、高温での分解による酸価の上昇が起こりやすい。このような酸価上昇を抑えるため、冷凍機油には、高温酸化安定性に優れることが求められている。また、圧縮機内は、高温となるので、冷凍機油には、高温下での潤滑性も必要とされる。
 さらに、冷凍機油は、一般的に、冷媒と相分離することなく、圧縮型冷凍機の系内を循環することが求められる。圧縮型冷凍機においては、圧縮機内が高温、冷却器内が低温となる。したがって、冷凍機油には、高温から低温にわたって冷媒と相溶する性質が必要とされる。
The R32 refrigerant has a compressor discharge temperature of 20 ° C. or higher compared to R134a or the like. Therefore, the refrigerating machine oil used for the R32 refrigerant is likely to increase in acid value due to decomposition at a high temperature. In order to suppress such an increase in acid value, refrigerating machine oils are required to have excellent high-temperature oxidation stability. Moreover, since the inside of a compressor becomes high temperature, the refrigerating machine oil also needs lubricity under high temperature.
Furthermore, the refrigeration oil is generally required to circulate in the system of the compression refrigeration machine without phase separation from the refrigerant. In a compression refrigerator, the inside of a compressor becomes high temperature and the inside of a cooler becomes low temperature. Therefore, the refrigerating machine oil is required to have a property compatible with the refrigerant from a high temperature to a low temperature.
 しかし、特許文献1、2に開示される冷凍機油は、R32冷媒との相溶性が十分ではなく、-5℃程度で相分離する傾向にあるため、相分離温度をさらに低くする必要がある。また、特許文献1、2に開示される冷凍機油は、高温下での潤滑性も十分ではなく、更なる潤滑性の向上が求められている。
 本発明は、以上の事情に鑑みてなされたものであり、本発明の課題は、高温下でも酸化安定性及び潤滑性に優れるとともに、高温から低温まで幅広い温度範囲にわたって、R32を含む冷媒との相溶性が良好な冷凍機油を提供することである。
However, since the refrigerating machine oils disclosed in Patent Documents 1 and 2 are not sufficiently compatible with the R32 refrigerant and tend to phase separate at about −5 ° C., it is necessary to further lower the phase separation temperature. Further, the refrigerating machine oils disclosed in Patent Documents 1 and 2 are not sufficiently lubricated at high temperatures, and further improvements in lubricity are required.
This invention is made | formed in view of the above situation, and the subject of this invention is excellent in oxidation stability and lubricity also under high temperature, and with the refrigerant | coolant containing R32 over a wide temperature range from high temperature to low temperature. It is to provide a refrigerating machine oil having good compatibility.
 本発明者らは、鋭意検討した結果、メトキシエチル基を有するポリビニルエーテル系化合物と、特定の添加剤とを含む冷凍機油が、上記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は、下記[1]及び[2]を提供する。
[1]ジフルオロメタン(R32)を含む冷媒用の冷凍機油であって、
 メトキシエチル基を側鎖に有する構成単位(a1)を含むポリビニルエーテル系化合物(A)と、酸化防止剤(B)及び酸捕捉剤(C)からなる群から選択される少なくとも1種とを含む冷凍機油。
[2]上記[1]に記載の冷凍機油と、冷媒とを含有する冷凍機用組成物。
As a result of intensive studies, the present inventors have found that a refrigerating machine oil containing a polyvinyl ether-based compound having a methoxyethyl group and a specific additive can solve the above problems, and completed the present invention.
That is, the present invention provides the following [1] and [2].
[1] Refrigerating machine oil for refrigerant containing difluoromethane (R32),
A polyvinyl ether compound (A) containing a structural unit (a1) having a methoxyethyl group in the side chain, and at least one selected from the group consisting of an antioxidant (B) and an acid scavenger (C) Refrigerator oil.
[2] A refrigerating machine composition comprising the refrigerating machine oil according to the above [1] and a refrigerant.
 本発明の冷凍機油は、高温下でも酸化安定性及び潤滑性に優れるとともに、高温から低温まで幅広い温度範囲にわたって、R32を含む冷媒との相溶性が良好である。 The refrigerating machine oil of the present invention is excellent in oxidation stability and lubricity even at high temperatures and has good compatibility with a refrigerant containing R32 over a wide temperature range from high temperature to low temperature.
[冷凍機油]
 本発明の一実施形態に係る冷凍機油は、R32冷媒を含む冷媒用の冷凍機油であって、メトキシエチル基を側鎖に有する構成単位(a1)を含むポリビニルエーテル系化合物(A)と、酸化防止剤(B)及び酸捕捉剤(C)からなる群から選択される少なくとも1種とを含む冷凍機油である。
[Refrigerator oil]
The refrigerating machine oil according to one embodiment of the present invention is a refrigerating machine oil for refrigerant containing R32 refrigerant, and includes a polyvinyl ether compound (A) containing a structural unit (a1) having a methoxyethyl group in the side chain, and an oxidation product. A refrigerating machine oil comprising at least one selected from the group consisting of an inhibitor (B) and an acid scavenger (C).
[ポリビニルエーテル系化合物(A)]
 ポリビニルエーテル系化合物(A)は、ポリビニルエーテル構造を有する化合物であって、メトキシエチル基を側鎖に有する構成単位(a1)を含む。ポリビニルエーテル系化合物(A)は、冷凍機油の基油を構成する。冷凍機油は、ポリビニルエーテル系化合物(A)を基油として含有することで、低温環境下においても、R32冷媒との相溶性に優れ、冷凍機油と冷媒との相分離を抑制することが可能である。
[Polyvinyl ether compound (A)]
The polyvinyl ether compound (A) is a compound having a polyvinyl ether structure and includes a structural unit (a1) having a methoxyethyl group in the side chain. A polyvinyl ether type compound (A) comprises the base oil of refrigerating machine oil. The refrigerating machine oil contains the polyvinyl ether compound (A) as a base oil, so that it is excellent in compatibility with the R32 refrigerant even in a low temperature environment, and can suppress the phase separation between the refrigerating machine oil and the refrigerant. is there.
 ポリビニルエーテル系化合物(A)の含有量は、冷凍機油の全量(100質量%)基準で、好ましくは70~99.7質量%、より好ましくは75~99.3質量%、更に好ましくは80~98.4質量%である。このように、ポリビニルエーテル系化合物(A)の含有量を高くすることで、R32冷媒との相溶性に優れた冷凍機油とすることが可能である。
 なお、ポリビニルエーテル系化合物(A)は、冷凍機油において、1種単独で含有してもよく、2種以上を組み合わせて含有していてもよい。
The content of the polyvinyl ether compound (A) is preferably 70 to 99.7% by mass, more preferably 75 to 99.3% by mass, and still more preferably 80 to 80%, based on the total amount (100% by mass) of the refrigerating machine oil. It is 98.4 mass%. Thus, it is possible to make the refrigerating machine oil excellent in compatibility with the R32 refrigerant by increasing the content of the polyvinyl ether compound (A).
In addition, a polyvinyl ether type compound (A) may be contained individually by 1 type in refrigerating machine oil, and may be contained in combination of 2 or more type.
 ポリビニルエーテル系化合物(A)の40℃動粘度は、好ましくは10~400mm2/s、より好ましくは15~220mm2/s、更に好ましくは28~110mm2/sである。化合物(A)の40℃動粘度をこれら範囲とすることで、高温下における冷凍機油の潤滑性を良好にしやすくなる。
 また、ポリビニルエーテル系化合物(A)の粘度指数(VI)は、好ましくは90以上、より好ましくは100以上、更に好ましくは110以上である。ポリビニルエーテル系化合物(A)は、メトキシエチル基を側鎖に有する構成単位(a1)を含有することで、粘度指数が高くなりやすくなる。したがって、低温下及び高温下のいずれにおいても動粘度が適切な値となり、冷凍機油の高温下における耐摩耗性が良好になるなど、冷凍機油の潤滑性を向上させやすくなる。
 なお、本明細書において、動粘度及び粘度指数は、JIS K2283:2000に準拠して測定された値を意味する。
The kinematic viscosity at 40 ° C. of the polyvinyl ether compound (A) is preferably 10 to 400 mm 2 / s, more preferably 15 to 220 mm 2 / s, and still more preferably 28 to 110 mm 2 / s. By making the 40 degreeC kinematic viscosity of a compound (A) into these ranges, it becomes easy to make the lubricity of the refrigerating machine oil favorable under high temperature.
The viscosity index (VI) of the polyvinyl ether compound (A) is preferably 90 or more, more preferably 100 or more, and still more preferably 110 or more. When the polyvinyl ether compound (A) contains the structural unit (a1) having a methoxyethyl group in the side chain, the viscosity index tends to increase. Therefore, it becomes easy to improve the lubricity of the refrigerating machine oil, such that the kinematic viscosity becomes an appropriate value both at a low temperature and a high temperature, and the wear resistance of the refrigerating machine oil at a high temperature is improved.
In the present specification, the kinematic viscosity and the viscosity index mean values measured according to JIS K2283: 2000.
 ポリビニルエーテル系化合物(A)の数平均分子量(Mn)は、40℃動粘度が上記範囲になる範囲であればよいが、冷凍機油の潤滑性能を良好にする観点から、好ましくは300~3000、より好ましくは350~2500、更に好ましくは400~2000である。
 なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法により測定された値を意味する。
The number average molecular weight (Mn) of the polyvinyl ether compound (A) may be in the range where the kinematic viscosity at 40 ° C. falls within the above range, but from the viewpoint of improving the lubricating performance of the refrigerating machine oil, preferably 300 to 3000, More preferably, it is 350-2500, and still more preferably 400-2000.
In the present specification, the number average molecular weight is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically means a value measured by the method described in Examples. To do.
<構成単位(a1)>
 ポリビニルエーテル系化合物(A)が有する構成単位(a1)は、下記一般式(1)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000003

 上記一般式(1)中、R~Rは、それぞれ独立に、水素原子、又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
<Structural unit (a1)>
The structural unit (a1) of the polyvinyl ether compound (A) is preferably one represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003

In the general formula (1), R 1 to R 3 each independently represent a hydrogen atom or a carbon number of 1 to 8 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). A hydrocarbon group is shown.
 なお、R~Rとして選択し得る上記炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基等のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基等のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基等のアリールアルキル基;等が挙げられる。 Examples of the hydrocarbon group that can be selected as R 1 to R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups and other alkyl groups; cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups and other cycloalkyl groups; phenyl group And aryl groups such as various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; arylalkyl groups such as benzyl group, various phenylethyl groups, and various methylbenzyl groups;
 これらの中でも、R~Rは、すべてが水素原子及びアルキル基のいずれかであることが好ましく、すべてが水素原子であることがより好ましい。なお、上記一般式(1)中のR~Rは、構成単位毎に同一であってもよく、異なっていてもよい。すなわち、ポリビニルエーテル系化合物(A)は、R~Rのいずれか又は全部が構成単位毎に異なる共重合体を含むことができる。 Among these, all of R 1 to R 3 are preferably either a hydrogen atom or an alkyl group, and more preferably all are hydrogen atoms. Note that R 1 to R 3 in the general formula (1) may be the same or different for each structural unit. That is, the polyvinyl ether compound (A) can include copolymers in which any or all of R 1 to R 3 are different for each structural unit.
 ポリビニルエーテル系化合物(A)は、構成単位(a1)と共に、構成単位(a1)とは異なる、他の構成単位を有することが好ましい。
 構成単位(a1)の含有量は、R32溶媒との相溶性や、高温下での潤滑性に優れた冷凍機油とする観点から、ポリビニルエーテル系化合物(A)の全構成単位(100モル%)基準で、好ましくは1モル%以上、より好ましくは10モル%以上、更に好ましくは20モル%以上である。
 また、構成単位(a1)の含有量は、冷凍機油の体積抵抗率を高くする観点から、好ましくは100モル%以下、より好ましくは70モル%以下、更に好ましくは50モル%以下である。
It is preferable that a polyvinyl ether type compound (A) has another structural unit different from a structural unit (a1) with a structural unit (a1).
The content of the structural unit (a1) is all structural units (100 mol%) of the polyvinyl ether compound (A) from the viewpoint of compatibility with the R32 solvent and a refrigerating machine oil excellent in lubricity at high temperatures. On the basis, it is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more.
Further, the content of the structural unit (a1) is preferably 100 mol% or less, more preferably 70 mol% or less, and still more preferably 50 mol% or less, from the viewpoint of increasing the volume resistivity of the refrigerating machine oil.
<構成単位(a2)>
 ポリビニルエーテル系化合物(A)は、構成単位(a1)と共に、構成単位(a1)とは異なる、下記一般式(2)で表される構成単位(a2)を含むことが好ましい。構成単位(a1)及び(a2)を含むポリビニルエーテル系化合物(A)とすることで、例えば、冷凍機油の体積抵抗率を高くすることができる。
<Structural unit (a2)>
The polyvinyl ether compound (A) preferably contains a structural unit (a2) represented by the following general formula (2), which is different from the structural unit (a1), together with the structural unit (a1). By setting it as the polyvinyl ether type compound (A) containing structural unit (a1) and (a2), the volume resistivity of refrigerating machine oil can be made high, for example.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)中、R~Rは、それぞれ独立に、水素原子、又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
 R~Rとして選択し得る上記炭化水素基としては、上述のR~Rとして選択し得る炭化水素基と同じものが挙げられる。これらの中でも、R~Rとしては、すべてが水素原子及びアルキル基のいずれかであることが好ましく、すべてが水素原子であることがより好ましい。
 Rは、炭素数2~10(好ましくは2~6、より好ましくは2~4)の2価の炭化水素基を示す。また、rは、0~10の整数を示し、好ましくは0~3、より好ましくは0~2、更に好ましくは0~1、より更に好ましくは0である。なお、rが2以上である場合、複数のRは同一であってもよく、互いに異なるものであってもよい。
In the above general formula (2), R 4 to R 6 are each independently a hydrogen atom or a carbon number of 1 to 8 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). A hydrocarbon group is shown.
Examples of the hydrocarbon group that can be selected as R 4 to R 6 include the same hydrocarbon groups as those described above as R 1 to R 3 . Among these, all of R 4 to R 6 are preferably either a hydrogen atom or an alkyl group, and more preferably all are hydrogen atoms.
R 7 represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4). R represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, still more preferably 0 to 1, and still more preferably 0. When r is 2 or more, the plurality of R 7 may be the same or different from each other.
 Rとして選択し得る2価の炭化水素基としては、例えば、エチレン基、フェニルエチレン基、1,2-プロピレン基、2-フェニル-1,2-プロピレン基、1,3-プロピレン基、各種ブチレン基、各種ペンチレン基、各種ヘキシレン基、各種ヘプチレン基、各種オクチレン基、各種ノニレン基、各種デシレン基等のアルキレン基;シクロヘキシレン基、メチルシクロヘキシレン基、エチルシクロヘキシレン基、ジメチルシクロヘキシレン基、プロピルシクロヘキシレン基等の二価の脂環式炭化水素基;各種フェニレン基、各種メチルフェニレン基、各種エチルフェニレン基、各種ジメチルフェニレン基、各種ナフチレン基等の二価の芳香族炭化水素基;トルエン、エチルベンゼン等のアルキル芳香族炭化水素のアルキル基部分と芳香族部分にそれぞれ一価の結合部位を有する二価のアルキル芳香族炭化水素基;キシレン、ジエチルベンゼン等のポリアルキル芳香族炭化水素のアルキル基部分に結合部位を有する二価のアルキル芳香族炭化水素基;等が挙げられる。
 これらの中でも、Rとしては、アルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。
Examples of the divalent hydrocarbon group that can be selected as R 7 include an ethylene group, a phenylethylene group, a 1,2-propylene group, a 2-phenyl-1,2-propylene group, a 1,3-propylene group, and various types. Alkylene groups such as butylene group, various pentylene groups, various hexylene groups, various heptylene groups, various octylene groups, various nonylene groups, various decylene groups; cyclohexylene group, methylcyclohexylene group, ethylcyclohexylene group, dimethylcyclohexylene group, Divalent alicyclic hydrocarbon groups such as propylcyclohexylene group; divalent aromatic hydrocarbon groups such as various phenylene groups, various methylphenylene groups, various ethylphenylene groups, various dimethylphenylene groups and various naphthylene groups; toluene Alkyl groups and aromatics of alkyl aromatic hydrocarbons such as ethylbenzene A divalent alkyl aromatic hydrocarbon group having a monovalent bonding site in each moiety; a divalent alkyl aromatic hydrocarbon group having a bonding site in the alkyl group moiety of a polyalkyl aromatic hydrocarbon such as xylene and diethylbenzene; Etc.
Among these, as R 7 , an alkylene group is preferable, and an alkylene group having 2 to 4 carbon atoms is more preferable.
 Rは、炭素数1~10(好ましくは1~8、より好ましくは1~6、更に好ましくは1~4)の炭化水素基を示す。
 Rとして選択し得る炭化水素基としては、上述のR~Rとして選択し得る炭素数1~8の炭化水素基として例示された基に加えて、例えば、各種ノニル基、各種デシル基等のアルキル基;各種プロピルシクロヘキシル基、各種トリメチルシクロヘキシル基等のシクロアルキル基;各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基等のアリール基;各種フェニルプロピル基,各種フェニルブチル基等のアリールアルキル基;等が挙げられる。
 これらの中でも、Rとしては、アルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。
R 8 represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4).
The hydrocarbon group that can be selected as R 8 includes, for example, various nonyl groups and various decyl groups in addition to the groups exemplified as the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 1 to R 3 described above. Alkyl groups such as: various propyl cyclohexyl groups, cycloalkyl groups such as various trimethyl cyclohexyl groups; aryl groups such as various propyl phenyl groups, various trimethyl phenyl groups, various butyl phenyl groups, various naphthyl groups; various phenyl propyl groups, various phenyls Arylalkyl groups such as butyl group; and the like.
Among these, as R 8 , an alkyl group is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
 なお、構成単位(a2)は、構成単位(a1)とは異なる構造を有するものであるため、前記一般式(2)中のRがエチレン基(-CHCH-)であり、且つRがメチル基である場合、rは1ではない。 Note that since the structural unit (a2) has a structure different from that of the structural unit (a1), R 7 in the general formula (2) is an ethylene group (—CH 2 CH 2 —), and When R 8 is a methyl group, r is not 1.
 構成単位(a2)は、下記一般式(2-1)で表される構成単位(a2-1)であることがより好ましい。以下の構成単位(a2-1)を有することで、冷凍機油の体積抵抗率を高くすることができ、また、ポリビニルエーテル系化合物(A)の製造も容易になる。
Figure JPOXMLDOC01-appb-C000005

(上記一般式(2-1)中、Rは、前記一般式(2)の規定と同じである。)
The structural unit (a2) is more preferably a structural unit (a2-1) represented by the following general formula (2-1). By having the following structural unit (a2-1), the volume resistivity of the refrigerating machine oil can be increased, and the production of the polyvinyl ether compound (A) is facilitated.
Figure JPOXMLDOC01-appb-C000005

(In the general formula (2-1), R 8 is the same as defined in the general formula (2).)
 また、本発明の一実施形態において、構成単位(a2-1)の含有量は、ポリビニルエーテル系化合物(A)に含まれる構成単位(a2)の全量(100モル%)基準で、好ましくは70~100モル%、より好ましくは80~100モル%、更に好ましくは90~100モル%である。 In one embodiment of the present invention, the content of the structural unit (a2-1) is preferably 70 based on the total amount (100 mol%) of the structural unit (a2) contained in the polyvinyl ether compound (A). To 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%.
 また、一般式(2)及び(2-1)中のRがエチル基である構成単位の含有量は、ポリビニルエーテル系化合物(A)に含まれる構成単位(a2)の全量(100モル%)基準で、好ましくは50~100モル%、より好ましくは70~100モル%、更に好ましくは80~100モル%、特に好ましくは100モル%である。
 さらに、ポリビニルエーテル系化合物(A)が、上記一般式(2-1)で表される構成単位(a2-1)である場合には、上記一般式(1)で表される構成単位(a1)は、R~Rのすべてが水素原子であることが特に好ましい。
 構成単位(a2)の含有量は、ポリビニルエーテル系化合物(A)の全構成単位(100モル%)基準で、好ましくは0~99モル%、より好ましくは30~90モル%、更に好ましくは50~80モル%である。
In addition, the content of the structural unit in which R 8 in the general formulas (2) and (2-1) is an ethyl group is the total amount (100 mol%) of the structural unit (a2) contained in the polyvinyl ether compound (A). ), Preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%, particularly preferably 100 mol%.
Further, when the polyvinyl ether compound (A) is the structural unit (a2-1) represented by the general formula (2-1), the structural unit (a1) represented by the general formula (1) is used. In particular, all of R 1 to R 3 are preferably hydrogen atoms.
The content of the structural unit (a2) is preferably 0 to 99 mol%, more preferably 30 to 90 mol%, still more preferably 50, based on the total structural unit (100 mol%) of the polyvinyl ether compound (A). ~ 80 mol%.
 また、ポリビニルエーテル系化合物(A)は、構成単位(a1)及び構成単位(a2)以外の他の構成単位を有していてもよい。
 ただし、構成単位(a1)及び構成単位(a2)の合計含有量としては、ポリビニルエーテル系化合物(A)の全構成単位(100モル%)基準で、好ましくは70~100モル%、より好ましくは80~100モル%、更に好ましくは90~100モル%、より更に好ましくは95~100モル%、特に好ましくは100モル%である。
Moreover, the polyvinyl ether compound (A) may have other structural units other than the structural unit (a1) and the structural unit (a2).
However, the total content of the structural unit (a1) and the structural unit (a2) is preferably 70 to 100 mol%, more preferably based on the total structural unit (100 mol%) of the polyvinyl ether compound (A). It is 80 to 100 mol%, more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%, particularly preferably 100 mol%.
<ポリビニルエーテル系化合物(A)の末端部分>
 ポリビニルエーテル系化合物(A)の末端部分には、飽和の炭化水素、エーテル、アルコール、ケトン、アミド、ニトリル等に由来の一価の基を導入してもよい。
 なお、本発明の一実施形態において、ポリビニルエーテル系化合物(A)の末端部分の少なくとも一方が、下記一般式(3-1)で表される基であることが好ましい。
<Terminal part of polyvinyl ether compound (A)>
A monovalent group derived from a saturated hydrocarbon, ether, alcohol, ketone, amide, nitrile or the like may be introduced into the terminal portion of the polyvinyl ether compound (A).
In one embodiment of the present invention, at least one of the terminal portions of the polyvinyl ether compound (A) is preferably a group represented by the following general formula (3-1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(3-1)中、R11~R13は、それぞれ独立に、水素原子又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
 R14は、炭素数2~10(好ましくは2~6、より好ましくは2~4)の二価の炭化水素基を示す。
 r1は、0~10の整数を示し、好ましくは0~3、より好ましくは0~2、更に好ましくは0~1である。なお、r1が2以上である場合、複数のR14は同一であってもよく、互いに異なるものであってもよい。
 R15は、炭素数1~10(好ましくは1~8、より好ましくは1~6、更に好ましくは1~4)の炭化水素基を示す。*は結合部分を示す。
In the general formula (3-1), R 11 to R 13 are each independently a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). Represents a hydrocarbon group.
R 14 represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
r1 represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1. When r1 is 2 or more, the plurality of R 14 may be the same or different from each other.
R 15 represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4). * Represents a binding moiety.
 さらに、本発明の一実施形態において、ポリビニルエーテル系化合物(A)の末端部分の一方が前記一般式(3-1)で表される基であり、他方が下記一般式(3-1a)、(3-1b)、及び(3-1c)のいずれかの基、もしくはオレフィン性不飽和結合を有する基であることが好ましく、下記一般式(3-1a)の基であることがより好ましい。 Furthermore, in one embodiment of the present invention, one of the terminal portions of the polyvinyl ether compound (A) is a group represented by the general formula (3-1), and the other is the following general formula (3-1a), A group having any one of (3-1b) and (3-1c) or a group having an olefinically unsaturated bond is preferable, and a group of the following general formula (3-1a) is more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(3-1a)中、R11a~R13aは、それぞれ独立に、水素原子又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
 R14aは、炭素数2~10(好ましくは2~6、より好ましくは2~4)の二価の炭化水素基を示す。
 r2は、0~10の整数を示し、好ましくは0~3、より好ましくは0~2、更に好ましくは0~1である。なお、r2が2以上である場合、複数のR14aは同一であってもよく、互いに異なるものであってもよい。
 R15aは、炭素数1~10(好ましくは1~8、より好ましくは1~6、更に好ましくは1~4)の炭化水素基を示す。*は結合部分を示す。
In the general formula (3-1a), R 11a to R 13a are each independently a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). Represents a hydrocarbon group.
R 14a represents a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
r2 represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1. When r2 is 2 or more, the plurality of R 14a may be the same or different from each other.
R 15a represents a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4). * Represents a binding moiety.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(3-1b)中、R11b~R13bは、それぞれ独立に、水素原子又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
 R14b及びR16bは、それぞれ独立に、炭素数2~10(好ましくは2~6、より好ましくは2~4)の二価の炭化水素基を示す。
 r3及びr4は、それぞれ独立に、0~10の整数を示し、好ましくは0~3、より好ましくは0~2、更に好ましくは0~1である。なお、r3及びr4が2以上である場合、複数のR14b及びR16bは、同一であってもよく、互いに異なるものであってもよい。
 R15b及びR17bは、それぞれ独立に、炭素数1~10(好ましくは1~8、より好ましくは1~6、更に好ましくは1~4)の炭化水素基を示す。*は結合部分を示す。
In the general formula (3-1b), R 11b to R 13b each independently represent a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). Represents a hydrocarbon group.
R 14b and R 16b each independently represent a divalent hydrocarbon group having 2 to 10 carbon atoms (preferably 2 to 6, more preferably 2 to 4).
r3 and r4 each independently represents an integer of 0 to 10, preferably 0 to 3, more preferably 0 to 2, and still more preferably 0 to 1. When r3 and r4 are 2 or more, the plurality of R 14b and R 16b may be the same or different from each other.
R 15b and R 17b each independently represent a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 8, more preferably 1 to 6, and further preferably 1 to 4). * Represents a binding moiety.
Figure JPOXMLDOC01-appb-C000009

 上記一般式(3-1c)中、R11c~R13cは、それぞれ独立に、水素原子又は炭素数1~8(好ましくは1~6、より好ましくは1~4、更に好ましくは1~2)の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000009

In the general formula (3-1c), R 11c to R 13c each independently represents a hydrogen atom or 1 to 8 carbon atoms (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 2). Represents a hydrocarbon group.
 なお、上述の一般式(3-1)、(3-1a)、(3-1b)、及び(3-1c)において、R11~R13、R11a~R13a、R11b~R13b、及びR11c~R13cとして選択し得る炭素数1~8の炭化水素基としては、前記一般式(2)中のR~Rとして選択し得る炭素数1~8の炭化水素基と同じものが挙げられ、好適な基も同じである。
 また、R14、R14a、R14b、及びR16bとして選択し得る炭素数2~10の二価の炭化水素基としては、前記一般式(2)中のRとして選択し得る炭素数2~10の二価の炭化水素基と同じものが挙げられ、好適な基も同じである。
 さらに、R15、R15a、R15b、及びR17bとして選択し得る炭素数1~10の炭化水素基としては、前記一般式(2)中のRとして選択し得る炭素数1~10の炭化水素基と同じものが挙げられ、好適な基も同じである。
In the above general formulas (3-1), (3-1a), (3-1b), and (3-1c), R 11 to R 13 , R 11a to R 13a , R 11b to R 13b , And the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 11c to R 13c is the same as the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 4 to R 6 in the general formula (2). And suitable groups are the same.
The divalent hydrocarbon group having 2 to 10 carbon atoms that can be selected as R 14 , R 14a , R 14b , and R 16b includes 2 carbon atoms that can be selected as R 7 in the general formula (2). The same as the divalent hydrocarbon group of ˜10 can be mentioned, and preferable groups are also the same.
Furthermore, as the hydrocarbon group having 1 to 10 carbon atoms that can be selected as R 15 , R 15a , R 15b , and R 17b , the hydrocarbon group having 1 to 10 carbon atoms that can be selected as R 8 in the general formula (2). The same thing as a hydrocarbon group is mentioned, A suitable group is also the same.
<ポリビニルエーテル系化合物(A)の合成方法>
 ポリビニルエーテル系化合物(A)の合成方法としては、特に制限は無く、構成単位(a1)を形成し得る原料モノマー、及び必要に応じて、構成単位(a2)を形成し得る原料モノマーを用いて、各種重合(ラジカル重合、カチオン重合、放射線重合等)によって合成する方法が挙げられる。
<Synthesis Method of Polyvinyl Ether Compound (A)>
There is no restriction | limiting in particular as a synthesis method of a polyvinyl ether type compound (A), The raw material monomer which can form a structural unit (a1) and the raw material monomer which can form a structural unit (a2) as needed are used. And a method of synthesis by various polymerizations (radical polymerization, cationic polymerization, radiation polymerization, etc.).
 構成単位(a1)を形成する原料モノマーとしては、例えば、下記一般式(I)で表されるビニルエーテル系モノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000010

(上記一般式(I)中、R~Rは、前記一般式(1)の規定と同じである。)
As a raw material monomer which forms a structural unit (a1), the vinyl ether type monomer represented by the following general formula (I) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000010

(In the general formula (I), R 1 to R 3 are the same as defined in the general formula (1).)
 また、構成単位(a2)を形成する原料モノマーとしては、例えば、下記一般式(II)で表されるビニルエーテル系モノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000011

(上記一般式(II)中、R~R及びrは、前記一般式(2)の規定と同じである。)
Moreover, as a raw material monomer which forms a structural unit (a2), the vinyl ether type monomer represented by the following general formula (II) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000011

(In the general formula (II), R 4 to R 8 and r are the same as defined in the general formula (2).)
 ポリビニルエーテル系化合物(A)の合成方法は、所望の動粘度を有するポリビニルエーテル系化合物(A)を得る観点から、重合触媒及び重合開始剤の存在下、原料モノマーを系内に添加して、重合反応を進行させる方法が好ましい。 From the viewpoint of obtaining a polyvinyl ether compound (A) having a desired kinematic viscosity, the synthesis method of the polyvinyl ether compound (A) is to add a raw material monomer into the system in the presence of a polymerization catalyst and a polymerization initiator, A method of allowing the polymerization reaction to proceed is preferred.
 重合触媒としては、例えば、ブレンステッド酸類、ルイス酸類、及び有機金属化合物類等が挙げられ、ルイス酸類が好ましい。
 ブレンステッド酸類としては、例えば、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸等が挙げられる。
 ルイス酸類としては、例えば、三フッ化ホウ素、三塩化アルミニウム、三臭化アルミニウム、四塩化スズ、二塩化亜鉛、塩化第二鉄等が挙げられ、三フッ化ホウ素が好ましい。
 有機金属化合物としては、例えば、ジエチル塩化アルミニウム、エチル塩化アルミニウム、ジエチル亜鉛等が挙げられる。
Examples of the polymerization catalyst include Bronsted acids, Lewis acids, and organometallic compounds, and Lewis acids are preferable.
Examples of Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, trifluoroacetic acid, and the like.
Examples of Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, ferric chloride and the like, and boron trifluoride is preferable.
Examples of the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc and the like.
 当該重合開始剤としては、水、アルコール類、フェノール類、アセタール類、及びビニルエーテル類とカルボン酸との付加物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いてもよい。これらの重合開始剤の種類に応じて、得られるポリビニルエーテル系化合物(A)の末端部分が形成される。 Examples of the polymerization initiator include water, alcohols, phenols, acetals, adducts of vinyl ethers and carboxylic acids, and these may be used alone or in combination of two or more. Depending on the type of these polymerization initiators, the terminal portion of the resulting polyvinyl ether compound (A) is formed.
 アルコール類としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種ヘプタノール、各種オクタノール等の炭素数1~20の飽和脂肪族アルコール;アリルアルコール等の炭素数3~10の不飽和脂肪族アルコール;エチレングリコールモノアルキルエーテル、エチレングリコールモノアリールエーテル等の炭素数14以下のエーテル結合酸素含有アルコール;等が挙げられる。
 フェノール類としては、例えば、フェノール、各種クレゾール等が挙げられる。
 アセタール類としては、例えば、アセトアルデヒドジメチルアセタール、アセトアルデヒドジエチルアセタール、アセトアルデヒドメチルエチルアセタール、アセトアルデヒドビス(メトキシエチル)アセタール等が挙げられる。
 ビニルエーテル類とカルボン酸との付加物としては、例えば、酢酸、プロピオン酸、n-酪酸、イソ酪酸、3,5,5-トリメチルカプロン酸等の付加物が挙げられる。
Examples of alcohols include saturated fats having 1 to 20 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, and various octanols. An unsaturated alcohol having 3 to 10 carbon atoms such as allyl alcohol; an ether-bonded oxygen-containing alcohol having 14 or less carbon atoms such as ethylene glycol monoalkyl ether and ethylene glycol monoaryl ether;
Examples of phenols include phenol and various cresols.
Examples of acetals include acetaldehyde dimethyl acetal, acetaldehyde diethyl acetal, acetaldehyde methyl ethyl acetal, acetaldehyde bis (methoxyethyl) acetal, and the like.
Examples of the adduct of vinyl ethers and carboxylic acid include adducts such as acetic acid, propionic acid, n-butyric acid, isobutyric acid, and 3,5,5-trimethylcaproic acid.
 なお、得られるポリビニルエーテル系化合物(A)の重合開始末端は、水,アルコール類,フェノール類を使用した場合は、水素が結合する。アセタール類を使用した場合は、アセタール類から脱離した一方のアルコキシ基が結合する。また、ビニルエーテル類とカルボン酸との付加物を使用した場合には、ビニルエーテル類とカルボン酸との付加物から脱離したカルボン酸部分由来のアルキルカルボニルオキシ基が結合する。
 一方、ポリビニルエーテル系化合物(A)の停止末端は、水、アルコール類,フェノール類,アセタール類を使用した場合には、アセタール,オレフィン、又はアルデヒドとなる。また、ビニルエーテル類とカルボン酸との付加物の場合は、ヘミアセタールのカルボン酸エステルとなり、酸の存在下で加水分解するとアルデヒドになる。
The polymerization initiation terminal of the obtained polyvinyl ether compound (A) is bonded with hydrogen when water, alcohols or phenols are used. When acetals are used, one alkoxy group eliminated from the acetals is bonded. When an adduct of vinyl ethers and carboxylic acid is used, an alkylcarbonyloxy group derived from the carboxylic acid moiety eliminated from the adduct of vinyl ethers and carboxylic acid is bonded.
On the other hand, the stop terminal of the polyvinyl ether compound (A) becomes an acetal, an olefin, or an aldehyde when water, alcohols, phenols, or acetals are used. In addition, in the case of an adduct of vinyl ethers and carboxylic acid, it becomes a carboxylic acid ester of hemiacetal, and becomes an aldehyde when hydrolyzed in the presence of an acid.
 なお、当該重合反応は、使用する原料モノマーや重合開始剤の種類にもよるが、通常-80~150℃(好ましくは0~100℃)の温度で、反応開始後10秒から10時間程度で終了することが好ましい。
 また、当該重合反応は、通常溶媒の存在下に行われる。使用する溶媒としては、反応原料を必要量溶解することができ、且つ、重合反応に不活性なものであれば特に制限はないが、例えば、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒;エチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル系溶媒;等が挙げられる。
Although the polymerization reaction depends on the type of raw material monomer and polymerization initiator used, it is usually at a temperature of −80 to 150 ° C. (preferably 0 to 100 ° C.) and about 10 seconds to 10 hours after the reaction starts. It is preferable to end.
Moreover, the said polymerization reaction is normally performed in presence of a solvent. The solvent to be used is not particularly limited as long as it can dissolve the required amount of the reaction raw material and is inert to the polymerization reaction. For example, hydrocarbon solvents such as hexane, benzene and toluene; And ether solvents such as ether, 1,2-dimethoxyethane, tetrahydrofuran and the like.
 重合反応後に、得られた重合物中に不飽和結合、アセタール及びアルデヒドを有する場合、これらを飽和結合及びエーテルとするために、さらに水素化処理することが好ましい。水素化処理は、水素化触媒の存在下、水素圧0.1~10MPa(好ましくは1~6MPa)で水素ガスを導入し、反応温度10~250℃(好ましくは50~200℃)で行われることが好ましい。
 水素化触媒としては、例えば、ニッケル系触媒、白金系触媒、パラジウム系触媒、ルテニウム系触媒等の金属触媒が挙げられ、これらの金属触媒をアルミナや珪藻土等に担持した触媒や、ラネー型触媒等も使用できる。
When the polymer obtained after the polymerization reaction has an unsaturated bond, an acetal, and an aldehyde, it is preferable to further perform a hydrogenation treatment so that these become a saturated bond and an ether. The hydrogenation treatment is performed at a reaction temperature of 10 to 250 ° C. (preferably 50 to 200 ° C.) by introducing hydrogen gas at a hydrogen pressure of 0.1 to 10 MPa (preferably 1 to 6 MPa) in the presence of a hydrogenation catalyst. It is preferable.
Examples of the hydrogenation catalyst include metal catalysts such as nickel-based catalysts, platinum-based catalysts, palladium-based catalysts, and ruthenium-based catalysts. Catalysts in which these metal catalysts are supported on alumina or diatomaceous earth, Raney-type catalysts, and the like Can also be used.
[ポリビニルエーテル系化合物(A)以外の基油]
 冷凍機油は、基油として、ポリビニルエーテル系化合物(A)のみを含有してもよいが、本発明の効果を損なわない範囲において、ポリビニルエーテル系化合物(A)以外の基油を含有してもよい。
 他の基油としては、例えば、構成単位(a1)を含まないポリビニルエーテル系化合物、ポリアルキレングリコール系化合物、ポリ(オキシ)アルキレングリコール又はそのモノエーテルと構成単位(a1)を含まないポリビニルエーテルとの共重合体、及びポリオールエステル系化合物等が挙げられる。
 これらその他の基油は、単独で又は2種以上を組み合わせて用いてもよい。
 これらその他の基油は、ポリビニルエーテル系化合物(A)と同様の40℃動粘度を有するものを使用すればよく、具体的な40℃動粘度は、好ましくは10~400mm/s、より好ましくは15~220mm/s、更に好ましくは28~110mm/sである。
[Base oils other than the polyvinyl ether compound (A)]
The refrigerating machine oil may contain only the polyvinyl ether compound (A) as the base oil, but may contain a base oil other than the polyvinyl ether compound (A) as long as the effects of the present invention are not impaired. Good.
Other base oils include, for example, polyvinyl ether compounds not containing the structural unit (a1), polyalkylene glycol compounds, poly (oxy) alkylene glycol or monoethers thereof, and polyvinyl ethers not containing the structural unit (a1) And a copolymer of polyol ester and the like.
These other base oils may be used alone or in combination of two or more.
These other base oils may be those having the same 40 ° C. kinematic viscosity as the polyvinyl ether compound (A), and the specific 40 ° C. kinematic viscosity is preferably 10 to 400 mm 2 / s, more preferably. Is 15 to 220 mm 2 / s, more preferably 28 to 110 mm 2 / s.
 なお、ポリビニルエーテル系化合物(A)以外の他の基油の含有量は、R32冷媒との相溶性に優れた冷凍機油とする観点から、ポリビニルエーテル系化合物(A)100質量部に対して、好ましくは0~30質量部、より好ましくは0~20質量部、更に好ましくは0~10質量部、より更に好ましくは0~3質量部である。 In addition, the content of the base oil other than the polyvinyl ether compound (A) is based on 100 parts by mass of the polyvinyl ether compound (A) from the viewpoint of a refrigerating machine oil excellent in compatibility with the R32 refrigerant. The amount is preferably 0 to 30 parts by mass, more preferably 0 to 20 parts by mass, still more preferably 0 to 10 parts by mass, and still more preferably 0 to 3 parts by mass.
[添加剤]
 本発明の一実施形態に係る冷凍機油は、添加剤を含有する。冷凍機油は、添加剤として、酸化防止剤(B)、酸捕捉剤(C)、又はこれらの両方を含有するが、これら両方を含有することが好ましい。冷凍機油は、酸化防止剤(B)又は酸捕捉剤(C)を含有することで、高温下において冷凍機油の酸価が上昇するのを防止し、冷凍機油の高温酸化安定性を向上させることが可能になる。また、冷凍機油は、酸化防止剤(B)及び酸捕捉剤(C)の両方を含有することで、冷凍機油の酸価の上昇をさらに抑制して、冷凍機油の高温酸化安定性をより向上させることが可能になる。
[Additive]
The refrigerating machine oil which concerns on one Embodiment of this invention contains an additive. The refrigerating machine oil contains an antioxidant (B), an acid scavenger (C), or both as an additive, but preferably contains both. Refrigerating machine oil contains an antioxidant (B) or an acid scavenger (C), thereby preventing the acid value of the refrigerating machine oil from increasing at high temperatures and improving the high-temperature oxidation stability of the refrigerating machine oil. Is possible. Further, the refrigerating machine oil contains both the antioxidant (B) and the acid scavenger (C), thereby further suppressing the increase in the acid value of the refrigerating machine oil and further improving the high-temperature oxidation stability of the refrigerating machine oil. It becomes possible to make it.
 以下、酸化防止剤(B)及び酸捕捉剤(C)について詳細に説明する。
(酸化防止剤(B))
 酸化防止剤(B)としては、フェノール系酸化防止剤、アミン系酸化防止剤が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール系酸化防止剤、ポリフェノール系酸化防止剤が挙げられる。
 モノフェノール系酸化防止剤としては、n-オクチル-3-(3,5-ジ-t-ブチル4-ヒドロキシフェニル)プロピオネート、6-メチルヘプチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートなどのアルキル-3-(3,5-ジ-t―ブチル-4-ヒドロキシフェニル)プロピオネート(アルキル基としては、炭素数4~20のものが挙げられ、好ましくは、炭素数8~18である);2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノールなどの2,6-ジ-t-ブチル-4-アルキルフェノール(アルキル基の炭素数1~4);2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-アミル-p-クレゾールなどが挙げられる。
Hereinafter, the antioxidant (B) and the acid scavenger (C) will be described in detail.
(Antioxidant (B))
Examples of the antioxidant (B) include phenolic antioxidants and amine antioxidants.
Examples of phenolic antioxidants include monophenolic antioxidants and polyphenolic antioxidants.
Monophenol antioxidants include n-octyl-3- (3,5-di-t-butyl 4-hydroxyphenyl) propionate, 6-methylheptyl-3- (3,5-di-t-butyl- Alkyl-3- (3,5-di-t-butyl-4-hydroxy) such as 4-hydroxyphenyl) propionate and n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate Phenyl) propionate (alkyl groups include those having 4 to 20 carbon atoms, preferably 8 to 18 carbon atoms); 2,6-di-t-butyl-4-methylphenol, 2,6 -2,6-di-t-butyl-4-alkylphenol (dialkyl having 1 to 4 carbon atoms) such as di-t-butyl-4-ethylphenol; 2,4-dimethyl-6-t- Butylphenol, 2,6-di -t- amyl -p- cresol.
 また、ポリフェノール系酸化防止剤としては、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ビス(2,6-ジ-t-ブチルフェノール)、4,4’-ビス(2-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-イソプロピリデンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-ノニルフェノール)、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、4,4’-チオビス(2-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)、ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)スルフィド、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられる。 Polyphenol antioxidants include 4,4′-methylenebis (2,6-di-t-butylphenol), 4,4′-bis (2,6-di-t-butylphenol), 4,4 ′. -Bis (2-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6) -Nonylphenol), 2,2'-isobutylidenebis (4,6-dimethylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 4, '-Thiobis (2-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,2'-thiobis (4-methyl-6-t-butylphenol) Bis (3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide, bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, thiodiethylenebis [3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate] and the like.
 また、アミン系酸化防止剤としては、4,4’-ジブチルジフェニルアミン、4,4’-ジオクチルジフェニルアミンなどのジアルキルジフェニルアミン、アルキルフェニル-α-ナフチルアミン、フェニル-α-ナフチルアミンなどのフェニル-α-ナフチルアミン類、N,N’-ジ-フェニル-p-フェニレンジアミン等などが挙げられる。 Examples of amine-based antioxidants include dialkyldiphenylamines such as 4,4′-dibutyldiphenylamine and 4,4′-dioctyldiphenylamine, and phenyl-α-naphthylamines such as alkylphenyl-α-naphthylamine and phenyl-α-naphthylamine. N, N′-di-phenyl-p-phenylenediamine and the like.
 酸化防止剤(B)としては、フェノール系酸化防止剤が好ましい。また、フェノール系酸化防止剤としては、上記した中でも、2,6-ジ-t-ブチル-4-アルキルフェノールがより好ましく、2,6-ジ-t-ブチル-4-メチルフェノールが最も好ましい。酸化防止剤(B)として、これらフェノール系酸化防止剤を使用することで、冷凍機油の酸価の上昇を適切に防止して、高温下での酸化安定性をより良好にしやすくなる。 As the antioxidant (B), a phenolic antioxidant is preferable. Among the above-mentioned phenolic antioxidants, 2,6-di-t-butyl-4-alkylphenol is more preferable, and 2,6-di-t-butyl-4-methylphenol is most preferable. By using these phenolic antioxidants as the antioxidant (B), an increase in the acid value of the refrigerating machine oil can be appropriately prevented, and the oxidation stability at high temperatures can be easily improved.
 冷凍機油における酸化防止剤(B)の含有量は、冷凍機油全量基準で、0.1~5質量%であることが好ましく、0.1~3質量%であることがより好ましく、0.15~1質量%がさらに好ましい。酸化防止剤は、これら下限値以上を冷凍機油に含有させることで、冷凍機油の酸価上昇を十分に抑制して、高温安定性を高めやすくなる。また、これら上限値以下とすることで含有量に見合った効果を発揮しやすくなる。
 なお、酸化防止剤(B)は、1種単独で使用してもよいし、2種以上を併用してもよい。
The content of the antioxidant (B) in the refrigerating machine oil is preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the refrigerating machine oil, and 0.15 More preferably, it is ˜1% by mass. By making the refrigerating machine oil contain these lower limit values or more, the antioxidant sufficiently suppresses an increase in the acid value of the refrigerating machine oil and facilitates enhancing high-temperature stability. Moreover, it becomes easy to exhibit the effect corresponding to content by setting it as these upper limit values or less.
In addition, an antioxidant (B) may be used individually by 1 type, and may use 2 or more types together.
(酸捕捉剤(C))
 酸捕捉剤(C)としては、エポキシ化合物が挙げられ、より具体的にはグリシジルエーテル化合物、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などが挙げられるが、グリシジルエーテル化合物が好ましい。
 グリシジルエーテル化合物としては、炭素数が、通常3~30、好ましくは4~24、より好ましくは6~16の脂肪族モノ又は多価アルコール、あるいは水酸基を1個以上含有する芳香族化合物由来のグリシジルエーテルが挙げられる。脂肪族モノ又は多価アルコールは、直鎖状、分岐状、環状のいずれでもよく、また飽和若しくは不飽和のいずれでもよいが、飽和脂肪族モノアルコールであることが好ましい。
 なお、脂肪族多価アルコールや水酸基を2個以上含有する芳香族化合物の場合、冷凍機油の安定性及び水酸基価の上昇を抑える観点から、水酸基の全てがグリシジルエーテル化されていることが好ましい。
 グリシジルエーテル化合物としては、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテルなどが挙げられ、これらの中では、特に直鎖状、分岐状、環状の炭素数6~16の飽和脂肪族モノアルコール由来のグリシジルエーテル(すなわち、アルキル基の炭素数が6~16のアルキルグリシジルエーテル)がより好ましい。このようなグリシジルエーテルとしては、例えば2-エチルヘキシルグリシジルエーテル、イソノニルグリシジルエーテル、デシルグリシジルエーテル、ラウリルグリシジルエーテル、ミリスチルグリシジルエーテルなどが挙げられ、2-エチルヘキシルグリシジルエーテルが最も好ましい。2-エチルヘキシルグリシジルエーテル等のアルキルグリシジルエーテルを使用することで、冷凍機油の酸価の上昇を適切に防止して、高温下での酸化安定性をより良好にしやすくなる。
(Acid scavenger (C))
Examples of the acid scavenger (C) include epoxy compounds, and more specifically, glycidyl ether compounds, cyclohexene oxide, α-olefin oxide, epoxidized soybean oil, and the like, with glycidyl ether compounds being preferred.
Examples of the glycidyl ether compound include aliphatic mono- or polyhydric alcohols having 3 to 30, preferably 4 to 24, more preferably 6 to 16 carbon atoms, or an aromatic compound-derived glycidyl derived from an aromatic compound. Ether. The aliphatic mono- or polyhydric alcohol may be linear, branched or cyclic, and may be saturated or unsaturated, but is preferably a saturated aliphatic monoalcohol.
In the case of an aromatic polyhydric alcohol or an aromatic compound containing two or more hydroxyl groups, it is preferable that all of the hydroxyl groups are glycidyl etherified from the viewpoint of suppressing the stability of the refrigerating machine oil and the hydroxyl value.
Examples of the glycidyl ether compound include phenyl glycidyl ether, alkyl glycidyl ether, and alkylene glycol glycidyl ether. Among these, linear, branched, and cyclic C6-C16 saturated aliphatic monoalcohols are particularly derived. Of glycidyl ether (that is, alkyl glycidyl ether having an alkyl group having 6 to 16 carbon atoms) is more preferable. Examples of such glycidyl ether include 2-ethylhexyl glycidyl ether, isononyl glycidyl ether, decyl glycidyl ether, lauryl glycidyl ether, myristyl glycidyl ether, and 2-ethylhexyl glycidyl ether is most preferable. By using an alkyl glycidyl ether such as 2-ethylhexyl glycidyl ether, an increase in the acid value of the refrigerating machine oil can be appropriately prevented, and oxidation stability at high temperatures can be easily improved.
 冷凍機油における酸捕捉剤(C)の含有量は、冷凍機油全量基準で、好ましくは0.1~10質量%である。酸捕捉剤(C)の含有量を0.1質量%以上とすることで、冷凍機油中の酸を適切に捕捉して、効果的に冷凍機油の酸価の上昇を防止でき、高温安定性を高めやすくなる。また、10質量%以下とすることで含有量に見合った効果を奏することが可能である。
 また、酸捕捉剤(C)の上記含有量は、より好ましくは0.4~5質量%、さらに好ましくは0.5~5質量%、特に好ましくは0.5~3質量%、最も好ましくは0.5~2質量%である。酸捕捉剤(C)は、このように含有量を多くすると、より効果的に冷凍機油の酸価の上昇を防止できる。なお、酸捕捉剤(C)は、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、酸捕捉剤(C)は、上記した酸化防止剤(B)と併用することで、酸価の上昇をさらに抑制することが可能である。
The content of the acid scavenger (C) in the refrigerating machine oil is preferably 0.1 to 10% by mass based on the total amount of the refrigerating machine oil. By setting the content of the acid scavenger (C) to 0.1% by mass or more, the acid in the refrigeration oil can be appropriately captured, and the acid value of the refrigeration oil can be effectively prevented from increasing, and the high temperature stability It becomes easy to raise. Moreover, the effect corresponding to content can be show | played by setting it as 10 mass% or less.
The content of the acid scavenger (C) is more preferably 0.4 to 5% by mass, further preferably 0.5 to 5% by mass, particularly preferably 0.5 to 3% by mass, and most preferably 0.5 to 2% by mass. When the content of the acid scavenger (C) is increased as described above, the acid value of the refrigerating machine oil can be more effectively prevented from increasing. In addition, an acid capture agent (C) may be used individually by 1 type, and may use 2 or more types together.
Moreover, an acid scavenger (C) can further suppress an increase in acid value by using together with the above-mentioned antioxidant (B).
(極圧剤(D))
 冷凍機油は、さらに極圧剤(D)を含有することが好ましい。冷凍機油は、極圧剤(D)を含有することで、高温下における耐摩耗性が良好になり、潤滑性をより向上させることが可能である。
 極圧剤(D)としては、リン系極圧剤等が挙げられる。リン系極圧剤としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、酸性亜リン酸エステルあるいはこれらのアミン塩が挙げられる。
 リン酸エステルとしては、トリアリールホスフェート,トリアルキルホスフェート,モノアルキルジアリールホスフェート、ジアルキルモノアリールホスフェート、トリアルケニルホスフェートなどがある。なお、極圧剤(D)において述べる“アリール”は、芳香族環のみからなる官能基のみならず、アルキルアリール、及びアリールアルキルを含む概念である。
(Extreme pressure agent (D))
The refrigerating machine oil preferably further contains an extreme pressure agent (D). By containing the extreme pressure agent (D), the refrigerating machine oil has good wear resistance at high temperatures and can further improve lubricity.
Examples of the extreme pressure agent (D) include phosphorus-based extreme pressure agents. Examples of the phosphorus extreme pressure agent include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, acidic phosphorous acid esters, and amine salts thereof.
Examples of phosphate esters include triaryl phosphate, trialkyl phosphate, monoalkyl diaryl phosphate, dialkyl monoaryl phosphate, and trialkenyl phosphate. The “aryl” described in the extreme pressure agent (D) is a concept including not only a functional group consisting of only an aromatic ring but also alkylaryl and arylalkyl.
 リン酸エステルとしては、具体的には、例えばトリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェートなどのトリアリールホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェートなどのアルキルホスフェート、エチルジフェニルホスフェート、トリオレイルホスフェートなどを挙げることができる。 Specific examples of phosphate esters include triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, propyl phenyl diphenyl phosphate, dipropyl phenyl phenyl phosphate, and ethyl phenyl diphenyl phosphate. , Diethyl phenylphenyl phosphate, triethyl phenyl phosphate, tripropyl phenyl phosphate, butyl phenyl diphenyl phosphate, dibutyl phenyl phenyl phosphate, tributyl phenyl phosphate, triaryl phosphate, tributyl phosphate, ethyl dibutyl phosphate, trihexyl phosphate, tri (2-ethylhexyl) ) Phosphae , It may be mentioned tridecyl phosphate, trilauryl phosphate, trimyristyl phosphate, tri palmityl phosphate, alkyl phosphates such as tristearyl phosphate, ethyl diphenyl phosphate, and trioleyl phosphate.
 酸性リン酸エステルとしては、各種のアルキルアシッドホスフェート、ジアルキルアシッドホスフェートなどが挙げられる。亜リン酸エステルとしては、各種のトリアルキルホスファイト、トリアリールホスファイト、モノアルキルジアリールホスファイト、ジアルキルモノアリールホスファイト、トリアルケニルホスファイトなどがある。酸性亜リン酸エステルとしては、各種のジアルキルハイドロゲンホスファイト、ジアルケニルハイドロゲンホスファイト、ジアリールハイドロゲンホスファイトなどを挙げることができる。また、リン系極圧剤としては、トリチオフェニルホスフェート等の硫黄原子を含有するリン酸エステル等であってもよい。なお、アミン塩としては、酸性リン酸エステル又は酸性亜リン酸エステルのアミン塩が挙げられる。アミン塩を形成するアミン塩は、1級、2級、又は3級アミンのいずれでもよい。 Examples of acidic phosphate esters include various alkyl acid phosphates and dialkyl acid phosphates. Examples of phosphites include various trialkyl phosphites, triaryl phosphites, monoalkyl diaryl phosphites, dialkyl monoaryl phosphites, and trialkenyl phosphites. Examples of the acidic phosphite include various dialkyl hydrogen phosphites, dialkenyl hydrogen phosphites, and diaryl hydrogen phosphites. The phosphorus extreme pressure agent may be a phosphate ester containing a sulfur atom such as trithiophenyl phosphate. In addition, as an amine salt, the amine salt of acidic phosphate ester or acidic phosphite is mentioned. The amine salt that forms the amine salt may be a primary, secondary, or tertiary amine.
 極圧剤(D)としては、上記した中では、リン酸エステルが好ましく、中でもトリアリールホスフェートがより好ましく、トリクレジルホスフェートが最も好ましい。トリクレジルホスフェート等のトリアリールホスフェートを使用することで、高温下の潤滑性等が良好になりやすくなる。その他の好ましいものとしては、トリチオフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイトが挙げられる。
 冷凍機油における極圧剤(D)の含有量は、冷凍機油全量基準で0.1~5質量%であることが好ましい。0.1質量%以上とすることで潤滑性が良好になりやすくなる。また、5質量%以下とすることで、含有量に見合った効果を得やすくなる。これら観点から、極圧剤(D)の含有量は、0.3~3質量%がより好ましく、0.5~3質量%がさらに好ましく、0.5~2質量%が最も好ましい。
 また、冷凍機油は、極圧剤(D)を添加すると、酸価が上昇する傾向にあるが、酸化防止剤(B)及び酸捕捉剤(C)を併用することで、極圧剤(D)に起因する酸価の上昇をより適切に抑制することが可能である。
Among the above-mentioned extreme pressure agents (D), phosphate esters are preferable, triaryl phosphate is more preferable, and tricresyl phosphate is most preferable. By using a triaryl phosphate such as tricresyl phosphate, lubricity at a high temperature tends to be good. Other preferable examples include trithiophenyl phosphate, tri (nonylphenyl) phosphite, dioleyl hydrogen phosphite, and 2-ethylhexyl diphenyl phosphite.
The content of the extreme pressure agent (D) in the refrigeration oil is preferably 0.1 to 5% by mass based on the total amount of the refrigeration oil. When the content is 0.1% by mass or more, the lubricity tends to be good. Moreover, it becomes easy to acquire the effect corresponding to content by setting it as 5 mass% or less. From these viewpoints, the content of the extreme pressure agent (D) is more preferably 0.3 to 3% by mass, further preferably 0.5 to 3% by mass, and most preferably 0.5 to 2% by mass.
In addition, when the extreme pressure agent (D) is added to the refrigerating machine oil, the acid value tends to increase, but by using the antioxidant (B) and the acid scavenger (C) in combination, the extreme pressure agent (D ) Can be suppressed more appropriately.
 上記のように本実施形態における冷凍機油は、酸化防止剤(B)、酸捕捉剤(C)、及び極圧剤(D)のいずれも含有することが特に好ましいが、この場合の各(A)~(D)成分の含有量も、上記したとおりである。すなわち、ポリビニルエーテル化合物(A)、酸化防止剤(B)、酸捕捉剤(C)、及び極圧剤(D)それぞれの含有量は、冷凍機油全量基準で、70~99.7質量%、0.1~5質量%、0.1~10質量%、0.1~5質量%であることが好ましく、75~99.3質量%、0.1~3質量%、0.4~5質量%、0.3~3質量%であることがより好ましく、80~98.4質量%、0.15~1質量%、0.5~5質量%、0.5~3質量%であることがさらに好ましく、80~98.4質量%、0.15~1質量%、0.5~2質量%、0.5~2質量%であることが最も好ましい。
 また、上記(B)~(D)成分を含有する場合の好ましい化合物も上記と同様である。すなわち、酸化防止剤(B)がフェノール系酸化防止剤、酸捕捉剤(C)がグリシジルエーテル化合物、極圧剤(D)がリン酸エステルであることが好ましく、酸化防止剤(B)が2,6-ジ-t-ブチル-4-アルキルフェノール、酸捕捉剤(C)がアルキルグリシジルエーテル、極圧剤(D)がトリアリールホスフェートであることがより好ましく、酸化防止剤(B)が2,6-ジ-t-ブチル-4-メチルフェノール、酸捕捉剤(C)が2-エチルヘキシルグリシジルエーテル、極圧剤(D)がトリクレジルホスフェートであることがさらに好ましい。
As described above, the refrigerating machine oil in the present embodiment particularly preferably contains any of the antioxidant (B), the acid scavenger (C), and the extreme pressure agent (D). The contents of the components (D) to (D) are also as described above. That is, the content of each of the polyvinyl ether compound (A), the antioxidant (B), the acid scavenger (C), and the extreme pressure agent (D) is 70 to 99.7% by mass based on the total amount of refrigerating machine oil, It is preferably 0.1 to 5% by mass, 0.1 to 10% by mass, and 0.1 to 5% by mass, preferably 75 to 99.3% by mass, 0.1 to 3% by mass, 0.4 to 5%. More preferably, it is 80% to 98.4% by weight, 0.15% to 1% by weight, 0.5% to 5% by weight, and 0.5% to 3% by weight. More preferably, it is 80 to 98.4% by mass, 0.15 to 1% by mass, 0.5 to 2% by mass, and most preferably 0.5 to 2% by mass.
In addition, preferred compounds containing the components (B) to (D) are the same as described above. That is, it is preferable that the antioxidant (B) is a phenolic antioxidant, the acid scavenger (C) is a glycidyl ether compound, the extreme pressure agent (D) is a phosphate ester, and the antioxidant (B) is 2 , 6-di-t-butyl-4-alkylphenol, the acid scavenger (C) is preferably alkyl glycidyl ether, the extreme pressure agent (D) is triaryl phosphate, and the antioxidant (B) is 2, More preferably, 6-di-t-butyl-4-methylphenol, the acid scavenger (C) is 2-ethylhexyl glycidyl ether, and the extreme pressure agent (D) is tricresyl phosphate.
(その他の添加剤)
 冷凍機油は、基油と、(B)又は(C)成分又はこれら両方とからなるものでもよいし、基油と、(B)又は(C)成分又はこれら両方と、(D)成分とからなるものでもよいが、これら(B)~(D)成分以外の添加剤をさらに含有してもよい。
 そのような添加剤としては、例えば、酸素捕捉剤、油性向上剤、銅不活性化剤、防錆剤、消泡剤等が挙げられる。これらの添加剤は、単独で又は2種以上を組み合わせて用いてもよい。
(Other additives)
The refrigerating machine oil may be composed of a base oil and (B) or (C) component or both, or from a base oil, (B) or (C) component or both, and (D) component. However, additives other than these components (B) to (D) may be further contained.
Examples of such additives include oxygen scavengers, oiliness improvers, copper deactivators, rust inhibitors, and antifoaming agents. These additives may be used alone or in combination of two or more.
 酸素捕捉剤としては、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ジフェニルスルフィド、ジオクチルジフェニルスルフィド、ジアルキルジフェニレンスルフィド、ベンゾチオフェン、ジベンゾチオフェン、フェノチアジン、ベンゾチアピラン、チアピラン、チアントレン、ジベンゾチアピラン、ジフェニレンジスルフィド等の含硫黄芳香族化合物、各種オレフィン、ジエン、トリエン等の脂肪族不飽和化合物、二重結合を持ったテルペン類等が挙げられる。
 油性向上剤の例としては、ステアリン酸、オレイン酸などの脂肪族飽和及び不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸などの重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸などのヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコールなどの脂肪族飽和及び不飽和モノアルコール、ステアリルアミン、オレイルアミンなどの脂肪族飽和および不飽和モノアミン、ラウリン酸アミド、オレイン酸アミドなどの脂肪族飽和及び不飽和モノカルボン酸アミド、グリセリン、ソルビトールなどの多価アルコールと脂肪族飽和又は不飽和モノカルボン酸との部分エステル等が挙げられる。
Examples of the oxygen scavenger include 4,4′-thiobis (3-methyl-6-tert-butylphenol), diphenyl sulfide, dioctyl diphenyl sulfide, dialkyl diphenylene sulfide, benzothiophene, dibenzothiophene, phenothiazine, benzothiapyran, thiapyran, thianthrene, Examples thereof include sulfur-containing aromatic compounds such as dibenzothiapyran and diphenylene disulfide, aliphatic unsaturated compounds such as various olefins, dienes and trienes, and terpenes having a double bond.
Examples of oil improvers include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid, Aliphatic saturated and unsaturated monoalcohols such as lauryl alcohol, oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine, oleylamine, aliphatic saturated and unsaturated monocarboxylic amides such as lauric acid amide, oleic acid amide, Examples thereof include partial esters of polyhydric alcohols such as glycerin and sorbitol and aliphatic saturated or unsaturated monocarboxylic acids.
 銅不活性化剤としては、例えばN-[N,N’-ジアルキル(炭素数3~12のアルキル基)アミノメチル]トリアゾール等を挙げることができる。
 防錆剤としては、例えば金属スルホネート、脂肪族アミン類、有機スルフォン酸金属塩、有機リン酸金属塩、アルケニルコハク酸エステル、多価アルコールエステル等を挙げることができる。
 消泡剤としては、例えば、ジメチルポリシロキサン等のシリコーンオイル、ポリメタクリレート類等が挙げられる。
 これらの冷凍機油用添加剤の各々の含有量は、冷凍機油の全量(100質量%)基準で、好ましくは0.01~10質量%、より好ましくは0.05~5質量%である。
Examples of the copper deactivator include N- [N, N′-dialkyl (alkyl group having 3 to 12 carbon atoms) aminomethyl] triazole.
Examples of the rust inhibitor include metal sulfonates, aliphatic amines, organic sulfonic acid metal salts, organic phosphoric acid metal salts, alkenyl succinic acid esters, and polyhydric alcohol esters.
Examples of the antifoaming agent include silicone oils such as dimethylpolysiloxane, polymethacrylates, and the like.
The content of each of these refrigerating machine oil additives is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total amount (100% by mass) of the refrigerating machine oil.
 冷凍機油は、低温環境下においても、地球温暖化係数が低いR32冷媒との相溶性に優れる。具体的には、冷凍機油のR32冷媒との低温側での二層分離温度は、好ましくは-15℃以下、より好ましくは-30℃以下、更に好ましくは-40℃以下である。
 なお、本明細書において、上記の「冷凍機油のR32冷媒との低温側での二層分離温度」は、冷凍機油/R32冷媒=15/85(質量比)からなる冷凍機油とR32冷媒との混合物を試料として用いて、実施例に記載の方法により測定された値を意味する。
Refrigerating machine oil is excellent in compatibility with R32 refrigerant having a low global warming potential even in a low temperature environment. Specifically, the two-layer separation temperature on the low temperature side of the refrigerating machine oil with the R32 refrigerant is preferably −15 ° C. or lower, more preferably −30 ° C. or lower, and further preferably −40 ° C. or lower.
In the present specification, the above-mentioned “two-layer separation temperature of the refrigerating machine oil on the low temperature side with the R32 refrigerant” is the refrigerating machine oil / R32 refrigerant = 15/85 (mass ratio) of the refrigerating machine oil and the R32 refrigerant. By using a mixture as a sample, the value measured by the method described in Examples is meant.
[冷凍機油の製造方法]
 本発明の一実施形態に係る冷凍機油の製造方法は、ジフルオロメタン(R32)を含む冷媒用の冷凍機油の製造方法であって、メトキシエチル基を側鎖に有する構成単位(a1)を含むポリビニルエーテル系化合物(A)に、酸化防止剤(B)及び酸捕捉剤(C)からなる群から選択される少なくとも1種を配合して冷凍機油を製造するものである。
 本製造方法においては、ポリビニルエーテル系化合物(A)には、上記したように、極圧剤(D)等の酸化防止剤(B)及び酸捕捉剤(C)以外の添加剤をさらに配合してもよいし、化合物(A)以外の基油を配合してもよい。本製造方法において、(A)~(D)成分、その他の添加剤、その他の基油、得られる冷凍機油の詳細は、上記した通りである。
[Method for producing refrigerating machine oil]
The manufacturing method of the refrigerating machine oil which concerns on one Embodiment of this invention is a manufacturing method of the refrigerating machine oil for refrigerant | coolants containing difluoromethane (R32), Comprising: Polyvinyl containing the structural unit (a1) which has a methoxyethyl group in a side chain A refrigerating machine oil is produced by blending at least one selected from the group consisting of an antioxidant (B) and an acid scavenger (C) with an ether compound (A).
In this production method, the polyvinyl ether compound (A) is further blended with additives other than the antioxidant (B) and the acid scavenger (C) such as the extreme pressure agent (D) as described above. Alternatively, a base oil other than the compound (A) may be blended. In this production method, the details of the components (A) to (D), other additives, other base oils, and the obtained refrigerating machine oil are as described above.
[冷凍機用組成物]
 上記冷凍機油は、冷媒と混合して使用されるものである。本明細書において、冷凍機油に冷媒を混合したものを「冷凍機用組成物」とする。すなわち、本発明の一実施形態に係る冷凍機用組成物は、ジフルオロメタン(R32)を含む冷媒と、上述の冷凍機油とを含有する。冷凍機用組成物において、冷凍機油と冷媒との含有量比(冷凍機油/冷媒)は、質量比で、好ましくは1/99~99/1、より好ましくは5/95~60/40である。
[Composition for refrigerator]
The refrigerating machine oil is used by being mixed with a refrigerant. In the present specification, a mixture of refrigerant in refrigeration oil is referred to as a “composition for a refrigeration machine”. That is, the composition for refrigerators which concerns on one Embodiment of this invention contains the refrigerant | coolant containing difluoromethane (R32) and the above-mentioned refrigerator oil. In the composition for a refrigerator, the content ratio between the refrigerator oil and the refrigerant (refrigerator oil / refrigerant) is preferably 1/99 to 99/1, more preferably 5/95 to 60/40, in mass ratio. .
[冷媒]
 冷媒は、R32冷媒単独からなるものであってもよいが、R32冷媒とその他の冷媒との混合物であってもよい。その他の冷媒として、例えば、フッ化炭化水素冷媒や、炭化水素冷媒、二酸化炭素、アンモニア等の自然冷媒等が挙げられる。その他の冷媒は、単独で又は2種以上を組み合わせて用いてもよい。
 冷媒において、R32冷媒の含有量は、冷媒の全量(100質量%)基準で、好ましくは10~100質量%、より好ましくは20~100質量%、更に好ましくは30~100質量%、より更に好ましくは50~100質量%、特に好ましくは70~100質量%である。この中でも、R32単独(100質量%)の冷媒が最も好ましい。
[Refrigerant]
The refrigerant may be composed of the R32 refrigerant alone, but may be a mixture of the R32 refrigerant and other refrigerants. Examples of other refrigerants include fluorinated hydrocarbon refrigerants, natural refrigerants such as hydrocarbon refrigerants, carbon dioxide, and ammonia. Other refrigerants may be used alone or in combination of two or more.
In the refrigerant, the content of the R32 refrigerant is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, still more preferably 30 to 100% by mass, and still more preferably, based on the total amount (100% by mass) of the refrigerant. Is 50 to 100% by mass, particularly preferably 70 to 100% by mass. Among these, the refrigerant | coolant of R32 independent (100 mass%) is the most preferable.
 フッ化炭化水素冷媒としては、飽和フッ化炭化水素冷媒、及び不飽和フッ化炭化水素冷媒が挙げられる。
 飽和フッ化炭化水素冷媒としては、R32以外の炭素数1~4のアルカンのフッ化物が挙げられ、炭素数2~3のアルカンのフッ化物が好ましく、炭素数2のアルカン(エタン)のフッ化物がより好ましい。例えば、1,1,1,2,2-ペンタフルオロエタン(R125)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1-トリフルオロエタン(R143a)、1,1,2-トリフルオロエタン(R143)、1,1-ジフルオロエタン(R152a)等が挙げられ、これらの中ではR125、R134aが好ましい。
 また、これら飽和フッ化炭化水素冷媒は、2種以上混合したものを使用できる。
 冷媒としてフッ化炭化水素冷媒を使用する場合、本実施形態で使用される冷媒として、具体的には、R407A、R407C、R407E等のR32とR125とR134aの混合物、R410A等のR32とR125の混合物等が好ましい例として挙げられ、これらの中ではR410Aがより好ましい。
Examples of the fluorinated hydrocarbon refrigerant include a saturated fluorinated hydrocarbon refrigerant and an unsaturated fluorinated hydrocarbon refrigerant.
Examples of the saturated fluorinated hydrocarbon refrigerant include fluorides of alkanes having 1 to 4 carbon atoms other than R32, preferably fluorides of alkanes having 2 to 3 carbon atoms, and fluorides of alkane (ethane) having 2 carbon atoms. Is more preferable. For example, 1,1,1,2,2-pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1 , 1,1-trifluoroethane (R143a), 1,1,2-trifluoroethane (R143), 1,1-difluoroethane (R152a), among which R125 and R134a are preferred.
These saturated fluorinated hydrocarbon refrigerants can be used as a mixture of two or more.
When a fluorinated hydrocarbon refrigerant is used as the refrigerant, the refrigerant used in this embodiment is specifically a mixture of R32, R125, and R134a such as R407A, R407C, and R407E, and a mixture of R32 and R125 such as R410A. Etc. are mentioned as preferred examples, and among these, R410A is more preferred.
 不飽和フッ化炭化水素冷媒としては、直鎖状又は分岐状の炭素数2~6の鎖状オレフィンや炭素数4~6の環状オレフィンのフッ素化物など炭素-炭素二重結合を有するものが挙げられる。これらの中では、プロペンのフッ化物が好ましく、フッ素原子が3~5個導入されたプロペンがより好ましく、フッ素原子が4個導入されたプロペンが最も好ましい。プロペンのフッ化物以外のものとしては、エチレンのフッ化物も好ましく、フッ素原子が1~3個導入されたエチレンがより好ましく、フッ素原子が3個導入されたエチレンが最も好ましい。
 好ましい不飽和フッ化炭化水素冷媒の具体例としては、1,2,3,3,3-ペンタフルオロプロペン(R1225ye)、2,3,3,3-テトラフルオロプロペン(R1234yf)、1,3,3,3-テトラフルオロプロペン(R1234ze)、1,2,3,3-テトラフルオロプロペン(R1234yz)、1,1,2-トリフルオロエチレン(R1123)等が挙げられ、これらの中ではR1234yf、R1234ze、R1123が好ましい。
 これらの不飽和フッ化炭化水素冷媒を混合する場合、その含有量は冷媒の全量(100質量%)基準で、20質量%以上とすることが好ましい。
 なお、これらの不飽和フッ化炭化水素冷媒は、上述の飽和フッ化炭化水素冷媒と組み合わせて使用してもよい。
Examples of the unsaturated fluorinated hydrocarbon refrigerant include those having a carbon-carbon double bond, such as a linear or branched chain olefin having 2 to 6 carbon atoms and a fluorinated product of a cyclic olefin having 4 to 6 carbon atoms. It is done. Of these, propene fluoride is preferred, propene having 3 to 5 fluorine atoms introduced therein is more preferred, and propene having 4 fluorine atoms introduced is most preferred. As other than propene fluoride, ethylene fluoride is also preferred, ethylene having 1 to 3 fluorine atoms introduced is more preferred, and ethylene having 3 fluorine atoms introduced is most preferred.
Specific examples of preferable unsaturated fluorinated hydrocarbon refrigerants include 1,2,3,3,3-pentafluoropropene (R1225ye), 2,3,3,3-tetrafluoropropene (R1234yf), 1,3,3, 3,3-tetrafluoropropene (R1234ze), 1,2,3,3-tetrafluoropropene (R1234yz), 1,1,2-trifluoroethylene (R1123) and the like, among which R1234yf, R1234ze , R1123 is preferred.
When these unsaturated fluorinated hydrocarbon refrigerants are mixed, the content is preferably 20% by mass or more based on the total amount of refrigerant (100% by mass).
These unsaturated fluorinated hydrocarbon refrigerants may be used in combination with the above-mentioned saturated fluorinated hydrocarbon refrigerant.
 自然系冷媒としては、プロパン(R290)、n-ブタン、イソブタン(R600a)、2-メチルブタン、n-ペンタン、シクロペンタンイソブタン、ノルマルブタン等の炭化水素冷媒、二酸化炭素(炭酸ガス)や、アンモニアが挙げられ、これらの中ではプロパン、イソブタン、二酸化炭素、アンモニアが好ましい。
 なお、これらの自然系冷媒は、上述のフッ化炭化水素冷媒と組み合わせて用いてもよい。
Natural refrigerants include hydrocarbon refrigerants such as propane (R290), n-butane, isobutane (R600a), 2-methylbutane, n-pentane, cyclopentaneisobutane, normal butane, carbon dioxide (carbon dioxide), and ammonia. Among these, propane, isobutane, carbon dioxide, and ammonia are preferable.
These natural refrigerants may be used in combination with the above-mentioned fluorinated hydrocarbon refrigerant.
[冷凍機]
 本発明の一実施形態に係る冷凍機は、上述の冷凍機油又は冷凍機油組成物を用いるものであって、冷凍機油又は冷凍機油組成物は、当該冷凍機の内部に充填して使用される。すなわち、本発明の一実施形態に係る冷凍機は、上述の冷凍機油又は冷凍機油組成物を含む冷凍機である。冷凍機としては、圧縮型冷凍機が好ましく、圧縮機、凝縮器、膨張機構(膨張弁等)、及び蒸発器を備える冷凍サイクル、あるいは、圧縮機、凝縮器、膨張機構、乾燥器、及び蒸発器を備える冷凍サイクルを有するものであることがより好ましい。
 冷凍機油は、例えば、圧縮機等に設けられる摺動部分を潤滑するために使用される。
 なお、摺動部分は、特に限定されないが、摺動部分のいずれかが鉄等の金属を含むことが好ましく、金属-金属間で摺動するものであることが好ましい。
 冷凍機としては、例えば、カーエアコン、空調、ガスヒートポンプ(GHP)、冷蔵庫、自動販売機、ショーケース等の冷凍システム、給湯機、床暖房等の給湯システム、暖房システム等に適用されるものであるが、空調用途に適用されることが好ましい。
[refrigerator]
A refrigerator according to an embodiment of the present invention uses the above-described refrigerator oil or refrigerator oil composition, and the refrigerator oil or refrigerator oil composition is used by filling the refrigerator. That is, the refrigerator which concerns on one Embodiment of this invention is a refrigerator containing the above-mentioned refrigerator oil or refrigerator oil composition. As the refrigerator, a compression type refrigerator is preferable, and a refrigeration cycle including a compressor, a condenser, an expansion mechanism (an expansion valve, etc.), and an evaporator, or a compressor, a condenser, an expansion mechanism, a dryer, and evaporation It is more preferable to have a refrigeration cycle equipped with a vessel.
Refrigerator oil is used, for example, to lubricate sliding portions provided in a compressor or the like.
The sliding portion is not particularly limited, but any of the sliding portions preferably contains a metal such as iron, and preferably slides between metal and metal.
As the refrigerator, for example, it is applied to a car air conditioner, an air conditioner, a gas heat pump (GHP), a refrigerator, a vending machine, a refrigeration system such as a showcase, a hot water supply system such as a water heater, floor heating, a heating system, etc. However, it is preferably applied to air conditioning applications.
 次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、各種性状の測定法は以下のとおりである。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the measurement methods of various properties are as follows.
(1)40℃動粘度
 JIS K2283:2000に準拠して測定した。
(2)粘度指数
 JIS K2283:2000に準拠して測定した。
(3)数平均分子量(Mn)
 ゲル浸透クロマトグラフ装置(アジレント社製、「1260型HPLC」)を用いて、下記の条件下で測定した標準ポリスチレン換算の値を用いた。
(測定条件)
・カラム:「Shodex LF404」を2本順次連結したもの
・カラム温度:35℃
・展開溶媒:クロロホルム
・流速:0.3mL/min
(4)R32冷媒との低温側での二層分離温度の測定
 二層分離温度測定管(内容積10mL)に、冷凍機油と冷媒(R32)をそれぞれ0.45g、2.55g(冷凍機油/冷媒(質量比)=15/85)充填し、恒温槽内に保持した。恒温槽の温度を室温(25℃)より、温度を1℃/minの割合で-50℃まで下げ、低温側の二層分離温度を測定した。なお、-50℃まで二層分離しなかったものは表において“-50>”と示す。また、室温から1℃/minの割合で昇温し、高温側の二層分離温度を測定した。
(5)熱安定性試験
 内容量200mLのオートクレーブに、冷凍機油及びR32冷媒(冷凍機油/R32冷媒=30g/30gの比率、油中の水分含有量500質量ppm)、並びに、金属触媒として、鉄、銅、及びアルミニウムを充填して封管し、空気圧18.7kPa、温度175℃の条件にて336時間保持後、冷凍機油の酸価を測定した。なお、酸価はJIS K 2501:2003に規定される「潤滑油中和試験方法」に準拠し、指示薬法により測定した。
(6)潤滑性試験
 密閉式にしたブロックオンリング摩擦試験機(LFW-1)を用いて、R32冷媒環境下で、各冷凍機油を用いたときのリング摩耗量を以下の条件で測定した。
 リング:FC250  ブロック:SKH51  回転数:1000rpm
 馴らし:荷重300N×1分間  荷重:500N  時間:60分
 油温:80℃  冷媒圧力:0.4MPa
(1) Kinematic viscosity at 40 ° C. Measured according to JIS K2283: 2000.
(2) Viscosity index Measured according to JIS K2283: 2000.
(3) Number average molecular weight (Mn)
Standard polystyrene conversion values measured under the following conditions using a gel permeation chromatograph device (manufactured by Agilent, “1260 type HPLC”) were used.
(Measurement condition)
・ Column: Two “Shodex LF404” sequentially connected ・ Column temperature: 35 ° C.
・ Developing solvent: Chloroform ・ Flow rate: 0.3 mL / min
(4) Measurement of two-layer separation temperature on the low temperature side with R32 refrigerant Refrigeration oil and refrigerant (R32) were 0.45 g and 2.55 g (refrigeration oil / Refrigerant (mass ratio) = 15/85) was charged and held in a thermostatic bath. The temperature of the thermostatic chamber was lowered from room temperature (25 ° C.) to −50 ° C. at a rate of 1 ° C./min, and the two-layer separation temperature on the low temperature side was measured. In the table, those that were not separated into two layers until −50 ° C. are indicated as “−50>” in the table. The temperature was raised from room temperature at a rate of 1 ° C./min, and the two-layer separation temperature on the high temperature side was measured.
(5) Thermal stability test In an autoclave with an internal volume of 200 mL, refrigeration oil and R32 refrigerant (ratio of refrigeration oil / R32 refrigerant = 30 g / 30 g, water content in oil 500 mass ppm), and metal catalyst, iron Then, the tube was filled with copper and aluminum, sealed, and kept for 336 hours under conditions of air pressure of 18.7 kPa and temperature of 175 ° C., and then the acid value of the refrigerating machine oil was measured. The acid value was measured by the indicator method according to “Lubricating oil neutralization test method” defined in JIS K 2501: 2003.
(6) Lubricity test Using a sealed block-on-ring friction tester (LFW-1), the amount of ring wear when each refrigeration oil was used was measured under the following conditions in an R32 refrigerant environment.
Ring: FC250 Block: SKH51 Rotation speed: 1000rpm
Familiarization: Load 300N x 1min Load: 500N Time: 60min Oil temperature: 80 ° C Refrigerant pressure: 0.4MPa
調製例1〔触媒の調製〕
 SUS316L製の2L容積オートクレーブ内に、ニッケル珪藻土触媒(日揮触媒化成社製、商品名「N113」)を6g、及びイソオクタンを300gそれぞれ加えた。
 オートクレーブ内を窒素置換し、次いで水素置換した後、水素圧を3.0MPaGとして140℃まで昇温し、140℃で30分間保持後、室温まで冷却した。
 そして、オートクレーブ内を窒素置換した後、オートクレーブ内に、アセトアルデヒドジエチルアセタールを10g加え、再び窒素置換し、次いで水素置換した後、水素圧を3.0MPaGとして140℃まで昇温し、140℃で30分間保持した。なお、この際、昇温によりオートクレーブ内の圧力が上昇する一方、アセトアルデヒドジエチルアセタールが反応することにより、水素圧の減少が認められた。水素圧が3.0MPaG以下となった場合は、オートクレーブ内に水素を注入して、水素圧が3.0MPaGを維持するように調整した。
 保持後、室温まで冷却して一度脱圧し、再びオートクレーブ内を窒素置換した後、脱圧した。
Preparation Example 1 [Preparation of catalyst]
6 g of nickel diatomaceous earth catalyst (manufactured by JGC Catalysts & Chemicals, trade name “N113”) and 300 g of isooctane were added to a 2 L autoclave made of SUS316L.
The inside of the autoclave was purged with nitrogen and then purged with hydrogen, then heated to 140 ° C. with a hydrogen pressure of 3.0 MPaG, held at 140 ° C. for 30 minutes, and then cooled to room temperature.
Then, after the inside of the autoclave was purged with nitrogen, 10 g of acetaldehyde diethyl acetal was added into the autoclave, the atmosphere was replaced with nitrogen again, and then the atmosphere was replaced with hydrogen. Hold for a minute. At this time, the pressure in the autoclave was increased by the temperature rise, while a decrease in hydrogen pressure was observed due to the reaction of acetaldehyde diethyl acetal. When the hydrogen pressure became 3.0 MPaG or less, hydrogen was injected into the autoclave and adjusted so that the hydrogen pressure was maintained at 3.0 MPaG.
After holding, it was cooled to room temperature and once depressurized, and after the inside of the autoclave was again purged with nitrogen, it was depressurized.
実施例1
(ポリビニルエーテル(A)(PVE1)の合成)
 撹拌機を取付けたガラス製の300mLフラスコに、トルエン49g、アセトアルデヒドビス(メトキシエチル)アセタール19.2g、アセトアルデヒドジエチルアセタール8.5g、及び三フッ化ホウ素ジエチルエーテル錯体0.1gをそれぞれ添加した。また、別に用意した三角フラスコには、メトキシエチルビニルエーテル20.6g(0.2mol)、及びエチルビニルエーテル130.6g(1.8mol)をそれぞれ添加し、モノマー混合液とした。
 そして、撹拌機を作動し、上記300mLフラスコの撹拌された系内に、上記三角フラスコ内のモノマー混合液を、ポンプによって4時間かけて供給し、供給終了後には更に5分間撹拌を続けた。なお、モノマー混合液の供給中、系内は常に撹拌し続け、系内の温度はウォーターバスを用いて25℃に制御した。
 次いで、当該300mLのフラスコの系内に、吸着剤(協和化学工業株式会社製、製品名「キョーワード500SH」)を5g添加し、1時間撹拌した。そして、得られた反応液を濾過し、ロータリーエバポレーターを用いて、当該濾液から溶媒と軽質分を除去し、粗製品を得た。
 その後、調製例1で調製した触媒が有る2Lオートクレーブ内に、得られた粗製品120gとイソオクタン300gを加え、オートクレーブ内を水素置換した後、水素圧を3.5MPaに保ち、系内を撹拌しながら、30分かけて140℃まで昇温し、さらに140℃で3時間反応させた。
 反応終了後、反応液を室温まで冷却し、常圧まで減圧した。そして、反応液を濾過し、ロータリーエバポレーターを用いて、得られたろ液から溶媒や水分等を除去し、PVE1を得た。
 PVE1は、一般式(1)中のR~Rが水素原子である構成単位(a1)と、一般式(2)中のR~Rが水素原子、rが0、Rがエチル基である構成単位(a2)を含む。また、仕込み量から推定される、PVE1の全構成単位(100モル%)に対する、構成単位(a1)の含有量は10モル%であり、構成単位(a2)の含有量は90モル%である。
Example 1
(Synthesis of polyvinyl ether (A) (PVE1))
To a glass 300 mL flask equipped with a stirrer, 49 g of toluene, 19.2 g of acetaldehyde bis (methoxyethyl) acetal, 8.5 g of acetaldehyde diethyl acetal, and 0.1 g of boron trifluoride diethyl ether complex were added. Further, 20.6 g (0.2 mol) of methoxyethyl vinyl ether and 130.6 g (1.8 mol) of ethyl vinyl ether were added to the separately prepared Erlenmeyer flasks to prepare a monomer mixed solution.
Then, the stirrer was activated, and the monomer mixture in the Erlenmeyer flask was supplied to the stirred system of the 300 mL flask by a pump over 4 hours, and stirring was further continued for 5 minutes after the completion of the supply. During the supply of the monomer mixture, the system was constantly stirred, and the temperature in the system was controlled at 25 ° C. using a water bath.
Next, 5 g of an adsorbent (manufactured by Kyowa Chemical Industry Co., Ltd., product name “KYOWARD 500SH”) was added to the 300 mL flask system and stirred for 1 hour. And the obtained reaction liquid was filtered, the solvent and the light part were removed from the said filtrate using the rotary evaporator, and the crude product was obtained.
Thereafter, 120 g of the obtained crude product and 300 g of isooctane were added to the 2 L autoclave containing the catalyst prepared in Preparation Example 1, and the atmosphere inside the autoclave was replaced with hydrogen. Then, the hydrogen pressure was maintained at 3.5 MPa, and the system was stirred. However, the temperature was raised to 140 ° C. over 30 minutes, and further reacted at 140 ° C. for 3 hours.
After completion of the reaction, the reaction solution was cooled to room temperature and depressurized to normal pressure. And the reaction liquid was filtered, the solvent, the water | moisture content, etc. were removed from the obtained filtrate using the rotary evaporator, and PVE1 was obtained.
PVE1 includes a structural unit (a1) in which R 1 to R 3 in general formula (1) are hydrogen atoms, R 4 to R 6 in general formula (2) are hydrogen atoms, r is 0, and R 8 is The structural unit (a2) which is an ethyl group is included. Further, the content of the structural unit (a1) is 10 mol% and the content of the structural unit (a2) is 90 mol% with respect to all the structural units (100 mol%) of PVE1 estimated from the charged amount. .
(冷凍機油の調製)
 上記で得たPVE1と、以下の酸化防止剤、酸捕捉剤、極圧剤を使用して、表1に示す配合で冷凍機油を調製した。実施例1の冷凍機油の2層分離温度を測定し、その測定結果を表1に示す。また、表1には、基油であるPVE1の性状(40℃動粘度、粘度指数(VI))もあわせて示す。
 酸化防止剤:2,6-ジ-t-ブチル-4-メチルフェノール
 酸捕捉剤:2-エチルヘキシルグリシジルエーテル
 極圧剤:トリクレジルホスフェート
(Preparation of refrigeration oil)
Using the PVE1 obtained above and the following antioxidant, acid scavenger and extreme pressure agent, a refrigerating machine oil was prepared with the formulation shown in Table 1. The two-layer separation temperature of the refrigerating machine oil of Example 1 was measured, and the measurement results are shown in Table 1. Table 1 also shows the properties (40 ° C. kinematic viscosity, viscosity index (VI)) of PVE1, which is a base oil.
Antioxidant: 2,6-di-t-butyl-4-methylphenol Acid scavenger: 2-ethylhexyl glycidyl ether Extreme pressure agent: tricresyl phosphate
実施例2~8
 ポリビニルエーテル系化合物(A)における各構成単位が表1に示すモル%となるように、三角フラスコに添加されるメトキシエチルビニルエーテルの添加量を0.4~2.0molに変更し、エチルビニルエーテルの添加量を1.6~0molに変更し、PVE2~PVE8を得た以外は、実施例1と同様に実施した。なお、実施例2~8それぞれで使用したPVE2~PVE8の性状を表1に示す。
Examples 2-8
The amount of methoxyethyl vinyl ether added to the Erlenmeyer flask was changed to 0.4 to 2.0 mol so that each structural unit in the polyvinyl ether compound (A) would be the mol% shown in Table 1, The same operation as in Example 1 was carried out except that the addition amount was changed to 1.6 to 0 mol to obtain PVE2 to PVE8. Table 1 shows the properties of PVE2 to PVE8 used in Examples 2 to 8, respectively.
比較例1、2
 表1に示すように使用する基油をそれぞれ以下のPVE9,10に変更した以外は、実施例1と同様に実施した。なお、比較例1、2で使用した基油の性状は表1に示す通りである。
 PVE9:エチルビニルエーテル(EVE)とイソブチルビニルエーテル(iBuVE)の共重合体(モル比(EVE/iBuVE)=90/10)
 PVE10:ポリエチルビニルエーテル
Comparative Examples 1 and 2
It implemented like Example 1 except having changed the base oil to be used to the following PVE9 and 10 as shown in Table 1, respectively. The properties of the base oils used in Comparative Examples 1 and 2 are as shown in Table 1.
PVE9: Copolymer of ethyl vinyl ether (EVE) and isobutyl vinyl ether (iBuVE) (molar ratio (EVE / iBuVE) = 90/10)
PVE10: Polyethyl vinyl ether
Figure JPOXMLDOC01-appb-T000012
※各表において、“MeOEt”は一般式(1)中のR~Rが水素原子である構成単位(a1)を、“Et”は一般式(2)中のR~Rが水素原子、rが0、Rがエチル基である構成単位(a2)を、“iBu”は一般式(2)中のR~Rが水素原子、rが0、Rがイソブチル基である構成単位(a2)を意味する。
Figure JPOXMLDOC01-appb-T000012
* In each table, “MeOEt” represents the structural unit (a1) in which R 1 to R 3 in the general formula (1) are hydrogen atoms, and “Et” represents R 4 to R 6 in the general formula (2). The structural unit (a2) in which a hydrogen atom, r is 0, and R 8 is an ethyl group, “iBu” is a hydrogen atom, r is 0, and R 8 is an isobutyl group in R 4 to R 6 in the general formula (2) Is the structural unit (a2).
実施例9~14、比較例3
 上記したPVE3、酸化防止剤、酸捕捉剤、及び極圧剤を使用して表2に示す配合の冷凍機油を調製し、各冷凍機油に対して熱安定性試験を実施した。熱安定性試験終了後の酸価を表2に示す。
Examples 9 to 14 and Comparative Example 3
Using the above-mentioned PVE3, antioxidant, acid scavenger, and extreme pressure agent, refrigerating machine oils having the composition shown in Table 2 were prepared, and a thermal stability test was performed on each refrigerating machine oil. Table 2 shows the acid values after completion of the thermal stability test.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
実施例15~18、比較例4
 上記したPVE3、PVE10、酸化防止剤、酸捕捉剤、及び極圧剤を使用して表3に示す配合の冷凍機油を調製し、各冷凍機油に対して潤滑性試験を実施した。潤滑性試験後のリング磨耗量を表3に示す。
Examples 15 to 18 and Comparative Example 4
Using the above-described PVE3, PVE10, antioxidant, acid scavenger, and extreme pressure agent, refrigerating machine oils having the composition shown in Table 3 were prepared, and a lubricity test was performed on each refrigerating machine oil. Table 3 shows the ring wear after the lubricity test.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、各実施例においては、冷凍機油の基油を構成するポリビニルエーテル系化合物に、メトキシエチル基を側鎖に有する構成単位(a1)を含有させることで、R32冷媒との相溶性、特に低温環境下における相溶性を向上することができた。
 また、表2に示すように、ポリビニルエーテル系化合物(A)から構成される基油に酸化防止剤、酸捕捉剤、又はこれらの両方を配合することで、冷凍機油を加熱劣化させた後でも酸価が低くなり、高温酸化安定性が良好となった。なお、極圧剤を配合すると、高温酸化安定性が低くなる傾向にあるが、表2に示すように、酸化防止剤及び酸捕捉剤を適量配合すると、極圧剤の配合による酸化安定性の低下を抑制することが可能であった。
 さらに、表3に示すように、冷凍機油の基油にポリビニルエーテル系化合物(A)を使用すると、潤滑性試験における摩耗量が少なくなり、高温環境下における潤滑性が良好となった。また、潤滑性は、極圧剤を配合することでさらに向上した。
As shown in Table 1, in each Example, the polyvinyl ether compound constituting the base oil of the refrigerating machine oil contains the structural unit (a1) having a methoxyethyl group in the side chain, whereby the R32 refrigerant is used. It was possible to improve the compatibility, particularly in a low temperature environment.
Moreover, as shown in Table 2, even after the refrigeration oil is heat-degraded by blending an antioxidant, an acid scavenger, or both of them into the base oil composed of the polyvinyl ether compound (A). The acid value was lowered and the high-temperature oxidation stability was improved. When an extreme pressure agent is blended, the high-temperature oxidation stability tends to be low. However, as shown in Table 2, when an appropriate amount of an antioxidant and an acid scavenger is blended, the oxidation stability due to the blending of the extreme pressure agent is reduced. It was possible to suppress the decrease.
Further, as shown in Table 3, when the polyvinyl ether compound (A) was used for the base oil of the refrigerating machine oil, the amount of wear in the lubricity test was reduced, and the lubricity in a high temperature environment was improved. Moreover, lubricity was further improved by blending an extreme pressure agent.
 それらに対して、比較例1、2、4から明らかなように、冷凍機油が、ポリビニルエーテル系化合物(A)を含有しないと、R32冷媒との相溶性が良好にならず、また、高温下における潤滑性が十分ではなかった(表1、3参照)。さらに、比較例3から明らかなように、冷凍機油が、酸化防止剤及び酸捕捉剤を含有しないと、熱安定性を十分に向上させることができなかった(表2参照)。 On the other hand, as is clear from Comparative Examples 1, 2, and 4, if the refrigerating machine oil does not contain the polyvinyl ether compound (A), the compatibility with the R32 refrigerant is not good, and at high temperatures. The lubricity was not sufficient (see Tables 1 and 3). Furthermore, as apparent from Comparative Example 3, unless the refrigerating machine oil contains an antioxidant and an acid scavenger, the thermal stability could not be sufficiently improved (see Table 2).

Claims (15)

  1.  ジフルオロメタン(R32)を含む冷媒用の冷凍機油であって、
     メトキシエチル基を側鎖に有する構成単位(a1)を含むポリビニルエーテル系化合物(A)と、酸化防止剤(B)及び酸捕捉剤(C)からなる群から選択される少なくとも1種とを含む冷凍機油。
    Refrigerating machine oil for refrigerant containing difluoromethane (R32),
    A polyvinyl ether compound (A) containing a structural unit (a1) having a methoxyethyl group in the side chain, and at least one selected from the group consisting of an antioxidant (B) and an acid scavenger (C) Refrigerator oil.
  2.  酸化防止剤(B)の含有量が、冷凍機油全量基準で0.1~5質量%である請求項1に記載の冷凍機油。 The refrigerating machine oil according to claim 1, wherein the content of the antioxidant (B) is 0.1 to 5% by mass based on the total amount of the refrigerating machine oil.
  3.  酸捕捉剤(C)の含有量が、冷凍機油全量基準で0.1~10質量%である請求項1又は2に記載の冷凍機油。 The refrigerating machine oil according to claim 1 or 2, wherein the content of the acid scavenger (C) is 0.1 to 10% by mass based on the total amount of the refrigerating machine oil.
  4.  酸化防止剤(B)及び酸捕捉剤(C)の両方を含有する請求項1~3のいずれか1項に記載の冷凍機油。 The refrigerating machine oil according to any one of claims 1 to 3, comprising both an antioxidant (B) and an acid scavenger (C).
  5.  酸化防止剤(B)がフェノール系酸化防止剤、酸捕捉剤(C)がグリシジルエーテル化合物である請求項1~4のいずれか1項に記載の冷凍機油。 The refrigerating machine oil according to any one of claims 1 to 4, wherein the antioxidant (B) is a phenolic antioxidant and the acid scavenger (C) is a glycidyl ether compound.
  6.  冷凍機油が、さらに極圧剤(D)を含有する請求項1~5のいずれか1項に記載の冷凍機油。 The refrigerating machine oil according to any one of claims 1 to 5, wherein the refrigerating machine oil further contains an extreme pressure agent (D).
  7.  極圧剤(D)の含有量が、冷凍機油全量基準で0.1~5質量%である請求項6に記載の冷凍機油。 The refrigerator oil according to claim 6, wherein the content of the extreme pressure agent (D) is 0.1 to 5% by mass based on the total amount of the refrigerator oil.
  8.  極圧剤(D)がリン酸エステルである請求項6又は7に記載の冷凍機油。 The refrigerating machine oil according to claim 6 or 7, wherein the extreme pressure agent (D) is a phosphate ester.
  9.  構成単位(a1)が、下記一般式(1)で表される請求項1~8のいずれか1項に記載の冷凍機油。
    Figure JPOXMLDOC01-appb-C000001

    (上記一般式(1)中、R、R、及びRは、それぞれ独立に、水素原子、又は炭素数1~8の炭化水素基を示す。)
    The refrigerating machine oil according to any one of claims 1 to 8, wherein the structural unit (a1) is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), R 1 , R 2 , and R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.)
  10.  ポリビニルエーテル系化合物(A)が、構成単位(a1)と共に、構成単位(a1)とは異なる、下記一般式(2)で表される構成単位(a2)を含む、請求項1~9のいずれか1項に記載の冷凍機油。
    Figure JPOXMLDOC01-appb-C000002

    (上記式(2)中、R、R、及びRは、それぞれ独立に、水素原子、又は炭素数1~8の炭化水素基を示す。Rは、炭素数2~10の2価の炭化水素基を示す。rは、0~10の整数を示す。Rは、炭素数1~10の炭化水素基を示す。ただし、Rがエチレン基(-CHCH-)であり、且つRがメチル基である場合、rは1ではない。)
    The polyvinyl ether compound (A) includes a structural unit (a2) represented by the following general formula (2) different from the structural unit (a1) together with the structural unit (a1). The refrigerating machine oil according to claim 1.
    Figure JPOXMLDOC01-appb-C000002

    (In the above formula (2), R 4 , R 5 , and R 6 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. R 7 represents 2 having 2 to 10 carbon atoms. R represents an integer of 0 to 10. R 8 represents a hydrocarbon group having 1 to 10 carbon atoms, provided that R 7 represents an ethylene group (—CH 2 CH 2 —). And when R 8 is a methyl group, r is not 1.)
  11.  構成単位(a1)の含有量が、ポリビニルエーテル系化合物(A)の全構成単位(100モル%)基準で、10モル%以上70モル%以下である、請求項1~10のいずれか1項に記載の冷凍機油。 The content of the structural unit (a1) is 10 mol% or more and 70 mol% or less based on all structural units (100 mol%) of the polyvinyl ether compound (A). Refrigerating machine oil described in 1.
  12.  ポリビニルエーテル系化合物(A)は、40℃動粘度が10~400mm/sであるとともに、粘度指数が90以上である請求項1~11のいずれか1項に記載の冷凍機油。 The refrigerating machine oil according to any one of claims 1 to 11, wherein the polyvinyl ether compound (A) has a kinematic viscosity at 40 ° C of 10 to 400 mm 2 / s and a viscosity index of 90 or more.
  13.  前記冷媒が、R32単独か、又はR32と、フッ化炭化水素冷媒、炭化水素冷媒、二酸化炭素、及びアンモニアからなる群から選択される少なくとも1種の冷媒との混合物である請求項1~12のいずれか1項に記載の冷凍機油。 The refrigerant according to any one of claims 1 to 12, wherein the refrigerant is R32 alone or a mixture of R32 and at least one refrigerant selected from the group consisting of a fluorinated hydrocarbon refrigerant, a hydrocarbon refrigerant, carbon dioxide, and ammonia. Refrigeration machine oil given in any 1 paragraph.
  14.  請求項1~13のいずれか1項に記載の冷凍機油と、前記冷媒とを含有する、冷凍機用組成物。 A refrigerating machine composition comprising the refrigerating machine oil according to any one of claims 1 to 13 and the refrigerant.
  15.  ジフルオロメタン(R32)を含む冷媒用の冷凍機油の製造方法であって、
     メトキシエチル基を側鎖に有する構成単位(a1)を含むポリビニルエーテル系化合物(A)に、酸化防止剤(B)及び酸捕捉剤(C)からなる群から選択される少なくとも1種を配合して冷凍機油を製造する、冷凍機油の製造方法。 
    A method for producing a refrigerating machine oil for refrigerant containing difluoromethane (R32),
    At least one selected from the group consisting of an antioxidant (B) and an acid scavenger (C) is added to the polyvinyl ether compound (A) containing the structural unit (a1) having a methoxyethyl group in the side chain. A method for producing refrigerating machine oil, which produces refrigerating machine oil.
PCT/JP2017/022949 2016-06-22 2017-06-22 Refrigerating machine oil and composition for refrigerating machines WO2017222004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123645A JP2017226761A (en) 2016-06-22 2016-06-22 Refrigerator oil, and refrigerator composition
JP2016-123645 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017222004A1 true WO2017222004A1 (en) 2017-12-28

Family

ID=60784286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022949 WO2017222004A1 (en) 2016-06-22 2017-06-22 Refrigerating machine oil and composition for refrigerating machines

Country Status (2)

Country Link
JP (1) JP2017226761A (en)
WO (1) WO2017222004A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220162488A1 (en) * 2019-03-04 2022-05-26 The Chemours Company Fc, Llc Heat transfer compositions comprising r-1225ye(e), hfo-1234yf, r-32, r-125, and co2

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108365A1 (en) * 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. Lubricant for compression type refrigerating machine and refrigeration system using the same
JP2011046880A (en) * 2009-08-28 2011-03-10 Jx Nippon Oil & Energy Corp Refrigerator oil and working fluid composition for refrigerator
WO2013005647A1 (en) * 2011-07-01 2013-01-10 出光興産株式会社 Lubricant oil composition for compression refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108365A1 (en) * 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. Lubricant for compression type refrigerating machine and refrigeration system using the same
JP2011046880A (en) * 2009-08-28 2011-03-10 Jx Nippon Oil & Energy Corp Refrigerator oil and working fluid composition for refrigerator
WO2013005647A1 (en) * 2011-07-01 2013-01-10 出光興産株式会社 Lubricant oil composition for compression refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220162488A1 (en) * 2019-03-04 2022-05-26 The Chemours Company Fc, Llc Heat transfer compositions comprising r-1225ye(e), hfo-1234yf, r-32, r-125, and co2

Also Published As

Publication number Publication date
JP2017226761A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP5241262B2 (en) Lubricating oil composition for refrigerator
JP5241263B2 (en) Lubricating oil composition for refrigerator
WO2016190286A1 (en) Refrigeration oil, refrigerator composition, and refrigerator
WO2018074584A1 (en) Refrigerator oil and working fluid composition for refrigerator
EP3279296B1 (en) Refrigerator lubricating oil and mixed composition for refrigerator
KR102442266B1 (en) Refrigerating machine oil, and a composition for refrigerating machine
EP3196277B1 (en) Refrigerator oil, refrigerator oil composition, and refrigerator
WO2017222004A1 (en) Refrigerating machine oil and composition for refrigerating machines
US11015138B2 (en) Refrigerating machine oil, and composition for refrigerating machine
EP3279297A1 (en) Refrigerator lubricating oil and mixed composition for refrigerator
WO2020166272A1 (en) Composition for refrigerating machines
WO2017104789A1 (en) Polyvinyl ether compound and lubricant production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815471

Country of ref document: EP

Kind code of ref document: A1