WO2017216894A1 - Transmitter - Google Patents

Transmitter Download PDF

Info

Publication number
WO2017216894A1
WO2017216894A1 PCT/JP2016/067756 JP2016067756W WO2017216894A1 WO 2017216894 A1 WO2017216894 A1 WO 2017216894A1 JP 2016067756 W JP2016067756 W JP 2016067756W WO 2017216894 A1 WO2017216894 A1 WO 2017216894A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
signal
digital
characteristic
transmission signal
Prior art date
Application number
PCT/JP2016/067756
Other languages
French (fr)
Japanese (ja)
Inventor
一二三 能登
秀樹 森重
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/067756 priority Critical patent/WO2017216894A1/en
Publication of WO2017216894A1 publication Critical patent/WO2017216894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion

Definitions

  • the present invention relates to a transmitter used for satellite communication, terrestrial microwave communication, and mobile communication.
  • Patent Document 1 discloses a technique for improving the linearity of a communication base station transmitter. Patent Document 1 uses a power series method in order to create predistortion in the digital predistortion method, and considers up to the seventh-order distortion component.
  • a predistortion is created in the digital part, and the DAC
  • the data is output to the analog unit via (Digital to Analog Converter).
  • the non-linear characteristic of the analog unit may be any characteristic.
  • the DAC requires a band three times the signal band, so the DAC band is less than the 100 MHz band.
  • the present invention has been made to solve the above-described problems, and an object thereof is to suppress quantization noise generated in a DAC without increasing the number of bits of the DAC.
  • the transmitter of the present invention includes a digital circuit that generates a digital transmission signal, a digital-to-analog converter that converts the predistorted transmission signal into an analog signal, and amplifies the analog transmission signal output by the digital-analog converter.
  • An amplifier is provided between the amplifier and the digital-analog converter and the amplifier, and the amplitude of the analog transmission signal output from the digital-analog converter is changed so that the AM-AM characteristic combined with the amplifier becomes a gain expansion characteristic.
  • An expansion generation circuit for outputting to the digital signal, and a distortion compensation circuit that is provided between the digital circuit and the digital-analog converter and predistorts the distortion of the transmission signal amplified by the amplifier.
  • quantization noise generated in the DAC can be suppressed without increasing the number of DAC bits.
  • FIG. 1 is a block diagram showing a configuration example of a transmitter according to Embodiment 1 of the present invention.
  • the transmitter includes a modem 1 and an RF module 9.
  • the modem 1 includes a DSP (Digital-Signal-Processor) 2, a modulation unit 3, a signal comparison unit 4, a PD (Pre-Distortion) signal generation unit 5, a PD unit 6, a DAC 7, and an ADC (Analog to Digital Converter) 8.
  • DSP Digital-Signal-Processor
  • modulation unit 3 a modulation unit 3
  • signal comparison unit 4 a PD (Pre-Distortion) signal generation unit 5
  • a PD unit 6 a DAC 7, and an ADC (Analog to Digital Converter) 8.
  • ADC Analog to Digital Converter
  • the DSP 2 includes a modulation unit 3, generates a digital signal, converts the digital signal into a baseband signal by the modulation unit 3, and outputs the digital signal.
  • the DSP 2 is connected to the PD 6 and the signal comparison unit 4.
  • the signal comparison unit 4 compares the modulation wave signal output from the modulation unit 3 with the feedback modulation wave signal output from the AD 8, and compares the complex signal vector difference (in the case of the LUT (Look Up Table) method with the amplitude). It is a signal comparison unit that outputs a phase difference) to the PD signal generation unit 5.
  • the signal comparison unit 4 is connected to the DSP 2 and the ADC 8.
  • the PD signal generation unit 5 is a PD signal generation unit that generates an inverse signal that cancels distortion generated from the DAC 7 to the amplifier 15 according to the comparison result output from the signal comparison unit 4.
  • the PD signal generation unit 5 is connected to the PD 6 and the signal comparison unit 4.
  • a method of generating an inverse signal by the PD signal generation unit 5 for example, an LUT method, a polynomial method, a power series method, a memory polynomial method, or a Volterra series method is used.
  • PD 6 is a PD that superimposes the reverse signal generated by the PD signal generation unit 5 and the baseband signal generated by the modulation unit 3 and outputs the superimposed signal.
  • the PD 6 is connected to the DSP 2 and the DAC 7.
  • the DAC 7 is a DAC that converts a digital signal output from the PD 6 into an analog signal.
  • the DAC 7 is connected to the PD 6 and the BPF 10.
  • the ADC 8 is an ADC that changes an analog signal output from the BPF 21 into a digital signal.
  • the ADC 8 is connected to the BPF 21 and the signal comparison unit 4.
  • the DSP 2, the signal comparison unit 4, the PD signal generation unit 5, and the PD 6 are configured by an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and the like.
  • the DAC 7 and the ADC 8 may be configured to be built in the FPGA.
  • the RF module 9 includes a BPF (Band-Pass Filter) 10, a mixer 11, an LO (Local Signal Source) 12, a BPF 13, an ECC (Expansion / Characteristics / Circuit) 14, an amplifier 15, a coupler 16, an isolator 17, an LPF (Low-Pass Filter). ) 18, an antenna 19, a mixer 20, and a BPF 21.
  • BPF Band-Pass Filter
  • LO Local Signal Source
  • BPF 13 Low-Pass Filter
  • ECC Exposure / Characteristics / Circuit
  • the BPF 10 is a BPF that blocks unnecessary waves from the modulation signal output from the DAC 7 and outputs a modulation signal that blocks unnecessary waves.
  • the BPF 10 is connected to the DAC 7 and the mixer 11.
  • the mixer 11 is a mixer that mixes the modulation signal output from the BPF 11 and the local signal of the LO 12 and converts the frequency of the modulation signal.
  • the mixer 11 has an LO terminal connected to the LO 12, an IF terminal connected to the BPF 11, and an RF terminal connected to the BPF 13.
  • LO 12 is an oscillator that outputs a local signal used for frequency conversion in the mixer 11.
  • the LO 12 is connected to the mixer 11 and the mixer 20.
  • the BPF 13 is a BPF that blocks unnecessary waves outside the desired band from the frequency-converted modulated signal and outputs a modulated signal that blocks unnecessary waves.
  • the BPF 13 is connected to the mixer 11 and the ECC 14.
  • the ECC 14 is an analog circuit that performs gain expansion (gain expansion) on the AM-AM characteristic of the modulation signal.
  • the ECC 14 is connected to the BPF 13 and the amplifier 15.
  • FIG. 2 is a circuit diagram showing a configuration example and characteristics of the ECC 14 according to the first embodiment of the present invention.
  • FIG. 2A shows an example in which an amplifier whose operation class is from class B to class AB is used, and has a characteristic that the gain increases with respect to the output power.
  • Vc is a bias voltage of the amplifier, and Vc is adjusted to set a bias in a range from class B to class AB.
  • FIG. 2B shows an example in which a parallel diode linearizer is used, and has a characteristic of increasing the gain with respect to output power by using the nonlinear characteristic of the diode.
  • FIG. 2C is a modification of FIG. 2B in which the ECC 14 is configured using a diode and a hybrid. The characteristic of increasing the gain with respect to the output power using the nonlinear characteristic of the diode is shown. Give it.
  • the gain characteristic with respect to the output power has been described as an example, but the gain characteristic with respect to the input power is the same as that with the output power.
  • the amplifier 15 is an amplifier that receives a gain-expanded modulation signal and amplifies the modulation signal.
  • the amplifier 15 is connected to the ECC 14 and the coupler 16.
  • the coupler 16 is a coupler that extracts a part of the amplified modulation signal.
  • the coupler 16 is connected to the amplifier 15 and the isolator 17.
  • the isolator 17 is an isolator that allows a modulated signal to pass and absorbs a reflected wave generated by a component connected to a subsequent stage.
  • the isolator 17 is connected to the coupler 16 and the LPF 18.
  • the LPF 18 is an LPF that blocks unnecessary waves outside the desired band from the modulation signal and outputs a modulation signal that blocks unnecessary waves.
  • the LPF 18 is connected to the isolator 17 and the antenna 19.
  • the antenna 19 is an antenna that transmits the modulation signal output from the LPF 18.
  • the antenna 19 is connected to the LPF 18.
  • the mixer 20 is a mixer that mixes the local signal of the LO 12 and the modulation signal amplified by the amplifier 15 and converts the frequency of the modulation signal.
  • the mixer 20 has an RF terminal connected to the coupler 16, an LO terminal connected to the LO 12, and an IF terminal connected to the BPF 21.
  • the BPF 21 is a BPF that blocks unnecessary waves from the modulation signal frequency-converted by the mixer 20 and outputs a modulation signal that blocks unnecessary waves.
  • the BPF 21 is connected to the mixer 20 and the ADC 8.
  • the DSP 2 outputs the modulation wave signal generated by the modulation unit 3 in the DSP 2 to the DAC 7 via the PD 6.
  • the DAC 7 converts the input baseband signal into an analog signal and outputs the analog signal to the BPF 10.
  • the BPF 10 suppresses unnecessary waves outside the passband of the BPF 10 from the analog signal output by the DAC 7, and outputs an analog signal in which unnecessary waves are suppressed to the mixer 11.
  • the mixer 11 up-converts the analog signal output from the BPF 10 using the local signal of the LO 12 and converts it into an RF signal.
  • the mixer 11 outputs an RF signal to the BPF 13.
  • the mixer 11 When the mixer 11 performs frequency conversion, an analog signal and a local signal are mixed, so that an unnecessary wave is output in addition to a desired RF signal.
  • the BPF 11 blocks unnecessary waves from the output signal of the mixer 11 and outputs a desired RF signal to the ECC 14.
  • the ECC 14 has an AM-AM characteristic having a gain expansion characteristic, changes the gain according to the power of the input RF signal, and outputs the gain to the amplifier 15. Details of this point will be described later.
  • the amplifier 15 amplifies the RF signal output from the ECC 14 and outputs the amplified RF signal to the LPF 18 via the coupler 16 and the isolator 17.
  • the LPF 18 suppresses unnecessary waves in the RF signal amplified by the amplifier 15 and outputs an RF signal in which unnecessary waves are suppressed to the antenna 19.
  • the antenna 19 transmits the RF signal output from the LPF 18.
  • the coupler 16 takes out a part of the RF signal and outputs it to the mixer 20 in order to feed back the RF signal amplified by the amplifier 15.
  • the mixer 20 uses the local signal of the LO 12 to down-convert the RF signal input from the coupler 16 and convert it into a baseband signal.
  • the BPF 21 suppresses unnecessary waves in the output signal of the mixer 20 and outputs a baseband signal in which unnecessary waves are suppressed to the ADC 8.
  • the ADC 8 converts the baseband signal into a digital signal and outputs it to the signal comparison unit 4.
  • the signal comparison unit 4 compares the modulation signal generated by the DSP 2 with the modulation signal fed back through the ECC 14 and the amplifier 15, and outputs the difference to the PD signal generation unit 5.
  • the PD signal generation unit 5 generates an inverse signal that cancels distortion generated in the ECC 14 and the amplifier 15 in accordance with the output signal of the signal comparison unit 4 and outputs the reverse signal to the PD 6.
  • the PD 6 superimposes an inverse signal that compensates for distortion of the ECC 14 and the amplifier 15 on the modulation signal generated by the DSP 2, and outputs the superimposed modulation signal to the DAC 7.
  • the generated modulation signal is compared with the modulation signal fed back through the ECC 14 and the amplifier 15, and an inverse signal that cancels the nonlinear characteristics of the ECC 14 and the amplifier 15 is superimposed on the modulation signal.
  • the distortion generated in the amplifier 15 is compensated. This distortion compensation is called predistortion.
  • FIG. 3 is a diagram showing AM-AM characteristics and distortion characteristics in a general amplifier.
  • the AM-AM characteristic of an amplifier changes in the order of dotted line ⁇ broken line ⁇ solid line
  • the distortion characteristic deteriorates in the order of broken line ⁇ dotted line ⁇ solid line. This is because the flatter the AM-AM characteristic, the better the distortion characteristic.
  • the AM-AM characteristic and the distortion characteristic are related, and it is desired to flatten the AM-AM characteristic in order to improve the distortion.
  • FIG. 4 shows AM-AM characteristics when the ECC 14 and the amplifier 15 according to the first embodiment of the present invention are combined.
  • the broken line is the conventional characteristic (characteristic when there is no ECC 14)
  • the dotted line is the characteristic when the distortion characteristic is good
  • an analog circuit corresponding to the ECC 14 is provided at the front stage of the amplifier as shown by the dotted line in FIG. 4, but the ECC 14 is such that the AM-AM characteristic of the ECC 14 and the amplifier 15 is the solid line in FIG.
  • the gain is expanded according to the power of the input signal. That is, the ECC 14 does not compensate for the distortion of the amplifier 15 but causes the AM-AM characteristic of the ECC 14 and the amplifier 15 to be the gain expansion characteristic even if the distortion of the amplifier 15 is deteriorated. Thereby, although the distortion of the signal is deteriorated, the maximum value of the power output from the DAC 7 can be reduced as will be described later. The deteriorated distortion is compensated by the PD 6.
  • FIG. 5 is a diagram showing a cumulative distribution of instantaneous power with respect to the average power of the modulated wave signal.
  • the vertical axis is CCDF (Complementary Cumulative Distribution Function), and the horizontal axis is instantaneous power.
  • PAPR peak to average power ratio
  • the DAC 7 requires a dynamic range of 10 dB for PAPR and Ad dB for distortion compensation of PD6 when there is no ECC14. .
  • the gain of the amplifier decreases as the input power increases. Therefore, it is necessary to increase the gain of AdB in order to compensate for the decrease in the gain.
  • the wider the band of the modulation signal and the larger the PAPR the more the amplifier operates non-linearly and the amount of distortion compensation increases, so the dynamic range required for the DAC 7 increases.
  • the operation speed of the DAC is decreased.
  • FIG. 6 is a conceptual diagram showing signal quantization in the DAC 7 according to the first embodiment of the present invention.
  • a dotted line is an input signal waveform when the ECC 14 is not present, and a solid line is an input signal waveform when the ECC 14 is present.
  • the gain is expanded by the ECC 14, so that the amplitude of the signal output from the DAC 7 is smaller than when the ECC 14 is not present. Therefore, when the number of bits of the DAC 7 is X bits, the resolution per bit (corresponding to the step width in FIG.
  • FIG. 7 is a diagram showing a frequency spectrum before and after distortion compensation of the transmitter according to Embodiment 1 of the present invention.
  • the noise floor after distortion compensation is increased because the quantization noise is increased by the amount of gain expansion by the DAC 7.
  • the quantization noise is lowered, the distortion noise is reduced.
  • the noise floor after compensation can be lowered.
  • FIG. 8 is a characteristic diagram showing distortion characteristics of the RF module 9 when the number of bits of the DAC 7 according to Embodiment 1 of the present invention is 10.
  • the vertical axis is ACPR (Adjacent Channel Power Ratio), and the horizontal axis is Pout.
  • ACPR Adjacent Channel Power Ratio
  • Pout the horizontal axis
  • the ECC 14 is used to change the AM-AM characteristic of the amplifier 15 to the gain expansion characteristic, so that an increase in quantization noise of the DAC 7 can be suppressed.
  • the RF module 9 of the first embodiment does not have a reception function, but may have a reception function.
  • FIG. 9 is a block diagram showing a configuration example of a transmitter according to Embodiment 2 of the present invention. 9, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. 1 is different from FIG. 1 in that a VGA (Variable Gain Amplifier) 22, a VGA 23, a TS 24a, and a control unit 25a are provided.
  • VGA Very Gain Amplifier
  • BPF 10 and BPF 10a mixer 11 and mixer 11a, LO 12 and LO 12a, BPF 13 and BPF 13a, ECC 14 and ECC 14a, amplifier 15 and amplifier 15a, coupler 16 and coupler 16a, isolator 17 and isolator 17a, LPF 18 and LPF 18a, antenna 19 and antenna 19a, the mixer 20 and the mixer 20a, and the BPF 21 and the BPF 21a correspond to each other.
  • the VGA 22 is a VGA that is provided in front of the ECC 14 and adjusts the power level of the signal input to the ECC 14 by changing the gain.
  • the VGA 23 is a VGA that is provided at the subsequent stage of the ECC 14 and adjusts the power level of the signal output from the ECC 14 by changing the gain.
  • the TS 24 a is a temperature sensor that monitors the temperature of the RF module 9.
  • the TS 24a is connected to the control unit 25a and transmits temperature information to the control unit 25a.
  • the control unit 25 a is a control unit that controls the bias voltages of the VGAs 22 and 23, the ECC 14, and the amplifier 15.
  • the control unit 25a receives temperature information from the TS 24a, and controls the gains of the VGAs 22 and 23, the ECC 14, and the amplifier 15 by changing the bias voltage according to the temperature information.
  • the RF module 9 has different characteristics depending on the temperature, as shown in FIG. 9, the modulation signal generated by the signal comparison unit 4 is compared with the modulated signal fed back, and predistortion is performed by the PD 6 so that the two match.
  • the characteristic variation due to temperature is compensated for distortion by feedback control.
  • the characteristic of the RF module 9 is not the gain expansion characteristic, the quantization noise increases in the DAC 7 and the noise floor increases. Therefore, it is necessary to perform control so that the RF module 9 has a gain expansion characteristic even when a temperature change occurs.
  • the current flowing through the ECC 14 becomes small, so that the characteristic that the gain increases with respect to the input power (gain expansion characteristic) becomes small. Further, the gain of the amplifier 15 and the saturated output power are also reduced, and the amplifier 15 has a characteristic that the gain is reduced with respect to the input power.
  • the temperature is detected by the TS 24a, and the bias voltage or bias current of the ECC 14 and the ECC 15 is adjusted so that the AM-AM characteristic of the RF module 9 becomes the gain expansion characteristic according to the temperature. Thereby, even if temperature changes, the RF module 9 can maintain a gain expansion characteristic.
  • FIG. 10 is a characteristic diagram showing characteristics of the RF module 9 with and without temperature compensation according to Embodiment 2 of the present invention.
  • the broken line is the characteristic of the RF module 9 when the ECC 14 and the bias voltage of the amplifier 15 are not controlled with respect to the temperature
  • the solid line is the characteristic of the RF module 9 when the bias voltage of the ECC 14 and the amplifier 15 is controlled with respect to the temperature. It is a characteristic.
  • a dotted line is a characteristic of the RF module 9 when the gain characteristic is flat, and is a characteristic to be compared with a solid line and a broken line.
  • a characteristic in which the gain is higher than this characteristic is a gain expansion characteristic.
  • the control unit 25a also controls the gains of the VGAs 22 and 23 according to the temperature so that the overall gain of the RF module 9 becomes constant regardless of the temperature. As a result, even if the temperature changes, the overall gain of the RF module 9 can be maintained and the gain expansion characteristic can be maintained.
  • the gain of the ECC 14 and the amplifier 15 is controlled so that the RF module 9 maintains the gain expansion characteristic even when the temperature changes. An increase in noise can be suppressed.
  • FIG. 11 is a block diagram showing another configuration example of the transmitter according to the second embodiment of the present invention. 9 and 11 are compared, the modem 1 and the modem 1a, the DSP 2 and the DSP 2a, the modulation unit 3 and the modulation unit 3a, the signal comparison unit 4 and the signal comparison units 4a and 4b, the PD signal generation unit 5 and the PD signal generation unit.
  • FIG. 11 shows a configuration in which a plurality of RF modules 9a shown in FIG. 9 are arranged, the DSP 2a is shared by the plurality of RF modules, and a transmitter configuration of Massive-Input MIMO (Multiple-Input and Multi-Output) is used. Even with this configuration, the same effects as those of the second embodiment are obtained.
  • FIG. 11 shows an example in which two RF modules are provided, but two or more RF modules may be provided.
  • FIG. 12 is a block diagram showing another configuration example of the transmitter according to Embodiment 2 of the present invention. 12, the same reference numerals as those in FIG. 9 indicate the same or corresponding parts, and thus the description thereof is omitted. Further, for example, the components having the same numbers correspond to each other like the amplifier 15a and the amplifier 15b, and thus the description thereof is omitted. Further, the RF module 9a in FIG. 9 corresponds to the RF modules 90a, 90b, 90c, and 90d in FIG. 9 is compared with FIG. 11, in the configuration of the RF module 90a of FIG. 12, the phase shifter 28a is provided in the front stage of the amplifier 15, and the phase shifter 29a is provided in the front stage of the mixer 20a.
  • a DIV 26 and a Com 27 are provided between the modem 1 and the RF modules 90a, 90b, 90c, and 90d.
  • the DIV 26 is a distribution circuit that distributes the output signal of the modem 1 to the RF modules 90a, 90b, 90c, and 90d.
  • Com 27 is a combining circuit that combines the output signals of the RF modules 90 a, 90 b, 90 c, and 90 d and outputs the combined signals to the modem 1.
  • FIG. 12 shows an active phased array transmitter having an analog subarray configuration in which a plurality of RF modules of FIG. 9 are arranged. The signal is distributed to each RF module by the DIV 26, and the signal fed back is synthesized by the Com 27.
  • a phase shifter 28a is inserted into the RF module 90a.
  • the phase shifter 29a is a phase shifter for returning the phase changed by the phase shifter 28a when performing distortion compensation. Even with this configuration, the same effects as those of the second embodiment are obtained.
  • the phase shifters 29a, 29b, 29c, and 29d return the phase even when the phases of the phase shifters 28a, 28b, 28c, and 28d are changed and the transmission beam is shaken.
  • the feedback signals 91a, 91b, 91c, and 91d can be in phase.
  • the feedback signal having the same phase is synthesized by Com27 and predistortion is performed using the synthesized signal. Therefore, even if the direction of the transmission beam is changed, the distortion is low with respect to the front direction of the transmission beam.
  • a signal can be output.
  • the local sources 12a, 12b, 12c, and 12d there are two methods for bringing the local sources 12a, 12b, 12c, and 12d into the same phase in order to make the feedback signal in the same phase.
  • One is to make the local sources 12a, 12b, 12c, and 12d in phase by synchronizing reference signals (reference signals) that drive the local sources.
  • the local sources 12a, 12b are controlled by controlling and correcting the load enable signal for controlling the rising of the local sources 12a, 12b, 12c, 12d.
  • 12c, 12d are in phase.
  • FIG. 13 is a block diagram showing another configuration example of the transmitter according to Embodiment 2 of the present invention.
  • FIG. 13 is a modification of FIG. 12, in which the ECC of each RF module is unified.
  • the same reference numerals as those in FIG. since the components with the same number correspond to each other, the description thereof is omitted.
  • the RF modules 90a, 90b, 90c, and 90d correspond to the RF modules 91a, 91b, 91c, and 91d, respectively.
  • the ECC module 30 is shared by the RF modules 91a, 91b, 91c, and 91d.
  • the ECC module 30 includes a VGA 22, a VGA 23, an ECC 14, a DIV 26, a COM 27, and a control unit 31.
  • the control unit 31 controls the VGA 22 so that the input power entering the ECC 14 becomes the same even when the temperature changes, and the average gain from the ECC 14 to the input ends of the amplifiers 15a, 15b, 15c, and 15d is constant.
  • the VGA 23 is controlled so that Even with this configuration, the same effects as those of the second embodiment are obtained.

Abstract

A conventional transmitter has a problem of increase of quantization noise at a DAC when a transmission signal is wideband. A transmitter according to the present invention is provided with: a digital circuit that generates a digital transmission signal; a digital analog converter that converts a predistorted transmission signal into an analog signal; an amplifier that amplifies the analog transmission signal output by the digital analog converter; an expansion generating circuit that is provided between the digital analog converter and the amplifier, and that changes and outputs, to the amplifier, the amplitude of the analog transmission signal output by the digital analog converter so that an AM-AM characteristic made to match with the amplifier becomes a gain expansion characteristic; and a distortion compensation circuit that is provided between the digital circuit and the digital analog converter, and that predistorts the transmission signal amplified by the amplifier so that the distortion of the transmission signal is compensated, and outputs the predistorted transmission signal to the digital analog converter.

Description

送信機Transmitter
 本発明は、衛星通信、地上波マイクロ波通信、移動体通信に使用される送信機に関するものである。 The present invention relates to a transmitter used for satellite communication, terrestrial microwave communication, and mobile communication.
 近年、無線通信の進展は目覚ましく、無線通信システムには更なる通信容量の拡大及び通信速度の向上が求められている。しかし、無線通信資源には限りがあり、その中で高速かつ大容量な通信を実現する必要がある。そのため、昨今では比較的使いやすい低周波帯から高速かつ大容量な通信が期待できる高周波帯での通信システムが期待されている。高周波帯での通信システムが可能になれば、信号帯域を広くとることができ、高速かつ大容量な通信が実現できる。ところが、無線通信システムで使用する通信用基地局送信機には高い線形性および高い効率が求められる。一般的に低周波帯に比べて高周波帯での送信機の効率は低いため、高い効率を得ようとした場合、線形性が悪化する。この線形性を改善する一つの手法として歪み補償が有る。特許文献1に示すような通信用基地局送信機によく用いられるディジタルプリディストーション方式がその一つである。 In recent years, the progress of wireless communication is remarkable, and the wireless communication system is required to further expand the communication capacity and improve the communication speed. However, wireless communication resources are limited, and it is necessary to realize high-speed and large-capacity communication. For this reason, a communication system in a high frequency band that can be expected to perform high-speed and large-capacity communication from a low frequency band that is relatively easy to use is expected. If a communication system in a high frequency band becomes possible, a wide signal band can be obtained, and high-speed and large-capacity communication can be realized. However, a communication base station transmitter used in a wireless communication system is required to have high linearity and high efficiency. In general, since the efficiency of a transmitter in a high frequency band is lower than that in a low frequency band, linearity deteriorates when trying to obtain high efficiency. One technique for improving this linearity is distortion compensation. One of them is a digital predistortion method often used in a communication base station transmitter as shown in Patent Document 1.
 特許文献1には、通信用基地局送信機の線形性を高める技術が開示されている。特許文献1は、ディジタルプリディストーション方式の中で予歪みを作るために、べき級数方式を用いており、7次の歪み成分まで考慮している。 Patent Document 1 discloses a technique for improving the linearity of a communication base station transmitter. Patent Document 1 uses a power series method in order to create predistortion in the digital predistortion method, and considers up to the seventh-order distortion component.
 特許文献1のような従来の通信用基地局送信機によく用いられるディジタルプリディストータにおいて通信用基地局送信機内のアナログ部の非線形特性を改善する場合、予歪みをディジタル部で作成し、DAC(Digital to Analog Converter)を介して、アナログ部へ出力する。このとき、アナログ部の非線形特性はどのような特性であっても良い。数10MHz帯域の信号を用いる場合、3次歪みまでを考慮するならDACには信号帯域の3倍の帯域が必要になるので、DACの帯域は、100MHz帯域未満となる。 In a digital predistorter often used in a conventional communication base station transmitter such as Patent Document 1, in order to improve the non-linear characteristic of the analog part in the communication base station transmitter, a predistortion is created in the digital part, and the DAC The data is output to the analog unit via (Digital to Analog Converter). At this time, the non-linear characteristic of the analog unit may be any characteristic. When a signal of several tens MHz band is used, if considering up to the third order distortion, the DAC requires a band three times the signal band, so the DAC band is less than the 100 MHz band.
 特許第3946188号公報 Patent No. 3946188
 今後、さらに高速かつ大容量な通信を実現しようとすると、数100MHz帯域から数GHz帯域の信号を用いることになり、DACの帯域は非常に広帯域になる。一般的に、動作速度が上がると、DACのビット数は、小さくなる傾向があり、量子化雑音が増加するという課題が生じる。量子化雑音を下げるために、動作速度とビット数を両方上げようとすると、DACは、高価かつ消費電力が大きくなる。 In the future, if higher-speed and larger-capacity communication is to be realized, signals from several hundred MHz band to several GHz band will be used, and the DAC band becomes very wide. In general, when the operation speed increases, the number of bits of the DAC tends to decrease, resulting in an increase in quantization noise. In order to reduce the quantization noise, if both the operation speed and the number of bits are increased, the DAC is expensive and consumes a large amount of power.
 この発明は、上記のような問題点を解決するためになされたもので、DACのビット数を上げずに、DACで発生する量子化雑音を抑圧することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to suppress quantization noise generated in a DAC without increasing the number of bits of the DAC.
 本発明の送信機は、ディジタルの送信信号を生成するディジタル回路と、プレディストーションされた送信信号をアナログ信号に変換するディジタルアナログ変換器と、ディジタルアナログ変換器が出力したアナログの送信信号を増幅する増幅器と、ディジタルアナログ変換器と増幅器の間に設けられ、増幅器と合わせたAM-AM特性が利得伸長特性になるように、ディジタルアナログ変換器が出力したアナログの送信信号の振幅を変化させ、増幅器に出力するエクスパンジョン発生回路と、ディジタル回路とディジタルアナログ変換器との間に設けられ、増幅器が増幅した送信信号の歪みをプレディストーションする歪み補償回路とを備える。 The transmitter of the present invention includes a digital circuit that generates a digital transmission signal, a digital-to-analog converter that converts the predistorted transmission signal into an analog signal, and amplifies the analog transmission signal output by the digital-analog converter. An amplifier is provided between the amplifier and the digital-analog converter and the amplifier, and the amplitude of the analog transmission signal output from the digital-analog converter is changed so that the AM-AM characteristic combined with the amplifier becomes a gain expansion characteristic. An expansion generation circuit for outputting to the digital signal, and a distortion compensation circuit that is provided between the digital circuit and the digital-analog converter and predistorts the distortion of the transmission signal amplified by the amplifier.
 この発明によれば、DACのビット数を上げなくても、DACで発生する量子化雑音を抑圧できる。 According to the present invention, quantization noise generated in the DAC can be suppressed without increasing the number of DAC bits.
この発明の実施の形態1に係る送信機の一構成例を示す構成図である。It is a block diagram which shows one structural example of the transmitter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るECC14の構成例及び特性を示す回路図である。It is a circuit diagram which shows the structural example and characteristic of ECC14 which concern on Embodiment 1 of this invention. 一般的な増幅器におけるAM-AM特性及び歪み特性を示す図である。It is a figure which shows the AM-AM characteristic and distortion characteristic in a general amplifier. この発明の実施の形態1に係るECC14と増幅器15とを合わせたときのAM-AM特性である。This is an AM-AM characteristic when the ECC 14 and the amplifier 15 according to the first embodiment of the present invention are combined. 変調波信号の平均電力に対する瞬時電力の累積分布を示す図である。It is a figure which shows the cumulative distribution of the instantaneous electric power with respect to the average electric power of a modulated wave signal. この発明の実施の形態1に係るDAC7における信号の量子化を示す概念図である。It is a conceptual diagram which shows the quantization of the signal in DAC7 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る送信機の歪み補償前及び歪み補償後の周波数スペクトラムを示す図である。It is a figure which shows the frequency spectrum before and after distortion compensation of the transmitter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るDAC7のビット数が10である場合におけるRFモジュール9の歪み特性を示す特性図である。It is a characteristic view which shows the distortion characteristic of RF module 9 when the bit number of DAC7 which concerns on Embodiment 1 of this invention is 10. この発明の実施の形態2に係る送信機の一構成例を示す構成図である。It is a block diagram which shows one structural example of the transmitter which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る温度補償の有無に対するRFモジュール9の特性を示す特性図である。It is a characteristic view which shows the characteristic of RF module 9 with respect to the presence or absence of temperature compensation which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る送信機の他の構成例を示す構成図である。It is a block diagram which shows the other structural example of the transmitter which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る送信機の他の構成例を示す構成図である。It is a block diagram which shows the other structural example of the transmitter which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る送信機の他の構成例を示す構成図である。It is a block diagram which shows the other structural example of the transmitter which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1に係る送信機の一構成例を示す構成図である。本送信機は、モデム1及びRFモジュール9を備える。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration example of a transmitter according to Embodiment 1 of the present invention. The transmitter includes a modem 1 and an RF module 9.
 モデム1は、DSP(Digital Signal Processor)2、変調部3、信号比較部4、PD(Pre-Distortion)信号生成部5、PD部6、DAC7、ADC(Analog to Digital Converter)8を備える。 The modem 1 includes a DSP (Digital-Signal-Processor) 2, a modulation unit 3, a signal comparison unit 4, a PD (Pre-Distortion) signal generation unit 5, a PD unit 6, a DAC 7, and an ADC (Analog to Digital Converter) 8.
 DSP2は、変調部3を備え、ディジタル信号を生成し、変調部3でディジタル信号をベースバンド信号に変換し、出力するDSPである。DSP2は、PD6及び信号比較部4に接続される。 The DSP 2 includes a modulation unit 3, generates a digital signal, converts the digital signal into a baseband signal by the modulation unit 3, and outputs the digital signal. The DSP 2 is connected to the PD 6 and the signal comparison unit 4.
 信号比較部4は、変調部3が出力する変調波信号とAD8が出力するフィードバックされた変調波信号とを比較し、その複素信号のベクトル差(LUT(Look Up Table)方式の場合は振幅と位相の差分)をPD信号生成部5に出力する信号比較部である。信号比較部4は、DSP2及びADC8に接続される。 The signal comparison unit 4 compares the modulation wave signal output from the modulation unit 3 with the feedback modulation wave signal output from the AD 8, and compares the complex signal vector difference (in the case of the LUT (Look Up Table) method with the amplitude). It is a signal comparison unit that outputs a phase difference) to the PD signal generation unit 5. The signal comparison unit 4 is connected to the DSP 2 and the ADC 8.
 PD信号生成部5は、信号比較部4が出力する比較結果にしたがって、DAC7から増幅器15までで発生した歪みを打ち消す逆信号を生成するPD信号生成部である。PD信号生成部5は、PD6及び信号比較部4に接続される。PD信号生成部5で逆信号を生成する手法として、例えば、LUT方式、多項式方式やべき級数方式、メモリポリノミナル方式、もしくはヴォルテラ級数方式が用いられる。 The PD signal generation unit 5 is a PD signal generation unit that generates an inverse signal that cancels distortion generated from the DAC 7 to the amplifier 15 according to the comparison result output from the signal comparison unit 4. The PD signal generation unit 5 is connected to the PD 6 and the signal comparison unit 4. As a method of generating an inverse signal by the PD signal generation unit 5, for example, an LUT method, a polynomial method, a power series method, a memory polynomial method, or a Volterra series method is used.
 PD6は、PD信号生成部5が生成した逆信号と変調部3が生成したベースバンド信号とを重畳し、重畳した信号を出力するPDである。PD6は、DSP2及びDAC7に接続される。 PD 6 is a PD that superimposes the reverse signal generated by the PD signal generation unit 5 and the baseband signal generated by the modulation unit 3 and outputs the superimposed signal. The PD 6 is connected to the DSP 2 and the DAC 7.
 DAC7は、PD6が出力するディジタル信号をアナログ信号に変換するDACである。DAC7は、PD6及びBPF10に接続される。 The DAC 7 is a DAC that converts a digital signal output from the PD 6 into an analog signal. The DAC 7 is connected to the PD 6 and the BPF 10.
 ADC8は、BPF21が出力するアナログ信号をディジタル信号に変化するADCである。ADC8は、BPF21及び信号比較部4に接続される。 The ADC 8 is an ADC that changes an analog signal output from the BPF 21 into a digital signal. The ADC 8 is connected to the BPF 21 and the signal comparison unit 4.
 例えば、DSP2、信号比較部4、PD信号生成部5、PD6は、FPGA(Field-Programmable Gate Array)、ASIC(Aapplication Specific Integrated Circuit)などで構成される。また、DAC7及びADC8は、FPGAに内蔵される構成であっても良い。 For example, the DSP 2, the signal comparison unit 4, the PD signal generation unit 5, and the PD 6 are configured by an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and the like. Further, the DAC 7 and the ADC 8 may be configured to be built in the FPGA.
 RFモジュール9は、BPF(Band‐Pass Filter)10、ミクサ11、LO(ローカル信号源)12、BPF13、ECC(Expansion Characteristics Circuit)14、増幅器15、カップラ16、アイソレータ17、LPF(Low-Pass Filter)18、アンテナ19、ミクサ20、BPF21を備える。 The RF module 9 includes a BPF (Band-Pass Filter) 10, a mixer 11, an LO (Local Signal Source) 12, a BPF 13, an ECC (Expansion / Characteristics / Circuit) 14, an amplifier 15, a coupler 16, an isolator 17, an LPF (Low-Pass Filter). ) 18, an antenna 19, a mixer 20, and a BPF 21.
 BPF10は、DAC7が出力する変調信号から不要波を遮断し、不要波を遮断した変調信号を出力するBPFである。BPF10は、DAC7及びミクサ11に接続される。 The BPF 10 is a BPF that blocks unnecessary waves from the modulation signal output from the DAC 7 and outputs a modulation signal that blocks unnecessary waves. The BPF 10 is connected to the DAC 7 and the mixer 11.
 ミクサ11は、BPF11が出力する変調信号とLO12のローカル信号とを混合し、変調信号の周波数を変換する混合器である。ミクサ11は、LO端子がLO12に接続され、IF端子がBPF11に接続され、RF端子がBPF13に接続される。 The mixer 11 is a mixer that mixes the modulation signal output from the BPF 11 and the local signal of the LO 12 and converts the frequency of the modulation signal. The mixer 11 has an LO terminal connected to the LO 12, an IF terminal connected to the BPF 11, and an RF terminal connected to the BPF 13.
 LO12は、ミクサ11において周波数を変換するのに用いられるローカル信号を出力する発振器である。LO12は、ミクサ11及びミクサ20に接続される。 LO 12 is an oscillator that outputs a local signal used for frequency conversion in the mixer 11. The LO 12 is connected to the mixer 11 and the mixer 20.
 BPF13は、周波数変換された変調信号から所望帯域外の不要波を遮断し、不要波を遮断した変調信号を出力するBPFである。BPF13は、ミクサ11及びECC14に接続される。 The BPF 13 is a BPF that blocks unnecessary waves outside the desired band from the frequency-converted modulated signal and outputs a modulated signal that blocks unnecessary waves. The BPF 13 is connected to the mixer 11 and the ECC 14.
 ECC14は、変調信号のAM-AM特性を利得伸長(ゲインエクスパンジョン)させるアナログ回路である。ECC14は、BPF13及び増幅器15に接続される。
 図2は、この発明の実施の形態1に係るECC14の構成例及び特性を示す回路図である。
 図2の(a)は、動作級がB級からAB級の増幅器を用いた場合の例であり、出力電力に対して利得が増加する特性をもつ。Vcは、増幅器のバイアス電圧であり、Vcを調整してB級からAB級の範囲にバイアスを設定する。
 図2の(b)は、並列型ダイオードリニアライザーを用いた例であり、ダイオードの非線形特性を利用して、出力電力に対して利得を増加させる特性をもたせる。
 図2の(c)は、ダイオード及びハイブリッドを用いてECC14を構成した図2の(b)の変形例であり、ダイオードの非線形特性を利用して、出力電力に対して利得を増加させる特性をもたせる。
 ここでは、出力電力に対する利得特性を例に説明したが、入力電力に対する利得特性の場合も出力電力の場合と同様である。
The ECC 14 is an analog circuit that performs gain expansion (gain expansion) on the AM-AM characteristic of the modulation signal. The ECC 14 is connected to the BPF 13 and the amplifier 15.
FIG. 2 is a circuit diagram showing a configuration example and characteristics of the ECC 14 according to the first embodiment of the present invention.
FIG. 2A shows an example in which an amplifier whose operation class is from class B to class AB is used, and has a characteristic that the gain increases with respect to the output power. Vc is a bias voltage of the amplifier, and Vc is adjusted to set a bias in a range from class B to class AB.
FIG. 2B shows an example in which a parallel diode linearizer is used, and has a characteristic of increasing the gain with respect to output power by using the nonlinear characteristic of the diode.
FIG. 2C is a modification of FIG. 2B in which the ECC 14 is configured using a diode and a hybrid. The characteristic of increasing the gain with respect to the output power using the nonlinear characteristic of the diode is shown. Give it.
Here, the gain characteristic with respect to the output power has been described as an example, but the gain characteristic with respect to the input power is the same as that with the output power.
 増幅器15は、利得伸長された変調信号が入力され、その変調信号を増幅する増幅器である。増幅器15は、ECC14及びカップラ16に接続される。 The amplifier 15 is an amplifier that receives a gain-expanded modulation signal and amplifies the modulation signal. The amplifier 15 is connected to the ECC 14 and the coupler 16.
 カップラ16は、増幅された変調信号の一部を取り出すカップラである。カップラ16は、増幅器15及びアイソレータ17に接続される。 The coupler 16 is a coupler that extracts a part of the amplified modulation signal. The coupler 16 is connected to the amplifier 15 and the isolator 17.
 アイソレータ17は、変調信号を通過させ、後段に接続されるコンポーネントにより生じる反射波を吸収するアイソレータである。アイソレータ17は、カップラ16及びLPF18に接続される。 The isolator 17 is an isolator that allows a modulated signal to pass and absorbs a reflected wave generated by a component connected to a subsequent stage. The isolator 17 is connected to the coupler 16 and the LPF 18.
 LPF18は、変調信号から所望帯域外の不要波を遮断し、不要波を遮断した変調信号を出力するLPFである。LPF18は、アイソレータ17及びアンテナ19に接続される。 The LPF 18 is an LPF that blocks unnecessary waves outside the desired band from the modulation signal and outputs a modulation signal that blocks unnecessary waves. The LPF 18 is connected to the isolator 17 and the antenna 19.
 アンテナ19は、LPF18が出力した変調信号を送信するアンテナである。アンテナ19は、LPF18に接続される。 The antenna 19 is an antenna that transmits the modulation signal output from the LPF 18. The antenna 19 is connected to the LPF 18.
 ミクサ20は、LO12のローカル信号と増幅器15が増幅した変調信号とを混合し、変調信号を周波数変換する混合器である。ミクサ20は、RF端子がカップラ16に接続され、LO端子がLO12に接続され、IF端子がBPF21に接続される。 The mixer 20 is a mixer that mixes the local signal of the LO 12 and the modulation signal amplified by the amplifier 15 and converts the frequency of the modulation signal. The mixer 20 has an RF terminal connected to the coupler 16, an LO terminal connected to the LO 12, and an IF terminal connected to the BPF 21.
 BPF21は、ミクサ20が周波数変換した変調信号から不要波を遮断し、不要波を遮断した変調信号を出力するBPFである。BPF21は、ミクサ20及びADC8に接続される。 The BPF 21 is a BPF that blocks unnecessary waves from the modulation signal frequency-converted by the mixer 20 and outputs a modulation signal that blocks unnecessary waves. The BPF 21 is connected to the mixer 20 and the ADC 8.
 次に、この発明の実施の形態1に係る送信機の動作について説明する。
 モデム1において、DSP2は、DSP2内の変調部3で生成された変調波信号を、PD6を介してDAC7に出力する。DAC7は、入力されたベースバンド信号をアナログ信号に変換し、BPF10に出力する。
Next, the operation of the transmitter according to Embodiment 1 of the present invention will be described.
In the modem 1, the DSP 2 outputs the modulation wave signal generated by the modulation unit 3 in the DSP 2 to the DAC 7 via the PD 6. The DAC 7 converts the input baseband signal into an analog signal and outputs the analog signal to the BPF 10.
 RFモジュール9において、BPF10は、DAC7が出力するアナログ信号からBPF10の通過帯域外の不要波を抑圧し、不要波を抑圧したアナログ信号をミクサ11に出力する。 In the RF module 9, the BPF 10 suppresses unnecessary waves outside the passband of the BPF 10 from the analog signal output by the DAC 7, and outputs an analog signal in which unnecessary waves are suppressed to the mixer 11.
 ミクサ11は、LO12のローカル信号を用いて、BPF10が出力するアナログ信号をアップコンバージョンし、RF信号に変換する。ミクサ11は、RF信号をBPF13に出力する。 The mixer 11 up-converts the analog signal output from the BPF 10 using the local signal of the LO 12 and converts it into an RF signal. The mixer 11 outputs an RF signal to the BPF 13.
 ミクサ11が周波数変換を行なう際、アナログ信号とローカル信号とを混合するため、所望のRF信号の他に、不要波も出力される。BPF11は、ミクサ11の出力信号から不要波を遮断し、所望のRF信号をECC14に出力する。 When the mixer 11 performs frequency conversion, an analog signal and a local signal are mixed, so that an unnecessary wave is output in addition to a desired RF signal. The BPF 11 blocks unnecessary waves from the output signal of the mixer 11 and outputs a desired RF signal to the ECC 14.
 ECC14は、AM―AM特性が利得伸長の特性をもち、入力されるRF信号の電力に応じて利得を変化させ、増幅器15に出力する。この点についての詳細は後述する。 The ECC 14 has an AM-AM characteristic having a gain expansion characteristic, changes the gain according to the power of the input RF signal, and outputs the gain to the amplifier 15. Details of this point will be described later.
 増幅器15は、ECC14が出力したRF信号を増幅し、増幅したRF信号をカップラ16及びアイソレータ17を介してLPF18に出力する。
 LPF18は、増幅器15が増幅したRF信号のうち、不要波を抑圧し、不要波を抑圧したRF信号をアンテナ19に出力する。
 アンテナ19は、LPF18が出力したRF信号を送信する。
The amplifier 15 amplifies the RF signal output from the ECC 14 and outputs the amplified RF signal to the LPF 18 via the coupler 16 and the isolator 17.
The LPF 18 suppresses unnecessary waves in the RF signal amplified by the amplifier 15 and outputs an RF signal in which unnecessary waves are suppressed to the antenna 19.
The antenna 19 transmits the RF signal output from the LPF 18.
 一方、カップラ16は、増幅器15が増幅したRF信号をフィードバックさせるために、RF信号の一部を取り出し、ミクサ20に出力する。
 ミクサ20は、LO12のローカル信号を用いて、カップラ16から入力されたRF信号をダウンコンバーションし、ベースバンド信号に変換する。
 BPF21は、ミクサ20の出力信号のうち、不要波を抑圧し、不要波を抑圧したベースバンド信号をADC8に出力する。
On the other hand, the coupler 16 takes out a part of the RF signal and outputs it to the mixer 20 in order to feed back the RF signal amplified by the amplifier 15.
The mixer 20 uses the local signal of the LO 12 to down-convert the RF signal input from the coupler 16 and convert it into a baseband signal.
The BPF 21 suppresses unnecessary waves in the output signal of the mixer 20 and outputs a baseband signal in which unnecessary waves are suppressed to the ADC 8.
 ADC8は、ベースバンド信号をディジタル信号に変換し、信号比較部4に出力する。
 信号比較部4は、DSP2が生成した変調信号と、ECC14及び増幅器15を通過してフィードバックされた変調信号とを比較し、その差分をPD信号生成部5に出力する。
 PD信号生成部5は、信号比較部4の出力信号にしたがって、ECC14及び増幅器15で生じた歪みを打ち消す逆信号を生成し、PD6に出力する。
 PD6は、DSP2が生成した変調信号にECC14及び増幅器15の歪みを補償する逆信号を重畳し、重畳した変調信号をDAC7に出力する。
 このように、生成した変調信号と、ECC14及び増幅器15を通過してフィードバックされた変調信号とを比較し、ECC14及び増幅器15の非線形特性を打ち消す逆信号を変調信号に重畳することで、ECC14及び増幅器15で生じる歪みを補償している。このように歪み補償を行うことをプリディストーションと言う。
The ADC 8 converts the baseband signal into a digital signal and outputs it to the signal comparison unit 4.
The signal comparison unit 4 compares the modulation signal generated by the DSP 2 with the modulation signal fed back through the ECC 14 and the amplifier 15, and outputs the difference to the PD signal generation unit 5.
The PD signal generation unit 5 generates an inverse signal that cancels distortion generated in the ECC 14 and the amplifier 15 in accordance with the output signal of the signal comparison unit 4 and outputs the reverse signal to the PD 6.
The PD 6 superimposes an inverse signal that compensates for distortion of the ECC 14 and the amplifier 15 on the modulation signal generated by the DSP 2, and outputs the superimposed modulation signal to the DAC 7.
In this way, the generated modulation signal is compared with the modulation signal fed back through the ECC 14 and the amplifier 15, and an inverse signal that cancels the nonlinear characteristics of the ECC 14 and the amplifier 15 is superimposed on the modulation signal. The distortion generated in the amplifier 15 is compensated. This distortion compensation is called predistortion.
 ECC14の動作について詳しく説明する。
 図3は、一般的な増幅器におけるAM-AM特性及び歪み特性を示す図である。一般的に、増幅器のAM-AM特性が、点線→破線→実線のように変化すると、歪み特性は、破線→点線→実線の順に劣化する。AM-AM特性が平坦であるほど、歪み特性が良くなるからである。このように、AM-AM特性と歪み特性とは関係しており、歪みを改善するためには、AM-AM特性を平坦にすることが望まれる。
 図4は、この発明の実施の形態1に係るECC14と増幅器15とを合わせたときのAM-AM特性である。破線が従来の特性(ECC14がない場合の特性)であり、点線が歪み特性が良い場合の特性であり、本発明の特性(ECC14がある場合の特性)である。
The operation of the ECC 14 will be described in detail.
FIG. 3 is a diagram showing AM-AM characteristics and distortion characteristics in a general amplifier. Generally, when the AM-AM characteristic of an amplifier changes in the order of dotted line → broken line → solid line, the distortion characteristic deteriorates in the order of broken line → dotted line → solid line. This is because the flatter the AM-AM characteristic, the better the distortion characteristic. As described above, the AM-AM characteristic and the distortion characteristic are related, and it is desired to flatten the AM-AM characteristic in order to improve the distortion.
FIG. 4 shows AM-AM characteristics when the ECC 14 and the amplifier 15 according to the first embodiment of the present invention are combined. The broken line is the conventional characteristic (characteristic when there is no ECC 14), the dotted line is the characteristic when the distortion characteristic is good, and is the characteristic of the present invention (characteristic when the ECC 14 is present).
 通常、図4の点線になるように、増幅器の前段にECC14に相当するアナログ回路を設けるが、ECC14は、ECC14と増幅器15とを合わせたAM-AM特性が、図4の実線になるように、入力信号の電力に応じで利得伸長を行う。つまり、ECC14は、増幅器15の歪みを補償するのではなく、増幅器15の歪みを劣化させても、ECC14と増幅器15とを合わせたAM-AM特性が利得伸長特性になるようにする。これにより、信号の歪みは劣化するが、後述するようにDAC7が出力する電力の最大値を低減できる。なお、劣化した歪みは、PD6により補償する。 Normally, an analog circuit corresponding to the ECC 14 is provided at the front stage of the amplifier as shown by the dotted line in FIG. 4, but the ECC 14 is such that the AM-AM characteristic of the ECC 14 and the amplifier 15 is the solid line in FIG. The gain is expanded according to the power of the input signal. That is, the ECC 14 does not compensate for the distortion of the amplifier 15 but causes the AM-AM characteristic of the ECC 14 and the amplifier 15 to be the gain expansion characteristic even if the distortion of the amplifier 15 is deteriorated. Thereby, although the distortion of the signal is deteriorated, the maximum value of the power output from the DAC 7 can be reduced as will be described later. The deteriorated distortion is compensated by the PD 6.
 利得伸長とビット数との関係について説明する。
 図5は、変調波信号の平均電力に対する瞬時電力の累積分布を示す図である。縦軸がCCDF(Complementary Cumulative Distribution Function)であり、横軸が瞬時電力である。図5に示す変調信号は、PAPR(Peak to Average Power Ratio)が約10dBであるため、DAC7は、ECC14がない場合、PAPR分の10dB及びPD6の歪み補償分のAdBのダイナミックレンジが必要となる。増幅器は、一般的に、入力電力が大きくなるほど利得が低下するので、その利得の低下を補償するためにAdBの利得伸長が必要になる。
 したがって、変調信号の帯域が広くなり、PAPRが大きくなるほど、増幅器が非線形動作し、歪み補償量が大きくなるので、DAC7に必要なダイナミックレンジは大きくなる。一般的に、ダイナミックレンジとビット数を上げると、DACの動作速度は遅くなる。
The relationship between gain expansion and the number of bits will be described.
FIG. 5 is a diagram showing a cumulative distribution of instantaneous power with respect to the average power of the modulated wave signal. The vertical axis is CCDF (Complementary Cumulative Distribution Function), and the horizontal axis is instantaneous power. Since the modulated signal shown in FIG. 5 has a peak to average power ratio (PAPR) of about 10 dB, the DAC 7 requires a dynamic range of 10 dB for PAPR and Ad dB for distortion compensation of PD6 when there is no ECC14. . In general, the gain of the amplifier decreases as the input power increases. Therefore, it is necessary to increase the gain of AdB in order to compensate for the decrease in the gain.
Therefore, the wider the band of the modulation signal and the larger the PAPR, the more the amplifier operates non-linearly and the amount of distortion compensation increases, so the dynamic range required for the DAC 7 increases. In general, when the dynamic range and the number of bits are increased, the operation speed of the DAC is decreased.
 一方、ECC14がある場合、ECC14で利得伸長を行うので、その分、DAC7に掛かる負担は小さくなる。
 図6は、この発明の実施の形態1に係るDAC7における信号の量子化を示す概念図である。
 点線が、ECC14がない場合の入力信号波形であり、実線が、ECC14がある場合の入力信号波形である。
 図6に示すように、ECC14がある場合、ECC14で利得伸長するので、ECC14がない場合に比べて、DAC7が出力する信号の振幅は小さくなる。したがって、DAC7のビット数をXビットとすると、ECC14がある場合の方が、同じビット数でも、ECC14がない場合に比べて、1ビット当たりの分解能(図6中のステップ幅に相当する)は、高くなる。1ビット当たりの分解能が高い方(図6中のステップ幅が小さい方)が、量子化ノイズは小さくなるので、ECC14を設けた方が、DAC7における量子化ノイズを小さくできる。
On the other hand, when the ECC 14 is present, the gain is extended by the ECC 14, so that the burden on the DAC 7 is reduced accordingly.
FIG. 6 is a conceptual diagram showing signal quantization in the DAC 7 according to the first embodiment of the present invention.
A dotted line is an input signal waveform when the ECC 14 is not present, and a solid line is an input signal waveform when the ECC 14 is present.
As shown in FIG. 6, when the ECC 14 is present, the gain is expanded by the ECC 14, so that the amplitude of the signal output from the DAC 7 is smaller than when the ECC 14 is not present. Therefore, when the number of bits of the DAC 7 is X bits, the resolution per bit (corresponding to the step width in FIG. 6) in the case where the ECC 14 is present is equal to that in the case where the ECC 14 is not present even when the ECC 14 is present. , Get higher. The higher the resolution per bit (the smaller the step width in FIG. 6), the smaller the quantization noise. Therefore, if the ECC 14 is provided, the quantization noise in the DAC 7 can be reduced.
 もし、ECC14がない場合において、ECC14がある場合と同じ量子化ノイズを実現するためには、Xビットより大きいビット数のDAC7を用いる必要がある。その場合、DAC7は、高価かつ消費電力が大きくなる。 If there is no ECC 14, it is necessary to use a DAC 7 having a number of bits larger than X bits in order to realize the same quantization noise as when the ECC 14 is present. In that case, the DAC 7 is expensive and consumes a large amount of power.
 図7は、この発明の実施の形態1に係る送信機の歪み補償前及び歪み補償後の周波数スペクトラムを示す図である。
 従来の場合(ECC14がない場合)、DAC7で利得伸長を行う分、量子化ノイズが増加するため、歪み補償後のノイズフロアが上昇するが、本発明では、量子化ノイズを下げられるため、歪み補償後のノイズフロアを下げることができる。
FIG. 7 is a diagram showing a frequency spectrum before and after distortion compensation of the transmitter according to Embodiment 1 of the present invention.
In the conventional case (when there is no ECC 14), the noise floor after distortion compensation is increased because the quantization noise is increased by the amount of gain expansion by the DAC 7. However, in the present invention, since the quantization noise is lowered, the distortion noise is reduced. The noise floor after compensation can be lowered.
 図8は、この発明の実施の形態1に係るDAC7のビット数が10である場合におけるRFモジュール9の歪み特性を示す特性図である。
 縦軸がACPR(Adjacent Channel Power Ratio)であり、横軸がPoutである。本構成では、ECC14を設けて、利得伸長を行うことにより、DAC7が出力する信号の最大電力値を下げられるので、1ビット当たりの分解能を高めることができ、従来構成(ECC14がない構成)に比べて、歪み特性を改善できる。従来構成で、同じ歪み特性を得るためには、DAC7は12ビット程度必要であるが、本構成では、10ビットで、12ビット程度の歪み特性を得ることができる。
FIG. 8 is a characteristic diagram showing distortion characteristics of the RF module 9 when the number of bits of the DAC 7 according to Embodiment 1 of the present invention is 10. In FIG.
The vertical axis is ACPR (Adjacent Channel Power Ratio), and the horizontal axis is Pout. In this configuration, by providing the ECC 14 and performing gain expansion, the maximum power value of the signal output from the DAC 7 can be reduced, so that the resolution per bit can be increased and the conventional configuration (configuration without the ECC 14) can be achieved. Compared to the distortion characteristics. In order to obtain the same distortion characteristics in the conventional configuration, the DAC 7 needs about 12 bits. In this configuration, the distortion characteristics of about 12 bits can be obtained with 10 bits.
 以上の通り、この発明の実施の形態1によれば、ECC14を用いて、増幅器15のAM-AM特性を利得伸長特性にするので、DAC7の量子化ノイズの増加を抑制することができる。 As described above, according to the first embodiment of the present invention, the ECC 14 is used to change the AM-AM characteristic of the amplifier 15 to the gain expansion characteristic, so that an increase in quantization noise of the DAC 7 can be suppressed.
 なお、実施の形態1のRFモジュール9は、受信機能を有していないが、受信機能を有するようにしても良い。 Note that the RF module 9 of the first embodiment does not have a reception function, but may have a reception function.
実施の形態2.
 図9は、この発明の実施の形態2に係る送信機の一構成例を示す構成図である。
 図9において、図1と同一符号は、同一または相当部分を示している。VGA(Variable Gain Amplifier)22及びVGA23、TS24a、制御部25aを設けている点が、図1と異なる。なお、BPF10とBPF10a、ミクサ11とミクサ11a、LO12とLO12a、BPF13とBPF13a、ECC14とECC14a、増幅器15と増幅器15a、カップラ16とカップラ16a、アイソレータ17とアイソレータ17a、LPF18とLPF18a、アンテナ19とアンテナ19a、ミクサ20とミクサ20a、BPF21とBPF21aは対応する。
Embodiment 2.
FIG. 9 is a block diagram showing a configuration example of a transmitter according to Embodiment 2 of the present invention.
9, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. 1 is different from FIG. 1 in that a VGA (Variable Gain Amplifier) 22, a VGA 23, a TS 24a, and a control unit 25a are provided. BPF 10 and BPF 10a, mixer 11 and mixer 11a, LO 12 and LO 12a, BPF 13 and BPF 13a, ECC 14 and ECC 14a, amplifier 15 and amplifier 15a, coupler 16 and coupler 16a, isolator 17 and isolator 17a, LPF 18 and LPF 18a, antenna 19 and antenna 19a, the mixer 20 and the mixer 20a, and the BPF 21 and the BPF 21a correspond to each other.
 VGA22は、ECC14の前段に設けられ、利得を変化させることにより、ECC14に入力される信号の電力レベルを調整するVGAである。
 VGA23は、ECC14の後段に設けられ、利得を変化させることにより、ECC14が出力する信号の電力レベルを調整するVGAである。
 TS24aは、RFモジュール9の温度をモニタする温度センサである。TS24aは、制御部25aに接続され、温度情報を制御部25aに送信する。
 制御部25aは、VGA22及び23、ECC14、増幅器15のバイアス電圧を制御する制御部である。制御部25aは、TS24aから温度情報を受信し、その温度情報にしたがって、VGA22及び23、ECC14、増幅器15のバイアス電圧を変化させることにより、それらの利得を制御する。
The VGA 22 is a VGA that is provided in front of the ECC 14 and adjusts the power level of the signal input to the ECC 14 by changing the gain.
The VGA 23 is a VGA that is provided at the subsequent stage of the ECC 14 and adjusts the power level of the signal output from the ECC 14 by changing the gain.
The TS 24 a is a temperature sensor that monitors the temperature of the RF module 9. The TS 24a is connected to the control unit 25a and transmits temperature information to the control unit 25a.
The control unit 25 a is a control unit that controls the bias voltages of the VGAs 22 and 23, the ECC 14, and the amplifier 15. The control unit 25a receives temperature information from the TS 24a, and controls the gains of the VGAs 22 and 23, the ECC 14, and the amplifier 15 by changing the bias voltage according to the temperature information.
 次に、この発明の実施の形態2に係る送信機の動作について説明する。実施の形態1と同様の動作については説明を省略する。
 RFモジュール9は、温度により特性が異なるが、図9に示したように、信号比較部4で生成した変調信号とフィードバックした変調信号とを比較し、両者が一致するようにPD6でプリディストーションを行う場合、温度による特性変動は、フィードバック制御により歪み補償される。
 しかし、RFモジュール9の特性は利得伸長特性でないと、DAC7において量子化ノイズが増加し、ノイズフロアが上昇してしまう。したがって、温度変化が生じてもRFモジュール9が利得伸長特性になるように、制御を行なう必要がある。
Next, the operation of the transmitter according to Embodiment 2 of the present invention will be described. The description of the same operation as that in Embodiment 1 is omitted.
Although the RF module 9 has different characteristics depending on the temperature, as shown in FIG. 9, the modulation signal generated by the signal comparison unit 4 is compared with the modulated signal fed back, and predistortion is performed by the PD 6 so that the two match. When performing, the characteristic variation due to temperature is compensated for distortion by feedback control.
However, if the characteristic of the RF module 9 is not the gain expansion characteristic, the quantization noise increases in the DAC 7 and the noise floor increases. Therefore, it is necessary to perform control so that the RF module 9 has a gain expansion characteristic even when a temperature change occurs.
 温度が上昇した場合、ECC14に流れる電流は小さくなるので、入力電力に対して利得が増加する特性(利得伸長特性)は小さくなる。また、増幅器15の利得及び飽和出力電力も減少し、増幅器15は、入力電力に対して利得が低下する特性になる。
 本送信機では、TS24aで温度を検出し、その温度に応じてRFモジュール9のAM-AM特性が利得伸長特性になるように、ECC14及びECC15のバイアス電圧またはバイアス電流を調整する。これにより、温度が変化してもRFモジュール9は、利得伸長特性を維持できる。
When the temperature rises, the current flowing through the ECC 14 becomes small, so that the characteristic that the gain increases with respect to the input power (gain expansion characteristic) becomes small. Further, the gain of the amplifier 15 and the saturated output power are also reduced, and the amplifier 15 has a characteristic that the gain is reduced with respect to the input power.
In this transmitter, the temperature is detected by the TS 24a, and the bias voltage or bias current of the ECC 14 and the ECC 15 is adjusted so that the AM-AM characteristic of the RF module 9 becomes the gain expansion characteristic according to the temperature. Thereby, even if temperature changes, the RF module 9 can maintain a gain expansion characteristic.
 図10は、この発明の実施の形態2に係る温度補償の有無に対するRFモジュール9の特性を示す特性図である。
 破線が、温度に対してECC14及び増幅器15のバイアス電圧を制御しない場合のRFモジュール9の特性であり、実線が、温度に対してECC14及び増幅器15のバイアス電圧を制御する場合のRFモジュール9の特性である。点線は、利得特性が平坦の場合のRFモジュール9の特性であり、実線及び破線の比較対象となる特性である。この特性より利得が上に行く特性が、利得伸長特性である。
FIG. 10 is a characteristic diagram showing characteristics of the RF module 9 with and without temperature compensation according to Embodiment 2 of the present invention.
The broken line is the characteristic of the RF module 9 when the ECC 14 and the bias voltage of the amplifier 15 are not controlled with respect to the temperature, and the solid line is the characteristic of the RF module 9 when the bias voltage of the ECC 14 and the amplifier 15 is controlled with respect to the temperature. It is a characteristic. A dotted line is a characteristic of the RF module 9 when the gain characteristic is flat, and is a characteristic to be compared with a solid line and a broken line. A characteristic in which the gain is higher than this characteristic is a gain expansion characteristic.
 ECC14及び増幅器15のバイアス電圧を変化させると、利得が変化するため、利得伸長特性は維持できても、RFモジュール9の全体の利得は変化してしまう。温度により、RFモジュール9の全体の利得が変化すると、アンテナ19aから送信される電波の電力が温度によって異なることになるため、特性として好ましくない。
 そこで、制御部25aは、温度によりVGA22及び23の利得も制御することにより、RFモジュール9の全体の利得が、温度によらず一定になるようにする。これにより、温度が変化しても、RFモジュール9の全体の動作利得は、一定のまま、利得伸長特性を維持できる。
When the bias voltage of the ECC 14 and the amplifier 15 is changed, the gain changes. Therefore, even if the gain expansion characteristic can be maintained, the overall gain of the RF module 9 changes. If the overall gain of the RF module 9 changes depending on the temperature, the power of the radio wave transmitted from the antenna 19a varies depending on the temperature.
Therefore, the control unit 25a also controls the gains of the VGAs 22 and 23 according to the temperature so that the overall gain of the RF module 9 becomes constant regardless of the temperature. As a result, even if the temperature changes, the overall gain of the RF module 9 can be maintained and the gain expansion characteristic can be maintained.
 以上の通り、この発明の実施の形態2によれば、温度が変化してもRFモジュール9が利得伸長特性を維持するように、ECC14及び増幅器15の利得を制御するので、温度変化による量子化雑音の増加を抑制できる。 As described above, according to the second embodiment of the present invention, the gain of the ECC 14 and the amplifier 15 is controlled so that the RF module 9 maintains the gain expansion characteristic even when the temperature changes. An increase in noise can be suppressed.
 図11は、この発明の実施の形態2による送信機の他の構成例を示す構成図である。図9と図11とを比較すると、モデム1とモデム1a、DSP2とDSP2a、変調部3と変調部3a、信号比較部4と信号比較部4a及び4b、PD信号生成部5とPD信号生成部5a及び5b、PD6とPD6a及び6b、DAC7とDAC7a及び7b、ADC8とADC8a及び8b、RFモジュール9とRFモジュール9a及び9b、BPF10とBPF10a及び10b、ミクサ11とミクサ11a及び11b、LO12とLO12a及び12b、BPF13とBPF13a及び13b、ECC14とECC14a及び14b、増幅器15と増幅器15a及び15b、カップラ16とカップラ16a及び16b、アイソレータ17とアイソレータ17a及びb、LPF18とLPF17a及び17b、アンテナ19とアンテナ19a及び19b、ミクサ20とミクサ20a及び20b、BPF21とBPF21a及び21b、図9のVGA22aと図11のVGA22a及び22b、図9のVGA23aと図11のVGA23a及び23b、図9のTS24aと図11のTS24a及び24b、図9の制御部25aと図11の制御部25a及び25bは、対応している。 FIG. 11 is a block diagram showing another configuration example of the transmitter according to the second embodiment of the present invention. 9 and 11 are compared, the modem 1 and the modem 1a, the DSP 2 and the DSP 2a, the modulation unit 3 and the modulation unit 3a, the signal comparison unit 4 and the signal comparison units 4a and 4b, the PD signal generation unit 5 and the PD signal generation unit. 5a and 5b, PD6 and PD6a and 6b, DAC7 and DAC7a and 7b, ADC8 and ADC8a and 8b, RF module 9 and RF modules 9a and 9b, BPF10 and BPF10a and 10b, mixer 11 and mixers 11a and 11b, LO12 and LO12a and 12b, BPF 13 and BPF 13a and 13b, ECC 14 and ECC 14a and 14b, amplifier 15 and amplifiers 15a and 15b, coupler 16 and couplers 16a and 16b, isolator 17 and isolators 17a and 17b, LPF 18 and LPF 17a and 17b, antenna 19 and antenna 1 a and 19b, mixer 20 and mixers 20a and 20b, BPF 21 and BPF 21a and 21b, VGA 22a in FIG. 9 and VGA 22a and 22b in FIG. 11, VGA 23a in FIG. 9 and VGA 23a and 23b in FIG. 11, TS24a in FIG. TS24a and 24b, the control part 25a of FIG. 9, and the control parts 25a and 25b of FIG. 11 correspond.
 図11は、図9のRFモジュール9aを複数個並べ、複数のRFモジュールに対してDSP2aを共通化し、Massive MIMO(Multiple-Input and Multiple-Output)の送信機構成としたものである。このような構成であっても、実施の形態2と同様の効果を奏する。なお、図11は、RFモジュールを2個設けた例であるが、2個以上設けても良い。 FIG. 11 shows a configuration in which a plurality of RF modules 9a shown in FIG. 9 are arranged, the DSP 2a is shared by the plurality of RF modules, and a transmitter configuration of Massive-Input MIMO (Multiple-Input and Multi-Output) is used. Even with this configuration, the same effects as those of the second embodiment are obtained. FIG. 11 shows an example in which two RF modules are provided, but two or more RF modules may be provided.
 図12は、この発明の実施の形態2に係る送信機の他の構成例を示す構成図である。
 図12において、図9と同一符号は、同一または相当部分を示しているため、説明を省略する。また、例えば、増幅器15aと増幅器15bとのように、同じ番号の構成要素同士は対応しているため、説明を省略する。また、図9のRFモジュール9aと図12のRFモジュール90a、90b、90c、及び90dとは対応している。図9と図11とを比較すると、図12のRFモジュール90aの構成において、増幅器15の前段に移相器28aを設け、ミクサ20aの前段に移相器29aを設けている点が、図9のRFモジュール9aと異なる。また、図9と比較して、モデム1と、RFモジュール90a、90b、90c及び90dとの間に、DIV26とCom27とを設けている。
 DIV26は、モデム1の出力信号をRFモジュール90a、90b、90c及び90dに分配する分配回路である。
FIG. 12 is a block diagram showing another configuration example of the transmitter according to Embodiment 2 of the present invention.
12, the same reference numerals as those in FIG. 9 indicate the same or corresponding parts, and thus the description thereof is omitted. Further, for example, the components having the same numbers correspond to each other like the amplifier 15a and the amplifier 15b, and thus the description thereof is omitted. Further, the RF module 9a in FIG. 9 corresponds to the RF modules 90a, 90b, 90c, and 90d in FIG. 9 is compared with FIG. 11, in the configuration of the RF module 90a of FIG. 12, the phase shifter 28a is provided in the front stage of the amplifier 15, and the phase shifter 29a is provided in the front stage of the mixer 20a. Different from the RF module 9a. Compared with FIG. 9, a DIV 26 and a Com 27 are provided between the modem 1 and the RF modules 90a, 90b, 90c, and 90d.
The DIV 26 is a distribution circuit that distributes the output signal of the modem 1 to the RF modules 90a, 90b, 90c, and 90d.
 Com27は、RFモジュール90a、90b、90c及び90dの出力信号を合成して、モデム1に出力する合成回路である。
 図12は、図9のRFモジュールを複数個並べ、アナログサブアレイ構成のアクティブフェーズドアレイ送信機としたものである。DIV26で信号を各RFモジュールへ分配し、フィードバックしてきた信号はCom27で合成される。アクティブフェーズドアレイ送信機として動作させるため、移相器28aがRFモジュール90aに挿入されている。移相器29aは、歪み補償を行う際に移相器28aで変化させた位相を戻すための移相器である。このような構成であっても、実施の形態2と同様の効果を奏する。
また、本構成では、移相器28a、28b、28c、及び28dの位相をそれぞれ変化させ、送信ビームを振っても、移相器29a、29b、29c、及び29dにより位相を戻すため、RFモジュール91a、91b、91c、及び91dのフィードバック信号を同相にできる。そして、本構成は、同相にしたフィードバック信号をCom27で合成し、その合成した信号を用いてプリディストーションするので、送信ビームの方向を変化させても、送信ビームの正面方向に対して低歪みな信号を出力できる。
Com 27 is a combining circuit that combines the output signals of the RF modules 90 a, 90 b, 90 c, and 90 d and outputs the combined signals to the modem 1.
FIG. 12 shows an active phased array transmitter having an analog subarray configuration in which a plurality of RF modules of FIG. 9 are arranged. The signal is distributed to each RF module by the DIV 26, and the signal fed back is synthesized by the Com 27. In order to operate as an active phased array transmitter, a phase shifter 28a is inserted into the RF module 90a. The phase shifter 29a is a phase shifter for returning the phase changed by the phase shifter 28a when performing distortion compensation. Even with this configuration, the same effects as those of the second embodiment are obtained.
Further, in this configuration, the phase shifters 29a, 29b, 29c, and 29d return the phase even when the phases of the phase shifters 28a, 28b, 28c, and 28d are changed and the transmission beam is shaken. The feedback signals 91a, 91b, 91c, and 91d can be in phase. In this configuration, the feedback signal having the same phase is synthesized by Com27 and predistortion is performed using the synthesized signal. Therefore, even if the direction of the transmission beam is changed, the distortion is low with respect to the front direction of the transmission beam. A signal can be output.
なお、図12のアナログサブアレイ構成の場合、フィードバック信号を同相にするためにローカル源12a、12b、12c、12dを同相にする方法は2つある。1つは、ローカル源を駆動するリファレンス信号(参照信号)を同期させることで、ローカル源12a、12b、12c、12dを同相にすることである。2つ目は、ローカル源を駆動するリファレンス信号が同期していない場合でも、ローカル源12a、12b、12c、12dの立ち上がりを制御するロードイネーブル信号を制御し、補正することでローカル源12a、12b、12c、12dを同相にすることである。このような方法により、ダウンコンバージョンに用いるローカル源12a、12b、12c、12dの出力信号を同相にできるので、ミクサ10a、10b、10c、10dでフィードバック信号をダウンコンバーションしても、同相にできる。 In the case of the analog subarray configuration of FIG. 12, there are two methods for bringing the local sources 12a, 12b, 12c, and 12d into the same phase in order to make the feedback signal in the same phase. One is to make the local sources 12a, 12b, 12c, and 12d in phase by synchronizing reference signals (reference signals) that drive the local sources. Second, even when the reference signals for driving the local sources are not synchronized, the local sources 12a, 12b are controlled by controlling and correcting the load enable signal for controlling the rising of the local sources 12a, 12b, 12c, 12d. , 12c, 12d are in phase. By such a method, since the output signals of the local sources 12a, 12b, 12c, and 12d used for down conversion can be made in phase, even if the feedback signals are down-converted by the mixers 10a, 10b, 10c, and 10d, they can be made in phase. .
 図13は、この発明の実施の形態2に係る送信機の他の構成例を示す構成図である。
 図13は、図12の変形で、各RFモジュールのECCを1つに統一したものである。図13において、図12と同一符号は、同一または相当部分を示しているため、説明を省略する。また、同じ番号の構成要素同士は対応しているため、説明を省略する。図12と図13とを比較すると、RFモジュール90a、90b、90c、及び90dと、RFモジュール91a、91b、91c、及び91dとは、それぞれ対応している。ただし、ECCモジュール30は、RFモジュール91a、91b、91c、及び91dに対して共通化されている。ECCモジュール30は、VGA22、VGA23、及びECC14、DIV26、COM27、及び制御部31を備える。
 制御部31は、温度が変化しても、ECC14に入る入力電力が同じ電力となるようにVGA22を制御し、また、ECC14から増幅器15a、15b、15c、15dの入力端までの平均利得が一定になるようにVGA23を制御する。
 このような構成であっても、実施の形態2と同様の効果を奏する。
FIG. 13 is a block diagram showing another configuration example of the transmitter according to Embodiment 2 of the present invention.
FIG. 13 is a modification of FIG. 12, in which the ECC of each RF module is unified. In FIG. 13, the same reference numerals as those in FIG. In addition, since the components with the same number correspond to each other, the description thereof is omitted. Comparing FIG. 12 and FIG. 13, the RF modules 90a, 90b, 90c, and 90d correspond to the RF modules 91a, 91b, 91c, and 91d, respectively. However, the ECC module 30 is shared by the RF modules 91a, 91b, 91c, and 91d. The ECC module 30 includes a VGA 22, a VGA 23, an ECC 14, a DIV 26, a COM 27, and a control unit 31.
The control unit 31 controls the VGA 22 so that the input power entering the ECC 14 becomes the same even when the temperature changes, and the average gain from the ECC 14 to the input ends of the amplifiers 15a, 15b, 15c, and 15d is constant. The VGA 23 is controlled so that
Even with this configuration, the same effects as those of the second embodiment are obtained.
1 1a モデム、2 2a DSP、3 3a 3b 3c 3d 変調部、4 4a 4b 4c 4d 信号比較部、5 5a 5b 5c 5d PD信号生成部、6 6a 6b 6c 6d PD、7 7a 7b 7c 7d DAC、8 8a 8b 8c 8d ADC、9 9a 9b 9c 9d 90a 90b 90c 90d 91a 91b 91c 91d RFモジュール、10 10a 10b 10c 10d BPF、11 11a 11b 11c 11d ミクサ、12 12a 12b 12c 12d LO、13 13a 13b 13c 13d BPF、14 14a 14b 14c 14d ECC、15 15a 15b 15c 15d 増幅器、16 16a 16b 16c 16d カップラ、17 17a 17b 17c 17d アイソレータ、18 18a 18b 18c 18d LPF、19 19a 19b 19c 19d アンテナ、20 20a 20b 20c 20d ミクサ、21 21a 21b 21c 21d BPF、22 22a 22b 22c 22d 23 23a 23b 23c 23d VGA、24 24a 24b 24c 24d TS、25 25a 25b 25c 25d 制御部、26 DIV、27 Com、28 29 移相器、30 ECCモジュール、31 制御部。 1 1a modem, 2.2a DSP, 3a 3b 3c 3d modulation unit, 4a 4b 4c 4d signal comparison unit, 5a 5b 5c 5d PD signal generation unit, 6a 6b 6c 6d PD, 7a 7b 7c 8dD 8a 8b 8c 8d ADC, 9 9a 9b 9c 9d 90a 90b 90c 90d 91a 91b 91c 91d RF module, 1010a 10b 10c 10d BPF, 11 11a 11b 11c 11d mixer 13b 12c 13b 12b 13c 12d 14 14a 14b 14c 14d ECC, 15 15a 15b 15c 15d amplifier, 16 16a 16b 6c 16d coupler, 17 17a 17b 17c 17d isolator, 18 18a 18b 18c 18d LPF, 19 19a 19b 19c 19d antenna, 20 20a 20b 20c 20d mixer, 21 21a 21b 21c 22d 23b 23d 23b 22d 23b 22d 23 23B 24 24a 24b 24c 24d TS, 25 25a 25b 25c 25d control unit, 26 DIV, 27 Com, 28 29 phase shifter, 30 ECC module, 31 control unit.

Claims (8)

  1.  ディジタルの送信信号を生成するディジタル回路と、
     プレディストーションされた前記送信信号をアナログ信号に変換するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器が出力したアナログの前記送信信号を増幅する増幅器と、
     前記ディジタルアナログ変換器と前記増幅器の間に設けられ、前記増幅器と合わせたAM-AM特性が利得伸長特性になるように、前記ディジタルアナログ変換器が出力したアナログの前記送信信号の振幅を変化させ、前記増幅器に出力するエクスパンジョン発生回路と、
     前記ディジタル回路と前記ディジタルアナログ変換器との間に設けられ、前記増幅器が増幅した前記送信信号の歪みを補償するように前記送信信号をプレディストーションし、プレディストーションした前記送信信号を前記ディジタルアナログ変換器に出力する歪み補償回路と、
     を備えた送信機。
    A digital circuit for generating a digital transmission signal;
    A digital-to-analog converter for converting the predistorted transmission signal into an analog signal;
    An amplifier that amplifies the analog transmission signal output by the digital-analog converter;
    Provided between the digital-analog converter and the amplifier, the amplitude of the analog transmission signal output from the digital-analog converter is changed so that an AM-AM characteristic combined with the amplifier becomes a gain expansion characteristic. An expansion generation circuit for outputting to the amplifier;
    The transmission circuit is provided between the digital circuit and the digital-analog converter, predistorts the transmission signal so as to compensate for distortion of the transmission signal amplified by the amplifier, and converts the predistorted transmission signal to the digital-analog conversion. Distortion compensation circuit to output to the
    With transmitter.
  2.  前記増幅器及び前記エクスパンジョン発生回路を合わせた前記AM-AM特性が、利得伸長特性になるように、温度変化に対して、前記増幅器及び前記エクスパンジョン発生回路のバイアス電圧を制御する制御回路と、
     を備えたことを特徴とする請求項1に記載の送信機。
    A control circuit for controlling a bias voltage of the amplifier and the expansion generation circuit with respect to a temperature change so that the AM-AM characteristic of the amplifier and the expansion generation circuit is a gain expansion characteristic. When,
    The transmitter according to claim 1, further comprising:
  3.  前記エクスパンジョン発生回路の前段及び後段に設けられ、温度変化に対して、前記AM-AM特性の利得が一定になるように利得を可変する可変利得増幅器と、
     を備えたことを特徴とする請求項2に記載の送信機。
    A variable gain amplifier which is provided in a front stage and a rear stage of the expansion generation circuit and which varies the gain so that the gain of the AM-AM characteristic is constant with respect to a temperature change;
    The transmitter according to claim 2, further comprising:
  4.  前記増幅器を複数設け、複数の前記増幅器に対して前記ディジタルアナログ変換器を共通化したことを特徴とする請求項1に記載の送信機。 The transmitter according to claim 1, wherein a plurality of the amplifiers are provided, and the digital-analog converter is shared by a plurality of the amplifiers.
  5.  複数の前記増幅器に対して前記エクスパンジョン発生回路を共通化したことを特徴とする請求項4に記載の送信機。 5. The transmitter according to claim 4, wherein the expansion generation circuit is shared by a plurality of the amplifiers.
  6.  前記エクスパンジョン発生回路は、B級もしくはAB級にバイアスされた増幅器であることを特徴とする請求項1に記載の送信機。 The transmitter according to claim 1, wherein the expansion generation circuit is an amplifier biased to a class B or class AB.
  7.  前記エクスパンジョン発生回路は、ダイオードリニアライザーであることを特徴とする請求項1に記載の送信機。 The transmitter according to claim 1, wherein the expansion generation circuit is a diode linearizer.
  8.  前記エクスパンジョン発生回路は、ダイオードを用いたハイブリッド回路であることを特徴とする請求項1に記載の送信機。 The transmitter according to claim 1, wherein the expansion generation circuit is a hybrid circuit using a diode.
PCT/JP2016/067756 2016-06-15 2016-06-15 Transmitter WO2017216894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067756 WO2017216894A1 (en) 2016-06-15 2016-06-15 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067756 WO2017216894A1 (en) 2016-06-15 2016-06-15 Transmitter

Publications (1)

Publication Number Publication Date
WO2017216894A1 true WO2017216894A1 (en) 2017-12-21

Family

ID=60664284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067756 WO2017216894A1 (en) 2016-06-15 2016-06-15 Transmitter

Country Status (1)

Country Link
WO (1) WO2017216894A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009555A (en) * 2000-06-16 2002-01-11 Toshiba Corp Amplifier and pre-distorter
JP2003037451A (en) * 2001-06-08 2003-02-07 Trw Inc Application of doherty amplifier as predistortion circuit for linearizing microwave amplifier
JP2008277908A (en) * 2007-04-25 2008-11-13 Mitsubishi Electric Corp Digital predistorter
JP2012044297A (en) * 2010-08-16 2012-03-01 Nec Corp Am-am distortion generator, am-pm distortion generator, distortion generator, am-am distortion generation method and distortion generation method
JP2015061204A (en) * 2013-09-19 2015-03-30 三菱電機株式会社 Distortion compensation circuit and distortion compensation method
JP2015099972A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Transmitter module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009555A (en) * 2000-06-16 2002-01-11 Toshiba Corp Amplifier and pre-distorter
JP2003037451A (en) * 2001-06-08 2003-02-07 Trw Inc Application of doherty amplifier as predistortion circuit for linearizing microwave amplifier
JP2008277908A (en) * 2007-04-25 2008-11-13 Mitsubishi Electric Corp Digital predistorter
JP2012044297A (en) * 2010-08-16 2012-03-01 Nec Corp Am-am distortion generator, am-pm distortion generator, distortion generator, am-am distortion generation method and distortion generation method
JP2015061204A (en) * 2013-09-19 2015-03-30 三菱電機株式会社 Distortion compensation circuit and distortion compensation method
JP2015099972A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Transmitter module

Similar Documents

Publication Publication Date Title
US6985033B1 (en) Circuits and methods for adjusting power amplifier predistortion, and power amplifiers and other devices including the same
US7106806B1 (en) Reducing distortion of signals
US7561636B2 (en) Digital predistortion apparatus and method in power amplifier
JP5591106B2 (en) Digital hybrid mode power amplifier system
KR100806427B1 (en) Method and apparatus for generating radio frequency signal
US8180304B2 (en) Efficient power amplifier
EP1875702B1 (en) Polar modulation transmission circuit and communication device
US8855232B2 (en) Transmission apparatus and transmission method
JP4282655B2 (en) Radio transmitter and amplifier
US8417199B2 (en) Method and apparatus for improving efficiency in a power supply modulated system
KR20050016200A (en) Power amplifier
WO2006095422A1 (en) Strain compensation device
JPH03187601A (en) Precedent distortion equalizer equipped with resistance coupler and potential divider
JP2009260658A (en) Power amplifier
JP5049562B2 (en) Power amplifier
US8208872B2 (en) Distortion correction device and method for power amplifier
CN111082756A (en) Digital-analog mixed predistortion structure for MIMO transmitter
JP4052834B2 (en) Amplifier circuit
KR20080065042A (en) Digital predistoriton linearizer for doherty power amplifier
KR101358096B1 (en) Power amplifier
WO2017216894A1 (en) Transmitter
JPWO2008093665A1 (en) Power supply voltage forming apparatus and polar modulation transmitting apparatus
CN115606094A (en) Envelope control biasing of auxiliary transmitter of Doherty power amplifier
KR101686351B1 (en) 3-way doherty power amplifier
WO2023157270A1 (en) Amplifier and signal distribution method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP