WO2017213133A1 - Alignment method, imprinting device, program, and article manufacturing method - Google Patents

Alignment method, imprinting device, program, and article manufacturing method Download PDF

Info

Publication number
WO2017213133A1
WO2017213133A1 PCT/JP2017/020961 JP2017020961W WO2017213133A1 WO 2017213133 A1 WO2017213133 A1 WO 2017213133A1 JP 2017020961 W JP2017020961 W JP 2017020961W WO 2017213133 A1 WO2017213133 A1 WO 2017213133A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mold
side mark
alignment
amount
Prior art date
Application number
PCT/JP2017/020961
Other languages
French (fr)
Japanese (ja)
Inventor
慎一郎 古賀
伸 高倉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017110546A external-priority patent/JP2017224812A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020187038069A priority Critical patent/KR102378292B1/en
Publication of WO2017213133A1 publication Critical patent/WO2017213133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection

Definitions

  • the present invention relates to an alignment method, an imprint apparatus, a program, and an article manufacturing method.
  • an imprint technique for forming a fine pattern by bringing a mold into contact with an imprint material on a substrate.
  • One of the imprint technologies is a photocuring method using a photocurable resin as an imprint material.
  • an imprint apparatus employing this photocuring method first, an imprint material is supplied onto a substrate. Next, the mold is brought into contact with the imprint material on the substrate. Then, in a state where the mold and the imprint material are in contact with each other, the imprint material is cured by light irradiation, and then the pattern is formed on the substrate by peeling the mold from the cured imprint material.
  • Alignment between the substrate and the mold when the mold is brought into contact with the imprint material can be performed by a die-by-die alignment method.
  • the die-by-die alignment method means that for each of a plurality of shot areas on the substrate, the positional relationship between the substrate and the mold is detected by optically detecting the marks formed on the shot area and the marks formed on the mold. Is an alignment method in which the deviation is measured and the deviation is corrected.
  • the deviation correction can be performed by moving, rotating, and deforming the mold or the substrate. For example, the deformation of the mold or the substrate is deformed by applying a force to the side surface of the mold (Patent Document 1), a method of deforming the mold with heat (Patent Document 2), or extending the substrate by applying a force. There is a method (Patent Document 3) that causes the substrate to deform and a method that deforms the substrate with heat (Patent Document 4).
  • the amount of misalignment correction may vary from substrate to substrate or from shot region to the influence of individual differences between molds and substrates, deformation of molds and substrates due to a series of imprint processes, and the like. If the number of positions where alignment measurement (positioning measurement) is performed is increased, the correction amount of deviation can be accurately obtained, but the throughput is reduced.
  • An object of the present invention is to provide an alignment method that is advantageous in terms of throughput, for example.
  • the present invention is an alignment method for aligning a mold and a substrate based on detection results of a mold side mark formed on the mold and a substrate side mark formed on the substrate.
  • the first position deviation amount between the mold side mark and the first substrate side mark, and the alignment between the mold and the first substrate based on the first position deviation amount.
  • the mold side mark and the second mark are detected based on the detection result obtained by detecting the mold side mark of the mold and the second substrate side mark formed on the second substrate at detection points fewer than the plurality of detection points.
  • FIG. 3 is a flowchart of an imprint method according to the first embodiment. It is a figure which shows the several mark area
  • FIGS. 1A and 1B are diagrams showing the configuration of the imprint apparatus 100 and the configuration of the deformation unit 123 according to the first embodiment of the present invention.
  • the imprint apparatus is an apparatus that forms a pattern of a cured product in which a concave / convex pattern of a mold is transferred by bringing an imprint material supplied on a substrate into contact with a mold and applying energy for curing to the imprint material. is there.
  • an ultraviolet curable imprint apparatus that cures the uncured imprint material R on the substrate W by ultraviolet irradiation is used.
  • the X axis and the Y axis are parallel to the optical axis of the ultraviolet ray irradiated to the imprint material R on the substrate W and are orthogonal to each other in a plane perpendicular to the Z axis.
  • the imprint apparatus of this embodiment is configured to form patterns in a plurality of shot areas (shots) of the substrate W by repeating the imprint process.
  • imprint processing means supply of the imprint material R to the substrate W, contact between the mold M and the imprint material R, filling of the pattern of the mold M with the imprint material R, alignment (alignment), It shall refer to a series of cycles including curing (exposure) and mold M peeling.
  • the imprint apparatus 100 includes a substrate stage 110, a structure 120, an application unit (dispenser) 130, a first control unit 140, and a second control unit 150.
  • the substrate stage 110 holds the substrate (wafer) W (for example, by vacuum suction) and is controlled by the second control unit 150 to be movable with six degrees of freedom.
  • the substrate W is carried into the substrate stage 110 from outside the imprint apparatus 100 by a conveyance unit (not shown). After the imprint process, the substrate stage 110 is carried out of the imprint apparatus 100 by the transport unit.
  • the second control unit 150 includes a measurement unit that measures the position of the substrate stage 110, and controls the substrate stage 110 based on the measurement result (detection result).
  • the structure 120 is provided with an irradiation unit 121, an alignment measurement unit 122, and a deformation unit 123, respectively.
  • the irradiation unit 121 irradiates the imprint material R with ultraviolet light through the mold M.
  • the alignment measurement unit 122 includes a plurality of scopes 122a to 122d and a drive unit (not shown). In the present embodiment, the relative position between the mold M and the substrate W is measured and aligned by the die-by-die alignment method. Accordingly, as the scopes 122a to 122d, a TTM (Through The Mask) that detects the alignment mark (mold side mark) formed on the mold M and the alignment mark (substrate side mark) formed on the substrate W through the mold M. ) Use scope.
  • TTM Through The Mask
  • the deformation unit 123 is a mechanism that deforms the mold M and adjusts the relative position and shape difference between the mold M and the substrate W.
  • the mold M is deformed by pressurizing the mold M from the outer peripheral direction using a cylinder that operates with a fluid such as air or oil.
  • the deforming unit 123 may be a mechanism that includes a temperature control unit that controls the temperature of the substrate W by applying heat to the substrate W, and that deforms the shape of the substrate W by controlling the temperature of the substrate W. .
  • the substrate W may be deformed (typically expanded or contracted) through a process such as heat treatment.
  • the deformation unit 123 corrects the shape of the mold M or the substrate W so that the positions of the substrate W and the mold M are matched in accordance with the deformation of the substrate W.
  • transformation part 123 may deform
  • a plurality of means may be used in combination, such as the deformation portion 123 having both a means for deforming the mold M by pressurization from the outer peripheral direction and a means for controlling the temperature of the substrate W.
  • a curable composition (which may be referred to as an uncured resin) that cures when given energy for curing is used.
  • energy for curing electromagnetic waves or heat is used. Examples of the electromagnetic wave include light such as infrared light, visible light, or ultraviolet light whose wavelength is selected from a range of 10 nm to 1 mm.
  • a curable composition is a composition which hardens
  • the photocurable composition that is cured by light irradiation contains at least a polymerizable compound and a photopolymerization initiator, and may contain a non-polymerizable compound or a solvent as necessary.
  • the non-polymerizable compound is at least one selected from the group consisting of a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
  • the imprint material R is applied onto the substrate by the application unit 130 in the form of droplets or islands or films formed by connecting a plurality of droplets.
  • the imprint material R may be applied in a film shape on the substrate by a spin coater or a slit coater.
  • the viscosity of the imprint material R (viscosity at 25 ° C.) is, for example, 1 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the mold M has, for example, a rectangular outer peripheral portion, a predetermined uneven pattern is formed in a three-dimensional manner on the surface facing the substrate W, and is made of a material that transmits ultraviolet rays (quartz or the like).
  • the substrate W is a substrate onto which the uneven pattern is transferred, and includes, for example, a single crystal silicon substrate, an SOI (Silicon on Insulator) substrate, or the like. Further, the substrate W is made of glass, ceramics, metal, semiconductor, resin, or the like, and a member made of a material different from the substrate may be formed on the surface as necessary. Specific examples of the substrate include a silicon wafer, a compound semiconductor wafer, and quartz glass.
  • the mold 120 may be provided with a mold holding unit that holds the mold M.
  • the mold holding unit includes a chuck that holds the mold M, a drive unit that drives the chuck to move the mold M, and a base that supports the drive unit.
  • the mold M is held by the chuck by a vacuum suction force or electrostatic force.
  • the drive unit of the mold holding unit adjusts the position of the mold M with six degrees of freedom, brings the mold M into contact with the substrate W or the imprint material R on the substrate W, or molds from the cured imprint material R. M is peeled off (released).
  • the imprint conditions include, for example, a filling time, which is a time for pressing the mold M against the imprint material R applied onto the substrate W, and a time (exposure time) for curing the imprint material R by irradiating ultraviolet rays.
  • a filling time which is a time for pressing the mold M against the imprint material R applied onto the substrate W
  • a time (exposure time) for curing the imprint material R by irradiating ultraviolet rays As the imprint condition, there is also an application amount of the imprint material R applied for each shot area.
  • FIG. 1B is a diagram showing a configuration of the deforming portion 123.
  • the alignment measurement unit 122 includes a plurality of scopes 122a to 122d.
  • the deforming part 123 includes a plurality of actuators arranged on the side surface of the mold M. Each actuator is individually controlled based on a command value (control amount) stored in the storage unit of the first control unit 140 and applies a force toward the center of the mold M. Note that the number, arrangement position, size, and the like of the actuator are not limited to the example illustrated in FIG.
  • the deformation method may be, for example, a method in which the mold M is attracted from the side surface and stretched.
  • FIG. 2 is a flowchart of the imprint method according to the present embodiment.
  • an alignment method between the substrate W and the mold M is employed, which includes a detailed measurement mode for performing alignment measurement in detail and a normal measurement mode for performing alignment measurement at fewer measurement points than the mode. To do.
  • the mode switching timing is stored in advance in the recipe.
  • the alignment measurement is performed in the detailed measurement mode only for the first lot (first substrate) of the lot, and the normal measurement mode is applied to the second and subsequent substrates (second substrate) selected from the same lot. Switching timing such as is conceivable.
  • Process S103 to process S105 are processes in the detailed measurement mode, and process S106 to process S108 are processes in the normal measurement mode.
  • the first control unit 140 and the second control unit 150 perform imprint processing. Details of step S103 will be described later.
  • the first control unit 140 stores the shape correction amount of the mold M by the deforming unit 123 in step S103 in the storage unit for each shot area.
  • the shape correction amount means a control amount (position) of each actuator included in the deformation unit 123.
  • the applied heat distribution position and amount of applied heat
  • step S105 the first control unit 140 determines whether steps S103 and S104 have been performed for all shot regions. If it is determined that the processing of all the shot areas has been completed (Yes), a transport unit (not shown) carries the substrate W out of the imprint apparatus 100 in step S109. When it is determined that the processing of all shot areas has not been completed (No), Step S103 and Step S104 are repeated for an unprocessed shot area.
  • step S106 the first control unit 140 refers to the shape correction amount of the mold M corresponding to the shot area to be processed, which is stored in the storage unit in step S104.
  • step S107 an imprint process is performed by the first control unit 140 and the second control unit 150 based on the shape correction amount obtained in step S106. Details of step S107 will be described later.
  • step S108 the first control unit 140 determines whether or not steps S106 and S107 have been performed for all shot regions. If it is determined that the processing has been completed for all the shot areas (Yes), a transport unit (not shown) carries the substrate W out of the imprint apparatus 100 in step S109. If it is determined that the processing has not been completed for all shot areas (No), Step S106 and Step S107 are repeated for the unprocessed shot areas.
  • FIG. 3A to 3C are diagrams showing a plurality of shot areas on the substrate W and alignment marks provided in each shot area.
  • FIG. 3A is a diagram showing a plurality of shot regions SR partitioned on the substrate W and some representative shot regions (sample shot regions) SS among the plurality of shot regions SR.
  • the sample shot area SS is hatched with diagonal lines.
  • 3B and 3C are diagrams showing alignment marks AM provided in the shot region SR.
  • the number in the alignment mark AM indicates a set (detection point) of the alignment mark AM to be measured simultaneously. That is, the alignment mark AM indicated by the number 1 is simultaneously measured by the alignment measuring unit 122.
  • the alignment mark AM in FIG. 3B is an alignment mark AM measured in the detailed measurement mode
  • the alignment mark AM in FIG. 3C is an alignment mark AM measured in the normal measurement mode.
  • FIG. 4 is a flowchart of the imprint process in the detailed measurement mode in step S103 of the flowchart of FIG.
  • a plurality of alignment marks AM as shown in FIG. 3B are measured for each shot area.
  • Each process proceeds under the control of the first control unit 140 or the second control unit 150.
  • step S401 application of the imprint material R to the substrate W, contact between the mold M and the imprint material R, and filling of the pattern of the mold M with the imprint material R are performed.
  • the second control unit 150 controls the substrate stage 110 to move the substrate W to a position immediately below the coating unit 130
  • the first control unit 140 controls the coating unit 130 based on the recipe
  • the imprint material R is applied to the target shot area.
  • the second control unit 150 controls the substrate stage 110 to move the substrate W to just below the mold M. Based on the recipe, the first controller 140 brings the mold M into contact with the imprint material R applied on the substrate W, and fills the pattern of the mold M with the imprint material R.
  • step S407 the first control unit 140 determines whether measurement and alignment of all the alignment mark AM sets have been completed.
  • step S408 the first control unit 140 or the second control unit 150 controls each unit to perform curing (exposure) and mold M Peeling is performed and a series of imprint processes is completed.
  • step S407 If it is determined in step S407 that measurement of all alignment mark AM sets has not been completed (No), another set of alignment marks AM (for example, a set assigned number 2) is processed in step S402. The subsequent steps are performed. Note that the control amount of each actuator included in the deforming unit 123 in step S405 is stored in the storage unit by the first control unit 140 (step S104).
  • transformation part 123 contains the means to control the temperature of the board
  • step S407 After all the alignment mark AM sets have been measured in step S407, the process returns to step S402, and steps S402 to S406 may be repeated a predetermined number of times to perform alignment with higher accuracy. Absent.
  • FIG. 5 is a flowchart of the imprint process in the normal measurement mode in step S107 of the flowchart of FIG.
  • the same number of alignment marks AM as the number of a plurality of scopes included in the alignment measurement unit 122 are simultaneously measured for each shot region.
  • the alignment mark AM that is simultaneously measured is, for example, the mark indicated by the number 1 in FIG.
  • the alignment mark AM is measured after correcting the shape of the mold M by the shape correction amount (control amount of each actuator) corresponding to the shot area of the mold M obtained in the detailed measurement mode.
  • the deformation unit 123 includes means for controlling the temperature of the substrate W
  • the shape of the substrate W is obtained by applying heat to the substrate W based on the shape correction amount (heat distribution) obtained in the detailed measurement mode. Correct.
  • the second control unit 150 controls the substrate stage 110 based on the measurement result (detection result) of the alignment mark AM, and corrects the position of the substrate W in the XY direction and the position of each axis in the rotation direction.
  • Each process proceeds under the control of the first control unit 140 or the second control unit 150.
  • step S501 similar to step S401, the imprint material R is applied to the substrate W, the contact between the mold M and the imprint material R, and the pattern of the mold M is filled with the imprint material R.
  • step S502 based on the control amount of each actuator obtained in the detailed measurement mode referred to in step S106, the first control unit 140 controls each actuator included in the deformation unit 123 to correct the shape of the mold M.
  • the deformation unit 123 includes a means for controlling the temperature of the substrate W, heat is applied to the substrate W based on the heat distribution obtained in the detailed measurement mode, and the shape of the substrate W is changed. to correct.
  • step S503 the first controller 140 causes the scopes 122a to 122d to measure the number 1 alignment mark AM shown in FIG. 3C, and obtains the amount of deviation in the positional relationship between the mold M and the substrate W.
  • step S504 the second control unit 150 controls the substrate stage 110 to correct the position of the substrate W in the XY direction and the position of each axis in the rotation direction.
  • step S505 the first control unit 140 or the second control unit 150 controls each unit to perform curing (exposure) and peeling of the mold M, and a series of imprint processes is completed.
  • the first control unit 140 obtains a control amount from the measurement result in step S503 using the control amount of each actuator used in step S502 as a reference, and corrects the shape of the mold M based on the obtained control amount.
  • the deformation unit 123 includes means for controlling the temperature of the substrate W, the substrate W is further heated based on the measurement result in the step S503 with the heat distribution used in the step S502 as a reference. The shape correction may be performed.
  • step S503 a shape correction process for the mold M similar to that in step S502 is added between step S503 and step S504.
  • the required control amounts are A i for the upper side, B i for the left side, C i for the right side, and D i for the lower side (i is 1). ⁇ N natural number).
  • the control amounts used in step S502 are the upper side a i , the left side b i , the right side c i , and the lower side d i for the actuator provided on each side of the mold M (i is 1). ⁇ N natural number).
  • G x and G y are 1.0 when the pattern area of the mold M and the shot area of the substrate W are the same, and when the pattern area of the mold M is smaller, 1.0 or more, The value is 1.0 or less.
  • the control amount to be obtained using the above parameters is as shown in the following equation (1).
  • T an error in inclination between the X axis and the Y axis
  • T is a value that is 0 when there is no tilt error between the X and Y axes (the axes are orthogonal to each other).
  • y represents the Y coordinate of the actuator in a coordinate system with the center of the pattern area on the mold M as the origin.
  • step S503 the substrate stage 110 is driven based on the deviation amount measured in step S503 in step S504 after this step. To do. Therefore, by adding the shape correction process for the mold M after step S503, the shape of the mold M or the substrate W by the deforming unit 123 can be corrected based on the actual measurement result on the substrate W to which the normal measurement mode is applied. .
  • step S103 the example in which the shape correction amount is determined (step S103), stored (step S104), and referred to (step S106) is described in the same imprint apparatus, but is not limited thereto.
  • the determined shape correction amount for each shot area may be transmitted to an external control device.
  • the shape correction amount determined by the own apparatus or another equivalent apparatus can be received from the external control apparatus and used.
  • the imprint process for all shot areas in the substrate is performed on the substrate specified in advance (for example, the first substrate of the lot).
  • an imprint process is performed on the sample shot area SS shown in FIG. 3A on a substrate designated in advance in the detailed measurement mode. That is, in the first embodiment, the measurement mode is set for each substrate, whereas in the present embodiment, the measurement mode is set for each shot area.
  • the sample shot area SS is imprinted in the detailed measurement mode.
  • the shape correction amount in the sample shot region SS is statistically calculated, and the shape correction amount in the shot region other than the sample shot region SS is calculated.
  • the shot area other than the sample shot area SS is imprinted in the normal measurement mode.
  • the measurement mode including both the detailed measurement mode and the normal measurement mode for one substrate is referred to as a sample shot measurement mode.
  • FIG. 6 is a flowchart of the imprint method according to this embodiment. Each step proceeds under the control of the first control unit 140 or the second control unit 150 as in the first embodiment.
  • steps S701 and S702 the substrate W is loaded and the measurement mode is set in the same manner as in steps S101 and S102.
  • step S702 when the sample shot measurement mode is set for the substrate W carried into the substrate stage 110, the process proceeds to step S703, and when the normal measurement mode is set, the process proceeds to step S106.
  • Process S703 to Process S705 are processes in the sample shot measurement mode. Further, steps S709 to S711 are normal measurement mode steps similar to steps S106 to S108 of the first embodiment, respectively, and therefore details thereof are omitted.
  • step S703 an imprint process similar to that in step S103 is performed.
  • step S704 the first control unit 140 determines whether or not the processing of all sample shot areas SS has been completed. If it is determined in step S704 that the process has not been completed (No), the process returns to step S703 to perform imprint processing for the unprocessed sample shot area SS. If it is determined that the process has been completed (Yes), the process proceeds to step S705. .
  • step S705 the first control unit 140 performs statistical processing on the shape correction amount in each sample shot region SS when the imprint treatment is performed in the detailed measurement mode in step S703, and shot regions other than the sample shot region SS are processed.
  • the shape correction amount at is calculated.
  • the calculated shape correction amount is stored in the storage unit by the first control unit 140.
  • step S706 the first control unit 140 reads the shape correction amount obtained in step S705 from the storage unit.
  • step S707 an imprint process is performed on shot areas other than the sample shot area SS in the normal measurement mode similar to the first embodiment based on the read shape correction amount.
  • step S708 the first control unit 140 determines whether the processes of steps S706 and S707 have been performed in all shot areas other than the sample shot area SS, and when it is determined that the process has ended (Yes). Advances to step S712. If it is determined that the process has not been completed (No), the processes in steps S706 and S707 are performed on the unprocessed shot area.
  • step S712 the substrate W is unloaded from the imprint apparatus 100 by a transport unit (not shown).
  • a i , b i , c i and d i are the same as in formula (1).
  • the average value S, the X-direction change amount M, and the Y-direction change amount R are calculated for each actuator, and the subscript indicates the corresponding actuator.
  • the coefficient of equation (3) which is the statistical value
  • the center position of each shot at XY coordinates on the substrate plane with the substrate center as the origin is substituted for x and y in equation (3) for each shot.
  • each actuator control amount in each shot is calculated.
  • a first order polynomial is used for the expression (3), but an expression of an arbitrary order may be used.
  • the alignment method of this embodiment can be expected to further reduce the throughput because the shot area using the detailed measurement mode is less than that of the first embodiment.
  • this embodiment an example of switching between the sample shot measurement mode and the normal measurement mode according to the measurement mode set for each substrate has been described. However, even if all substrates are imprinted in the sample shot measurement mode, I do not care.
  • the mold M is deformed at the time of alignment.
  • the present invention is not limited to this, and the substrate W may be deformed, or both of them may be deformed.
  • a configuration including an integrated control unit may be used.
  • the first control unit 140 and the second control unit 150 may be configured integrally with other parts of the imprint apparatus 100 (in a common housing), or other parts of the imprint apparatus 100. You may comprise separately from (in another housing
  • the method according to the above embodiment can be executed by the computer of the first control unit 140 as a program.
  • the manufacturing method of a device includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) by an imprint apparatus using the method described above. Furthermore, the manufacturing method may include a step of etching the substrate on which the pattern is formed. When manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching.
  • the method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
  • the pattern of the cured product formed using the imprint apparatus is used permanently on at least a part of various articles, or temporarily when manufacturing various articles.
  • the article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold.
  • the electric circuit element include a volatile or nonvolatile semiconductor memory such as DRAM, SRAM, flash memory, or MRAM, and a semiconductor element such as LSI, CCD, image sensor, or FPGA.
  • the mold include an imprint mold.
  • the pattern of the cured product is used as it is as at least a part of the above-mentioned article or temporarily used as a resist mask. After etching or ion implantation is performed in the substrate processing step, the resist mask is removed.
  • a substrate 1z such as a silicon wafer on which a workpiece 2z such as an insulator is formed is prepared. Subsequently, the substrate 1z is formed on the surface of the workpiece 2z by an inkjet method or the like. The printing material 3z is applied (applied). Here, a state in which the imprint material 3z in the form of a plurality of droplets is applied on the substrate is shown.
  • the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side having the concave / convex pattern formed thereon.
  • the substrate 1 coated with the imprint material 3z is brought into contact with the mold 4z, and pressure is applied.
  • the imprint material 3z is filled in a gap between the mold 4z and the workpiece 2z. In this state, when light is irradiated as energy for curing through the mold 4z, the imprint material 3z is cured.
  • a pattern of a cured product of the imprint material 3z is formed on the substrate 1z.
  • the pattern of the cured product is such that the concave portion of the mold 4z corresponds to the convex portion of the cured product, and the concave portion of the mold 4z corresponds to the convex portion of the cured product, that is, the uneven pattern of the mold 4z on the imprint material 3z.
  • the present invention also provides a process of supplying a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in those computers reading and executing the program. It is feasible. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A method of alignment between a mold and a substrate on the basis of detection results of a mold-side mark and a substrate-side mark, comprising: a step for, on the basis of detection results obtained by detecting the mold-side mark and a first substrate-side mark at a plurality of detection points in each of a plurality of shot regions on a first substrate, finding a first positional displacement amount between the mold-side mark and the first substrate-side mark; a step for finding a shape correction amount of the mold or the first substrate on the basis of the first positional displacement amount; a step for transforming the mold or a second substrate on the basis of the shape correction amount; and a step for, on the basis of detection results obtained by detecting the mold-side mark and a second substrate-side mark at fewer detection points than the plurality of detection points in each of a plurality of shot regions on the second substrate, finding a second positional displacement amount between the mold-side mark and the second substrate-side mark, wherein alignment between the mold and the second substrate is performed on the basis of the second positional displacement amount.

Description

位置合わせ方法、インプリント装置、プログラム、および物品の製造方法Alignment method, imprint apparatus, program, and article manufacturing method
 本発明は、位置合わせ方法、インプリント装置、プログラム、および物品の製造方法に関する。 The present invention relates to an alignment method, an imprint apparatus, a program, and an article manufacturing method.
 基板上のインプリント材に型を接触させて微細パターンの形成を行うインプリント技術がある。インプリント技術の一つに、インプリント材として光硬化性樹脂を用いる光硬化法がある。この光硬化法を採用したインプリント装置では、まず、基板上にインプリント材が供給される。次に、基板上のインプリント材と型を接触させる。そして、型とインプリント材を接触させた状態で、光の照射によりインプリント材を硬化させた後、硬化したインプリント材から型を剥離することにより、パターンが基板上に形成される。 There is an imprint technique for forming a fine pattern by bringing a mold into contact with an imprint material on a substrate. One of the imprint technologies is a photocuring method using a photocurable resin as an imprint material. In an imprint apparatus employing this photocuring method, first, an imprint material is supplied onto a substrate. Next, the mold is brought into contact with the imprint material on the substrate. Then, in a state where the mold and the imprint material are in contact with each other, the imprint material is cured by light irradiation, and then the pattern is formed on the substrate by peeling the mold from the cured imprint material.
 インプリント材に型を接触させる際の基板と型との位置合わせは、ダイバイダイアライメント方式により行われうる。ダイバイダイアライメント方式とは、基板の上の複数のショット領域ごとに、かかるショット領域に形成されたマークと型に形成されたマークとを光学的に検出して基板と型との位置関係のずれを計測し、該ずれを補正するアライメント方式である。ずれの補正は、型または基板を移動、回転、および変形させることで行われうる。例えば、型または基板の変形は、型の側面に力を加えて変形させる方法(特許文献1)、型を熱で変形させる方法(特許文献2)、基板に力を加えて延伸させることにより変形させる方法(特許文献3)、および基板を熱で変形させる方法(特許文献4)がある。 Alignment between the substrate and the mold when the mold is brought into contact with the imprint material can be performed by a die-by-die alignment method. The die-by-die alignment method means that for each of a plurality of shot areas on the substrate, the positional relationship between the substrate and the mold is detected by optically detecting the marks formed on the shot area and the marks formed on the mold. Is an alignment method in which the deviation is measured and the deviation is corrected. The deviation correction can be performed by moving, rotating, and deforming the mold or the substrate. For example, the deformation of the mold or the substrate is deformed by applying a force to the side surface of the mold (Patent Document 1), a method of deforming the mold with heat (Patent Document 2), or extending the substrate by applying a force. There is a method (Patent Document 3) that causes the substrate to deform and a method that deforms the substrate with heat (Patent Document 4).
特開2012-23092号公報JP 2012-23092 A 特許第4328785号公報Japanese Patent No. 4328785 特許第5064743号公報Japanese Patent No. 5064743 特開2013-89663号公報JP 2013-89663 A
 型や基板の個体差、一連のインプリント処理による型や基板の変形などの影響を受け、ずれの補正量は、基板毎またはショット領域毎に異なることがある。アライメント計測(位置合わせ計測)を行う位置を増やせば、ずれの補正量を正確に求めることができるが、スループットは低下する。 The amount of misalignment correction may vary from substrate to substrate or from shot region to the influence of individual differences between molds and substrates, deformation of molds and substrates due to a series of imprint processes, and the like. If the number of positions where alignment measurement (positioning measurement) is performed is increased, the correction amount of deviation can be accurately obtained, but the throughput is reduced.
 本発明は、例えば、スループットの点で有利な位置合わせ方法を提供することを目的とする。 An object of the present invention is to provide an alignment method that is advantageous in terms of throughput, for example.
 上記課題を解決するために、本発明は、型に形成された型側マークおよび基板に形成された基板側マークの検出結果に基づいて型と基板との位置合わせをする位置合わせ方法であって、複数の基板のうち、第1の基板上の複数のショット領域のそれぞれに関し、型側マークおよび当該第1の基板に形成された第1の基板側マークを複数の検出点において検出した検出結果に基づいて、型側マークと第1の基板側マークとの間の第1の位置ずれ量を求める工程と、第1の位置ずれ量に基づいて、型と第1の基板との位置合わせをするための、型または第1の基板の形状補正量を求める工程と、形状補正量に基づいて、型、または複数の基板のうち第1の基板とは異なる第2の基板を変形させる工程と、第2の基板上の複数のショット領域のそれぞれに関し、型の型側マークおよび当該第2の基板に形成された第2の基板側マークを複数の検出点よりも少ない検出点において検出した検出結果に基づいて、型側マークと第2の基板側マークとの間の第2の位置ずれ量を求める工程とを有し、第2の位置ずれ量に基づいて、型と第2の基板との位置合わせをすることを特徴とする。 In order to solve the above problems, the present invention is an alignment method for aligning a mold and a substrate based on detection results of a mold side mark formed on the mold and a substrate side mark formed on the substrate. A detection result of detecting a mold side mark and a first substrate side mark formed on the first substrate at a plurality of detection points for each of a plurality of shot regions on the first substrate among the plurality of substrates. The first position deviation amount between the mold side mark and the first substrate side mark, and the alignment between the mold and the first substrate based on the first position deviation amount. A step of obtaining a shape correction amount of the mold or the first substrate, and a step of deforming a second substrate different from the first substrate among the mold or the plurality of substrates based on the shape correction amount A plurality of shot areas on the second substrate. With respect to each, the mold side mark and the second mark are detected based on the detection result obtained by detecting the mold side mark of the mold and the second substrate side mark formed on the second substrate at detection points fewer than the plurality of detection points. And a step of obtaining a second displacement amount between the substrate side mark and aligning the mold and the second substrate based on the second displacement amount.
 本発明によれば、例えば、スループットの点で有利な位置合わせ方法を提供することができる。 According to the present invention, for example, an alignment method that is advantageous in terms of throughput can be provided.
第1実施形態に係るインプリント装置の構成を示す図である。It is a figure which shows the structure of the imprint apparatus which concerns on 1st Embodiment. 第1実施形態に係るインプリント方法のフローチャートである。3 is a flowchart of an imprint method according to the first embodiment. 基板上の複数のショット領域、および各ショット領域に設けられたアライメントマークを示す図である。It is a figure which shows the several mark area | region on a board | substrate, and the alignment mark provided in each shot area | region. 詳細計測モードによるインプリント処理のフローチャートである。It is a flowchart of the imprint process by detailed measurement mode. 通常計測モードによるインプリント処理のフローチャートである。It is a flowchart of the imprint process by normal measurement mode. 第2実施形態に係るインプリント方法のフローチャートである。It is a flowchart of the imprint method which concerns on 2nd Embodiment. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods.
 以下、本発明を実施するための形態について図面などを参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
第1実施形態First embodiment
 図1(A)および(B)は、本発明の第1実施形態に係るインプリント装置100の構成および変形部123の構成を示す図である。インプリント装置は、基板上に供給されたインプリント材を型と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを形成する装置である。ここでは、光硬化法を用いたインプリント装置として、紫外線の照射によって基板W上の未硬化のインプリント材Rを硬化させる紫外線硬化型のインプリント装置を使用している。また、以下の図においては、基板W上のインプリント材Rに対して照射される紫外線の光軸に平行にZ軸を取り、Z軸に垂直な平面内に互いに直交するX軸およびY軸を取っている。本実施形態のインプリント装置は、インプリント処理を繰り返すことによって基板Wの複数のショット領域(ショット)にパターンを形成するように構成されている。ここで、インプリント処理とは、基板Wへのインプリント材Rの供給、型Mとインプリント材Rとの接触および型Mのパターンへのインプリント材Rの充填、位置合わせ(アライメント)、硬化(露光)、および型Mの剥離を含む一連のサイクルを指すものとする。 FIGS. 1A and 1B are diagrams showing the configuration of the imprint apparatus 100 and the configuration of the deformation unit 123 according to the first embodiment of the present invention. The imprint apparatus is an apparatus that forms a pattern of a cured product in which a concave / convex pattern of a mold is transferred by bringing an imprint material supplied on a substrate into contact with a mold and applying energy for curing to the imprint material. is there. Here, as the imprint apparatus using the photocuring method, an ultraviolet curable imprint apparatus that cures the uncured imprint material R on the substrate W by ultraviolet irradiation is used. In the following drawings, the X axis and the Y axis are parallel to the optical axis of the ultraviolet ray irradiated to the imprint material R on the substrate W and are orthogonal to each other in a plane perpendicular to the Z axis. Is taking. The imprint apparatus of this embodiment is configured to form patterns in a plurality of shot areas (shots) of the substrate W by repeating the imprint process. Here, imprint processing means supply of the imprint material R to the substrate W, contact between the mold M and the imprint material R, filling of the pattern of the mold M with the imprint material R, alignment (alignment), It shall refer to a series of cycles including curing (exposure) and mold M peeling.
 インプリント装置100は、基板ステージ110と、構造体120と、塗布部(ディスペンサ)130と、第1の制御部140と、第2の制御部150とを含む。基板ステージ110は、基板(ウエハ)Wを保持し(例えば、真空吸着による)、第2の制御部150により6自由度で移動可能に制御される。基板Wは、不図示の搬送手段によりインプリント装置100外から基板ステージ110に搬入される。インプリント処理後は、基板ステージ110から、該搬送手段によりインプリント装置100外へ搬出される。第2の制御部150は、基板ステージ110の位置を計測する計測部をも含むものとし、計測結果(検出結果)に基づいて基板ステージ110を制御する。 The imprint apparatus 100 includes a substrate stage 110, a structure 120, an application unit (dispenser) 130, a first control unit 140, and a second control unit 150. The substrate stage 110 holds the substrate (wafer) W (for example, by vacuum suction) and is controlled by the second control unit 150 to be movable with six degrees of freedom. The substrate W is carried into the substrate stage 110 from outside the imprint apparatus 100 by a conveyance unit (not shown). After the imprint process, the substrate stage 110 is carried out of the imprint apparatus 100 by the transport unit. The second control unit 150 includes a measurement unit that measures the position of the substrate stage 110, and controls the substrate stage 110 based on the measurement result (detection result).
 構造体120には、照射部121と、アライメント計測部122と、変形部123と、がそれぞれ設けられている。照射部121は、型Mを介してインプリント材Rに紫外光を照射する。アライメント計測部122は、複数のスコープ122a~122dと、不図示の駆動部とを含む。本実施形態では、ダイバイダイアライメント方式により型Mと基板Wとの相対位置が計測され位置合わせが行われる。したがって、スコープ122a~122dとして、型Mに形成されたアライメントマーク(型側マーク)と、基板Wに形成されたアライメントマーク(基板側マーク)とを型Mを介して検出するTTM(Through The Mask)スコープを用いる。本実施形態では、型Mと基板W(インプリント材R)とを接触させてからアライメントマークを検出するが、これに限らず、接触前に検出してもよい。また、アライメント計測部122は、型Mに形成されたアライメントマークの像と基板Wに形成されたアライメントマークの像とをそれぞれ検出してもよいし、例えば、モアレ縞のように型側マークと基板側マークとからの光を検出しても良い。なお、スコープの数は、4つに限定されない。アライメント計測部122の駆動部は、複数のスコープ122a~122dの位置決めを行う。 The structure 120 is provided with an irradiation unit 121, an alignment measurement unit 122, and a deformation unit 123, respectively. The irradiation unit 121 irradiates the imprint material R with ultraviolet light through the mold M. The alignment measurement unit 122 includes a plurality of scopes 122a to 122d and a drive unit (not shown). In the present embodiment, the relative position between the mold M and the substrate W is measured and aligned by the die-by-die alignment method. Accordingly, as the scopes 122a to 122d, a TTM (Through The Mask) that detects the alignment mark (mold side mark) formed on the mold M and the alignment mark (substrate side mark) formed on the substrate W through the mold M. ) Use scope. In the present embodiment, the alignment mark is detected after the mold M and the substrate W (imprint material R) are brought into contact with each other. In addition, the alignment measurement unit 122 may detect an image of the alignment mark formed on the mold M and an image of the alignment mark formed on the substrate W, respectively. Light from the substrate side mark may be detected. Note that the number of scopes is not limited to four. The drive unit of the alignment measurement unit 122 positions the plurality of scopes 122a to 122d.
 変形部123は、型Mを変形させて型Mと基板Wとの相対位置や形状差を調整する機構である。例えば、空気や油などの流体で作動するシリンダを用いて型Mを外周方向から加圧することによって型Mを変形させる。また、変形部123は、基板Wに熱を加えることにより基板Wの温度を制御する温度制御手段を備え、基板Wの温度を制御することによって基板Wの形状を変形させる機構であってもよい。基板Wは、熱処理などのプロセスを経ることにより変形(典型的には、膨張または収縮)することがある。変形部123は、このような基板Wの変形に応じて、基板Wと型Mとの位置が合うように型Mまたは基板Wの形状を補正する。なお、変形部123は、前述の加圧および温度制御に限らず、他の方法で型Mや基板Wの形状を変形させても構わない。さらに、変形部123が外周方向からの加圧により型Mを変形させる手段と、基板Wの温度を制御する手段との両方を備えるなど、複数の手段を併用しても構わない。 The deformation unit 123 is a mechanism that deforms the mold M and adjusts the relative position and shape difference between the mold M and the substrate W. For example, the mold M is deformed by pressurizing the mold M from the outer peripheral direction using a cylinder that operates with a fluid such as air or oil. Further, the deforming unit 123 may be a mechanism that includes a temperature control unit that controls the temperature of the substrate W by applying heat to the substrate W, and that deforms the shape of the substrate W by controlling the temperature of the substrate W. . The substrate W may be deformed (typically expanded or contracted) through a process such as heat treatment. The deformation unit 123 corrects the shape of the mold M or the substrate W so that the positions of the substrate W and the mold M are matched in accordance with the deformation of the substrate W. In addition, the deformation | transformation part 123 may deform | transform the shape of the type | mold M and the board | substrate W not only by the above-mentioned pressurization and temperature control but by another method. Further, a plurality of means may be used in combination, such as the deformation portion 123 having both a means for deforming the mold M by pressurization from the outer peripheral direction and a means for controlling the temperature of the substrate W.
 塗布部130は、例えば、インプリント材Rを貯留するタンクと、該タンクから供給路を通して供給されるインプリント材Rを基板Wに対して吐出するノズル(吐出口)と、該供給路に設けられたバルブと、供給量制御部とを有する。供給量制御部は、典型的には、1回の吐出動作において1つのショット領域にインプリント材Rが塗布されるように、バルブを制御することによって基板Wへのインプリント材の供給量を制御する。 For example, the application unit 130 is provided in a tank that stores the imprint material R, a nozzle (discharge port) that discharges the imprint material R supplied from the tank through the supply path to the substrate W, and the supply path. And a supply amount control unit. The supply amount control unit typically controls the supply amount of the imprint material to the substrate W by controlling the valve so that the imprint material R is applied to one shot region in one ejection operation. Control.
 インプリント材Rとしては、硬化用のエネルギーが与えられることにより硬化する硬化性組成物(未硬化状態の樹脂と呼ぶこともある)が用いられる。硬化用のエネルギーとしては、電磁波または熱などが用いられる。電磁波としては、例えば、その波長が10nm以上1mm以下の範囲から選択される、赤外線、可視光線、または紫外線などの光がある。硬化性組成物は、光の照射により、あるいは、加熱により硬化する組成物である。このうち、光の照射により硬化する光硬化性組成物は、少なくとも重合性化合物と光重合開始剤とを含有し、必要に応じて非重合性化合物または溶剤を含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、およびポリマー成分などの群から選択される少なくとも一種である。 As the imprint material R, a curable composition (which may be referred to as an uncured resin) that cures when given energy for curing is used. As the energy for curing, electromagnetic waves or heat is used. Examples of the electromagnetic wave include light such as infrared light, visible light, or ultraviolet light whose wavelength is selected from a range of 10 nm to 1 mm. A curable composition is a composition which hardens | cures by irradiation of light or by heating. Among these, the photocurable composition that is cured by light irradiation contains at least a polymerizable compound and a photopolymerization initiator, and may contain a non-polymerizable compound or a solvent as necessary. The non-polymerizable compound is at least one selected from the group consisting of a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
 インプリント材Rは、塗布部130により、液滴状または複数の液滴が繋がってできた島状もしくは膜状となって基板上に塗布される。あるいは、インプリント材Rは、スピンコーターやスリットコーターにより、基板上に膜状に塗布されてもよい。インプリント材Rの粘度(25℃における粘度)は、例えば、1mPa・s以上、100mPa・s以下である。 The imprint material R is applied onto the substrate by the application unit 130 in the form of droplets or islands or films formed by connecting a plurality of droplets. Alternatively, the imprint material R may be applied in a film shape on the substrate by a spin coater or a slit coater. The viscosity of the imprint material R (viscosity at 25 ° C.) is, for example, 1 mPa · s or more and 100 mPa · s or less.
 型Mは、例えば、外周部が矩形であり、基板Wに対向する面において、所定の凹凸パターンが3次元状に形成されており、紫外線を透過する材料(石英など)で構成される。基板Wは、凹凸パターンが転写される基板であって、例えば、単結晶シリコン基板やSOI(Silicon on Insulator)基板などを含む。さらに、基板Wは、ガラス、セラミックス、金属、半導体、または樹脂などが用いられ、必要に応じて、その表面に、基板とは別の材料からなる部材が形成されていてもよい。基板としては、具体的には、シリコンウエハ、化合物半導体ウエハ、または石英ガラスなどがある。 The mold M has, for example, a rectangular outer peripheral portion, a predetermined uneven pattern is formed in a three-dimensional manner on the surface facing the substrate W, and is made of a material that transmits ultraviolet rays (quartz or the like). The substrate W is a substrate onto which the uneven pattern is transferred, and includes, for example, a single crystal silicon substrate, an SOI (Silicon on Insulator) substrate, or the like. Further, the substrate W is made of glass, ceramics, metal, semiconductor, resin, or the like, and a member made of a material different from the substrate may be formed on the surface as necessary. Specific examples of the substrate include a silicon wafer, a compound semiconductor wafer, and quartz glass.
 構造体120には、型Mを保持する型保持部が設けられうる。型保持部は、型Mを保持するチャックと、チャックを駆動して型Mを移動させる駆動部と、駆動部を支持するベースとを含む。チャックによる型Mの保持は、真空吸引力や静電気力などによる。型保持部の駆動部は、型Mの位置を6自由度で調整したり、型Mを、基板Wあるいは基板Wの上のインプリント材Rに接触させたり、硬化したインプリント材Rから型Mを剥離(離型)したりする。 The mold 120 may be provided with a mold holding unit that holds the mold M. The mold holding unit includes a chuck that holds the mold M, a drive unit that drives the chuck to move the mold M, and a base that supports the drive unit. The mold M is held by the chuck by a vacuum suction force or electrostatic force. The drive unit of the mold holding unit adjusts the position of the mold M with six degrees of freedom, brings the mold M into contact with the substrate W or the imprint material R on the substrate W, or molds from the cured imprint material R. M is peeled off (released).
 第1の制御部140および第2の制御部150は、インプリント装置100の各構成要素に回線を介して接続され、プログラムなどに従って各構成要素の動作および調整などを制御する。第1の制御部140および第2の制御部150は、例えば、コンピュータなどで構成され、不図示であるが、CPUまたはDSPなどの計算部と、レシピなどを記憶するメモリやハードディスクなどの記憶部とを含む。ここで、レシピとは、基板W、または同一の処理を行う基板群であるロットを処理する際の一連の処理パラメータからなる情報(データ)である。処理パラメータとは、例えば、ショット領域のレイアウト、インプリント処理されるショット領域の順番、または各ショット領域でのインプリント条件などである。インプリント条件としては、例えば、基板W上に塗布したインプリント材Rに型Mを押し付ける時間である充填時間や、紫外線を照射してインプリント材Rを硬化させる時間(露光時間)がある。インプリント条件として、さらには各ショット領域当たりに塗布するインプリント材Rの塗布量などもある。 The first control unit 140 and the second control unit 150 are connected to each component of the imprint apparatus 100 via a line, and control the operation and adjustment of each component according to a program or the like. The first control unit 140 and the second control unit 150 are configured by, for example, a computer and the like. Although not illustrated, a calculation unit such as a CPU or a DSP, a storage unit such as a memory or a hard disk for storing a recipe or the like Including. Here, the recipe is information (data) including a series of processing parameters when processing the substrate W or a lot which is a group of substrates performing the same processing. The processing parameters are, for example, the layout of shot areas, the order of shot areas to be imprinted, or imprint conditions in each shot area. The imprint conditions include, for example, a filling time, which is a time for pressing the mold M against the imprint material R applied onto the substrate W, and a time (exposure time) for curing the imprint material R by irradiating ultraviolet rays. As the imprint condition, there is also an application amount of the imprint material R applied for each shot area.
 図1(B)は、変形部123の構成を示す図である。アライメント計測部122は、複数のスコープ122a~122dを有する。変形部123は、型Mの側面に配置される複数のアクチュエータを含む。各アクチュエータは、第1の制御部140の記憶部に保存された指令値(制御量)に基づいて個別に制御され、型Mの中心方向へ力を加える。なお、アクチュエータの数、配置位置、および大きさなどは、図1(B)に示す例に限らない。変形の方法は、例えば、型Mを側面から吸着して延伸させる方法でもよい。また、アクチュエータの位置を計測するセンサを配置し、第1の制御部140が、該計測値に基づいてアクチュエータの位置を制御しても構わない。前述したように、型Mを加圧により変形させる以外に基板Wの温度を制御するなどの他の方法を用いても構わない。また、変形部123として複数の手段を用いて基板Wと型Mとの形状を合わせても構わない。 FIG. 1B is a diagram showing a configuration of the deforming portion 123. The alignment measurement unit 122 includes a plurality of scopes 122a to 122d. The deforming part 123 includes a plurality of actuators arranged on the side surface of the mold M. Each actuator is individually controlled based on a command value (control amount) stored in the storage unit of the first control unit 140 and applies a force toward the center of the mold M. Note that the number, arrangement position, size, and the like of the actuator are not limited to the example illustrated in FIG. The deformation method may be, for example, a method in which the mold M is attracted from the side surface and stretched. In addition, a sensor that measures the position of the actuator may be arranged, and the first control unit 140 may control the position of the actuator based on the measurement value. As described above, other methods such as controlling the temperature of the substrate W in addition to deforming the mold M by pressurization may be used. Moreover, you may match the shape of the board | substrate W and the type | mold M using a some means as the deformation | transformation part 123. FIG.
 なお、基板Wと型Mとの位置合わせとは、位置(相対的な回転を含む)および形状を合わせることを指すものとする。基板Wと型Mとの位置合わせは、基板Wおよび型Mのうち、少なくとも一方を変形または移動させることにより行われる。形状のずれとしては、基板Wや型MがX方向とY方向とで異なる倍率で変形する、または、ひし形状に変形するなどの線形のずれ、およびランダムな変形による非線形のずれを含む。 Note that the alignment between the substrate W and the mold M refers to matching the position (including relative rotation) and shape. The alignment of the substrate W and the mold M is performed by deforming or moving at least one of the substrate W and the mold M. The shape deviation includes a linear deviation such that the substrate W or the mold M is deformed at different magnifications in the X direction and the Y direction, or is deformed into a rhombus shape, and a nonlinear deviation due to random deformation.
 図2は、本実施形態に係るインプリント方法のフローチャートである。本実施形態のインプリント方法では、アライメント計測を詳細に行う詳細計測モードと、当該モードより少ない計測点でアライメント計測を行う通常計測モードとを含む、基板Wと型Mとの位置合わせ方法を採用する。モードの切り替えタイミングは、事前にレシピへ保存される。本発明は、ロットなど、同様な処理が施された基板群に適用するとより高い効果が得られる。例えば、ロットの1枚目(第1の基板)のみ詳細計測モードでアライメント計測を行い、同一のロットから選択された2枚目以降の基板(第2の基板)には通常計測モードを適用するなどの切り替えタイミングが考えられる。各工程は、第1の制御部140または第2の制御部150の制御により進行する。工程S101では、不図示の搬送手段がインプリント装置100外から基板ステージ110に基板Wを搬入する。工程S102では、第1の制御部140がレシピを参照し、工程S101で基板ステージ110に搬入された基板Wのアライメント計測時の計測モードを設定する。工程S102において、詳細計測モードが設定された場合は、工程S103に進み、通常計測モードが設定された場合は、工程S106に進む。 FIG. 2 is a flowchart of the imprint method according to the present embodiment. In the imprint method according to the present embodiment, an alignment method between the substrate W and the mold M is employed, which includes a detailed measurement mode for performing alignment measurement in detail and a normal measurement mode for performing alignment measurement at fewer measurement points than the mode. To do. The mode switching timing is stored in advance in the recipe. When the present invention is applied to a group of substrates subjected to similar processing such as a lot, a higher effect can be obtained. For example, the alignment measurement is performed in the detailed measurement mode only for the first lot (first substrate) of the lot, and the normal measurement mode is applied to the second and subsequent substrates (second substrate) selected from the same lot. Switching timing such as is conceivable. Each process proceeds under the control of the first control unit 140 or the second control unit 150. In step S <b> 101, a transport unit (not shown) carries the substrate W from the imprint apparatus 100 to the substrate stage 110. In step S102, the first control unit 140 refers to the recipe, and sets a measurement mode at the time of alignment measurement of the substrate W carried into the substrate stage 110 in step S101. In step S102, when the detailed measurement mode is set, the process proceeds to step S103, and when the normal measurement mode is set, the process proceeds to step S106.
 工程S103~工程S105は、詳細計測モードの工程であり、工程S106~工程S108は、通常計測モードの工程である。工程S103では、第1制御部140および第2の制御部150によりインプリント処理が行われる。工程S103の詳細は後述する。工程S104では、第1の制御部140が、工程S103での変形部123による型Mの形状補正量をショット領域毎に記憶部に保存する。ここで、形状補正量は、変形部123に含まれる各アクチュエータの制御量(位置)を意味する。また、変形部123に基板Wの温度を制御する手段が含まれる場合には、加えた熱分布(加えた熱の位置と量)を形状補正量として保存する。工程S105では、第1の制御部140が全ショット領域について工程S103および工程S104を行ったかを判断する。全ショット領域の処理が終了したと判断された場合(Yes)、工程S109にて、不図示の搬送手段が、基板Wをインプリント装置100外へ搬出する。全ショット領域の処理が終了していないと判断された場合(No)、未処理のショット領域に対し、工程S103および工程S104を繰り返す。 Process S103 to process S105 are processes in the detailed measurement mode, and process S106 to process S108 are processes in the normal measurement mode. In step S103, the first control unit 140 and the second control unit 150 perform imprint processing. Details of step S103 will be described later. In step S104, the first control unit 140 stores the shape correction amount of the mold M by the deforming unit 123 in step S103 in the storage unit for each shot area. Here, the shape correction amount means a control amount (position) of each actuator included in the deformation unit 123. When the deformation unit 123 includes means for controlling the temperature of the substrate W, the applied heat distribution (position and amount of applied heat) is stored as a shape correction amount. In step S105, the first control unit 140 determines whether steps S103 and S104 have been performed for all shot regions. If it is determined that the processing of all the shot areas has been completed (Yes), a transport unit (not shown) carries the substrate W out of the imprint apparatus 100 in step S109. When it is determined that the processing of all shot areas has not been completed (No), Step S103 and Step S104 are repeated for an unprocessed shot area.
 工程S106では、第1の制御部140が、工程S104で記憶部に保存された、処理対象のショット領域に対応した型Mの形状補正量を参照する。工程S107では、工程S106で得た形状補正量に基づいて第1制御部140および第2の制御部150によりインプリント処理が行われる。工程S107の詳細は後述する。工程S108では、第1の制御部140が全ショット領域について工程S106および工程S107を行ったか否かを判断する。全ショット領域について処理が終了したと判断された場合(Yes)、工程S109にて、不図示の搬送手段が、基板Wをインプリント装置100外へ搬出する。全ショット領域について処理が終了していないと判断された場合(No)、未処理のショット領域に対し、工程S106および工程S107を繰り返す。 In step S106, the first control unit 140 refers to the shape correction amount of the mold M corresponding to the shot area to be processed, which is stored in the storage unit in step S104. In step S107, an imprint process is performed by the first control unit 140 and the second control unit 150 based on the shape correction amount obtained in step S106. Details of step S107 will be described later. In step S108, the first control unit 140 determines whether or not steps S106 and S107 have been performed for all shot regions. If it is determined that the processing has been completed for all the shot areas (Yes), a transport unit (not shown) carries the substrate W out of the imprint apparatus 100 in step S109. If it is determined that the processing has not been completed for all shot areas (No), Step S106 and Step S107 are repeated for the unprocessed shot areas.
 図3(A)~(C)は、基板W上の複数のショット領域、および各ショット領域に設けられたアライメントマークを示す図である。図3(A)は、基板W上の区画された複数のショット領域SRと、複数のショット領域SRのうち一部の代表的なショット領域(サンプルショット領域)SSとを示す図である。図3(A)において、サンプルショット領域SSは、斜線でハッチングされている。図3(B)および図3(C)は、ショット領域SRに設けられたアライメントマークAMを示す図である。アライメントマークAM内の番号は、同時に計測するアライメントマークAMのセット(検出点)を示す。すなわち、番号1で示されたアライメントマークAMが同時にアライメント計測部122により計測される。図3(B)のアライメントマークAMは、詳細計測モードで計測されるアライメントマークAMであり、図3(C)のアライメントマークAMは、通常計測モードで計測されるアライメントマークAMである。 3A to 3C are diagrams showing a plurality of shot areas on the substrate W and alignment marks provided in each shot area. FIG. 3A is a diagram showing a plurality of shot regions SR partitioned on the substrate W and some representative shot regions (sample shot regions) SS among the plurality of shot regions SR. In FIG. 3A, the sample shot area SS is hatched with diagonal lines. 3B and 3C are diagrams showing alignment marks AM provided in the shot region SR. The number in the alignment mark AM indicates a set (detection point) of the alignment mark AM to be measured simultaneously. That is, the alignment mark AM indicated by the number 1 is simultaneously measured by the alignment measuring unit 122. The alignment mark AM in FIG. 3B is an alignment mark AM measured in the detailed measurement mode, and the alignment mark AM in FIG. 3C is an alignment mark AM measured in the normal measurement mode.
 図4は、図2のフローチャートの工程S103における詳細計測モードによるインプリント処理のフローチャートである。詳細計測モードでは、ショット領域毎に図3(B)で示すような複数のアライメントマークAMを計測する。各工程は、第1の制御部140または第2の制御部150の制御により進行する。工程S401では、基板Wへのインプリント材Rの塗布、型Mとインプリント材Rとの接触、および型Mのパターンへのインプリント材Rの充填を行う。具体的には、第2の制御部150が基板ステージ110を制御して、基板Wを塗布部130の直下まで移動させ、第1の制御部140がレシピに基づいて塗布部130を制御し、対象とするショット領域にインプリント材Rを塗布させる。塗布が終わったら、第2の制御部150が基板ステージ110を制御して、基板Wを型Mの直下まで移動させる。第1の制御部140は、レシピに基づいて、基板W上に塗布したインプリント材Rに型Mを接触させ、型Mのパターンへインプリント材Rを充填させる。 FIG. 4 is a flowchart of the imprint process in the detailed measurement mode in step S103 of the flowchart of FIG. In the detailed measurement mode, a plurality of alignment marks AM as shown in FIG. 3B are measured for each shot area. Each process proceeds under the control of the first control unit 140 or the second control unit 150. In step S401, application of the imprint material R to the substrate W, contact between the mold M and the imprint material R, and filling of the pattern of the mold M with the imprint material R are performed. Specifically, the second control unit 150 controls the substrate stage 110 to move the substrate W to a position immediately below the coating unit 130, the first control unit 140 controls the coating unit 130 based on the recipe, The imprint material R is applied to the target shot area. When the application is finished, the second control unit 150 controls the substrate stage 110 to move the substrate W to just below the mold M. Based on the recipe, the first controller 140 brings the mold M into contact with the imprint material R applied on the substrate W, and fills the pattern of the mold M with the imprint material R.
 工程S402では、第1の制御部140が不図示の駆動部を制御しアライメント計測部122に含まれる複数のスコープ122a~122dを移動させる。最初の計測では、図3(B)に示した番号1が付与されたアライメントマークAMを計測するような位置に各スコープ122a~122dを移動させる。同時に計測されるアライメントマークAMのセットは事前にレシピに保存される。工程S403では、第1の制御部140が、移動後の各スコープ122a~122dにアライメントマークAMを計測させ、計測結果に基づいて型Mと基板Wとの位置関係のずれ量を求める。工程S404では、第1の制御部140が工程S403で求めたずれ量が所定の閾値を超えたか否かを判断する。閾値を超えていない場合(No)、工程S407に進み、第1の制御部140がすべてのアライメントマークAMのセットの計測および位置合わせが終了したか否かを判断する。計測および位置合わせが終了していると判断された場合(Yes)、工程S408で、第1の制御部140または第2の制御部150が各部を制御して、硬化(露光)および型Mの剥離が行われ、一連のインプリント処理が完了する。 In step S402, the first control unit 140 controls a driving unit (not shown) to move the plurality of scopes 122a to 122d included in the alignment measurement unit 122. In the first measurement, the scopes 122a to 122d are moved to positions where the alignment mark AM given the number 1 shown in FIG. 3B is measured. A set of alignment marks AM to be measured simultaneously is stored in a recipe in advance. In step S403, the first control unit 140 causes the scopes 122a to 122d after movement to measure the alignment mark AM, and obtains a displacement amount of the positional relationship between the mold M and the substrate W based on the measurement result. In step S404, the first control unit 140 determines whether the deviation amount obtained in step S403 has exceeded a predetermined threshold value. When the threshold value is not exceeded (No), the process proceeds to step S407, and the first control unit 140 determines whether measurement and alignment of all the alignment mark AM sets have been completed. When it is determined that the measurement and alignment have been completed (Yes), in step S408, the first control unit 140 or the second control unit 150 controls each unit to perform curing (exposure) and mold M Peeling is performed and a series of imprint processes is completed.
 工程S404にて、閾値を超えたと判断された場合(Yes)、工程S405にて、第1の制御部140が変形部123に含まれる各アクチュエータを制御して型Mの形状を補正させる。なお、変形部123に基板Wの温度を制御する手段が含まれる場合には、基板Wに熱を加えて基板Wの形状を補正する。工程S406では、第2の制御部150が基板ステージ110を制御して、基板WのXY方向の位置および各軸の回転方向の位置を補正させる。工程S405および工程S406の補正が終わると、工程S403に戻り、再び同アライメントマークAMのセットのアライメント計測が行われる。続く工程S404にて、ずれ量が所定の閾値を超えていないと判断されれば(No)、工程S407へ進む。 If it is determined in step S404 that the threshold has been exceeded (Yes), in step S405, the first control unit 140 controls each actuator included in the deformation unit 123 to correct the shape of the mold M. When the deformation unit 123 includes means for controlling the temperature of the substrate W, the shape of the substrate W is corrected by applying heat to the substrate W. In step S406, the second control unit 150 controls the substrate stage 110 to correct the position of the substrate W in the XY direction and the position of each axis in the rotational direction. When the corrections in step S405 and step S406 are completed, the process returns to step S403, and alignment measurement of the set of alignment marks AM is performed again. In subsequent step S404, if it is determined that the deviation amount does not exceed the predetermined threshold (No), the process proceeds to step S407.
 工程S407にて、すべてのアライメントマークAMのセットの計測が終了していないと判断された場合(No)、別のアライメントマークAMのセット(例えば、番号2が付与されたセット)について、工程S402以降の工程を行う。なお、工程S405における変形部123に含まれる各アクチュエータの制御量は、第1の制御部140が記憶部に保存する(工程S104)。ここで、変形部123に基板Wの温度を制御する手段が含まれる場合には、加えた熱分布を記憶部に保存する。 If it is determined in step S407 that measurement of all alignment mark AM sets has not been completed (No), another set of alignment marks AM (for example, a set assigned number 2) is processed in step S402. The subsequent steps are performed. Note that the control amount of each actuator included in the deforming unit 123 in step S405 is stored in the storage unit by the first control unit 140 (step S104). Here, when the deformation | transformation part 123 contains the means to control the temperature of the board | substrate W, the added heat distribution is preserve | saved at a memory | storage part.
 本実施形態では、事前に設定した全てのアライメントマークAMのセットの計測が終了したあとに、硬化および離型を行う例について説明したが、これに限るものではない。例えば、工程S407にて全てのアライメントマークAMのセットの計測が終了した後に、工程S402に戻り、工程S402から工程S406を事前に設定した回数繰り返して、より高精度に位置合わせを行っても構わない。 In the present embodiment, an example in which curing and mold release are performed after measurement of all set alignment marks AM set in advance has been described, but the present invention is not limited to this. For example, after all the alignment mark AM sets have been measured in step S407, the process returns to step S402, and steps S402 to S406 may be repeated a predetermined number of times to perform alignment with higher accuracy. Absent.
 図5は、図2のフローチャートの工程S107における通常計測モードによるインプリント処理のフローチャートである。本実施形態では、ショット領域毎に、アライメント計測部122に含まれる複数のスコープの数と同数のアライメントマークAMを同時に計測する。同時に計測されるアライメントマークAMは、例えば、図3(C)において番号1で示したマークである。通常計測モードでは、詳細計測モードで得た型Mの当該ショット領域に対応した形状補正量(各アクチュエータの制御量)により型Mの形状を補正した後、アライメントマークAMの計測を行う。ここで、変形部123に基板Wの温度を制御する手段が含まれる場合には、詳細計測モードで得た形状補正量(熱分布)に基づき基板Wに熱を加えることにより、基板Wの形状を補正する。その後、第2の制御部150は、アライメントマークAMの計測結果(検出結果)に基づいて、基板ステージ110を制御し、基板WのXY方向の位置および各軸の回転方向の位置を補正させる。各工程は、第1の制御部140または第2の制御部150の制御により進行する。 FIG. 5 is a flowchart of the imprint process in the normal measurement mode in step S107 of the flowchart of FIG. In the present embodiment, the same number of alignment marks AM as the number of a plurality of scopes included in the alignment measurement unit 122 are simultaneously measured for each shot region. The alignment mark AM that is simultaneously measured is, for example, the mark indicated by the number 1 in FIG. In the normal measurement mode, the alignment mark AM is measured after correcting the shape of the mold M by the shape correction amount (control amount of each actuator) corresponding to the shot area of the mold M obtained in the detailed measurement mode. Here, when the deformation unit 123 includes means for controlling the temperature of the substrate W, the shape of the substrate W is obtained by applying heat to the substrate W based on the shape correction amount (heat distribution) obtained in the detailed measurement mode. Correct. Thereafter, the second control unit 150 controls the substrate stage 110 based on the measurement result (detection result) of the alignment mark AM, and corrects the position of the substrate W in the XY direction and the position of each axis in the rotation direction. Each process proceeds under the control of the first control unit 140 or the second control unit 150.
 工程S501では、工程S401と同様に基板Wへのインプリント材Rの塗布、型Mとインプリント材Rとの接触、および型Mのパターンへのインプリント材Rの充填が行われる。工程S502では、工程S106で参照した詳細計測モードで得た各アクチュエータの制御量に基づいて、第1の制御部140が変形部123に含まれる各アクチュエータを制御して型Mの形状を補正させる。ここで、前述したように、変形部123に基板Wの温度を制御する手段が含まれる場合には、詳細計測モードで得た熱分布に基づいて基板Wに熱を加え、基板Wの形状を補正する。工程S503では、第1の制御部140が各スコープ122a~122dに図3(C)に示す番号1のアライメントマークAMを計測させ、型Mと基板Wとの位置関係のずれ量を求める。工程S504では、第2の制御部150が基板ステージ110を制御して、基板WのXY方向の位置および各軸の回転方向の位置を補正させる。工程S505では、第1の制御部140または第2の制御部150が各部を制御して、硬化(露光)および型Mの剥離が行われ、一連のインプリント処理が完了する。 In step S501, similar to step S401, the imprint material R is applied to the substrate W, the contact between the mold M and the imprint material R, and the pattern of the mold M is filled with the imprint material R. In step S502, based on the control amount of each actuator obtained in the detailed measurement mode referred to in step S106, the first control unit 140 controls each actuator included in the deformation unit 123 to correct the shape of the mold M. . Here, as described above, when the deformation unit 123 includes a means for controlling the temperature of the substrate W, heat is applied to the substrate W based on the heat distribution obtained in the detailed measurement mode, and the shape of the substrate W is changed. to correct. In step S503, the first controller 140 causes the scopes 122a to 122d to measure the number 1 alignment mark AM shown in FIG. 3C, and obtains the amount of deviation in the positional relationship between the mold M and the substrate W. In step S504, the second control unit 150 controls the substrate stage 110 to correct the position of the substrate W in the XY direction and the position of each axis in the rotation direction. In step S505, the first control unit 140 or the second control unit 150 controls each unit to perform curing (exposure) and peeling of the mold M, and a series of imprint processes is completed.
 なお、工程S503と工程S504との間に、さらに工程S502と同様の型Mの形状補正の工程を追加してもよい。この工程では、第1の制御部140が工程S502で用いた各アクチュエータの制御量を基準として、工程S503での計測結果から制御量を求め、求めた制御量に基づいて型Mの形状補正を行う。また、変形部123に基板Wの温度を制御する手段が含まれる場合には、工程S502で用いた熱分布を基準として、工程S503での計測結果に基づき基板Wにさらに熱を加え、基板Wの形状補正を行っても構わない。 In addition, you may add the process of shape correction of the type | mold M similar to process S502 between process S503 and process S504. In this step, the first control unit 140 obtains a control amount from the measurement result in step S503 using the control amount of each actuator used in step S502 as a reference, and corrects the shape of the mold M based on the obtained control amount. Do. In addition, when the deformation unit 123 includes means for controlling the temperature of the substrate W, the substrate W is further heated based on the measurement result in the step S503 with the heat distribution used in the step S502 as a reference. The shape correction may be performed.
 ここで、工程S503と工程S504との間に、さらに工程S502と同様の型Mの形状補正の工程が追加される場合について詳説する。例えば、工程S503で計測されたずれ量がX方向とY方向とで異なる倍率(X方向にG、Y方向にG)である場合を考える。求める制御量を、図1(B)の型Mの各辺に設けられたアクチュエータについて、それぞれ、上辺はA、左辺はB、右辺はC、下辺はDとする(iは1~nの自然数)。nはアクチュエータの個数を示し、本実施形態では、n=7である。また、工程S502で用いた制御量は、型Mの各辺に設けられたアクチュエータについて、それぞれ、上辺はa、左辺はb、右辺はc、下辺はdとする(iは1~nの自然数)。GおよびGは、型Mのパターン領域と基板Wのショット領域の大きさとが同じ場合が1.0であり、型Mのパターン領域の方が小さい場合は1.0以上、大きい場合は1.0以下となる値とする。以上のパラメータを用いて、求める制御量は、以下の式(1)のようになる。 Here, a detailed description will be given of a case where a shape correction process for the mold M similar to that in step S502 is added between step S503 and step S504. For example, consider a case where the amount of deviation measured in step S503 has different magnifications (G x in the X direction and G y in the Y direction) in the X direction and the Y direction. For the actuators provided on each side of the mold M in FIG. 1B, the required control amounts are A i for the upper side, B i for the left side, C i for the right side, and D i for the lower side (i is 1). ~ N natural number). n indicates the number of actuators, and in this embodiment, n = 7. The control amounts used in step S502 are the upper side a i , the left side b i , the right side c i , and the lower side d i for the actuator provided on each side of the mold M (i is 1). ~ N natural number). G x and G y are 1.0 when the pattern area of the mold M and the shot area of the substrate W are the same, and when the pattern area of the mold M is smaller, 1.0 or more, The value is 1.0 or less. The control amount to be obtained using the above parameters is as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 工程S503で計測されたずれ量が、型Mのパターン領域の基板Wのショット領域に対する直行度誤差T(X軸とY軸との間の傾きの誤差)である場合(ひし形状にずれた場合)は、求める制御量は、以下の式(2)のようになる。なお、TはX軸とY軸との間に傾きの誤差が無い(軸が互いに直交する)場合に0となる値とする。また、yは、型M上のパターン領域の中心を原点とした座標系でのアクチュエータのY座標を表している。 When the deviation amount measured in step S503 is an orthogonality error T (an error in inclination between the X axis and the Y axis) with respect to the shot area of the substrate W in the pattern area of the mold M (in the case of deviation into a rhombus shape) ) Is a control amount to be obtained as shown in the following equation (2). T is a value that is 0 when there is no tilt error between the X and Y axes (the axes are orthogonal to each other). Further, y represents the Y coordinate of the actuator in a coordinate system with the center of the pattern area on the mold M as the origin.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 工程S503と工程S504との間に工程S502と同様の型Mの形状補正の工程が含まれる場合には、本工程後に、工程S504において、工程S503で計測したずれ量に基づき基板ステージ110を駆動する。そのため、型Mの形状補正の工程を工程S503後に加えることにより、通常計測モードを適用した基板Wにおける実際の計測結果に基づき、変形部123による型Mまたは基板Wの形状を補正することができる。 In the case where the same step of correcting the shape of the mold M as in step S502 is included between step S503 and step S504, the substrate stage 110 is driven based on the deviation amount measured in step S503 in step S504 after this step. To do. Therefore, by adding the shape correction process for the mold M after step S503, the shape of the mold M or the substrate W by the deforming unit 123 can be corrected based on the actual measurement result on the substrate W to which the normal measurement mode is applied. .
 なお、本実施形態では、形状補正量の決定(工程S103)、保存(工程S104)および参照(工程S106)を同一インプリント装置内で行う例について説明したが、これに限るものではない。例えば、決定したショット領域ごとの形状補正量を外部の制御装置に送信しても構わない。この場合、同等のインプリント処理を行う際には、外部の制御装置から自装置または同等の他装置で決定した形状補正量を受信して使用することができる。 In this embodiment, the example in which the shape correction amount is determined (step S103), stored (step S104), and referred to (step S106) is described in the same imprint apparatus, but is not limited thereto. For example, the determined shape correction amount for each shot area may be transmitted to an external control device. In this case, when the equivalent imprint process is performed, the shape correction amount determined by the own apparatus or another equivalent apparatus can be received from the external control apparatus and used.
 以上のように、本実施形態の位置合わせ方法は、事前に指定した基板において詳細にアライメントを行い、アクチュエータの制御量を得、後続の基板のインプリント処理にて、当該制御量を用いている。これにより、スループットを低下させること無くアライメント精度を向上させることができる。本実施形態によれば、スループットの点で有利な位置合わせ方法を提供することができる。 As described above, the alignment method of the present embodiment performs detailed alignment on a substrate specified in advance, obtains a control amount of the actuator, and uses the control amount in the subsequent imprint process of the substrate. . Thereby, alignment accuracy can be improved without reducing the throughput. According to the present embodiment, an alignment method that is advantageous in terms of throughput can be provided.
第2実施形態Second embodiment
 第1実施形態では、詳細計測モードにて、事前に指定した基板(例えば、ロット1枚目の基板)に対して、基板内の全ショット領域のインプリント処理を行った。第2実施形態では、詳細計測モードにて、事前に指定した基板に対して、図3(A)に示したサンプルショット領域SSに対しインプリント処理を行う。すなわち、第1実施形態は、基板毎に計測モードを設定するのに対し、本実施形態は、ショット領域毎に計測モードを設定する実施形態である。 In the first embodiment, in the detailed measurement mode, the imprint process for all shot areas in the substrate is performed on the substrate specified in advance (for example, the first substrate of the lot). In the second embodiment, an imprint process is performed on the sample shot area SS shown in FIG. 3A on a substrate designated in advance in the detailed measurement mode. That is, in the first embodiment, the measurement mode is set for each substrate, whereas in the present embodiment, the measurement mode is set for each shot area.
 具体的には、最初に、サンプルショット領域SSのみを、詳細計測モードでインプリントする。次に、サンプルショット領域SSにおける形状補正量を統計計算して、サンプルショット領域SS以外のショット領域における形状補正量を算出する。最後に、サンプルショット領域SS以外のショット領域を通常計測モードでインプリント処理する。以降、このように、1枚の基板に対し詳細計測モードおよび通常計測モードの両方を含む計測モードをサンプルショット計測モードと呼ぶ。 Specifically, first, only the sample shot area SS is imprinted in the detailed measurement mode. Next, the shape correction amount in the sample shot region SS is statistically calculated, and the shape correction amount in the shot region other than the sample shot region SS is calculated. Finally, the shot area other than the sample shot area SS is imprinted in the normal measurement mode. Hereinafter, the measurement mode including both the detailed measurement mode and the normal measurement mode for one substrate is referred to as a sample shot measurement mode.
 図6は、本実施形態に係るインプリント方法のフローチャートである。各工程は、第1実施形態と同様に第1の制御部140または第2の制御部150の制御により進行する。工程S701および工程S702では、工程S101および工程S102と同様に基板Wの搬入、および計測モードの設定が行われる。工程S702において、基板ステージ110に搬入された基板Wにサンプルショット計測モードが設定された場合は、工程S703に進み、通常計測モードが設定された場合は、工程S106に進む。 FIG. 6 is a flowchart of the imprint method according to this embodiment. Each step proceeds under the control of the first control unit 140 or the second control unit 150 as in the first embodiment. In steps S701 and S702, the substrate W is loaded and the measurement mode is set in the same manner as in steps S101 and S102. In step S702, when the sample shot measurement mode is set for the substrate W carried into the substrate stage 110, the process proceeds to step S703, and when the normal measurement mode is set, the process proceeds to step S106.
 工程S703~工程S705はサンプルショット計測モードの工程である。また、工程S709~工程S711は、それぞれ第1実施形態の工程S106~工程S108と同様の通常計測モードの工程であるため、その詳細は省略する。工程S703では、工程S103と同様のインプリント処理が行われる。工程S704では、第1の制御部140が全サンプルショット領域SSの処理が終了したか否かを判断する。工程S704において、終了していないと判断された場合(No)、工程S703に戻り未処理のサンプルショット領域SSのインプリント処理を行い、終了したと判断された場合(Yes)、工程S705に進む。 Process S703 to Process S705 are processes in the sample shot measurement mode. Further, steps S709 to S711 are normal measurement mode steps similar to steps S106 to S108 of the first embodiment, respectively, and therefore details thereof are omitted. In step S703, an imprint process similar to that in step S103 is performed. In step S704, the first control unit 140 determines whether or not the processing of all sample shot areas SS has been completed. If it is determined in step S704 that the process has not been completed (No), the process returns to step S703 to perform imprint processing for the unprocessed sample shot area SS. If it is determined that the process has been completed (Yes), the process proceeds to step S705. .
 工程S705では、第1の制御部140が工程S703にて詳細計測モードでインプリント処置を行ったときの各サンプルショット領域SSでの形状補正量を統計処理し、サンプルショット領域SS以外のショット領域における形状補正量を算出する。ここで、算出された形状補正量は、第1の制御部140により記憶部に保存される。 In step S705, the first control unit 140 performs statistical processing on the shape correction amount in each sample shot region SS when the imprint treatment is performed in the detailed measurement mode in step S703, and shot regions other than the sample shot region SS are processed. The shape correction amount at is calculated. Here, the calculated shape correction amount is stored in the storage unit by the first control unit 140.
 工程S706では、第1の制御部140が工程S705で求めた形状補正量を記憶部から読み込む。工程S707では、読み込んだ形状補正量に基づいて第1実施形態と同様の通常計測モードにより、サンプルショット領域SS以外のショット領域に対しインプリント処理を行う。工程S708では、第1の制御部140が工程S706および工程S707の処理をサンプルショット領域SS以外の全てのショット領域で行ったかを判断し、処理が終了していると判断された場合(Yes)は、工程S712に進む。終了していないと判断された場合(No)には、未処理のショット領域に対して工程S706および工程S707の処理を実行する。工程S712では、基板Wが不図示の搬送手段によりインプリント装置100外へ搬出される。 In step S706, the first control unit 140 reads the shape correction amount obtained in step S705 from the storage unit. In step S707, an imprint process is performed on shot areas other than the sample shot area SS in the normal measurement mode similar to the first embodiment based on the read shape correction amount. In step S708, the first control unit 140 determines whether the processes of steps S706 and S707 have been performed in all shot areas other than the sample shot area SS, and when it is determined that the process has ended (Yes). Advances to step S712. If it is determined that the process has not been completed (No), the processes in steps S706 and S707 are performed on the unprocessed shot area. In step S712, the substrate W is unloaded from the imprint apparatus 100 by a transport unit (not shown).
 次に、工程S705での、第1の制御部140によるサンプルショット領域SS以外のショット領域の形状補正量の算出方法の一例について説明する。まず、各アクチュエータの統計量として、制御量の平均値S、X方向の制御量の変化量M、およびY方向の制御量の変化量Rを算出する。実際には、これら統計量を係数とする下記の式(3)に対し、公知の最小自乗法で算出する。算出時には、サンプルショットでの各アクチュエータ位置と基板Wの中心を原点とした基板平面上のXY座標でのサンプルショット領域の中心位置xおよびyを用いる。 Next, an example of a method for calculating the shape correction amount of the shot area other than the sample shot area SS by the first control unit 140 in step S705 will be described. First, as a statistic amount of each actuator, an average value S of the control amount, a change amount M of the control amount in the X direction, and a change amount R of the control amount in the Y direction are calculated. Actually, the following equation (3) using these statistics as coefficients is calculated by a known least square method. At the time of calculation, the center positions x and y of the sample shot area in the XY coordinates on the substrate plane with the origin of the position of each actuator in the sample shot and the center of the substrate W are used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)の、a、b、c、dは、式(1)と同様である。また、平均値S、X方向変化量M、Y方向変化量Rはアクチュエータ毎に算出し、添え字は対応するアクチュエータを示している。上記統計値である式(3)の係数を求めた後、ショットごとに式(3)のxおよびyに基板中心を原点とした基板平面上のXY座標での各ショットの中心位置を代入することにより、各ショットでの各アクチュエータ制御量が算出される。なお、本実施形態では、式(3)に1次多項式を用いたが、任意の次数の式を用いても構わない。 In formula (3), a i , b i , c i and d i are the same as in formula (1). The average value S, the X-direction change amount M, and the Y-direction change amount R are calculated for each actuator, and the subscript indicates the corresponding actuator. After obtaining the coefficient of equation (3), which is the statistical value, the center position of each shot at XY coordinates on the substrate plane with the substrate center as the origin is substituted for x and y in equation (3) for each shot. Thereby, each actuator control amount in each shot is calculated. In the present embodiment, a first order polynomial is used for the expression (3), but an expression of an arbitrary order may be used.
 以上のように、本実施形態の位置合わせ方法は、第1実施形態と比べ、詳細計測モードを用いるショット領域が少ないため、スループットのさらなる低減が期待できる。なお、本実施形態では、基板毎に設定した計測モードに応じて、サンプルショット計測モードと通常計測モードとを切り替える例について説明したが、全ての基板をサンプルショット計測モードでインプリント処理しても構わない。 As described above, the alignment method of this embodiment can be expected to further reduce the throughput because the shot area using the detailed measurement mode is less than that of the first embodiment. In this embodiment, an example of switching between the sample shot measurement mode and the normal measurement mode according to the measurement mode set for each substrate has been described. However, even if all substrates are imprinted in the sample shot measurement mode, I do not care.
 なお、上記実施形態では、位置合わせの際に型Mを変形させていたが、これに限らず、基板Wを変形させてもよく、これら双方を変形させてもよい。上記実施形態のように、インプリント装置100が相互に通信可能な第1の制御部140および第2の制御部150を備える構成ではなく、一体化した制御部を備える構成であってもよい。また、第1の制御部140および第2の制御部150は、インプリント装置100の他の部分と一体で(共通の筐体内に)構成してもよいし、インプリント装置100の他の部分とは別体で(別の筐体内に)構成してもよい。また、上記実施形態に係る方法は、プログラムとして第1の制御部140のコンピュータにより実行することができる。 In the above embodiment, the mold M is deformed at the time of alignment. However, the present invention is not limited to this, and the substrate W may be deformed, or both of them may be deformed. Instead of the configuration including the first control unit 140 and the second control unit 150 with which the imprint apparatus 100 can communicate with each other as in the above embodiment, a configuration including an integrated control unit may be used. In addition, the first control unit 140 and the second control unit 150 may be configured integrally with other parts of the imprint apparatus 100 (in a common housing), or other parts of the imprint apparatus 100. You may comprise separately from (in another housing | casing). In addition, the method according to the above embodiment can be executed by the computer of the first control unit 140 as a program.
物品製造方法に係る実施形態Embodiment according to article manufacturing method
 物品としてのデバイス(半導体集積回路素子、液晶表示素子など)の製造方法は、上述した方法を用いたインプリント装置により、基板(ウエハ、ガラスプレート、フィルム状基板)にパターン形成する工程を含む。さらに、該製造方法は、パターンを形成された基板をエッチングする工程を含みうる。なお、パターンドメディア(記録媒体)や光学素子などの他の物品を製造する場合には、該製造方法は、エッチングの代わりにパターンを形成された基板を加工する他の処理を含みうる。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。 The manufacturing method of a device (semiconductor integrated circuit element, liquid crystal display element, etc.) as an article includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) by an imprint apparatus using the method described above. Furthermore, the manufacturing method may include a step of etching the substrate on which the pattern is formed. When manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching. The method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
 インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、あるいは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、または型などである。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、またはMRAMのような揮発性あるいは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、またはFPGAのような半導体素子などが挙げられる。型としては、インプリント用のモールドなどが挙げられる。 The pattern of the cured product formed using the imprint apparatus is used permanently on at least a part of various articles, or temporarily when manufacturing various articles. The article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold. Examples of the electric circuit element include a volatile or nonvolatile semiconductor memory such as DRAM, SRAM, flash memory, or MRAM, and a semiconductor element such as LSI, CCD, image sensor, or FPGA. Examples of the mold include an imprint mold.
 硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、あるいは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチングまたはイオン注入などが行われた後、レジストマスクは除去される。 The pattern of the cured product is used as it is as at least a part of the above-mentioned article or temporarily used as a resist mask. After etching or ion implantation is performed in the substrate processing step, the resist mask is removed.
 次に、物品の具体的な製造方法について説明する。図7(A)に示すように、絶縁体などの被加工材2zが表面に形成されたシリコンウエハなどの基板1zを用意し、続いて、インクジェット法などにより、被加工材2zの表面にインプリント材3zを塗布(付与)する。ここでは、複数の液滴状になったインプリント材3zが基板上に塗布された様子を示している。 Next, a specific method for manufacturing an article will be described. As shown in FIG. 7A, a substrate 1z such as a silicon wafer on which a workpiece 2z such as an insulator is formed is prepared. Subsequently, the substrate 1z is formed on the surface of the workpiece 2z by an inkjet method or the like. The printing material 3z is applied (applied). Here, a state in which the imprint material 3z in the form of a plurality of droplets is applied on the substrate is shown.
 図7(B)に示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図7(C)に示すように、インプリント材3zが塗布された基板1と型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを透して照射すると、インプリント材3zは硬化する。 As shown in FIG. 7B, the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side having the concave / convex pattern formed thereon. As shown in FIG. 7C, the substrate 1 coated with the imprint material 3z is brought into contact with the mold 4z, and pressure is applied. The imprint material 3z is filled in a gap between the mold 4z and the workpiece 2z. In this state, when light is irradiated as energy for curing through the mold 4z, the imprint material 3z is cured.
 図7(D)に示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型4zの凹部が硬化物の凸部に、型4zの凹部が硬化物の凸部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。 As shown in FIG. 7D, when the imprint material 3z is cured and then the mold 4z and the substrate 1z are separated, a pattern of a cured product of the imprint material 3z is formed on the substrate 1z. The pattern of the cured product is such that the concave portion of the mold 4z corresponds to the convex portion of the cured product, and the concave portion of the mold 4z corresponds to the convex portion of the cured product, that is, the uneven pattern of the mold 4z on the imprint material 3z. Has been transcribed.
 図7(E)に示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物がないかあるいは薄く残存した部分が除去され、溝5zとなる。図7(F)に示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子などに含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。 As shown in FIG. 7E, when etching is performed using the pattern of the cured product as an etching resistant mask, the portion of the surface of the workpiece 2z where there is no cured product or remains thin is removed, and the grooves 5z and Become. As shown in FIG. 7F, when the pattern of the cured product is removed, an article in which the groove 5z is formed on the surface of the workpiece 2z can be obtained. Although the cured product pattern is removed here, it may be used as, for example, an interlayer insulating film included in a semiconductor element, that is, a constituent member of an article, without being removed after processing.
その他の実施形態Other embodiments
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワークまたは記憶媒体を介してシステムまたは装置に供給し、それらのコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention also provides a process of supplying a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in those computers reading and executing the program. It is feasible. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.
 100     インプリント装置
 110     基板ステージ
 120     構造体
 121     照射部
 122     アライメント計測部
 123     変形部
 130     塗布部(ディスペンサ)
 140     第1の制御部
 150     第2の制御部
 M       型
 W       基板
DESCRIPTION OF SYMBOLS 100 Imprint apparatus 110 Substrate stage 120 Structure 121 Irradiation part 122 Alignment measurement part 123 Deformation part 130 Application part (dispenser)
140 first control unit 150 second control unit M-type W substrate

Claims (13)

  1.  型に形成された型側マークおよび基板に形成された基板側マークの検出結果に基づいて前記型と前記基板との位置合わせをする位置合わせ方法であって、
     複数の前記基板のうち、第1の基板上の複数のショット領域のそれぞれにおいて、前記型側マークおよび当該第1の基板に形成された第1の基板側マークを複数の検出点において検出した検出結果に基づいて、前記型側マークと前記第1の基板側マークとの間の第1の位置ずれ量を求める工程と、
     前記第1の位置ずれ量に基づいて、前記型と前記第1の基板との位置合わせをするための、前記型または前記第1の基板の形状補正量を求める工程と、
     前記形状補正量に基づいて、前記型、または前記複数の前記基板のうち前記第1の基板とは異なる第2の基板を変形させる工程と、
     前記第2の基板上の複数のショット領域のそれぞれにおいて、前記型側マークおよび当該第2の基板に形成された第2の基板側マークを前記第1の基板側マークが検出された前記複数の検出点よりも少ない検出点において検出した検出結果に基づいて、前記型側マークと前記第2の基板側マークとの間の第2の位置ずれ量を求める工程と、
    を有し、
     前記第2の位置ずれ量に基づいて、前記型と前記第2の基板との位置合わせをする、
    ことを特徴とする位置合わせ方法。
    An alignment method for aligning the mold and the substrate based on the detection result of the mold side mark formed on the mold and the substrate side mark formed on the substrate,
    Detection in which the mold side mark and the first substrate side mark formed on the first substrate are detected at a plurality of detection points in each of a plurality of shot regions on the first substrate among the plurality of substrates. A step of obtaining a first positional deviation amount between the mold side mark and the first substrate side mark based on a result;
    Obtaining a shape correction amount of the mold or the first substrate for aligning the mold with the first substrate based on the first displacement amount;
    Deforming the mold or a second substrate different from the first substrate among the plurality of substrates based on the shape correction amount;
    In each of the plurality of shot regions on the second substrate, the mold side mark and the second substrate side mark formed on the second substrate are the plurality of the plurality of the plurality of shot regions on which the first substrate side mark has been detected. A step of obtaining a second positional deviation amount between the mold side mark and the second substrate side mark based on a detection result detected at detection points smaller than the detection points;
    Have
    Based on the second displacement amount, the mold and the second substrate are aligned.
    An alignment method characterized by that.
  2.  前記第1の基板上の複数のショット領域は、前記第2の基板上の複数のショット領域と対応し、前記第1の基板側マークは、前記第2の基板側マークと対応する、ことを特徴とする請求項1に記載の位置合わせ方法。 A plurality of shot regions on the first substrate corresponding to a plurality of shot regions on the second substrate, and the first substrate side mark corresponding to the second substrate side mark; The alignment method according to claim 1, wherein:
  3.  前記第1の基板および前記第2の基板は、同一のロットから選択されることを特徴とする請求項1または2に記載の位置合わせ方法。 3. The alignment method according to claim 1, wherein the first substrate and the second substrate are selected from the same lot.
  4.  前記第2の位置ずれ量に基づいた前記型と前記第2の基板との位置合わせは、前記型または前記第2の基板の少なくとも一方を変形させることを含むことを特徴とする請求項1乃至3のうちいずれか1項に記載の位置合わせ方法。 The alignment of the mold and the second substrate based on the second positional deviation amount includes deforming at least one of the mold or the second substrate. 4. The alignment method according to any one of 3.
  5.  前記第2の位置ずれ量に基づいた前記型と前記第2の基板との位置合わせは、前記型の側面に力を加えることにより行われることを特徴とする請求項1乃至4のうちいずれか1項に記載の位置合わせ方法。 The alignment between the mold and the second substrate based on the second displacement amount is performed by applying a force to a side surface of the mold. 2. The alignment method according to item 1.
  6.  前記第2の位置ずれ量に基づいた前記型と前記第2の基板との位置合わせは、前記第2の基板に熱を加えることにより行われることを特徴とする請求項1乃至5のうちいずれか1項に記載の位置合わせ方法。 The alignment between the mold and the second substrate based on the second displacement amount is performed by applying heat to the second substrate. The alignment method according to claim 1.
  7.  前記第2の位置ずれ量に基づいた前記型と前記第2の基板との位置合わせは、前記型または前記第2の基板の少なくとも一方を移動させることを含むことを特徴とする請求項1乃至6のうちいずれか1項に記載の位置合わせ方法。 The alignment between the mold and the second substrate based on the second positional deviation amount includes moving at least one of the mold or the second substrate. 6. The alignment method according to claim 1.
  8.  前記型または前記第2の基板の変形は、前記第1の位置ずれ量から得られた前記形状補正量を基準にして、前記第2の位置ずれ量から得られる補正量に基づいて行われることを特徴とする請求項4乃至7のうちいずれか1項に記載の位置合わせ方法。 The deformation of the mold or the second substrate is performed based on a correction amount obtained from the second positional deviation amount with reference to the shape correction amount obtained from the first positional deviation amount. The alignment method according to any one of claims 4 to 7, wherein:
  9.  前記第1の位置ずれ量を求める工程では、前記第1の基板上の複数のショット領域のうち、一部のショット領域に関し、前記型側マークおよび当該第1の基板に形成された第1の基板側マークを複数の検出点において検出し、当該検出結果から求めた位置ずれ量と当該検出結果の統計量から算出された位置ずれ量を前記第1の位置ずれ量とする、ことを特徴とする請求項1乃至8のうちいずれか1項に記載の位置合わせ方法。 In the step of obtaining the first positional deviation amount, the first mark formed on the mold side mark and the first substrate with respect to a part of the shot regions among the plurality of shot regions on the first substrate. A substrate-side mark is detected at a plurality of detection points, and a positional deviation amount calculated from the detection result and a statistical quantity of the detection result is used as the first positional deviation amount. The alignment method according to any one of claims 1 to 8.
  10.  型に形成された型側マークおよび基板に形成された基板側マークの検出結果に基づいて前記型と前記基板との位置合わせをする位置合わせ方法であって、
     複数の前記基板のうち、第1の基板上の複数のショット領域のそれぞれにおいて、前記型側マークおよび当該第1の基板に形成された第1の基板側マークを複数の検出点において検出した検出結果に基づいて、前記型側マークと前記第1の基板側マークとの間の第1の位置ずれ量を求める工程と、
     前記第1の位置ずれ量に基づいて、前記型と前記第1の基板との位置合わせをするための、前記型または前記第1の基板の形状補正量を求める工程と、
     第2の基板上の複数のショット領域のそれぞれにおいて、前記型側マークおよび当該第2の基板に形成された第2の基板側マークを前記第1の基板側マークが検出された前記複数の検出点よりも少ない検出点において検出した検出結果に基づいて前記型側マークと前記第2の基板側マークとの間の第2の位置ずれ量、および、前記形状補正量に基づいて、前記型、または前記複数の基板のうち前記第1の基板とは異なる第2の基板を変形させる工程と、
    を有することを特徴とする位置合わせ方法。
    An alignment method for aligning the mold and the substrate based on the detection result of the mold side mark formed on the mold and the substrate side mark formed on the substrate,
    Detection in which the mold side mark and the first substrate side mark formed on the first substrate are detected at a plurality of detection points in each of a plurality of shot regions on the first substrate among the plurality of substrates. A step of obtaining a first positional deviation amount between the mold side mark and the first substrate side mark based on a result;
    Obtaining a shape correction amount of the mold or the first substrate for aligning the mold with the first substrate based on the first displacement amount;
    In each of a plurality of shot regions on the second substrate, the plurality of detections in which the first substrate side mark is detected by using the mold side mark and the second substrate side mark formed on the second substrate. A second positional shift amount between the mold side mark and the second substrate side mark based on a detection result detected at a detection point less than a point, and the mold based on the shape correction amount, Or a step of deforming a second substrate different from the first substrate among the plurality of substrates;
    An alignment method comprising:
  11.  型を用いて基板の上に供給されたインプリント材にパターンを形成するインプリント装置であって、
     前記型および前記基板の相対位置を計測する計測部と、
     前記型または前記基板を変形させて前記相対位置を調整する機構と、
     前記計測部および前記機構を制御する制御部と、
    を有し、
     前記制御部は、
     複数の前記基板のうち、第1の基板上の複数のショット領域のそれぞれにおいて前記型に形成された型側マークおよび当該第1の基板に形成された第1の基板側マークを複数の検出点において検出するように前記計測部を制御し、
     検出結果から求めた前記型側マークと前記第1の基板側マークとの間の第1の位置ずれ量に基づいて、前記型と前記第1の基板との位置合わせをするための、前記型または前記第1の基板の形状補正量を求め、
     前記形状補正量に基づいて、前記型、または前記複数の前記基板のうち前記第1の基板とは異なる第2の基板を変形させるように前記機構を制御し、
     前記第2の基板上の複数のショット領域のそれぞれにおいて前記型側マークおよび当該第2の基板に形成された第2の基板側マークを前記第1の基板側マークが検出された前記複数の検出点よりも少ない検出点において検出するように前記計測部を制御し、
     検出結果から求めた前記型側マークと前記第2の基板側マークとの間の第2の位置ずれ量に基づいて前記機構を制御する、
    ことを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern on an imprint material supplied on a substrate using a mold,
    A measurement unit for measuring the relative position of the mold and the substrate;
    A mechanism for adjusting the relative position by deforming the mold or the substrate;
    A control unit for controlling the measurement unit and the mechanism;
    Have
    The controller is
    Among the plurality of substrates, a plurality of detection points include a mold side mark formed on the mold and a first substrate side mark formed on the first substrate in each of a plurality of shot regions on the first substrate. Controlling the measurement unit to detect in
    The mold for aligning the mold and the first substrate based on a first positional deviation amount between the mold side mark and the first substrate side mark obtained from a detection result. Alternatively, the shape correction amount of the first substrate is obtained,
    Based on the shape correction amount, the mechanism is controlled so as to deform the mold or a second substrate different from the first substrate among the plurality of substrates,
    The plurality of detections in which the first substrate side mark is detected by using the mold side mark and the second substrate side mark formed on the second substrate in each of a plurality of shot regions on the second substrate. Controlling the measurement unit to detect at fewer detection points than points,
    Controlling the mechanism based on a second positional deviation amount between the mold side mark and the second substrate side mark obtained from a detection result;
    An imprint apparatus characterized by that.
  12.  請求項1乃至10のうちいずれか1項に記載の方法をコンピュータに実行させることを特徴とするプログラム。 A program that causes a computer to execute the method according to any one of claims 1 to 10.
  13.  請求項11に記載のインプリント装置を用いて基板上にインプリント材のパターンを形成する工程と、
     前記工程で前記パターンが形成された前記基板を加工する加工工程と、を有し、該加工工程により加工された前記基板から物品を製造することを特徴とする物品の製造方法。
    Forming an imprint material pattern on a substrate using the imprint apparatus according to claim 11;
    And a processing step of processing the substrate on which the pattern is formed in the step, and manufacturing the article from the substrate processed by the processing step.
PCT/JP2017/020961 2016-06-09 2017-06-06 Alignment method, imprinting device, program, and article manufacturing method WO2017213133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187038069A KR102378292B1 (en) 2016-06-09 2017-06-06 Position alignment method, imprint apparatus, program and manufacturing method of an article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016115109 2016-06-09
JP2016-115109 2016-06-09
JP2017-110546 2017-06-05
JP2017110546A JP2017224812A (en) 2016-06-09 2017-06-05 Alignment method, imprinting device, program, and article manufacturing method

Publications (1)

Publication Number Publication Date
WO2017213133A1 true WO2017213133A1 (en) 2017-12-14

Family

ID=60578626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020961 WO2017213133A1 (en) 2016-06-09 2017-06-06 Alignment method, imprinting device, program, and article manufacturing method

Country Status (2)

Country Link
KR (1) KR102378292B1 (en)
WO (1) WO2017213133A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086908A (en) * 2019-11-27 2021-06-03 キヤノン株式会社 Imprint device, imprint method, manufacturing method of article, substrate, and molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122526A (en) * 2008-11-20 2010-06-03 Shinko Electric Ind Co Ltd Maskless exposure method
JP2010186918A (en) * 2009-02-13 2010-08-26 Nikon Corp Alignment method, exposure method and exposure device, device manufacturing method, and exposure system
JP2010283207A (en) * 2009-06-05 2010-12-16 Toshiba Corp Pattern forming device and pattern forming method
JP2011060882A (en) * 2009-09-08 2011-03-24 Nikon Corp Exposure method, device manufacturing method, and exposure system
JP2016063054A (en) * 2014-09-17 2016-04-25 キヤノン株式会社 Imprint method, imprint device, and method of manufacturing article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328785B2 (en) 2005-06-08 2009-09-09 キヤノン株式会社 MOLD, PATTERN TRANSFER DEVICE, AND PATTERN FORMING METHOD
JP5064743B2 (en) 2005-09-06 2012-10-31 キヤノン株式会社 Manufacturing method of structure having recess pattern
JP5669466B2 (en) 2010-07-12 2015-02-12 キヤノン株式会社 Holding apparatus, imprint apparatus and article manufacturing method
JP5932286B2 (en) 2011-10-14 2016-06-08 キヤノン株式会社 Imprint apparatus and article manufacturing method using the same
JP6412317B2 (en) 2013-04-24 2018-10-24 キヤノン株式会社 Imprint method, imprint apparatus, and article manufacturing method
JP6552329B2 (en) 2014-09-12 2019-07-31 キヤノン株式会社 Imprint apparatus, imprint system, and article manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122526A (en) * 2008-11-20 2010-06-03 Shinko Electric Ind Co Ltd Maskless exposure method
JP2010186918A (en) * 2009-02-13 2010-08-26 Nikon Corp Alignment method, exposure method and exposure device, device manufacturing method, and exposure system
JP2010283207A (en) * 2009-06-05 2010-12-16 Toshiba Corp Pattern forming device and pattern forming method
JP2011060882A (en) * 2009-09-08 2011-03-24 Nikon Corp Exposure method, device manufacturing method, and exposure system
JP2016063054A (en) * 2014-09-17 2016-04-25 キヤノン株式会社 Imprint method, imprint device, and method of manufacturing article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086908A (en) * 2019-11-27 2021-06-03 キヤノン株式会社 Imprint device, imprint method, manufacturing method of article, substrate, and molding
JP7433861B2 (en) 2019-11-27 2024-02-20 キヤノン株式会社 Imprint equipment, imprint method, article manufacturing method, substrate, and mold

Also Published As

Publication number Publication date
KR102378292B1 (en) 2022-03-25
KR20190013989A (en) 2019-02-11

Similar Documents

Publication Publication Date Title
JP2018041774A (en) Imprint device and article manufacturing method
KR102293478B1 (en) Imprint apparatus and method of manufacturing article
JP2019186343A (en) Imprint device, imprint method and article manufacturing method
JP7194238B2 (en) Imprint apparatus and article manufacturing method
JP2018011051A (en) Imprint device, and manufacturing method of article
JP7171468B2 (en) Information processing apparatus, program, lithography apparatus, article manufacturing method, article manufacturing system, and output method
WO2017213133A1 (en) Alignment method, imprinting device, program, and article manufacturing method
JP2018137361A (en) Imprint apparatus, imprint method, and article manufacturing method
JP2018160534A (en) Lithographic apparatus and method of manufacturing article
JP7060961B2 (en) Imprinting equipment, imprinting method and article manufacturing method
JP6827755B2 (en) Manufacturing method of imprinting equipment and articles
JP7451141B2 (en) Imprint device, imprint method, and article manufacturing method
JP2020047733A (en) Imprint method, imprint device, and article manufacturing method
JP7317575B2 (en) IMPRINT APPARATUS, IMPRINT METHOD, AND ARTICLE MANUFACTURING METHOD
JP6983091B2 (en) Imprint device and manufacturing method of goods
JP2017224812A (en) Alignment method, imprinting device, program, and article manufacturing method
JP7041545B2 (en) Imprinting equipment, manufacturing method of goods and mold
JP2019012821A (en) Imprint device and manufacturing method of article
JP7421278B2 (en) Imprint device and article manufacturing method
JP2018018944A (en) Imprint method and manufacturing method of article
JP2019216196A (en) Molding apparatus and manufacturing method for article
US20230145758A1 (en) Imprint apparatus and article manufacturing method
JP2018137360A (en) Imprint device and article manufacturing method
JP7254564B2 (en) IMPRINT APPARATUS, IMPRINT METHOD, AND ARTICLE MANUFACTURING METHOD
JP2018157160A (en) Lithographic apparatus and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187038069

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17810308

Country of ref document: EP

Kind code of ref document: A1