WO2017211068A1 - 一种轨道交通车辆精确测速系统和方法 - Google Patents

一种轨道交通车辆精确测速系统和方法 Download PDF

Info

Publication number
WO2017211068A1
WO2017211068A1 PCT/CN2016/112365 CN2016112365W WO2017211068A1 WO 2017211068 A1 WO2017211068 A1 WO 2017211068A1 CN 2016112365 W CN2016112365 W CN 2016112365W WO 2017211068 A1 WO2017211068 A1 WO 2017211068A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
train
sleepers
data
transit vehicle
Prior art date
Application number
PCT/CN2016/112365
Other languages
English (en)
French (fr)
Inventor
闫泽涛
刘瑞涛
Original Assignee
深圳航天科技创新研究院
深圳市航天华拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院, 深圳市航天华拓科技有限公司 filed Critical 深圳航天科技创新研究院
Publication of WO2017211068A1 publication Critical patent/WO2017211068A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0018Communication with or on the vehicle or vehicle train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/009On-board display devices

Definitions

  • the invention relates to an orbital speed measuring system, in particular to an accurate speed measuring system and method for a rail transit vehicle.
  • the speed measurement technology of rail transit vehicles generally has the following types:
  • the speed is calculated by measuring the time of the train passing a specific measuring point by RFID technology.
  • the drawback of this technology is that it can only be measured at a specific place.
  • the present invention provides an accurate speed measuring system and method for a rail transit vehicle.
  • the invention provides an accurate speed measuring system for a rail transit vehicle, comprising: a laser ranging sensor for scanning a sectional profile of a sleeper laid under a rail, calculating a traveling speed of the train according to a time difference between the two sleepers and a laying pitch of the sleeper; Data processing host and speed display terminal.
  • the data processing host includes a processor, a data output interface, and a GPS receiving module, wherein an output end of the laser ranging sensor is connected to the processor, and an output end of the GPS receiving module Connected to the processor, the output ends of the processor are respectively connected to the data output interface and the speed display terminal.
  • the rail transit vehicle precise speed measuring system includes a car, the data processing host and the speed display terminal are respectively disposed on the car, and the laser ranging sensor is disposed below the car.
  • the invention also provides an accurate speed measuring method for a rail transit vehicle, which scans the cross-sectional profile of the sleeper laid under the rails by the laser ranging sensor and recognizes the characteristic signal thereof, according to the time difference of the train passing the adjacent two sleepers and the laying distance of the sleepers To calculate the speed of the train.
  • the laser ranging sensor when the train travels, continuously emits the ranging laser signal and receives the reflected signal, and measures the distance to the rail surface, and the ranging data changes periodically due to the sleeper laid under the rail.
  • the processing and recognition of the ranging signal of the laser ranging sensor is realized by the data processing host, and the ranging data is filtered to form a ranging curve, and the characteristic signal of the sleeper is identified by the ranging curve.
  • the train is passed through the time of the adjacent two sleepers to calculate the train speed.
  • the speed measurement data is transmitted through the data line to a speed display terminal installed in the cab for displaying the real-time speed of the train and providing an audible and visual warning when overspeeding.
  • the data processing host includes a data output interface through which the data is output to the train control system or the operation dispatch center for evaluating the braking capability of the train and the train operation schedule.
  • the data processing host includes a GPS receiving module through which the current position is acquired, and the speed calibration and the matching of the sleeper spacing are performed.
  • the beneficial effects of the present invention are: by installing a laser ranging sensor on a rail transit vehicle, the laser ranging sensor continuously scans the track surface while the train is traveling and measures the distance to the track surface, since the laid sleeper is significantly higher than the track surface, Therefore, the ranging data will periodically change.
  • the data processing host extracts the characteristic signal of the sleeper in the periodically changing data, and the data processing host recognizes the characteristic signal and calculates the time of the adjacent two sleeper characteristic signals. By dividing the laying distance by this time, the train speed can be accurately calculated.
  • Figure 1 is a schematic illustration of an accurate speed measuring system for a rail transit vehicle of the present invention.
  • FIG. 2 is a schematic block diagram of an accurate speed measuring system for a rail transit vehicle of the present invention.
  • FIG. 3 is a schematic flow chart of a speed measurement method of an accurate speed measuring method for a rail transit vehicle according to the present invention.
  • FIGS. 1 to 3 The reference numerals in FIGS. 1 to 3 are: a sleeper 1; a laser ranging sensor 2; a data processing host 3; a processor 31; a data output interface 32; a GPS receiving module 33; a speed display terminal 4; and a car 5.
  • the present invention provides an accurate speed measuring system for a rail transit vehicle, comprising: a laser ranging sensor 2 for scanning a sectional profile of a sleeper 1 laid under a rail, 2, a time difference according to a train passing two adjacent sleepers 1 and The data processing host 3 and the speed display terminal 4 for calculating the traveling speed of the train are calculated by the laying pitch of the adjacent sleepers 1.
  • the data processing host 3 includes a processor 31, a data output interface 32, and a GPS receiving module 33, wherein an output end of the laser ranging sensor 2 is connected to the processor 31, An output end of the GPS receiving module 33 is connected to the processor 31, and an output end of the processor 31 is connected to the data output interface 32 and the speed display terminal 4, respectively.
  • a laser ranging sensor 2 is mounted under the rail transit vehicle, and the laser ranging sensor 2 and the processor 31 are connected by data and a power cable, and the laser ranging sensor 2 continuously performs ranging while the vehicle is running.
  • the ranging data is transmitted to the processor 31.
  • the scanning curve formed by the ranging data is not a smooth curve due to the objects such as the vermiculite laid on the track and the fastening bolts on the sleeper 1, and there is a large amount of interference signals as shown in FIG. 31 Filtering, limiting and other algorithms are used to filter out the interference, and finally the characteristic signal of the sleeper 1 is extracted.
  • the speed display terminal 4 displays the train travel speed value in real time and alerts the sound and light signal when the current track interval speed limit value is exceeded.
  • the GPS receiving module 33 is connected to the processor 31 via a data bus, and transmits the current position coordinate information of the train for matching the current track interval speed limit value and matching the current track sleeper 1 laying pitch data.
  • the data output interface 32 is used to provide real-time speed measurement data for other systems or devices in the train, and realizes the train travel control or parameter monitoring function, for example, connecting with the brake system, and real-time evaluation of the train braking ability for driving
  • the control system provides brake distance feedback.
  • the data output interface 32 can also transmit train speed monitoring data for the operational dispatch center via the wireless network.
  • the rail transit vehicle precise speed measuring system includes a car 5, and the data processing host 3 and the speed display terminal 4 are respectively disposed on the car body 5, and the laser ranging sensor 2 is disposed in the car compartment. Below 5.
  • the laser ranging sensor 2 scans the cross-sectional profile of the sleeper 1 laid under the rail to identify the signal, and passes the two adjacent sleepers 1 according to the train. The time difference and the laying pitch of the sleeper 1 are used to calculate the traveling speed of the train.
  • the laser ranging sensor 2 continuously transmits the ranging laser signal and receives the reflected signal, and measures the distance to the railroad track.
  • the ranging data is caused by the sleeper 1 laid under the rail. Sexual change.
  • the location of the ranging signal to the laser ranging sensor 2 is realized by the data processing host 3.
  • the ranging data is filtered to form a ranging curve, and the characteristic signal of the sleeper 1 is identified from the ranging curve, and the time when the train passes the adjacent two sleepers 1 is obtained, thereby calculating the train speed.
  • the speed measurement data is transmitted through the data line to the speed display terminal 4 installed in the cab for displaying the train real-time speed and providing an audible and visual warning when overspeeding.
  • the data processing host 3 includes an acceleration sensor for determining whether the train is stationary or at a constant speed by an acceleration sensor, and turning off the laser ranging sensor 2 in a stationary or uniform state to extend the laser ranging.
  • Sensor 2 has a long life.
  • the data processing host 3 includes a data output interface 32 through which data is output to a train control system or a dispatch center for evaluating braking capability and train operation scheduling.
  • the data processing host 3 includes a GPS receiving module 33 through which the current position is acquired, and the speed check and the matching of the sleeper 1 pitch are performed.
  • the speed limit requirements of the trains in different driving sections are different. For example, when the cornering is set, the speed limit value is set according to different turning radii. Therefore, the GPS receiving module 33 receives the position coordinates to change the alarm speed limit value.
  • some track sections may vary according to geological conditions, the spacing of the sleepers or the sleepers 1, and the measurement results are corrected based on the pre-stored spacing interval data of the corresponding position sleepers 1 according to the position information received by the GPS.
  • the sleepers In order to ensure the stability of the track during the construction of the rail transit, the sleepers will be laid under the rails during the construction, and the rails will be installed on the sleepers. In recent years, with the application of integral pouring technology in rail transit construction, sleepers have been adopted. Whether using sleepers or sleepers, the spacing and tolerances of the paving are in accordance with relevant national and industry standards.
  • the present invention provides an accurate speed measuring system and method for a rail transit vehicle.
  • the invention provides an accurate speed measuring system and method for a rail transit vehicle.
  • the laser ranging sensor 2 is installed under the compartment 5 of the rail transit vehicle, and the laser ranging sensor 2 emits a laser ranging signal to measure the distance to the track, and the distance is measured.
  • the data is transmitted to the data processing host 3 to form a ranging curve, and the characteristic signal of the sleeper 1 of the track is recognized in the curve, and the time of the characteristic signals of the adjacent two sleepers 1 is calculated, and the train speed of the train can be calculated. It can be used to measure train travel speed in real time and to evaluate train braking performance.

Abstract

一种轨道交通车辆精确测速系统以及测速方法,包括扫描铺设在铁轨下的轨枕(1)断面轮廓的激光测距传感器(2)、根据列车通过两根轨枕(1)的时间差以及轨枕(1)的铺设间距来计算出列车的行驶速度的数据处理主机(3)和用于速度指示和超速告警的速度显示终端(4)。激光测距传感器(2)在列车行驶时不断扫描轨道路面并测量其到轨道路面的距离,通过数据处理主机(3)在周期性变化的数据中提取出轨枕(1)的特征信号,数据处理主机(3)识别出轨枕(1)特征信号并计算出相邻两个轨枕(1)特征信号的时间,用轨枕(1)的铺设间距除以该时间即可精确计算出列车行驶速度,具有较高的测速精度,尤其适用于磁悬浮等无轮轨道交通。

Description

一种轨道交通车辆精确测速系统和方法 技术领域
本发明涉及轨道测速系统,尤其涉及一种轨道交通车辆精确测速系统和方法。
背景技术
轨道交通车辆行驶过程中需要对列车速度进行精确测量,便于列车司机控制行驶测速和总控调度中心监控线路运行状态,以及在弯道或者复杂路况时降低行驶速度,避免发生脱轨事故。目前轨道交通车辆的测速技术一般有如下几种:
1)在车轮上加装传感器,通过计量车轮旋转周数来计算车速,该技术在雨雪环境下由于车轮在轨面打滑会导致测速数据出现偏差;
2)通过多普勒雷达原理来实现测速,该技术已经成熟,但测量精度较差并且会受雨雪天气影响,并且列车速度小于40公里时效果较差;
3)通过GPS定位技术来计算速度,该技术广泛应用,但无法在地铁或者隧道内使用并且在较短距离测速的误差较大;
4)通过RFID技术测量列车通过特定测量点的时间来计算速度,该技术的缺陷在于只能在特定地点进行测量。
为保证列车测速数据的准确性和可靠性,目前轨道交通车辆一般采用多种技术结合使用来实现列车行驶速度的测量。
在列车的行驶管理中,有很多地方需要使用到列车精确速度,例如列车的刹车部件由于磨损等原因,制动能力会降低,工程部门需要及时掌握制动能力数据来评估是否对制动系统进行检修。此外雨雪等天气因素也会严重影响列车制动能力,司机需要根据当前环境下列车的制动能力来控制车辆行驶速度。
发明内容
为了解决现有技术中的问题,本发明提供了一种轨道交通车辆精确测速系统和方法。
本发明提供了一种轨道交通车辆精确测速系统,包括扫描铺设在铁轨下的轨枕的断面轮廓的激光测距传感器、根据列车通过两根轨枕的时间差以及轨枕的铺设间距来计算出列车的行驶速度的数据处理主机和速度显示终端。
作为本发明的进一步改进,所述数据处理主机包括处理器、数据输出接口和GPS接收模块,其中,所述激光测距传感器的输出端与所述处理器连接,所述GPS接收模块的输出端与所述处理器连接,所述处理器的输出端分别与所述数据输出接口、速度显示终端连接。
作为本发明的进一步改进,所述轨道交通车辆精确测速系统包括车厢,所述数据处理主机和速度显示终端分别设置在所述车厢上,所述激光测距传感器设置在所述车厢的下方。
本发明还提供了一种轨道交通车辆精确测速方法,通过激光测距传感器扫描铺设在铁轨下的轨枕的断面轮廓并识别其特征信号,根据列车通过相邻两根轨枕的时间差以及轨枕的铺设间距来计算出列车的行驶速度。
作为本发明的进一步改进,列车行进时,激光测距传感器不断发射测距激光信号并接收反射信号,测量其到铁轨路面的距离,由于铁轨下铺设的轨枕导致测距数据出现周期性的变化。
作为本发明的进一步改进,通过数据处理主机实现对激光测距传感器的测距信号的处理和识别,对测距数据进行滤波处理后形成测距曲线,由测距曲线中识别出轨枕的特征信号,得到列车通过相邻两个轨枕的时间,进而计算出列车速度。
作为本发明的进一步改进,测速数据通过数据线传送到安装在驾驶室的速度显示终端,用于显示列车实时速度并在超速时提供声光警告。
作为本发明的进一步改进,数据处理主机包括一个数据输出接口,通过该数据输出接口将数据输出给列车控制系统或运行调度中心,用于评估列车的制动能力和列车运行调度。
作为本发明的进一步改进,数据处理主机包括一个GPS接收模块,通过该GPS接收模块获取当前位置,进行速度校准和轨枕间距的匹配。
本发明的有益效果是:通过在轨道交通车辆上安装激光测距传感器,激光测距传感器在列车行驶时不断扫描轨道路面并测量其到轨道路面的距离,由于铺设的轨枕明显高于轨道路面,因此测距数据会出现周期性变化,通过数据处理主机在周期性变化的数据中提取出轨枕的特征信号,数据处理主机识别出特征信号并计算出相邻两个轨枕特征信号的时间,用轨枕的铺设间距除以该时间即可精确计算出列车行驶速度。
附图说明
图1是本发明一种轨道交通车辆精确测速系统的示意图。
图2是本发明一种轨道交通车辆精确测速系统的原理框图。
图3是本发明一种轨道交通车辆精确测速方法的测速流程示意图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
图1至图3中的附图标号为:轨枕1;激光测距传感器2;数据处理主机3;处理器31;数据输出接口32;GPS接收模块33;速度显示终端4;车厢5。
如图1所示,本发明提供了一种轨道交通车辆精确测速系统,包括扫描铺设在铁轨下的轨枕1的断面轮廓的激光测距传感器2、根据列车通过相邻两根轨枕1的时间差以及相邻轨枕1的铺设间距来计算出列车的行驶速度的数据处理主机3和速度显示终端4。
如图2所示,所述数据处理主机3包括处理器31、数据输出接口32、和GPS接收模块33,其中,所述激光测距传感器2的输出端与所述处理器31连接,所述GPS接收模块33的输出端与所述处理器31连接,所述处理器31的输出端分别与所述数据输出接口32、速度显示终端4连接。
如图2所示,在轨道交通车辆的下方安装激光测距传感器2,激光测距传感器2与处理器31通过数据和电源线缆连接,激光测距传感器2在车辆行驶时持续进行测距并将测距数据传送给处理器31。
如图2所示,由于铺设在轨道上的砟石和轨枕1上的紧固螺栓等物体,会造成测距数据形成的扫描曲线并非光滑曲线,如图3所示存在大量的干扰信号,处理器31通过滤波、限幅等算法来滤除干扰,最终提取出轨枕1的特征信号。
如图2所示,速度显示终端4实时显示列车行驶速度数值,并在超过当前轨道区间限速值时通过声光信号告警。
如图2所示,GPS接收模块33通过数据总线与处理器31连接,传送列车当前位置坐标信息,用于匹配当前轨道区间限速数值,以及匹配当前轨道轨枕1铺设间距数据。
如图2所示,数据输出接口32用于为列车内其他系统或设备提供实时测速数据,实现列车行驶控制或参数监控功能,例如与刹车系统连接,可以实时评估列车的制动能力,为行驶控制系统提供刹车距离反馈。数据输出接口32也可通过无线网络为运行调度中心传送列车速度监控数据。
如图1所示,所述轨道交通车辆精确测速系统包括车厢5,所述数据处理主机3和速度显示终端4分别设置在所述车厢上5,所述激光测距传感器2设置在所述车厢5的下方。
如图1至图3所示,一种轨道交通车辆精确测速方法,通过激光测距传感器2扫描铺设在铁轨下的轨枕1的断面轮廓来识别其信号,根据列车通过相邻两根轨枕1的时间差以及轨枕1的铺设间距来计算出列车的行驶速度。
如图1至图3所示,列车行进时,激光测距传感器2不断发射测距激光信号并接收反射信号,测量其到铁轨路面的距离,由于铁轨下铺设的轨枕1导致测距数据出现周期性的变化。
如图1至图3所示,通过数据处理主机3实现对激光测距传感器2的测距信号的处 理和识别,对测距数据进行滤波处理后形成测距曲线,由测距曲线中识别出轨枕1的特征信号,得到列车通过相邻两个轨枕1的时间,进而计算出列车速度。
如图1至图3所示,测速数据通过数据线传送到安装在驾驶室的速度显示终端4,用于显示列车实时速度并在超速时提供声光警告。
如图1至图3所示,数据处理主机3包括一个加速度传感器,通过加速度传感器判别列车是否处于静止或处于匀速行驶状态,并在静止或匀速状态时关闭激光测距传感器2,延长激光测距传感器2使用寿命。
如图1至图3所示,数据处理主机3包括一个数据输出接口32,通过该数据输出接口32将数据输出给列车控制系统或运行调度中心,用于评估制动能力和列车运行调度。
如图1至图3所示,数据处理主机3包括一个GPS接收模块33,通过该GPS接收模块33获取当前位置,进行速度校验和轨枕1间距的匹配。列车在不同行驶区间的限速要求不同,例如在转弯时会根据不同的转弯半径设定限速值,因此通过GPS接收模块33接收到位置坐标来变动告警限速值。另外,某些轨道区间会根据地质条件的不同,枕木或轨枕1的间隔有变化,根据GPS接收到位置信息,基于预先存储的对应位置轨枕1的铺设间隔数据来修正测量结果。
轨道交通建设时为保证轨道的稳固性,在施工时会在铁轨下方铺设枕木,铁轨安装在枕木上。近年随着整体浇筑技术在轨道交通建设中的应用,开始采用轨枕。无论采用枕木还是轨枕,其铺设间距和公差都遵循相关国家和行业标准规范。
本发明提供一种轨道交通车辆精确测速系统和方法,通过在轨道交通车辆的车厢5上安装激光测距传感器2,在列车行驶时不断扫描轨道路面并测量其到轨道路面的距离。由于铺设的轨枕1要高于轨道路面,因此测距数据会出现周期性变化,通过数字信号处理技术在周期性变化的数据中提取出轨枕1的特征信号,进而计算出轨道交通车辆经过两个轨枕1的时间t,通过预先存储的轨枕1的铺设间距L,利用公式V=L/t即可计算出列车车速。
本发明提供一种轨道交通车辆精确测速系统和方法,激光测距传感器2安装在轨道交通车辆的车厢5的下方,激光测距传感器2发射激光测距信号测量其到轨道的距离,将测距数据传送给数据处理主机3处理后形成测距曲线,并在曲线中识别出轨道的轨枕1的特征信号,计算相邻两个轨枕1的特征信号的时间,即可计算出列车的车速。可用于实时测量列车行驶速度以及评估列车制动性能等应用。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱 离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种轨道交通车辆精确测速系统,其特征在于:包括扫描铺设在铁轨下的轨枕断面轮廓的激光测距传感器、根据列车通过相邻两根轨枕的时间差以及相邻轨枕的铺设间距来计算出列车的行驶速度的数据处理主机和用于速度指示和超速告警的速度显示终端。
  2. 根据权利要求1所述的轨道交通车辆精确测速系统,其特征在于:所述数据处理主机包括处理器、数据输出接口和GPS接收模块,其中,所述激光测距传感器的输出端与所述处理器连接,所述GPS接收模块的输出端与所述处理器连接,所述处理器的输出端分别与所述数据输出接口、速度显示终端连接。
  3. 根据权利要求1所述的轨道交通车辆精确测速系统,其特征在于:所述轨道交通车辆精确测速系统包括车厢,所述数据处理主机和速度显示终端分别设置在所述车厢上,所述激光测距传感器设置在所述车厢的下方。
  4. 一种轨道交通车辆精确测速方法,其特征在于:通过激光测距传感器扫描铺设在铁轨下的轨枕断面轮廓并识别其信号,根据列车通过相邻两根轨枕的时间差以及相邻轨枕的铺设间距来计算出列车的行驶速度。
  5. 根据权利要求4所述的轨道交通车辆精确测速方法,其特征在于:列车行进时,激光测距传感器不断发射测距激光信号并接收反射信号,测量其到铁轨路面的距离,由于铁轨下铺设的轨枕导致测距数据出现周期性的变化。
  6. 根据权利要求5所述的轨道交通车辆精确测速方法,其特征在于:通过数据处理主机实现对激光测距传感器的测距信号的处理和识别,对测距数据进行滤波处理后形成测距曲线,由测距曲线中识别出轨枕的特征信号,得到列车通过相邻两个轨枕的时间,进而计算出列车速度。
  7. 根据权利要求6所述的轨道交通车辆精确测速方法,其特征在于:测速数据通过数据线传送到安装在驾驶室的速度显示终端,用于显示列车实时速度并在超速时提供声光警告。
  8. 根据权利要求7所述的轨道交通车辆精确测速方法,其特征在于:数据处理主机包括一个数据输出接口,通过该数据输出接口将数据输出给列车控制系统或运行调度中心,用于评估列车刹车系统制动能力和列车运行调度。
  9. 根据权利要求7所述的轨道交通车辆精确测速方法,其特征在于:数据处理主机包括一个GPS接收模块,通过该GPS接收模块获取当前位置,进行速度校准 和轨枕间距的匹配。
PCT/CN2016/112365 2016-06-07 2016-12-27 一种轨道交通车辆精确测速系统和方法 WO2017211068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610398082.9 2016-06-07
CN201610398082.9A CN105905134A (zh) 2016-06-07 2016-06-07 一种轨道交通车辆精确测速系统和方法

Publications (1)

Publication Number Publication Date
WO2017211068A1 true WO2017211068A1 (zh) 2017-12-14

Family

ID=56750557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112365 WO2017211068A1 (zh) 2016-06-07 2016-12-27 一种轨道交通车辆精确测速系统和方法

Country Status (2)

Country Link
CN (1) CN105905134A (zh)
WO (1) WO2017211068A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030341A (zh) * 2018-04-30 2018-12-18 交通运输部公路科学研究所 道路检测车距离校准装置、系统及方法
CN111337704A (zh) * 2018-12-19 2020-06-26 中车唐山机车车辆有限公司 一种测速系统及测速方法
CN114179852A (zh) * 2021-10-29 2022-03-15 北京自动化控制设备研究所 一种轨道地面物廓型检测方法
CN115027533A (zh) * 2022-06-14 2022-09-09 通号城市轨道交通技术有限公司 轨道列车测速测距方法及装置
CN115626200A (zh) * 2022-12-05 2023-01-20 成都劳杰斯信息技术有限公司 一种铁路机车实时定位方法及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105905134A (zh) * 2016-06-07 2016-08-31 深圳航天科技创新研究院 一种轨道交通车辆精确测速系统和方法
CN106476851A (zh) * 2016-10-10 2017-03-08 株洲中车时代装备技术有限公司 基于无砟轨道的列车运行速度检测方法及系统
CN107957501A (zh) * 2016-10-18 2018-04-24 株洲中车时代电气股份有限公司 用于测量轨道车辆的速度的装置和方法
CN107121149B (zh) * 2017-07-13 2023-08-29 中国人民解放军国防科学技术大学 一种基于电涡流效应的高速磁浮轨检绝对里程读取装置
CN108556876B (zh) * 2018-04-18 2020-06-19 北京交通大学 一种列车测速测距设备及方法
CN109085377B (zh) * 2018-08-02 2020-12-01 北京世纪东方通讯设备有限公司 一种轨检车的车速检测方法及装置
CN109318938B (zh) * 2018-08-24 2020-02-14 同济大学 一种磁浮列车测速测距系统
CN109131448A (zh) * 2018-08-30 2019-01-04 中车大连机车车辆有限公司 速度显示系统
CN111152819A (zh) * 2020-01-06 2020-05-15 虞萍 基于车辆信源间时间差测量的车时源及列车控制方法
CN111361602B (zh) * 2020-02-28 2022-05-06 中国人民解放军国防科技大学 一种定位测速系统的健康监测方法、装置及设备
CN113514820B (zh) * 2021-03-29 2023-11-14 深圳航天科技创新研究院 时间同步及测距方法、装置、电子设备及存储介质
CN113212499A (zh) * 2021-06-04 2021-08-06 北京磁浮交通发展有限公司 利用间隙传感器在过轨道接缝时刻的实时测速方法及系统
CN113511236B (zh) * 2021-08-11 2023-02-28 上海无线电设备研究所 一种轨交列车运动状态高精度感知设备及感知方法
CN113567997B (zh) * 2021-09-28 2021-12-03 南京智鹤电子科技有限公司 测量磁极间距变化的激光测距装置及其测距方法
CN114735049B (zh) * 2022-03-23 2023-11-17 北京全路通信信号研究设计院集团有限公司 一种基于激光雷达的磁浮列车测速定位方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2504127Y (zh) * 2001-11-12 2002-08-07 北京控股磁悬浮技术发展有限公司 磁悬浮列车测速、定位与鉴向装置
CN101797927A (zh) * 2010-04-20 2010-08-11 中国人民解放军国防科学技术大学 基于轨枕检测的非接触式轨道交通测速定位方法及其装置
CN102033138A (zh) * 2010-10-18 2011-04-27 同济大学 一种基于轨道特征的车速测量装置
CN102069824A (zh) * 2010-12-30 2011-05-25 北京交通大学 轨道交通车辆的定位装置和方法
CN202298394U (zh) * 2011-10-19 2012-07-04 北京鼎汉检测技术有限公司 铁路轨道动态检测轨距检测系统
US9007569B2 (en) * 2012-08-03 2015-04-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Coherent doppler lidar for measuring altitude, ground velocity, and air velocity of aircraft and spaceborne vehicles
CN105905134A (zh) * 2016-06-07 2016-08-31 深圳航天科技创新研究院 一种轨道交通车辆精确测速系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006007134D1 (de) * 2006-07-06 2010-07-15 Siemens Ag Vorrichtung zum orten eines an einen fahrweg gebundenen fahrzeugs
US9052392B2 (en) * 2010-11-25 2015-06-09 Mitsubishi Electric Corporation Velocity measurement apparatus capable of accurately measuring velocity of moving object relative to ground surface
CN105501256B (zh) * 2015-12-23 2017-05-31 中国铁道科学研究院通信信号研究所 一种中低速磁悬浮列车组合测速定位装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2504127Y (zh) * 2001-11-12 2002-08-07 北京控股磁悬浮技术发展有限公司 磁悬浮列车测速、定位与鉴向装置
CN101797927A (zh) * 2010-04-20 2010-08-11 中国人民解放军国防科学技术大学 基于轨枕检测的非接触式轨道交通测速定位方法及其装置
CN102033138A (zh) * 2010-10-18 2011-04-27 同济大学 一种基于轨道特征的车速测量装置
CN102069824A (zh) * 2010-12-30 2011-05-25 北京交通大学 轨道交通车辆的定位装置和方法
CN202298394U (zh) * 2011-10-19 2012-07-04 北京鼎汉检测技术有限公司 铁路轨道动态检测轨距检测系统
US9007569B2 (en) * 2012-08-03 2015-04-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Coherent doppler lidar for measuring altitude, ground velocity, and air velocity of aircraft and spaceborne vehicles
CN105905134A (zh) * 2016-06-07 2016-08-31 深圳航天科技创新研究院 一种轨道交通车辆精确测速系统和方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030341A (zh) * 2018-04-30 2018-12-18 交通运输部公路科学研究所 道路检测车距离校准装置、系统及方法
CN109030341B (zh) * 2018-04-30 2023-10-20 交通运输部公路科学研究所 道路检测车距离校准装置、系统及方法
CN111337704A (zh) * 2018-12-19 2020-06-26 中车唐山机车车辆有限公司 一种测速系统及测速方法
CN111337704B (zh) * 2018-12-19 2022-03-18 中车唐山机车车辆有限公司 一种测速系统及测速方法
CN114179852A (zh) * 2021-10-29 2022-03-15 北京自动化控制设备研究所 一种轨道地面物廓型检测方法
CN115027533A (zh) * 2022-06-14 2022-09-09 通号城市轨道交通技术有限公司 轨道列车测速测距方法及装置
CN115626200A (zh) * 2022-12-05 2023-01-20 成都劳杰斯信息技术有限公司 一种铁路机车实时定位方法及系统

Also Published As

Publication number Publication date
CN105905134A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017211068A1 (zh) 一种轨道交通车辆精确测速系统和方法
Mori et al. Condition monitoring of railway track using in-service vehicle
US9607446B2 (en) System and method for identifying damaged sections of a route
Weston et al. Perspectives on railway track geometry condition monitoring from in-service railway vehicles
US9469198B2 (en) System and method for identifying damaged sections of a route
CA2574051C (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
RU2384446C2 (ru) Способ для определения и учета нагрузок бокового ветра для находящегося в движении рельсового транспортного средства и соответственно выполненный последний вагон рельсового транспортного средства
CN108146467B (zh) 一种磁浮列车精确定位辅助装置及方法
CN103693078B (zh) 目标距离模式的列车自动防护方法
CN102139704A (zh) 一种基于射频技术的高精度列车定位系统及其定位方法
CN101118163A (zh) 列车gps里程自动修正系统及其修正方法
CN110849288B (zh) 一种基于车体轮廓线的轨道车辆脱轨检测方法
CN113276911A (zh) 一种悬挂式单轨车辆段列车位置检测方法及系统
KR101205964B1 (ko) 철도차량용 주행안정성 측정 시스템
KR101259088B1 (ko) 철도차량의 주행 안정성 분석 시스템
CN112485790B (zh) 基于k波段雷达的轨道非接触式变形高精度测量方法
CN201932202U (zh) 轨道交通车辆的定位装置
EP3964735B1 (en) Vehicle sensor system
CN219474677U (zh) 一种基于北斗定位的运梁车的姿态监控系统
RU2422315C1 (ru) Система управления движением локомотивов при маневровой работе
CN114454726A (zh) 一种用于磁浮列车的停车定位方法、系统和存储介质
Nozhenko et al. Method for determining the linear velocity of a locomotive development
EP3730379A1 (en) Sensor system and method for montioring environmental variables of a rail-bound vehicle
CN1562685A (zh) 运行中列车抛车的检测方法及告警装置
CN205292688U (zh) 重载铁路列车控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904516

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16904516

Country of ref document: EP

Kind code of ref document: A1