WO2017209005A1 - User device and network device - Google Patents

User device and network device Download PDF

Info

Publication number
WO2017209005A1
WO2017209005A1 PCT/JP2017/019754 JP2017019754W WO2017209005A1 WO 2017209005 A1 WO2017209005 A1 WO 2017209005A1 JP 2017019754 W JP2017019754 W JP 2017019754W WO 2017209005 A1 WO2017209005 A1 WO 2017209005A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
communication
information
user device
capability
Prior art date
Application number
PCT/JP2017/019754
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
理一 工藤
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018520875A priority Critical patent/JPWO2017209005A1/en
Publication of WO2017209005A1 publication Critical patent/WO2017209005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a user device that supports D2D and an NW (network) device that communicates with the user device.
  • NW network
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • 4G Long Term Evolution Advanced
  • FRA Full Radio Access
  • 5G etc.
  • D2D Device-to-Device
  • Non-Patent Document 1 Non-Patent Document 1
  • D2D reduces the traffic between the user apparatus and the base station, and enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
  • D2D is also called D2D discovery (D2D discovery, also referred to as D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between user devices. ).
  • D2D discovery also referred to as D2D discovery
  • D2D communication D2D direct communication, direct communication between terminals
  • V2X is a part of ITS (Intelligent Transport Systems) and, as shown in FIG. 1, V2V (Vehicle Transport Vehicle) means a communication mode performed between automobiles, and is installed on the side of the road with the automobile.
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to
  • V2P Vehicle to Pedestrian
  • Non-Patent Documents 2 and 3 are technologies optimized for multicast communication. Multicast is also assumed in V2X, which is being studied by 3GPP.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique that enables D2D connection to be established using appropriate connection parameters between user apparatuses.
  • a user device that supports D2D
  • a transmission unit for transmitting a connection request for D2D connection between the user device and another user device to a network device;
  • a receiving unit for receiving connection parameters for the D2D connection from the network device;
  • a control unit that establishes the D2D connection using the connection parameter.
  • a technology that makes it possible to establish a D2D connection between user apparatuses using appropriate connection parameters.
  • V2X It is a figure for demonstrating D2D, and shows "D2D discovery.” It is a figure for demonstrating D2D, and shows "D2D communication.” It is a figure for demonstrating MAC PDU used for D2D communication. It is a figure for demonstrating the format of SL-SCH subheader. It is a figure for demonstrating the example of the channel structure used by D2D. It is a figure which shows the structural example of PSDCH, and shows the example of a resource pool. It is a figure which shows the structural example of PSDCH, and shows the structure of PUSCH base. It is a figure which shows the structural example of PSCCH and PSSCH, and shows the example of a resource pool.
  • FIG. 1 shows the structural example of PSCCH and PSSCH, and shows the structure of PUSCH base. It is a figure which shows resource pool configuration, and shows a sub-frame. It is a figure which shows a resource pool configuration, and shows a resource block. It is a figure which shows the structural example of the radio
  • FIG. It is a figure which shows the process sequence example 5.
  • FIG. 1 shows the structural example of PSCCH and PSSCH, and shows the structure of PUSCH base. It is a figure which shows resource pool configuration, and shows a sub-frame. It is a figure which shows a resource pool configuration, and shows a resource block. It is a figure which shows the structural example of the radio
  • FIG. 9 is a diagram for explaining an example of determining operation of terminal autonomous connection / network assist connection, and shows option 1;
  • FIG. 10 is a diagram for explaining an example of determining operation of terminal autonomous connection / network assist connection, and shows option 2;
  • 10 is a diagram for explaining an example of determination operation of terminal autonomous connection / network assist connection, and shows option 3; It is a figure which shows an example of a function structure of the user apparatus which concerns on this Embodiment. It is a figure which shows an example of a function structure of the NW apparatus which concerns on this Embodiment. It is a figure which shows an example of the hardware constitutions of the user apparatus and NW apparatus which concern on this Embodiment.
  • LTE corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the fifth generation communication system.
  • D2D includes V2X as its meaning.
  • D2D is not limited to D2D in LTE but refers to communication between terminals in general.
  • “communication” in this specification means general “communication”, and does not limit “D2D communication” as the classification of “D2D” described above.
  • “D2D communication” as a classification of “D2D”, it is described as “D2D communication”.
  • the D2D connection is a unicast D2D connection, but the application destination of the present invention is not limited to unicast.
  • processing such as UE capability acquisition, connection parameter determination, and D2D connection establishment described in the present embodiment may be applied to a group cast D2D connection of 1 to N (N is an integer of 2 or more).
  • connection in the present embodiment means logical connection between devices, and more specifically, means that D2D communication using connection parameters can be performed between devices. To do.
  • the application destination of the present invention is not limited to LTE, but in the implementation of unicast communication in the present embodiment, since a D2D signal defined by LTE can be used, first, it is defined by LTE. An outline of the D2D technology being used will be described.
  • the user apparatus UE in this Embodiment can perform transmission / reception of the D2D signal by the said technique.
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery As shown in FIG. 2A, for each Discovery period (also referred to as PSDCH (Physical Sidelink Discovery Channel) period), a resource pool for the Discovery message is secured, and the user apparatus UE within the resource pool A Discovery message (discovery signal) is transmitted. More specifically, there are Type 1 and Type 2b.
  • Type 1 the user apparatus autonomously selects a transmission resource from the resource pool.
  • Type 2b a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
  • a resource pool for SCI (Sidelink Control Information) / data transmission is periodically secured.
  • the user apparatus on the transmission side notifies the reception side of the data transmission resource or the like by SCI with the resource selected from the Control resource pool (PSCCH (Physical Sidelink Control Channel) resource pool), and transmits the data with the data transmission resource.
  • PSCCH Physical Sidelink Control Channel
  • “D2D communication” includes Mode1 and Mode2.
  • resources are dynamically allocated by (E) PDCCH ((Enhanced) Physical Downlink Control Channel) sent from the base station to the user apparatus.
  • PDCCH Physical Downlink Control Channel
  • the user apparatus UE autonomously selects transmission resources from the resource pool.
  • the resource pool is notified by SIB (System Information Block) or a predefined one is used.
  • PSDCH Physical Downlink Control Information
  • PSCCH Physical Downlink Control Information
  • PSSCH PhysicalSSidelink Shared Channel
  • a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D communication includes at least a MAC header, a MAC control element, a MAC SDU (Service Data Unit), and padding.
  • the MAC PDU may contain other information.
  • the MAC header is composed of one SL-SCH (Sidelink Shared Channel) subheader and one or more MAC PDU subheaders.
  • the SL-SCH subheader includes a MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like.
  • V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus.
  • Information relating to the transmission source is set in the transmission source information.
  • An identifier related to the ProSe UE ID may be set in the transmission source information.
  • Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
  • FIG. 5 An example of the D2D channel structure is shown in FIG. As shown in FIG. 5, a PSCCH resource pool and a PSSCH resource pool used for “D2D communication” are allocated. Also, a PSDCH resource pool used for “D2D discovery” is assigned with a period longer than the period of the channel of “D2D communication”.
  • PSSS Primary Sidelink Synchronization signal
  • SSSS Secondary Sidelink Synchronization signal
  • PSBCH Physical Sidelink Broadcast Channel
  • notification information such as D2D system band, frame number, and resource configuration information is used for an operation outside the coverage.
  • FIG. 6A shows an example of a PSDCH resource pool used for “D2D discovery”. Since the resource pool is set by the bitmap of the subframe, it becomes an image resource pool as shown in FIG. 6A. The same applies to the resource pools of other channels.
  • the PSDCH is repeatedly transmitted while being frequency hopped. The number of repetitions can be set from 0 to 3, for example. Also, as shown in FIG. 6B, PSDCH has a PUSCH-based structure and has a structure in which DM-RS (demodulation reference signal) is inserted.
  • DM-RS demodulation reference signal
  • FIG. 7A shows an example of the PSCCH and PSSCH resource pool used for “D2D communication”.
  • the PSCCH is repeatedly transmitted (repetition) once while frequency hopping.
  • the PSSCH is repeatedly transmitted three times while performing frequency hopping.
  • PSCCH and PSSCH have a PUSCH-based structure, and have a structure in which DM-RS is inserted.
  • FIGS. 8A and 8B show examples of resource pool configuration in PSCCH, PSDCH, and PSSCH (Mode 2).
  • the resource pool is represented as a subframe bitmap.
  • the bitmap is num. Repeated for the number of repetitions. Also, an offset indicating the start position in each cycle is specified.
  • FIG. 8B shows an example of discontinuous allocation, and a start PRB, an end PRB, and the number of PRBs (numPRB) are designated as illustrated.
  • FIG. 9 is a diagram illustrating a configuration example of a radio communication system according to the present embodiment.
  • the radio communication system according to the present embodiment includes an NW (network) device 20, a user device UE1, and a user device UE2.
  • NW network
  • both the user apparatus UE1 and the user apparatus UE2 have both a transmission function and a reception function.
  • the user apparatus UE1 and the user apparatus UE2 are described as UE1 and UE2, respectively.
  • UE1 and UE2 are not particularly distinguished, they are simply described as “UE”.
  • UE may be referred to as “terminal”.
  • UE1 and UE2 perform different operations, but UE1 and UE2 have the same function, UE2 includes the function of UE1, and UE1 includes the function of UE2.
  • the application destination of the present invention is not limited to LTE, but as an example, UE1 and UE2 shown in FIG. 9 each have a function of cellular communication as a UE in LTE, and signal transmission / reception on the above-described channel. It has D2D function including.
  • UE1 and UE2 have a function of executing an operation described in the present embodiment. Note that the cellular communication function and the existing D2D function may have only a part of functions (a range in which the operation described in this embodiment can be performed) or all functions. May be.
  • the UE may be any device having a D2D function.
  • the UE is a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function), or the like.
  • the UE according to the present embodiment may be a UE having a capability of transmitting and receiving only at one frequency (one carrier), or a UE having a capability of transmitting and receiving simultaneously at a plurality of frequencies (multiple carriers). It may be.
  • the UE according to the present embodiment performs processing similar to processing such as transmission power control, link adaptation, MIMO transmission / reception, HARQ / CSI feedback, and the like performed between the UE and the eNB in LTE with other UEs. The function to perform between.
  • the NW device 20 is assumed to be a base station, for example, but is a device on the network side higher than the base station (for example, an MME in LTE, a D2D management server, etc.) Also good. Further, the NW device 20 may be a device (system) including a base station and a higher-level network side device.
  • connection establishment is a state in which UE1 and UE2 each hold connection parameters and can perform unicast D2D communication using the connection parameters.
  • connection state is a state in which UE1 and UE2 each hold connection parameters and can perform unicast D2D communication using the connection parameters.
  • Each of UE1 and UE2 may manage the state where the unicast D2D connection is established as the D2D CONNECTED state (connection state) (hold information indicating that it is in the D2D CONNECTED state).
  • the UE transmits a connection request (connection request) for unicast D2D connection with another UE to the NW device 20. Then, the NW device 20 determines connection parameters for each of the two UEs that perform unicast D2D connection based on the unicast D2D communication capability (UE capability) of each UE that is held, and determines the connection parameters. Transmit to each UE. When each UE receives a connection parameter from the NW device 20, it becomes possible to perform unicast D2D communication using the connection parameter. That is, a unicast D2D connection is established between UEs.
  • connection request connection request
  • the NW device 20 determines connection parameters for each of the two UEs that perform unicast D2D connection based on the unicast D2D communication capability (UE capability) of each UE that is held, and determines the connection parameters. Transmit to each UE.
  • UE capability unicast D2D communication capability
  • connection parameters for each of the two UEs may be the same or different between the two UEs.
  • UE capabilities are exchanged between UEs, and connection parameters for establishing a unicast D2D connection are determined by negotiation between UEs.
  • connection parameters also referred to as communication parameters
  • the above is an example, and parameters other than the above may be included. In addition, only some of the above parameters may be used. For example, when the carrier (one carrier or two carriers for transmission / reception) used in unicast D2D communication is determined in advance (eg, when notified in advance by system information, etc.) The carrier information may not be included in the connection parameter notified from the NW device 20 (or negotiated between UEs).
  • processing sequence examples 1 to 4 will be described as examples of processing sequences for network-assisted connection in the wireless communication system shown in FIG. 9, and processing sequence examples 5 and 6 will be described as examples of processing sequences for terminal autonomous connection. explain. In addition, an example of the operation of determining whether to select terminal autonomous connection or network assist connection will be described.
  • a unicast D2D connection is established between UE1 and UE2.
  • UE 2 makes a connection request to NW device 20.
  • a UE that makes a connection request to the NW device 20 may be referred to as a “requesting terminal”, and a UE with which the “requesting terminal” is a unicast D2D communication partner may be referred to as a “requested terminal”.
  • UE2 becomes a requesting terminal and UE1 becomes a requested terminal.
  • UE1 that is a requested terminal is in an RRC CONNECTED state (hereinafter simply referred to as a CONNECTED state) with respect to NW device 20.
  • the user apparatus UE2 that is the requesting terminal is also in the CONNECTED state.
  • the connection to the NW device 20 is performed before step S102, and the CONNECTED state is set.
  • both UE1 and UE2 notify their NW device 20 of their own UE capability (UE capability), and the NW device 20 holds the UE capability for each UE.
  • UE capability UE capability
  • the discovery signal may be a signal transmitted by the PSDCH described above, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or an existing D2D signal. It may be a signal transmitted on a channel other than the channel.
  • the discovery signal includes the ID of UE1. This ID may be an ID for D2D (for side link), or an ID that serves as both an ID for D2D and an ID for cellular communication.
  • the discovery signal may include both the D2D ID and the cellular communication ID.
  • the discovery signal may include an operator ID that is an ID of an operator to which the UE 1 belongs. Note that “cellular communication” in the present embodiment refers to communication between UEs performed via the NW device 20.
  • step S101 UE2 receives the discovery signal from UE1.
  • the UE 2 determines that the unicast D2D connection is performed between the UE 2 and the UE 1 by using the network assist connection by a determination operation described later, and transmits a connection request to the NW device 20 (step S102).
  • the connection request transmitted in step S102 includes the ID of UE1 that is the communication partner of UE2.
  • This ID may be an ID for D2D, or an ID that serves as both an ID for D2D and an ID for cellular communication.
  • the connection request may include both the D2D ID and the cellular communication ID.
  • the connection request may include an operator ID that is an ID of an operator to which the UE 1 belongs.
  • the connection request includes the ID of UE2.
  • the ID of UE1 is ID1, and the ID of UE2 is ID2.
  • connection request may further include all or part of the following information (1) to (3).
  • Channel quality for example, reception level, reception quality, propagation loss
  • Desired QoS and / or desired communication type desired by UE2 in unicast D2D communication with UE1 eg, information indicating whether or not GBR, desired bit rate
  • the NW device 20 that has received the connection request in step S102 uses the ID1 and ID2 from the UE capabilities for each UE stored in the memory or the like, thereby enabling the UE capability corresponding to the UE1 (UE capability 1).
  • the UE capability (UE capability 2) corresponding to UE2 is acquired.
  • the NW device 20 determines a communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1 and the UE capability 2, and determines the unicast D2D as the communication path.
  • the connection parameters for UE1 and UE2 are determined, and the determined connection parameters are transmitted to UE1 and UE2 respectively (steps S103 and S104).
  • the NW device 20 when the NW device 20 detects that the UE 1 does not have the unicast D2D capability based on the UE capability 1 of the UE 1 that is the requested terminal, the NW device 20 performs the communication between the UE 1 and the UE 2 in the cellular communication. Decide to communicate. In this case, for example, the cellular communication is instructed to the UE 2 without determining / notifying the connection parameter.
  • Communication paths other than unicast D2D may include communication via a relay terminal in addition to cellular communication.
  • the NW device 20 detects that the channel quality included in the connection request is lower (bad) than a value necessary for securing the desired QoS level (or desired communication type), the UE 1 performs cellular communication. And decide to perform communication between UE2.
  • the NW device 20 determines the connection parameters within a range not exceeding the UE capability 1 and the UE capability 2, for example. For example, when the NW device 20 grasps that the UE1 has the capability of MIMO transmission / reception of two layers and knows that the UE2 has the capability of MIMO transmission / reception of four layers, the NW device 20 transmits and receives the MIMO transmission / reception to each of the UE1 and UE2. “2 layers” is notified as a spatial multiplexing parameter. In this case, UE1 and UE2 perform unicast D2D connection establishment using "2 layers" as a spatial multiplexing parameter. That is, each of UE1 and UE2 sets (2 layers) as a spatial multiplexing parameter, and manages (controls) to perform unicast D2D communication using the “2 layers”.
  • the NW device 20 determines a larger transmission power (transmission power not exceeding the UE capability) as a parameter when the quality is lower than when the quality is higher, Notice.
  • connection is established between UE1 and UE2 that have received the connection parameters in steps S103 and S104, and unicast D2D communication is started (step S105).
  • UE1 and UE2 receive connection parameters from NW device 20
  • UE2 sends a connection request for connection permission to UE1 (or from UE1 to UE2), and from UE1 to UE2 (or from UE2 to UE1).
  • Connection establishment may be performed after connection permission is transmitted.
  • connection state connection state
  • UE1 changes the state of D2D connection when it transmits connection permission to UE2.
  • the connection state (connection establishment state) is set, and unicast D2D communication starts thereafter.
  • each UE When unicast D2D communication is started, when transmission data is generated, each UE transmits the transmission data using resources, a transmission method, and the like according to its connection parameters related to connection establishment, The received signal is monitored (demodulation and decoding operations are performed) using resources, reception methods, etc. according to its own connection parameters.
  • Network assist connection Processing sequence example 2
  • UE1 that is a requested terminal is in a CONNECTED state with respect to the NW device 20.
  • the requesting terminal UE2 is also in the CONNECTED state. Or if it is an IDLE state, it will connect to the NW apparatus 20 before step S201, and will be in a CONNECTED state.
  • both UE1 and UE2 notify their NW device 20 of their own UE capability (UE capability), and the NW device 20 holds the UE capability for each UE.
  • UE capability UE capability
  • UE1 does not transmit a discovery signal.
  • UE1 transmits a discovery signal, but UE2 does not (cannot) receive the discovery signal.
  • UE2 does not measure (cannot measure) the reception level of the signal from UE1.
  • UE2 knows the ID of UE1 and wishes to make a unicast D2D connection with UE1.
  • step S201 UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20.
  • the information included in the connection request is as described above. However, in this example, channel quality information is not included in the connection request. Note that UE2 may include information indicating that a discovery signal has not been received from UE1 in the connection request.
  • the NW device 20 that has received the connection request in step S201 detects that the channel quality information is not included in the connection request (or includes information indicating that the discovery signal has not been received from the UE1). If it is detected), a discovery signal transmission instruction is transmitted to UE1 (step S202), and a discovery signal reception instruction is transmitted to UE2 (step S203).
  • the discovery signal transmission instruction includes information on a resource (for example, one or more of a carrier, a frequency resource, and a time resource) used for transmission of the discovery signal, and the discovery signal reception instruction also includes information on the resource. Contains information. Thereby, UE2 can receive the discovery signal transmitted from UE1 efficiently.
  • the NW device 20 transmits a discovery signal transmission instruction to the UE 1 and transmits a discovery signal reception instruction to the UE 2. Instead, the NW device 20 transmits to the UE 2. It is good also as transmitting a discovery signal transmission instruction
  • step S204 a discovery signal is transmitted from UE1 according to the instruction, and UE2 receives the discovery signal and measures the channel quality between UE1 and UE2.
  • step S205 UE2 transmits information on the channel quality to NW device 20.
  • measurement and reporting of channel quality between UE1 and UE2 in UE2 may be performed only when the measurement instruction is included in the discovery signal reception instruction received from NW device 20.
  • the NW device 20 receives the communication path (unicast D2D or cellular) between the UE1 and the UE2 based on the UE capability 1 and the UE capability 2 as in the case of the processing sequence example 1.
  • the communication path (unicast D2D or cellular) between the UE1 and the UE2 based on the UE capability 1 and the UE capability 2 as in the case of the processing sequence example 1.
  • connection parameters for UE1 and UE2 are determined, and the determined connection parameters are transmitted to UE1 and UE2 respectively (steps S206 and S207).
  • a connection is established between UE1 and UE2, and unicast D2D communication is started (step S208).
  • the channel quality information between UEs reported from the UE is used in the determination of the communication path and the determination of the connection parameter in the NW device 20, but the channel quality information Is not essential, and the communication path and the connection parameter may be determined only from the UE capability, for example, without using the channel quality information.
  • UE1 that is a requested terminal is assumed to be in the IDLE state with respect to NW device 20.
  • the requesting terminal UE2 is in the CONNECTED state.
  • both UE1 and UE2 notify the NW device 20 of their own UE capabilities (UE capability), and the NW device 20 holds the UE capability for each UE.
  • the NW device 20 holds state information (information indicating whether it is a CONNECTED state or an IDLE state) for each UE.
  • step S301 UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20.
  • This connection request is, for example, a connection request similar to the connection request in step S102 shown in FIG. 10, and the information included in the connection request is as described above.
  • the NW device 20 that has received the connection request, similarly to the case of the processing sequence example 1, determines the communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1, the UE capability 2, and the like. ), And when unicast D2D is determined as the communication path, the connection parameters for UE1 and UE2 are determined.
  • the communication path unicast D2D or cellular communication
  • the NW device 20 transmits a special paging message to the UE 1 (step S302).
  • the NW device 20 uses the location information of the requested terminal (UE1) included in the connection request to transmit a special paging message. May be selected.
  • a UE in IDLE state that has received a normal paging message performs RRC connection establishment processing through a random access procedure and enters a CONNECTED state.
  • the paging message transmitted in step S302 of this example causes UE1 to receive information on a specific resource without causing UE1 to transition to the CONNECTED state.
  • the signaling overhead concerning the transition to the CONNECTED state such as the random access procedure and the RRC connection establishment process can be reduced.
  • the paging message transmitted in step S302 includes a special flag (special ⁇ flag).
  • the UE1 recognizes that the paging message is a special paging message by detecting the flag in the paging message, and performs the following operation without performing the operation for transitioning to the CONNECTED state.
  • the UE 1 that has received the paging message performs monitoring (demodulation / decoding operation) on resources in a predetermined downlink control CH (channel) search space.
  • monitoring demodulation / decoding operation
  • the time length for monitoring may be limited to a predetermined time length from the time when the paging message is received.
  • the NW device 20 uses the resources in the downlink control CH search space to transmit a connection parameter addressed to the UE1, and the UE1 receives the connection parameter (step S303).
  • the information indicating the downlink control CH search space (eg, information on the time frequency domain) is notified to the UE 1 by system information (eg, specific SIB) broadcast from the NW device 20, for example.
  • system information eg, specific SIB
  • the ID of UE1 is included in the system information, and UE1 can acquire individual information addressed to UE1 (information indicating the downlink control CH search space).
  • the system information is changed, for example, by including the above information in the system information, the change is notified to the UE by paging or the like, but as described above, the information addressed to UE1 is added to the system information. Therefore, it is not necessary to notify other than UE1 of the change of system information.
  • connection parameter notification in step S303 may be performed using system information in the same manner as the notification of information indicating the downlink control CH search space.
  • step S304 the connection parameters for UE2 are notified to UE2, unicast D2D connection is established, and unicast D2D communication is started (step S305).
  • step S401 UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20.
  • the NW device 20 that has received the connection request, similarly to the case of the processing sequence example 1, determines the communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1, the UE capability 2, and the like. ), And when unicast D2D is determined as the communication path, the connection parameters for UE1 and UE2 are determined.
  • the communication path unicast D2D or cellular communication
  • the NW device 20 transmits a special paging message (including a special flag) to the UE 1 (step S402).
  • the paging message is for causing UE1 to perform terminal autonomous connection without causing UE1 to transition to the CONNECTED state.
  • UE1 recognizes that this paging message is a special paging message by detecting the flag in the paging message, and performs terminal autonomous connection without performing an operation for transitioning to the CONNECTED state. Execute (Step S404). Details of the terminal autonomous connection will be described later.
  • setting information transmission carrier, reception carrier, transmission resource, reception resource, etc.
  • setting information for discovery signal transmission / reception for terminal autonomous connection based on system information from the NW device 20 to the UE1 and UE2 UE1 (and UE2) transmit discovery signals or receive discovery signals in accordance with the setting information, and establish connection as described later.
  • the UE 2 may be notified of information instructing terminal autonomous connection.
  • UE2 which received this notification can determine performing terminal autonomous connection. If the notification is not performed, the UE 2 decides to perform the terminal autonomous connection when, for example, the connection parameter is not received from the NW device 20 even after a predetermined time has elapsed since the connection request is transmitted. Also good.
  • the NW device 20 is supposed to transmit a special paging message to the UE 1 by using a connection request from the UE 2 to the NW device 20 as a trigger. It is not limited to the connection request. Even if there is no connection request, for example, a special paging message may be transmitted to the UE triggered by the arrival of a certain time. Further, when both the UE1 and UE2 are in the IDLE state, the NW device 20 may transmit a special paging message to both the UE1 and the UE2 when the unicast D2D connection is made between the UE1 and the UE2. Good. In this case, both UE1 and UE2 can establish connection by, for example, terminal autonomous connection without transitioning to the CONNECTED state.
  • D2D Downlink Reference Signal
  • cellular Downlink Reference Signal
  • a transmission / reception subframe in D2D connection can be set as a connection parameter, for example, simultaneous transmission / reception with a cellular link can be avoided.
  • Terminal autonomous connection processing sequence example 5
  • the process sequence example 5 which is an example of a terminal autonomous connection is demonstrated.
  • step S501 UE1 transmits a discovery signal including UE capability 1 which is UE capability of UE1, UE2 receives the discovery signal, and UE2 detects discovery signal including UE capability 2 which is UE capability of UE2.
  • UE1 receives the discovery signal.
  • UE1 can acquire UE capability 2 of UE2, and UE2 can acquire UE capability 1 of UE1.
  • the discovery signal may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or other than an existing D2D channel It may be a signal transmitted on the other channel.
  • UE2 when UE2 detects that the quality of the discovery signal received from UE1 is better than a predetermined threshold and UE1 has the capability of unicast D2D, it performs terminal autonomous connection with UE1. And a connection request is transmitted to UE1.
  • the connection request may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or an existing D2D channel. It may be a signal transmitted on a channel other than.
  • the connection request includes, for example, the ID of the request source UE 2 and the ID of the connection request destination UE 1.
  • the connection request includes information indicating that a unicast D2D connection is desired.
  • connection permission may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or other than an existing D2D channel It may be a signal transmitted on the other channel.
  • step S504 UE1 transmits a connection parameter desired to be used in UE1 to UE2, and UE2 transmits a connection parameter desired to be used in UE2 to UE1. For example, if UE1 determines that the connection parameter received from UE2 matches (eg, is the same as) the connection parameter desired by UE1, it transmits information indicating that the connection parameter received from UE2 is accepted to UE2. When UE2 determines that the connection parameter received from UE1 matches the connection parameter desired by UE2, information indicating that the connection parameter received from UE1 is accepted is transmitted to UE1. Thereby, the mutual connection parameters are determined, and the connection is established in step S505 using the connection parameters, and unicast D2D communication is started.
  • UE1 when there is a parameter that UE1 desires to modify among the connection parameters received from UE2, UE1 notifies UE2 of the modified parameter, for example, when 4 layer transmission is desired to be 2 layer transmission. In this way, negotiation is performed, and parameters are corrected and determined.
  • connection parameters desired by the UE 2 may be included in the connection request in step S502. Further, the connection parameter desired by UE1 may be included in the connection permission in step S503.
  • the UE transmits a large-capacity discovery signal including the UE capability once every two discovery signal transmissions. Note that once every two times is an example, and in general, transmission may be performed once every N times (N is an integer of 2 or more).
  • the transmittable discovery signal format may be limited for each TTI or for each subframe. Further, for example, the discovery signal format may be set in resource pool cycle units, SFN units, or DFN units by setting in system information or in advance. Further, a message-based discovery signal composed of control signals / data may be used as the discovery signal.
  • the UE may transmit the UE capability in a message different from the discovery signal message.
  • the discovery-side UE includes information on time-frequency resources for UE capability notification (reception), and the receiving-side UE Resources may be used to receive UE capabilities.
  • a common identifier may be included in the discovery signal message and the UE capability message that form a pair.
  • the message size is made common by zero padding or the like, and both are set by flags in the message. It may be possible to identify them.
  • the UE may transmit the discovery signal and the UE capability on different channels.
  • Terminal autonomous connection processing sequence example 6
  • FIG. 16 a processing sequence example 6 which is another example of the terminal autonomous connection will be described.
  • differences from the processing sequence example 5 will be mainly described.
  • step S601 UE1 and UE2 transmit and receive discovery signals, respectively.
  • the discovery signal does not include the UE capability.
  • UE2 determines to perform terminal autonomous connection with UE1, and transmits a connection request and the UE capability of UE2 to UE1 (step S602).
  • the UE1 When the UE1 permits the unicast D2D connection with the UE2, the UE1 transmits the connection permission and the UE capability of the UE1 to the UE2.
  • connection parameters of the UE1 and the UE2 are determined (step S604), the connection is established in the step S605, and the unicast D2D communication is started.
  • the relayable UE when the UE that can relay the communication of the UE1 receives the connection request transmitted from the UE2, the relayable UE responds (connection permission). May be transmitted to UE2. In this case, even if UE1 cannot establish unicast D2D connection with UE2, unicast communication can be performed on the route of “UE2-relay capable UE-UE1”.
  • the UE in the present embodiment can determine, for example, the method described below, which one of the terminal autonomous connection and the network assist connection is used in establishing the unicast D2D connection. Three examples (options 1 to 3) will be described below. The following description is based on the configuration example shown in FIG.
  • UE2 determines whether to use terminal autonomous connection or network assist connection based on the discovery signal received from UE1.
  • information necessary for determination eg, whether UE1 is in the RRC connection state, the ID of the cell to which UE1 is connected, the ID of the operator to which UE1 belongs.
  • UE2 Based on the discovery signal received from UE1, UE2, for example, determines that network assist connection is possible and determines to perform network assist connection when UE1 is in the RRC connection state in the same cell as UE2. Further, for example, when the operator to which UE1 belongs is different from the operator of UE2, UE2 determines not to perform network assist connection.
  • Option 1 makes it possible to establish a connection according to the state of the UE that is the communication partner, and to reduce the connection delay and connection failure probability.
  • ⁇ Option 2 Judgment based on instructions from NW device>
  • the UE 2 when the UE 2 is set to use the network assist connection from the network (specifically, the NW device 20 in this example), the UE 2 sets the setting. Accordingly, it is determined that the network assist connection is performed (that is, the connection request is transmitted to the NW device 20).
  • option 2 by setting to use network-assisted connection, it is possible to determine whether or not unicast D2D connection is permitted on the network side, and efficient cellular / D2D communication path selection is possible. . For example, it is possible to determine that unicast D2D is permitted only at the cell edge.
  • Option 3 Judgment based on presence / absence of communication partner UE, capability information>
  • UE2 cannot discover UE1 that it wants to be a communication partner of unicast D2D (when it does not receive a discovery signal from UE1), or it can discover channel quality (reception level). , Reception quality, etc.) is below a predetermined threshold, or when the UE capability of UE1 is unknown, connection establishment with a network-assisted connection is attempted.
  • Option 3 is preferably applicable when the communication partner is not transmitting a discovery signal, when the UE 2 is not monitoring communication between terminals, or when terminal autonomous connection has failed.
  • FIG. 18 is a diagram illustrating an example of a functional configuration of the UE according to the embodiment.
  • the UE includes a signal transmission unit 101, a signal reception unit 102, a determination unit 103, and a communication control unit 104.
  • FIG. 18 shows only functional units that are particularly related to the embodiment of the present invention in the UE, and has at least a function (not shown) for performing an operation based on LTE. Further, the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 101 has a D2D signal transmission function and a cellular communication transmission function.
  • the D2D signal transmission function creates a D2D transmission signal and transmits the signal wirelessly.
  • the transmission function of cellular communication creates a transmission signal to be transmitted by UL of cellular communication and transmits the signal wirelessly.
  • the signal receiving unit 102 includes a function of wirelessly receiving various signals from other user devices or the NW device 20, and acquiring higher layer signals from the received physical layer signals.
  • the signal receiving unit 102 has a D2D signal reception function and a cellular communication reception function.
  • the determination unit 103 determines whether to perform unicast D2D connection by terminal autonomous connection or unicast D2D connection by network assist connection by the method described with reference to FIGS. 17A to 17C, for example. The determination result is notified to the communication control unit 104.
  • the communication control unit 104 controls the signal transmission unit 101 / signal reception unit 102 to cause the signal transmission unit 101 / signal reception unit 102 to execute the operation of the UE described with reference to the processing sequence examples 1 to 6.
  • the communication control unit 104 also includes a storage unit that holds connection parameters and setting information received from the NW device 20, and controls the signal transmission unit 101 / signal reception unit 102 according to the connection parameters / setting information stored in the storage unit. To do. Further, the communication control unit 104 holds state information indicating whether or not a unicast D2D connection is established.
  • the communication control unit 104 determines the connection parameter, the ID of the communication partner UE, and the unicast D2D connection. Status information including information indicating the established state is held. Note that “establishing a D2D connection using connection parameters” means that the UE is set in a state where D2D communication can be performed by using (setting) the connection parameters. If there is transmission data, the transmission is performed and the reception signal is monitored.
  • FIG. 19 is a diagram illustrating an example of a functional configuration of the NW device 20 according to the present embodiment.
  • the NW device 20 includes a signal transmission unit 201, a signal reception unit 202, a determination unit 203, and a communication control unit 204.
  • FIG. 19 shows only functional units that are particularly related to the embodiment of the present invention in the NW device 20, and has at least a function (not shown) for performing an operation based on LTE.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating a signal to be transmitted to the UE side and transmitting the signal to the UE side.
  • the signal reception unit 202 includes a function of receiving various signals transmitted from the UE, and acquiring, for example, higher layer information from the received signals.
  • the determination unit 203 determines a communication path and a connection parameter by the method described so far.
  • the communication control unit 204 causes the signal transmission unit 201 / signal reception unit 202 to execute the operations of the NW device 20 described with reference to the processing sequence examples 1 to 4 other than the communication path determination operation and the connection parameter determination operation.
  • the signal transmission unit 201 / signal reception unit 202 are controlled as described above.
  • each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
  • both the UE and the NW device 20 in an embodiment of the present invention may function as a computer that performs processing according to the present embodiment.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of the UE and the NW device 20 according to the embodiment.
  • the above-described UE and NW device 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the UE and the NW device 20 may be configured to include one or a plurality of devices indicated by 1001 to 1006 shown in the figure, or may be configured not to include some devices. Good.
  • Each function in the UE and the NW device 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculation, and communication by the communication device 1004, memory 1002 and storage This is realized by controlling reading and / or writing of data in 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 101, the signal reception unit 102, the determination unit 103, and the communication control unit 104 of the user apparatus UE may be realized by a control program stored in the memory 1002 and operating on the processor 1001.
  • the signal transmission unit 201, the signal reception unit 202, the reception unit 203, the determination unit 204, the determination unit 203, and the communication control unit 204 of the NW device 20 are realized by a control program stored in the memory 1002 and operating on the processor 1001. May be.
  • a control program stored in the memory 1002 and operating on the processor 1001. May be.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 101 and the signal reception unit 102 of the UE may be realized by the communication device 1004.
  • the signal transmission unit 201 and the signal reception unit 202 of the NW device 20 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the UE and NW device include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • a user apparatus that supports D2D, which transmits a connection request for D2D connection between the user apparatus and another user apparatus to a network apparatus. And a receiving unit that receives connection parameters for the D2D connection from the network device, and a control unit that establishes the D2D connection using the connection parameters. .
  • the above configuration makes it possible to establish a D2D connection using appropriate connection parameters between user apparatuses.
  • connection request includes, for example, identification information of the other user device acquired from the discovery signal received by the receiving unit.
  • the network device can appropriately specify the user device of the communication partner.
  • the receiving unit may receive a connection parameter for D2D connection from the network device by monitoring a predetermined search space when a paging message including a predetermined flag is received from the network device. .
  • connection parameters can be received without transitioning to a connected state.
  • a network apparatus that communicates with a user apparatus that supports D2D, and receives a connection request for D2D connection between the user apparatus and another user apparatus from the user apparatus.
  • a determining unit that determines a connection parameter for the D2D connection based on capability information of the user device and capability information of the other user device, and a connection parameter determined by the determining unit.
  • a network device is provided, comprising: a transmission unit that transmits to the user device and transmits the connection parameter determined by the determination unit to the other user device.
  • the above configuration makes it possible to establish a D2D connection using appropriate connection parameters between user apparatuses.
  • the determination unit determines whether to permit the D2D connection based on the capability information of the user device and the capability information of the other user device, and when the D2D connection is permitted,
  • the connection parameters for connection may be determined. With this configuration, it is possible to appropriately determine whether to permit D2D connection based on the capability information.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC signaling, MAC signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC message may be referred to as RRC signaling.
  • the RRC message may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • UE user apparatus eNB base station 101 signal transmission unit 102 signal reception unit 103 determination unit 104 communication control unit 201 signal transmission unit 202 signal reception unit 203 determination unit 204 communication control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user device that supports device-to-device (D2D) communication, wherein the user device is provided with: a transmitter for transmitting, to a network device, a connection request for a D2D connection between the user device and an other user device; a receiver for receiving a connection parameter for the D2D connection from the network device; and a control unit for establishing the D2D connection using the connection parameter.

Description

ユーザ装置、及びネットワーク装置User device and network device
 本発明は、D2Dをサポートするユーザ装置、及び当該ユーザ装置と通信を行うNW(ネットワーク)装置に関する。 The present invention relates to a user device that supports D2D and an NW (network) device that communicates with the user device.
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、4G、FRA(Future Radio Access)、5Gなどともいう)では、ユーザ装置同士が無線基地局を介さないで直接通信を行う方式であるD2D(Device to Device)が検討されている(例えば、非特許文献1)。 In LTE (Long Term Evolution) and LTE successor systems (for example, LTE-A (LTE Advanced), 4G, FRA (Future Radio Access), 5G, etc.), user devices directly do not pass through radio base stations. D2D (Device-to-Device), which is a communication method, has been studied (for example, Non-Patent Document 1).
 D2Dは、ユーザ装置と基地局との間のトラヒックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。 D2D reduces the traffic between the user apparatus and the base station, and enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。 D2D is also called D2D discovery (D2D discovery, also referred to as D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between user devices. ). Hereinafter, when D2D communication, D2D discovery, and the like are not particularly distinguished, they are simply referred to as D2D. A signal transmitted and received in D2D is referred to as a D2D signal.
 また、3GPP(3rd Generation Partnership Project)では、D2D機能を拡張することでV2Xを実現することが検討されている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。 Also, in 3GPP (3rd Generation Partnership Project), it is studied to realize V2X by extending the D2D function. Here, V2X is a part of ITS (Intelligent Transport Systems) and, as shown in FIG. 1, V2V (Vehicle Transport Vehicle) means a communication mode performed between automobiles, and is installed on the side of the road with the automobile. V2I (Vehicle to Infrastructure), which means a communication mode performed between a roadside unit (RSU) and V2N (Vehicle to), which means a communication mode between a car and a driver's mobile terminal Nomadic device) and V2P (Vehicle to Pedestrian) which means a communication mode performed between a car and a pedestrian mobile terminal.
 3GPPにおいて仕様化されている既存のD2D(例えば、非特許文献2、3)は、マルチキャスト通信に最適化された技術である。また、3GPPで検討されているV2Xにおいてもマルチキャストが想定されている。 Existing D2D (for example, Non-Patent Documents 2 and 3) specified in 3GPP is a technology optimized for multicast communication. Multicast is also assumed in V2X, which is being studied by 3GPP.
 そのため、最適化したユニキャスト通信を実現するための機能である送信電力制御、Link adaptation、MIMO、HARQ/CSIフィードバックなどは既存のD2Dにおいてはサポートされていない。一方、今後は、低遅延・高信頼のD2D/V2X通信など、最適化したユニキャスト通信を用いることが望ましいユースケースが増加することが考えられる。 Therefore, transmission power control, link adaptation, MIMO, HARQ / CSI feedback, etc., which are functions for realizing optimized unicast communication, are not supported in existing D2D. On the other hand, in the future, use cases where it is desirable to use optimized unicast communication such as low-latency and high-reliability D2D / V2X communication may increase.
 ユーザ装置間で最適化したユニキャスト通信を実現するためには、各ユーザ装置が、自身の能力と通信相手の能力とに見合った適切な接続パラメータを使用してD2D接続を確立することが必要である。 In order to realize unicast communication optimized between user apparatuses, it is necessary for each user apparatus to establish a D2D connection using an appropriate connection parameter that matches the capabilities of the user apparatus and the communication partner. It is.
 本発明は上記の点に鑑みてなされたものであり、ユーザ装置間で適切な接続パラメータを用いてD2D接続を確立することを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technique that enables D2D connection to be established using appropriate connection parameters between user apparatuses.
 開示の技術によれば、D2Dをサポートするユーザ装置であって、
 前記ユーザ装置と他のユーザ装置との間のD2D接続のための接続要求をネットワーク装置に送信する送信部と、
 前記ネットワーク装置から前記D2D接続のための接続パラメータを受信する受信部と、
 前記接続パラメータを用いて前記D2D接続を確立する制御部と
 を備えることを特徴とするユーザ装置が提供される。
According to the disclosed technology, a user device that supports D2D,
A transmission unit for transmitting a connection request for D2D connection between the user device and another user device to a network device;
A receiving unit for receiving connection parameters for the D2D connection from the network device;
And a control unit that establishes the D2D connection using the connection parameter.
 開示の技術によれば、ユーザ装置間で適切な接続パラメータを用いてD2D接続を確立することを可能とする技術が提供される。 According to the disclosed technology, a technology is provided that makes it possible to establish a D2D connection between user apparatuses using appropriate connection parameters.
V2Xを説明するための図である。It is a figure for demonstrating V2X. D2Dを説明するための図であり、「D2Dディスカバリ」を示す。It is a figure for demonstrating D2D, and shows "D2D discovery." D2Dを説明するための図であり、「D2Dコミュニケーション」を示す。It is a figure for demonstrating D2D, and shows "D2D communication." D2D通信に用いられるMAC PDUを説明するための図である。It is a figure for demonstrating MAC PDU used for D2D communication. SL-SCH subheaderのフォーマットを説明するための図である。It is a figure for demonstrating the format of SL-SCH subheader. D2Dで使用されるチャネル構造の例を説明するための図である。It is a figure for demonstrating the example of the channel structure used by D2D. PSDCHの構造例を示す図であり、リソースプールの例を示す。It is a figure which shows the structural example of PSDCH, and shows the example of a resource pool. PSDCHの構造例を示す図であり、PUSCHベースの構造を示す。It is a figure which shows the structural example of PSDCH, and shows the structure of PUSCH base. PSCCHとPSSCHの構造例を示す図であり、リソースプールの例を示す。It is a figure which shows the structural example of PSCCH and PSSCH, and shows the example of a resource pool. PSCCHとPSSCHの構造例を示す図であり、PUSCHベースの構造を示す。It is a figure which shows the structural example of PSCCH and PSSCH, and shows the structure of PUSCH base. リソースプールコンフィギュレーションを示す図であり、サブフレームを示す。It is a figure which shows resource pool configuration, and shows a sub-frame. リソースプールコンフィギュレーションを示す図であり、リソースブロックを示す。It is a figure which shows a resource pool configuration, and shows a resource block. 本実施の形態に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on this Embodiment. 処理シーケンス例1を示す図である。It is a figure which shows process sequence example 1. FIG. 処理シーケンス例2を示す図である。It is a figure which shows process sequence example 2. FIG. 処理シーケンス例3を示す図である。It is a figure which shows process sequence example 3. FIG. 処理シーケンス例4を示す図である。It is a figure which shows process sequence example 4. FIG. 処理シーケンス例5を示す図である。It is a figure which shows the process sequence example 5. FIG. 端末能力の送信方法の例を説明するための図であり、2回に1回、UE能力を含んだ大容量発見信号を送信する例を示す。It is a figure for demonstrating the example of the transmission method of a terminal capability, and shows the example which transmits the high capacity | capacitance discovery signal containing UE capability once in 2 times. 端末能力の送信方法の例を説明するための図であり、発見信号のメッセージとは別のメッセージでUE能力を送信する例を示す。It is a figure for demonstrating the example of the transmission method of a terminal capability, and shows the example which transmits UE capability by the message different from the message of a discovery signal. 処理シーケンス例6を示す図である。It is a figure which shows the process sequence example 6. FIG. 端末自律接続/ネットワークアシスト接続の判断動作例を説明するための図であり、オプション1を示す。FIG. 9 is a diagram for explaining an example of determining operation of terminal autonomous connection / network assist connection, and shows option 1; 端末自律接続/ネットワークアシスト接続の判断動作例を説明するための図であり、オプション2を示す。FIG. 10 is a diagram for explaining an example of determining operation of terminal autonomous connection / network assist connection, and shows option 2; 端末自律接続/ネットワークアシスト接続の判断動作例を説明するための図であり、オプション3を示す。FIG. 10 is a diagram for explaining an example of determination operation of terminal autonomous connection / network assist connection, and shows option 3; 本実施の形態に係るユーザ装置の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user apparatus which concerns on this Embodiment. 本実施の形態に係るNW装置の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the NW apparatus which concerns on this Embodiment. 本実施の形態に係るユーザ装置及びNW装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the user apparatus and NW apparatus which concern on this Embodiment.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代の通信方式も含む広い意味で使用する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is only an example, and the embodiment to which the present invention is applied is not limited to the following embodiment. For example, although the wireless communication system according to the present embodiment assumes a system based on LTE, the present invention is not limited to LTE and can be applied to other systems. In addition, in this specification and claims, “LTE” corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the fifth generation communication system.
 また、本実施の形態に係る技術は、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含むものである。また、「D2D」の用語は、LTEにおけるD2Dに限らず、端末間通信全般を指すものである。 Also, the technology according to the present embodiment is widely applicable to D2D in general. “D2D” includes V2X as its meaning. Further, the term “D2D” is not limited to D2D in LTE but refers to communication between terminals in general.
 また、本明細書における「通信」は一般的な「通信」を意味し、前述した「D2D」の分類としての「D2Dコミュニケーション」を限定的に指すわけではない。以下、「D2D」の分類としての「D2Dコミュニケーション」に言及する場合には、「D2Dコミュニケーション」と記述する。 In addition, “communication” in this specification means general “communication”, and does not limit “D2D communication” as the classification of “D2D” described above. Hereinafter, when referring to “D2D communication” as a classification of “D2D”, it is described as “D2D communication”.
 また、以下で説明する実施の形態においては、D2D接続はユニキャストのD2D接続であるが、本発明の適用先は、ユニキャストに限られない。例えば、本実施の形態で説明するUE能力取得、接続パラメータ決定、D2D接続確立等の処理を、1対N(Nは2以上の整数)のグループキャストのD2D接続に適用してもよい。また、本実施の形態における「接続」とは、論理的な装置間の接続を意味し、より具体的には、装置間で接続パラメータを使用したD2D通信を行うことが可能であることを意味する。 In the embodiment described below, the D2D connection is a unicast D2D connection, but the application destination of the present invention is not limited to unicast. For example, processing such as UE capability acquisition, connection parameter determination, and D2D connection establishment described in the present embodiment may be applied to a group cast D2D connection of 1 to N (N is an integer of 2 or more). In addition, “connection” in the present embodiment means logical connection between devices, and more specifically, means that D2D communication using connection parameters can be performed between devices. To do.
 (D2Dの概要)
 上述したように、本発明の適用先はLTEに限定されないが、本実施の形態におけるユニキャスト通信の実施において、LTEで規定されているD2Dの信号を用いることができるので、まずは、LTEで規定されているD2Dの技術の概要について説明する。本実施の形態におけるユーザ装置UEは、当該技術によるD2D信号の送受信を行うことができる。
(Outline of D2D)
As described above, the application destination of the present invention is not limited to LTE, but in the implementation of unicast communication in the present embodiment, since a D2D signal defined by LTE can be used, first, it is defined by LTE. An outline of the D2D technology being used will be described. The user apparatus UE in this Embodiment can perform transmission / reception of the D2D signal by the said technique.
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図2Aに示すように、Discovery period(PSDCH(Physical Sidelink Discovery Channel) periodとも呼ばれる)毎に、Discoveryメッセージ用のリソースプールが確保され、ユーザ装置UEはそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、ユーザ装置が自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。 As already explained, D2D is broadly divided into “D2D discovery” and “D2D communication”. As for “D2D discovery”, as shown in FIG. 2A, for each Discovery period (also referred to as PSDCH (Physical Sidelink Discovery Channel) period), a resource pool for the Discovery message is secured, and the user apparatus UE within the resource pool A Discovery message (discovery signal) is transmitted. More specifically, there are Type 1 and Type 2b. In Type 1, the user apparatus autonomously selects a transmission resource from the resource pool. In Type 2b, a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
 「D2Dコミュニケーション」についても、図2Bに示すように、SCI(Sidelink Control Information)/データ送信用のリソースプールが周期的に確保される。送信側のユーザ装置はControlリソースプール(PSCCH(Physical Sidelink Control Channel)リソースプール)から選択されたリソースでSCIによりデータ送信用リソース等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、基地局からユーザ装置に送られる(E)PDCCH((Enhanced)Physical Downlink Control Channel)によりダイナミックにリソースが割り当てられる。Mode2では、ユーザ装置UEはリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIB(System Information Block)で通知されたり、予め定義されたものが使用される。 As for "D2D communication", as shown in FIG. 2B, a resource pool for SCI (Sidelink Control Information) / data transmission is periodically secured. The user apparatus on the transmission side notifies the reception side of the data transmission resource or the like by SCI with the resource selected from the Control resource pool (PSCCH (Physical Sidelink Control Channel) resource pool), and transmits the data with the data transmission resource. . More specifically, “D2D communication” includes Mode1 and Mode2. In Mode 1, resources are dynamically allocated by (E) PDCCH ((Enhanced) Physical Downlink Control Channel) sent from the base station to the user apparatus. In Mode 2, the user apparatus UE autonomously selects transmission resources from the resource pool. The resource pool is notified by SIB (System Information Block) or a predefined one is used.
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCHと称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCHと称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される。 In LTE, a channel used for “D2D discovery” is called PSDCH, a channel for transmitting control information such as SCI in “D2D communication” is called PSCCH, and a channel for transmitting data is PSSCH (PhysicalSSidelink Shared Channel). It is called.
 D2Dの通信に用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、図3に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。 As shown in FIG. 3, a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D communication includes at least a MAC header, a MAC control element, a MAC SDU (Service Data Unit), and padding. The MAC PDU may contain other information. The MAC header is composed of one SL-SCH (Sidelink Shared Channel) subheader and one or more MAC PDU subheaders.
 図4に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、ユーザ装置が用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。 As shown in FIG. 4, the SL-SCH subheader includes a MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like. V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus. Information relating to the transmission source is set in the transmission source information. An identifier related to the ProSe UE ID may be set in the transmission source information. Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
 D2Dのチャネル構造の例を図5に示す。図5に示すように、「D2Dコミュニケーション」に使用されるPSCCHのリソースプール及びPSSCHのリソースプールが割り当てられている。また、「D2Dコミュニケーション」のチャネルの周期よりも長い周期で「D2Dディスカバリ」に使用されるPSDCHのリソースプールが割り当てられている。 An example of the D2D channel structure is shown in FIG. As shown in FIG. 5, a PSCCH resource pool and a PSSCH resource pool used for “D2D communication” are allocated. Also, a PSDCH resource pool used for “D2D discovery” is assigned with a period longer than the period of the channel of “D2D communication”.
 また、D2D用の同期信号としてPSSS(Primary Sidelink Synchronization signal)とSSSS(Secondary Sidelink Synchronization signal)が用いられる。また、例えばカバレッジ外動作のためにD2Dのシステム帯域、フレーム番号、リソース構成情報等の通知情報(broadcast information)を送信するPSBCH(Physical Sidelink Broadcast Channel)が用いられる。 Also, PSSS (Primary Sidelink Synchronization signal) and SSSS (Secondary Sidelink Synchronization signal) are used as synchronization signals for D2D. Further, for example, PSBCH (Physical Sidelink Broadcast Channel) for transmitting notification information (broadcast information) such as D2D system band, frame number, and resource configuration information is used for an operation outside the coverage.
 図6Aに、「D2Dディスカバリ」に使用されるPSDCHのリソースプールの例を示す。リソースプールは、サブフレームのビットマップで設定されるため、図6Aに示すようなイメージのリソースプールになる。他のチャネルのリソースプールも同様である。また、PSDCHは、周波数ホッピングしながら繰り返し送信(repetition)がなされる。繰り返し回数は例えば0~3で設定可能である。また、図6Bに示すように、PSDCHはPUSCHベースの構造を有し、DM-RS(demodulation reference signal)が挿入される構造になっている。 FIG. 6A shows an example of a PSDCH resource pool used for “D2D discovery”. Since the resource pool is set by the bitmap of the subframe, it becomes an image resource pool as shown in FIG. 6A. The same applies to the resource pools of other channels. The PSDCH is repeatedly transmitted while being frequency hopped. The number of repetitions can be set from 0 to 3, for example. Also, as shown in FIG. 6B, PSDCH has a PUSCH-based structure and has a structure in which DM-RS (demodulation reference signal) is inserted.
 図7Aに、「D2Dコミュニケーション」に使用されるPSCCHとPSSCHのリソースプールの例を示す。図7Aに示すとおり、PSCCHは、周波数ホッピングしながら、1回繰り返し送信(repetition)がなされる。PSSCHは、周波数ホッピングしながら、3回繰り返し送信(repetition)がなされる。また、図7Bに示すように、PSCCHとPSSCHはPUSCHベースの構造を有し、DM-RSが挿入される構造になっている。 FIG. 7A shows an example of the PSCCH and PSSCH resource pool used for “D2D communication”. As shown in FIG. 7A, the PSCCH is repeatedly transmitted (repetition) once while frequency hopping. The PSSCH is repeatedly transmitted three times while performing frequency hopping. Also, as shown in FIG. 7B, PSCCH and PSSCH have a PUSCH-based structure, and have a structure in which DM-RS is inserted.
 図8A、Bに、PSCCH、PSDCH、PSSCH(Mode2)におけるリソースプールコンフィギュレーション(configuration)の例を示す。図8Aに示すように、時間方向では、リソースプールはサブフレームビットマップとして表される。また、ビットマップは、num.reprtitionの回数だけ繰り返される。また、各周期における開始位置を示すoffsetが指定される。 FIGS. 8A and 8B show examples of resource pool configuration in PSCCH, PSDCH, and PSSCH (Mode 2). As shown in FIG. 8A, in the time direction, the resource pool is represented as a subframe bitmap. The bitmap is num. Repeated for the number of repetitions. Also, an offset indicating the start position in each cycle is specified.
 周波数方向では、連続割り当て(contiguous)と不連続割り当て(non-contiguous)が可能である。図8Bは、不連続割り当ての例を示しており、図示のとおり、開始PRB、終了PRB、PRB数(numPRB)が指定される。 In the frequency direction, continuous allocation and non-continuous allocation are possible. FIG. 8B shows an example of discontinuous allocation, and a start PRB, an end PRB, and the number of PRBs (numPRB) are designated as illustrated.
 (システム構成)
 図9は、本実施の形態に係る無線通信システムの構成例を示す図である。図9に示すように、本実施の形態に係る無線通信システムは、NW(ネットワーク)装置20、ユーザ装置UE1、及びユーザ装置UE2を有する。図9において、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2をそれぞれ、UE1、UE2と記述する。また、UE1とUE2を特に区別しない場合、単に「UE」と記述する。また、「UE」を「端末」と称する場合がある。また、以下の説明では、UE1とUE2は異なる動作を実行するが、UE1とUE2は同じ機能を有し、UE2はUE1の機能を含み、UE1はUE2の機能を含む。
(System configuration)
FIG. 9 is a diagram illustrating a configuration example of a radio communication system according to the present embodiment. As illustrated in FIG. 9, the radio communication system according to the present embodiment includes an NW (network) device 20, a user device UE1, and a user device UE2. In FIG. 9, both the user apparatus UE1 and the user apparatus UE2 have both a transmission function and a reception function. Hereinafter, the user apparatus UE1 and the user apparatus UE2 are described as UE1 and UE2, respectively. Further, when UE1 and UE2 are not particularly distinguished, they are simply described as “UE”. In addition, “UE” may be referred to as “terminal”. In the following description, UE1 and UE2 perform different operations, but UE1 and UE2 have the same function, UE2 includes the function of UE1, and UE1 includes the function of UE2.
 前述したように、本発明の適用先はLTEに限定されないが、一例として、図9に示すUE1とUE2は、それぞれ、LTEにおけるUEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、UE1とUE2は、本実施の形態で説明する動作を実行する機能を有している。なお、セルラ通信の機能及び既存のD2Dの機能については、一部の機能(本実施の形態で説明する動作を実行できる範囲)のみを有していてもよいし、全ての機能を有していてもよい。 As described above, the application destination of the present invention is not limited to LTE, but as an example, UE1 and UE2 shown in FIG. 9 each have a function of cellular communication as a UE in LTE, and signal transmission / reception on the above-described channel. It has D2D function including. In addition, UE1 and UE2 have a function of executing an operation described in the present embodiment. Note that the cellular communication function and the existing D2D function may have only a part of functions (a range in which the operation described in this embodiment can be performed) or all functions. May be.
 また、UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。本実施の形態に係るUEは、1つの周波数(1つのキャリア)でのみ送受信可能な能力を有するUEであってもよいし、複数の周波数(複数のキャリア)で同時に送受信可能な能力を有するUEであってもよい。また、本実施の形態に係るUEは、LTEにおけるUEとeNBとの間で実施される送信電力制御、Link adaptation、MIMO送受信、HARQ/CSIフィードバックなどの処理と同様の処理を、他のUEとの間で行う機能を備える。 Further, the UE may be any device having a D2D function. For example, the UE is a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function), or the like. The UE according to the present embodiment may be a UE having a capability of transmitting and receiving only at one frequency (one carrier), or a UE having a capability of transmitting and receiving simultaneously at a plurality of frequencies (multiple carriers). It may be. In addition, the UE according to the present embodiment performs processing similar to processing such as transmission power control, link adaptation, MIMO transmission / reception, HARQ / CSI feedback, and the like performed between the UE and the eNB in LTE with other UEs. The function to perform between.
 本実施の形態のNW装置20は、例えば基地局であることを想定しているが、基地局よりも上位のネットワーク側にある装置(一例として、LTEにおけるMME、D2D管理サーバ等)であってもよい。また、NW装置20が、基地局と上位のネットワーク側の装置とを含む装置(システム)であってもよい。 The NW device 20 according to the present embodiment is assumed to be a base station, for example, but is a device on the network side higher than the base station (for example, an MME in LTE, a D2D management server, etc.) Also good. Further, the NW device 20 may be a device (system) including a base station and a higher-level network side device.
 (実施の形態の概要)
 本実施の形態では、UE1とUE2との間のユニキャストD2Dの接続確立(connection establishment)のための方法として、NW装置20からのアシストを利用する「ネットワークアシスト接続」と、UE間で自律的に接続確立を行う「端末自律接続」の2つの方法がある。なお、UE1とUE2との間で「接続確立」がされた状態とは、UE1とUE2がそれぞれ接続パラメータを保持し、当該接続パラメータを用いてユニキャストD2D通信を行うことが可能である状態を意味する。UE1とUE2は、それぞれ、ユニキャストD2Dの接続が確立された状態をD2DのCONNECTED状態(接続状態)として管理(D2DのCONNECTED状態であることを示す情報を保持)してもよい。各方法の概要は以下のとおりである。
(Outline of the embodiment)
In the present embodiment, as a method for unicast D2D connection establishment between UE1 and UE2, "network assist connection" using assist from NW device 20 and autonomous between UEs There are two methods of “terminal autonomous connection” for establishing a connection. The state in which “connection establishment” is performed between UE1 and UE2 is a state in which UE1 and UE2 each hold connection parameters and can perform unicast D2D communication using the connection parameters. means. Each of UE1 and UE2 may manage the state where the unicast D2D connection is established as the D2D CONNECTED state (connection state) (hold information indicating that it is in the D2D CONNECTED state). The outline of each method is as follows.
 ネットワークアシスト接続では、UEはNW装置20に対し、他のUEとの間のユニキャストD2D接続のための接続要求(connection request)を送信する。そして、NW装置20は、保持している各UEのユニキャストD2D通信に関する能力(UE能力)等に基づいて、ユニキャストD2D接続を行う2つのUEのそれぞれに対する接続パラメータを決定し、接続パラメータを各UEに送信する。各UEがNW装置20から接続パラメータを受信することにより、当該接続パラメータを使用してユニキャストD2D通信を行うことが可能となる。すなわち、UE間でユニキャストD2Dの接続確立がなされる。 In network-assisted connection, the UE transmits a connection request (connection request) for unicast D2D connection with another UE to the NW device 20. Then, the NW device 20 determines connection parameters for each of the two UEs that perform unicast D2D connection based on the unicast D2D communication capability (UE capability) of each UE that is held, and determines the connection parameters. Transmit to each UE. When each UE receives a connection parameter from the NW device 20, it becomes possible to perform unicast D2D communication using the connection parameter. That is, a unicast D2D connection is established between UEs.
 なお、2つのUEのそれぞれに対する接続パラメータは、2つのUE間で同じでもよいし、異なっていてもよい。 Note that the connection parameters for each of the two UEs may be the same or different between the two UEs.
 端末自律接続では、UE間でUE能力を交換し、UE間のネゴシエーションによってユニキャストD2D接続確立のための接続パラメータを決定する。 In terminal autonomous connection, UE capabilities are exchanged between UEs, and connection parameters for establishing a unicast D2D connection are determined by negotiation between UEs.
 <接続パラメータの例>
 本実施の形態におけるユニキャストD2D接続のために使用される接続パラメータ(通信パラメータと称してもよい)として、例えば次に示すパラメータがある:送信電力パラメータ、送信キャリア、受信キャリア、送信リソースプール、受信リソースプール、送信サブフレームセット、受信サブフレームセット、MIMO送信モード、HARQフィードバックの有無、CSIフィードバックの有無、CSIフィードバックのモード、UE間L1/L2制御情報フォーマット、セキュリティ。
<Example of connection parameters>
As connection parameters (also referred to as communication parameters) used for unicast D2D connection in the present embodiment, for example, there are the following parameters: transmission power parameter, transmission carrier, reception carrier, transmission resource pool, Reception resource pool, transmission subframe set, reception subframe set, MIMO transmission mode, presence / absence of HARQ feedback, presence / absence of CSI feedback, mode of CSI feedback, inter-UE L1 / L2 control information format, security.
 上記は一例であり、上記以外のパラメータが含まれてもよい。また、上記のパラメータのうちの一部のパラメータのみを使用してもよい。例えば、ユニキャストD2D通信で使用するキャリア(1キャリア、もしくは、送信用・受信用の2キャリア)が、予め定められている場合(例:予めシステム情報等で通知されている場合)には、キャリアの情報を、NW装置20から通知する(あるいはUE間でネゴシエートする)接続パラメータに含めないこととしてもよい。 The above is an example, and parameters other than the above may be included. In addition, only some of the above parameters may be used. For example, when the carrier (one carrier or two carriers for transmission / reception) used in unicast D2D communication is determined in advance (eg, when notified in advance by system information, etc.) The carrier information may not be included in the connection parameter notified from the NW device 20 (or negotiated between UEs).
 以下、図9に示した無線通信システムにおけるネットワークアシスト接続のための処理シーケンスの例として処理シーケンス例1~4を説明し、端末自律接続のための処理シーケンスの例として処理シーケンス例5、6を説明する。また、端末自律接続とネットワークアシスト接続のどちらを選択するかの判断動作例についても説明する。 Hereinafter, processing sequence examples 1 to 4 will be described as examples of processing sequences for network-assisted connection in the wireless communication system shown in FIG. 9, and processing sequence examples 5 and 6 will be described as examples of processing sequences for terminal autonomous connection. explain. In addition, an example of the operation of determining whether to select terminal autonomous connection or network assist connection will be described.
 以下の処理シーケンス例1~6において、UE1とUE2との間でユニキャストD2Dの接続確立を行うものとする。また、処理シーケンス例1~4では、UE2がNW装置20に対する接続要求を行うものとする。NW装置20への接続要求を行うUEを「要求端末」、「要求端末」がユニキャストD2Dの通信相手とするUEを「被要求端末」と呼ぶ場合がある。以下の例では、UE2が要求端末になり、UE1が被要求端末になる。 In the following processing sequence examples 1 to 6, a unicast D2D connection is established between UE1 and UE2. In processing sequence examples 1 to 4, it is assumed that UE 2 makes a connection request to NW device 20. A UE that makes a connection request to the NW device 20 may be referred to as a “requesting terminal”, and a UE with which the “requesting terminal” is a unicast D2D communication partner may be referred to as a “requested terminal”. In the following example, UE2 becomes a requesting terminal and UE1 becomes a requested terminal.
 (ネットワークアシスト接続:処理シーケンス例1)
 まず、図10を参照して、ネットワークアシスト接続における処理シーケンス例1を説明する。図10において、被要求端末であるUE1は、NW装置20に対してRRC CONNECTED状態(以下、単にCONNECTED状態と記述する)にあるものとする。要求端末であるユーザ装置UE2もCONNECTED状態にある。あるいは、RRC IDLE状態(以下、単にIDLE状態と記述する)であれば、ステップS102の前までにNW装置20への接続を行って、CONNECTED状態になる。
(Network Assist Connection: Processing Sequence Example 1)
First, a processing sequence example 1 in network-assisted connection will be described with reference to FIG. In FIG. 10, UE1 that is a requested terminal is in an RRC CONNECTED state (hereinafter simply referred to as a CONNECTED state) with respect to NW device 20. The user apparatus UE2 that is the requesting terminal is also in the CONNECTED state. Alternatively, in the RRC IDLE state (hereinafter simply referred to as the IDLE state), the connection to the NW device 20 is performed before step S102, and the CONNECTED state is set.
 また、UE1とUE2は、いずれも自身のUE能力(UE capability)をNW装置20に通知しており、NW装置20はUE毎のUE能力を保持している。 Further, both UE1 and UE2 notify their NW device 20 of their own UE capability (UE capability), and the NW device 20 holds the UE capability for each UE.
 処理シーケンス例1においては、UE1は、例えば定期的に、発見信号を送信している。発見信号は、前述したPSDCHにより送信される信号であってもよいし、PSDCH以外のD2D用チャネル(例:PSBCH、PSCCH/PSSCH)で送信される信号であってもよいし、既存のD2D用チャネル以外のチャネルで送信される信号であってもよい。発見信号には、UE1のIDが含まれる。このIDは、D2D用(サイドリンク用)のIDであってもよいし、D2D用のIDとセルラ通信用のIDを兼ねるIDでもよい。また、発見信号に、D2D用のIDとセルラ通信用のIDの両方が含まれてもよい。また、発見信号に、UE1が属するオペレータのIDであるオペレータIDが含まれていてもよい。なお、本実施の形態での「セルラ通信」とは、NW装置20を経由して行うUE間の通信のことである。 In Processing Sequence Example 1, UE1 transmits a discovery signal periodically, for example. The discovery signal may be a signal transmitted by the PSDCH described above, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or an existing D2D signal. It may be a signal transmitted on a channel other than the channel. The discovery signal includes the ID of UE1. This ID may be an ID for D2D (for side link), or an ID that serves as both an ID for D2D and an ID for cellular communication. The discovery signal may include both the D2D ID and the cellular communication ID. The discovery signal may include an operator ID that is an ID of an operator to which the UE 1 belongs. Note that “cellular communication” in the present embodiment refers to communication between UEs performed via the NW device 20.
 ステップS101において、UE2は、UE1から発見信号を受信する。UE2は、後述する判断動作により、ネットワークアシスト接続を利用して、UE2とUE1との間でユニキャストD2D接続を行うことを判断し、接続要求をNW装置20に送信する(ステップS102)。 In step S101, UE2 receives the discovery signal from UE1. The UE 2 determines that the unicast D2D connection is performed between the UE 2 and the UE 1 by using the network assist connection by a determination operation described later, and transmits a connection request to the NW device 20 (step S102).
 ステップS102で送信される接続要求には、UE2の通信相手となるUE1のIDが含まれる。このIDは、D2D用のIDであってもよいし、D2D用のIDとセルラ通信用のIDを兼ねるIDでもよい。また、接続要求に、D2D用のIDとセルラ通信用のIDの両方が含まれてもよい。また、接続要求に、UE1が属するオペレータのIDであるオペレータIDが含まれていてもよい。なお、接続要求にはUE2のIDも含まれる。UE1のIDをID1とし、UE2のIDをID2とする。 The connection request transmitted in step S102 includes the ID of UE1 that is the communication partner of UE2. This ID may be an ID for D2D, or an ID that serves as both an ID for D2D and an ID for cellular communication. The connection request may include both the D2D ID and the cellular communication ID. The connection request may include an operator ID that is an ID of an operator to which the UE 1 belongs. The connection request includes the ID of UE2. The ID of UE1 is ID1, and the ID of UE2 is ID2.
 また、接続要求には、更に、以下に示す情報(1)~(3)の全部又は一部が含まれてもよい。 In addition, the connection request may further include all or part of the following information (1) to (3).
 (1)UE2が、例えば受信発見信号により測定したUE1とUE2との間のチャネル品質(例:受信レベル、受信品質、伝搬ロス);
 (2)UE2が、UE1とのユニキャストD2D通信で所望する所望QoS及び/又は所望通信タイプ(例:GBRか否かを示す情報、所望ビットレート);
 (3)要求端末(UE2)及び/又は被要求端末(UE1)の位置情報及び/又は通信レンジ。
(1) Channel quality (for example, reception level, reception quality, propagation loss) between UE1 and UE2 measured by UE2 using, for example, a reception discovery signal;
(2) Desired QoS and / or desired communication type desired by UE2 in unicast D2D communication with UE1 (eg, information indicating whether or not GBR, desired bit rate);
(3) Location information and / or communication range of the requesting terminal (UE2) and / or the requested terminal (UE1).
 ステップS102で接続要求を受信したNW装置20は、メモリ等に保持しているUE毎のUE能力から、ID1、ID2を使用することで、UE1に対応するUE能力(UE能力1とする)と、UE2に対応するUE能力(UE能力2とする)を取得する。そして、NW装置20は、UE能力1及びUE能力2等に基づいて、UE1とUE2との間の通信パス(ユニキャストD2Dかセルラ通信か)を決定するとともに、通信パスとしてユニキャストD2Dを決定した場合には、UE1とUE2のそれぞれに対する接続パラメータを決定し、決定した接続パラメータをそれぞれUE1、及びUE2に送信する(ステップS103、S104)。 The NW device 20 that has received the connection request in step S102 uses the ID1 and ID2 from the UE capabilities for each UE stored in the memory or the like, thereby enabling the UE capability corresponding to the UE1 (UE capability 1). The UE capability (UE capability 2) corresponding to UE2 is acquired. Then, the NW device 20 determines a communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1 and the UE capability 2, and determines the unicast D2D as the communication path. In that case, the connection parameters for UE1 and UE2 are determined, and the determined connection parameters are transmitted to UE1 and UE2 respectively (steps S103 and S104).
 通信パスの決定に関して、例えば、NW装置20は、被要求端末であるUE1のUE能力1に基づき、UE1がユニキャストD2Dの能力を有しないことを検知すると、セルラ通信でUE1とUE2との間の通信を行うよう決定する。この場合、接続パラメータの決定・通知を行うことなく、例えば、UE2に対してセルラ通信を指示する。なお、ユニキャストD2D以外の通信パスとして、セルラ通信の他に、リレー端末を経由する通信を含めてもよい。 Regarding the determination of the communication path, for example, when the NW device 20 detects that the UE 1 does not have the unicast D2D capability based on the UE capability 1 of the UE 1 that is the requested terminal, the NW device 20 performs the communication between the UE 1 and the UE 2 in the cellular communication. Decide to communicate. In this case, for example, the cellular communication is instructed to the UE 2 without determining / notifying the connection parameter. Communication paths other than unicast D2D may include communication via a relay terminal in addition to cellular communication.
 また、例えば、NW装置20は、接続要求に含まれるチャネル品質が、所望QoSレベル(あるいは所望通信タイプ)を確保するために必要な値よりも低い(悪い)ことを検知すると、セルラ通信でUE1とUE2との間の通信を行うよう決定する。 Further, for example, when the NW device 20 detects that the channel quality included in the connection request is lower (bad) than a value necessary for securing the desired QoS level (or desired communication type), the UE 1 performs cellular communication. And decide to perform communication between UE2.
 通信パスとしてユニキャストD2Dを決定した場合において、NW装置20は、例えば、UE能力1及びUE能力2を超えない範囲で接続パラメータを決定する。例えば、NW装置20は、UE1が2レイヤのMIMO送受信の能力を有することを把握し、UE2が4レイヤのMIMO送受信の能力を有することを把握した場合、UE1とUE2のそれぞれに、MIMO送受信の空間多重パラメータとして、「2レイヤ」を通知する。この場合、UE1とUE2は、空間多重パラメータとして「2レイヤ」を用いて、ユニキャストD2D接続確立を行う。つまり、UE1とUE2はそれぞれ空間多重パラメータとして「2レイヤ」を設定し、当該「2レイヤ」でユニキャストD2D通信を行うよう管理(制御)する。 When the unicast D2D is determined as the communication path, the NW device 20 determines the connection parameters within a range not exceeding the UE capability 1 and the UE capability 2, for example. For example, when the NW device 20 grasps that the UE1 has the capability of MIMO transmission / reception of two layers and knows that the UE2 has the capability of MIMO transmission / reception of four layers, the NW device 20 transmits and receives the MIMO transmission / reception to each of the UE1 and UE2. “2 layers” is notified as a spatial multiplexing parameter. In this case, UE1 and UE2 perform unicast D2D connection establishment using "2 layers" as a spatial multiplexing parameter. That is, each of UE1 and UE2 sets (2 layers) as a spatial multiplexing parameter, and manages (controls) to perform unicast D2D communication using the “2 layers”.
 また、例えば、NW装置20は、チャネル品質の情報に基づき、品質が悪い場合に、品質が良い場合よりも大きな送信電力(UE能力を超えない送信電力)をパラメータとして決定し、UE1とUE2に通知する。 Also, for example, based on the channel quality information, the NW device 20 determines a larger transmission power (transmission power not exceeding the UE capability) as a parameter when the quality is lower than when the quality is higher, Notice.
 ステップS103、S104において接続パラメータを受信したUE1とUE2との間で接続確立がなされ、ユニキャストD2D通信が開始される(ステップS105)。なお、UE1とUE2が接続パラメータをNW装置20から受信した後、UE2からUE1へ(もしくはUE1からUE2へ)、接続許可を求める接続要求を送信し、UE1からUE2へ(もしくはUE2からUE1へ)接続許可が送信された後に、接続確立がなされることとしてもよい。この場合、例えば、UE2は、接続許可をUE1から受信した時点で、D2D接続の状態を接続状態(接続確立状態)とし、UE1は、接続許可をUE2へ送信した時点で、D2D接続の状態を接続状態(接続確立状態)とし、以降、ユニキャストD2D通信が開始する。 The connection is established between UE1 and UE2 that have received the connection parameters in steps S103 and S104, and unicast D2D communication is started (step S105). Note that after UE1 and UE2 receive connection parameters from NW device 20, UE2 sends a connection request for connection permission to UE1 (or from UE1 to UE2), and from UE1 to UE2 (or from UE2 to UE1). Connection establishment may be performed after connection permission is transmitted. In this case, for example, when UE2 receives connection permission from UE1, the state of D2D connection is set to a connection state (connection establishment state), and UE1 changes the state of D2D connection when it transmits connection permission to UE2. The connection state (connection establishment state) is set, and unicast D2D communication starts thereafter.
 ユニキャストD2D通信が開始されると、各UEは、送信データが発生した場合に、当該送信データを、接続確立に係る自身の接続パラメータに従ったリソース、送信方法等を用いて送信するとともに、自身の接続パラメータに従ったリソース、受信方法等により、受信信号を監視する(復調、復号動作を行う)。 When unicast D2D communication is started, when transmission data is generated, each UE transmits the transmission data using resources, a transmission method, and the like according to its connection parameters related to connection establishment, The received signal is monitored (demodulation and decoding operations are performed) using resources, reception methods, etc. according to its own connection parameters.
 (ネットワークアシスト接続:処理シーケンス例2)
 次に、図11を参照して、ネットワークアシスト接続における処理シーケンス例2を説明する。図11においても、図10の場合と同様に、被要求端末であるUE1は、NW装置20に対してCONNECTED状態にあるものとする。要求端末であるUE2もCONNECTED状態にある。あるいは、IDLE状態であれば、ステップS201の前までにNW装置20への接続を行って、CONNECTED状態になる。
(Network assist connection: Processing sequence example 2)
Next, a processing sequence example 2 in the network assist connection will be described with reference to FIG. Also in FIG. 11, similarly to the case of FIG. 10, UE1 that is a requested terminal is in a CONNECTED state with respect to the NW device 20. The requesting terminal UE2 is also in the CONNECTED state. Or if it is an IDLE state, it will connect to the NW apparatus 20 before step S201, and will be in a CONNECTED state.
 また、UE1とUE2は、いずれも自身のUE能力(UE capability)をNW装置20に通知しており、NW装置20はUE毎のUE能力を保持している。 Further, both UE1 and UE2 notify their NW device 20 of their own UE capability (UE capability), and the NW device 20 holds the UE capability for each UE.
 処理シーケンス例2において、UE1は、発見信号を送信していない。あるいは、UE1は、発見信号を送信するが、UE2は当該発見信号を受信しない(できない)ものとする。また、UE2は、UE1からの信号の受信レベル等を測定していない(測定できない)ものとする。ただし、UE2は、UE1のIDを把握しており、UE1との間でユニキャストD2D接続を行うことを希望している。 In processing sequence example 2, UE1 does not transmit a discovery signal. Alternatively, UE1 transmits a discovery signal, but UE2 does not (cannot) receive the discovery signal. Further, it is assumed that UE2 does not measure (cannot measure) the reception level of the signal from UE1. However, UE2 knows the ID of UE1 and wishes to make a unicast D2D connection with UE1.
 ステップS201において、UE2は、UE1とのユニキャストD2D接続を行うことを希望し、接続要求をNW装置20に送信する。接続要求に含まれる情報は前述したとおりである。ただし、本例では、接続要求にチャネル品質の情報は含まれていない。なお、UE2は、接続要求の中に、UE1から発見信号を受信していないことを示す情報を含めてもよい。 In step S201, UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20. The information included in the connection request is as described above. However, in this example, channel quality information is not included in the connection request. Note that UE2 may include information indicating that a discovery signal has not been received from UE1 in the connection request.
 ステップS201で接続要求を受信したNW装置20は、接続要求の中に、チャネル品質の情報が含まれていないことを検知すると(あるいは、UE1から発見信号を受信していないことを示す情報が含まれていることを検知すると)、UE1に対して、発見信号送信指示を送信し(ステップS202)、UE2に対して発見信号受信指示を送信する(ステップS203)。例えば、発見信号送信指示には、発見信号の送信に使用するリソース(例:キャリア、周波数リソース、時間リソースのうちの1つ又は複数)の情報が含まれ、発見信号受信指示にも当該リソースの情報が含まれる。これにより、UE2は、UE1から送信される発見信号を効率的に受信することができる。 When the NW device 20 that has received the connection request in step S201 detects that the channel quality information is not included in the connection request (or includes information indicating that the discovery signal has not been received from the UE1). If it is detected), a discovery signal transmission instruction is transmitted to UE1 (step S202), and a discovery signal reception instruction is transmitted to UE2 (step S203). For example, the discovery signal transmission instruction includes information on a resource (for example, one or more of a carrier, a frequency resource, and a time resource) used for transmission of the discovery signal, and the discovery signal reception instruction also includes information on the resource. Contains information. Thereby, UE2 can receive the discovery signal transmitted from UE1 efficiently.
 なお、図11の例では、NW装置20がUE1に対して発見信号送信指示を送信し、UE2に対して発見信号受信指示を送信するが、これに代えて、NW装置20がUE2に対して発見信号送信指示を送信し、UE1に対して発見信号受信指示を送信することとしてもよい。この場合、後述するチャネル品質情報はUE1からNW装置20に送信される。また、NE装置20は、発見信号送信指示のみを送信してもよいし、発見信号受信指示のみを送信してもよい。 In the example of FIG. 11, the NW device 20 transmits a discovery signal transmission instruction to the UE 1 and transmits a discovery signal reception instruction to the UE 2. Instead, the NW device 20 transmits to the UE 2. It is good also as transmitting a discovery signal transmission instruction | indication and transmitting a discovery signal reception instruction | indication with respect to UE1. In this case, channel quality information to be described later is transmitted from the UE 1 to the NW device 20. Further, the NE device 20 may transmit only the discovery signal transmission instruction, or may transmit only the discovery signal reception instruction.
 ステップS204において、指示に従ってUE1から発見信号が送信され、UE2は当該発見信号を受信し、UE1とUE2との間のチャネル品質の測定を行う。 In step S204, a discovery signal is transmitted from UE1 according to the instruction, and UE2 receives the discovery signal and measures the channel quality between UE1 and UE2.
 ステップS205において、UE2は、当該チャネル品質の情報をNW装置20に送信する。なお、UE2における、UE1とUE2との間のチャネル品質の測定及び報告については、NW装置20から受信する発見信号受信指示の中に測定指示が含まれる場合にのみ行うこととしてもよい。 In step S205, UE2 transmits information on the channel quality to NW device 20. Note that measurement and reporting of channel quality between UE1 and UE2 in UE2 may be performed only when the measurement instruction is included in the discovery signal reception instruction received from NW device 20.
 チャネル品質の情報を受信したNW装置20は、処理シーケンス例1の場合と同様にして、UE能力1及びUE能力2等に基づいて、UE1とUE2との間の通信パス(ユニキャストD2Dかセルラ通信か)を決定するとともに、通信パスとしてユニキャストD2Dを決定した場合には、UE1とUE2のそれぞれに対する接続パラメータを決定し、決定した接続パラメータをそれぞれUE1、UE2に送信する(ステップS206、S207)。そして、UE1とUE2との間で接続確立がなされ、ユニキャストD2D通信が開始される(ステップS208)。 Receiving the channel quality information, the NW device 20 receives the communication path (unicast D2D or cellular) between the UE1 and the UE2 based on the UE capability 1 and the UE capability 2 as in the case of the processing sequence example 1. In the case where unicast D2D is determined as a communication path, connection parameters for UE1 and UE2 are determined, and the determined connection parameters are transmitted to UE1 and UE2 respectively (steps S206 and S207). ). Then, a connection is established between UE1 and UE2, and unicast D2D communication is started (step S208).
 なお、上述した処理シーケンス例1,2においては、NW装置20における通信パスの決定、及び接続パラメータの決定において、UEから報告されたUE間のチャネル品質の情報を使用するが、チャネル品質の情報を使用することは必須ではなく、チャネル品質の情報を使用することなく、例えばUE能力のみから通信パスの決定、及び接続パラメータの決定を行うこととしてもよい。 In the processing sequence examples 1 and 2 described above, the channel quality information between UEs reported from the UE is used in the determination of the communication path and the determination of the connection parameter in the NW device 20, but the channel quality information Is not essential, and the communication path and the connection parameter may be determined only from the UE capability, for example, without using the channel quality information.
 (ネットワークアシスト接続:処理シーケンス例3)
 次に、図12を参照して、ネットワークアシスト接続における処理シーケンス例3を説明する。図12のケースでは、被要求端末であるUE1は、NW装置20に対してIDLE状態にあるものとする。要求端末であるUE2はCONNECTED状態にある。また、UE1とUE2は、いずれも自身のUE能力(UE capability)をNW装置20に通知しており、NW装置20はUE毎のUE能力を保持している。また、NW装置20は、UE毎の状態情報(CONNECTED状態かIDLE状態かの情報)を保持している。
(Network Assist Connection: Processing Sequence Example 3)
Next, a processing sequence example 3 in the network assist connection will be described with reference to FIG. In the case of FIG. 12, UE1 that is a requested terminal is assumed to be in the IDLE state with respect to NW device 20. The requesting terminal UE2 is in the CONNECTED state. Further, both UE1 and UE2 notify the NW device 20 of their own UE capabilities (UE capability), and the NW device 20 holds the UE capability for each UE. Further, the NW device 20 holds state information (information indicating whether it is a CONNECTED state or an IDLE state) for each UE.
 ステップS301において、UE2は、UE1とのユニキャストD2D接続を行うことを希望し、接続要求をNW装置20に送信する。この接続要求は、例えば、図10に示したステップS102での接続要求と同様の接続要求であり、接続要求に含まれる情報は前述したとおりである。 In step S301, UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20. This connection request is, for example, a connection request similar to the connection request in step S102 shown in FIG. 10, and the information included in the connection request is as described above.
 接続要求を受信したNW装置20は、処理シーケンス例1の場合と同様にして、UE能力1及びUE能力2等に基づいて、UE1とUE2との間の通信パス(ユニキャストD2Dかセルラ通信か)を決定するとともに、通信パスとしてユニキャストD2Dを決定した場合には、UE1とUE2のそれぞれに対する接続パラメータを決定する。 The NW device 20 that has received the connection request, similarly to the case of the processing sequence example 1, determines the communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1, the UE capability 2, and the like. ), And when unicast D2D is determined as the communication path, the connection parameters for UE1 and UE2 are determined.
 ただし、本例においては、UE1はIDLE状態(待ち受け状態)にあるため、処理シーケンス例1、2のように接続パラメータをUE1に送信することができない。そこで、本例では、NW装置20は、特別なページングメッセージをUE1に送信する(ステップS302)。なお、NW装置20(この場合、コア側の装置であることを想定)は、接続要求に含まれる被要求端末(UE1)の位置情報等を利用して、特別なページングメッセージを送信させる基地局を選択してもよい。 However, in this example, since UE1 is in the IDLE state (standby state), the connection parameters cannot be transmitted to UE1 as in processing sequence examples 1 and 2. Therefore, in this example, the NW device 20 transmits a special paging message to the UE 1 (step S302). Note that the NW device 20 (assuming that it is a core-side device in this case) uses the location information of the requested terminal (UE1) included in the connection request to transmit a special paging message. May be selected.
 通常のLTEにおける処理において、通常のページングメッセージを受信したIDLE状態のUEは、ランダムアクセス手順を経て、RRC接続確立処理を行って、CONNECTED状態になる。一方、本例のステップS302で送信されるページングメッセージは、UE1をCONNECTED状態に遷移させることなく、UE1に特定のリソースでの情報受信を行わせる。これにより、ランダムアクセス手順、RRC接続確立処理等のCONNECTED状態への遷移にかかるシグナリングオーバーヘッドを削減できる。 In normal LTE processing, a UE in IDLE state that has received a normal paging message performs RRC connection establishment processing through a random access procedure and enters a CONNECTED state. On the other hand, the paging message transmitted in step S302 of this example causes UE1 to receive information on a specific resource without causing UE1 to transition to the CONNECTED state. Thereby, the signaling overhead concerning the transition to the CONNECTED state such as the random access procedure and the RRC connection establishment process can be reduced.
 例えば、ステップS302で送信されるページングメッセージには特別なフラグ(special flag)が含まれる。UE1は、ページングメッセージの中の当該フラグを検知することで、本ページングメッセージが特別なページングメッセージであることを認識し、CONNECTED状態に遷移するための動作を行わずに、以下の動作を行う。 For example, the paging message transmitted in step S302 includes a special flag (special で flag). The UE1 recognizes that the paging message is a special paging message by detecting the flag in the paging message, and performs the following operation without performing the operation for transitioning to the CONNECTED state.
 当該ページングメッセージを受信したUE1は、所定の下り制御CH(チャネル)サーチスペースのリソースにおいてモニタ(復調/復号動作)を行う。なお、バッテリー消費削減のために、モニタを行う時間長は、ページングメッセージ受信時点から所定時間長内に限ってもよい。 The UE 1 that has received the paging message performs monitoring (demodulation / decoding operation) on resources in a predetermined downlink control CH (channel) search space. In order to reduce battery consumption, the time length for monitoring may be limited to a predetermined time length from the time when the paging message is received.
 NW装置20は、当該下り制御CHサーチスペースの中のリソースを用いて、UE1宛ての接続パラメータを送信し、UE1は当該接続パラメータを受信する(ステップS303)。 The NW device 20 uses the resources in the downlink control CH search space to transmit a connection parameter addressed to the UE1, and the UE1 receives the connection parameter (step S303).
 当該下り制御CHサーチスペースを示す情報(例:時間周波数領域の情報)は、例えば、NW装置20からブロードキャストされるシステム情報(例:特定のSIB)によりUE1に通知される。このとき、当該システム情報の中にUE1のIDが含まれ、UE1はUE1宛ての個別の情報(下り制御CHサーチスペースを示す情報)を取得できる。なお、システム情報に上記の情報を含める等、システム情報が変更される場合には、ページング等によって変更をUEに通知するが、上記のように、UE1宛ての情報がシステム情報に追加された場合には、システム情報の変更をUE1以外に通知しなくてもよい。 The information indicating the downlink control CH search space (eg, information on the time frequency domain) is notified to the UE 1 by system information (eg, specific SIB) broadcast from the NW device 20, for example. At this time, the ID of UE1 is included in the system information, and UE1 can acquire individual information addressed to UE1 (information indicating the downlink control CH search space). When the system information is changed, for example, by including the above information in the system information, the change is notified to the UE by paging or the like, but as described above, the information addressed to UE1 is added to the system information. Therefore, it is not necessary to notify other than UE1 of the change of system information.
 また、ステップS303の接続パラメータ通知を、下り制御CHサーチスペースを示す情報の通知と同様にして、システム情報を用いて行うこととしてもよい。 Further, the connection parameter notification in step S303 may be performed using system information in the same manner as the notification of information indicating the downlink control CH search space.
 ステップS304においてUE2向けの接続パラメータがUE2に通知され、ユニキャストD2Dの接続確立がなされ、ユニキャストD2D通信が開始される(ステップS305)。 In step S304, the connection parameters for UE2 are notified to UE2, unicast D2D connection is established, and unicast D2D communication is started (step S305).
 (ネットワークアシスト接続:処理シーケンス例4)
 次に、図13を参照して、ネットワークアシスト接続における処理シーケンス例4を説明する。図13のケースでも、被要求端末であるUE1は、NW装置20に対してIDLE状態にあるものとする。以下、処理シーケンス例3と異なる点を主に説明する。
(Network Assist Connection: Processing Sequence Example 4)
Next, a processing sequence example 4 in the network assist connection will be described with reference to FIG. Also in the case of FIG. 13, UE1 that is a requested terminal is in the IDLE state with respect to NW device 20. Hereinafter, differences from the processing sequence example 3 will be mainly described.
 ステップS401において、UE2は、UE1とのユニキャストD2D接続を行うことを希望し、接続要求をNW装置20に送信する。 In step S401, UE2 wishes to establish a unicast D2D connection with UE1, and transmits a connection request to NW device 20.
 接続要求を受信したNW装置20は、処理シーケンス例1の場合と同様にして、UE能力1及びUE能力2等に基づいて、UE1とUE2との間の通信パス(ユニキャストD2Dかセルラ通信か)を決定するとともに、通信パスとしてユニキャストD2Dを決定した場合には、UE1とUE2のそれぞれに対する接続パラメータを決定する。 The NW device 20 that has received the connection request, similarly to the case of the processing sequence example 1, determines the communication path (unicast D2D or cellular communication) between the UE1 and the UE2 based on the UE capability 1, the UE capability 2, and the like. ), And when unicast D2D is determined as the communication path, the connection parameters for UE1 and UE2 are determined.
 本例においても、NW装置20は、特別なページングメッセージ(特別なフラグを含む)をUE1に送信する(ステップS402)。 Also in this example, the NW device 20 transmits a special paging message (including a special flag) to the UE 1 (step S402).
 本例においては、当該ページングメッセージは、UE1をCONNECTED状態に遷移させることなく、UE1に端末自律接続を行わせるものである。 In this example, the paging message is for causing UE1 to perform terminal autonomous connection without causing UE1 to transition to the CONNECTED state.
 すなわち、UE1は、ページングメッセージの中の当該フラグを検知することで、本ページングメッセージが特別なページングメッセージであることを認識し、CONNECTED状態に遷移するための動作を行わずに、端末自律接続を実行する(ステップS404)。端末自律接続の詳細については後述する。 That is, UE1 recognizes that this paging message is a special paging message by detecting the flag in the paging message, and performs terminal autonomous connection without performing an operation for transitioning to the CONNECTED state. Execute (Step S404). Details of the terminal autonomous connection will be described later.
 より具体的には、例えば、UE1とUE2に対して、NW装置20から、システム情報により端末自律接続のための発見信号の送受信用の設定情報(送信キャリア、受信キャリア、送信リソース、受信リソース等)が通知されており、UE1(及びUE2)は当該設定情報に従って、発見信号の送信又は発見信号の受信を行い、後述するようにして接続確立を実施する。 More specifically, for example, setting information (transmission carrier, reception carrier, transmission resource, reception resource, etc.) for discovery signal transmission / reception for terminal autonomous connection based on system information from the NW device 20 to the UE1 and UE2 UE1 (and UE2) transmit discovery signals or receive discovery signals in accordance with the setting information, and establish connection as described later.
 また、図13のステップS403に示すように、UE2に対して、端末自律接続を指示する情報を通知してもよい。この通知を受けたUE2は、端末自律接続を行うことを決定できる。なお、当該通知を行わない場合、UE2は、例えば、接続要求を送信してから、所定時間経過してもNW装置20から接続パラメータを受信しない場合に、端末自律接続を行うことを決定してもよい。 Further, as shown in step S403 of FIG. 13, the UE 2 may be notified of information instructing terminal autonomous connection. UE2 which received this notification can determine performing terminal autonomous connection. If the notification is not performed, the UE 2 decides to perform the terminal autonomous connection when, for example, the connection parameter is not received from the NW device 20 even after a predetermined time has elapsed since the connection request is transmitted. Also good.
 なお、処理シーケンス例3、4において、UE2からNW装置20への接続要求をトリガとして、NW装置20は、特別なページングメッセージをUE1に送信することとしているが、特別なページングメッセージの送信トリガは、当該接続要求に限られない。接続要求がなくても、例えば、ある時刻の到来をトリガとして、特別なページングメッセージをUEに送信してもよい。また、UE1とUE2の両方がIDLE状態にある場合に、NW装置20が、UE1とUE2との間をユニキャストD2D接続させる場合において、特別なページングメッセージをUE1とUE2の両方に送信してもよい。この場合、UE1とUE2の両方が、CONNECTED状態に遷移することなく、例えば端末自律接続により、接続確立を行うことができる。 In the processing sequence examples 3 and 4, the NW device 20 is supposed to transmit a special paging message to the UE 1 by using a connection request from the UE 2 to the NW device 20 as a trigger. It is not limited to the connection request. Even if there is no connection request, for example, a special paging message may be transmitted to the UE triggered by the arrival of a certain time. Further, when both the UE1 and UE2 are in the IDLE state, the NW device 20 may transmit a special paging message to both the UE1 and the UE2 when the unicast D2D connection is made between the UE1 and the UE2. Good. In this case, both UE1 and UE2 can establish connection by, for example, terminal autonomous connection without transitioning to the CONNECTED state.
 (ネットワークアシスト接続の効果について)
 以上、説明したネットワークアシスト接続により、ユニキャストD2D接続対象のUE間で発見信号の送受が行われていない場合でも、当該UE間でユニキャスト通信(D2D又はセルラ)を行うことが可能である。これにより、不要な発見信号の送受信の削減、UE発見に伴う遅延の削減等も可能である。
(About the effect of network assist connection)
As described above, even when a discovery signal is not transmitted and received between UEs that are unicast D2D connection targets, it is possible to perform unicast communication (D2D or cellular) between the UEs. Thereby, it is possible to reduce transmission / reception of unnecessary discovery signals, delay associated with UE discovery, and the like.
 また、UE能力あるいはチャネル品質に対応した適切な通信パス(D2D又はセルラ)を選択することが可能となる。また、D2D接続での送受信サブフレームを接続パラメータとして設定することができるため、例えば、セルラリンクとの同時送受信を回避することが可能である。 Also, it becomes possible to select an appropriate communication path (D2D or cellular) corresponding to the UE capability or channel quality. In addition, since a transmission / reception subframe in D2D connection can be set as a connection parameter, for example, simultaneous transmission / reception with a cellular link can be avoided.
 次に、端末自律接続について説明する。 Next, terminal autonomous connection will be described.
 (端末自律接続:処理シーケンス例5)
 図14を参照して、端末自律接続の例である処理シーケンス例5を説明する。まず、前提として、PSSS/SSSS等により、UE1とUE2との間の同期が確立しているとする。
(Terminal autonomous connection: processing sequence example 5)
With reference to FIG. 14, the process sequence example 5 which is an example of a terminal autonomous connection is demonstrated. First, as a premise, it is assumed that synchronization between UE1 and UE2 is established by PSSS / SSSS or the like.
 ステップS501において、UE1は、UE1のUE能力であるUE能力1を含む発見信号を送信し、UE2が当該発見信号を受信するとともに、UE2は、UE2のUE能力であるUE能力2を含む発見信号を送信し、UE1が当該発見信号を受信する。ステップS501により、UE1はUE2のUE能力2を取得し、UE2はUE1のUE能力1を取得することができる。発見信号は、PSDCHにより送信される信号であってもよいし、PSDCH以外のD2D用チャネル(例:PSBCH、PSCCH/PSSCH)で送信される信号であってもよいし、既存のD2D用チャネル以外のチャネルで送信される信号であってもよい。 In step S501, UE1 transmits a discovery signal including UE capability 1 which is UE capability of UE1, UE2 receives the discovery signal, and UE2 detects discovery signal including UE capability 2 which is UE capability of UE2. UE1 receives the discovery signal. Through step S501, UE1 can acquire UE capability 2 of UE2, and UE2 can acquire UE capability 1 of UE1. The discovery signal may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or other than an existing D2D channel It may be a signal transmitted on the other channel.
 ここで、UE2が、例えば、UE1から受信する発見信号の品質が所定の閾値よりも良く、かつ、UE1がユニキャストD2Dの能力を有することを検知すると、UE1との間で端末自律接続を行うことを決定し、接続要求をUE1に送信する。当該接続要求は、PSDCHにより送信される信号であってもよいし、PSDCH以外のD2D用チャネル(例:PSBCH、PSCCH/PSSCH)で送信される信号であってもよいし、既存のD2D用チャネル以外のチャネルで送信される信号であってもよい。接続要求には、例えば、要求送信元のUE2のIDと、接続要求先のUE1のIDが含まれる。また、接続要求には、ユニキャストD2D接続を希望することを示す情報が含まれる。 Here, for example, when UE2 detects that the quality of the discovery signal received from UE1 is better than a predetermined threshold and UE1 has the capability of unicast D2D, it performs terminal autonomous connection with UE1. And a connection request is transmitted to UE1. The connection request may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or an existing D2D channel. It may be a signal transmitted on a channel other than. The connection request includes, for example, the ID of the request source UE 2 and the ID of the connection request destination UE 1. The connection request includes information indicating that a unicast D2D connection is desired.
 UE1は、UE2とのユニキャストD2D接続を許可すると、接続許可をUE2に送信する。接続許可は、PSDCHにより送信される信号であってもよいし、PSDCH以外のD2D用チャネル(例:PSBCH、PSCCH/PSSCH)で送信される信号であってもよいし、既存のD2D用チャネル以外のチャネルで送信される信号であってもよい。 When UE1 permits unicast D2D connection with UE2, UE1 transmits a connection permission to UE2. The connection permission may be a signal transmitted by PSDCH, a signal transmitted by a D2D channel other than PSDCH (eg, PSBCH, PSCCH / PSSCH), or other than an existing D2D channel It may be a signal transmitted on the other channel.
 ステップS504では、UE1が、UE1において使用を希望する接続パラメータをUE2に送信し、UE2が、UE2において使用を希望する接続パラメータをUE1に送信する。例えば、UE1が、UE2から受信した接続パラメータはUE1の希望する接続パラメータと整合する(例:同じである)と判断した場合、UE2から受信した接続パラメータを受け入れることを示す情報をUE2に送信し、UE2が、UE1から受信した接続パラメータはUE2の希望する接続パラメータに整合すると判断した場合、UE1から受信した接続パラメータを受け入れることを示す情報をUE1に送信する。これによりお互いの接続パラメータが決定し、当該接続パラメータを用いてステップS505において接続確立がなされ、ユニキャストD2D通信が開始される。 In step S504, UE1 transmits a connection parameter desired to be used in UE1 to UE2, and UE2 transmits a connection parameter desired to be used in UE2 to UE1. For example, if UE1 determines that the connection parameter received from UE2 matches (eg, is the same as) the connection parameter desired by UE1, it transmits information indicating that the connection parameter received from UE2 is accepted to UE2. When UE2 determines that the connection parameter received from UE1 matches the connection parameter desired by UE2, information indicating that the connection parameter received from UE1 is accepted is transmitted to UE1. Thereby, the mutual connection parameters are determined, and the connection is established in step S505 using the connection parameters, and unicast D2D communication is started.
 なお、例えば、UE1が、UE2から受信した接続パラメータのうち、修正を希望するパラメータがある場合(例:4レイヤ送信を2レイヤ送信にしてほしい等)、修正後のパラメータをUE2に通知する。このようにしてネゴシエーションが行われ、パラメータの修正、決定がなされる。 In addition, for example, when there is a parameter that UE1 desires to modify among the connection parameters received from UE2, UE1 notifies UE2 of the modified parameter, for example, when 4 layer transmission is desired to be 2 layer transmission. In this way, negotiation is performed, and parameters are corrected and determined.
 なお、ステップS502での接続要求の中にUE2の希望する接続パラメータを含めてもよい。また、ステップS503での接続許可の中にUE1の希望する接続パラメータを含めてもよい。 Note that the connection parameters desired by the UE 2 may be included in the connection request in step S502. Further, the connection parameter desired by UE1 may be included in the connection permission in step S503.
 <UE能力の送信方法について>
 上述したように、処理シーケンス例5では、発見信号でUE能力を送信するため、メッセージサイズが大きくなり、オーバーヘッドが増加する可能性がある。そこで、オーバーヘッドを削減するために、UEは、UE能力を発見信号よりも長周期で送信してもよい。
<About UE capability transmission method>
As described above, in the processing sequence example 5, since the UE capability is transmitted using the discovery signal, the message size may increase and the overhead may increase. Therefore, in order to reduce overhead, the UE may transmit the UE capability in a longer period than the discovery signal.
 例えば、図15Aに示すように、UEは、発見信号の送信2回に1回、UE能力を含んだ大容量発見信号を送信する。なお、2回に1回は例であり、一般には、N回(Nは2以上の整数)に1回の送信であればよい。 For example, as shown in FIG. 15A, the UE transmits a large-capacity discovery signal including the UE capability once every two discovery signal transmissions. Note that once every two times is an example, and in general, transmission may be performed once every N times (N is an integer of 2 or more).
 図15Aに示す例において、受信側UEのブラインド検出の増加を回避するため、送信可能な発見信号フォーマットをTTI毎又はサブフレーム毎に限定してもよい。また、例えば、システム情報での設定により、もしくは事前設定により、リソースプール周期単位、SFN単位、又はDFN単位で発見信号フォーマットを設定してもよい。また、発見信号として、制御信号/データから構成されるメッセージベースの発見信号を用いてもよい。 In the example shown in FIG. 15A, in order to avoid an increase in blind detection of the receiving UE, the transmittable discovery signal format may be limited for each TTI or for each subframe. Further, for example, the discovery signal format may be set in resource pool cycle units, SFN units, or DFN units by setting in system information or in advance. Further, a message-based discovery signal composed of control signals / data may be used as the discovery signal.
 また、図15Bに示すように、UEは、発見信号のメッセージとは別のメッセージでUE能力を送信してもよい。図15Bの例では、「A」に示されるように、例えば、発見信号の中に、UE能力通知(受信)のための時間周波数リソースの情報を含めて、受信側のUEは、当該時間周波数リソースを用いて、UE能力を受信してもよい。この場合、組となる発見信号メッセージとUE能力メッセージには共通の識別子が含まれてもよい。 Further, as shown in FIG. 15B, the UE may transmit the UE capability in a message different from the discovery signal message. In the example of FIG. 15B, as indicated by “A”, for example, the discovery-side UE includes information on time-frequency resources for UE capability notification (reception), and the receiving-side UE Resources may be used to receive UE capabilities. In this case, a common identifier may be included in the discovery signal message and the UE capability message that form a pair.
 図15Bの例においては、同一チャネルで発見信号、UE能力を送信する場合における受信側UEのブラインド検出の増加を回避するため、ゼロパディングなどでメッセージサイズを共通化し、メッセージ中のフラグで両者を識別できるようにしてもよい。なお、UEは、発見信号とUE能力を別々のチャネルで送信してもよい。 In the example of FIG. 15B, in order to avoid an increase in blind detection of the receiving side UE when transmitting a discovery signal and UE capability on the same channel, the message size is made common by zero padding or the like, and both are set by flags in the message. It may be possible to identify them. Note that the UE may transmit the discovery signal and the UE capability on different channels.
 (端末自律接続:処理シーケンス例6)
 図16を参照して、端末自律接続の他の例である処理シーケンス例6を説明する。以下では、処理シーケンス例5と異なる点を主に説明する。
(Terminal autonomous connection: processing sequence example 6)
With reference to FIG. 16, a processing sequence example 6 which is another example of the terminal autonomous connection will be described. Hereinafter, differences from the processing sequence example 5 will be mainly described.
 ステップS601において、UE1とUE2はそれぞれ発見信号を送信し、受信する。処理シーケンス例5と異なり、当該発見信号にはUE能力は含まれない。 In step S601, UE1 and UE2 transmit and receive discovery signals, respectively. Unlike the processing sequence example 5, the discovery signal does not include the UE capability.
 ここで、例えば、UE2が、UE1との間で端末自律接続を行うことを決定し、接続要求と、UE2のUE能力をUE1に送信する(ステップS602)。 Here, for example, UE2 determines to perform terminal autonomous connection with UE1, and transmits a connection request and the UE capability of UE2 to UE1 (step S602).
 UE1は、UE2とのユニキャストD2D接続を許可すると、接続許可と、UE1のUE能力をUE2に送信する。 When the UE1 permits the unicast D2D connection with the UE2, the UE1 transmits the connection permission and the UE capability of the UE1 to the UE2.
 処理シーケンス例5の場合と同様にして、UE1とUE2の接続パラメータが決定され(ステップS604)、ステップS605において接続確立がなされ、ユニキャストD2D通信が開始される。 As in the case of the processing sequence example 5, the connection parameters of the UE1 and the UE2 are determined (step S604), the connection is established in the step S605, and the unicast D2D communication is started.
 処理シーケンス例6では、ユニキャストD2D接続を行わない場合、UE能力の送信が不要となるので、オーバーヘッド削減が可能である。 In Processing Sequence Example 6, if unicast D2D connection is not performed, transmission of UE capability is not necessary, and overhead can be reduced.
 なお、処理シーケンス例5、処理シーケンス例6のいずれにおいても、UE2から送信された接続要求を、UE1の通信をリレー可能なUEが受信した場合に、当該リレー可能なUEが応答(接続許可)をUE2に送信することとしてもよい。この場合、仮に、UE1がUE2との間でユニキャストD2D接続を行うことができない場合でも、「UE2-リレー可能UE-UE1」の経路でユニキャスト通信を行うことができる。 In either of the processing sequence example 5 and the processing sequence example 6, when the UE that can relay the communication of the UE1 receives the connection request transmitted from the UE2, the relayable UE responds (connection permission). May be transmitted to UE2. In this case, even if UE1 cannot establish unicast D2D connection with UE2, unicast communication can be performed on the route of “UE2-relay capable UE-UE1”.
 (端末自律接続/ネットワークアシスト接続の判断動作例)
 本実施の形態におけるUEは、ユニキャストD2D接続の確立において端末自律接続とネットワークアシスト接続のうちのどちらを用いるかを、例えば、以下で説明する方法で判断することができる。以下、3つの例(オプション1~3)を説明する。以下、図9に示した構成例を前提に説明する。
(Example of terminal autonomous connection / network assist connection judgment)
The UE in the present embodiment can determine, for example, the method described below, which one of the terminal autonomous connection and the network assist connection is used in establishing the unicast D2D connection. Three examples (options 1 to 3) will be described below. The following description is based on the configuration example shown in FIG.
 <オプション1:発見信号に基づく判断>
 オプション1では、図17Aに示すように、UE2は、UE1から受信した発見信号に基づいて、端末自律接続とネットワークアシスト接続のうちのどちらを用いるかを判断する。ここでは、発見信号の中に、判断に必要な情報(例:UE1がRRC接続状態か否か、UE1が接続するセルのID、UE1が属するオペレータのID)が含まれているとする。
<Option 1: Judgment based on discovery signal>
In option 1, as shown in FIG. 17A, UE2 determines whether to use terminal autonomous connection or network assist connection based on the discovery signal received from UE1. Here, it is assumed that information necessary for determination (eg, whether UE1 is in the RRC connection state, the ID of the cell to which UE1 is connected, the ID of the operator to which UE1 belongs) is included in the discovery signal.
 UE2は、UE1から受信した発見信号に基づき、例えば、UE1がUE2と同じセルにおいてRRC接続状態にある場合に、ネットワークアシスト接続可能と判断してネットワークアシスト接続を行うことを決定する。また、例えば、UE2は、UE1の属するオペレータが、UE2のオペレータと異なる場合には、ネットワークアシスト接続を行わないことを決定する。 Based on the discovery signal received from UE1, UE2, for example, determines that network assist connection is possible and determines to perform network assist connection when UE1 is in the RRC connection state in the same cell as UE2. Further, for example, when the operator to which UE1 belongs is different from the operator of UE2, UE2 determines not to perform network assist connection.
 オプション1では、通信相手とするUEの状態に応じた接続確立が可能となり接続遅延・接続失敗確率の低減が可能となる。 Option 1 makes it possible to establish a connection according to the state of the UE that is the communication partner, and to reduce the connection delay and connection failure probability.
 <オプション2:NW装置からの指示に基づく判断>
 オプション2では、図17Bに示すように、UE2に対して、ネットワーク(具体的には、本例では、NW装置20)からネットワークアシスト接続を用いるように設定がされている場合、UE2は当該設定に従って、ネットワークアシスト接続を行う(つまり、接続要求をNW装置20に送信する)と決定する。
<Option 2: Judgment based on instructions from NW device>
In option 2, as shown in FIG. 17B, when the UE 2 is set to use the network assist connection from the network (specifically, the NW device 20 in this example), the UE 2 sets the setting. Accordingly, it is determined that the network assist connection is performed (that is, the connection request is transmitted to the NW device 20).
 オプション2では、ネットワークアシスト接続を用いるように設定することで、ネットワーク側でユニキャストD2D接続を許可するか否かを接続単位で判断でき、効率的なセルラ・D2D通信のパス選択が可能となる。例えばセル端でのみユニキャストD2Dを許可するといった判断が可能となる。 In option 2, by setting to use network-assisted connection, it is possible to determine whether or not unicast D2D connection is permitted on the network side, and efficient cellular / D2D communication path selection is possible. . For example, it is possible to determine that unicast D2D is permitted only at the cell edge.
 <オプション3:通信相手UEの発見の有無、能力情報の有無に基づく判断>
 オプション3においては、図17Cに示すように、UE2は、ユニキャストD2Dの通信相手としたいUE1を発見できない場合(UE1からの発見信号を受信しない場合)、又は、発見できるがチャネル品質(受信レベル、受信品質等)が所定の閾値を下回る場合、又は、UE1のUE能力が不明な場合に、ネットワークアシスト接続での接続確立を試みる。オプション3は、通信相手が発見信号を送信していない場合、UE2が端末間通信をモニタしていない場合、もしくは、端末自律接続が失敗した場合に好適に適用可能である。
<Option 3: Judgment based on presence / absence of communication partner UE, capability information>
In option 3, as shown in FIG. 17C, UE2 cannot discover UE1 that it wants to be a communication partner of unicast D2D (when it does not receive a discovery signal from UE1), or it can discover channel quality (reception level). , Reception quality, etc.) is below a predetermined threshold, or when the UE capability of UE1 is unknown, connection establishment with a network-assisted connection is attempted. Option 3 is preferably applicable when the communication partner is not transmitting a discovery signal, when the UE 2 is not monitoring communication between terminals, or when terminal autonomous connection has failed.
 以上、オプション1~3を説明したが、オプション1~3のいずれか2つ又は全部を組み合わせて適用してもよい。 In the above, options 1 to 3 have been described, but any two or all of options 1 to 3 may be applied in combination.
 (装置構成)
 以上説明した実施の形態の動作を実行するUE及びNW装置20の機能構成例を説明する。
(Device configuration)
A functional configuration example of the UE and the NW device 20 that performs the operation of the embodiment described above will be described.
 (ユーザ装置)
 図18は、実施の形態に係るUEの機能構成の一例を示す図である。図18に示すように、UEは、信号送信部101と、信号受信部102と、判定部103、通信制御部104とを有する。なお、図18は、UEにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図18に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
(User device)
FIG. 18 is a diagram illustrating an example of a functional configuration of the UE according to the embodiment. As illustrated in FIG. 18, the UE includes a signal transmission unit 101, a signal reception unit 102, a determination unit 103, and a communication control unit 104. FIG. 18 shows only functional units that are particularly related to the embodiment of the present invention in the UE, and has at least a function (not shown) for performing an operation based on LTE. Further, the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部101は、D2D信号の送信機能とセルラ通信の送信機能を有する。D2D信号の送信機能は、D2Dの送信信号を作成し、当該信号を無線で送信する。セルラ通信の送信機能は、セルラ通信のULで送信する送信信号を作成し、当該信号を無線で送信する。 The signal transmission unit 101 has a D2D signal transmission function and a cellular communication transmission function. The D2D signal transmission function creates a D2D transmission signal and transmits the signal wirelessly. The transmission function of cellular communication creates a transmission signal to be transmitted by UL of cellular communication and transmits the signal wirelessly.
 信号受信部102は、他のユーザ装置又はNW装置20から各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。また、信号受信部102は、D2D信号の受信機能とセルラ通信の受信機能を有する。 The signal receiving unit 102 includes a function of wirelessly receiving various signals from other user devices or the NW device 20, and acquiring higher layer signals from the received physical layer signals. The signal receiving unit 102 has a D2D signal reception function and a cellular communication reception function.
 判定部103は、例えば図17A~Cを参照して説明した方法により、端末自律接続によりユニキャストD2D接続を行うか、それとも、ネットワークアシスト接続によりユニキャストD2D接続を行うかを決定する。決定結果は通信制御部104に通知される。 The determination unit 103 determines whether to perform unicast D2D connection by terminal autonomous connection or unicast D2D connection by network assist connection by the method described with reference to FIGS. 17A to 17C, for example. The determination result is notified to the communication control unit 104.
 通信制御部104は、処理シーケンス例1~6を参照して説明したUEの動作を信号送信部101/信号受信部102に実行させるよう、信号送信部101/信号受信部102を制御する。また、通信制御部104は、接続パラメータ、NW装置20から受信した設定情報を保持する記憶部を含み、当該記憶部に記憶した接続パラメータ/設定情報に従って信号送信部101/信号受信部102を制御する。また、通信制御部104は、ユニキャストD2D接続が確立しているか否かを示す状態情報を保持している。例えば、ある接続パラメータを用いることで、ある通信相手UEとのユニキャストD2D接続が確立している場合に、通信制御部104は、当該接続パラメータと、通信相手UEのIDと、ユニキャストD2D接続確立状態であることを示す情報とを含む状態情報を保持する。なお、「接続パラメータを用いてD2D接続を確立する」とは、接続パラメータを用いる(設定する)ことで、UEをD2D通信実行可能な状態とすることであり、この状態のUEは、接続パラメータに従って、送信データがあれば送信を行うとともに、受信信号を監視する。 The communication control unit 104 controls the signal transmission unit 101 / signal reception unit 102 to cause the signal transmission unit 101 / signal reception unit 102 to execute the operation of the UE described with reference to the processing sequence examples 1 to 6. The communication control unit 104 also includes a storage unit that holds connection parameters and setting information received from the NW device 20, and controls the signal transmission unit 101 / signal reception unit 102 according to the connection parameters / setting information stored in the storage unit. To do. Further, the communication control unit 104 holds state information indicating whether or not a unicast D2D connection is established. For example, when a unicast D2D connection with a certain communication partner UE is established by using a certain connection parameter, the communication control unit 104 determines the connection parameter, the ID of the communication partner UE, and the unicast D2D connection. Status information including information indicating the established state is held. Note that “establishing a D2D connection using connection parameters” means that the UE is set in a state where D2D communication can be performed by using (setting) the connection parameters. If there is transmission data, the transmission is performed and the reception signal is monitored.
 (NW装置20)
 図19は、本実施の形態に係るNW装置20の機能構成の一例を示す図である。図19に示すように、NW装置20は、信号送信部201と、信号受信部202と、決定部203と、通信制御部204とを有する。なお、図19は、NW装置20において本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図19に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
(NW device 20)
FIG. 19 is a diagram illustrating an example of a functional configuration of the NW device 20 according to the present embodiment. As illustrated in FIG. 19, the NW device 20 includes a signal transmission unit 201, a signal reception unit 202, a determination unit 203, and a communication control unit 204. Note that FIG. 19 shows only functional units that are particularly related to the embodiment of the present invention in the NW device 20, and has at least a function (not shown) for performing an operation based on LTE. Further, the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部201は、UE側に送信する信号を生成し、当該信号をUE側に送信する機能を含む。信号受信部202は、UEから送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The signal transmission unit 201 includes a function of generating a signal to be transmitted to the UE side and transmitting the signal to the UE side. The signal reception unit 202 includes a function of receiving various signals transmitted from the UE, and acquiring, for example, higher layer information from the received signals.
 決定部203は、UEから接続要求を受信した場合に、これまでに説明した方法で、通信パスの決定、及び接続パラメータの決定を行う。 When the determination unit 203 receives a connection request from the UE, the determination unit 203 determines a communication path and a connection parameter by the method described so far.
 通信制御部204は、通信パスの決定動作及び接続パラメータの決定動作以外で、処理シーケンス例1~4を参照して説明したNW装置20の動作を信号送信部201/信号受信部202に実行させるよう、信号送信部201/信号受信部202を制御する。 The communication control unit 204 causes the signal transmission unit 201 / signal reception unit 202 to execute the operations of the NW device 20 described with reference to the processing sequence examples 1 to 4 other than the communication path determination operation and the connection parameter determination operation. The signal transmission unit 201 / signal reception unit 202 are controlled as described above.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図18及び図19)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 18 and 19) used in the description of the above embodiment show functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
 例えば、本発明の一実施の形態におけるUE及びNW装置20はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図20は、実施の形態に係るUE及びNW装置20のハードウェア構成の一例を示す図である。上述のUE及びNW装置20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, both the UE and the NW device 20 in an embodiment of the present invention may function as a computer that performs processing according to the present embodiment. FIG. 20 is a diagram illustrating an example of a hardware configuration of the UE and the NW device 20 according to the embodiment. The above-described UE and NW device 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。UE及びNW装置20のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the UE and the NW device 20 may be configured to include one or a plurality of devices indicated by 1001 to 1006 shown in the figure, or may be configured not to include some devices. Good.
 UE及びNW装置20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the UE and the NW device 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculation, and communication by the communication device 1004, memory 1002 and storage This is realized by controlling reading and / or writing of data in 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ装置UEの信号送信部101、信号受信部102、判定部103、通信制御部104は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、NW装置20の信号送信部201、信号受信部202、受付部203、決定部204、決定部203、通信制御部204は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 101, the signal reception unit 102, the determination unit 103, and the communication control unit 104 of the user apparatus UE may be realized by a control program stored in the memory 1002 and operating on the processor 1001. In addition, the signal transmission unit 201, the signal reception unit 202, the reception unit 203, the determination unit 204, the determination unit 203, and the communication control unit 204 of the NW device 20 are realized by a control program stored in the memory 1002 and operating on the processor 1001. May be. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、UEの信号送信部101及び信号受信部102は、通信装置1004で実現されてもよい。また、NW装置20の信号送信部201及び信号受信部202は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 101 and the signal reception unit 102 of the UE may be realized by the communication device 1004. Further, the signal transmission unit 201 and the signal reception unit 202 of the NW device 20 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、UE及びNW装置は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The UE and NW device include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 (まとめ)
 以上説明したように、本実施の形態によれば、D2Dをサポートするユーザ装置であって、前記ユーザ装置と他のユーザ装置との間のD2D接続のための接続要求をネットワーク装置に送信する送信部と、前記ネットワーク装置から前記D2D接続のための接続パラメータを受信する受信部と、前記接続パラメータを用いて前記D2D接続を確立する制御部とを備えることを特徴とするユーザ装置が提供される。
(Summary)
As described above, according to the present embodiment, a user apparatus that supports D2D, which transmits a connection request for D2D connection between the user apparatus and another user apparatus to a network apparatus. And a receiving unit that receives connection parameters for the D2D connection from the network device, and a control unit that establishes the D2D connection using the connection parameters. .
 上記の構成により、ユーザ装置間で適切な接続パラメータを用いてD2D接続を確立することが可能となる。 The above configuration makes it possible to establish a D2D connection using appropriate connection parameters between user apparatuses.
 前記接続要求は、例えば、前記受信部により受信した発見信号から取得された前記他のユーザ装置の識別情報を含む。この構成により、ネットワーク装置は、適切に通信相手のユーザ装置を特定できる。 The connection request includes, for example, identification information of the other user device acquired from the discovery signal received by the receiving unit. With this configuration, the network device can appropriately specify the user device of the communication partner.
 前記受信部は、前記ネットワーク装置から所定のフラグを含むページングメッセージを受信した場合において、所定のサーチスペースをモニタすることにより、前記ネットワーク装置からD2D接続のための接続パラメータを受信することとしてもよい。この構成により、例えば、ユーザ装置がアイドル状態にある場合でも、接続状態に遷移することなく、接続パラメータを受信することができる。 The receiving unit may receive a connection parameter for D2D connection from the network device by monitoring a predetermined search space when a paging message including a predetermined flag is received from the network device. . With this configuration, for example, even when the user apparatus is in an idle state, connection parameters can be received without transitioning to a connected state.
 また、本実施の形態により、D2Dをサポートするユーザ装置と通信を行うネットワーク装置であって、前記ユーザ装置と他のユーザ装置との間のD2D接続のための接続要求を、前記ユーザ装置から受信する受信部と、前記ユーザ装置の能力情報と、前記他のユーザ装置の能力情報とに基づいて、前記D2D接続のための接続パラメータを決定する決定部と、前記決定部により決定した接続パラメータを前記ユーザ装置に送信するとともに、前記決定部により決定した接続パラメータを前記他のユーザ装置に送信する送信部とを備えることを特徴とするネットワーク装置が提供される。 Further, according to the present embodiment, a network apparatus that communicates with a user apparatus that supports D2D, and receives a connection request for D2D connection between the user apparatus and another user apparatus from the user apparatus. A determining unit that determines a connection parameter for the D2D connection based on capability information of the user device and capability information of the other user device, and a connection parameter determined by the determining unit. A network device is provided, comprising: a transmission unit that transmits to the user device and transmits the connection parameter determined by the determination unit to the other user device.
 上記の構成により、ユーザ装置間で適切な接続パラメータを用いてD2D接続を確立することが可能となる。 The above configuration makes it possible to establish a D2D connection using appropriate connection parameters between user apparatuses.
 前記決定部は、前記ユーザ装置の能力情報と、前記他のユーザ装置の能力情報とに基づいて、前記D2D接続を許可するか否かを決定し、前記D2D接続を許可する場合に、前記D2D接続のための接続パラメータを決定することとしてもよい。この構成により、D2D接続を許可するか否かを能力情報に基づいて適切に決定できる。 The determination unit determines whether to permit the D2D connection based on the capability information of the user device and the capability information of the other user device, and when the D2D connection is permitted, The connection parameters for connection may be determined. With this configuration, it is possible to appropriately determine whether to permit D2D connection based on the capability information.
 <実施形態の補足>
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCメッセージは、RRCシグナリングと呼ばれてもよい。また、RRCメッセージは、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<Supplement of embodiment>
The notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC signaling, MAC signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. Further, the RRC message may be referred to as RRC signaling. The RRC message may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal. The signal may be a message.
 UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 本明細書で説明した各態様/実施形態の処理手順、シーケンスなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, etc. of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 本特許出願は2016年5月31日に出願した日本国特許出願第2016-109548号に基づきその優先権を主張するものであり、日本国特許出願第2016-109548号の全内容を本願に援用する。 This patent application claims priority based on Japanese Patent Application No. 2016-109548 filed on May 31, 2016, the entire contents of Japanese Patent Application No. 2016-109548 are incorporated herein by reference. To do.
UE ユーザ装置
eNB 基地局
101 信号送信部
102 信号受信部
103 判定部
104 通信制御部
201 信号送信部
202 信号受信部
203 決定部
204 通信制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
UE user apparatus eNB base station 101 signal transmission unit 102 signal reception unit 103 determination unit 104 communication control unit 201 signal transmission unit 202 signal reception unit 203 determination unit 204 communication control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output apparatus

Claims (5)

  1.  D2Dをサポートするユーザ装置であって、
     前記ユーザ装置と他のユーザ装置との間のD2D接続のための接続要求をネットワーク装置に送信する送信部と、
     前記ネットワーク装置から前記D2D接続のための接続パラメータを受信する受信部と、
     前記接続パラメータを用いて前記D2D接続を確立する制御部と
     を備えることを特徴とするユーザ装置。
    A user device that supports D2D,
    A transmission unit for transmitting a connection request for D2D connection between the user device and another user device to a network device;
    A receiving unit for receiving connection parameters for the D2D connection from the network device;
    And a control unit that establishes the D2D connection using the connection parameter.
  2.  前記接続要求は、前記受信部により受信した発見信号から取得された前記他のユーザ装置の識別情報を含む
     ことを特徴とする請求項1に記載のユーザ装置。
    The user apparatus according to claim 1, wherein the connection request includes identification information of the other user apparatus acquired from a discovery signal received by the receiving unit.
  3.  前記受信部は、前記ネットワーク装置から所定のフラグを含むページングメッセージを受信した場合において、所定のサーチスペースをモニタすることにより、前記ネットワーク装置からD2D接続のための接続パラメータを受信する
     ことを特徴とする請求項1又は2に記載のユーザ装置。
    The receiving unit receives a connection parameter for D2D connection from the network device by monitoring a predetermined search space when a paging message including a predetermined flag is received from the network device. The user device according to claim 1 or 2.
  4.  D2Dをサポートするユーザ装置と通信を行うネットワーク装置であって、
     前記ユーザ装置と他のユーザ装置との間のD2D接続のための接続要求を、前記ユーザ装置から受信する受信部と、
     前記ユーザ装置の能力情報と、前記他のユーザ装置の能力情報とに基づいて、前記D2D接続のための接続パラメータを決定する決定部と、
     前記決定部により決定した接続パラメータを前記ユーザ装置に送信するとともに、前記決定部により決定した接続パラメータを前記他のユーザ装置に送信する送信部と
     を備えることを特徴とするネットワーク装置。
    A network device that communicates with a user device that supports D2D,
    A receiving unit that receives a connection request for D2D connection between the user device and another user device from the user device;
    A determination unit that determines connection parameters for the D2D connection based on the capability information of the user device and the capability information of the other user device;
    A network device comprising: a transmission unit that transmits the connection parameter determined by the determination unit to the user device and transmits the connection parameter determined by the determination unit to the other user device.
  5.  前記決定部は、前記ユーザ装置の能力情報と、前記他のユーザ装置の能力情報とに基づいて、前記D2D接続を許可するか否かを決定し、前記D2D接続を許可する場合に、前記D2D接続のための接続パラメータを決定する
     ことを特徴とする請求項4に記載のネットワーク装置。
    The determination unit determines whether to permit the D2D connection based on the capability information of the user device and the capability information of the other user device, and when the D2D connection is permitted, The network device according to claim 4, wherein a connection parameter for connection is determined.
PCT/JP2017/019754 2016-05-31 2017-05-26 User device and network device WO2017209005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018520875A JPWO2017209005A1 (en) 2016-05-31 2017-05-26 User device and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109548 2016-05-31
JP2016-109548 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017209005A1 true WO2017209005A1 (en) 2017-12-07

Family

ID=60477604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019754 WO2017209005A1 (en) 2016-05-31 2017-05-26 User device and network device

Country Status (2)

Country Link
JP (2) JPWO2017209005A1 (en)
WO (1) WO2017209005A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003531A1 (en) * 2018-06-29 2020-01-02 株式会社Nttドコモ Communication device
CN111527784A (en) * 2018-10-25 2020-08-11 Lg电子株式会社 Method and apparatus for determining resource selection window based on information related to sidelink HARQ feedback in wireless communication system
JP2021511703A (en) * 2018-01-18 2021-05-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Communication mode selection method, device, vehicle, and program
JP2021532689A (en) * 2018-08-03 2021-11-25 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co., Ltd. Parameter set acquisition method and equipment
JP2022506321A (en) * 2018-11-01 2022-01-17 オッポ広東移動通信有限公司 Wireless communication methods and devices
JP2022517240A (en) * 2019-01-11 2022-03-07 維沃移動通信有限公司 Connection establishment method, terminal equipment and network equipment
JP7497368B2 (en) 2019-03-29 2024-06-10 サムスン エレクトロニクス カンパニー リミテッド METHOD AND APPARATUS FOR PROVIDING POINT-TO-POINT COMMUNICATION SERVICE IN A WIRELESS COMMUNICATION SYSTEM - Patent application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256334A1 (en) * 2011-09-30 2014-09-11 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for handling device-to-device communication in a wireless communications network
WO2015005498A2 (en) * 2013-07-12 2015-01-15 Nec Corporation Cellular network assisted device to device (d2d) discovery
US20150327048A1 (en) * 2012-12-12 2015-11-12 Lg Electronics Inc. Method and user equipment for performing d2d service in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229931A1 (en) * 2012-03-02 2013-09-05 Electronics And Telecommunications Research Institute Methods of managing terminal performed in base station and terminal
KR20150044894A (en) * 2012-07-12 2015-04-27 엘지전자 주식회사 Method and apparatus for carrying out device-to-device communication in wireless communication system
US10333653B2 (en) * 2014-09-29 2019-06-25 Sony Corporation Communications device and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256334A1 (en) * 2011-09-30 2014-09-11 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for handling device-to-device communication in a wireless communications network
US20150327048A1 (en) * 2012-12-12 2015-11-12 Lg Electronics Inc. Method and user equipment for performing d2d service in wireless communication system
WO2015005498A2 (en) * 2013-07-12 2015-01-15 Nec Corporation Cellular network assisted device to device (d2d) discovery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "ProSe direct discovery via Model B mechanism", 3GPP TSG-SA WG2 MEETING #101 S2-140388, 24 January 2014 (2014-01-24), pages 1 - 4, XP050744817, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_101_Taipei/Docs/S2-140388.zip> [retrieved on 20170731] *
ZTE: "D2D Grant Design in Mode 1 Resource Allocation", 3GPP TSG-RAN WG1 MEETING #78 R1-143140, 10 August 2014 (2014-08-10), pages 1 - 5, XP050815533, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_78/Docs/R1-143140.zip> [retrieved on 20170731] *
ZTE: "Discussion on the coordination of D2D resource for inter- cell D2D discovery and communication", 3GPP TSG-RAN WG3 MEETING #83 R3-140047, 29 January 2014 (2014-01-29), pages 1 - 6, XP055226766, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_83/Docs/R3-140047.zip> [retrieved on 20170731] *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511703A (en) * 2018-01-18 2021-05-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Communication mode selection method, device, vehicle, and program
US11457459B2 (en) 2018-01-18 2022-09-27 Huawei Cloud Computing Technologies Co., Ltd. Communication mode selection method and apparatus
JP7106650B2 (en) 2018-01-18 2022-07-26 ホアウェイ クラウド コンピューティング テクノロジーズ カンパニー リミテッド COMMUNICATION MODE SELECTION METHOD, APPARATUS, VEHICLE, AND PROGRAM
US11683726B2 (en) 2018-06-29 2023-06-20 Ntt Docomo, Inc. Communication device
CN112292893A (en) * 2018-06-29 2021-01-29 株式会社Ntt都科摩 Communication device
CN112292893B (en) * 2018-06-29 2024-03-08 株式会社Ntt都科摩 Communication device
WO2020003531A1 (en) * 2018-06-29 2020-01-02 株式会社Nttドコモ Communication device
JP2021532689A (en) * 2018-08-03 2021-11-25 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co., Ltd. Parameter set acquisition method and equipment
JP7273948B2 (en) 2018-08-03 2023-05-15 北京小米移動軟件有限公司 Acquisition method and device for parameter set
CN111527784A (en) * 2018-10-25 2020-08-11 Lg电子株式会社 Method and apparatus for determining resource selection window based on information related to sidelink HARQ feedback in wireless communication system
JP2021506186A (en) * 2018-10-25 2021-02-18 エルジー エレクトロニクス インコーポレイティド Methods and Devices for Determining Resource Selection Windows Based on Information Related to Sidelink HARQ Feedback in Wireless Communities
JP7018137B2 (en) 2018-10-25 2022-02-09 エルジー エレクトロニクス インコーポレイティド Methods and Devices for Determining Resource Selection Windows Based on Information Related to Sidelink HARQ Feedback in Wireless Communities
US11706775B2 (en) 2018-11-01 2023-07-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
JP2022506321A (en) * 2018-11-01 2022-01-17 オッポ広東移動通信有限公司 Wireless communication methods and devices
JP2022517240A (en) * 2019-01-11 2022-03-07 維沃移動通信有限公司 Connection establishment method, terminal equipment and network equipment
JP7373570B2 (en) 2019-01-11 2023-11-02 維沃移動通信有限公司 Connection establishment method, terminal equipment and network equipment
JP7497368B2 (en) 2019-03-29 2024-06-10 サムスン エレクトロニクス カンパニー リミテッド METHOD AND APPARATUS FOR PROVIDING POINT-TO-POINT COMMUNICATION SERVICE IN A WIRELESS COMMUNICATION SYSTEM - Patent application

Also Published As

Publication number Publication date
JP7169400B2 (en) 2022-11-10
JPWO2017209005A1 (en) 2019-03-28
JP2021132403A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7169400B2 (en) Terminal and communication method
WO2017026543A1 (en) User device and d2d signal transmission method
JP7410994B2 (en) Terminal, communication system, and transmission method
JP6413021B2 (en) User device, signal transmission method and signal reception method
WO2017026545A1 (en) User device and data transmission method
US10728881B2 (en) User equipment and signal transmission method
WO2018030541A1 (en) User apparatus and signal transmission method
WO2017026542A1 (en) Relay device and relay method
WO2017026495A1 (en) Control device, user device, wireless resource allocation method, and communication method
WO2017135428A1 (en) User equipment and receiving method
WO2017169835A1 (en) User device and transmission method
WO2017195538A1 (en) User device and signal transmission method
WO2018084094A1 (en) User device and signal transmission method
WO2019215823A1 (en) Communication device
WO2019207660A1 (en) Communication device
WO2018084116A1 (en) User device and resource selection method
WO2018203412A1 (en) User device, and communication method
WO2019064466A1 (en) User equipment
WO2018203415A1 (en) User device
WO2019030935A1 (en) User device and synchronous signal transmission method
WO2019229907A1 (en) Communication device
WO2018030397A1 (en) User apparatus and communication method
WO2018203414A1 (en) User device
WO2019097656A1 (en) User device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806560

Country of ref document: EP

Kind code of ref document: A1