WO2017203467A1 - Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore - Google Patents

Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore Download PDF

Info

Publication number
WO2017203467A1
WO2017203467A1 PCT/IB2017/053093 IB2017053093W WO2017203467A1 WO 2017203467 A1 WO2017203467 A1 WO 2017203467A1 IB 2017053093 W IB2017053093 W IB 2017053093W WO 2017203467 A1 WO2017203467 A1 WO 2017203467A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
glass fiber
fiber component
thermoplastic
thermoplastic composition
Prior art date
Application number
PCT/IB2017/053093
Other languages
French (fr)
Inventor
Jian Wang
Shijie Song
Zhenke WEI
Qin Wang
Mian DAI
Original Assignee
Sabic Global Technologies B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59101523&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017203467(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sabic Global Technologies B.V. filed Critical Sabic Global Technologies B.V.
Priority to US16/300,991 priority Critical patent/US10647840B2/en
Priority to EP17732223.7A priority patent/EP3464449B1/en
Priority to CN201780035858.3A priority patent/CN109312113A/en
Priority to KR1020187035548A priority patent/KR102011755B1/en
Publication of WO2017203467A1 publication Critical patent/WO2017203467A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • thermoplastic compositions for use in telecommunications applications, and in particular to thermoplastic compositions having a relatively low dielectric constant and dissipation factor.
  • Plastics have been widely used in electronics and telecommunication applications to make structural or function components of antennas, radio-frequency (RF) components, and other related devices. Successive generations of mobile communications networks have utilized successively higher working frequencies.
  • the next generation of mobile networks e.g., 5G, or 5 th generation mobile networks
  • 5G, or 5 th generation mobile networks are expected to utilize frequencies in the 10-100 gigahertz (GHz) range, which is much higher than current 3G and 4G networks operating in the 2-3 GHz range.
  • GHz gigahertz
  • the electromagnetic (EM) waves generated by telecommunication antennas will receive much more interference by surrounding materials such as plastics and metals.
  • plastics made from polymers are dielectric substances, which can temporarily store EM energy.
  • Dielectric performance is thus one consideration in selecting materials for RF components.
  • plastics for use in RF components should also have certain mechanical performance characteristics including high modulus, low coefficient of thermal expansion (CTE), and high impact strength. Improved mechanical performance may be imparted to polymeric materials by the addition of fillers such as glass fiber, carbon fiber and ceramics. However, common fillers in use today result in elevated dielectric performance (Dk and Df) properties.
  • thermoplastic composition including from
  • the low Dk/low Df glass fiber component has a Dk of less than 5.0 at 1 megahertz (MHz) or less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 or less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • thermoplastic article including: forming a blend by mixing from 50 wt. % to 90 wt. %, or from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component; and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
  • Dk dielectric constant
  • Df low dissipation factor
  • the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • thermoplastic compositions including from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component.
  • the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • the thermoplastic compositions exhibit improved dielectric properties.
  • Ranges can be expressed herein as from one value (first value) to another value (second value). When such a range is expressed, the range includes in some aspects one or both of the first value and the second value. Similarly, when values are expressed as approximations, by use of the antecedent 'about,' it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about” that particular value in addition to the value itself. For example, if the value "10" is disclosed, then “about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
  • the terms “about” and “at or about” mean that the amount or value in question can be the designated value, approximately the designated value, or about the same as the designated value. It is generally understood, as used herein, that it is the nominal value indicated ⁇ 10% variation unless otherwise indicated or inferred. The term is intended to convey that similar values promote equivalent results or effects recited in the claims. That is, it is understood that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but can be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art.
  • an amount, size, formulation, parameter or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such. It is understood that where "about” is used before a quantitative value, the parameter also includes the specific quantitative value itself, unless specifically stated otherwise.
  • the terms “optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
  • the phrase “optional additive materials” means that the additive material can or cannot be included.
  • compositions of the disclosure Disclosed are the components to be used to prepare the compositions of the disclosure as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary.
  • references in the specification and concluding claims to parts by weight of a particular element or component in a composition or article denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed.
  • X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
  • a weight percent of a component is based on the total weight of the formulation or composition in which the component is included.
  • weight percent As used herein the terms "weight percent,” “wt %,” and “wt. %,” which can be used interchangeably, indicate the percent by weight of a given component based on the total weight of the composition, unless otherwise specified. That is, unless otherwise specified, all wt. % values are based on the total weight of the composition. It should be understood that the sum of wt. % values for all components in a disclosed composition or formulation are equal to 100.
  • compositions disclosed herein have certain functions.
  • the present disclosure pertains to a thermoplastic composition including from 50 wt. % to 90 wt. % (or from about 50 wt. % to about 90 wt. %) of a polymeric base resin and from 10 wt. % to 50 wt. % (or from about 10 wt. % to about 50 wt. %) of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component.
  • Dk dielectric constant
  • Df low dissipation factor
  • the low Dk/low Df glass fiber component has a Dk of less than 5 or less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 or less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • the polymeric base resin includes, but is not limited to polypropylene (PP), poly(p-phenylene oxide) (PPO), polystyrene (PS), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyamide (PA) or a combination thereof.
  • PP polypropylene
  • PPO poly(p-phenylene oxide)
  • PS polystyrene
  • PC polycarbonate
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PA polyamide
  • polypropylene can be used interchangeably with
  • poly(p-phenylene oxide) can be used interchangeably with poly(p-phenylene ether) or poly (2,6 dimethyl-p-phenylene oxide).
  • Poly(p-phenylene oxide) may be included by itself or may be blended with other polymers, including but not limited to polystyrene, high impact styrene-butadiene copolymer and/or polyamide.
  • polystyrene can be used interchangeably with poly (2,6 dimethyl-p-phenylene oxide).
  • a syndiotactic polystyrene may refer to a polystyrene having alternating stereochemical configurations.
  • Polystyrene is a type of high temperature crystalline polymeric plastics and is often used in electronic devices.
  • polycarbonate refers to an oligomer or polymer comprising residues of one or more dihydroxy compounds, e.g., dihydroxy aromatic compounds, joined by carbonate linkages; it also encompasses homopolycarbonates, copolycarbonates, and (co)polyester carbonates.
  • polybutylene terephthalate can be used interchangeably with poly(l,4-butylene terephthalate).
  • Polybutylene terephthalate is one type of polyester.
  • Polyesters which include poly(alkylene decarboxylases), liquid crystalline polyesters, and polyester copolymers, can be useful in the disclosed thermoplastic compositions of the present disclosure.
  • polyethylene terephthalate can be used interchangeably with poly(ethyl benzene- 1,4-dicarboxylate).
  • polyethylene terephthalate is a type of polyester.
  • a polyamide is a polymer having repeating units linked by amide bonds, and can include aliphatic polyamides (PA) (e.g., the various forms of nylon such as nylon 6 (PA6), nylon 66 (PA66) and nylon 9 (PA9)), polyphthalamides (e.g., PP A/high performance polyamide) and aramids (e.g., para-aramid and meta-aramid).
  • PA aliphatic polyamides
  • the polymeric base resin is not limited to those described herein.
  • the polymeric base resin may include polymers in addition to or in the alternative to those described above, including but not limited to polyetherimide (PEI), polyaryletherketone (PAEK), more specifically a polyether ether ketone (PEEK), and combinations thereof.
  • PEI polyetherimide
  • PAEK polyaryletherketone
  • PEEK polyether ether ketone
  • a polyetherimide refers to a polymer with repeating
  • Polyetherimides represent amorphous polymeric plastics.
  • polyphenylene sulfide may refer to a polymer including repeating p-substituted benzene rings and sulfur atoms.
  • thermoplastic composition includes from about 50 wt. % to about 90 wt. % of the polymeric base resin. In further aspects the thermoplastic composition includes from 60 wt. % to 80 wt. % ( or from about 60 wt. % to about 80 wt. %) of the polymeric base resin.
  • the disclosed thermoplastic compositions include from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component.
  • the glass fiber in the glass fiber component is selected from E- glass, S-glass, AR-glass, T-glass, D-glass and R-glass.
  • the glass fiber is selected from E-glass, S-glass, and combinations thereof.
  • the glass fiber component includes one or more E-glass materials.
  • the glass fibers can be made by standard processes, e.g., by steam or air blowing, flame blowing, and mechanical pulling. Exemplary glass fibers for thermoplastic compositions of the present disclosure may be made by mechanical pulling.
  • the glass fibers may be sized or unsized. Sized glass fibers are coated on their surfaces with a sizing composition selected for compatibility with the polymeric base resin.
  • the sizing composition facilitates wet-out and wet-through of the polymeric base resin upon the fiber strands and assists in attaining desired physical properties in the thermoplastic composition.
  • the glass fiber is sized with a coating agent.
  • the coating agent is present in an amount from 0.1 wt. % to 5 wt. % (or from about 0.1 wt. % to about 5 wt. %) based on the weight of the glass fibers.
  • the coating agent is present in an amount from 0.1 wt. % to 2 wt. % (or from about 0.1 wt. % to about 2 wt. %) based on the weight of the glass fibers.
  • the strand itself may be first formed of filaments and then sized.
  • the amount of sizing employed is generally that amount which is sufficient to bind the glass filaments into a continuous strand and ranges from 0.1 wt. % to 5 wt. % or from about 0.1 to about 5 wt. %, 0.1 wt. % to 2 wt. % or about 0.1 wt. % to about 2 wt. % based on the weight of the glass fibers. Generally, this may be about 1.0 wt. % based on the weight of the glass filament.
  • the glass fiber can be continuous or chopped. In a still further aspect, the glass fiber is continuous. In yet a further aspect, the glass fiber is chopped. Glass fibers in the form of chopped strands may have a length of 0.3 millimeter (mm) to 10 centimeters (cm) or from about 0.3 mm to about 10 cm, specifically 0.5 mm to 5 cm or from about 0.5 millimeter to about 5 centimeters, and more specifically 1.0 mm to 2.5 cm or from about 1.0 millimeter to about 2.5 centimeters. In various further aspects, the glass fiber has a length from 0.2 mm to 20 mm or from about 0.2 mm to about 20 mm.
  • the glass fiber has a length from 0.2 mm to 10 mm or from about 0.2 mm to about 10 mm. In an even further aspect, the glass fiber has a length from 0.7 mm to 7 mm or from about 0.7 mm to about 7 mm. In this area, where a thermoplastic resin is reinforced with glass fibers in a composite form, fibers having a length of 0.4 mm or about 0.4 mm are generally referred to as long fibers, and shorter ones are referred to as short fibers. In a still further aspect, the glass fiber can have a length of 1 mm or longer. In yet a further aspect, the glass fiber can have a length of 2 mm or longer.
  • the glass fiber has a round (or circular), flat, or irregular cross-section.
  • the glass fiber has a circular cross-section.
  • the diameter of the glass fiber is 1 micrometer (micron, ⁇ ) to 20 ⁇ or from about 1 to about 20 ⁇ .
  • the diameter of the glass fiber is from 4 ⁇ to 15 ⁇ or from about 4 ⁇ to about 15 ⁇ .
  • the diameter of the glass fiber is from 1 ⁇ to 15 ⁇ or from about 1 to about 15 ⁇ .
  • the glass fiber has a diameter from 7 ⁇ to 15 ⁇ or from about 7 ⁇ to about 15 ⁇ .
  • thermoplastic composition includes from 10 wt.
  • the thermoplastic composition includes from 15 wt. % to 40 wt. % (or from about 15 wt. % to about 40 wt. %) of the glass fiber component, or from 20 wt % to 35 wt. % (or from about 20 wt. % to about 35 wt. %) of the glass fiber component, or from 20 wt. % to 30 wt. % (or from about 20 wt. % to about 30 wt. %) of the glass fiber component.
  • the glass fiber used in the glass fiber component has a Dk of less than 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 at a frequency of from 1 MHz to 1 GHz. In a further aspect the glass fiber has a Df of less than 0.0001 at a frequency of 1 MHz to 1 GHz.
  • Exemplary glass fibers suitable for use in an aspect of the disclosure include, but are not limited to, the E-glass fibers ECS(HL)303 and/or CS(HL)301HP, available from Chongqing Polycomp International Corp. (CPIC). This fiber has a Dk of 4.6 at 1 MHz and a Df of less than 0.001 at 1 MHz, each when tested in accordance with IEC 60250-1969.
  • Thermoplastic compositions according to aspects of the present disclosure may include an impact modifier component.
  • suitable impact modifiers can include an epoxy-functional block copolymer.
  • the epoxy-functional block copolymer can include units derived from a C2-20 olefin and units derived from a glycidyl
  • olefins include ethylene, propylene, butylene, and the like.
  • the olefin units can be present in the copolymer in the form of blocks, e.g., as polyethylene, polypropylene, polybutylene, and the like blocks. It is also possible to use mixtures of olefins, i.e., blocks containing a mixture of ethylene and propylene units, or blocks of polyethylene together with blocks of polypropylene.
  • the impact modifier may include a copolymer including olefins such as those described above and other units such as styrene.
  • the epoxy -functional block copolymers can further include additional units, for example C ⁇ alkyl (meth)acrylate units.
  • the impact modifier is terpolymeric, including polyethylene blocks, methyl acrylate blocks, and glycidyl methacrylate blocks.
  • Specific impact modifiers are a co- or terpolymer including units of ethylene, glycidyl methacrylate (GMA), and methyl acrylate. It will be recognized that combinations of impact modifiers may be used.
  • Exemplary but by no means limiting impact modifiers for use in thermoplastic compositions of aspects of the present disclosure include: G1652, which is a styrene and ethylene/butylene (SEBS) copolymer available from KratonTM; TuftecTM H1043, a styrene and ethylene/butylene (SEBS) copolymer available from Asahi Kasei; and a combination of polyester elastomer impact modifiers, such as HytrelTM 4056, a butylene phthalate- poly(alkylene ether) phthalate copolymer available from DuPont, AmplifyTM EA 102, an acrylic acid ethyl ester-ethylene copolymer available from Dow, and LotaderTM AX 8900, an ethylene -methyl acrylate -glycidylmethacrylate terpolymer available from Arkema; and combinations thereof.
  • G1652 is a styrene and ethylene/butylene (SE
  • the impact modifier may be present in an amount from greater than 0 wt. % to 20 wt. % or to about 20 wt %. In further aspects, the impact modifier is present in an amount from 0.01 wt. % or about 0.01 wt. % to 15 wt. % or to about 15 wt %, or from about 5 wt. % to about 15 wt % or from 5 wt. % to 15 wt. %, or from 5 wt. % to 10 wt. % or from about 5 wt. % to about 10 wt %.
  • thermoplastic compositions can optionally include a balance amount of one or more additive materials ordinarily incorporated in thermoplastic compositions of this type, with the proviso that the additives are selected so as to not significantly adversely affect the desired properties of the composition.
  • Combinations of additives can be used. Such additives can be mixed at a suitable time during the mixing of the components for forming the composition.
  • additive materials that can be present in the disclosed thermoplastic compositions include one or more of a reinforcing filler, enhancer, acid scavenger, anti-drip agent, antioxidant, antistatic agent, chain extender, colorant (e.g., pigment and/or dye), de-molding agent, flow promoter, flow modifier, lubricant, mold release agent, plasticizer, quenching agent, flame retardant (including for example a thermal stabilizer, a hydrolytic stabilizer, or a light stabilizer), ultraviolet (UV) absorbing additive, UV reflecting additive, UV stabilizer and siloxane (which may improve mechanical and/or thermal performance of the composition).
  • a reinforcing filler e.g., enhancer, acid scavenger, anti-drip agent, antioxidant, antistatic agent, chain extender, colorant (e.g., pigment and/or dye), de-molding agent, flow promoter, flow modifier, lubricant, mold release agent, plasticizer, quenching agent, flame retardant (including for example
  • the disclosed thermoplastic compositions can further include an antioxidant or "stabilizer.”
  • an antioxidant or "stabilizer.”
  • the stabilizer is a hindered phenol.
  • the stabilizer may be present in an amount from greater than 0 wt. % to 5 wt %, or from greater than 0 wt. % to about 5 wt. %.
  • the stabilizer is present in an amount from 0.01 wt. % to 3 wt. % or from about 0.01 wt. % to about 3 wt %, or from 0.01 wt. % to 2 wt. % or from about 0.01 wt.
  • % to about 2 wt % or 0.01 wt. % to 1 wt. % or from about 0.01 wt. % to about 1 wt %, or from 0.01 wt. % to 0.05 wt. % or from about 0.01 wt. % to about .05 wt %, or from 0.01 wt. % to 0.02 wt. % or from about 0.01 wt. % to about .02 wt %.
  • thermoplastic composition has good dielectric properties.
  • the thermoplastic composition has a lower Dk and/or a lower Df than an equivalent thermoplastic composition that does not include a low Dk/low Df glass fiber component.
  • the thermoplastic composition has a Dk that is at least 0.1 lower, or at least about 0.1 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • thermoplastic composition has a Dk that is at least 0.2 lower, or at least about 0.2 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component, or the thermoplastic composition has a Dk that is at least 0.3 lower, or at least about 0.3 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • a "substantially identical reference composition in the absence of a low Dk/low Df glass fiber component” is a thermoplastic composition that has the same components, and the same amounts of the components, as the claimed composition, but includes a conventional glass fiber component (such as the glass fiber component(s) used in the comparative examples herein) instead of a low Dk/low Df glass fiber component.
  • thermoplastic composition has a Dk that is at least 3% lower, or about 3% lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component, or has a Dk that is 3% to 12% lower, or about 3% to about 12% lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • the polymeric base resin includes polypropylene, poly(p- phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic composition has a Df that is at least 5% lower or at least about 5% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • the polymeric base resin includes polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic composition has a Df that is at least 30% lower or at least about 30% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • Thermoplastic compositions according to aspects of the disclosure may have improved dielectric properties as discussed above, and may also maintain comparable mechanical performance and processing properties as compositions without the low Dk/low Df glass fiber component.
  • Mechanical and processing properties of interest include, but are not limited to, notched and unnotched Izod impact strength (tested in accordance with ASTM D256), heat deflection temperature (tested in accordance with ASTM D648), flexural modulus and flexural strength (tested in accordance with ASTM D790), tensile
  • thermoplastic compositions according to aspects of the present disclosure can have much lower Dk and Df values than previously known thermoplastic compositions, but can also maintain satisfactory mechanical performance and processing properties compared to these known compositions.
  • the dielectric properties of a particular compound or thermoplastic have been found to be difficult to reduce, and thus the reductions in Dk of 0.1 or more such as those found in the thermoplastic compositions of the present disclosure are not only surprising but also highly desirable.
  • thermoplastic compositions of the present disclosure can be blended with the aforementioned ingredients by a variety of methods involving intimate admixing of the materials with any additional additives desired in the formulation. Because of the availability of melt blending equipment in commercial polymer processing facilities, melt processing methods are generally preferred. Illustrative examples of equipment used in such melt processing methods include: co-rotating and counter-rotating extruders, single screw extruders, co-kneaders, disc-pack processors and various other types of extrusion equipment. The temperature of the melt in the present process is preferably minimized in order to avoid excessive degradation of the resins.
  • melt processed composition exits processing equipment such as an extruder through small exit holes in a die.
  • processing equipment such as an extruder through small exit holes in a die.
  • the resulting strands of molten resin are cooled by passing the strands through a water bath.
  • the cooled strands can be chopped into small pellets for packaging and further handling.
  • compositions can be manufactured by various methods.
  • the components may be first blended in a Henschel-MixerTM high speed mixer.
  • Other low shear processes including but not limited to hand mixing, can also accomplish this blending.
  • the blend is then fed into the throat of a twin-screw extruder via a hopper.
  • at least one of the components can be incorporated into the composition by feeding directly into the extruder at the throat and/or downstream through a sidestuffer.
  • Additives can also be compounded into a masterbatch with a desired polymeric resin and fed into the extruder.
  • the extruder is generally operated at a temperature higher than that necessary to cause the composition to flow.
  • the extrudate is immediately quenched in a water batch and pelletized.
  • the pellets, so prepared, when cutting the extrudate can be one-fourth inch long or less as desired. Such pellets can be used for subsequent molding, shaping, or forming.
  • compositions were polypropylene (PP), poly(p-phenylene oxide) (PP), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polyamide (PA), polystyrene (PS), polyetherimide (PEI), and polyphenylene sulfide (PPS) based.
  • PP polypropylene
  • PP poly(p-phenylene oxide)
  • PC polycarbonate
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PA polyamide
  • PS polystyrene
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • Compositions were prepared using a Werner-Pfleiderer with barrel and die size in millimeters (mm). Screw speed and side feeder speed in revolutions per minute (RPM); throughput in kilograms per hour (kg/hr); vacuum pressure in megapascals (MPa); back pressure, holding pressure, and maximum injection pressure in kilogram-force per square centimeters
  • thermoplastic base materials Exemplary, but by no means limiting, extrusion and molding profiles for various thermoplastic base materials are listed below in Tables 1A, IB and 2A, 2B respectively.
  • Max. Injection 800- 800- 800- kgf/cm 2 600-1200 pressure 1500 1500 1200
  • the present disclosure pertains to shaped, formed, or molded articles comprising the thermoplastic compositions.
  • the thermoplastic compositions can be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding and thermoforming to form articles and structural components of, for example, electronics and telecommunication applications, including but not limited to antennas, radio-frequency (RF) components, and other related devices.
  • the article is extrusion molded.
  • the article is injection molded.
  • the resulting disclosed compositions can be used to provide any desired shaped, formed, or molded articles.
  • the disclosed compositions can be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding and thermoforming.
  • the disclosed compositions are particularly well suited for use in the manufacture of electronic components and devices.
  • the disclosed thermoplastic compositions can be used to form articles such as antennas, radio-frequency (RF) components, and other related devices.
  • RF radio-frequency
  • the present disclosure pertains to and includes at least the following aspects.
  • a thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of 1 MHz and a Df of less than about 0.002 at a frequency of 1 MHz.
  • Dk dielectric constant
  • Df low dissipation factor
  • a thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz to 1 GHz.
  • Dk dielectric constant
  • Df low dissipation factor
  • a thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • Dk dielectric constant
  • Df low dissipation factor
  • a thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
  • Dk dielectric constant
  • Df low dissipation factor
  • Aspect 5 The thermoplastic composition according to any one of Aspects 1-
  • the low Dk/low Df glass fiber component has a Df of less than about 0.001 at a frequency of from 1 MHz to 1 GHz.
  • Aspect 6 The thermoplastic composition according to any one of Aspects 1-
  • Aspect 7 The thermoplastic composition according to Aspect 6, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene-ethylacrylate copolymer, or a combination thereof.
  • SEBS styrene and ethylene/butylene
  • Aspect 8 The thermoplastic composition according to any one of the previous
  • thermoplastic composition comprises a Dk that is at least about 0.1 lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • thermoplastic composition according to any one of the previous
  • thermoplastic composition comprises a Dk that is at least about 3% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • thermoplastic composition according to any one of the previous Aspects, wherein the thermoplastic composition comprises a Dk that is about 3% to about 12% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • Aspect 11 The thermoplastic composition according to any one of the previous Aspects, wherein the polymeric base resin comprises polypropylene, poly(p- phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic composition comprises a Df that is at least about 5% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • Aspect 12 The thermoplastic composition according to any one of Aspects 1 to 8, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic composition comprises a Df that is at least about 30% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
  • Aspect 13 The thermoplastic composition according to any one of the previous Aspects, wherein the composition comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
  • a method for making a thermoplastic article comprising: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
  • Dk dielectric constant
  • Df low dissipation factor
  • a method for making a thermoplastic article comprising: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt.
  • % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
  • a method for making a thermoplastic article consisting essentially of: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt.
  • % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
  • a method for making a thermoplastic article consisting of:
  • a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
  • Dk dielectric constant
  • Df low dissipation factor
  • Aspect 18 The method according to any one of Aspects 15-17, wherein the thermoplastic article comprises an antenna or antenna component or a radio frequency component.
  • Aspect 19 The method according to any one of Aspects 15-18, wherein the low Dk/low Df glass fiber component has a Df of less than about 0.001 at a frequency of from 1 MHz to 1 GHz.
  • Aspect 20 The method according to any one of Aspects 15-19, wherein the blend further comprises up to 20 wt. % of an impact modifier.
  • Aspect 21 The method according to Aspect 20, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene- ethylacrylate copolymer, or a combination thereof.
  • SEBS styrene and ethylene/butylene
  • Aspect 22 The method according to any of Aspects 15-21, wherein the thermoplastic article comprises a Dk that is at least about 0.1 lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
  • Aspect 23 The method according to any of Aspects 11 to 16, wherein the thermoplastic article comprises a Dk that is at least about 3% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
  • Aspect 24 The method according to any of Aspects 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic article comprises a Df that is at least about 5% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
  • Aspect 25 The method according to any of Aspects 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic article comprises a Df that is at least about 30% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
  • Aspect 26 The method according to any of Aspects 11 to 19, wherein the blend comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
  • reaction conditions e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
  • Thermoplastic compositions were developed using various polymers as the base resins, including polypropylene (PP), poly(p-phenylene oxide) (PPO), polycarbonate (PC), polybutylene terephthalate (PBT), and polyamide (PA).
  • PP polypropylene
  • PPO poly(p-phenylene oxide)
  • PC polycarbonate
  • PBT polybutylene terephthalate
  • PA polyamide
  • Table 3 lists the formulations of thermoplastic compositions according to aspects of the present disclosure including PP as the polymeric base resin.
  • Examples El . l and El .2 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303, available from CPIC) and a styrene and ethylene/butylene (SEBS) copolymer (G1652, available from KratonTM) as an impact modifier.
  • the control formulations, C 1.1 and C 1.2 were reinforced by a conventional glass fiber.
  • Df includes measuring these values using a QWED split post dielectric resonator and an Agilent network analyzer.
  • the minimum sample size is 120mm * 120mm; the maximum sample thickness is 6mm.
  • the minimum sample size is 70mm * 70mm; the maximum sample thickness is 4mm.
  • the test samples were prepared according to an injection molding process (as described above), and had a size of 150mm * 150mm * 3.0mm in accordance with the above specifications.
  • Thermoplastic compositions according to aspects of the present disclosure including PPO and PP as the polymeric base resin are listed in Table 5.
  • SEBS styrene and ethylene/butylene copolymer impact modifier
  • G1652 styrene and ethylene/butylene copolymer impact modifier
  • Dielectric and physical performance of the PPO/PP-based thermoplastic compositions are listed in Table 6. As shown, the Dk and Df results of Examples E2.1, E2.2 and E2.3 were all much lower than their respective control compositions C2.1, C2.2 and C2.3.
  • the impact modifier SEBS copolymer
  • the PP copolymer was included with the base resin to increase processability and ductility.
  • the mechanical properties of the PPO/PP- based thermoplastic compositions were comparable or slightly lower than the control compositions. Thus, low Dk/low Df thermoplastic compositions could be formed from PPO/PP-based resins according to aspects of the disclosure with satisfactory mechanical performance.
  • Example 3.1 and Controls C3.1, C3.2 and C3.3 included a blend of polycarbonate polymers.
  • Example 3.1 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303).
  • the control samples included glass fibers that are commonly applied in PC-based products.
  • Dielectric and physical performance of the PC-based thermoplastic composition is listed in Table 8.
  • the Dk and Df values of the composition of Example E3.1 were substantially lower than those of the control compositions.
  • the Dk values of Example E3.1 were lower by more than 0.1 than those of control compositions.
  • Thermal and mechanical performance of Example E3.1 was comparable to that of the control compositions.
  • Example E4.1 and control C4.1 included a blend of PBT and PET.
  • Example E4.1 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303).
  • Control sample C4.1 included a 'flat' E-glass fiber as the reinforcing agent.
  • the impact modifier in this example was a was a mixture of polyester elastomers, including butylene phthalate-poly(alkylene ether) phthalate copolymer, acrylic acid ethyl ester-ethylene copolymer, and ethylene-methyl acrylate-glycidylmethacrylate terpolymer (i.e., a combination of HytrelTM 4056, AmplifyTM EA 102, and LotaderTM AX 8900).
  • polyester elastomers including butylene phthalate-poly(alkylene ether) phthalate copolymer, acrylic acid ethyl ester-ethylene copolymer, and ethylene-methyl acrylate-glycidylmethacrylate terpolymer (i.e., a combination of HytrelTM 4056, AmplifyTM EA 102, and LotaderTM AX 8900).
  • Dielectric and physical performance of the PBT/PET-based thermoplastic composition is listed in Table 10.
  • the Dk and Df values of the composition of Example E4.1 were substantially lower than that of the control composition C4.1.
  • the Dk values of Example E4.1 were lower by more than 0.3 than those of control composition C4.1.
  • Thermal and mechanical performance of Example E4.1 was comparable to that of the control composition C4.1.
  • Example E5.1 and control C5.1 included Nylon 9T, available from Kuraray Co.
  • Example 5.1 included and a low Dk/low Df glass fiber component (the E-glass fiber CS(HL)301HP).
  • Control sample C5.1 included a flat glass fiber available from Nittobo.
  • Dielectric and physical performance of the PA-based thermoplastic composition is listed in Table 12.
  • the Dk values of the composition of Example E5.1 were substantially lower, by more than 0.1, than those of the control composition C5.1.
  • Thermal and mechanical performance of the composition of Example E5.1 was comparable to that of the control composition C5.1.
  • Example E6.1 and control C6.1 included Nylon 9T, available from Kuraray Co.
  • Example 6.1 included and a low Dk/low Df glass fiber component (the E-glass fiber CS(HL)301HP).
  • Control sample C6.1 included a flat glass fiber available from Nittobo.
  • the composition using low Dk/Df glass fiber had a lower Dk and Df than the control sample.
  • the Dk @ 1.9Hz dropped from 3.0 to 2.8 and Df dropped from 0.0022 to 0.0016.
  • the other properties of the compositions were similar. It is also noted that although sPS naturally has lower Dk and Df compared to different plastics in this category, dielectric performance can be further improved with the use of a low Dk/Df glass fiber, which could be useful in certain challenging applications.
  • Formulations for a polyetherimide based low Dk/Df compositions are shown in Table 15.
  • the developed composition and control sample are listed in E7.1 and C7.1, respectively, and test results are shown in Table 15.
  • Glass fiber in an amount of 15 wt. % was used in both control and developed composition.
  • Table 16 presents the properties of the polyetherimide based compositions. It was apparent that low Dk/Df glass fiber contributes to improve the dielectric performance as reflected by the drop of Dk from 3.29 to 3.13 and Df drop from 0.0029 to 0.0019.
  • Table 17 The developed composition and control sample are listed in E8.1 and C8.1, respectively. Glass fiber in an amount of 15 wt. % was used in both control and developed composition.
  • Table 18 presents the properties of PPS based low Dk/Df compositions. It shows similar result that dielectric performance has been improved (compare 3.42 to 3.34 for Dk and 0.00318 to 0.00292 for Df), while the performance with respect to mechanical properties have been maintained.
  • thermoplastic compositions according to aspects of the present disclosure have been achieved that have substantially improved dielectric properties (e.g., Dk and Df) and that maintain mechanical performance and processing properties.
  • Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine- readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples.
  • An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or nonvolatile tangible computer-readable media, such as during execution or at other times.
  • Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.

Abstract

A thermoplastic composition includes from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. The low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz. In certain aspects the thermoplastic composition has a Dk that is at least about 0.1 lower than a substantially identical reference composition that does not include the low Dk/low Df glass fiber component.

Description

THERMOPLASTIC COMPOSITIONS FOR ELECTRONICS OR
TELECOMMUNICATION APPLICATIONS AND SHAPED ARTICLE
THEREFORE
FIELD OF THE DISCLOSURE
[0001] The present disclosure relates to thermoplastic compositions for use in telecommunications applications, and in particular to thermoplastic compositions having a relatively low dielectric constant and dissipation factor.
BACKGROUND OF THE DISCLOSURE
[0002] Plastics have been widely used in electronics and telecommunication applications to make structural or function components of antennas, radio-frequency (RF) components, and other related devices. Successive generations of mobile communications networks have utilized successively higher working frequencies. The next generation of mobile networks (e.g., 5G, or 5th generation mobile networks) are expected to utilize frequencies in the 10-100 gigahertz (GHz) range, which is much higher than current 3G and 4G networks operating in the 2-3 GHz range. In these high RF environments, the electromagnetic (EM) waves generated by telecommunication antennas will receive much more interference by surrounding materials such as plastics and metals. In addition, plastics made from polymers are dielectric substances, which can temporarily store EM energy. Polymeric materials with a higher dielectric constant (Dk) and dissipation factor (Df) will absorb substantially more EM energy, affecting the strength and phase of the EM wave and decreasing antenna performance. Dielectric performance is thus one consideration in selecting materials for RF components.
[0003] In addition to dielectric performance, however, plastics for use in RF components should also have certain mechanical performance characteristics including high modulus, low coefficient of thermal expansion (CTE), and high impact strength. Improved mechanical performance may be imparted to polymeric materials by the addition of fillers such as glass fiber, carbon fiber and ceramics. However, common fillers in use today result in elevated dielectric performance (Dk and Df) properties.
[0004] These and other shortcomings are addressed by aspects of the present disclosure. SUMMARY
[0005] Aspects of the disclosure relate to a thermoplastic composition including from
50 weight percent (wt. %) to 90 wt. % or from about 50 wt. % to about 90 wt. % of a polymeric base resin and from 10 wt. % to 50 wt. % or from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. In some aspects the low Dk/low Df glass fiber component has a Dk of less than 5.0 at 1 megahertz (MHz) or less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 or less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
[0006] Aspects of the disclosure further relate to methods for making a thermoplastic article, including: forming a blend by mixing from 50 wt. % to 90 wt. %, or from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component; and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article. In certain aspects the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
DETAILED DESCRIPTION
[0007] The present disclosure can be understood more readily by reference to the following detailed description of the disclosure and the Examples included therein. In various aspects, the present disclosure pertains to thermoplastic compositions including from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. The low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz. In an aspect, the thermoplastic compositions exhibit improved dielectric properties.
[0008] Before the present compounds, compositions, articles, systems, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods unless otherwise specified, or to particular reagents unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. [0009] Various combinations of elements of this disclosure are encompassed by this disclosure, e.g., combinations of elements from dependent claims that depend upon the same independent claim.
[0010] Moreover, it is to be understood that unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps or operational flow; plain meaning derived from grammatical organization or punctuation; and the number or type of aspects described in the specification.
[0011] All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
Definitions
[0012] It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. As used in the specification and in the claims, the term "comprising" can include the embodiments "consisting of and "consisting essentially of." Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined herein.
[0013] As used in the specification and the appended claims, the singular forms "a,"
"an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a polycarbonate" includes mixtures of two or more polycarbonate polymers.
[0014] As used herein, the term "combination" is inclusive of blends, mixtures, alloys, reaction products, and the like.
[0015] Ranges can be expressed herein as from one value (first value) to another value (second value). When such a range is expressed, the range includes in some aspects one or both of the first value and the second value. Similarly, when values are expressed as approximations, by use of the antecedent 'about,' it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
[0016] As used herein, the terms "about" and "at or about" mean that the amount or value in question can be the designated value, approximately the designated value, or about the same as the designated value. It is generally understood, as used herein, that it is the nominal value indicated ±10% variation unless otherwise indicated or inferred. The term is intended to convey that similar values promote equivalent results or effects recited in the claims. That is, it is understood that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but can be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, an amount, size, formulation, parameter or other quantity or characteristic is "about" or "approximate" whether or not expressly stated to be such. It is understood that where "about" is used before a quantitative value, the parameter also includes the specific quantitative value itself, unless specifically stated otherwise.
[0017] As used herein, the terms "optional" or "optionally" means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the phrase "optional additive materials" means that the additive material can or cannot be included.
[0018] Disclosed are the components to be used to prepare the compositions of the disclosure as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively
contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the disclosure. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the methods of the disclosure.
[0019] References in the specification and concluding claims to parts by weight of a particular element or component in a composition or article, denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed. Thus, in a compound containing 2 parts by weight of component X and 5 parts by weight component Y, X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
[0020] A weight percent of a component, unless specifically stated to the contrary, is based on the total weight of the formulation or composition in which the component is included.
[0021] As used herein the terms "weight percent," "wt %," and "wt. %," which can be used interchangeably, indicate the percent by weight of a given component based on the total weight of the composition, unless otherwise specified. That is, unless otherwise specified, all wt. % values are based on the total weight of the composition. It should be understood that the sum of wt. % values for all components in a disclosed composition or formulation are equal to 100.
[0022] Certain abbreviations are defined as follows: "g" is grams, "kg" is kilograms,
"°C" is degrees Celsius, "min" is minutes, "mm" is millimeter, "mPa" is megapascal, "WiFi" is a system of accessing the internet from remote machines, "GPS" is Global Positioning System - a global system of U.S. navigational satellites which provide positional and velocity data. "LED" is light-emitting diode, "RF" is radio frequency, and "RFID" is radio frequency identification. [0023] Unless otherwise stated to the contrary herein, all test standards are the most recent standard in effect at the time of filing this application.
[0024] Each of the materials disclosed herein are either commercially available and/or the methods for the production thereof are known to those of skill in the art.
[0025] It is understood that the compositions disclosed herein have certain functions.
Disclosed herein are certain structural requirements for performing the disclosed functions and it is understood that there are a variety of structures that can perform the same function that are related to the disclosed structures, and that these structures will typically achieve the same result.
THERMOPLASTIC COMPOSITIONS
[0026] Thus, in various aspects, the present disclosure pertains to a thermoplastic composition including from 50 wt. % to 90 wt. % (or from about 50 wt. % to about 90 wt. %) of a polymeric base resin and from 10 wt. % to 50 wt. % (or from about 10 wt. % to about 50 wt. %) of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. The low Dk/low Df glass fiber component has a Dk of less than 5 or less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 or less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
Polymeric Base Resin
[0027] In some aspects the polymeric base resin includes, but is not limited to polypropylene (PP), poly(p-phenylene oxide) (PPO), polystyrene (PS), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyamide (PA) or a combination thereof.
[0028] As used herein, polypropylene can be used interchangeably with
poly(propene).
[0029] As used herein, poly(p-phenylene oxide) can be used interchangeably with poly(p-phenylene ether) or poly (2,6 dimethyl-p-phenylene oxide). Poly(p-phenylene oxide) may be included by itself or may be blended with other polymers, including but not limited to polystyrene, high impact styrene-butadiene copolymer and/or polyamide.
[0030] As used herein, polystyrene can be used interchangeably with poly (2,6 dimethyl-p-phenylene oxide). A syndiotactic polystyrene may refer to a polystyrene having alternating stereochemical configurations. Polystyrene is a type of high temperature crystalline polymeric plastics and is often used in electronic devices.
[0031] As used herein, polycarbonate refers to an oligomer or polymer comprising residues of one or more dihydroxy compounds, e.g., dihydroxy aromatic compounds, joined by carbonate linkages; it also encompasses homopolycarbonates, copolycarbonates, and (co)polyester carbonates.
[0032] As used herein, polybutylene terephthalate can be used interchangeably with poly(l,4-butylene terephthalate). Polybutylene terephthalate is one type of polyester.
Polyesters, which include poly(alkylene decarboxylases), liquid crystalline polyesters, and polyester copolymers, can be useful in the disclosed thermoplastic compositions of the present disclosure.
[0033] As used herein, polyethylene terephthalate can be used interchangeably with poly(ethyl benzene- 1,4-dicarboxylate). As with polybutylene terephthalate, polyethylene terephthalate is a type of polyester.
[0034] As used herein, a polyamide is a polymer having repeating units linked by amide bonds, and can include aliphatic polyamides (PA) (e.g., the various forms of nylon such as nylon 6 (PA6), nylon 66 (PA66) and nylon 9 (PA9)), polyphthalamides (e.g., PP A/high performance polyamide) and aramids (e.g., para-aramid and meta-aramid).
[0035] The polymeric base resin is not limited to those described herein. Thus, in some aspects the polymeric base resin may include polymers in addition to or in the alternative to those described above, including but not limited to polyetherimide (PEI), polyaryletherketone (PAEK), more specifically a polyether ether ketone (PEEK), and combinations thereof.
[0036] As used herein, a polyetherimide refers to a polymer with repeating
C37H24O6N2 units. Polyetherimides represent amorphous polymeric plastics.
[0037] As used herein, polyphenylene sulfide (PPS) may refer to a polymer including repeating p-substituted benzene rings and sulfur atoms.
[0038] In certain aspects the thermoplastic composition includes from about 50 wt. % to about 90 wt. % of the polymeric base resin. In further aspects the thermoplastic composition includes from 60 wt. % to 80 wt. % ( or from about 60 wt. % to about 80 wt. %) of the polymeric base resin.
Glass Fiber Component
[0039] The disclosed thermoplastic compositions include from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. In certain aspects the glass fiber in the glass fiber component is selected from E- glass, S-glass, AR-glass, T-glass, D-glass and R-glass. In a still further aspect, the glass fiber is selected from E-glass, S-glass, and combinations thereof. In a still further aspect, the glass fiber component includes one or more E-glass materials. The glass fibers can be made by standard processes, e.g., by steam or air blowing, flame blowing, and mechanical pulling. Exemplary glass fibers for thermoplastic compositions of the present disclosure may be made by mechanical pulling.
[0040] The glass fibers may be sized or unsized. Sized glass fibers are coated on their surfaces with a sizing composition selected for compatibility with the polymeric base resin. The sizing composition facilitates wet-out and wet-through of the polymeric base resin upon the fiber strands and assists in attaining desired physical properties in the thermoplastic composition.
[0041] In various further aspects, the glass fiber is sized with a coating agent. In a further aspect, the coating agent is present in an amount from 0.1 wt. % to 5 wt. % (or from about 0.1 wt. % to about 5 wt. %) based on the weight of the glass fibers. In a still further aspect, the coating agent is present in an amount from 0.1 wt. % to 2 wt. % (or from about 0.1 wt. % to about 2 wt. %) based on the weight of the glass fibers.
[0042] In preparing the glass fibers, a number of filaments can be formed
simultaneously, sized with the coating agent and then bundled into what is called a strand. Alternatively the strand itself may be first formed of filaments and then sized. The amount of sizing employed is generally that amount which is sufficient to bind the glass filaments into a continuous strand and ranges from 0.1 wt. % to 5 wt. % or from about 0.1 to about 5 wt. %, 0.1 wt. % to 2 wt. % or about 0.1 wt. % to about 2 wt. % based on the weight of the glass fibers. Generally, this may be about 1.0 wt. % based on the weight of the glass filament.
[0043] In a further aspect, the glass fiber can be continuous or chopped. In a still further aspect, the glass fiber is continuous. In yet a further aspect, the glass fiber is chopped. Glass fibers in the form of chopped strands may have a length of 0.3 millimeter (mm) to 10 centimeters (cm) or from about 0.3 mm to about 10 cm, specifically 0.5 mm to 5 cm or from about 0.5 millimeter to about 5 centimeters, and more specifically 1.0 mm to 2.5 cm or from about 1.0 millimeter to about 2.5 centimeters. In various further aspects, the glass fiber has a length from 0.2 mm to 20 mm or from about 0.2 mm to about 20 mm. In a yet further aspect, the glass fiber has a length from 0.2 mm to 10 mm or from about 0.2 mm to about 10 mm. In an even further aspect, the glass fiber has a length from 0.7 mm to 7 mm or from about 0.7 mm to about 7 mm. In this area, where a thermoplastic resin is reinforced with glass fibers in a composite form, fibers having a length of 0.4 mm or about 0.4 mm are generally referred to as long fibers, and shorter ones are referred to as short fibers. In a still further aspect, the glass fiber can have a length of 1 mm or longer. In yet a further aspect, the glass fiber can have a length of 2 mm or longer. [0044] In various further aspects, the glass fiber has a round (or circular), flat, or irregular cross-section. Thus, use of non-round fiber cross sections is possible. In a still further aspect, the glass fiber has a circular cross-section. In yet further aspect, the diameter of the glass fiber is 1 micrometer (micron, μιη) to 20 μιη or from about 1 to about 20 μιη. In an even further aspect, the diameter of the glass fiber is from 4 μιη to 15 μιη or from about 4 μιη to about 15 μιη. In a still further aspect, the diameter of the glass fiber is from 1 μιη to 15 μιη or from about 1 to about 15 μιη. In a still further aspect, the glass fiber has a diameter from 7 μιη to 15 μιη or from about 7 μιη to about 15 μιη.
[0045] As noted, in some aspects, the thermoplastic composition includes from 10 wt.
% to 50 wt. % (or from about 10 wt. % to about 50 wt. %) of the glass fiber component. In further aspects, the thermoplastic composition includes from 15 wt. % to 40 wt. % (or from about 15 wt. % to about 40 wt. %) of the glass fiber component, or from 20 wt % to 35 wt. % (or from about 20 wt. % to about 35 wt. %) of the glass fiber component, or from 20 wt. % to 30 wt. % (or from about 20 wt. % to about 30 wt. %) of the glass fiber component.
[0046] In certain aspects of the disclosure the glass fiber used in the glass fiber component has a Dk of less than 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than 0.002 at a frequency of from 1 MHz to 1 GHz. In a further aspect the glass fiber has a Df of less than 0.0001 at a frequency of 1 MHz to 1 GHz.
[0047] Exemplary glass fibers suitable for use in an aspect of the disclosure include, but are not limited to, the E-glass fibers ECS(HL)303 and/or CS(HL)301HP, available from Chongqing Polycomp International Corp. (CPIC). This fiber has a Dk of 4.6 at 1 MHz and a Df of less than 0.001 at 1 MHz, each when tested in accordance with IEC 60250-1969.
Impact Modifier Component
[0048] Thermoplastic compositions according to aspects of the present disclosure may include an impact modifier component. In an aspect, suitable impact modifiers can include an epoxy-functional block copolymer. The epoxy-functional block copolymer can include units derived from a C2-20 olefin and units derived from a glycidyl
(meth)acrylate. Exemplary olefins include ethylene, propylene, butylene, and the like. The olefin units can be present in the copolymer in the form of blocks, e.g., as polyethylene, polypropylene, polybutylene, and the like blocks. It is also possible to use mixtures of olefins, i.e., blocks containing a mixture of ethylene and propylene units, or blocks of polyethylene together with blocks of polypropylene. In further aspects, the impact modifier may include a copolymer including olefins such as those described above and other units such as styrene. [0049] In addition to glycidyl (meth)acrylate units, the epoxy -functional block copolymers can further include additional units, for example C^ alkyl (meth)acrylate units. In one aspect, the impact modifier is terpolymeric, including polyethylene blocks, methyl acrylate blocks, and glycidyl methacrylate blocks. Specific impact modifiers are a co- or terpolymer including units of ethylene, glycidyl methacrylate (GMA), and methyl acrylate. It will be recognized that combinations of impact modifiers may be used.
[0050] Exemplary but by no means limiting impact modifiers for use in thermoplastic compositions of aspects of the present disclosure include: G1652, which is a styrene and ethylene/butylene (SEBS) copolymer available from Kraton™; Tuftec™ H1043, a styrene and ethylene/butylene (SEBS) copolymer available from Asahi Kasei; and a combination of polyester elastomer impact modifiers, such as Hytrel™ 4056, a butylene phthalate- poly(alkylene ether) phthalate copolymer available from DuPont, Amplify™ EA 102, an acrylic acid ethyl ester-ethylene copolymer available from Dow, and Lotader™ AX 8900, an ethylene -methyl acrylate -glycidylmethacrylate terpolymer available from Arkema; and combinations thereof.
[0051] In some aspects, the impact modifier may be present in an amount from greater than 0 wt. % to 20 wt. % or to about 20 wt %. In further aspects, the impact modifier is present in an amount from 0.01 wt. % or about 0.01 wt. % to 15 wt. % or to about 15 wt %, or from about 5 wt. % to about 15 wt % or from 5 wt. % to 15 wt. %, or from 5 wt. % to 10 wt. % or from about 5 wt. % to about 10 wt %.
Optional Polymer Composition Additives
[0052] In addition to the foregoing components, the disclosed thermoplastic compositions can optionally include a balance amount of one or more additive materials ordinarily incorporated in thermoplastic compositions of this type, with the proviso that the additives are selected so as to not significantly adversely affect the desired properties of the composition. Combinations of additives can be used. Such additives can be mixed at a suitable time during the mixing of the components for forming the composition. Exemplary and non-limiting examples of additive materials that can be present in the disclosed thermoplastic compositions include one or more of a reinforcing filler, enhancer, acid scavenger, anti-drip agent, antioxidant, antistatic agent, chain extender, colorant (e.g., pigment and/or dye), de-molding agent, flow promoter, flow modifier, lubricant, mold release agent, plasticizer, quenching agent, flame retardant (including for example a thermal stabilizer, a hydrolytic stabilizer, or a light stabilizer), ultraviolet (UV) absorbing additive, UV reflecting additive, UV stabilizer and siloxane (which may improve mechanical and/or thermal performance of the composition).
[0053] In a further aspect, the disclosed thermoplastic compositions can further include an antioxidant or "stabilizer." Numerous stabilizers are known may be used, in one aspect the stabilizer is a hindered phenol. In some aspects, the stabilizer may be present in an amount from greater than 0 wt. % to 5 wt %, or from greater than 0 wt. % to about 5 wt. %. In further aspects, the stabilizer is present in an amount from 0.01 wt. % to 3 wt. % or from about 0.01 wt. % to about 3 wt %, or from 0.01 wt. % to 2 wt. % or from about 0.01 wt. % to about 2 wt %, or 0.01 wt. % to 1 wt. % or from about 0.01 wt. % to about 1 wt %, or from 0.01 wt. % to 0.05 wt. % or from about 0.01 wt. % to about .05 wt %, or from 0.01 wt. % to 0.02 wt. % or from about 0.01 wt. % to about .02 wt %.
Properties of Thermoplastic Compositions
[0054] The thermoplastic composition according to aspects of the disclosure has good dielectric properties. In certain aspects the thermoplastic composition has a lower Dk and/or a lower Df than an equivalent thermoplastic composition that does not include a low Dk/low Df glass fiber component. In one aspect the thermoplastic composition has a Dk that is at least 0.1 lower, or at least about 0.1 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component. In further aspects the thermoplastic composition has a Dk that is at least 0.2 lower, or at least about 0.2 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component, or the thermoplastic composition has a Dk that is at least 0.3 lower, or at least about 0.3 lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component. As used herein, a "substantially identical reference composition in the absence of a low Dk/low Df glass fiber component" is a thermoplastic composition that has the same components, and the same amounts of the components, as the claimed composition, but includes a conventional glass fiber component (such as the glass fiber component(s) used in the comparative examples herein) instead of a low Dk/low Df glass fiber component.
[0055] In a further aspect the thermoplastic composition has a Dk that is at least 3% lower, or about 3% lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component, or has a Dk that is 3% to 12% lower, or about 3% to about 12% lower, than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component. [0056] In certain aspects the polymeric base resin includes polypropylene, poly(p- phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic composition has a Df that is at least 5% lower or at least about 5% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component. In further aspects the polymeric base resin includes polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic composition has a Df that is at least 30% lower or at least about 30% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0057] Thermoplastic compositions according to aspects of the disclosure may have improved dielectric properties as discussed above, and may also maintain comparable mechanical performance and processing properties as compositions without the low Dk/low Df glass fiber component. Mechanical and processing properties of interest include, but are not limited to, notched and unnotched Izod impact strength (tested in accordance with ASTM D256), heat deflection temperature (tested in accordance with ASTM D648), flexural modulus and flexural strength (tested in accordance with ASTM D790), tensile
modulus/strength/elongation (tested in accordance with ASTM D638), and coefficient of thermal expansion (tested in accordance with ASTM E831).
[0058] Thus, the thermoplastic compositions according to aspects of the present disclosure can have much lower Dk and Df values than previously known thermoplastic compositions, but can also maintain satisfactory mechanical performance and processing properties compared to these known compositions. In practice, the dielectric properties of a particular compound or thermoplastic have been found to be difficult to reduce, and thus the reductions in Dk of 0.1 or more such as those found in the thermoplastic compositions of the present disclosure are not only surprising but also highly desirable.
METHODS OF MANUFACTURE
[0059] The thermoplastic compositions of the present disclosure can be blended with the aforementioned ingredients by a variety of methods involving intimate admixing of the materials with any additional additives desired in the formulation. Because of the availability of melt blending equipment in commercial polymer processing facilities, melt processing methods are generally preferred. Illustrative examples of equipment used in such melt processing methods include: co-rotating and counter-rotating extruders, single screw extruders, co-kneaders, disc-pack processors and various other types of extrusion equipment. The temperature of the melt in the present process is preferably minimized in order to avoid excessive degradation of the resins. It is often desirable to maintain the melt temperature between about 230 °C and about 350 °C in the molten resin composition, although higher temperatures can be used provided that the residence time of the resin in the processing equipment is kept short. In some aspects the melt processed composition exits processing equipment such as an extruder through small exit holes in a die. The resulting strands of molten resin are cooled by passing the strands through a water bath. The cooled strands can be chopped into small pellets for packaging and further handling.
[0060] Compositions can be manufactured by various methods. For example, the components may be first blended in a Henschel-Mixer™ high speed mixer. Other low shear processes, including but not limited to hand mixing, can also accomplish this blending. The blend is then fed into the throat of a twin-screw extruder via a hopper. Alternatively, at least one of the components can be incorporated into the composition by feeding directly into the extruder at the throat and/or downstream through a sidestuffer. Additives can also be compounded into a masterbatch with a desired polymeric resin and fed into the extruder. The extruder is generally operated at a temperature higher than that necessary to cause the composition to flow. The extrudate is immediately quenched in a water batch and pelletized. The pellets, so prepared, when cutting the extrudate can be one-fourth inch long or less as desired. Such pellets can be used for subsequent molding, shaping, or forming.
Compositions were polypropylene (PP), poly(p-phenylene oxide) (PP), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polyamide (PA), polystyrene (PS), polyetherimide (PEI), and polyphenylene sulfide (PPS) based.
Compositions were prepared using a Werner-Pfleiderer with barrel and die size in millimeters (mm). Screw speed and side feeder speed in revolutions per minute (RPM); throughput in kilograms per hour (kg/hr); vacuum pressure in megapascals (MPa); back pressure, holding pressure, and maximum injection pressure in kilogram-force per square centimeters
(kgf/cm2), cooling time in seconds (s), and injection speed in millimeters per second (mm/s).
[0061] Exemplary, but by no means limiting, extrusion and molding profiles for various thermoplastic base materials are listed below in Tables 1A, IB and 2A, 2B respectively.
Table 1A: Typical extrusion profile of compositions
Figure imgf000014_0001
Die mm 3 4 4 4
Zone 1 Temp °C 20 90 50 100
Zone 2 Temp °C 40 150 100 200
Zone 3 Temp °c 150 270 200 240
Zone 4 Temp °c 210 270 255 240
Zone 5 Temp °c 210 280 255 240
Zone 6 Temp °c 210 280 255 250
Zone 7 Temp °c 210 280 255 250
Zone 8 Temp °c 210 280 255 250
Zone 9 Temp °c 210 280 260 250
Zone 10 Temp °c 210 280 265 250
Zone 11 Temp °c 210 280 265 250
Die Temp °c 210 270 265 250
Screw speed RPM 350 300 300 200
Throughput kg/hr 20 35 40 50
Torque None 40-50 50-60 70-80 70-80
Vacuum 1 MPa -0.08 -0.08 -0.08 -0.08
Side Feeder 1 speed RPM 300 250 250 250
Melt temperature None 220 275 270 250
Table IB. Typical extrusion profile of compositions
Figure imgf000015_0001
Vacuum 1 MPa -0.08 -0.08 -0.08 -0.08
Side Feeder 1 >200 >200
RPM 300 250 speed
Melt temperature None 300 294 380 335
Table 2A. Typical molding profile of compositions
Figure imgf000016_0001
Table 2B. Typical molding profile of compositions
Figure imgf000016_0002
ASTM tensile, flexural, Izod bars,
Mold Type (insert) NA
150mm χ 150mm χ 3.0mm plaque
Hopper temp °C 50 50 50 50
290- 270-28
Zone 1 temp °C 360-370 300-310
300 0
300- 280-29
Zone 2 temp °C 360-370 310-330
320 0
310- 290-30
Zone 3 temp °C 360-370 310-330
330 0
300- 290-30
Nozzle temp °C 360-370 320-330
320 0
100-
Mold temp °C 100 150 130
150
Screw speed RPM 100 100 90 100
Back pressure kgf/cm2 40 30 70 30
Cooling time s 15-20 15-20 20 20
100-
Injection speed mm/s 50 50 30
150
600- 600- 600-
Holding pressure kgf/cm2 400-800
1000 1000 1000
Max. Injection 800- 800- 800- kgf/cm2 600-1200 pressure 1500 1500 1200
ARTICLES OF MANUFACTURE
[0062] In one aspect, the present disclosure pertains to shaped, formed, or molded articles comprising the thermoplastic compositions. The thermoplastic compositions can be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding and thermoforming to form articles and structural components of, for example, electronics and telecommunication applications, including but not limited to antennas, radio-frequency (RF) components, and other related devices. In a further aspect, the article is extrusion molded. In a still further aspect, the article is injection molded.
[0063] In a further aspect, the resulting disclosed compositions can be used to provide any desired shaped, formed, or molded articles. For example, the disclosed compositions can be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding and thermoforming. As noted above, the disclosed compositions are particularly well suited for use in the manufacture of electronic components and devices. As such, according to some aspects, the disclosed thermoplastic compositions can be used to form articles such as antennas, radio-frequency (RF) components, and other related devices. [0064] Various combinations of elements of this disclosure are encompassed by this disclosure, e.g., combinations of elements from dependent claims that depend upon the same independent claim.
Aspects of the Disclosure
[0065] In various aspects, the present disclosure pertains to and includes at least the following aspects.
[0066] Aspect 1 : A thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of 1 MHz and a Df of less than about 0.002 at a frequency of 1 MHz.
[0067] Aspect 2: A thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz to 1 GHz.
[0068] Aspect 3: A thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
[0069] Aspect 4: A thermoplastic composition comprising: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz.
[0070] Aspect 5: The thermoplastic composition according to any one of Aspects 1-
4, wherein the low Dk/low Df glass fiber component has a Df of less than about 0.001 at a frequency of from 1 MHz to 1 GHz.
[0071] Aspect 6: The thermoplastic composition according to any one of Aspects 1-
5, wherein the composition further comprises up to 20 wt. % of an impact modifier. [0072] Aspect 7: The thermoplastic composition according to Aspect 6, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene-ethylacrylate copolymer, or a combination thereof.
[0073] Aspect 8: The thermoplastic composition according to any one of the previous
Aspects, wherein the thermoplastic composition comprises a Dk that is at least about 0.1 lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0074] Aspect 9: The thermoplastic composition according to any one of the previous
Aspects, wherein the thermoplastic composition comprises a Dk that is at least about 3% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0075] Aspect 10: The thermoplastic composition according to any one of the previous Aspects, wherein the thermoplastic composition comprises a Dk that is about 3% to about 12% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0076] Aspect 11 : The thermoplastic composition according to any one of the previous Aspects, wherein the polymeric base resin comprises polypropylene, poly(p- phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic composition comprises a Df that is at least about 5% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0077] Aspect 12: The thermoplastic composition according to any one of Aspects 1 to 8, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic composition comprises a Df that is at least about 30% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
[0078] Aspect 13: The thermoplastic composition according to any one of the previous Aspects, wherein the composition comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
Aspect 14: A method for making a thermoplastic article, comprising: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
[0079] Aspect 15: A method for making a thermoplastic article, comprising: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
[0080] Aspect 16: A method for making a thermoplastic article, consisting essentially of: forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
[0081] Aspect 17: A method for making a thermoplastic article, consisting of:
forming a blend by mixing: from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and injection molding, extruding, rotational molding, blow molding or thermoforming the blend to form the thermoplastic article.
[0082] Aspect 18: The method according to any one of Aspects 15-17, wherein the thermoplastic article comprises an antenna or antenna component or a radio frequency component.
[0083] Aspect 19: The method according to any one of Aspects 15-18, wherein the low Dk/low Df glass fiber component has a Df of less than about 0.001 at a frequency of from 1 MHz to 1 GHz.
[0084] Aspect 20: The method according to any one of Aspects 15-19, wherein the blend further comprises up to 20 wt. % of an impact modifier. [0085] Aspect 21 : The method according to Aspect 20, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene- ethylacrylate copolymer, or a combination thereof.
[0086] Aspect 22: The method according to any of Aspects 15-21, wherein the thermoplastic article comprises a Dk that is at least about 0.1 lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
[0087] Aspect 23: The method according to any of Aspects 11 to 16, wherein the thermoplastic article comprises a Dk that is at least about 3% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
[0088] Aspect 24: The method according to any of Aspects 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic article comprises a Df that is at least about 5% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
[0089] Aspect 25: The method according to any of Aspects 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic article comprises a Df that is at least about 30% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
[0090] Aspect 26: The method according to any of Aspects 11 to 19, wherein the blend comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
EXAMPLES
[0091] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the disclosure. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric. Unless indicated otherwise, percentages referring to composition are in terms of wt. %. [0092] There are numerous variations and combinations of reaction conditions, e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
[0093] Thermoplastic compositions were developed using various polymers as the base resins, including polypropylene (PP), poly(p-phenylene oxide) (PPO), polycarbonate (PC), polybutylene terephthalate (PBT), and polyamide (PA). The typical developed formulations are shown and discussed below.
[0094] Table 3 lists the formulations of thermoplastic compositions according to aspects of the present disclosure including PP as the polymeric base resin. Examples El . l and El .2 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303, available from CPIC) and a styrene and ethylene/butylene (SEBS) copolymer (G1652, available from Kraton™) as an impact modifier. The control formulations, C 1.1 and C 1.2, were reinforced by a conventional glass fiber.
Table 3: Formulations of PP-based thermoplastic compositions
Figure imgf000022_0001
[0095] Dielectric and physical performance of the PP compositions are listed in
Table 4. As can be seen, the Dk and Df values of Examples El . l and El.2 were much lower than their respective control compositions. For example, El.2 had a Dk of less than 2.5 (2.49) at 1.1 GHz and a 30% glass fiber loading. Contrast this with Cl . l, which had a higher Dk value at 1.1 GHz (2.51) but with only a 20% glass fiber loading, and then increased substantially to 2.67 when a direct comparison to a 30% glass fiber loading is made. Df of El. l and El .2 was also substantially decreased compared to the control compositions.
[0096] Mechanical performance (e.g. modulus, notched Izod, CTE) of the compositions of Examples El . l and El .2 was generally slightly worse than that of the comparative compositions, but is still acceptable. Density is presented as grams per cubic centimeter (g/cm3); melt (volume) flow rate (MVR), in cubic centimeters per 10 minutes (cm /10 min); notched and unnotched Izod at 5 foot-pounds force (lbf/ft), in joules per meter (J/m); heat deflection temperature, in °C; flexural modulus, flexural strength, tensile modulus, and tensile strength in MPa; tensile elongation in a percent; and coefficient of liner thermal expansion (CTE), in °C.
Table 4: Properties of PP -based thermoplastic compositions
Figure imgf000023_0001
[0097] As described above and below, the "SABIC Method" for determining Dk and
Df includes measuring these values using a QWED split post dielectric resonator and an Agilent network analyzer. For the 1. lGHz measurement, the minimum sample size is 120mm * 120mm; the maximum sample thickness is 6mm. For the 1.9GHz measurement, the minimum sample size is 70mm * 70mm; the maximum sample thickness is 4mm. The test samples were prepared according to an injection molding process (as described above), and had a size of 150mm * 150mm * 3.0mm in accordance with the above specifications.
[0098] Thermoplastic compositions according to aspects of the present disclosure including PPO and PP as the polymeric base resin are listed in Table 5. Examples E2.1, E2.2 and E2.3 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303, available from CPIC) and a styrene and ethylene/butylene (SEBS) copolymer impact modifier (G1652, available from Kraton™ or Tuftec™ H1043, available from Asahi Kasei). The control formulations, C2.1, C2.2 and C2.3, were reinforced by a conventional glass fiber used in PPO-based (Noryl™) resins.
Table 5: Formulations of PPO/PP -based thermoplastic compositions
Figure imgf000024_0001
[0099] Dielectric and physical performance of the PPO/PP-based thermoplastic compositions are listed in Table 6. As shown, the Dk and Df results of Examples E2.1, E2.2 and E2.3 were all much lower than their respective control compositions C2.1, C2.2 and C2.3. The impact modifier (SEBS copolymer) was included to improve the ductility of the compositions. The PP copolymer was included with the base resin to increase processability and ductility. [00100] As with the PP-based compositions, the mechanical properties of the PPO/PP- based thermoplastic compositions were comparable or slightly lower than the control compositions. Thus, low Dk/low Df thermoplastic compositions could be formed from PPO/PP-based resins according to aspects of the disclosure with satisfactory mechanical performance.
Table 6: Properties of PPO/PP-based thermoplastic compositions
Figure imgf000025_0001
Density was tested per ASTM D792.
MVR was tested per ASTM D1238. Notched Izod, Ductility, and Unnotched Izod were tested per ASTM D256.
HDT was tested per ASTM D648.
Flexural Modulus and Flexural Strength were tested per ASTM D790.
Tensile Modulus, Tensile Strength, and Tensile Elongation were tested per ASTM D638.
CTE was tested per ASTM E831.
Dk, Df were tested per SABIC Method.
[00101] A PC-based thermoplastic composition according to an aspect of the present disclosure is listed in Table 7. Example 3.1 and Controls C3.1, C3.2 and C3.3 included a blend of polycarbonate polymers. Example 3.1 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303). The control samples included glass fibers that are commonly applied in PC-based products.
Table 7: Formulations of PC-based thermoplastic compositions
Figure imgf000026_0001
[00102] Dielectric and physical performance of the PC-based thermoplastic composition is listed in Table 8. The Dk and Df values of the composition of Example E3.1 were substantially lower than those of the control compositions. In particular, the Dk values of Example E3.1 were lower by more than 0.1 than those of control compositions. Thermal and mechanical performance of Example E3.1 was comparable to that of the control compositions.
Table 8: Properties of PC-based thermoplastic compositions
Figure imgf000026_0002
Izod
Unnotched
23 °C, 5 lbf/ft ASTM D256 J/m 863 737 778 752 Izod
1.82MPa/3.2m
HDT ASTM D648 °C 139 139 138 138 m
Flexural 3.2mm,
ASTM D790 MPa 5470 6340 5950 5670 Modulus 1.27mm/min
@break,
Flexural
3.2mm, ASTM D790 MPa 164 167 162 154 Strength
1.27mm/min
Tensile
5mm/min ASTM D638 MPa 5469 6382 6002 5763 Modulus
Tensile @break,
ASTM D638 MPa 109 105 101 97 Strength 5mm/min
Tensile @break,
ASTM D638 % 3.49 3.1 3.24 3.18 Elongation 5mm/min
1E-05/
CTE flow, -30~80°C ASTM E831 3.14 2.82 2.95 3.21
°C
xflow, - 1E-05/
ASTM E831 8.41 7.99 7.85 8.41 30~80°C °C
SABIC
Dk 1.1GHz - 2.97 3.11 3.13 3.10
Method
SABIC
Df 1.1GHz - 5.5e-3 6.3e-3 6.0e-3 5.9e-3
Method
SABIC
Dk 1.9GHz - 2.97 3.13 3.14 3.12
Method
SABIC
Df 1.9GHz - 5.2e-3 6.0e-3 5.7e-3 5.6e-3
Method
[00103] A PBT/PET-based thermoplastic composition according to an aspect of the present disclosure is listed in Table 9. Example E4.1 and control C4.1 included a blend of PBT and PET. Example E4.1 included a low Dk/low Df glass fiber component (the E-glass fiber ECS(HL)303). Control sample C4.1 included a 'flat' E-glass fiber as the reinforcing agent. The impact modifier in this example was a was a mixture of polyester elastomers, including butylene phthalate-poly(alkylene ether) phthalate copolymer, acrylic acid ethyl ester-ethylene copolymer, and ethylene-methyl acrylate-glycidylmethacrylate terpolymer (i.e., a combination of Hytrel™ 4056, Amplify™ EA 102, and Lotader™ AX 8900).
Table 9: Formulations of PBT/PET-based thermoplastic compositions
Figure imgf000027_0001
Hindered phenol stabilizer /o 0. 1 0.1
2-(2'hydroxy-5-t-octylphenyl)-benzotriazole /o 0.25 0.25
Mono zinc phosphate /o 0.15 0.15
Butylene phthalate-poly(alkylene ether)
/o 2.5 2.5 phthalate copolymer (Hytrel™ 4056)
Acrylic acid ethyl ester-ethylene copolymer
/o 2 2
(Amplify™ EA 102)
Ethylene-methyl acrylate-glycidylmethacrylate
/o 3 3 terpolymer (Lotader™ AX 8900)
[00104] Dielectric and physical performance of the PBT/PET-based thermoplastic composition is listed in Table 10. The Dk and Df values of the composition of Example E4.1 were substantially lower than that of the control composition C4.1. In particular, the Dk values of Example E4.1 were lower by more than 0.3 than those of control composition C4.1. Thermal and mechanical performance of Example E4.1 was comparable to that of the control composition C4.1.
Table 10: Properties of PBT/PET-based thermoplastic compositions
Figure imgf000028_0001
SABIC
Df 1.9GHz - 0.011 0.012
Method
[00105] A PA-based thermoplastic composition according to an aspect of the disclosure is shown in Table 11. Example E5.1 and control C5.1 included Nylon 9T, available from Kuraray Co. Example 5.1 included and a low Dk/low Df glass fiber component (the E-glass fiber CS(HL)301HP). Control sample C5.1 included a flat glass fiber available from Nittobo.
Table 11: Formulations of PA-based thermoplastic compositions
Figure imgf000029_0001
[00106] Dielectric and physical performance of the PA-based thermoplastic composition is listed in Table 12. The Dk values of the composition of Example E5.1 were substantially lower, by more than 0.1, than those of the control composition C5.1. Thermal and mechanical performance of the composition of Example E5.1 was comparable to that of the control composition C5.1.
Table 12: Properties of PA-based thermoplastic compositions
Figure imgf000029_0002
Tensile @break,
ASTM D638 % 1.45 1.35 Elongation 5mm/min
CTE flow, -30~80°C ASTM E831 lE-05/°C 3.03 2.88 xflow, -30~80°C ASTM E831 lE-05/°C 7.35 6.99
Dk 1.1GHz SABIC Method - 3.13 3.25
Df 1.1GHz SABIC Method - 0.011 0.010
Dk 1.9GHz SABIC Method - 3.15 3.30
Df 1.9GHz SABIC Method - 0.010 0.010
[00107] A syndiotactic polystyrene-based thermoplastic composition according to an aspect of the disclosure is shown in Table 13. Example E6.1 and control C6.1 included Nylon 9T, available from Kuraray Co. Example 6.1 included and a low Dk/low Df glass fiber component (the E-glass fiber CS(HL)301HP). Control sample C6.1 included a flat glass fiber available from Nittobo.
Table 13. Formulation of sPS (syndiotactic polystrene) based low Dk, low Df compositions
Figure imgf000030_0001
[00108] As shown in Table 14, the composition using low Dk/Df glass fiber had a lower Dk and Df than the control sample. The Dk @ 1.9Hz dropped from 3.0 to 2.8 and Df dropped from 0.0022 to 0.0016. The other properties of the compositions were similar. It is also noted that although sPS naturally has lower Dk and Df compared to different plastics in this category, dielectric performance can be further improved with the use of a low Dk/Df glass fiber, which could be useful in certain challenging applications.
Table 14. Properties of sPS (syndiotactic polystrene) based low Dk, low Df compositions
Figure imgf000030_0002
Flexural ©break, 3.2mm, ASTM D790 MPa 126 131
Strength 1.27mm/min
Tensile 5mm/min ASTM D638 MPa 8987 9724
Modulus
Tensile ©break, ASTM D638 MPa 84.5 91.5
Strength 5mm/ mi
Tensile ©break, ASTM D638 % 1.1 1.1
Elongation 5mm/ min
Dk 1.9GHz SABIC Method / 2.8 3.0
Df 1.9GHz SABIC Method / 0.0016 0.0022
[00109] Formulations for a polyetherimide based low Dk/Df compositions are shown in Table 15. The developed composition and control sample are listed in E7.1 and C7.1, respectively, and test results are shown in Table 15. Glass fiber in an amount of 15 wt. % was used in both control and developed composition.
Table 15. Formulation of PEI (polyetherimide) based low Dk, low Df compositions
[00110] Table 16 presents the properties of the polyetherimide based compositions. It was apparent that low Dk/Df glass fiber contributes to improve the dielectric performance as reflected by the drop of Dk from 3.29 to 3.13 and Df drop from 0.0029 to 0.0019.
Table 16. Properties of PEI (polyetherimide) based low Dk, low Df compositions
Figure imgf000031_0002
Tensile @break, ASTM D638 MPa 153.3 138.6 Strength 5mm/min
Tensile @break, ASTM D638 % 4.3 3.5 Elongation 5mm/min
Dk 1.9GHz SABIC Method / 3.29 3.13
Df 1.9GHz SABIC Method / 0.00291 0.0019
[00111] Formulations for a polyphenylene based low Dk/Df compositions are shown in
Table 17. The developed composition and control sample are listed in E8.1 and C8.1, respectively. Glass fiber in an amount of 15 wt. % was used in both control and developed composition.
Table 17. Formulation of PPS (polyphenylene sulfide) based low Dk, low Df compositions
Figure imgf000032_0001
[00112] Table 18 presents the properties of PPS based low Dk/Df compositions. It shows similar result that dielectric performance has been improved (compare 3.42 to 3.34 for Dk and 0.00318 to 0.00292 for Df), while the performance with respect to mechanical properties have been maintained.
Table 18. Properties of PPS (polyphenylene sulfide) based low Dk, low Df compositions
Typical Test Test Unit C8.1 E8.1
Property Method Description
MVR 330°C/ 2.16kg ASTM D1238 cm3 54 49
/lOmin
Notched 23°C, 5 lbf/ft ASTM D256 J/m 50.3 64.3
IZOD
Flexural 3.2mm, ASTM D790 MPa 6310 5990
Modulus 1.27mm/min
Flexural ©break, 3.2mm, ASTM D790 MPa 171 165
Strength 1.27mm/min
Tensile 5mm/min ASTM D638 MPa 6785 6416
Modulus
Tensile ©break, ASTM D638 MPa 114.6 109.9
Strength 5mm/min Tensile ©break, ASTM D638 «/ 2.2 2.2 Elongation 5mm/min
Dk 1.9GHz SABIC 1 3.42 3.34
Method
Df 1.9GHz SABIC 1 0.00318 0.00292
Method
[00113] Based on the above examples it is evident that thermoplastic compositions according to aspects of the present disclosure have been achieved that have substantially improved dielectric properties (e.g., Dk and Df) and that maintain mechanical performance and processing properties.
[00114] Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine- readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or nonvolatile tangible computer-readable media, such as during execution or at other times.
Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.
[00115] The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other aspects can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed aspect. Thus, the following claims are hereby incorporated into the Detailed Description as examples or aspects, with each claim standing on its own as a separate aspect, and it is contemplated that such aspects can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims

CLAIMS That which is claimed is:
1. A thermoplastic composition comprising:
from about 50 wt. % to about 90 wt. % of a polymeric base resin; and
from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component,
wherein the low Dk/low Df glass fiber component has a Dk of less than 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from
1 MHz to 1 GHz.
2. The thermoplastic composition according to claim 1, wherein the low Dk/low Df glass fiber component has a Df of less than 0.001 at a frequency of from 1 MHz to 1 GHz.
3. The thermoplastic composition according to claim 1 or 2, wherein the composition further comprises up to 20 wt. % of an impact modifier.
4. The thermoplastic composition according to claim 3, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene- ethylacrylate copolymer, or a combination thereof.
5. The thermoplastic composition according to any of the previous claims, wherein the thermoplastic composition comprises a Dk that is at least 0.1 lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
6. The thermoplastic composition according to any of the previous claims, wherein the thermoplastic composition comprises a Dk that is at least about 3% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
7. The thermoplastic composition according to any of the previous claims, wherein the thermoplastic composition comprises a Dk that is about 3% to about 12% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
8. The thermoplastic composition according to any of the previous claims, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), polycarbonate, a polyetherimide, a polystyrene, a polyphenylene sulfide, or a combination thereof and the thermoplastic composition comprises a Df that is at least about 5% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
9. The thermoplastic composition according to any of claims 1 to 8, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic composition comprises a Df that is at least about 30% lower than a substantially identical reference composition in the absence of a low Dk/low Df glass fiber component.
10. The thermoplastic composition according to any of the previous claims, wherein the composition comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
11. A method for making a thermoplastic article, comprising:
forming a blend by mixing:
from about 50 wt. % to about 90 wt. % of a polymeric base resin; and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component, wherein the low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz, and
injection molding, extruding, rotational molding, blow molding or thermo forming the blend to form the thermoplastic article.
12. The method according to claim 11, wherein the thermoplastic article comprises an antenna or antenna component or a radio frequency component.
13. The method according to claim 11 or 12, wherein the low Dk/low Df glass fiber component has a Df of less than about 0.001 at a frequency of from 1 MHz to 1 GHz.
14. The method according to any of claims 11 to 13, wherein the blend further comprises up to 20 wt. % of an impact modifier.
15. The method according to claim 14, wherein the impact modifier is a styrene and ethylene/butylene (SEBS) copolymer, a polyester ether elastomer/ethylene-ethylacrylate copolymer, or a combination thereof.
16. The method according to any of claims 11 to 15, wherein the thermoplastic article comprises a Dk that is at least about 0.1 lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
17. The method according to any of claims 11 to 16, wherein the thermoplastic article comprises a Dk that is at least about 3% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
18. The method according to any of claims 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), polycarbonate, or a combination thereof and the thermoplastic article comprises a Df that is at least about 5% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
19. The method according to any of claims 11 to 17, wherein the polymeric base resin comprises polypropylene, poly(p-phenylene oxide), or a combination thereof and the thermoplastic article comprises a Df that is at least about 30% lower than a substantially identical reference article in the absence of a low Dk/low Df glass fiber component.
20. The method according to any of claims 11 to 19, wherein the blend comprises from about 60 wt. % to about 80 wt. % of the polymeric base resin and from about 20 wt. % to about 30 wt. % of the low Dk/low Df glass fiber component.
PCT/IB2017/053093 2016-05-26 2017-05-25 Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore WO2017203467A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/300,991 US10647840B2 (en) 2016-05-26 2017-05-25 Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
EP17732223.7A EP3464449B1 (en) 2016-05-26 2017-05-25 Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
CN201780035858.3A CN109312113A (en) 2016-05-26 2017-05-25 The thermoplastic compounds and its formed article applied for electronics or telecommunications
KR1020187035548A KR102011755B1 (en) 2016-05-26 2017-05-25 Thermoplastic Compositions and Molded Articles for Electronic or Telecommunication Applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662341847P 2016-05-26 2016-05-26
US62/341,847 2016-05-26

Publications (1)

Publication Number Publication Date
WO2017203467A1 true WO2017203467A1 (en) 2017-11-30

Family

ID=59101523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/053093 WO2017203467A1 (en) 2016-05-26 2017-05-25 Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore

Country Status (5)

Country Link
US (1) US10647840B2 (en)
EP (1) EP3464449B1 (en)
KR (1) KR102011755B1 (en)
CN (1) CN109312113A (en)
WO (1) WO2017203467A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180155545A1 (en) * 2016-12-02 2018-06-07 Ems-Patent Ag Polyamide moulding compounds with low relative permittivity
CN109776953A (en) * 2018-12-17 2019-05-21 会通新材料股份有限公司 A kind of low-k extrusion grade polypropylene reinforcement and preparation method and extrusion molding process
WO2019130269A1 (en) * 2017-12-29 2019-07-04 Sabic Global Technologies B.V. Low dielectric constant (dk) and dissipation factor (df) material for nano-molding technology (nmt)
EP3591003A1 (en) 2018-07-06 2020-01-08 SABIC Global Technologies B.V. Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
WO2020008300A1 (en) * 2018-07-02 2020-01-09 Sabic Global Technologies B.V. Reinforced polyphthalamide/polyphenylene ether composition, method for the manufacture thereof, and articles prepared therefrom
WO2020059651A1 (en) 2018-09-20 2020-03-26 東レ株式会社 Thermoplastic polyester resin composition and molded article
EP3680288A1 (en) * 2019-01-14 2020-07-15 SABIC Global Technologies B.V. Thermoplastic compositions having low dielectric constant
WO2020173943A1 (en) * 2019-02-27 2020-09-03 Solvay Specialty Polymers Usa, Llc Poly(arylene sulphide) composition having high dielectric performance
EP3741807A1 (en) * 2019-05-24 2020-11-25 SABIC Global Technologies B.V. Polymer compositions with low warpage

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020009999B1 (en) * 2017-11-28 2024-01-09 Basf Se THERMOPLASTIC POLYAMIDE COMPOSITION, METHOD OF MANUFACTURING THE THERMOPLASTIC POLYAMIDE COMPOSITION AND USE OF THE THERMOPLASTIC POLYAMIDE COMPOSITION
EP3546509B1 (en) * 2018-03-26 2021-04-21 SHPP Global Technologies B.V. Thermally conductive thermoplastic compositions with good dielectric property and the shaped article therefore
CN110437540B (en) * 2019-09-06 2022-02-18 万华化学集团股份有限公司 Polypropylene material with low dielectric constant, high strength and good weather resistance and preparation method thereof
JP2023517354A (en) 2020-03-13 2023-04-25 インヴィスタ テキスタイルズ(ユー.ケー.)リミテッド Thermoplastics for network applications
EP4200110A1 (en) * 2020-08-20 2023-06-28 3M Innovative Properties Company Melt-processable, impact resistant fiber-reinforced composite materials
KR102428814B1 (en) * 2020-08-25 2022-08-05 주식회사 삼양사 Thermoplastic resin composition having good low-dielectric property and molded article comprising the same
CN112194854A (en) * 2020-09-22 2021-01-08 江苏金陵奥普特高分子材料有限公司 Low-dielectric-property composite thermoplastic elastomer and preparation method thereof
CN113337035A (en) * 2020-10-31 2021-09-03 王永芳 High-thermal-conductivity low-dielectric polypropylene continuous composite sheet composition and preparation method thereof
KR20230107839A (en) 2020-11-16 2023-07-18 바스프 에스이 Polybutylene terephthalate composition and radar device component thereof
KR20230004024A (en) * 2021-06-30 2023-01-06 롯데케미칼 주식회사 Thermoplastic resin composition and article produced therefrom
CN114836011A (en) * 2022-03-25 2022-08-02 金发科技股份有限公司 Low-dielectric-conductivity thermal-resistance glass fiber reinforced PBT (polybutylene terephthalate) material and application thereof
EP4280374A1 (en) 2022-05-18 2023-11-22 SHPP Global Technologies B.V. Polyphenylene ether compositions having improved mechanical and heat properties
CN115124826A (en) * 2022-08-02 2022-09-30 上海中镭新材料科技有限公司 Glass fiber reinforced polycarbonate material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633295A1 (en) * 1993-01-28 1995-01-11 Otsuka Kagaku Kabushiki Kaisha Resin composition for electronic parts
US20090255714A1 (en) * 2008-04-14 2009-10-15 Samsung Electro-Mechanics Co., Ltd. Manufacturing an insulating sheet, a copper clad laminate, and a printed circuit board
JP2015040296A (en) * 2013-08-23 2015-03-02 独立行政法人産業技術総合研究所 Resin composition for dielectric and high-frequency dielectric device
US20150368458A1 (en) * 2014-06-19 2015-12-24 Sabic Global Technologies B.V. Reinforced thermoplastic compound with chemical resistance
WO2015200272A2 (en) * 2014-06-23 2015-12-30 Sabic Global Technologies B.V. Filler reinforced thermoplastic compositions with improved bonding strength

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130943A (en) 1987-11-17 1989-05-23 Asahi Glass Co Ltd Laminated sheet
JPH0741659A (en) * 1993-07-27 1995-02-10 Mitsubishi Gas Chem Co Inc Thermoplastic resin composition
JP3269937B2 (en) 1995-06-05 2002-04-02 日東紡績株式会社 Low dielectric constant glass fiber
JPH09221338A (en) 1995-12-14 1997-08-26 Nitto Boseki Co Ltd Low dielectric constant glass chopped strand and fiber reinforced plastic molding material containing same
JPH11209590A (en) 1998-01-23 1999-08-03 Toray Ind Inc Liquid crystal resin composition and precision formed product of the composition
JP4269194B2 (en) 1998-04-14 2009-05-27 日東紡績株式会社 Low dielectric constant glass fiber
WO1999054888A1 (en) * 1998-04-16 1999-10-28 Tdk Corporation Composite dielectric material composition, and film, substrate, electronic parts and moldings therefrom
JP2003137590A (en) 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd Low dielectric constant low dielectric dissipation factor glass, and glass fiber and glass fiber fabric using the glass
FR2825084B1 (en) 2001-05-23 2003-07-18 Saint Gobain Vetrotex GLASS YARNS CAPABLE OF REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, PROCESS FOR PRODUCING GLASS YARNS, COMPOSITION USED
JP4210089B2 (en) * 2002-09-10 2009-01-14 信越石英株式会社 Synthetic quartz glass fiber, strand, yarn and cloth
US7413791B2 (en) 2003-01-28 2008-08-19 Matsushita Electric Works, Ltd. Poly (phenylene ether) resin composition, prepreg, and laminated sheet
US20090297848A1 (en) 2006-02-06 2009-12-03 Hirotaka Itoh Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
US8697591B2 (en) 2006-12-14 2014-04-15 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass
US9056786B2 (en) 2006-12-14 2015-06-16 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
DE102008016436A1 (en) 2008-03-31 2009-10-01 Ems-Patent Ag Polyamide molding compound for paint-free, tough housings with a high-gloss surface
WO2010011701A2 (en) 2008-07-25 2010-01-28 Dielectric Solutions, Llc Glass fiber composition and printed circuit board made from the glass fiber composition
JP5233769B2 (en) 2009-03-18 2013-07-10 東レ株式会社 Polybutylene terephthalate resin composition
JP5647785B2 (en) 2009-09-09 2015-01-07 ダイセルポリマー株式会社 Resin composition for painted molded body
JP2012136385A (en) 2010-12-27 2012-07-19 Nippon Electric Glass Co Ltd Glass fiber sizing agent, glass fiber, and glass-fiber reinforced thermoplastic resin material
WO2013066663A2 (en) 2011-10-31 2013-05-10 Ticona Llc Thermoplastic composition for use in forming a laser direct structured substrate
CN102504333B (en) 2011-11-02 2014-05-14 台光电子材料(昆山)有限公司 Inorganic filler, resin composition and application thereof
JP6147956B2 (en) 2011-12-20 2017-06-14 ウィンテックポリマー株式会社 High-frequency signal transmission components and high-frequency electrical / electronic equipment
US9394430B2 (en) 2012-04-13 2016-07-19 Ticona Llc Continuous fiber reinforced polyarylene sulfide
CN102634124A (en) 2012-04-25 2012-08-15 西北核技术研究所 Fiber reinforced thermoplastic polymer matrix composite material and preparation method thereof
US9193864B2 (en) 2012-06-22 2015-11-24 Sabic Global Technologies B.V. Polycarbonate compositions with improved impact resistance
WO2014058495A2 (en) 2012-07-16 2014-04-17 Rapiscan Systems, Inc. Ultra-portable people screening system
JP2014058603A (en) 2012-09-14 2014-04-03 Mitsubishi Engineering Plastics Corp Polyamide resin composition, resin molded article, and method for producing resin molded article having plated layer attached thereto
CN102863152B (en) * 2012-10-12 2014-09-17 重庆国际复合材料有限公司 Glass fiber for printed circuit board
CN104650573B (en) 2013-11-22 2017-11-17 深圳光启创新技术有限公司 Composite, high frequency antenna substrate for making high frequency antenna substrate and preparation method thereof
CN104744891A (en) 2013-12-27 2015-07-01 台燿科技股份有限公司 Prepreg and application thereof
US9236445B2 (en) * 2014-01-16 2016-01-12 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor having replacement gate and epitaxially grown replacement channel region
CN103992039B (en) 2014-05-30 2015-07-15 重庆国际复合材料有限公司 Glass fiber with low dielectric constant
JP6847572B2 (en) * 2014-07-30 2021-03-24 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded product
CN105694423A (en) 2014-11-28 2016-06-22 上海杰事杰新材料(集团)股份有限公司 A modified polyphenylene oxide material with high strength and low dielectric loss and a preparing method thereof
CN105566909A (en) 2014-12-26 2016-05-11 比亚迪股份有限公司 Resin composition, metal-resin complex and preparation method and application thereof, and electronic product shell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633295A1 (en) * 1993-01-28 1995-01-11 Otsuka Kagaku Kabushiki Kaisha Resin composition for electronic parts
US20090255714A1 (en) * 2008-04-14 2009-10-15 Samsung Electro-Mechanics Co., Ltd. Manufacturing an insulating sheet, a copper clad laminate, and a printed circuit board
JP2015040296A (en) * 2013-08-23 2015-03-02 独立行政法人産業技術総合研究所 Resin composition for dielectric and high-frequency dielectric device
US20150368458A1 (en) * 2014-06-19 2015-12-24 Sabic Global Technologies B.V. Reinforced thermoplastic compound with chemical resistance
WO2015200272A2 (en) * 2014-06-23 2015-12-30 Sabic Global Technologies B.V. Filler reinforced thermoplastic compositions with improved bonding strength

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201518, Derwent World Patents Index; AN 2015-151852, XP002772669 *
LI H; ENG D; TANG C; WESTBROOK P: "Low dielectric glass fibre development-new printed circuit board base materials", GLASS TECHNOLOGY: EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART A, vol. 54, no. 2, 1 April 2013 (2013-04-01), pages 81 - 85, XP002772670 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927254B2 (en) * 2016-12-02 2021-02-23 Ems-Patent Ag Polyamide moulding compounds with low relative permittivity
US20180155545A1 (en) * 2016-12-02 2018-06-07 Ems-Patent Ag Polyamide moulding compounds with low relative permittivity
US10752771B2 (en) 2017-12-29 2020-08-25 Sabic Global Technologies B.V. Low dielectric constant (DK) and dissipation factor (DF) material for nano-molding technology (NMT)
WO2019130269A1 (en) * 2017-12-29 2019-07-04 Sabic Global Technologies B.V. Low dielectric constant (dk) and dissipation factor (df) material for nano-molding technology (nmt)
CN112437793A (en) * 2018-07-02 2021-03-02 沙特高性能聚合物和塑料全球技术公司 Reinforced polyphthalamide/polyphenylene ether compositions, methods of making the same, and articles made therefrom
WO2020008300A1 (en) * 2018-07-02 2020-01-09 Sabic Global Technologies B.V. Reinforced polyphthalamide/polyphenylene ether composition, method for the manufacture thereof, and articles prepared therefrom
CN110684274A (en) * 2018-07-06 2020-01-14 沙特基础工业全球技术公司 Thermoplastic composition having low dielectric constant and high stiffness and shaped articles thereof
CN110684274B (en) * 2018-07-06 2021-04-27 高新特殊工程塑料全球技术有限公司 Thermoplastic composition having low dielectric constant and high stiffness and shaped articles thereof
US10626262B2 (en) 2018-07-06 2020-04-21 Sabic Global Technologies B.V. Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
KR20200005451A (en) * 2018-07-06 2020-01-15 사빅 글로벌 테크놀러지스 비.브이. Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
KR102247303B1 (en) * 2018-07-06 2021-05-04 사빅 글로벌 테크놀러지스 비.브이. Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
EP3591003A1 (en) 2018-07-06 2020-01-08 SABIC Global Technologies B.V. Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
US11939466B2 (en) 2018-09-20 2024-03-26 Toray Industries, Inc. Thermoplastic polyester resin composition and molded article
WO2020059651A1 (en) 2018-09-20 2020-03-26 東レ株式会社 Thermoplastic polyester resin composition and molded article
KR20210057015A (en) 2018-09-20 2021-05-20 도레이 카부시키가이샤 Thermoplastic polyester resin composition and molded article
CN109776953A (en) * 2018-12-17 2019-05-21 会通新材料股份有限公司 A kind of low-k extrusion grade polypropylene reinforcement and preparation method and extrusion molding process
WO2020148653A1 (en) * 2019-01-14 2020-07-23 Sabic Global Technologies B.V. Thermoplastic compositions having low dielectric constant
EP3680288A1 (en) * 2019-01-14 2020-07-15 SABIC Global Technologies B.V. Thermoplastic compositions having low dielectric constant
WO2020173943A1 (en) * 2019-02-27 2020-09-03 Solvay Specialty Polymers Usa, Llc Poly(arylene sulphide) composition having high dielectric performance
EP3741807A1 (en) * 2019-05-24 2020-11-25 SABIC Global Technologies B.V. Polymer compositions with low warpage

Also Published As

Publication number Publication date
US10647840B2 (en) 2020-05-12
EP3464449A1 (en) 2019-04-10
US20190177519A1 (en) 2019-06-13
CN109312113A (en) 2019-02-05
KR20180136559A (en) 2018-12-24
KR102011755B1 (en) 2019-08-20
EP3464449B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US10647840B2 (en) Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
EP3337854B1 (en) Resin composition for high frequency electronic components
WO2020148653A1 (en) Thermoplastic compositions having low dielectric constant
KR102407738B1 (en) High-strength thermoplastic composition for thin-walled structures
US20240026150A1 (en) Thermoplastic Compositions Including Natural Fiber Having Good Mechanical Properties and Good Dielectric Properties
CN103589074A (en) Filling polypropylene material with high heat-proof aging performance and preparation method thereof
CN111601851A (en) Processing aid for filler dispersion and use thereof
KR20230053656A (en) Compositions and articles of wavelength transmission and improved dimension radar cover materials
EP3591003A1 (en) Thermoplastic compositions with low dielectric constant and high stiffness and the shaped article therefore
EP4019590A1 (en) Thermoplastic compositions with high dielectric constant, high heat resistance and improved mechanical properties and the shaped article therefore
EP3911706A1 (en) Filled thermoplastic compositions having improved flow
EP3640301A1 (en) Low density ductile compositions and uses thereof
EP3864087A1 (en) Thermoplastic compositions having high stiffness and methods of making them
EP4163336A1 (en) Thermoplastic compositions with ultra-high dielectric constant for nano molding technology (nmt) applications
KR20240054371A (en) Thermoplastic compositions with very high dielectric constants for nano molding technology (NMT) applications
CN107541044A (en) Poly carbonate resin composition and preparation method thereof
EP3943551A1 (en) Thermoplastic compositions having low dielectric properties and good mechanical performance
EP4011976A1 (en) Thermoplastic compositions with low dissipation factor for nano molding technology (nmt) applications
JP2023171319A (en) Polyphenylene ether composition having improved mechanical characteristic and thermal characteristic

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17732223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035548

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017732223

Country of ref document: EP

Effective date: 20190102