WO2017202411A1 - Verfahren zur durchführung eines schnüffelvorganges eines hydraulischen kupplungsaktors in einem hybridfahrzeug - Google Patents

Verfahren zur durchführung eines schnüffelvorganges eines hydraulischen kupplungsaktors in einem hybridfahrzeug Download PDF

Info

Publication number
WO2017202411A1
WO2017202411A1 PCT/DE2017/100344 DE2017100344W WO2017202411A1 WO 2017202411 A1 WO2017202411 A1 WO 2017202411A1 DE 2017100344 W DE2017100344 W DE 2017100344W WO 2017202411 A1 WO2017202411 A1 WO 2017202411A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
electric motor
hybrid
internal combustion
hybrid vehicle
Prior art date
Application number
PCT/DE2017/100344
Other languages
English (en)
French (fr)
Inventor
Erhard Hodrus
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016213309.8A external-priority patent/DE102016213309A1/de
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112017002678.4T priority Critical patent/DE112017002678A5/de
Publication of WO2017202411A1 publication Critical patent/WO2017202411A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/023Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5014Filling the actuator cylinder with fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5016Shifting operation, i.e. volume compensation of the master cylinder due to wear, temperature changes or leaks in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for carrying out a snooping operation of a hydraulic clutch actuator in a hybrid vehicle, in which a hybrid disconnect clutch actuated by the hydraulic clutch actuator disconnects or connects an internal combustion engine and an electric motor, wherein the torque output by the internal combustion engine and / or the electric motor to drive wheels of the vehicle is forwarded.
  • a method for controlling a starting clutch in a hybrid vehicle is known.
  • hybrid vehicles which allow different combinations of types of drive, such as electric motor, elektrozeratorisch, internal combustion engine in push or pull operation, internal combustion engine or electric motor ON, a mechanical decoupling of the torque of the internal combustion engine and electric motor is known. This decoupling of the internal combustion engine and electric motor is carried out by a hybrid disconnect clutch, which is hydraulically actuated.
  • An automatic actuation of the hybrid disconnect clutch via a clutch actuator comprising a control unit with a corresponding software for controlling the hybrid disconnect clutch and an electro-hydraulic actuator for actuating the hybrid disconnect clutch.
  • the hydraulic clutch actuator During operation of the hydraulic clutch actuator, the hydraulic fluid which is displaced for clutch actuation in the clutch actuator changes in volume. This can happen, for example, during a long electric drive, where the temperature of the hydrostatic path changes very much. A temperature and thus volume compensation is possible when a snooping process is performed with the electrostatic clutch actuator.
  • the hydrostatic section is connected to a surge tank to compensate for the hydraulic fluid.
  • the disadvantage here is that in a purely electric drive of the hybrid vehicle, the hybrid disconnect clutch is open and thus the snooping process can not be performed.
  • the invention is therefore based on the object, a method for performing a snooping operation of a hydraulic clutch actuator in a hybrid vehicle indicate in which the snooping process can also be performed in the electric driving operation of the hybrid vehicle.
  • the object is achieved in that during an electric driving operation of the hybrid vehicle, the internal combustion engine, without igniting, is towed to a ne rotational speed corresponding to the rotational speed of the electric motor, wherein in agreement of engine speed and electric motor speed, the hybrid disconnect clutch is closed and the snooping is carried out.
  • This has the advantage that, when the hybrid disconnect clutch is closed, the sniffer bore is opened by the clutch actuator for exchanging the hybrid fluid between the hydrostatic path and the expansion reservoir, so that the temperature and pressure of the hydraulic fluid return to normal, which is why a reliable actuation of the hybrid disconnect clutch is again possible after the snooping process ,
  • the Schnüffel barngang is performed when the speed of the internal combustion engine is smaller than an idle speed of the internal combustion engine.
  • the energy to passively tow the engine remains as small as possible.
  • a high gear is engaged to set the small engine speed during the electric drive of the hybrid vehicle in a manual transmission.
  • the internal combustion engine is towed with a belt starter generator. This takes place independently of the electric motor, as a result of which unintentional influences of the internal combustion engine on the driving operation of the electric motor are prevented.
  • the internal combustion engine is towed by slowly closing the hybrid disconnect clutch.
  • slowly closing a lowering of the rotational speed of the electric motor is prevented, so that no torque fluctuations in the vehicle are perceived by the vehicle occupants.
  • the suppression of torque fluctuations occurs when a torque required for towing the internal combustion engine is piloted on the hybrid disconnect clutch by the electric motor.
  • the hybrid disconnect clutch is opened.
  • a sniffer operation can also be carried out with an un-actuated closed clutch during the electric driving operation, and subsequently the electric driving operation of the hybrid vehicle can be continued.
  • FIG. 1 shows a schematic representation of a hybrid drive
  • FIG. 2 shows a schematic structure of a hydraulic clutch actuation system
  • Fig. 3 shows an embodiment of the method according to the invention.
  • Fig. 1 is a schematic diagram of a drive train 1 of a hybrid vehicle is shown.
  • This drive train 1 comprises an internal combustion engine 2 and an electric motor 3.
  • a hybrid separating clutch 4 is arranged directly behind the internal combustion engine 2.
  • the hybrid disconnect clutch 4 is an unactuated closed clutch, as used for example in manual transmissions.
  • the hybrid separation clutch 4 is designed as a friction clutch.
  • Internal combustion engine 2 and hybrid separating clutch 4 are connected to each other via a crankshaft 5.
  • the electric motor 3 has a rotatable rotor 6 and a fixed stator 7.
  • the output shaft 8 of the hybrid disconnect clutch 4 is connected to a transmission 9, which contains a coupling element (not further illustrated), for example a second clutch or a torque converter, which are arranged between the electric motor 3 and the transmission 9.
  • the transmission 9 transmits the torque generated by the internal combustion engine 2 and / or the electric motor 3 to the drive wheels 10 of the hybrid vehicle.
  • the internal combustion engine 2 is started by a belt starter generator 11 and the hybrid separation clutch 4 is actuated via a hydrostatic clutch actuator 12.
  • the hybrid disconnect clutch 4 disposed between the engine 2 and the electric motor 3 is closed to travel while the hybrid vehicle is running to drive a boost operation with driven internal combustion engine 2 and electric motor 3.
  • FIG. 2 schematically shows the structure of an automatic clutch actuation system 13 using the example of a schematically illustrated hydrostatic clutch actuator 12 (HCA), as used in hybrid vehicles.
  • the clutch actuation system 13 comprises on the encoder side 14, a control unit 15 which drives a further electric motor 16 which in turn drives a spindle gear 17 for converting the rotational movement of the electric motor 16 in a translational movement of a piston 18 which is mounted axially movable within a master cylinder 19.
  • the electric motor 16, the piston 18 and the master cylinder 19 form the hydrostatic clutch actuator 12.
  • a change in position of the piston 18 in the master cylinder 19 along the coupling path to the right is carried out by a rotary movement of the electric motor 16, the volume of the master cylinder 19 is changed, whereby a pressure p is built up in the master cylinder 19, via a pressure medium 20 in the form of a hydraulic fluid is transmitted via a hydraulic line 21 to the slave side 22 of the hydraulic clutch actuation system 13.
  • the hydraulic line 21 is adapted with respect to its length and shape of the installation space situation of the hybrid vehicle.
  • On the slave side 22 causes the pressure p of the pressure means 20 in a slave cylinder 23, a path change, which is transmitted to the hybrid disconnect clutch 4 to actuate them.
  • the master cylinder 19, the hydraulic line 21 and the slave cylinder 23 form the hydraulic route.
  • the slave cylinder 23 engages to actuate the hybrid disconnect clutch 4 in a release bearing 24, which presses against the tongues of a plate spring 25 and thus the hybrid separation clutch 4 moves.
  • the master cylinder 19 has a sniffer bore 26, which connects the pressure medium 20 with a surge tank 27 in the open state. This is necessary to compensate for a volume expansion of the pressure medium 20 as a result of temperature changes or by air bubbles. In this process, the pressure medium 20 again assumes ambient pressure and is available for a subsequent coupling process. This is started when the piston 18 of the master cylinder 19 moves back to the right, the sniffer bore 26 is closed by the piston 18 and the snooping process is terminated.
  • an embodiment of the method according to the invention is shown in which a rotational speed over time is shown.
  • the internal combustion engine 2 is towed by the belt starter generator 11 when the hybrid separation clutch 4 is open. It is ensured that the internal combustion engine 2 is not ignited.
  • the engine speed 28 is adjusted to the electric motor speed 29. If engine speed 28 and electric motor speed 29 are the same, hybrid disconnect clutch 4 is closed and the described snooping operation is performed. After completion of the sniffing process, the hybrid disconnect clutch 4 is opened again and the internal combustion engine 2 shut down.
  • the internal combustion engine 2 can be towed by slowly closing the hybrid separating clutch 4. The moment at the hybrid disconnect clutch 4 must then be precontrolled by the electric motor 3 so that the vehicle occupant perceives no torque fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug, bei welchem eine durch den hydraulischen Kupplungsaktor (12) betätigte Hybridtrennkupplung (4) einen Verbrennungsmotor (2) und einen Elektromotor (3) trennt oder verbindet, wobei das durch den Verbrennungsmotor (2) und/oder den Elektromotor (3) ausgegebene Moment an Antriebsräder (10) des Hybridfahrzeuges weitergeleitet wird. Bei einem Verfahren, bei welchem ein Schnüffelvorgang auch während des elektrischen Fahrbetriebes des Hybridfahrzeuges möglich ist, wird während eines elektrischen Fahrbetriebes des Hybridfahrzeuges der Verbrennungsmotor (2), ohne zu zünden, auf eine Drehzahl angeschleppt, welche der Elektromotordrehzahl entspricht, wobei bei Übereinstimmung von Verbrennungsmotordrehzahl und Elektromotordrehzahl die Hybridtrennkupplung (4) geschlossen wird und der Schnüffelvorgang durchgeführt wird.

Description

Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen
Kupplungsaktors in einem Hvbridfahrzeug
Die Erfindung betrifft ein Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug, bei welchem eine durch den hydraulischen Kupplungsaktor betätigte Hybridtrennkupplung einen Verbrennungsmotor und einen Elektromotor trennt oder verbindet, wobei das durch den Verbrennungsmotor und/oder den Elektromotor ausgegebene Moment an Antriebsräder des Fahrzeuges weitergeleitet wird. Aus der DE 10 2008 030 480 A1 ist ein Verfahren zur Steuerung einer Startkupplung bei einem Hybridfahrzeug bekannt. Bei Hybridfahrzeugen, welche verschiedene Kombinationen der Antriebsarten zulassen, wie elektromotorisch, elektrogeneratorisch, Verbrennungsmotor im Schub- oder Zugbetrieb, Verbrennungsmotor oder Elektromotor EIN, ist eine mechanische Entkopplung des Moments von Verbrennungsmotor und Elektromotor bekannt. Diese Entkopplung vom Verbrennungsmotor und Elektromotor erfolgt dabei durch eine Hybridtrennkupplung, die hydraulisch betätigt wird.
Eine automatische Betätigung der Hybridtrennkupplung erfolgt über einen Kupplungsaktor, umfassend ein Steuergerät mit einer entsprechenden Software zur Ansteuerung der Hybridtrennkupplung und einem elektro-hydraulischen Aktuator zur Betätigung der Hybridtrennkupplung. Während der Betätigung des hydraulischen Kupplungsaktors verändert sich die Hydraulikflüssigkeit, welche zur Kupplungsbetätigung in dem Kupplungsaktor verschoben wird, in ihrem Volumen. Dies kann beispielsweise bei einer langen elektrischen Fahrt geschehen, wo sich die Temperatur der hydrostatischen Strecke sehr stark ändert. Ein Temperatur- und somit Volumenausgleich ist möglich, wenn mit dem elektrostatischen Kupplungsaktor ein Schnüffelvorgang ausgeführt wird. Dabei wird die hydrostatische Strecke mit einem Ausgleichsbehälter zum Ausgleich der Hydraulikflüssigkeit verbunden.
Nachteilig dabei ist, dass bei einer rein elektrischen Fahrt des Hybridfahrzeuges die Hybridtrennkupplung geöffnet ist und somit der Schnüffelvorgang nicht durchgeführt werden kann.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug anzugeben, bei welchem der Schnüffelvorgang auch im elektrischen Fahrbetrieb des Hybridfahrzeuges durchgeführt werden kann.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass während eines elektrischen Fahrbetriebes des Hybridfahrzeuges der Verbrennungsmotor, ohne zu zünden, auf ei- ne Drehzahl angeschleppt wird, welche der Drehzahl des Elektromotors entspricht, wobei bei Übereinstimmung von Verbrennungsmotordrehzahl und Elektromotordrehzahl die Hybridtrennkupplung geschlossen wird und der Schnüffelvorgang durchgeführt wird. Dies hat den Vorteil, dass bei geschlossener Hybridtrennkupplung die Schnüffelbohrung durch den Kupplungsaktor zum Austausch der Hybridflüssigkeit zwischen hydrostatischer Strecke und Ausgleichsbehälter geöffnet wird, so dass sich Temperatur als auch Druck der Hydraulikflüssigkeit wieder normalisieren, weshalb nach dem Schnüffelvorgang wieder ein zuverlässiges Betätigen der Hybridtrennkupplung möglich ist.
Vorteilhafterweise wird der Schnüffeldurchgang durchgeführt, wenn die Drehzahl des Verbrennungsmotors kleiner ist als eine Leerlaufdrehzahl des Verbrennungsmotors. Die Energie, um den Verbrennungsmotor passiv anzuschleppen, bleibt dann so klein wie möglich.
In einer Ausgestaltung wird zur Einstellung der kleinen Verbrennungsmotordrehzahl während der elektrischen Fahrt des Hybridfahrzeuges in einem Schaltgetriebe ein ho- her Gang eingelegt. Dadurch wird auch bei einer unbetätigt geschlossenen Kupplung ein Schnüffelvorgang im rein elektrischen Fahrbetrieb ermöglicht.
In einer Variante wird der Verbrennungsmotor mit einem Riemenstartergenerator angeschleppt Dies erfolgt unabhängig vom Elektromotor, wodurch unbeabsichtigte Einflüsse des Verbrennungsmotors auf den Fahrbetrieb des Elektromotors unterbunden werden.
In einer Alternative wird der Verbrennungsmotor durch ein langsames Schließen der Hybridtrennkupplung angeschleppt. Durch das langsame Schließen wird ein Absenken der Drehzahl des Elektromotors unterbunden, so dass keinerlei Momentenschwankungen im Fahrzeug durch die Fahrzeuginsassen wahrgenommen werden. Die Unterbindung von Momentenschwankungen erfolgt, wenn ein zum Anschleppen des Verbrennungsmotors erforderliches Drehmoment an der Hybridtrennkupplung durch den Elektromotor vorgesteuert wird. ln einer Ausführungsform wird nach Beendigung des Schnüffelvorganges die Hybridtrennkupplung geöffnet. Somit kann auch mit einer unbetätigt geschlossen Kupplung während des elektrischen Fahrbetriebes ein Schnüffelvorgang durchgeführt werden und anschließend kann der elektrische Fahrbetrieb des Hybridfahrzeuges weiter fort- gesetzt werden.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Fig. 1 eine Prinzipdarstellung eines Hybridantriebes, Fig. 2 einen schematischen Aufbau eines hydraulischen Kupplungsbetäti- gungssystems,
Fig. 3 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
In Fig. 1 ist eine Prinzipdarstellung eines Antriebsstranges 1 eines Hybridfahrzeuges dargestellt. Dieser Antriebsstrang 1 umfasst einen Verbrennungsmotor 2 und einen Elektromotor 3. Zwischen dem Verbrennungsmotor 2 und dem Elektromotor 3 ist direkt hinter dem Verbrennungsmotor 2 eine Hybridtrennkupplung 4 angeordnet. Bei dieser Hybridtrennkupplung 4 handelt es sich um eine unbetätigt geschlossene Kupplung, wie sie beispielsweise in Handschaltgetrieben eingesetzt wird. Die Hybridtrennkupplung 4 ist dabei als Reibkupplung ausgebildet. Verbrennungsmotor 2 und Hybrid- trennkupplung 4 sind über eine Kurbelwelle 5 miteinander verbunden. Der Elektromotor 3 weist einen drehbaren Rotor 6 und einen feststehenden Stator 7 auf. Die Abtriebswelle 8 der Hybridtrennkupplung 4 ist mit einem Getriebe 9 verbunden, welches ein nicht weiter dargestelltes Koppelelement, beispielsweise eine zweite Kupplung oder einen Drehmomentwandler enthält, die zwischen dem Elektromotor 3 und dem Getriebe 9 angeordnet sind. Das Getriebe 9 überträgt das von dem Verbrennungsmotor 2 und/oder dem Elektromotor 3 erzeugte Drehmoment auf die Antriebsräder 10 des Hybridfahrzeuges. Der Verbrennungsmotor 2 wird durch einen Riemenstartergenerator 1 1 gestartet und die Hybridtrennkupplung 4 über einen hydrostatischen Kupplungsaktor 12 angesteuert. Die zwischen dem Verbrennungsmotor 2 und dem Elektromotor 3 angeordnete Hybridtrennkupplung 4 wird geschlossen, um während der Fahrt des Hybridfahrzeuges einen Boostbetrieb mit angetriebenem Verbrennungsmotor 2 und Elektromotor 3 zu fahren.
In Fig. 2 ist schematisch der Aufbau eines automatischen Kupplungsbetätigungssys- tems 13 am Beispiel eines schematisch dargestellten hydrostatischen Kupplungsak- tors 12 (HCA) dargestellt, wie dieser in Hybridfahrzeugen zum Einsatz kommt. Das Kupplungsbetätigungssystem 13 umfasst auf der Geberseite 14 ein Steuergerät 15, welches einen weiteren Elektromotor 16 ansteuert, der wiederum ein Spindelgetriebe 17 zur Umwandlung der Rotationsbewegung des Elektromotors 16 in eine Translationsbewegung eines Kolbens 18 antreibt, der innerhalb eines Geberzylinders 19 axial beweglich gelagert ist. Der Elektromotor 16, der Kolben 18 sowie der Geberzylinder 19 bilden dabei den hydrostatischen Kupplungsaktor 12.
Wird durch eine Drehbewegung des Elektromotors 16 eine Positionsänderung des Kolbens 18 im Geberzylinder 19 entlang des Kupplungsweges nach rechts ausgeführt, wird das Volumen des Geberzylinders 19 verändert, wodurch ein Druck p in dem Geberzylinder 19 aufgebaut wird, der über ein Druckmittel 20 in Form einer Hydraulikflüssigkeit über eine Hydraulikleitung 21 zur Nehmerseite 22 des hydraulischen Kupp- lungsbetätigungssystems 13 übertragen wird. Die Hydraulikleitung 21 ist bezüglich ihrer Länge und Form der Bauraumsituation des Hybridfahrzeuges angepasst. Auf der Nehmerseite 22 verursacht der Druck p des Druckmittels 20 in einem Nehmerzylinder 23 eine Wegänderung, die auf die Hybridtrennkupplung 4 übertragen wird, um diese zu betätigen. Der Geberzylinder 19, die Hydraulikleitung 21 und der Nehmerzylinder 23 bilden dabei die hydraulische Strecke. Der Nehmerzylinder 23 greift zur Betätigung der Hybridtrennkupplung 4 in ein Ausrücklager 24 ein, welches gegen die Zungen einer Tellerfeder 25 drückt und somit die Hybridtrennkupplung 4 bewegt. Weiterhin weist der Geberzylinder 19 eine Schnüffelbohrung 26 auf, die im geöffneten Zustand das Druckmittel 20 mit einem Ausgleichsbehälter 27 verbindet. Dies ist notwendig, um eine Volumenausdehnung des Druckmittels 20 infolge von Temperaturänderungen bzw. durch Luftbläschen auszugleichen. Bei diesem Vorgang nimmt das Druckmittel 20 wieder Umgebungsdruck an und steht für einen folgenden Kupp- lungsvorgang zur Verfügung. Dieser wird gestartet, wenn sich der Kolben 18 des Geberzylinders 19 wieder nach rechts verschiebt, wobei die Schnüffelbohrung 26 von dem Kolben 18 verschlossen wird und der Schnüffelvorgang beendet wird. ln Fig. 3 ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens gezeigt, bei welchem eine Drehzahl über der Zeit dargestellt ist. Um bei unbetätigt geschlossenen Kupplungen auch bei einem elektrischen Fahrbetrieb des Hybridfahrzeuges einen Schnüffelvorgang durchführen zu können, wird der Verbrennungsmotor 2 bei geöffne- ter Hybridtrennkupplung 4 durch den Riemenstartergenerator 1 1 angeschleppt. Dabei wird darauf geachtet, dass der Verbrennungsmotor 2 nicht gezündet wird. Die Verbrennungsmotordrehzahl 28 wird dabei der Elektromotordrehzahl 29 angeglichen. Sind Verbrennungsmotordrehzahl 28 und Elektromotordrehzahl 29 gleich, wird die Hybridtrennkupplung 4 geschlossen und der beschriebene Schnüffelvorgang durchge- führt. Nach Beendigung des Schnüffelvorganges wird die Hybridtrennkupplung 4 wieder geöffnet und der Verbrennungsmotor 2 stillgelegt.
Um diesen Vorgang bei kleinen Drehzahlen durchführen zu können, wird im Getriebe 9 ein hoher Gang eingelegt.
Alternativ zum Start mit dem Riemenstartergenerator 1 1 kann der Verbrennungsmotor 2 durch langsames Schließen der Hybridtrennkupplung 4 angeschleppt werden. Das Moment an der Hybridtrennkupplung 4 muss dann durch den Elektromotor 3 vorgesteuert werden, damit der Fahrzeuginsasse keine Momentenschwankungen wahrnimmt.
Mit der vorgeschlagenen Lösung ist ein Schnüffelvorgang auch im elektrischen Fahr- betrieb eines Hybridfahrzeuges mit einer unbetätigt geschlossenen Hybridtrennkupplung 4 möglich.
Bezuqszeichenliste
Antriebsstrang
Verbrennungsmotor
Elektromotor
Hybridtrennkupplung
Kurbelwelle
Rotor
Stator
Abtriebswelle
Getriebe
Antriebsräder
Riemenstartergenerator
Hydrostatischer Kupplungsaktor
Kupplungsbetätigungssystem
Geberseite
Steuergerät
Elektromotor
Spindelgetriebe
Kolben
Geberzylinder
Druckmittel
Hydraulikleitung
Nehmerseite
Nehmerzylinder
Ausrücklager
Tellerfeder
Schnüffelbohrung
Ausgleichsbehälter
Verbrennungsmotordrehzahl
Elektromotordrehzahl

Claims

Patentansprüche
1 . Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug, bei welchem eine durch den hydraulischen Kupplungsaktor (12) betätigte Hybridtrennkupplung (4) einen Verbrennungsmotor (2) und einen Elektromotor (3) trennt oder verbindet, wobei das durch den Verbrennungsmotor (2) und/oder den Elektromotor (3) ausgegebene Moment an Antriebsräder (10) des Hybridfahrzeuges weitergeleitet wird, dadurch gekennzeichnet, dass während eines elektrischen Fahrbetriebes des Hybridfahrzeuges der Verbrennungsmotor (2), ohne zu zünden, auf eine Drehzahl angeschleppt wird, welche der Elektromotordrehzahl entspricht, wobei bei Übereinstimmung von Verbrennungsmotordrehzahl und Elektromotordrehzahl die Hybridtrennkupplung (4) geschlossen wird und der Schnüffelvorgang durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Schnüffeldurchgang durchgeführt wird, wenn die Drehzahl des Verbrennungsmotors (2) kleiner ist als eine Leerlaufdrehzahl des Verbrennungsmotors (2).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Einstellung der kleinen Verbrennungsmotordrehzahl während der elektrischen Fahrt des Hybridfahrzeuges in einem Schaltgetriebe (9) ein hoher Gang eingelegt wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der Verbrennungsmotor (2) mit einem Riemenstartergenerator (1 1 ) angeschleppt wird.
5. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der Verbrennungsmotor (2) durch ein langsames Schließen der Hybridtrennkupplung (4) angeschleppt wird. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass ein zum Anschleppen des Verbrennungsmotors (2) erforderliches Drehmoment an der Hybridtrennkupplung (4) durch den Elektromotor (3) vorgesteuert wird.
Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach Beendigung des Schnüffelvorganges die Hybridtrennkupplung (4) geöffnet wird.
PCT/DE2017/100344 2016-05-27 2017-04-26 Verfahren zur durchführung eines schnüffelvorganges eines hydraulischen kupplungsaktors in einem hybridfahrzeug WO2017202411A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017002678.4T DE112017002678A5 (de) 2016-05-27 2017-04-26 Verfahren zum Durchführen eines Schnüffelvorgangs in einem Hybridfahrzeug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102016209225 2016-05-27
DE102016209225.1 2016-05-27
DE102016213309.8 2016-07-21
DE102016213309.8A DE102016213309A1 (de) 2016-07-21 2016-07-21 Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug

Publications (1)

Publication Number Publication Date
WO2017202411A1 true WO2017202411A1 (de) 2017-11-30

Family

ID=58873583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100344 WO2017202411A1 (de) 2016-05-27 2017-04-26 Verfahren zur durchführung eines schnüffelvorganges eines hydraulischen kupplungsaktors in einem hybridfahrzeug

Country Status (2)

Country Link
DE (1) DE112017002678A5 (de)
WO (1) WO2017202411A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838853A1 (de) * 1997-08-29 1999-03-04 Aisin Aw Co Hybridantriebsvorrichtung für ein Fahrzeug
DE10228709A1 (de) * 2001-07-12 2003-02-13 Luk Lamellen & Kupplungsbau Verfahren zum Adaptieren der Einstellung einer Kupplung in einem unkonventionellen Antriebsstrang eines Fahrzeugs
DE102008030480A1 (de) 2007-07-05 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Steuerung einer Startkupplung
DE102008059235A1 (de) * 2007-12-19 2009-06-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Fahrzeugs mit einem Hybridantrieb
DE102011089676A1 (de) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Adaption des Kupplungsmomentes einer Trennkupplung eines Parallelhybrid-Antriebsstrangs eines Fahrzeugs
DE102015104134A1 (de) * 2014-04-02 2015-10-08 Ford Global Technologies, Llc Kupplungskalibrierung für einen Hybridelektroantriebsstrang
DE102014218108A1 (de) * 2014-09-10 2016-03-10 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz eines hydrostatischen Kupplungsaktors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838853A1 (de) * 1997-08-29 1999-03-04 Aisin Aw Co Hybridantriebsvorrichtung für ein Fahrzeug
DE10228709A1 (de) * 2001-07-12 2003-02-13 Luk Lamellen & Kupplungsbau Verfahren zum Adaptieren der Einstellung einer Kupplung in einem unkonventionellen Antriebsstrang eines Fahrzeugs
DE102008030480A1 (de) 2007-07-05 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Steuerung einer Startkupplung
DE102008059235A1 (de) * 2007-12-19 2009-06-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Fahrzeugs mit einem Hybridantrieb
DE102011089676A1 (de) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Adaption des Kupplungsmomentes einer Trennkupplung eines Parallelhybrid-Antriebsstrangs eines Fahrzeugs
DE102015104134A1 (de) * 2014-04-02 2015-10-08 Ford Global Technologies, Llc Kupplungskalibrierung für einen Hybridelektroantriebsstrang
DE102014218108A1 (de) * 2014-09-10 2016-03-10 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz eines hydrostatischen Kupplungsaktors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges

Also Published As

Publication number Publication date
DE112017002678A5 (de) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2349801B1 (de) Verfahren und vorrichtung zum anfahren eines hybridfahrzeuges
DE102005051382A1 (de) Hybridantrieb und Verfahren zu dessen Betrieb
DE102012203184A1 (de) Vorrichtung, Verfahren und Computerprogramm zur Betätigung einer Trennkupplung
EP2449286A1 (de) Zwei-gang-getriebe und verfahren zur steuerung eines zwei-gang-getriebes
DE102009026702A1 (de) Verfahren und Vorrichtung zur Steuerung eines Parallelhybridantriebsstranges eines Fahrzeugs
DE10260435A1 (de) Verfahren zur Steuerung eines KFZ-Hybridantriebes
DE102010008726A1 (de) Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug
DE102011075199A1 (de) Manuell betätigbare Kopplungsanordnung
DE102012102342A1 (de) Verfahren zum Motorstart
WO2013156195A1 (de) Verfahren zum durchführen eines schaltschritts
DE102017215684A1 (de) Steuervorrichtung für ein fahrzeug
DE102015201923A1 (de) Kombinierter Kühlmittel-und Getriebepumpen-Motorantrieb für Stopp-Start-Fahrzeug
DE102013210266A1 (de) Verfahren zum Durchführen eines Kupplungsstarts
DE102010028760A1 (de) Verfahren zum Betreiben zumindest eines formschlüssigen Schaltelementes eines Automatgetriebes bei bevorstehendem Start des Verbrennungsmotors
DE102007050229A1 (de) Hybridfahrzeug
DE102013200946A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs
DE102013102706A1 (de) Verfahren zum Aufbringen einer Bremswirkung auf ein Fahrzeug
DE102012212230A1 (de) Verfahren zur Überführung eines Antriebsstrangs eines Kraftfahrzeugs von einem Segelbetrieb in einen Normalbetrieb
DE102019201790A1 (de) Verfahren und Steuereinheit zum Betrieb eines Kraftfahrzeug-Antriebsstranges
DE102015221031A1 (de) Verfahren zur Ermittlung eines Tastpunktes und eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges
DE102016213309A1 (de) Verfahren zur Durchführung eines Schnüffelvorganges eines hydraulischen Kupplungsaktors in einem Hybridfahrzeug
WO2017202411A1 (de) Verfahren zur durchführung eines schnüffelvorganges eines hydraulischen kupplungsaktors in einem hybridfahrzeug
DE102013213751A1 (de) Verfahren zum Losbrechen einer nasslaufenden Kupplung eines Kraftfahrzeuges bei tiefen Temperaturen
DE102010008680A1 (de) Verfahren zur Steuerung eines Antriebsstrangs in einem Kraftfahrzeug, Antriebsstrangsteuerung für ein Kraftfahrzeug, Steuereinheit für eine Fördereinrichtung zur Bereitstellung von Öldruck in einem Kraftfahrzeug, Verfahren zur Fehlererkennung in einem Hydrauliksystem für ein Kraftfahrzeug und Hydrauliksystem für ein Kraftfahrzeug
DE102010039194A1 (de) Verfahren zum Betreiben eines Antriebsstrangs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17726831

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112017002678

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17726831

Country of ref document: EP

Kind code of ref document: A1