WO2017199775A1 - Vehicle control system, vehicle control method, and vehicle control program - Google Patents

Vehicle control system, vehicle control method, and vehicle control program Download PDF

Info

Publication number
WO2017199775A1
WO2017199775A1 PCT/JP2017/017355 JP2017017355W WO2017199775A1 WO 2017199775 A1 WO2017199775 A1 WO 2017199775A1 JP 2017017355 W JP2017017355 W JP 2017017355W WO 2017199775 A1 WO2017199775 A1 WO 2017199775A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
section
drive mode
drive
mode
Prior art date
Application number
PCT/JP2017/017355
Other languages
French (fr)
Japanese (ja)
Inventor
正明 阿部
正彦 朝倉
尚人 千
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018518221A priority Critical patent/JP6582339B2/en
Publication of WO2017199775A1 publication Critical patent/WO2017199775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a vehicle control program.
  • a vehicle having a plurality of drive sources such as an engine and a travel motor can travel in a plurality of drive modes in which the operation states of the plurality of drive sources are different from each other.
  • the conventional vehicle control system may not be able to realize a suitable drive mode at each stage of the action plan.
  • An object of an aspect of the present invention is to provide a vehicle control system, a vehicle control method, and a vehicle control program capable of realizing a drive mode suitable for each stage of an action plan.
  • an action plan generation unit that generates an action plan for automatic driving of a vehicle, and operations of a plurality of drive sources included in the vehicle based on the action plan generated by the action plan generation unit
  • a drive mode selection unit that preselects a drive mode at each stage of the action plan from a plurality of drive modes that are in different states, and a drive mode at each stage of the action plan that is selected by the drive mode selection unit.
  • a travel control unit that controls travel of the vehicle.
  • the drive mode selection unit may previously select a drive mode in each of the plurality of sections based on energy efficiency considered through a plurality of sections having different traveling environments.
  • the plurality of drive sources include a travel motor
  • the drive mode selection unit includes a plurality of different travel environments based on a charging rate of a battery that supplies power to the travel motor.
  • the drive mode in each of the sections may be selected in advance.
  • the drive mode selection unit selects a drive mode of a second section on the near side of the first section based on a travel environment of the first section where the vehicle is scheduled to travel. Also good.
  • the plurality of drive sources include a travel motor
  • the drive mode selection unit selects a drive mode for traveling by the travel motor as the drive mode of the first section.
  • a driving mode in which a necessary amount of the charging rate of the battery that supplies power to the traveling motor exists in the first section may be selected.
  • the plurality of drive sources may further include an engine, and the drive mode selection unit may select a drive mode in which the engine runs as the drive mode of the second section.
  • the plurality of drive sources include an engine and a traveling motor
  • the drive mode selection unit is configured such that the first section is a specific section and the second section is the specific section.
  • the drive mode for traveling by the traveling motor is selected as the drive mode for the first section
  • the drive mode for traveling by the engine is selected as the drive mode for the second section. You may choose.
  • the plurality of drive sources include an engine and a traveling motor
  • the drive mode selection unit is configured such that the second section is a specific section and the first section is the specific section.
  • the driving mode for traveling by the traveling motor is selected as the driving mode for the second section, and the traveling is performed by the engine as the driving mode for the first section.
  • a drive mode for charging a battery that supplies power to the motor for use may be selected.
  • the plurality of drive sources include a travel motor
  • the drive mode selection unit includes a battery that supplies power to the travel motor on a destination or a route to the destination.
  • the driving mode at each stage of the action plan may be selected in advance so that the charging rate of the battery approaches the allowable lower limit value of the charging rate when reaching the place.
  • the in-vehicle computer generates an action plan for automatic driving of the vehicle, and the operation states of the plurality of drive sources included in the vehicle are different based on the generated action plan.
  • a vehicle control method for pre-selecting a drive mode at each stage of the action plan from a plurality of drive modes, and controlling travel of the vehicle based on the selected drive mode at each stage of the action plan. is there.
  • an in-vehicle computer generates an action plan for automatic driving of a vehicle, and based on the generated action plan, operation states of a plurality of drive sources included in the vehicle are respectively set.
  • a vehicle control program for causing a driving mode at each stage of the action plan to be selected in advance from a plurality of different driving modes, and controlling the traveling of the vehicle based on the selected driving mode at each stage of the action plan. It is.
  • the drive mode at each stage of the action plan is selected in advance based on the generated action plan.
  • measures necessary for realizing the selected drive mode can be performed in advance for each stage of the action plan.
  • the drive mode suitable for each step of the action plan can be realized.
  • the drive mode in each of the plurality of sections is selected in advance based on the energy efficiency considered through the plurality of sections. For this reason, it can drive
  • the driving mode in each of the plurality of sections is selected in advance based on the charging rate of the battery that supplies power to the traveling motor. For this reason, in a traveling environment suitable for traveling by the traveling motor, it is possible to travel by the traveling motor while suppressing the battery from being discharged. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
  • the drive mode of the second section closer to the first section than the first section is selected based on the traveling environment of the first section where the vehicle is scheduled to travel. For this reason, a desired drive mode can be reliably realized in the first section. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
  • the driving mode of the second section the driving mode in which the charging rate of the battery that supplies power to the travel motor is present in the first section is selected. Accordingly, it is possible to travel the first section by the traveling motor while suppressing the battery from being discharged. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
  • the drive mode in which the engine travels is selected as the drive mode of the second section. For this reason, battery consumption can be saved in the second section. Thereby, running out of the battery can be suppressed and the first section can be more reliably traveled by the travel motor.
  • the driving mode in which the driving motor travels in the first section which is the specific section is selected, and the driving mode in which the engine travels in the second section capable of traveling at a higher speed than the specific section. Is selected.
  • the drive mode in which the vehicle is driven by the driving motor in the second zone, which is the specific zone, is selected, and the drive mode in which the engine runs in the first zone where the vehicle can run at a higher speed than the specific zone. Is selected.
  • the traveling motor can be actively used in the specific section. As a result, a drive mode suitable for the traveling environment and the like can be realized more reliably.
  • the drive mode at each stage of the action plan is selected in advance so that the battery charge rate approaches the allowable lower limit value of the charge rate when reaching a predetermined location. For this reason, it is possible to travel as much as possible by the travel motor. As a result, a driving mode suitable for each stage of the action plan can be realized more reliably.
  • FIG. 6 is a diagram representing trajectory candidates generated by a trajectory candidate generation unit using trajectory points. It is a figure which shows a lane change target position.
  • FIG. 1 is a diagram showing components of a vehicle M (also referred to as a first vehicle M) on which the vehicle control system 100 is mounted.
  • vehicle M also referred to as a first vehicle M
  • the vehicle on which the vehicle control system 100 is mounted is, for example, an automobile such as a two-wheel, three-wheel, or four-wheel vehicle.
  • vehicle M is, for example, a hybrid vehicle that includes an engine (internal combustion engine) 201 and a traveling motor 202 as a plurality of driving sources that output traveling driving force (see FIG. 2).
  • the vehicle M is equipped with sensors such as a finder 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100. Is done.
  • sensors such as a finder 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100. Is done.
  • the finders 20-1 to 20-7 are, for example, LIDARs (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measure the scattered light with respect to the irradiation light and measure the distance to the target.
  • LIDARs Light Detection and Ranging or Laser Imaging Detection and Ranging
  • the finder 20-1 is attached to a front grill or the like.
  • the viewfinders 20-2 and 20-3 are attached to the side of the vehicle body, the door mirror, the interior of the headlamp, the vicinity of the side lamp, and the like.
  • the finder 20-4 is attached to a trunk lid or the like.
  • the viewfinders 20-5 and 20-6 are attached to the side surface of the vehicle body, the interior of the taillight, or the like.
  • the viewfinders 20-1 to 20-6 have a detection area of about 150 degrees in the horizontal direction, for example.
  • the finder 20-7 is attached to a roof or the like.
  • the finder 20-7 has a detection area
  • Radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars that have a wider detection area in the depth direction than other radars.
  • Radars 30-2, 30-3, 30-5, and 30-6 are medium-range millimeter-wave radars that have a narrower detection area in the depth direction than radars 30-1 and 30-4.
  • finders 20-1 to 20-7 are not particularly distinguished, they are simply referred to as “finder 20”.
  • radar 30 detects an object by, for example, FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the camera 40 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 40 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like. For example, the camera 40 periodically images the front of the vehicle M repeatedly.
  • the camera 40 may be a stereo camera including a plurality of cameras.
  • FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
  • FIG. 2 is a functional configuration diagram centering on the vehicle control system 100.
  • the vehicle M includes a detection device DD including a finder 20, a radar 30, and a camera 40, a navigation device 50, a communication device 55, a vehicle sensor 60, an HMI (Human Machine Interface) 70, and a vehicle control system 100.
  • a traveling driving force output device 200, a steering device 210, and a brake device 220 are mounted. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • the vehicle control system does not only indicate “vehicle control system 100”, but a configuration other than vehicle control system 100 (detection device DD, navigation device 50, communication device 55, vehicle sensor 60, HMI 70, travel drive, etc. Force output device 200, steering device 210, brake device 220, etc.).
  • the navigation device 50 includes a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device that functions as a user interface, a speaker, a microphone, and the like.
  • the navigation device 50 identifies the position of the vehicle M with the GNSS receiver, and derives a route from the position to the destination specified by the user.
  • the route derived by the navigation device 50 is provided to the target lane determining unit 110 of the vehicle control system 100.
  • the position of the vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 60.
  • the navigation device 50 provides guidance on the route to the destination by voice or navigation display when the vehicle control system 100 is executing the manual operation mode.
  • the configuration for specifying the position of the vehicle M may be provided independently of the navigation device 50.
  • the navigation apparatus 50 may be implement
  • information is transmitted and received between the terminal device and the vehicle control system 100 by wireless or wired communication.
  • the communication device 55 includes an antenna and an antenna circuit (wireless circuit) electrically connected to the antenna.
  • the communication device 55 performs wireless communication with, for example, a communication satellite or a communication device installed on a road, and acquires information (for example, traffic jam information) indicating a traffic volume state of each section scheduled to travel.
  • the “traffic volume state” is an example of a traveling environment of the vehicle M.
  • the communication device 55 may perform wireless communication with a communication satellite or a communication device installed on a road, and acquire information on other travel environments in each section scheduled to travel.
  • “Other information related to the travel environment” is, for example, information such as a destination or a place on the route to the destination where the battery 203 that supplies power to the travel motor 202 can be charged.
  • the “place where the battery can be charged” refers to a road having a non-contact charging lane in addition to a facility having a charging facility, or a battery 203 using a part of the output of the engine 201 when the engine 201 travels. Including roads that can be charged.
  • the non-contact charging lane is, for example, a charging facility that has a power transmission coil embedded in a road and that can receive power while a vehicle having the power receiving coil travels on the road.
  • all or part of the communication device 55 may be realized by a function of a terminal device such as a smartphone or a tablet terminal held by the user. In this case, information is transmitted and received between the terminal device and the vehicle control system 100 by wireless or wired communication.
  • the vehicle sensor 60 includes a vehicle speed sensor that detects a vehicle speed, an acceleration sensor that detects acceleration, a yaw rate sensor that detects an angular velocity around a vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.
  • FIG. 3 is a configuration diagram of the HMI 70.
  • the HMI 70 includes, for example, a driving operation system configuration and a non-driving operation system configuration. These boundaries are not clear, and the configuration of the driving operation system may have a non-driving operation system function (or vice versa).
  • the HMI 70 has, for example, an accelerator pedal 71, an accelerator opening sensor 72, an accelerator pedal reaction force output device 73, a brake pedal 74, and a brake pedal amount sensor (or a master pressure sensor or the like) 75 as a driving operation system configuration.
  • Accelerator pedal 71 is an operation unit for receiving an acceleration instruction (or a deceleration instruction by a return operation) from a vehicle occupant.
  • the accelerator opening sensor 72 detects the depression amount of the accelerator pedal 71 and outputs an accelerator opening signal indicating the depression amount to the vehicle control system 100. Instead of outputting to the vehicle control system 100, the output may be directly output to the travel driving force output device 200, the steering device 210, or the brake device 220. The same applies to the configurations of other driving operation systems described below.
  • the accelerator pedal reaction force output device 73 outputs a force (operation reaction force) in a direction opposite to the operation direction to the accelerator pedal 71 in response to an instruction from the vehicle control system 100, for example.
  • the brake pedal 74 is an operation unit for receiving a deceleration instruction from the vehicle occupant.
  • the brake depression amount sensor 75 detects the depression amount (or depression force) of the brake pedal 74 and outputs a brake signal indicating the detection result to the vehicle control system 100.
  • the shift lever 76 is an operation unit for receiving a shift stage change instruction from a vehicle occupant.
  • the shift position sensor 77 detects the shift stage instructed by the vehicle occupant and outputs a shift position signal indicating the detection result to the vehicle control system 100.
  • the steering wheel 78 is an operation unit for receiving a turning instruction from a vehicle occupant.
  • the steering angle sensor 79 detects the operation angle of the steering wheel 78 and outputs a steering angle signal indicating the detection result to the vehicle control system 100.
  • the steering torque sensor 80 detects the torque applied to the steering wheel 78 and outputs a steering torque signal indicating the detection result to the vehicle control system 100.
  • Other operation device 81 is, for example, a joystick, a button, a dial switch, a GUI (Graphical User Interface) switch, or the like.
  • the other driving operation device 81 receives an acceleration instruction, a deceleration instruction, a turning instruction, and the like, and outputs them to the vehicle control system 100.
  • the HMI 70 has, for example, a display device 82, a speaker 83, a contact operation detection device 84, a content reproduction device 85, various operation switches 86, a seat 88, and a seat drive device 89 as a non-driving operation system configuration.
  • the window glass 90, the window drive device 91, and the vehicle interior camera 95 are included.
  • the display device 82 is a display device visually recognized by a passenger in the vehicle interior.
  • the display device 82 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display device, or the like that is attached to each part of the instrument panel, an arbitrary position facing the passenger seat or the rear seat.
  • the display device 82 may be a HUD (Head-Up-Display) that projects an image onto a front windshield or other window so that the display device 82 can be viewed from inside the vehicle.
  • HUD Head-Up-Display
  • the contact operation detection device 84 detects a contact position (touch position) on the display screen of the display device 82 and outputs it to the vehicle control system 100.
  • the contact operation detection device 84 may be omitted.
  • Speaker 83 outputs sound.
  • the speaker 83 emits sound into the vehicle interior.
  • the speaker 83 is a speaker built in the vehicle interior that emits sound into the vehicle interior.
  • the content playback device 85 includes, for example, a DVD (Digital Versatile Disc) playback device, a CD (Compact Disc) playback device, a television receiver, and various guidance image generation devices.
  • the display device 82, the speaker 83, the contact operation detection device 84, and the content playback device 85 may have a configuration in which a part or all of them are common to the navigation device 50.
  • the various operation switches 86 are arranged at arbitrary locations in the passenger compartment.
  • the various operation switches 86 include an automatic operation changeover switch 87 for instructing start (or future start) and stop of automatic operation.
  • the automatic operation changeover switch 87 may be either a GUI (Graphical User Interface) switch or a mechanical switch.
  • the various operation switches 86 may include switches for driving the sheet driving device 89 and the window driving device 91.
  • the seat 88 is a seat on which a vehicle occupant is seated.
  • the seat driving device 89 freely drives the reclining angle, the front-rear direction position, the yaw angle, and the like of the seat 88.
  • the window glass 90 is provided at each door, for example.
  • the window driving device 91 drives the window glass 90 to open and close.
  • the vehicle interior camera 95 is a digital camera using a solid-state image sensor such as a CCD or a CMOS.
  • the vehicle interior camera 95 is attached to a position where an image of at least the head of a vehicle occupant who performs a driving operation, such as a rearview mirror, a steering boss, or an instrument panel, can be taken.
  • the vehicle interior camera 95 for example, periodically and repeatedly images the vehicle occupant.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 of this embodiment includes an engine 201, a transmission, an engine ECU (Electronic Control Unit), a travel motor 202, a motor ECU, a battery 203, and a battery charge rate detection unit 204.
  • the engine 201 is a diesel engine, a gasoline engine, or the like.
  • the engine ECU controls the operation of the engine 201 by adjusting the throttle opening, shift stage, and the like of the engine 201 in accordance with information input from a travel control unit 160 described later.
  • the traveling motor 202 is operated by electric power supplied from the battery 203.
  • the motor ECU controls the operation of the traveling motor 202 by adjusting the duty ratio of the PWM signal supplied to the traveling motor 202 according to the information input from the traveling control unit 160.
  • the engine ECU and the motor ECU control the driving force in cooperation with each other according to information input from the driving control unit 160.
  • the battery 203 is connected to the engine 201 via an alternator (not shown), and is charged using a part of the output of the engine 201.
  • the battery 203 may be rechargeable at a facility with a charging facility or a road having a non-contact charging lane.
  • the battery charging rate detection unit 204 is electrically connected to the battery 203 and detects the charging rate (SOC: State Of Charge) of the battery 203 and the like.
  • the “charge rate” may be read as “charge amount”.
  • the steering device 210 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor in accordance with information input from the vehicle control system 100 or information of the input steering steering angle or steering torque, and changes the direction of the steered wheels.
  • the brake device 220 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit.
  • the braking control unit of the electric servo brake device controls the electric motor according to the information input from the travel control unit 160 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the electric servo brake device may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal to the cylinder via the master cylinder.
  • the brake device 220 is not limited to the electric servo brake device described above, but may be an electronically controlled hydraulic brake device.
  • the electronically controlled hydraulic brake device controls the actuator in accordance with information input from the travel control unit 160 and transmits the hydraulic pressure of the master cylinder to the cylinder.
  • the brake device 220 may include a regenerative brake by a traveling motor that can be included in the traveling driving force output device 200.
  • the vehicle control system 100 is realized by, for example, one or more processors or hardware having an equivalent function.
  • the vehicle control system 100 includes a combination of a processor such as a CPU (Central Processing Unit), a storage device, and an ECU (Electronic Control Unit) in which a communication interface is connected by an internal bus, or an MPU (Micro-Processing Unit). It may be.
  • a processor such as a CPU (Central Processing Unit), a storage device, and an ECU (Electronic Control Unit) in which a communication interface is connected by an internal bus, or an MPU (Micro-Processing Unit). It may be.
  • the vehicle control system 100 includes, for example, a target lane determining unit 110, an automatic driving control unit 120, a travel control unit 160, an HMI control unit 170, and a storage unit 180.
  • the automatic driving control unit 120 includes, for example, an automatic driving mode control unit 130, a vehicle position recognition unit 140, an external environment recognition unit 142, an action plan generation unit 144, a trajectory generation unit 146, and a drive mode selection unit 148. And a switching control unit 150.
  • a part or all of the target lane determination unit 110, each part of the automatic driving control unit 120, the travel control unit 160, and the HMI control unit 170 is realized by a processor executing a program (software). Some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
  • the storage unit 180 stores, for example, information such as high-precision map information 182, target lane information 184, action plan information 186, mode-specific operation availability information 188, and drive mode information 189.
  • the storage unit 180 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like.
  • the program executed by the processor may be stored in the storage unit 180 in advance, or may be downloaded from an external device via an in-vehicle Internet facility or the like.
  • the program may be installed in the storage unit 180 by mounting a portable storage medium storing the program on a drive device (not shown). Further, the vehicle control system 100 may be distributed by a plurality of computer devices (on-vehicle computers).
  • the target lane determining unit 110 is realized by an MPU, for example.
  • the target lane determination unit 110 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the high-precision map information 182 for each block.
  • Determine the target lane For example, the target lane determining unit 110 determines that the vehicle M travels in the lane number from the left. For example, the target lane determination unit 110 determines the target lane so that the vehicle M can travel on a reasonable travel route for proceeding to the branch destination when there is a branch point or a merge point in the route.
  • the target lane determined by the target lane determining unit 110 is stored in the storage unit 180 as target lane information 184.
  • the high-precision map information 182 is map information with higher accuracy than the navigation map that the navigation device 50 has.
  • the high-precision map information 182 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the high-accuracy map information 182 includes road information, traffic regulation information, address information (address / postal code), facility information (for example, information on a place where the battery 203 can be charged), telephone number information, and the like. Good.
  • Road information includes information indicating the type of road, such as urban roads, toll roads (including highways), national roads, prefectural roads, the number of lanes of each road, the width of each lane, the gradient of the road, the position of the road (longitude , Latitude and height (three-dimensional coordinates), lane curve curvature, lane merging and branch point positions, road markings, and other information.
  • the traffic regulation information includes information that the lane is blocked due to construction, traffic accidents, traffic jams, or the like.
  • the high-precision map information 182 includes information on the presence / absence of a specific section SS and a non-specific section NSS on the route to the destination (see FIG. 14).
  • the “specific section” is a section in which the vehicle M travels at a low speed or stops frequently, or is a section in which quiet traveling is required, for example, an urban area.
  • the specific section SS is a section in which traveling by the traveling motor 202 is more suitable than the engine 201.
  • the non-specific section NSS is, for example, a section capable of traveling at a higher speed than the specific section SS, or a section having a smaller population density in comparison with the specific section SS, such as an automobile-only road or a national road.
  • the “section” means each divided element when the route (stroke) to the destination is arbitrarily divided for automatic driving or other purposes.
  • the automatic operation mode control unit 130 determines an automatic operation mode performed by the automatic operation control unit 120.
  • the modes of automatic operation in the present embodiment include the following modes. Note that the following modes are merely examples, and the number of modes of automatic operation may be arbitrarily determined.
  • [Mode A] Mode A is the mode with the highest degree of automatic driving. When the mode A is implemented, all vehicle control such as complicated merge control is automatically performed, so that the vehicle occupant does not need to monitor the surroundings and state of the vehicle M.
  • Mode B Mode B is a mode in which the degree of automatic driving is the second highest after Mode A. When mode B is implemented, in principle, all vehicle control is performed automatically, but the driving operation of the vehicle M is left to the vehicle occupant depending on the scene.
  • Mode C is a mode in which the degree of automatic driving is the second highest after mode B.
  • mode C the vehicle occupant needs to perform confirmation operation according to the scene with respect to HMI70.
  • mode C for example, when the vehicle occupant is notified of the lane change timing and the vehicle occupant performs an operation to instruct the HMI 70 to change the lane, the automatic lane change is performed. For this reason, the vehicle occupant needs to monitor the periphery and state of the vehicle M.
  • the automatic driving mode control unit 130 determines the mode of automatic driving based on the operation of the vehicle occupant with respect to the HMI 70, the event determined by the action plan generation unit 144, the travel mode determined by the trajectory generation unit 146, and the like.
  • the automatic operation mode is notified to the HMI control unit 170.
  • the limit according to the performance etc. of the detection device DD of the vehicle M may be set to the mode of automatic driving
  • the vehicle position recognition unit 140 of the automatic driving control unit 120 includes high-precision map information 182 stored in the storage unit 180 and information input from the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. Based on the above, the lane (traveling lane) in which the vehicle M is traveling and the relative position of the vehicle M with respect to the traveling lane are recognized.
  • the own vehicle position recognition unit 140 for example, a road lane marking pattern recognized from the high-accuracy map information 182 (for example, an array of solid lines and broken lines) and a periphery of the vehicle M recognized from an image captured by the camera 40.
  • the traveling lane is recognized by comparing the road marking line pattern. In this recognition, the position of the vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into consideration.
  • FIG. 4 is a diagram showing how the vehicle position recognition unit 140 recognizes the relative position of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognition unit 140 for example, an angle ⁇ formed with respect to a line connecting the deviation OS of the reference point (for example, the center of gravity) of the vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the vehicle M. Is recognized as the relative position of the vehicle M with respect to the traveling lane L1.
  • the vehicle position recognition unit 140 may recognize the position of the reference point of the vehicle M with respect to any side end portion of the lane L1 as the relative position of the vehicle M with respect to the traveling lane.
  • the relative position of the vehicle M recognized by the host vehicle position recognition unit 140 is provided to the target lane determination unit 110.
  • the external environment recognition unit 142 recognizes the state of the surrounding vehicle such as the position of the surrounding vehicle, the speed of the surrounding vehicle, and the acceleration of the surrounding vehicle based on information input from the finder 20, the radar 30, the camera 40, and the like.
  • the peripheral vehicle is, for example, a vehicle that travels around the vehicle M and travels in the same direction as the vehicle M.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by a region expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether the lane is changed (or whether the lane is going to be changed), which is grasped based on the information of the various devices.
  • the external environment recognition unit 142 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, people riding bicycles, and other objects.
  • the action plan generation unit 144 sets a starting point of automatic driving and / or a destination of automatic driving.
  • the starting point of automatic driving may be the current position of the vehicle M, or a point where an operation for instructing automatic driving is performed.
  • the action plan generation unit 144 generates an action plan in a section between the start point and the destination for automatic driving. In addition, not only this but the action plan production
  • the action plan is composed of a plurality of events that are executed sequentially, for example.
  • Events include, for example, a deceleration event that decelerates the vehicle M, an acceleration event that accelerates the vehicle M, a lane keep event that causes the vehicle M to travel without departing from the traveling lane, a lane change event that changes the traveling lane, and a vehicle M Vehicles in the overtaking event for overtaking the preceding vehicle, the branching event for changing the vehicle to the desired lane at the branch point, or the vehicle M traveling so as not to deviate from the current driving lane, the merging lane for joining the main line
  • a merging event that accelerates or decelerates M changes the driving lane, shifts from manual driving mode to automatic driving mode at the start point of automatic driving, or shifts from automatic driving mode to manual driving mode at the point where automatic driving is scheduled to end Handover events to be included.
  • the action plan includes a plan such as a destination, a travel lane, a speed, and a steering angle.
  • the action plan also includes a plan related to a route (running route) between the starting point of the automatic driving and the destination.
  • the action plan generation unit 144 sets a lane change event, a branch event, or a merge event at a location where the target lane determined by the target lane determination unit 110 is switched.
  • Information indicating the action plan generated by the action plan generation unit 144 is stored in the storage unit 180 as action plan information 186.
  • generation part 144 produces
  • FIG. 5 is a diagram showing an example of an action plan generated for a certain section.
  • the action plan generation unit 144 generates an action plan necessary for the vehicle M to travel on the target lane indicated by the target lane information 184.
  • the action plan generation unit 144 may dynamically change the action plan regardless of the target lane information 184 according to a change in the situation of the vehicle M. For example, the action plan generation unit 144 determines that the speed of the surrounding vehicle recognized by the external recognition unit 142 during traveling of the vehicle exceeds a threshold or the moving direction of the surrounding vehicle traveling in the lane adjacent to the traveling lane of the vehicle M travels. When the vehicle heads in the lane direction, the event set in the driving section where the vehicle M is scheduled to travel is changed.
  • the vehicle when the event is set so that the lane change event is executed after the lane keep event, the vehicle is more than the threshold from the rear of the lane to which the lane is changed during the lane keep event according to the recognition result of the external recognition unit 142.
  • the action plan generation unit 144 may change the event next to the lane keep event from a lane change event to a deceleration event, a lane keep event, or the like. As a result, the vehicle control system 100 can safely automatically drive the vehicle M even when a change occurs in the state of the outside world.
  • FIG. 6 is a diagram illustrating an example of the configuration of the trajectory generation unit 146.
  • the track generation unit 146 includes, for example, a travel mode determination unit 146A, a track candidate generation unit 146B, and an evaluation / selection unit 146C.
  • the travel mode determination unit 146A determines one of the travel modes from constant speed travel, follow-up travel, low-speed follow-up travel, deceleration travel, curve travel, obstacle avoidance travel, and the like. . In this case, the traveling mode determination unit 146A determines that the traveling mode is constant speed traveling when there is no other vehicle ahead of the vehicle M. In addition, the traveling mode determination unit 146A determines the traveling mode to follow running when traveling following the preceding vehicle. In addition, the traveling mode determination unit 146A determines the traveling mode to be low-speed following traveling in a traffic jam scene or the like.
  • the travel mode determination unit 146A determines the travel mode to be decelerated when the external environment recognition unit 142 recognizes deceleration of the preceding vehicle or when an event such as stopping or parking is performed. In addition, when the outside recognition unit 142 recognizes that the vehicle M has reached a curved road, the travel mode determination unit 146A determines the travel mode as curve travel. In addition, when the outside recognition unit 142 recognizes an obstacle in front of the vehicle M, the driving mode determination unit 146A determines the driving mode as obstacle avoidance driving. In addition, when executing a lane change event, an overtaking event, a branching event, a merging event, a handover event, and the like, the traveling mode determination unit 146A determines a traveling mode according to each event.
  • the trajectory candidate generation unit 146B generates trajectory candidates based on the travel mode determined by the travel mode determination unit 146A.
  • FIG. 7 is a diagram illustrating an example of trajectory candidates generated by the trajectory candidate generation unit 146B.
  • FIG. 7 shows candidate tracks generated when the vehicle M changes lanes from the lane L1 to the lane L2.
  • the trajectory candidate generation unit 146B takes a trajectory as shown in FIG. 7, for example, at a target position (orbit point K) at which the reference position (for example, the center of gravity or the center of the rear wheel axis) of the vehicle M should reach every predetermined time in the future. Decide as a gathering.
  • FIG. 8 is a diagram in which trajectory candidates generated by the trajectory candidate generation unit 146B are expressed by trajectory points K.
  • the speed of the vehicle M increases as the distance between the track points K increases, and the speed of the vehicle M decreases as the distance between the track points K decreases. Therefore, the trajectory candidate generation unit 146B gradually widens the distance between the trajectory points K when it wants to accelerate and gradually narrows the distance between the trajectory points when it wants to decelerate.
  • the trajectory candidate generation unit 146B needs to give a target speed to each of the trajectory points K.
  • the target speed is determined according to the travel mode determined by the travel mode determination unit 146A.
  • the track candidate generation unit 146B first sets a lane change target position (or a merge target position).
  • the lane change target position is set as a relative position with respect to the surrounding vehicles, and determines “which lane change is to be made between the surrounding vehicles”.
  • the trajectory candidate generation unit 146B pays attention to three surrounding vehicles with the lane change target position as a reference, and determines a target speed when the lane change is performed.
  • FIG. 9 is a diagram illustrating the lane change target position TA.
  • L1 represents a traveling lane
  • L2 represents an adjacent lane.
  • the surrounding vehicle that runs immediately before the vehicle M is the preceding vehicle mA
  • the surrounding vehicle that runs immediately before the lane change target position TA is the front reference vehicle mB
  • immediately after the lane change target position TA is defined as a rear reference vehicle mC.
  • the vehicle M needs to perform acceleration / deceleration in order to move to the side of the lane change target position TA, but it is necessary to avoid catching up with the preceding vehicle mA at this time. For this reason, the trajectory candidate generation unit 146B predicts the future state of the three neighboring vehicles and determines the target speed so as not to interfere with each neighboring vehicle.
  • FIG. 10 is a diagram showing a speed generation model when the speeds of the three surrounding vehicles are assumed to be constant.
  • straight lines extending from mA, mB, and mC indicate displacements in the traveling direction when it is assumed that the respective surrounding vehicles have traveled at a constant speed.
  • the vehicle M must be between the front reference vehicle mB and the rear reference vehicle mC at the point CP at which the lane change is completed, and be behind the preceding vehicle mA before that.
  • the track candidate generation unit 146B derives a plurality of time-series patterns of the target speed until the lane change is completed. Then, a plurality of trajectory candidates as shown in FIG.
  • the motion patterns of the three surrounding vehicles are not limited to the constant speed as shown in FIG. 10, and may be predicted on the assumption of a constant acceleration and a constant jerk (jumping degree).
  • the evaluation / selection unit 146C evaluates the track candidates generated by the track candidate generation unit 146B from, for example, two viewpoints of planability and safety, and selects a track to be output to the travel control unit 160. .
  • the track is highly evaluated when the followability to the already generated plan (for example, action plan) is high and the total length of the track is short.
  • the viewpoint of planability for example, the track is highly evaluated when the followability to the already generated plan (for example, action plan) is high and the total length of the track is short.
  • a trajectory in which the lane is once changed in the left direction and returned is evaluated as low.
  • viewpoint of safety for example, at each track point, the distance between the vehicle M and the object (such as a surrounding vehicle) is long, and the higher the acceleration / deceleration, the change amount of the steering angle, etc., the higher the evaluation.
  • the drive mode selection unit 148 selects each of the action plans of the vehicle M from a plurality of drive modes in which the operation states of the plurality of drive sources (the engine 201 and the travel motor 202) that generate the travel drive force in the vehicle M are different from each other. Select the drive mode at the stage.
  • the drive mode selection unit 148 will be described later in detail.
  • the switching control unit 150 switches between the automatic operation mode and the manual operation mode based on a signal input from the automatic operation switch 87. Further, the switching control unit 150 switches from the automatic operation mode to the manual operation mode based on an operation instructing acceleration, deceleration, or steering for the configuration of the driving operation system in the HMI 70. For example, the switching control unit 150 switches from the automatic operation mode to the manual operation mode when the operation amount indicated by the signal input from the configuration of the driving operation system in the HMI 70 exceeds the threshold for a reference time or longer ( override). Further, the switching control unit 150 may return to the automatic operation mode when an operation for the configuration of the driving operation system in the HMI 70 is not detected for a predetermined time after switching to the manual operation mode by the override. .
  • the traveling control unit 160 controls the traveling driving force output device 200, the steering device 210, and the brake device 220 so that the vehicle M passes through the track generated by the track generating unit 146 as scheduled.
  • the travel control unit 160 controls the travel of the vehicle M in each section S on the route to the destination based on the drive mode at each stage of the action plan selected by the drive mode selection unit 148. That is, the travel control unit 160 sends a control instruction for realizing the drive mode selected by the drive mode selection unit 148 to the engine ECU, the motor ECU, or the like of the travel drive force output device 200.
  • the travel driving force output device 200 operates the engine 201 and the travel motor 202 so as to realize the drive mode selected by the drive mode selection unit 148.
  • the HMI control unit 170 refers to the mode-specific operation availability information 188 and controls the HMI 70 according to the type of the automatic driving mode.
  • FIG. 11 is a diagram illustrating an example of the operation permission / inhibition information 188 for each mode.
  • the mode-specific operation availability information 188 shown in FIG. 11 includes “manual operation mode” and “automatic operation mode” as operation mode items. Further, the “automatic operation mode” includes the above-mentioned “mode A”, “mode B”, “mode C”, and the like.
  • the mode-specific operation propriety information 188 includes “navigation operation” that is an operation for the navigation device 50, “content reproduction operation” that is an operation for the content reproduction device 85, and an operation for the in-vehicle display 82A as non-driving operation system items. And “instrument panel operation”. In the example of the mode-by-mode operation availability information 188 shown in FIG. 11, whether or not the vehicle occupant can operate the non-driving operation system is set for each operation mode described above, but the target interface device is limited to this. is not.
  • the HMI control unit 170 refers to the mode-specific operation availability information 188 based on the mode information acquired from the automatic driving control unit 120, and is permitted to be used (a part or all of the navigation device 50 and the HMI 70). And a device that is not permitted to be used. Further, the HMI control unit 170 controls whether or not to accept an operation from the vehicle occupant for the non-driving operation type HMI 70 or the navigation device 50 based on the determination result.
  • the vehicle occupant when the driving mode executed by the vehicle control system 100 is the manual driving mode, the vehicle occupant operates the driving operation system of the HMI 70 (for example, the accelerator pedal 71, the brake pedal 74, the shift lever 76, the steering wheel 78, etc.). To do. Further, when the operation mode executed by the vehicle control system 100 is the mode B, the mode C or the like of the automatic operation mode, the vehicle occupant is obliged to monitor the periphery of the vehicle M. In such a case, in order to prevent distraction (driver distraction) due to actions other than driving of the vehicle occupant (for example, operation of the HMI 70), the HMI control unit 170 is one of the non-driving operation systems of the HMI 70.
  • the HMI control unit 170 in order to prevent distraction (driver distraction) due to actions other than driving of the vehicle occupant (for example, operation of the HMI 70), the HMI control unit 170 is one of the non-driving operation systems of the HMI 70.
  • the HMI control unit 170 displays the presence of the surrounding vehicle of the vehicle M recognized by the outside recognition unit 142 and the state of the surrounding vehicle on the display device 82 with an image or the like in order to perform the surrounding monitoring of the vehicle M. While displaying, you may make HMI70 accept confirmation operation according to the scene at the time of the driving
  • FIG. 1
  • the HMI control unit 170 relaxes the restriction of the driver distraction and performs control for receiving the operation of the vehicle occupant for the non-driving operation system that has not received the operation.
  • the HMI control unit 170 displays video on the display device 82, outputs audio to the speaker 83, and causes the content reproduction device 85 to reproduce content from a DVD or the like.
  • the content reproduced by the content reproduction device 85 may include, for example, various contents related to entertainment and entertainment such as a TV program in addition to the content stored on the DVD or the like.
  • the “content reproduction operation” shown in FIG. 11 may mean such a content operation related to entertainment and entertainment.
  • the drive mode selection unit 148 has a plurality of different operating states of the plurality of drive sources (the engine 201 and the travel motor 202) of the vehicle M based on the action plan generated by the action plan generation unit 144.
  • the drive mode at each stage of the action plan is selected in advance from among the drive modes.
  • the drive mode selection unit 148 selects the drive mode in each of the plurality of sections S where the vehicle M is scheduled to travel from the plurality of drive modes.
  • the “drive mode at each stage of the action plan” selected by the drive mode selection unit 148 is not limited to the drive mode in each section in which the vehicle M is scheduled to travel, and each behavior that the vehicle M is scheduled to perform, for example, an action
  • the drive mode in each event (lane keep event, lane change event, etc.) determined by the plan generation unit 144 or the drive mode in each travel mode determined by the track generation unit 146 may be used.
  • the drive mode information 189 includes each drive mode registered in advance, information indicating the type of drive source in each drive mode, and the rate of decrease of the charging rate of the battery 203, and the like.
  • the drive mode information 189 these pieces of information are managed in association with each drive mode.
  • the first drive mode is a drive mode in which the engine 201 travels.
  • the “driving mode driven by the engine” refers to a case where there is assistance from the driving motor 202 in some driving scenes such as when leaving the engine from a stopped state, in addition to the case where the driving is completely performed only by the engine 201. May be included.
  • the “driving mode driven by the engine” may be a driving mode in which the battery 203 is charged by using a part of the output of the engine 201 while running by the engine 201.
  • the second drive mode is a drive mode in which the vehicle is driven by the driving motor 202.
  • the third drive mode is a drive mode in which the vehicle travels by driving both the engine 201 and the travel motor 202.
  • the drive modes that can be selected by the vehicle M are not limited to the above example. For example, an energy-saving travel mode in which acceleration during acceleration is smaller than that in the normal travel mode, or a sport in which acceleration during acceleration is greater than that in the normal travel mode. A driving mode or the like may be included.
  • the drive mode information 189 includes, for example, information indicating the energy efficiency of each drive mode.
  • the drive mode information 189 manages each drive mode in association with information indicating the energy efficiency of each drive mode for each travel environment.
  • FIG. 13 is a functional configuration diagram showing the components related to the selection of the drive mode in the vehicle control system 100 and the traveling drive force output device 200.
  • the drive mode selection unit 148 includes a travel environment deriving unit 300, a required charge rate deriving unit 302, and a drive mode determining unit 304.
  • the traveling environment deriving unit 300 derives the traveling environment of each section S where the vehicle M is scheduled to travel based on the behavior plan generated by the behavior plan generating unit 144.
  • the traveling environment deriving unit 300 includes the action plan generated by the action plan generating unit 144, the high-precision map information 182 stored in the storage unit 180 (for example, information indicating whether the area is an urban area), and the communication device 55.
  • the driving environment of each section S is derived on the basis of information (for example, information indicating the state of traffic volume) acquired through.
  • the traveling environment derived by the traveling environment deriving unit 300 corresponds to, for example, the above-described specific section SS (such as an urban area or a section where traffic congestion occurs), or the above-described non-specific section NSS (automobile road or road Whether it is a place where the battery 203 can be charged or not.
  • the travel environment of each section S is not limited to that derived by the travel environment deriving unit 300 based on the behavior plan, and may be included in advance in the behavior plan generated by the behavior plan generation unit 144. In this case, the traveling environment deriving unit 300 can be omitted.
  • the required charging rate deriving unit 302 when the driving mode for traveling by the traveling motor 202 is selected as the driving mode of each section S, the charging rate (required amount of charging rate) of the battery 203 necessary for traveling of each section S. ) Is derived.
  • the required charging rate deriving unit 302 is included in the action plan (distance of each section S, scheduled behavior of the vehicle M (for example, planned traveling speed)) and drive mode information 189 generated by the action plan generating unit 144.
  • the charging rate of the battery 203 required for traveling in each section S is derived. To do.
  • the drive mode determination unit 304 selects and determines a drive mode in each section S from among a plurality of drive modes registered in the drive mode information 189.
  • the drive mode determination unit 304 determines the drive mode in each of a plurality of sections S (for example, a plurality of sections S constituting the entire process from the starting point of automatic driving to the destination) at one time point (for example, Select at once (at the start of automatic operation).
  • the drive mode determination unit 304 selects a combination of drive modes for a plurality of sections S in advance.
  • the drive mode determination unit 304 selects a drive mode in each of the plurality of sections S based on energy efficiency that is considered through a plurality of sections S (for example, the entire journey to the destination) having different traveling environments.
  • selecting a drive mode based on energy efficiency considered through a plurality of sections means, for example, the case where the section A travels in the first drive mode and the section B travels in the second drive mode, and the section When the energy efficiency is different as a total when the vehicle travels in the second drive mode and the vehicle travels in the first drive mode, the combination of the section S and the drive mode with better energy efficiency is selected. Means that.
  • the drive mode determination unit 304 includes the travel environment of each section S derived by the travel environment deriving unit 300 and the energy of each drive mode for each travel environment stored in the storage unit 180 as the drive mode information 189. Based on the information indicating the efficiency and the planned behavior (for example, the planned traveling speed) of the vehicle M included in the action plan, the assumed energy consumption when each drive mode is selected in each section S is derived. . Then, the drive mode determination unit 304 selects a combination of each section S and the drive mode based on information indicating the energy consumption assumed in each section S.
  • the drive mode determination unit 304 receives information indicating the charging rate of the battery 203 from the battery charging rate detection unit 204. Then, the drive mode determination unit 304 preselects a drive mode in each of the plurality of sections S having different traveling environments based on the energy efficiency considered through the plurality of sections S having different traveling environments and the charging rate of the battery 203. To do.
  • the drive mode determination unit 304 of the present embodiment is configured so that each drive mode for each travel environment stored in the storage unit 180 as the travel environment of each section S derived by the travel environment deriving unit 300 and the drive mode information 189. Based on the information indicating the energy efficiency of the battery, the charging rate of the battery 203 necessary for traveling in each section S derived by the required charging rate deriving unit 302, the information indicating the charging rate of the battery 203 received from the battery charging rate detecting unit 204, and the like The drive mode for each section S is selected in advance. Then, the drive mode determination unit 304 outputs information indicating the drive mode of each selected section S to the travel control unit 160.
  • FIG. 14 is a diagram illustrating an example of the drive mode of each section S selected by the drive mode selection unit 148.
  • the first drive mode (drive mode driven by the engine 201) and the second drive mode (drive mode driven by the travel motor 202) are used.
  • the drive mode selection unit 148 may select a drive mode applied to each section S from among three or more types of drive modes.
  • a plurality of sections S included in the route to the destination are automobile-only roads (sections A, B, and C) as an example of the non-specific section NSS.
  • an urban area (section D) as an example of the specific section SS.
  • the urban area (section D) is an example of a “first section”.
  • Each of the automobile-only roads (sections A, B, and C) is an example of a “second section” on the near side of the first section.
  • the traveling motor 202 is driven by using a battery 203 charged with electricity that is cheaper than gasoline fuel or the like.
  • the traveling motor 202 is more energy efficient (lower energy cost) than the engine 201.
  • the energy efficiency of the engine 201 is particularly deteriorated when the frequency of low speed running or stopping is generally increased. That is, energy efficiency can be improved by driving the traveling motor 202 instead of the engine 201 in an urban area or a section where traffic congestion occurs.
  • the driving motor 202 is quieter than the engine 201. Therefore, when traveling in a section such as an urban area, it may be preferable that the traveling motor 202 is driven instead of the engine 201.
  • the drive mode determination unit 304 of the present embodiment based on the action plan generated by the action plan generation unit 144, when there is a specific section SS (for example, an urban area (section D)) on the route to the destination, First, a driving mode for traveling by the traveling motor 202 is selected as the driving mode for the specific section SS.
  • a driving mode for traveling by the traveling motor 202 is selected as the driving mode for the specific section SS.
  • the drive mode determination unit 304 for example, only in a partial section of the non-specific section NSS (for example, only the section A of the automobile-only road).
  • a driving mode for traveling by the traveling motor 202 is selected as the driving mode
  • a driving mode for traveling by the engine 201 is selected as the driving mode for the remaining sections of the non-specific section NSS (for example, sections B and C of the exclusive road for automobiles).
  • the drive mode determination unit 304 sets the drive mode in which the engine 201 travels as the drive mode of all sections of the non-specific section NSS (for example, sections A, B, and C of the automobile exclusive road). You may choose.
  • the drive mode determination unit 304 is, for example, a partial section of the non-specific section NSS (for example, sections A and B of an automobile-only road). ) Is selected as the driving mode, and the driving mode for operating the engine 201 is selected as the driving mode of the remaining section of the non-specific section NSS (for example, section C of the exclusive road for automobiles).
  • the drive mode determination unit 304 for example, all the sections of the non-specific section NSS (for example, sections A, B, and C of a dedicated road for automobiles). ) May be selected as the driving mode for driving the traveling motor 202.
  • the drive mode determination unit 304 of the present embodiment is based on the driving environment of the first section where the vehicle M is scheduled to travel (for example, the section D), and the driving mode of the first section and the first mode before the first section.
  • Two drive modes (for example, sections A, B, and C) are selected in advance.
  • the driving mode determination unit 304 of the present embodiment selects the driving mode for traveling by the traveling motor 202 as the driving mode for the first section
  • the driving mode determination unit 304 supplies power to the traveling motor 202 as the driving mode for the second section.
  • a driving mode (for example, a driving mode in which the vehicle travels by the engine 201) in which a required amount of the charging rate of the battery 203 to be supplied exists in the first section is selected.
  • FIG. 15 is a diagram illustrating some examples of drive modes in which the required amount of the charging rate of the battery 203 is present in the first section.
  • “the drive mode in which the charging rate of the battery 203 that supplies power to the traveling motor 202 is present in a necessary amount in the first section” is, for example, by traveling by the engine 201, A driving mode in which the charging rate of the battery 203 charged in advance is maintained until the first section (see (a) in FIG. 15), the battery 203 travels by the engine 201 and uses a part of the output of the engine 201.
  • Driving mode see (b) in FIG. 15) or the driving motor 202 or the driving motor 202 and the engine 201 so that the required amount of the charging rate of the battery 203 exists in the first section.
  • Drive mode see (c) in FIG. 15) and the like.
  • FIG. 16 is a flowchart illustrating an example of a process flow of the automatic operation control unit 120 of the present embodiment.
  • the action plan generation unit 144 generates an action plan (S100).
  • the travel environment derivation unit 300 of the drive mode selection unit 148 has the action plan generated by the action plan generation unit 144, the high-precision map information 182 stored in the storage unit 180, and the information acquired through the communication device 55.
  • the driving environment of each section S is derived (S102).
  • the required charging rate deriving unit 302 determines each section S based on the action plan generated by the action plan generating unit 144, information indicating the rate of decrease of the charging rate of the battery 203 included in the drive mode information 189, and the like.
  • the charging rate of the battery 203 necessary for traveling is derived (S104).
  • the drive mode determination unit 304 is based on the travel environment of each section S derived by the travel environment deriving unit 300, and the specific section SS ( It is determined whether or not there is a city area or a section where traffic congestion occurs (S106). Then, when the specific section SS exists on the route to the destination, the drive mode determination unit 304 selects a drive mode in which the traveling motor 202 travels as the drive mode of the specific section SS (S108). Note that at least one of the processes of S106 and S108 may be performed before the process of S104.
  • the drive mode determination unit 304 specifies based on the necessary charging rate for traveling with the traveling motor 202 in the specific section SS, information indicating the charging rate of the battery 203 received from the battery charging rate detection unit 204, and the like.
  • the drive mode of each section S on the near side of the section SS is selected (S110).
  • the drive mode determination unit 304 appropriately selects the drive mode of each section S (S112).
  • the traveling motor 202 is higher in energy efficiency than the engine 201.
  • the drive mode determination unit 304 selects, for example, a drive mode that travels by the travel motor 202 as the drive mode of as many sections S as possible, and a drive that travels by the engine 201 as the drive mode of the remaining sections S. Select a mode.
  • the drive mode determination part 304 outputs the information which shows the drive mode of each selected area S to the traveling control part 160 (S114).
  • travel control unit 160 drives engine 201 and travel motor 202 based on information received from drive mode determination unit 304.
  • the drive mode at each stage of the action plan is selected in advance based on the action plan, so that measures necessary for realizing the selected drive mode at each stage of the action plan are preliminarily set. Can be done. Thereby, the suitable drive mode in each step of an action plan is realizable.
  • the drive mode in each of the plurality of sections S is selected in advance based on the energy efficiency considered through the plurality of sections S having different traveling environments. For this reason, for example, the traveling motor 202 travels in a section where the low-speed traveling or the stop frequency is high, and the engine 201 can travel in a section where high-speed traveling is possible. As a result, it is possible to improve energy efficiency when viewed through a plurality of sections S (for example, the entire journey to the destination) having different traveling environments.
  • the driving mode in each of the plurality of sections S is selected in advance based on the charging rate of the battery 203 that supplies power to the traveling motor 202. For this reason, a traveling environment suitable for traveling by the traveling motor 202 can be traveled by the traveling motor 202 while suppressing the battery 203 from being discharged.
  • the driving mode of the second section in front of the first section is selected based on the traveling environment of the first section where the vehicle M is scheduled to travel. For this reason, a desired drive mode can be reliably realized in the first section.
  • the driving mode for traveling by the traveling motor 202 is selected as the driving mode for the first section
  • the charging rate of the battery that supplies power to the traveling motor is required for the first section as the driving mode for the second section.
  • a drive mode present in quantity is selected.
  • the first section can be reliably traveled by the travel motor 202.
  • a driving mode suitable for the traveling environment or the like in each section S scheduled to travel can be realized more reliably.
  • the vehicle control system 100 according to the second embodiment is different from that according to the first embodiment in that the drive mode at each stage of the action plan is selected so that the charging rate of the battery 203 is close to the allowable lower limit value of the charging rate in a predetermined case. Different from the vehicle control system 100.
  • the configurations other than those described below are the same as those in the first embodiment.
  • FIG. 17 is a diagram schematically showing control related to the charging rate of the battery 203.
  • an allowable upper limit PHV and an allowable lower limit PLV are set for the charging rate of the battery 203.
  • the drive mode selection unit 148 drives the drive mode at each stage of the action plan (for example, the drive mode in each section S) so as to maintain the charging rate of the battery 203 between the allowable upper limit value PHV and the allowable lower limit value PLV. Is selected in advance.
  • the drive mode determination unit 304 of the present embodiment reaches that place.
  • the drive mode at each stage of the action plan (for example, the drive mode in each section S scheduled to travel) is selected in advance so that the charging rate of the battery 203 approaches the allowable lower limit value PLV of the charging rate.
  • the drive mode determination unit 304 determines the destination or destination based on information input from the user through the navigation device 50 or information indicating the travel environment of each section S derived by the travel environment deriving unit 300. It is determined whether or not there is a place where the battery 203 that supplies power to the traveling motor 202 can be charged (hereinafter referred to as a chargeable place BP) on the route up to this point.
  • a chargeable place BP a place where the battery 203 that supplies power to the traveling motor 202 can be charged
  • the case where there is a chargeable place BP at the destination is a case where a facility (for example, a home) having a charging facility is set as the destination.
  • the drive mode determination unit 304 of the present embodiment when there is a chargeable place BP on the destination or the route to the destination, the travel environment of each section S derived by the travel environment deriving unit 300, the required charging rate When reaching the chargeable place BP based on the charging rate of the battery 203 necessary for traveling in each section S derived by the deriving unit 302 and information indicating the charging rate of the battery 203 received from the battery charging rate detection unit 204
  • the drive mode of each section S is selected in advance so that the charging rate of the battery 203 approaches the allowable lower limit value PLV of the charging rate.
  • FIG. 18 is a diagram illustrating an example of the drive mode of each section S selected by the drive mode selection unit 148 of the present embodiment.
  • the first drive mode (drive mode driven by the engine 201) and the second drive mode (drive mode driven by the travel motor 202) are used.
  • the drive mode selection unit 148 may select a drive mode applied to each section S from among three or more types of drive modes.
  • FIG. 18 shows a case where there are a plurality of sections (sections A, B, and C) on the front side of the chargeable place BP on the destination or the route to the destination.
  • the drive mode determination unit 304 of the present embodiment is a partial section (for example, section A) of the plurality of sections S to the destination. ) Is selected as the driving mode, and the driving mode for driving by the engine 201 is selected as the driving mode for the remaining sections (for example, sections B and C).
  • the drive mode determination unit 304 for example, when the charging rate of the battery 203 is medium (see (ii) in FIG. 18), a part of the plurality of sections S to the destination.
  • the driving mode for traveling by the traveling motor 202 is selected as the driving mode (for example, section A, B), and the driving mode for traveling by the engine 201 is selected as the driving mode for the remaining section (for example, section C).
  • the drive mode determination unit 304 for example, when the charging rate of the battery 203 is high (see (iii) in FIG. 18), the drive modes in all the sections S (for example, the sections A, B, and C) to the destination.
  • a driving mode for traveling by the traveling motor 202 is selected.
  • FIG. 19 is a diagram showing an example of a drive mode when there is a chargeable place BP on the route to the destination.
  • the drive mode determination unit 304 drives the second section when there is a first section as the non-specific section NSS and a second section as the specific section SS in front of the first section.
  • a driving mode for traveling by the traveling motor 202 is selected as the mode, and a driving mode for traveling by the engine 201 and charging the battery 203 is selected as the driving mode for the first section.
  • FIG. 20 is a flowchart illustrating an example of a process flow of the automatic operation control unit 120 of the present embodiment. Note that the processes of S100, S102, S104, S106, and S114 are the same as in the first embodiment.
  • the drive mode determination unit 304 determines the travel environment of each section S derived by the travel environment deriving unit 300 when the specific section SS exists on the route to the destination. Based on the above, it is determined whether there is a non-specific section NSS having a sufficient length that allows the battery 203 to be charged immediately after the specific section SS (S107).
  • the drive mode determination unit 304 determines whether there is a sufficiently long non-specific section NSS that can charge the battery 203 immediately after the specific section SS.
  • the drive mode of the specific section SS is selected so that the charging rate of the battery 203 approaches the allowable lower limit value PLV when the non-specific section NSS is reached (S108).
  • the drive mode determination unit 304 selects a drive mode for running the engine 201 and charging the battery 203 as the drive mode of the non-specific section NSS immediately after the specific section SS (S110).
  • the driving mode determination unit 304 further travels in the subsequent section S. Based on the above, the drive mode in each of the plurality of sections S including the specific section SS and the non-specific section NSS is selected (S112).
  • the vehicle control system 100 of the present modification is different from the vehicle control system 100 of the second embodiment in that the allowable lower limit value PLV of the battery 203 is changed when there is a chargeable place BP.
  • the configurations other than those described below are the same as in the second embodiment.
  • FIG. 21 is a functional configuration diagram showing components relating to selection of the drive mode of the present modification.
  • the drive mode selection unit 148 includes a charge rate allowable lower limit value changing unit 303 in addition to the travel environment deriving unit 300, the necessary charge rate deriving unit 302, and the drive mode determining unit 304.
  • FIG. 22 is a diagram schematically showing control related to the charging rate of the battery 203 of the present modification.
  • the charging rate allowable lower limit changing unit 303 sets the allowable lower limit PLV of the charging rate of the battery 203 to the allowable lower limit when there is a chargeable place BP on the destination or the route to the destination. Reduce to the value PLV '.
  • the drive mode determination unit 304 of the present modification reduces the charging rate of the battery 203 when reaching the chargeable place BP when the chargeable place BP is on the destination or the route to the destination.
  • the drive mode at each stage of the action plan (for example, the drive mode in each section S) is selected in advance so as to approach the allowable lower limit value PLV ′.
  • the drive mode determination unit 304 of the present modification includes the travel environment and the required charging rate of each section S derived by the travel environment deriving unit 300 when there is a chargeable place BP on the destination or the route to the destination.
  • the drive mode (for example, the drive mode of each section S) at each stage of the action plan is selected in advance so that the charge rate of the battery 203 approaches the allowable lower limit value PLV ′ of the charge rate.
  • the drive mode determination unit 304 of the present modified example has the charge rate of the battery 203 before the charge rate is lowered when reaching the chargeable location BP when there is a chargeable location BP on the destination or the route to the destination.
  • the drive mode in each section S is selected in advance so as to be smaller than the allowable lower limit value PLV.
  • the “allowable lower limit before reduction” is, for example, the allowable lower limit of the charging rate when there is no chargeable place BP on the destination or the route to the destination, and “normal allowable lower limit” or “ It may be referred to as “allowable lower limit in initial setting” or the like.
  • the driving mode in each section S is selected in advance so that the charging rate of the battery 203 approaches the lowered allowable lower limit value when reaching the chargeable place BP.
  • the distance can be traveled by the travel motor 202. For this reason, energy efficiency can further be improved.
  • DESCRIPTION OF SYMBOLS 100 Vehicle control system, 144 ... Action plan production

Abstract

This vehicle control system comprises: an action plan generation unit which generates an action plan for the autonomous driving of a vehicle; a drive mode selection unit which, on the basis of the action plan generated by the action plan generation unit, preselects a drive mode for each stage of the action plan from among a plurality of drive modes each having a different operational state of the plurality of drive sources of the vehicle; and a travel control unit which controls the running of the vehicle on the basis of the drive mode at each stage of the action plan selected by the drive mode selection unit.

Description

車両制御システム、車両制御方法、および車両制御プログラムVehicle control system, vehicle control method, and vehicle control program
 本発明は、車両制御システム、車両制御方法、および車両制御プログラムに関する。
 本願は、2016年5月20日に出願された日本国特許出願2016-101336号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vehicle control system, a vehicle control method, and a vehicle control program.
This application claims priority based on Japanese Patent Application No. 2016-101336 filed on May 20, 2016, the contents of which are incorporated herein by reference.
 近年、目的地までの経路に沿って車両が走行するように、車両の加減速と操舵とのうち、少なくとも一方を自動的に制御する技術(以下、「自動運転」という)について研究が進められている。また、運転環境を特定し、その運転環境での運転操作の学習結果を参照して自動運転制御を実行する技術が知られている(例えば、特許文献1参照)。 In recent years, research has been conducted on a technology (hereinafter referred to as “automatic driving”) that automatically controls at least one of acceleration / deceleration and steering of a vehicle so that the vehicle travels along a route to a destination. ing. In addition, a technique is known in which the driving environment is specified and the automatic driving control is executed with reference to the learning result of the driving operation in the driving environment (see, for example, Patent Document 1).
日本国特開2015-89801号公報Japanese Unexamined Patent Publication No. 2015-89801
 エンジンおよび走行用モータのような複数の駆動源を有する車両は、それら複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードで走行可能である。しかしながら、従来の車両制御システムでは、行動計画の各段階において適した駆動モードを実現できない場合があった。 A vehicle having a plurality of drive sources such as an engine and a travel motor can travel in a plurality of drive modes in which the operation states of the plurality of drive sources are different from each other. However, the conventional vehicle control system may not be able to realize a suitable drive mode at each stage of the action plan.
 本発明の態様は、行動計画の各段階において適した駆動モードを実現可能な車両制御システム、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。 An object of an aspect of the present invention is to provide a vehicle control system, a vehicle control method, and a vehicle control program capable of realizing a drive mode suitable for each stage of an action plan.
 (1)本発明の一態様は、車両の自動運転の行動計画を生成する行動計画生成部と、前記行動計画生成部により生成された行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択する駆動モード選択部と、前記駆動モード選択部により選択された前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御する走行制御部と、を備える車両制御システムである。 (1) According to one aspect of the present invention, an action plan generation unit that generates an action plan for automatic driving of a vehicle, and operations of a plurality of drive sources included in the vehicle based on the action plan generated by the action plan generation unit A drive mode selection unit that preselects a drive mode at each stage of the action plan from a plurality of drive modes that are in different states, and a drive mode at each stage of the action plan that is selected by the drive mode selection unit. And a travel control unit that controls travel of the vehicle.
 (2)上記車両制御システムでは、前記駆動モード選択部は、走行環境が異なる複数の区間を通して考慮されるエネルギー効率に基づき、前記複数の区間の各々における駆動モードを予め選択してもよい。 (2) In the vehicle control system, the drive mode selection unit may previously select a drive mode in each of the plurality of sections based on energy efficiency considered through a plurality of sections having different traveling environments.
 (3)上記車両制御システムでは、前記複数の駆動源は、走行用モータを含み、前記駆動モード選択部は、前記走行用モータに電力を供給するバッテリーの充電率に基づき、走行環境が異なる複数の区間の各々における駆動モードを予め選択してもよい。 (3) In the vehicle control system, the plurality of drive sources include a travel motor, and the drive mode selection unit includes a plurality of different travel environments based on a charging rate of a battery that supplies power to the travel motor. The drive mode in each of the sections may be selected in advance.
 (4)上記車両制御システムでは、前記駆動モード選択部は、前記車両が走行予定の第1区間の走行環境に基づき、前記第1区間よりも手前側の第2区間の駆動モードを選択してもよい。 (4) In the vehicle control system, the drive mode selection unit selects a drive mode of a second section on the near side of the first section based on a travel environment of the first section where the vehicle is scheduled to travel. Also good.
 (5)上記車両制御システムでは、前記複数の駆動源は、走行用モータを含み、前記駆動モード選択部は、前記第1区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択する場合に、前記第2区間の駆動モードとして、前記走行用モータに電力を供給するバッテリーの充電率が前記第1区間で必要量存在することになる駆動モードを選択してもよい。 (5) In the vehicle control system, the plurality of drive sources include a travel motor, and the drive mode selection unit selects a drive mode for traveling by the travel motor as the drive mode of the first section. In addition, as the driving mode of the second section, a driving mode in which a necessary amount of the charging rate of the battery that supplies power to the traveling motor exists in the first section may be selected.
 (6)上記車両制御システムでは、前記複数の駆動源は、エンジンを更に含み、前記駆動モード選択部は、前記第2区間の駆動モードとして前記エンジンにより走行する駆動モードを選択してもよい。 (6) In the vehicle control system, the plurality of drive sources may further include an engine, and the drive mode selection unit may select a drive mode in which the engine runs as the drive mode of the second section.
 (7)上記車両制御システムでは、前記複数の駆動源は、エンジンと走行用モータとを含み、前記駆動モード選択部は、前記第1区間が特定区間であり、前記第2区間が前記特定区間に比べて高速走行可能な区間である場合に、前記第1区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択し、前記第2区間の駆動モードとして前記エンジンにより走行する駆動モードを選択してもよい。 (7) In the vehicle control system, the plurality of drive sources include an engine and a traveling motor, and the drive mode selection unit is configured such that the first section is a specific section and the second section is the specific section. When the vehicle is a section capable of traveling at high speed, the drive mode for traveling by the traveling motor is selected as the drive mode for the first section, and the drive mode for traveling by the engine is selected as the drive mode for the second section. You may choose.
 (8)上記車両制御システムでは、前記複数の駆動源は、エンジンと走行用モータとを含み、前記駆動モード選択部は、前記第2区間が特定区間であり、前記第1区間が前記特定区間に比べて高速走行可能な区間である場合に、前記第2区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択し、前記第1区間の駆動モードとして前記エンジンにより走行して前記走行用モータに電力を供給するバッテリーの充電を行う駆動モードを選択してもよい。 (8) In the vehicle control system, the plurality of drive sources include an engine and a traveling motor, and the drive mode selection unit is configured such that the second section is a specific section and the first section is the specific section. When the vehicle is in a section capable of traveling at a higher speed, the driving mode for traveling by the traveling motor is selected as the driving mode for the second section, and the traveling is performed by the engine as the driving mode for the first section. A drive mode for charging a battery that supplies power to the motor for use may be selected.
 (9)上記車両制御システムでは、前記複数の駆動源は、走行用モータを含み、前記駆動モード選択部は、目的地または目的地までの経路上に前記走行用モータに電力を供給するバッテリーの充電が可能な場所がある場合に、前記場所に到達するときに前記バッテリーの充電率が充電率の許容下限値に近付くように前記行動計画の各段階における駆動モードを予め選択してもよい。 (9) In the vehicle control system, the plurality of drive sources include a travel motor, and the drive mode selection unit includes a battery that supplies power to the travel motor on a destination or a route to the destination. When there is a place where charging is possible, the driving mode at each stage of the action plan may be selected in advance so that the charging rate of the battery approaches the allowable lower limit value of the charging rate when reaching the place.
 (10)本発明の別の一態様は、車載コンピュータが、車両の自動運転の行動計画を生成し、前記生成された行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択し、前記選択された前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御する、車両制御方法である。 (10) In another aspect of the present invention, the in-vehicle computer generates an action plan for automatic driving of the vehicle, and the operation states of the plurality of drive sources included in the vehicle are different based on the generated action plan. A vehicle control method for pre-selecting a drive mode at each stage of the action plan from a plurality of drive modes, and controlling travel of the vehicle based on the selected drive mode at each stage of the action plan. is there.
 (11)本発明のさらに別の一態様は、車載コンピュータに、車両の自動運転の行動計画を生成させ、前記生成させた行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択させ、前記選択させた前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御させる、車両制御プログラムである。 (11) According to still another aspect of the present invention, an in-vehicle computer generates an action plan for automatic driving of a vehicle, and based on the generated action plan, operation states of a plurality of drive sources included in the vehicle are respectively set. A vehicle control program for causing a driving mode at each stage of the action plan to be selected in advance from a plurality of different driving modes, and controlling the traveling of the vehicle based on the selected driving mode at each stage of the action plan. It is.
 上記(1)、(10)、(11)の態様によれば、生成された行動計画に基づいて前記行動計画の各段階における駆動モードが予め選択される。このことで、選択された駆動モードを実現するために必要な措置を前記行動計画の各段階に対して事前に行うことができる。これにより、行動計画の各段階において適した駆動モードを実現することができる。 According to the above aspects (1), (10), and (11), the drive mode at each stage of the action plan is selected in advance based on the generated action plan. Thus, measures necessary for realizing the selected drive mode can be performed in advance for each stage of the action plan. Thereby, the drive mode suitable for each step of the action plan can be realized.
 上記(2)の態様によれば、複数の区間を通して考慮されるエネルギー効率に基づいて前記複数の区間の各々における駆動モードを予め選択される。このため、走行環境が異なる複数の区間を通して考慮されるエネルギー効率が良好な駆動モードで走行することができる。 According to the above aspect (2), the drive mode in each of the plurality of sections is selected in advance based on the energy efficiency considered through the plurality of sections. For this reason, it can drive | work in the drive mode with favorable energy efficiency considered through the several area from which driving environments differ.
 上記(3)の態様によれば、走行用モータに電力を供給するバッテリーの充電率に基づいて複数の区間の各々における駆動モードが予め選択される。このため、走行用モータによる走行が適した走行環境において、バッテリーの充電切れを抑制して走行用モータによって走行することができる。これにより、走行予定の各区間において走行環境等に対して適した駆動モードをより確実に実現することができる。 According to the above aspect (3), the driving mode in each of the plurality of sections is selected in advance based on the charging rate of the battery that supplies power to the traveling motor. For this reason, in a traveling environment suitable for traveling by the traveling motor, it is possible to travel by the traveling motor while suppressing the battery from being discharged. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
 上記(4)の態様によれば、車両が走行予定の第1区間の走行環境に基づいて前記第1区間よりも手前側の第2区間の駆動モードが選択される。このため、第1区間において所望の駆動モードを確実に実現することができる。これにより、走行予定の各区間において走行環境等に対して適した駆動モードをより確実に実現することができる。 According to the above aspect (4), the drive mode of the second section closer to the first section than the first section is selected based on the traveling environment of the first section where the vehicle is scheduled to travel. For this reason, a desired drive mode can be reliably realized in the first section. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
 上記(5)の態様によれば、前記第2区間の駆動モードとして、走行用モータに電力を供給するバッテリーの充電率が前記第1区間で必要量存在することになる駆動モードが選択される。これにより、バッテリーの充電切れを抑制して走行用モータによって前記第1区間を走行することができる。これにより、走行予定の各区間において走行環境等に対して適した駆動モードをより確実に実現することができる。 According to the above aspect (5), as the driving mode of the second section, the driving mode in which the charging rate of the battery that supplies power to the travel motor is present in the first section is selected. . Accordingly, it is possible to travel the first section by the traveling motor while suppressing the battery from being discharged. As a result, a driving mode suitable for the traveling environment or the like in each section scheduled to travel can be more reliably realized.
 上記(6)の態様によれば、前記第2区間の駆動モードとしてエンジンにより走行する駆動モードが選択される。このため、前記第2区間においてバッテリーの消費を節約することができる。これにより、バッテリーの充電切れを抑制して走行用モータによって前記第1区間をより確実に走行することができる。 According to the above aspect (6), the drive mode in which the engine travels is selected as the drive mode of the second section. For this reason, battery consumption can be saved in the second section. Thereby, running out of the battery can be suppressed and the first section can be more reliably traveled by the travel motor.
 上記(7)の態様によれば、特定区間である第1区間において走行用モータにより走行する駆動モードが選択され、前記特定区間に比べて高速走行可能な第2区間においてエンジンにより走行する駆動モードが選択される。これにより、走行環境等に対して適した駆動源を使い分けることができ、走行環境等に対して適した駆動モードをより確実に実現することができる。 According to the aspect of the above (7), the driving mode in which the driving motor travels in the first section which is the specific section is selected, and the driving mode in which the engine travels in the second section capable of traveling at a higher speed than the specific section. Is selected. As a result, it is possible to properly use a driving source suitable for the traveling environment and the like, and it is possible to more reliably realize a driving mode suitable for the traveling environment.
 上記(8)の態様によれば、特定区間である第2区間において走行用モータにより走行する駆動モードが選択され、前記特定区間に比べて高速走行可能な第1区間においてエンジンにより走行する駆動モードが選択される。また、前記第1区間の走行においてバッテリーが充電されるため、特定区間において積極的に走行用モータを利用することができる。これにより、走行環境等に対して適した駆動モードをより確実に実現することができる。 According to the above aspect (8), the drive mode in which the vehicle is driven by the driving motor in the second zone, which is the specific zone, is selected, and the drive mode in which the engine runs in the first zone where the vehicle can run at a higher speed than the specific zone. Is selected. In addition, since the battery is charged during traveling in the first section, the traveling motor can be actively used in the specific section. As a result, a drive mode suitable for the traveling environment and the like can be realized more reliably.
 上記(9)の態様によれば、所定の場所に到達するときにバッテリーの充電率が充電率の許容下限値に近付くように行動計画の各段階における駆動モードが予め選択される。このため、なるべく多くの距離を走行用モータによって走行することが可能になる。これにより、行動計画の各段階において適した駆動モードをより確実に実現することができる。 According to the above aspect (9), the drive mode at each stage of the action plan is selected in advance so that the battery charge rate approaches the allowable lower limit value of the charge rate when reaching a predetermined location. For this reason, it is possible to travel as much as possible by the travel motor. As a result, a driving mode suitable for each stage of the action plan can be realized more reliably.
車両の構成要素を示す図である。It is a figure which shows the component of a vehicle. 車両制御システムを中心とした機能構成図である。It is a functional lineblock diagram centering on a vehicle control system. HMIの構成図である。It is a block diagram of HMI. 自車位置認識部により走行車線に対する車両の相対位置が認識される様子を示す図である。It is a figure which shows a mode that the relative position of the vehicle with respect to a driving lane is recognized by the own vehicle position recognition part. ある区間について生成された行動計画の一例を示す図である。It is a figure which shows an example of the action plan produced | generated about a certain area. 軌道生成部の構成の一例を示す図である。It is a figure which shows an example of a structure of a track generation part. 軌道候補生成部により生成される軌道の候補の一例を示す図である。It is a figure which shows an example of the track | orbit candidate produced | generated by a track | orbit candidate generation part. 軌道候補生成部により生成される軌道の候補を軌道点で表現した図である。FIG. 6 is a diagram representing trajectory candidates generated by a trajectory candidate generation unit using trajectory points. 車線変更ターゲット位置を示す図である。It is a figure which shows a lane change target position. 3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。It is a figure which shows the speed production | generation model at the time of assuming that the speed of three surrounding vehicles is constant. モード別操作可否情報の一例を示す図である。It is a figure which shows an example of the operation availability information according to mode. 駆動モード情報の一例を示す図である。It is a figure which shows an example of drive mode information. 駆動モード情報の一例を示す図である。It is a figure which shows an example of drive mode information. 駆動モードの選択に関する構成要素を示す機能構成図である。It is a functional block diagram which shows the component regarding selection of a drive mode. 第1実施形態の各区間の駆動モードの一例を示す図である。It is a figure which shows an example of the drive mode of each area of 1st Embodiment. 第1実施形態においてバッテリーの充電率が第1区間で必要量存在することになる駆動モードのいくつかの例を示す図である。It is a figure which shows some examples of the drive mode in which a required amount exists in the 1st area in the charge ratio of a battery in 1st Embodiment. 第1実施形態の自動運転制御部の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the automatic operation control part of 1st Embodiment. 第2実施形態のバッテリーの充電率に関する制御を模式的に示す図である。It is a figure which shows typically the control regarding the charging rate of the battery of 2nd Embodiment. 第2実施形態の各区間の駆動モードの一例を示す図である。It is a figure which shows an example of the drive mode of each area of 2nd Embodiment. 第2実施形態において目的地までの経路上に充電可能場所がある場合の駆動モードの一例を示す図である。It is a figure which shows an example of the drive mode when there exists a chargeable place on the path | route to the destination in 2nd Embodiment. 第2実施形態の自動運転制御部の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the automatic operation control part of 2nd Embodiment. 第2実施形態の変形例の駆動モードの選択に関する構成要素を示す機能構成図である。It is a functional block diagram which shows the component regarding selection of the drive mode of the modification of 2nd Embodiment. 第2実施形態の変形例のバッテリーの充電率に関する制御を模式的に示す図である。It is a figure which shows typically the control regarding the charging rate of the battery of the modification of 2nd Embodiment.
 以下、図面を参照し、本発明の実施形態に係る車両制御システム、車両制御方法、および車両制御プログラムについて説明する。 Hereinafter, a vehicle control system, a vehicle control method, and a vehicle control program according to an embodiment of the present invention will be described with reference to the drawings.
 <共通構成>
 図1は、車両制御システム100が搭載される車両M(第1車両Mとも称する)の構成要素を示す図である。車両制御システム100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車である。車両Mは、走行駆動力を出力する複数の駆動源として例えばエンジン(内燃機関)201と走行用モータ202とを兼ね備えたハイブリッド自動車等である(図2参照)。
<Common configuration>
FIG. 1 is a diagram showing components of a vehicle M (also referred to as a first vehicle M) on which the vehicle control system 100 is mounted. The vehicle on which the vehicle control system 100 is mounted is, for example, an automobile such as a two-wheel, three-wheel, or four-wheel vehicle. The vehicle M is, for example, a hybrid vehicle that includes an engine (internal combustion engine) 201 and a traveling motor 202 as a plurality of driving sources that output traveling driving force (see FIG. 2).
 図1に示すように、車両Mには、ファインダ20-1から20-7、レーダ30-1から30-6、およびカメラ40等のセンサと、ナビゲーション装置50と、車両制御システム100とが搭載される。 As shown in FIG. 1, the vehicle M is equipped with sensors such as a finder 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100. Is done.
 ファインダ20-1から20-7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20-1は、フロントグリル等に取り付けられる。ファインダ20-2および20-3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20-4は、トランクリッド等に取り付けられる。ファインダ20-5および20-6は、車体の側面や尾灯内部等に取り付けられる。ファインダ20-1から20-6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20-7は、ルーフ等に取り付けられる。ファインダ20-7は、例えば、水平方向に関して360度の検出領域を有している。 The finders 20-1 to 20-7 are, for example, LIDARs (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measure the scattered light with respect to the irradiation light and measure the distance to the target. For example, the finder 20-1 is attached to a front grill or the like. The viewfinders 20-2 and 20-3 are attached to the side of the vehicle body, the door mirror, the interior of the headlamp, the vicinity of the side lamp, and the like. The finder 20-4 is attached to a trunk lid or the like. The viewfinders 20-5 and 20-6 are attached to the side surface of the vehicle body, the interior of the taillight, or the like. The viewfinders 20-1 to 20-6 have a detection area of about 150 degrees in the horizontal direction, for example. The finder 20-7 is attached to a roof or the like. The finder 20-7 has a detection area of 360 degrees in the horizontal direction, for example.
 レーダ30-1および30-4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30-2、30-3、30-5、30-6は、レーダ30-1および30-4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。 Radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars that have a wider detection area in the depth direction than other radars. Radars 30-2, 30-3, 30-5, and 30-6 are medium-range millimeter-wave radars that have a narrower detection area in the depth direction than radars 30-1 and 30-4.
 以下、ファインダ20-1から20-7を特段区別しない場合は、単に「ファインダ20」と記載する。レーダ30-1から30-6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM-CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。 Hereinafter, when the finders 20-1 to 20-7 are not particularly distinguished, they are simply referred to as “finder 20”. When the radars 30-1 to 30-6 are not particularly distinguished, they are simply described as “radar 30”. The radar 30 detects an object by, for example, FM-CW (Frequency Modulated Continuous Wave) method.
 カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば、周期的に繰り返し車両Mの前方を撮像する。カメラ40は、複数のカメラを含むステレオカメラであってもよい。 The camera 40 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The camera 40 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like. For example, the camera 40 periodically images the front of the vehicle M repeatedly. The camera 40 may be a stereo camera including a plurality of cameras.
 なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。 Note that the configuration illustrated in FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
 <第1実施形態>
 図2は、車両制御システム100を中心とした機能構成図である。車両Mには、ファインダ20、レーダ30、およびカメラ40等を含む検知デバイスDDと、ナビゲーション装置50と、通信装置55と、車両センサ60と、HMI(Human Machine Interface)70と、車両制御システム100と、走行駆動力出力装置200と、ステアリング装置210と、ブレーキ装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、車両制御システムは、「車両制御システム100」のみを指しているのではなく、車両制御システム100以外の構成(検知デバイスDDやナビゲーション装置50、通信装置55、車両センサ60、HMI70、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220等)を含んでもよい。
<First Embodiment>
FIG. 2 is a functional configuration diagram centering on the vehicle control system 100. The vehicle M includes a detection device DD including a finder 20, a radar 30, and a camera 40, a navigation device 50, a communication device 55, a vehicle sensor 60, an HMI (Human Machine Interface) 70, and a vehicle control system 100. A traveling driving force output device 200, a steering device 210, and a brake device 220 are mounted. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like. The vehicle control system does not only indicate “vehicle control system 100”, but a configuration other than vehicle control system 100 (detection device DD, navigation device 50, communication device 55, vehicle sensor 60, HMI 70, travel drive, etc. Force output device 200, steering device 210, brake device 220, etc.).
 ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、車両制御システム100の目標車線決定部110に提供される。車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置50は、車両制御システム100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。また、ナビゲーション装置50は、例えば、ユーザが保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。この場合、端末装置と車両制御システム100との間で、無線または有線による通信によって情報の送受信が行われる。 The navigation device 50 includes a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device that functions as a user interface, a speaker, a microphone, and the like. The navigation device 50 identifies the position of the vehicle M with the GNSS receiver, and derives a route from the position to the destination specified by the user. The route derived by the navigation device 50 is provided to the target lane determining unit 110 of the vehicle control system 100. The position of the vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 60. In addition, the navigation device 50 provides guidance on the route to the destination by voice or navigation display when the vehicle control system 100 is executing the manual operation mode. The configuration for specifying the position of the vehicle M may be provided independently of the navigation device 50. Moreover, the navigation apparatus 50 may be implement | achieved by the function of terminal devices, such as a smart phone and a tablet terminal which a user holds, for example. In this case, information is transmitted and received between the terminal device and the vehicle control system 100 by wireless or wired communication.
 通信装置55は、アンテナと、アンテナに電気的に接続されたアンテナ回路(無線回路)とを含む。通信装置55は、例えば通信衛星または道路に設置された通信装置との間で無線通信を行い、走行予定の各区間の交通量の状態を示す情報(例えば渋滞情報)等を取得する。「交通量の状態」は、車両Mの走行環境の一例である。また、通信装置55は、通信衛星または道路に設置された通信装置との間で無線通信を行い、走行予定の各区間におけるその他の走行環境に関する情報を取得してもよい。「その他の走行環境に関する情報」とは、例えば、目的地または目的地までの経路上にある、走行用モータ202に電力を供給するバッテリー203の充電が可能な場所等の情報である。なお、「バッテリーの充電が可能な場所」とは、充電設備がある施設に加えて、非接触充電レーンを有した道路や、エンジン201による走行時にエンジン201の出力の一部を用いてバッテリー203を充電することが可能な道路等を含む。非接触充電レーンは、例えば、道路に埋め込まれた送電コイルを有し、受電コイルを有した車両が道路を走行しながら給電を受けることができる充電設備である。なお、通信装置55の全部または一部は、ユーザが保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。この場合、端末装置と車両制御システム100との間で、無線または有線の通信によって情報の送受信が行われる。 The communication device 55 includes an antenna and an antenna circuit (wireless circuit) electrically connected to the antenna. The communication device 55 performs wireless communication with, for example, a communication satellite or a communication device installed on a road, and acquires information (for example, traffic jam information) indicating a traffic volume state of each section scheduled to travel. The “traffic volume state” is an example of a traveling environment of the vehicle M. Further, the communication device 55 may perform wireless communication with a communication satellite or a communication device installed on a road, and acquire information on other travel environments in each section scheduled to travel. “Other information related to the travel environment” is, for example, information such as a destination or a place on the route to the destination where the battery 203 that supplies power to the travel motor 202 can be charged. The “place where the battery can be charged” refers to a road having a non-contact charging lane in addition to a facility having a charging facility, or a battery 203 using a part of the output of the engine 201 when the engine 201 travels. Including roads that can be charged. The non-contact charging lane is, for example, a charging facility that has a power transmission coil embedded in a road and that can receive power while a vehicle having the power receiving coil travels on the road. Note that all or part of the communication device 55 may be realized by a function of a terminal device such as a smartphone or a tablet terminal held by the user. In this case, information is transmitted and received between the terminal device and the vehicle control system 100 by wireless or wired communication.
 車両センサ60は、車速を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。 The vehicle sensor 60 includes a vehicle speed sensor that detects a vehicle speed, an acceleration sensor that detects acceleration, a yaw rate sensor that detects an angular velocity around a vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.
 図3は、HMI70の構成図である。HMI70は、例えば、運転操作系の構成と、非運転操作系の構成とを備える。これらの境界は明確なものでは無く、運転操作系の構成が非運転操作系の機能を備えること(或いはその逆)があってもよい。 FIG. 3 is a configuration diagram of the HMI 70. The HMI 70 includes, for example, a driving operation system configuration and a non-driving operation system configuration. These boundaries are not clear, and the configuration of the driving operation system may have a non-driving operation system function (or vice versa).
 HMI70は、運転操作系の構成として、例えば、アクセルペダル71と、アクセル開度センサ72と、アクセルペダル反力出力装置73と、ブレーキペダル74と、ブレーキ踏量センサ(或いはマスター圧センサ等)75と、シフトレバー76と、シフト位置センサ77と、ステアリングホイール78と、ステアリング操舵角センサ79と、ステアリングトルクセンサ80と、その他運転操作デバイス81とを含む。 The HMI 70 has, for example, an accelerator pedal 71, an accelerator opening sensor 72, an accelerator pedal reaction force output device 73, a brake pedal 74, and a brake pedal amount sensor (or a master pressure sensor or the like) 75 as a driving operation system configuration. A shift lever 76, a shift position sensor 77, a steering wheel 78, a steering angle sensor 79, a steering torque sensor 80, and other driving operation devices 81.
 アクセルペダル71は、車両乗員による加速指示(或いは戻し操作による減速指示)を受け付けるための操作部である。アクセル開度センサ72は、アクセルペダル71の踏み込み量を検出し、踏み込み量を示すアクセル開度信号を車両制御システム100に出力する。なお、車両制御システム100に出力するのに代えて、走行駆動力出力装置200、ステアリング装置210、またはブレーキ装置220に直接出力することがあってもよい。以下に説明する他の運転操作系の構成についても同様である。アクセルペダル反力出力装置73は、例えば車両制御システム100からの指示に応じて、アクセルペダル71に対して操作方向と反対向きの力(操作反力)を出力する。 Accelerator pedal 71 is an operation unit for receiving an acceleration instruction (or a deceleration instruction by a return operation) from a vehicle occupant. The accelerator opening sensor 72 detects the depression amount of the accelerator pedal 71 and outputs an accelerator opening signal indicating the depression amount to the vehicle control system 100. Instead of outputting to the vehicle control system 100, the output may be directly output to the travel driving force output device 200, the steering device 210, or the brake device 220. The same applies to the configurations of other driving operation systems described below. The accelerator pedal reaction force output device 73 outputs a force (operation reaction force) in a direction opposite to the operation direction to the accelerator pedal 71 in response to an instruction from the vehicle control system 100, for example.
 ブレーキペダル74は、車両乗員による減速指示を受け付けるための操作部である。ブレーキ踏量センサ75は、ブレーキペダル74の踏み込み量(或いは踏み込み力)を検出し、検出結果を示すブレーキ信号を車両制御システム100に出力する。 The brake pedal 74 is an operation unit for receiving a deceleration instruction from the vehicle occupant. The brake depression amount sensor 75 detects the depression amount (or depression force) of the brake pedal 74 and outputs a brake signal indicating the detection result to the vehicle control system 100.
 シフトレバー76は、車両乗員によるシフト段の変更指示を受け付けるための操作部である。シフト位置センサ77は、車両乗員により指示されたシフト段を検出し、検出結果を示すシフト位置信号を車両制御システム100に出力する。 The shift lever 76 is an operation unit for receiving a shift stage change instruction from a vehicle occupant. The shift position sensor 77 detects the shift stage instructed by the vehicle occupant and outputs a shift position signal indicating the detection result to the vehicle control system 100.
 ステアリングホイール78は、車両乗員による旋回指示を受け付けるための操作部である。ステアリング操舵角センサ79は、ステアリングホイール78の操作角を検出し、検出結果を示すステアリング操舵角信号を車両制御システム100に出力する。ステアリングトルクセンサ80は、ステアリングホイール78に加えられたトルクを検出し、検出結果を示すステアリングトルク信号を車両制御システム100に出力する。 The steering wheel 78 is an operation unit for receiving a turning instruction from a vehicle occupant. The steering angle sensor 79 detects the operation angle of the steering wheel 78 and outputs a steering angle signal indicating the detection result to the vehicle control system 100. The steering torque sensor 80 detects the torque applied to the steering wheel 78 and outputs a steering torque signal indicating the detection result to the vehicle control system 100.
 その他運転操作デバイス81は、例えば、ジョイスティック、ボタン、ダイヤルスイッチ、GUI(Graphical User Interface)スイッチ等である。その他運転操作デバイス81は、加速指示、減速指示、旋回指示等を受け付け、車両制御システム100に出力する。 Other operation device 81 is, for example, a joystick, a button, a dial switch, a GUI (Graphical User Interface) switch, or the like. The other driving operation device 81 receives an acceleration instruction, a deceleration instruction, a turning instruction, and the like, and outputs them to the vehicle control system 100.
 HMI70は、非運転操作系の構成として、例えば、表示装置82と、スピーカ83と、接触操作検出装置84と、コンテンツ再生装置85と、各種操作スイッチ86と、シート88と、シート駆動装置89と、ウインドウガラス90と、ウインドウ駆動装置91と、車室内カメラ95とを含む。 The HMI 70 has, for example, a display device 82, a speaker 83, a contact operation detection device 84, a content reproduction device 85, various operation switches 86, a seat 88, and a seat drive device 89 as a non-driving operation system configuration. The window glass 90, the window drive device 91, and the vehicle interior camera 95 are included.
 表示装置82は、車室内の乗員により視認される表示装置である。表示装置82は、例えば、インストルメントパネルの各部、助手席や後部座席に対向する任意の箇所等に取り付けられる、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置等である。また、表示装置82は、車内から視認可能にフロントウインドシールドやその他のウインドウに画像を投影するHUD(Head Up Display)であってもよい。 The display device 82 is a display device visually recognized by a passenger in the vehicle interior. The display device 82 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display device, or the like that is attached to each part of the instrument panel, an arbitrary position facing the passenger seat or the rear seat. The display device 82 may be a HUD (Head-Up-Display) that projects an image onto a front windshield or other window so that the display device 82 can be viewed from inside the vehicle.
 接触操作検出装置84は、表示装置82がタッチパネルである場合に、表示装置82の表示画面における接触位置(タッチ位置)を検出して、車両制御システム100に出力する。なお、表示装置82がタッチパネルでない場合、接触操作検出装置84は省略されてよい。 When the display device 82 is a touch panel, the contact operation detection device 84 detects a contact position (touch position) on the display screen of the display device 82 and outputs it to the vehicle control system 100. When the display device 82 is not a touch panel, the contact operation detection device 84 may be omitted.
 スピーカ83は、音声を出力する。スピーカ83は、車室内に放音する。スピーカ83は、車室内に放音する車室内に内蔵されたスピーカである。 Speaker 83 outputs sound. The speaker 83 emits sound into the vehicle interior. The speaker 83 is a speaker built in the vehicle interior that emits sound into the vehicle interior.
 コンテンツ再生装置85は、例えば、DVD(Digital Versatile Disc)再生装置、CD(Compact Disc)再生装置、テレビジョン受信機、各種案内画像の生成装置等を含む。
 表示装置82、スピーカ83、接触操作検出装置84およびコンテンツ再生装置85は、一部または全部がナビゲーション装置50と共通する構成であってもよい。
The content playback device 85 includes, for example, a DVD (Digital Versatile Disc) playback device, a CD (Compact Disc) playback device, a television receiver, and various guidance image generation devices.
The display device 82, the speaker 83, the contact operation detection device 84, and the content playback device 85 may have a configuration in which a part or all of them are common to the navigation device 50.
 各種操作スイッチ86は、車室内の任意の箇所に配置される。各種操作スイッチ86には、自動運転の開始(或いは将来の開始)および停止を指示する自動運転切替スイッチ87を含む。自動運転切替スイッチ87は、GUI(Graphical User Interface)スイッチ、機械式スイッチのいずれであってもよい。また、各種操作スイッチ86は、シート駆動装置89やウインドウ駆動装置91を駆動するためのスイッチを含んでもよい。 The various operation switches 86 are arranged at arbitrary locations in the passenger compartment. The various operation switches 86 include an automatic operation changeover switch 87 for instructing start (or future start) and stop of automatic operation. The automatic operation changeover switch 87 may be either a GUI (Graphical User Interface) switch or a mechanical switch. The various operation switches 86 may include switches for driving the sheet driving device 89 and the window driving device 91.
 シート88は、車両乗員が着座するシートである。シート駆動装置89は、シート88のリクライニング角、前後方向位置、ヨー角等を自在に駆動する。ウインドウガラス90は、例えば各ドアに設けられる。ウインドウ駆動装置91は、ウインドウガラス90を開閉駆動する。 The seat 88 is a seat on which a vehicle occupant is seated. The seat driving device 89 freely drives the reclining angle, the front-rear direction position, the yaw angle, and the like of the seat 88. The window glass 90 is provided at each door, for example. The window driving device 91 drives the window glass 90 to open and close.
 車室内カメラ95は、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。車室内カメラ95は、バックミラーやステアリングボス部、インストルメントパネル等、運転操作を行う車両乗員の少なくとも頭部を撮像可能な位置に取り付けられる。車室内カメラ95は、例えば、周期的に繰り返し車両乗員を撮像する。 The vehicle interior camera 95 is a digital camera using a solid-state image sensor such as a CCD or a CMOS. The vehicle interior camera 95 is attached to a position where an image of at least the head of a vehicle occupant who performs a driving operation, such as a rearview mirror, a steering boss, or an instrument panel, can be taken. The vehicle interior camera 95, for example, periodically and repeatedly images the vehicle occupant.
 車両制御システム100の説明に先立って、図2を参照し、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220について説明する。 Prior to the description of the vehicle control system 100, the driving force output device 200, the steering device 210, and the brake device 220 will be described with reference to FIG.
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。本実施形態の走行駆動力出力装置200は、エンジン201、変速機、エンジンECU(Electronic Control Unit)、走行用モータ202、モータECU、バッテリー203、およびバッテリー充電率検出部204を備える。 The driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels. The travel driving force output device 200 of this embodiment includes an engine 201, a transmission, an engine ECU (Electronic Control Unit), a travel motor 202, a motor ECU, a battery 203, and a battery charge rate detection unit 204.
 エンジン201は、ディーゼルエンジンやガソリンエンジン等である。エンジンECUは、後述する走行制御部160から入力される情報に従って、エンジン201のスロットル開度やシフト段等を調整することで、エンジン201の動作を制御する。
 走行用モータ202は、バッテリー203から供給される電力によって動作する。モータECUは、走行制御部160から入力される情報に従って、走行用モータ202に与えるPWM信号のデューティ比を調整すること等で、走行用モータ202の動作を制御する。また、エンジンECUおよびモータECUは、走行制御部160から入力される情報に従って、互いに協調して走行駆動力を制御する。
The engine 201 is a diesel engine, a gasoline engine, or the like. The engine ECU controls the operation of the engine 201 by adjusting the throttle opening, shift stage, and the like of the engine 201 in accordance with information input from a travel control unit 160 described later.
The traveling motor 202 is operated by electric power supplied from the battery 203. The motor ECU controls the operation of the traveling motor 202 by adjusting the duty ratio of the PWM signal supplied to the traveling motor 202 according to the information input from the traveling control unit 160. In addition, the engine ECU and the motor ECU control the driving force in cooperation with each other according to information input from the driving control unit 160.
 バッテリー203は、図示しないオルタネーターを介してエンジン201に接続され、エンジン201の出力の一部を用いて充電される。またバッテリー203は、充電設備がある施設や、非接触充電レーンを有した道路等で充電可能であってもよい。バッテリー充電率検出部204は、バッテリー203に電気的に接続され、バッテリー203の充電率(SOC:State Of Charge)等を検出する。なお、「充電率」は、「充電量」と読み替えられてもよい。 The battery 203 is connected to the engine 201 via an alternator (not shown), and is charged using a part of the output of the engine 201. The battery 203 may be rechargeable at a facility with a charging facility or a road having a non-contact charging lane. The battery charging rate detection unit 204 is electrically connected to the battery 203 and detects the charging rate (SOC: State Of Charge) of the battery 203 and the like. The “charge rate” may be read as “charge amount”.
 ステアリング装置210は、例えば、ステアリングECUと、電動モータとを備える。
 電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、車両制御システム100から入力される情報、或いは入力されるステアリング操舵角またはステアリングトルクの情報に従って電動モータを駆動し、転舵輪の向きを変更させる。
The steering device 210 includes, for example, a steering ECU and an electric motor.
For example, the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism. The steering ECU drives the electric motor in accordance with information input from the vehicle control system 100 or information of the input steering steering angle or steering torque, and changes the direction of the steered wheels.
 ブレーキ装置220は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、制動制御部とを備える電動サーボブレーキ装置である。電動サーボブレーキ装置の制動制御部は、走行制御部160から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。電動サーボブレーキ装置は、ブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置220は、上記説明した電動サーボブレーキ装置に限らず、電子制御式油圧ブレーキ装置であってもよい。電子制御式油圧ブレーキ装置は、走行制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する。また、ブレーキ装置220は、走行駆動力出力装置200に含まれ得る走行用モータによる回生ブレーキを含んでもよい。 The brake device 220 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit. The braking control unit of the electric servo brake device controls the electric motor according to the information input from the travel control unit 160 so that the brake torque corresponding to the braking operation is output to each wheel. The electric servo brake device may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal to the cylinder via the master cylinder. The brake device 220 is not limited to the electric servo brake device described above, but may be an electronically controlled hydraulic brake device. The electronically controlled hydraulic brake device controls the actuator in accordance with information input from the travel control unit 160 and transmits the hydraulic pressure of the master cylinder to the cylinder. Further, the brake device 220 may include a regenerative brake by a traveling motor that can be included in the traveling driving force output device 200.
 [車両制御システム]
 以下、車両制御システム100について説明する。車両制御システム100は、例えば、一以上のプロセッサまたは同等の機能を有するハードウェアにより実現される。車両制御システム100は、CPU(Central Processing Unit)等のプロセッサ、記憶装置、および通信インターフェースが内部バスによって接続されたECU(Electronic Control Unit)、或いはMPU(Micro-Processing Unit)等が組み合わされた構成であってよい。
[Vehicle control system]
Hereinafter, the vehicle control system 100 will be described. The vehicle control system 100 is realized by, for example, one or more processors or hardware having an equivalent function. The vehicle control system 100 includes a combination of a processor such as a CPU (Central Processing Unit), a storage device, and an ECU (Electronic Control Unit) in which a communication interface is connected by an internal bus, or an MPU (Micro-Processing Unit). It may be.
 車両制御システム100は、例えば、目標車線決定部110と、自動運転制御部120と、走行制御部160と、HMI制御部170と、記憶部180とを備える。自動運転制御部120は、例えば、自動運転モード制御部130と、自車位置認識部140と、外界認識部142と、行動計画生成部144と、軌道生成部146と、駆動モード選択部148と、切替制御部150とを備える。目標車線決定部110、自動運転制御部120の各部、走行制御部160、およびHMI制御部170のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。 The vehicle control system 100 includes, for example, a target lane determining unit 110, an automatic driving control unit 120, a travel control unit 160, an HMI control unit 170, and a storage unit 180. The automatic driving control unit 120 includes, for example, an automatic driving mode control unit 130, a vehicle position recognition unit 140, an external environment recognition unit 142, an action plan generation unit 144, a trajectory generation unit 146, and a drive mode selection unit 148. And a switching control unit 150. A part or all of the target lane determination unit 110, each part of the automatic driving control unit 120, the travel control unit 160, and the HMI control unit 170 is realized by a processor executing a program (software). Some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
 記憶部180には、例えば、高精度地図情報182、目標車線情報184、行動計画情報186、モード別操作可否情報188、および駆動モード情報189等の情報が格納される。記憶部180は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部180に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部180にインストールされてもよい。また、車両制御システム100は、複数のコンピュータ装置(車載コンピュータ)によって分散化されたものであってもよい。 The storage unit 180 stores, for example, information such as high-precision map information 182, target lane information 184, action plan information 186, mode-specific operation availability information 188, and drive mode information 189. The storage unit 180 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like. The program executed by the processor may be stored in the storage unit 180 in advance, or may be downloaded from an external device via an in-vehicle Internet facility or the like. The program may be installed in the storage unit 180 by mounting a portable storage medium storing the program on a drive device (not shown). Further, the vehicle control system 100 may be distributed by a plurality of computer devices (on-vehicle computers).
 目標車線決定部110は、例えば、MPUにより実現される。目標車線決定部110は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、高精度地図情報182を参照してブロックごとに目標車線を決定する。目標車線決定部110は、例えば、車両Mが左から何番目の車線を走行するといった決定を行う。目標車線決定部110は、例えば、経路において分岐箇所や合流箇所等が存在する場合、車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、目標車線を決定する。目標車線決定部110により決定された目標車線は、目標車線情報184として記憶部180に記憶される。 The target lane determining unit 110 is realized by an MPU, for example. The target lane determination unit 110 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the high-precision map information 182 for each block. Determine the target lane. For example, the target lane determining unit 110 determines that the vehicle M travels in the lane number from the left. For example, the target lane determination unit 110 determines the target lane so that the vehicle M can travel on a reasonable travel route for proceeding to the branch destination when there is a branch point or a merge point in the route. The target lane determined by the target lane determining unit 110 is stored in the storage unit 180 as target lane information 184.
 高精度地図情報182は、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報である。高精度地図情報182は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、高精度地図情報182には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報(例えばバッテリー203の充電が可能な場所に関する情報)、電話番号情報等が含まれてよい。道路情報には、市街地道路、有料道路(高速道路を含む)、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。 The high-precision map information 182 is map information with higher accuracy than the navigation map that the navigation device 50 has. The high-precision map information 182 includes, for example, information on the center of the lane or information on the boundary of the lane. The high-accuracy map information 182 includes road information, traffic regulation information, address information (address / postal code), facility information (for example, information on a place where the battery 203 can be charged), telephone number information, and the like. Good. Road information includes information indicating the type of road, such as urban roads, toll roads (including highways), national roads, prefectural roads, the number of lanes of each road, the width of each lane, the gradient of the road, the position of the road (longitude , Latitude and height (three-dimensional coordinates), lane curve curvature, lane merging and branch point positions, road markings, and other information. The traffic regulation information includes information that the lane is blocked due to construction, traffic accidents, traffic jams, or the like.
 また別の観点から見ると、高精度地図情報182は、目的地までの経路上の特定区間SSおよび非特定区間NSSの有無の情報を含む(図14参照)。「特定区間」とは、車両Mの低速走行や停止の頻度が多くなる区間、または静かな走行が求められる区間であり、例えば市街地である。言い換えると、特定区間SSは、エンジン201よりも、走行用モータ202による走行が適した区間である。一方で、非特定区間NSSは、例えば、特定区間SSよりも高速走行可能な区間、または特定区間SSに比べて周辺の人口密度が小さい区間であり、例えば自動車専用道路や国道等である。なお、「区間」とは、目的地までの経路(行程)を、自動運転または他の目的で任意に分割した場合の分割された各要素を意味する。 From another viewpoint, the high-precision map information 182 includes information on the presence / absence of a specific section SS and a non-specific section NSS on the route to the destination (see FIG. 14). The “specific section” is a section in which the vehicle M travels at a low speed or stops frequently, or is a section in which quiet traveling is required, for example, an urban area. In other words, the specific section SS is a section in which traveling by the traveling motor 202 is more suitable than the engine 201. On the other hand, the non-specific section NSS is, for example, a section capable of traveling at a higher speed than the specific section SS, or a section having a smaller population density in comparison with the specific section SS, such as an automobile-only road or a national road. The “section” means each divided element when the route (stroke) to the destination is arbitrarily divided for automatic driving or other purposes.
 自動運転モード制御部130は、自動運転制御部120が実施する自動運転のモードを決定する。本実施形態における自動運転のモードには、以下のモードが含まれる。なお、以下のモードは単に一例であり、自動運転のモード数は任意に決定されてよい。
 [モードA]
 モードAは、最も自動運転の度合が高いモードである。モードAが実施されている場合、複雑な合流制御等、全ての車両制御が自動的に行われるため、車両乗員は車両Mの周辺や状態を監視する必要が無い。
 [モードB]
 モードBは、モードAの次に自動運転の度合が高いモードである。モードBが実施されている場合、原則として全ての車両制御が自動的に行われるが、場面に応じて車両Mの運転操作が車両乗員に委ねられる。このため、車両乗員は車両Mの周辺や状態を監視している必要がある。
 [モードC]
 モードCは、モードBの次に自動運転の度合が高いモードである。モードCが実施されている場合、車両乗員は、場面に応じた確認操作をHMI70に対して行う必要がある。
 モードCでは、例えば、車線変更のタイミングが車両乗員に通知され、車両乗員がHMI70に対して車線変更を指示する操作を行った場合に、自動的な車線変更が行われる。このため、車両乗員は車両Mの周辺や状態を監視している必要がある。
The automatic operation mode control unit 130 determines an automatic operation mode performed by the automatic operation control unit 120. The modes of automatic operation in the present embodiment include the following modes. Note that the following modes are merely examples, and the number of modes of automatic operation may be arbitrarily determined.
[Mode A]
Mode A is the mode with the highest degree of automatic driving. When the mode A is implemented, all vehicle control such as complicated merge control is automatically performed, so that the vehicle occupant does not need to monitor the surroundings and state of the vehicle M.
[Mode B]
Mode B is a mode in which the degree of automatic driving is the second highest after Mode A. When mode B is implemented, in principle, all vehicle control is performed automatically, but the driving operation of the vehicle M is left to the vehicle occupant depending on the scene. For this reason, the vehicle occupant needs to monitor the periphery and state of the vehicle M.
[Mode C]
Mode C is a mode in which the degree of automatic driving is the second highest after mode B. When mode C is implemented, the vehicle occupant needs to perform confirmation operation according to the scene with respect to HMI70.
In mode C, for example, when the vehicle occupant is notified of the lane change timing and the vehicle occupant performs an operation to instruct the HMI 70 to change the lane, the automatic lane change is performed. For this reason, the vehicle occupant needs to monitor the periphery and state of the vehicle M.
 自動運転モード制御部130は、HMI70に対する車両乗員の操作、行動計画生成部144により決定されたイベント、軌道生成部146により決定された走行態様等に基づいて、自動運転のモードを決定する。自動運転のモードは、HMI制御部170に通知される。また、自動運転のモードには、車両Mの検知デバイスDDの性能等に応じた限界が設定されてもよい。例えば、検知デバイスDDの性能が低い場合には、モードAは実施されないものとしてよい。いずれのモードにおいても、HMI70における運転操作系の構成に対する操作によって、手動運転モードに切り替えること(オーバーライド)は可能である。 The automatic driving mode control unit 130 determines the mode of automatic driving based on the operation of the vehicle occupant with respect to the HMI 70, the event determined by the action plan generation unit 144, the travel mode determined by the trajectory generation unit 146, and the like. The automatic operation mode is notified to the HMI control unit 170. Moreover, the limit according to the performance etc. of the detection device DD of the vehicle M may be set to the mode of automatic driving | operation. For example, when the performance of the detection device DD is low, the mode A may not be performed. In any mode, it is possible to switch to the manual operation mode (override) by an operation on the configuration of the driving operation system in the HMI 70.
 自動運転制御部120の自車位置認識部140は、記憶部180に格納された高精度地図情報182と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、車両Mが走行している車線(走行車線)、および、走行車線に対する車両Mの相対位置を認識する。 The vehicle position recognition unit 140 of the automatic driving control unit 120 includes high-precision map information 182 stored in the storage unit 180 and information input from the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. Based on the above, the lane (traveling lane) in which the vehicle M is traveling and the relative position of the vehicle M with respect to the traveling lane are recognized.
 自車位置認識部140は、例えば、高精度地図情報182から認識される道路区画線のパターン(例えば実線と破線の配列)と、カメラ40によって撮像された画像から認識される車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。
 この認識において、ナビゲーション装置50から取得される車両Mの位置やINSによる処理結果が加味されてもよい。
The own vehicle position recognition unit 140, for example, a road lane marking pattern recognized from the high-accuracy map information 182 (for example, an array of solid lines and broken lines) and a periphery of the vehicle M recognized from an image captured by the camera 40. The traveling lane is recognized by comparing the road marking line pattern.
In this recognition, the position of the vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into consideration.
 図4は、自車位置認識部140により走行車線L1に対する車両Mの相対位置が認識される様子を示す図である。自車位置認識部140は、例えば、車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および車両Mの進行方向の走行車線中央CLを連結した線に対してなす角度θを、走行車線L1に対する車両Mの相対位置として認識する。なお、これに代えて、自車位置認識部140は、車線L1のいずれかの側端部に対する車両Mの基準点の位置等を、走行車線に対する車両Mの相対位置として認識してもよい。自車位置認識部140により認識される車両Mの相対位置は、目標車線決定部110に提供される。 FIG. 4 is a diagram showing how the vehicle position recognition unit 140 recognizes the relative position of the vehicle M with respect to the travel lane L1. The own vehicle position recognition unit 140, for example, an angle θ formed with respect to a line connecting the deviation OS of the reference point (for example, the center of gravity) of the vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the vehicle M. Is recognized as the relative position of the vehicle M with respect to the traveling lane L1. Instead of this, the vehicle position recognition unit 140 may recognize the position of the reference point of the vehicle M with respect to any side end portion of the lane L1 as the relative position of the vehicle M with respect to the traveling lane. The relative position of the vehicle M recognized by the host vehicle position recognition unit 140 is provided to the target lane determination unit 110.
 外界認識部142は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、周辺車両の速度、及び周辺車両の加速度等の周辺車両の状態を認識する。周辺車両とは、例えば、車両Mの周辺を走行する車両であって、車両Mと同じ方向に走行する車両である。周辺車両の位置は、周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、上記各種機器の情報に基づいて把握される、周辺車両の加速度、車線変更をしているか否か(あるいは車線変更をしようとしているか否か)を含んでもよい。また、外界認識部142は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者、自転車等に乗っている人、その他の物体の位置を認識してもよい。 The external environment recognition unit 142 recognizes the state of the surrounding vehicle such as the position of the surrounding vehicle, the speed of the surrounding vehicle, and the acceleration of the surrounding vehicle based on information input from the finder 20, the radar 30, the camera 40, and the like. The peripheral vehicle is, for example, a vehicle that travels around the vehicle M and travels in the same direction as the vehicle M. The position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by a region expressed by the outline of the surrounding vehicle. The “state” of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether the lane is changed (or whether the lane is going to be changed), which is grasped based on the information of the various devices. In addition to the surrounding vehicles, the external environment recognition unit 142 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, people riding bicycles, and other objects.
 行動計画生成部144は、自動運転のスタート地点、および/または自動運転の目的地を設定する。自動運転のスタート地点は、車両Mの現在位置であってもよいし、自動運転を指示する操作がなされた地点でもよい。行動計画生成部144は、そのスタート地点と自動運転の目的地との間の区間において、行動計画を生成する。なお、これに限らず、行動計画生成部144は、任意の区間について行動計画を生成してもよい。 The action plan generation unit 144 sets a starting point of automatic driving and / or a destination of automatic driving. The starting point of automatic driving may be the current position of the vehicle M, or a point where an operation for instructing automatic driving is performed. The action plan generation unit 144 generates an action plan in a section between the start point and the destination for automatic driving. In addition, not only this but the action plan production | generation part 144 may produce | generate an action plan about arbitrary sections.
 行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、車両Mを減速させる減速イベントや、車両Mを加速させる加速イベント、走行車線を逸脱しないように車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように車両Mを走行させたりする分岐イベント、本線に合流するための合流車線において車両Mを加減速させ、走行車線を変更させる合流イベント、自動運転の開始地点で手動運転モードから自動運転モードに移行させたり、自動運転の終了予定地点で自動運転モードから手動運転モードに移行させたりするハンドオーバイベント等が含まれる。すなわち、行動計画は、目的地、走行レーン、速度、および操舵角等の計画を含む。また行動計画は、自動運転のスタート地点と目的地との間の経路(走行ルート)に関する計画も含む。行動計画生成部144は、目標車線決定部110により決定された目標車線が切り替わる箇所において、車線変更イベント、分岐イベント、または合流イベントを設定する。行動計画生成部144によって生成された行動計画を示す情報は、行動計画情報186として記憶部180に格納される。また、行動計画生成部144は、自動運転中に車両Mが充電を必要とする際には、非接触充電レーンを優先して走行するように行動計画を生成する。 The action plan is composed of a plurality of events that are executed sequentially, for example. Events include, for example, a deceleration event that decelerates the vehicle M, an acceleration event that accelerates the vehicle M, a lane keep event that causes the vehicle M to travel without departing from the traveling lane, a lane change event that changes the traveling lane, and a vehicle M Vehicles in the overtaking event for overtaking the preceding vehicle, the branching event for changing the vehicle to the desired lane at the branch point, or the vehicle M traveling so as not to deviate from the current driving lane, the merging lane for joining the main line A merging event that accelerates or decelerates M, changes the driving lane, shifts from manual driving mode to automatic driving mode at the start point of automatic driving, or shifts from automatic driving mode to manual driving mode at the point where automatic driving is scheduled to end Handover events to be included. That is, the action plan includes a plan such as a destination, a travel lane, a speed, and a steering angle. The action plan also includes a plan related to a route (running route) between the starting point of the automatic driving and the destination. The action plan generation unit 144 sets a lane change event, a branch event, or a merge event at a location where the target lane determined by the target lane determination unit 110 is switched. Information indicating the action plan generated by the action plan generation unit 144 is stored in the storage unit 180 as action plan information 186. Moreover, the action plan production | generation part 144 produces | generates an action plan so that it may drive | work preferentially in a non-contact charge lane, when the vehicle M needs charging during automatic driving | operation.
 図5は、ある区間について生成された行動計画の一例を示す図である。図5に示すように、行動計画生成部144は、目標車線情報184が示す目標車線上を車両Mが走行するために必要な行動計画を生成する。なお、行動計画生成部144は、車両Mの状況変化に応じて、目標車線情報184に拘わらず、動的に行動計画を変更してもよい。例えば、行動計画生成部144は、車両走行中に外界認識部142によって認識された周辺車両の速度が閾値を超えたり、車両Mの走行車線に隣接する車線を走行する周辺車両の移動方向が走行車線方向に向いたりした場合に、車両Mが走行予定の運転区間に設定されたイベントを変更する。例えば、レーンキープイベントの後に車線変更イベントが実行されるようにイベントが設定されている場合において、外界認識部142の認識結果によってレーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部144は、レーンキープイベントの次のイベントを、車線変更イベントから減速イベントやレーンキープイベント等に変更してよい。この結果、車両制御システム100は、外界の状態に変化が生じた場合においても、安全に車両Mを自動走行させることができる。 FIG. 5 is a diagram showing an example of an action plan generated for a certain section. As illustrated in FIG. 5, the action plan generation unit 144 generates an action plan necessary for the vehicle M to travel on the target lane indicated by the target lane information 184. Note that the action plan generation unit 144 may dynamically change the action plan regardless of the target lane information 184 according to a change in the situation of the vehicle M. For example, the action plan generation unit 144 determines that the speed of the surrounding vehicle recognized by the external recognition unit 142 during traveling of the vehicle exceeds a threshold or the moving direction of the surrounding vehicle traveling in the lane adjacent to the traveling lane of the vehicle M travels. When the vehicle heads in the lane direction, the event set in the driving section where the vehicle M is scheduled to travel is changed. For example, when the event is set so that the lane change event is executed after the lane keep event, the vehicle is more than the threshold from the rear of the lane to which the lane is changed during the lane keep event according to the recognition result of the external recognition unit 142. When it is determined that the vehicle has traveled at a speed, the action plan generation unit 144 may change the event next to the lane keep event from a lane change event to a deceleration event, a lane keep event, or the like. As a result, the vehicle control system 100 can safely automatically drive the vehicle M even when a change occurs in the state of the outside world.
 図6は、軌道生成部146の構成の一例を示す図である。軌道生成部146は、例えば、走行態様決定部146Aと、軌道候補生成部146Bと、評価・選択部146Cとを備える。 FIG. 6 is a diagram illustrating an example of the configuration of the trajectory generation unit 146. The track generation unit 146 includes, for example, a travel mode determination unit 146A, a track candidate generation unit 146B, and an evaluation / selection unit 146C.
 走行態様決定部146Aは、例えば、レーンキープイベントを実施する際に、定速走行、追従走行、低速追従走行、減速走行、カーブ走行、障害物回避走行等のうちいずれかの走行態様を決定する。この場合、走行態様決定部146Aは、車両Mの前方に他車両が存在しない場合に、走行態様を定速走行に決定する。また、走行態様決定部146Aは、前走車両に対して追従走行するような場合に、走行態様を追従走行に決定する。また、走行態様決定部146Aは、渋滞場面等において、走行態様を低速追従走行に決定する。また、走行態様決定部146Aは、外界認識部142により前走車両の減速が認識された場合や、停車や駐車等のイベントを実施する場合に、走行態様を減速走行に決定する。また、走行態様決定部146Aは、外界認識部142により車両Mがカーブ路に差し掛かったことが認識された場合に、走行態様をカーブ走行に決定する。また、走行態様決定部146Aは、外界認識部142により車両Mの前方に障害物が認識された場合に、走行態様を障害物回避走行に決定する。また、走行態様決定部146Aは、車線変更イベント、追い越しイベント、分岐イベント、合流イベント、ハンドオーバイベント等を実施する場合に、それぞれのイベントに応じた走行態様を決定する。 For example, when the lane keeping event is performed, the travel mode determination unit 146A determines one of the travel modes from constant speed travel, follow-up travel, low-speed follow-up travel, deceleration travel, curve travel, obstacle avoidance travel, and the like. . In this case, the traveling mode determination unit 146A determines that the traveling mode is constant speed traveling when there is no other vehicle ahead of the vehicle M. In addition, the traveling mode determination unit 146A determines the traveling mode to follow running when traveling following the preceding vehicle. In addition, the traveling mode determination unit 146A determines the traveling mode to be low-speed following traveling in a traffic jam scene or the like. In addition, the travel mode determination unit 146A determines the travel mode to be decelerated when the external environment recognition unit 142 recognizes deceleration of the preceding vehicle or when an event such as stopping or parking is performed. In addition, when the outside recognition unit 142 recognizes that the vehicle M has reached a curved road, the travel mode determination unit 146A determines the travel mode as curve travel. In addition, when the outside recognition unit 142 recognizes an obstacle in front of the vehicle M, the driving mode determination unit 146A determines the driving mode as obstacle avoidance driving. In addition, when executing a lane change event, an overtaking event, a branching event, a merging event, a handover event, and the like, the traveling mode determination unit 146A determines a traveling mode according to each event.
 軌道候補生成部146Bは、走行態様決定部146Aにより決定された走行態様に基づいて、軌道の候補を生成する。図7は、軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。図7は、車両Mが車線L1から車線L2に車線変更する場合に生成される軌道の候補を示している。 The trajectory candidate generation unit 146B generates trajectory candidates based on the travel mode determined by the travel mode determination unit 146A. FIG. 7 is a diagram illustrating an example of trajectory candidates generated by the trajectory candidate generation unit 146B. FIG. 7 shows candidate tracks generated when the vehicle M changes lanes from the lane L1 to the lane L2.
 軌道候補生成部146Bは、図7に示すような軌道を、例えば、将来の所定時間ごとに、車両Mの基準位置(例えば重心や後輪軸中心)が到達すべき目標位置(軌道点K)の集まりとして決定する。図8は、軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。軌道点Kの間隔が広いほど、車両Mの速度は速くなり、軌道点Kの間隔が狭いほど、車両Mの速度は遅くなる。従って、軌道候補生成部146Bは、加速したい場合には軌道点Kの間隔を徐々に広くし、減速したい場合は軌道点の間隔を徐々に狭くする。 The trajectory candidate generation unit 146B takes a trajectory as shown in FIG. 7, for example, at a target position (orbit point K) at which the reference position (for example, the center of gravity or the center of the rear wheel axis) of the vehicle M should reach every predetermined time in the future. Decide as a gathering. FIG. 8 is a diagram in which trajectory candidates generated by the trajectory candidate generation unit 146B are expressed by trajectory points K. The speed of the vehicle M increases as the distance between the track points K increases, and the speed of the vehicle M decreases as the distance between the track points K decreases. Therefore, the trajectory candidate generation unit 146B gradually widens the distance between the trajectory points K when it wants to accelerate and gradually narrows the distance between the trajectory points when it wants to decelerate.
 このように、軌道点Kは速度成分を含むものであるため、軌道候補生成部146Bは、軌道点Kのそれぞれに対して目標速度を与える必要がある。目標速度は、走行態様決定部146Aにより決定された走行態様に応じて決定される。 Thus, since the trajectory point K includes a velocity component, the trajectory candidate generation unit 146B needs to give a target speed to each of the trajectory points K. The target speed is determined according to the travel mode determined by the travel mode determination unit 146A.
 ここで、車線変更(分岐を含む)を行う場合の目標速度の決定手法について説明する。
 軌道候補生成部146Bは、まず、車線変更ターゲット位置(或いは合流ターゲット位置)を設定する。車線変更ターゲット位置は、周辺車両との相対位置として設定され、「どの周辺車両の間に車線変更するか」を決定する。軌道候補生成部146Bは、車線変更ターゲット位置を基準として3台の周辺車両に着目し、車線変更を行う場合の目標速度を決定する。図9は、車線変更ターゲット位置TAを示す図である。
 図9中、L1は走行車線を表し、L2は隣接車線を表している。ここで、車両Mと同じ車線で、車両Mの直前を走行する周辺車両を前走車両mA、車線変更ターゲット位置TAの直前を走行する周辺車両を前方基準車両mB、車線変更ターゲット位置TAの直後を走行する周辺車両を後方基準車両mCと定義する。車両Mは、車線変更ターゲット位置TAの側方まで移動するために加減速を行う必要があるが、この際に前走車両mAに追いついてしまうことを回避しなければならない。このため、軌道候補生成部146Bは、3台の周辺車両の将来の状態を予測し、各周辺車両と干渉しないように目標速度を決定する。
Here, a method for determining a target speed when a lane change (including a branch) is performed will be described.
The track candidate generation unit 146B first sets a lane change target position (or a merge target position). The lane change target position is set as a relative position with respect to the surrounding vehicles, and determines “which lane change is to be made between the surrounding vehicles”. The trajectory candidate generation unit 146B pays attention to three surrounding vehicles with the lane change target position as a reference, and determines a target speed when the lane change is performed. FIG. 9 is a diagram illustrating the lane change target position TA.
In FIG. 9, L1 represents a traveling lane and L2 represents an adjacent lane. Here, in the same lane as that of the vehicle M, the surrounding vehicle that runs immediately before the vehicle M is the preceding vehicle mA, the surrounding vehicle that runs immediately before the lane change target position TA is the front reference vehicle mB, and immediately after the lane change target position TA. A surrounding vehicle traveling on the vehicle is defined as a rear reference vehicle mC. The vehicle M needs to perform acceleration / deceleration in order to move to the side of the lane change target position TA, but it is necessary to avoid catching up with the preceding vehicle mA at this time. For this reason, the trajectory candidate generation unit 146B predicts the future state of the three neighboring vehicles and determines the target speed so as not to interfere with each neighboring vehicle.
 図10は、3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。図中、mA、mBおよびmCから延出する直線は、それぞれの周辺車両が定速走行したと仮定した場合の進行方向における変位を示している。車両Mは、車線変更が完了するポイントCPにおいて、前方基準車両mBと後方基準車両mCとの間にあり、且つ、それ以前において前走車両mAよりも後ろにいなければならない。このような制約の下、軌道候補生成部146Bは、車線変更が完了するまでの目標速度の時系列パターンを、複数導出する。そして、目標速度の時系列パターンをスプライン曲線等のモデルに適用することで、図8に示すような軌道の候補を複数導出する。なお、3台の周辺車両の運動パターンは、図10に示すような定速度に限らず、定加速度、定ジャーク(躍度)を前提として予測されてもよい。 FIG. 10 is a diagram showing a speed generation model when the speeds of the three surrounding vehicles are assumed to be constant. In the figure, straight lines extending from mA, mB, and mC indicate displacements in the traveling direction when it is assumed that the respective surrounding vehicles have traveled at a constant speed. The vehicle M must be between the front reference vehicle mB and the rear reference vehicle mC at the point CP at which the lane change is completed, and be behind the preceding vehicle mA before that. Under such restrictions, the track candidate generation unit 146B derives a plurality of time-series patterns of the target speed until the lane change is completed. Then, a plurality of trajectory candidates as shown in FIG. 8 are derived by applying the time-series pattern of the target speed to a model such as a spline curve. The motion patterns of the three surrounding vehicles are not limited to the constant speed as shown in FIG. 10, and may be predicted on the assumption of a constant acceleration and a constant jerk (jumping degree).
 評価・選択部146Cは、軌道候補生成部146Bにより生成された軌道の候補に対して、例えば、計画性と安全性の二つの観点で評価を行い、走行制御部160に出力する軌道を選択する。計画性の観点からは、例えば、既に生成されたプラン(例えば行動計画)に対する追従性が高く、且つ軌道の全長が短い場合に軌道が高く評価される。例えば、右方向に車線変更することが望まれる場合に、一旦左方向に車線変更して戻るといった軌道は、低い評価となる。安全性の観点からは、例えば、それぞれの軌道点において、車両Mと物体(周辺車両等)との距離が遠く、加減速度や操舵角の変化量等が小さいほど高く評価される。 The evaluation / selection unit 146C evaluates the track candidates generated by the track candidate generation unit 146B from, for example, two viewpoints of planability and safety, and selects a track to be output to the travel control unit 160. . From the viewpoint of planability, for example, the track is highly evaluated when the followability to the already generated plan (for example, action plan) is high and the total length of the track is short. For example, when it is desired to change the lane in the right direction, a trajectory in which the lane is once changed in the left direction and returned is evaluated as low. From the viewpoint of safety, for example, at each track point, the distance between the vehicle M and the object (such as a surrounding vehicle) is long, and the higher the acceleration / deceleration, the change amount of the steering angle, etc., the higher the evaluation.
 駆動モード選択部148は、車両Mに走行駆動力を生じさせる複数の駆動源(エンジン201および走行用モータ202)の動作状態がそれぞれ異なる複数の駆動モードのなかから、車両Mの行動計画の各段階における駆動モードを選択する。なお、駆動モード選択部148については、詳しく後述する。 The drive mode selection unit 148 selects each of the action plans of the vehicle M from a plurality of drive modes in which the operation states of the plurality of drive sources (the engine 201 and the travel motor 202) that generate the travel drive force in the vehicle M are different from each other. Select the drive mode at the stage. The drive mode selection unit 148 will be described later in detail.
 切替制御部150は、自動運転切替スイッチ87から入力される信号に基づいて自動運転モードと手動運転モードとを相互に切り替える。また、切替制御部150は、HMI70における運転操作系の構成に対する加速、減速または操舵を指示する操作に基づいて、自動運転モードから手動運転モードに切り替える。例えば、切替制御部150は、HMI70における運転操作系の構成から入力された信号の示す操作量が閾値を超えた状態が、基準時間以上継続した場合に、自動運転モードから手動運転モードに切り替える(オーバーライド)。また、切替制御部150は、オーバーライドによる手動運転モードへの切り替えの後、所定時間の間、HMI70における運転操作系の構成に対する操作が検出されなかった場合に、自動運転モードに復帰させてもよい。 The switching control unit 150 switches between the automatic operation mode and the manual operation mode based on a signal input from the automatic operation switch 87. Further, the switching control unit 150 switches from the automatic operation mode to the manual operation mode based on an operation instructing acceleration, deceleration, or steering for the configuration of the driving operation system in the HMI 70. For example, the switching control unit 150 switches from the automatic operation mode to the manual operation mode when the operation amount indicated by the signal input from the configuration of the driving operation system in the HMI 70 exceeds the threshold for a reference time or longer ( override). Further, the switching control unit 150 may return to the automatic operation mode when an operation for the configuration of the driving operation system in the HMI 70 is not detected for a predetermined time after switching to the manual operation mode by the override. .
 走行制御部160は、軌道生成部146によって生成された軌道を、予定の時刻通りに車両Mが通過するように、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220を制御する。また、走行制御部160は、目的地までの経路上の各区間Sにおいて、駆動モード選択部148によって選択された行動計画の各段階における駆動モードに基づいて車両Mの走行を制御する。すなわち、走行制御部160は、走行駆動力出力装置200のエンジンECUやモータECU等に対して、駆動モード選択部148によって選択された駆動モードを実現するための制御指示を送る。これにより、走行駆動力出力装置200は、駆動モード選択部148によって選択された駆動モードを実現するように、エンジン201および走行用モータ202を動作させる。 The traveling control unit 160 controls the traveling driving force output device 200, the steering device 210, and the brake device 220 so that the vehicle M passes through the track generated by the track generating unit 146 as scheduled. In addition, the travel control unit 160 controls the travel of the vehicle M in each section S on the route to the destination based on the drive mode at each stage of the action plan selected by the drive mode selection unit 148. That is, the travel control unit 160 sends a control instruction for realizing the drive mode selected by the drive mode selection unit 148 to the engine ECU, the motor ECU, or the like of the travel drive force output device 200. As a result, the travel driving force output device 200 operates the engine 201 and the travel motor 202 so as to realize the drive mode selected by the drive mode selection unit 148.
 HMI制御部170は、自動運転制御部120により自動運転のモードの情報が通知されると、モード別操作可否情報188を参照して、自動運転のモードの種別に応じてHMI70を制御する。 When the automatic operation control unit 120 is notified of the information on the automatic driving mode, the HMI control unit 170 refers to the mode-specific operation availability information 188 and controls the HMI 70 according to the type of the automatic driving mode.
 図11は、モード別操作可否情報188の一例を示す図である。図11に示すモード別操作可否情報188は、運転モードの項目として「手動運転モード」、「自動運転モード」とを有する。また、「自動運転モード」として、上述した「モードA」、「モードB」、および「モードC」等を有する。また、モード別操作可否情報188は、非運転操作系の項目として、ナビゲーション装置50に対する操作である「ナビゲーション操作」、コンテンツ再生装置85に対する操作である「コンテンツ再生操作」、車内用ディスプレイ82Aに対する操作である「インストルメントパネル操作」等を有する。図11に示すモード別操作可否情報188の例では、上述した運転モードごとに非運転操作系に対する車両乗員の操作の可否が設定されているが、対象のインターフェース装置は、これに限定されるものではない。 FIG. 11 is a diagram illustrating an example of the operation permission / inhibition information 188 for each mode. The mode-specific operation availability information 188 shown in FIG. 11 includes “manual operation mode” and “automatic operation mode” as operation mode items. Further, the “automatic operation mode” includes the above-mentioned “mode A”, “mode B”, “mode C”, and the like. The mode-specific operation propriety information 188 includes “navigation operation” that is an operation for the navigation device 50, “content reproduction operation” that is an operation for the content reproduction device 85, and an operation for the in-vehicle display 82A as non-driving operation system items. And “instrument panel operation”. In the example of the mode-by-mode operation availability information 188 shown in FIG. 11, whether or not the vehicle occupant can operate the non-driving operation system is set for each operation mode described above, but the target interface device is limited to this. is not.
 HMI制御部170は、自動運転制御部120から取得したモードの情報に基づいてモード別操作可否情報188を参照することで、使用が許可される装置(ナビゲーション装置50およびHMI70の一部または全部)と、使用が許可されない装置とを判定する。
 また、HMI制御部170は、判定結果に基づいて、非運転操作系のHMI70、またはナビゲーション装置50に対する車両乗員からの操作の受け付けの可否を制御する。
The HMI control unit 170 refers to the mode-specific operation availability information 188 based on the mode information acquired from the automatic driving control unit 120, and is permitted to be used (a part or all of the navigation device 50 and the HMI 70). And a device that is not permitted to be used.
Further, the HMI control unit 170 controls whether or not to accept an operation from the vehicle occupant for the non-driving operation type HMI 70 or the navigation device 50 based on the determination result.
 例えば、車両制御システム100が実行する運転モードが手動運転モードの場合、車両乗員は、HMI70の運転操作系(例えば、アクセルペダル71、ブレーキペダル74、シフトレバー76、およびステアリングホイール78等)を操作する。また、車両制御システム100が実行する運転モードが自動運転モードのモードB、モードC等である場合、車両乗員には、車両Mの周辺監視義務が生じる。このような場合、車両乗員の運転以外の行動(例えばHMI70の操作等)により注意が散漫になること(ドライバーディストラクション)を防止するため、HMI制御部170は、HMI70の非運転操作系の一部または全部に対する操作を受け付けないように制御を行う。この際、HMI制御部170は、車両Mの周辺監視を行わせるために、外界認識部142により認識された車両Mの周辺車両の存在やその周辺車両の状態を、表示装置82に画像等で表示させると共に、車両Mの走行時の場面に応じた確認操作をHMI70に受け付けさせてよい。 For example, when the driving mode executed by the vehicle control system 100 is the manual driving mode, the vehicle occupant operates the driving operation system of the HMI 70 (for example, the accelerator pedal 71, the brake pedal 74, the shift lever 76, the steering wheel 78, etc.). To do. Further, when the operation mode executed by the vehicle control system 100 is the mode B, the mode C or the like of the automatic operation mode, the vehicle occupant is obliged to monitor the periphery of the vehicle M. In such a case, in order to prevent distraction (driver distraction) due to actions other than driving of the vehicle occupant (for example, operation of the HMI 70), the HMI control unit 170 is one of the non-driving operation systems of the HMI 70. Control is performed so as not to accept operations on all or part of the document. At this time, the HMI control unit 170 displays the presence of the surrounding vehicle of the vehicle M recognized by the outside recognition unit 142 and the state of the surrounding vehicle on the display device 82 with an image or the like in order to perform the surrounding monitoring of the vehicle M. While displaying, you may make HMI70 accept confirmation operation according to the scene at the time of the driving | running | working of the vehicle M. FIG.
 また、HMI制御部170は、運転モードが自動運転のモードAである場合、ドライバーディストラクションの規制を緩和し、操作を受け付けていなかった非運転操作系に対する車両乗員の操作を受け付ける制御を行う。例えば、HMI制御部170は、表示装置82に映像を表示させたり、スピーカ83に音声を出力させたり、コンテンツ再生装置85にDVD等からコンテンツを再生させたりする。なお、コンテンツ再生装置85が再生するコンテンツには、DVD等に格納されたコンテンツの他、例えば、テレビ番組等の娯楽、エンターテイメントに関する各種コンテンツが含まれてよい。また、図11に示す「コンテンツ再生操作」は、このような娯楽、エンターテイメントに関するコンテンツ操作を意味するものであってよい。 In addition, when the driving mode is the automatic driving mode A, the HMI control unit 170 relaxes the restriction of the driver distraction and performs control for receiving the operation of the vehicle occupant for the non-driving operation system that has not received the operation. For example, the HMI control unit 170 displays video on the display device 82, outputs audio to the speaker 83, and causes the content reproduction device 85 to reproduce content from a DVD or the like. The content reproduced by the content reproduction device 85 may include, for example, various contents related to entertainment and entertainment such as a TV program in addition to the content stored on the DVD or the like. Further, the “content reproduction operation” shown in FIG. 11 may mean such a content operation related to entertainment and entertainment.
 次に、行動計画の各段階において適した駆動モードを実現するための自動運転制御部120の処理について説明する。本実施形態では、駆動モード選択部148は、行動計画生成部144により生成された行動計画に基づき、車両Mが有する複数の駆動源(エンジン201および走行用モータ202)の動作状態がそれぞれ異なる複数の駆動モードのなかから、行動計画の各段階における駆動モードを予め選択する。 Next, processing of the automatic driving control unit 120 for realizing a driving mode suitable for each stage of the action plan will be described. In the present embodiment, the drive mode selection unit 148 has a plurality of different operating states of the plurality of drive sources (the engine 201 and the travel motor 202) of the vehicle M based on the action plan generated by the action plan generation unit 144. The drive mode at each stage of the action plan is selected in advance from among the drive modes.
 なお以下では、駆動モード選択部148が、行動計画生成部144により生成された行動計画に基づき、前記複数の駆動モードのなかから、車両Mが走行予定の複数の区間Sの各々における駆動モードを予め選択する場合を例に取り上げて説明する。なお、駆動モード選択部148により選択される「行動計画の各段階における駆動モード」とは、車両Mが走行予定の各区間における駆動モードに限定されず、車両Mが予定する各挙動、例えば行動計画生成部144により決定される各イベント(レーンキープイベントや車線変更イベント等)における駆動モードや、軌道生成部146により決定される各走行態様における駆動モードでもよい。 Hereinafter, based on the action plan generated by the action plan generation unit 144, the drive mode selection unit 148 selects the drive mode in each of the plurality of sections S where the vehicle M is scheduled to travel from the plurality of drive modes. The case of selecting in advance will be described as an example. The “drive mode at each stage of the action plan” selected by the drive mode selection unit 148 is not limited to the drive mode in each section in which the vehicle M is scheduled to travel, and each behavior that the vehicle M is scheduled to perform, for example, an action The drive mode in each event (lane keep event, lane change event, etc.) determined by the plan generation unit 144 or the drive mode in each travel mode determined by the track generation unit 146 may be used.
 図12A、図12Bは、記憶部180に格納される駆動モード情報189の一例を示す図である。図12Aに示すように、駆動モード情報189は、予め登録された各駆動モードと、各駆動モードにおける駆動源の種別およびバッテリー203の充電率の減少率を示す情報等とを含む。そして、駆動モード情報189では、これら情報が駆動モードごとに対応付けられて管理されている。例えば、第1駆動モードは、エンジン201によって走行する駆動モードである。なお、「エンジンによって走行する駆動モード」とは、完全にエンジン201のみで走行する場合に加えて、停止状態からの発車時等の一部の走行場面において走行用モータ202によるアシストがある場合を含んでもよい。また「エンジンによって走行する駆動モード」とは、エンジン201によって走行するとともに、エンジン201の出力の一部を用いてバッテリー203を充電する駆動モードであってもよい。また例えば、第2駆動モードは、走行用モータ202によって走行する駆動モードである。また例えば、第3駆動モードは、エンジン201および走行用モータ202の両方の駆動によって走行する駆動モードである。なお、車両Mが選択可能な駆動モードは、上記例に限らず、例えば、通常走行モードに比べて加速時の加速度が小さな省エネ走行モードや、通常走行モードに比べて加速時の加速度が大きなスポーツ走行モード等を含んでもよい。 12A and 12B are diagrams illustrating an example of drive mode information 189 stored in the storage unit 180. FIG. As shown in FIG. 12A, the drive mode information 189 includes each drive mode registered in advance, information indicating the type of drive source in each drive mode, and the rate of decrease of the charging rate of the battery 203, and the like. In the drive mode information 189, these pieces of information are managed in association with each drive mode. For example, the first drive mode is a drive mode in which the engine 201 travels. The “driving mode driven by the engine” refers to a case where there is assistance from the driving motor 202 in some driving scenes such as when leaving the engine from a stopped state, in addition to the case where the driving is completely performed only by the engine 201. May be included. Further, the “driving mode driven by the engine” may be a driving mode in which the battery 203 is charged by using a part of the output of the engine 201 while running by the engine 201. For example, the second drive mode is a drive mode in which the vehicle is driven by the driving motor 202. Further, for example, the third drive mode is a drive mode in which the vehicle travels by driving both the engine 201 and the travel motor 202. The drive modes that can be selected by the vehicle M are not limited to the above example. For example, an energy-saving travel mode in which acceleration during acceleration is smaller than that in the normal travel mode, or a sport in which acceleration during acceleration is greater than that in the normal travel mode. A driving mode or the like may be included.
 また、図12Bに示すように、駆動モード情報189は、例えば、各駆動モードのエネルギー効率を示す情報を含む。例えば、駆動モード情報189には、各駆動モードと、各走行環境に対する各駆動モードのエネルギー効率を示す情報とが対応付けられて管理されている。 Also, as shown in FIG. 12B, the drive mode information 189 includes, for example, information indicating the energy efficiency of each drive mode. For example, the drive mode information 189 manages each drive mode in association with information indicating the energy efficiency of each drive mode for each travel environment.
 図13は、車両制御システム100および走行駆動力出力装置200のなかで、駆動モードの選択に関する構成要素を示す機能構成図である。図13に示すように、駆動モード選択部148は、走行環境導出部300、必要充電率導出部302、および駆動モード決定部304を有する。 FIG. 13 is a functional configuration diagram showing the components related to the selection of the drive mode in the vehicle control system 100 and the traveling drive force output device 200. As illustrated in FIG. 13, the drive mode selection unit 148 includes a travel environment deriving unit 300, a required charge rate deriving unit 302, and a drive mode determining unit 304.
 走行環境導出部300は、行動計画生成部144により生成された行動計画等に基づき、車両Mが走行予定の各区間Sの走行環境を導出する。例えば、走行環境導出部300は、行動計画生成部144により生成された行動計画、記憶部180に格納された高精度地図情報182(例えば市街地であるか否かを示す情報)、および通信装置55を通じて取得された情報(例えば交通量の状態を示す情報)等に基づいて、各区間Sの走行環境を導出する。走行環境導出部300により導出される走行環境は、例えば、上述の特定区間SS(市街地または渋滞が発生している区間等)に該当するか否か、上述の非特定区間NSS(自動車専用道路や国道等)に該当するか否か、バッテリー203の充電可能な場所であるか否か等である。なお、各区間Sの走行環境は、行動計画に基づいて走行環境導出部300が導出するものに限らず、行動計画生成部144により生成された行動計画に予め含まれてもよい。この場合、走行環境導出部300は、省略されることができる。 The traveling environment deriving unit 300 derives the traveling environment of each section S where the vehicle M is scheduled to travel based on the behavior plan generated by the behavior plan generating unit 144. For example, the traveling environment deriving unit 300 includes the action plan generated by the action plan generating unit 144, the high-precision map information 182 stored in the storage unit 180 (for example, information indicating whether the area is an urban area), and the communication device 55. The driving environment of each section S is derived on the basis of information (for example, information indicating the state of traffic volume) acquired through. The traveling environment derived by the traveling environment deriving unit 300 corresponds to, for example, the above-described specific section SS (such as an urban area or a section where traffic congestion occurs), or the above-described non-specific section NSS (automobile road or road Whether it is a place where the battery 203 can be charged or not. The travel environment of each section S is not limited to that derived by the travel environment deriving unit 300 based on the behavior plan, and may be included in advance in the behavior plan generated by the behavior plan generation unit 144. In this case, the traveling environment deriving unit 300 can be omitted.
 必要充電率導出部302は、各区間Sの駆動モードとして走行用モータ202により走行する駆動モードが選択された場合に、各区間Sの走行に必要なバッテリー203の充電率(充電率の必要量)を導出する。例えば、必要充電率導出部302は、行動計画生成部144により生成された行動計画(各区間Sの距離、車両Mの予定挙動(例えば予定走行速度)等)、および駆動モード情報189に含まれるバッテリー203の充電率の減少率を示す情報(例えば車両Mの各予定挙動に応じた充電率の減少率を示す情報)等に基づき、各区間Sの走行に必要なバッテリー203の充電率を導出する。 The required charging rate deriving unit 302, when the driving mode for traveling by the traveling motor 202 is selected as the driving mode of each section S, the charging rate (required amount of charging rate) of the battery 203 necessary for traveling of each section S. ) Is derived. For example, the required charging rate deriving unit 302 is included in the action plan (distance of each section S, scheduled behavior of the vehicle M (for example, planned traveling speed)) and drive mode information 189 generated by the action plan generating unit 144. Based on information indicating the rate of decrease of the charging rate of the battery 203 (for example, information indicating the rate of decrease of the charging rate according to each scheduled behavior of the vehicle M), the charging rate of the battery 203 required for traveling in each section S is derived. To do.
 駆動モード決定部304は、駆動モード情報189に登録された複数の駆動モードのなかから、各区間Sにおける駆動モードを選択して決定する。本実施形態では、駆動モード決定部304は、複数の区間S(例えば自動運転のスタート地点から目的地までの全行程を構成する複数の区間S)の各々における駆動モードを1つの時点で(例えば自動運転の開始時に)纏めて選択する。言い換えると、駆動モード決定部304は、複数の区間Sに対する駆動モードの組み合わせを予め選択する。 The drive mode determination unit 304 selects and determines a drive mode in each section S from among a plurality of drive modes registered in the drive mode information 189. In the present embodiment, the drive mode determination unit 304 determines the drive mode in each of a plurality of sections S (for example, a plurality of sections S constituting the entire process from the starting point of automatic driving to the destination) at one time point (for example, Select at once (at the start of automatic operation). In other words, the drive mode determination unit 304 selects a combination of drive modes for a plurality of sections S in advance.
 本実施形態では、駆動モード決定部304は、走行環境が異なる複数の区間S(例えば目的地までの全行程)を通して考慮されるエネルギー効率に基づき、複数の区間Sの各々における駆動モードを選択する。なお、「複数の区間を通して考慮されるエネルギー効率に基づき駆動モードを選択する」とは、例えば、区間Aを第1駆動モードで走行し、区間Bを第2駆動モードで走行した場合と、区間Aを第2駆動モードで走行し、区間Bを第1駆動モードで走行した場合とで、総計としてエネルギー効率が異なる場合に、よりエネルギー効率が良好な区間Sと駆動モードとの組み合わせを選択することを意味する。具体的には、駆動モード決定部304は、走行環境導出部300により導出された各区間Sの走行環境と、駆動モード情報189として記憶部180に格納された各走行環境に対する各駆動モードのエネルギー効率を示す情報と、行動計画に含まれる車両Mの予定挙動(例えば予定走行速度)等とに基づき、それぞれの区間Sにおいて各駆動モードが選択された場合の想定されるエネルギー消費量を導出する。そして、駆動モード決定部304は、各区間Sにおいて想定されるエネルギー消費量を示す情報に基づき、各区間Sと駆動モードとの組み合わせを選択する。 In the present embodiment, the drive mode determination unit 304 selects a drive mode in each of the plurality of sections S based on energy efficiency that is considered through a plurality of sections S (for example, the entire journey to the destination) having different traveling environments. . Note that “selecting a drive mode based on energy efficiency considered through a plurality of sections” means, for example, the case where the section A travels in the first drive mode and the section B travels in the second drive mode, and the section When the energy efficiency is different as a total when the vehicle travels in the second drive mode and the vehicle travels in the first drive mode, the combination of the section S and the drive mode with better energy efficiency is selected. Means that. Specifically, the drive mode determination unit 304 includes the travel environment of each section S derived by the travel environment deriving unit 300 and the energy of each drive mode for each travel environment stored in the storage unit 180 as the drive mode information 189. Based on the information indicating the efficiency and the planned behavior (for example, the planned traveling speed) of the vehicle M included in the action plan, the assumed energy consumption when each drive mode is selected in each section S is derived. . Then, the drive mode determination unit 304 selects a combination of each section S and the drive mode based on information indicating the energy consumption assumed in each section S.
 また本実施形態では、駆動モード決定部304は、バッテリー充電率検出部204からバッテリー203の充電率を示す情報を受け取る。そして、駆動モード決定部304は、走行環境が異なる複数の区間Sを通して考慮されるエネルギー効率と、バッテリー203の充電率とに基づき、走行環境が異なる複数の区間Sの各々における駆動モードを予め選択する。 In this embodiment, the drive mode determination unit 304 receives information indicating the charging rate of the battery 203 from the battery charging rate detection unit 204. Then, the drive mode determination unit 304 preselects a drive mode in each of the plurality of sections S having different traveling environments based on the energy efficiency considered through the plurality of sections S having different traveling environments and the charging rate of the battery 203. To do.
 具体的には、本実施形態の駆動モード決定部304は、走行環境導出部300が導出した各区間Sの走行環境、駆動モード情報189として記憶部180に格納された各走行環境に対する各駆動モードのエネルギー効率を示す情報、必要充電率導出部302が導出した各区間Sの走行に必要なバッテリー203の充電率、およびバッテリー充電率検出部204から受け取るバッテリー203の充電率を示す情報等に基づき、各区間Sの駆動モードを予め選択する。そして、駆動モード決定部304は、選択した各区間Sの駆動モードを示す情報を走行制御部160に出力する。 Specifically, the drive mode determination unit 304 of the present embodiment is configured so that each drive mode for each travel environment stored in the storage unit 180 as the travel environment of each section S derived by the travel environment deriving unit 300 and the drive mode information 189. Based on the information indicating the energy efficiency of the battery, the charging rate of the battery 203 necessary for traveling in each section S derived by the required charging rate deriving unit 302, the information indicating the charging rate of the battery 203 received from the battery charging rate detecting unit 204, and the like The drive mode for each section S is selected in advance. Then, the drive mode determination unit 304 outputs information indicating the drive mode of each selected section S to the travel control unit 160.
 図14は、駆動モード選択部148によって選択される各区間Sの駆動モードの一例を示す図である。なお図14に示す例では、説明の便宜上、第1駆動モード(エンジン201により走行する駆動モード)と第2駆動モード(走行用モータ202により走行する駆動モード)との2つの駆動モードのなかから各区間Sに適用される駆動モードが選択される場合を説明する。なお、駆動モード選択部148は、3種類以上の駆動モードのなかから、各区間Sに適用される駆動モードを選択してもよい。 FIG. 14 is a diagram illustrating an example of the drive mode of each section S selected by the drive mode selection unit 148. In the example shown in FIG. 14, for convenience of explanation, the first drive mode (drive mode driven by the engine 201) and the second drive mode (drive mode driven by the travel motor 202) are used. The case where the drive mode applied to each section S is selected will be described. The drive mode selection unit 148 may select a drive mode applied to each section S from among three or more types of drive modes.
 図14に示す例では、目的地までの経路に含まれる複数の区間S(走行予定の複数の区間S)は、非特定区間NSSの一例としての自動車専用道路(区間A,B,C)と、特定区間SSの一例としての市街地(区間D)とを含む。なお、市街地(区間D)は、「第1区間」の一例である。自動車専用道路(区間A,B,C)の各々は、第1区間よりも手前側にある「第2区間」の一例である。 In the example shown in FIG. 14, a plurality of sections S (a plurality of sections S scheduled to travel) included in the route to the destination are automobile-only roads (sections A, B, and C) as an example of the non-specific section NSS. And an urban area (section D) as an example of the specific section SS. The urban area (section D) is an example of a “first section”. Each of the automobile-only roads (sections A, B, and C) is an example of a “second section” on the near side of the first section.
 一般的に、走行用モータ202は、ガソリン燃料等に比べて割安な電気によって充電されたバッテリー203を用いて駆動される。言い換えると、走行用モータ202は、エンジン201に比べてエネルギー効率が良い(エネルギーコストが安い)。このため、理想的には、目的地までの全行程を走行用モータ202によって走行すると、エネルギー効率が良好になる。また、エンジン201は、一般的に低速走行や停止の頻度が多くなる場合に、エネルギー効率が特に悪くなる。すなわち、市街地や渋滞が発生している区間では、エンジン201に代えて走行用モータ202が駆動されたほうがエネルギー効率を向上させることができる。また別の観点で見ると、走行用モータ202は、エンジン201に比べて駆動が静かである。このため、市街地のような区間を走行する場合は、エンジン201に代えて走行用モータ202が駆動されたほうが好ましい場合がある。 Generally, the traveling motor 202 is driven by using a battery 203 charged with electricity that is cheaper than gasoline fuel or the like. In other words, the traveling motor 202 is more energy efficient (lower energy cost) than the engine 201. For this reason, ideally, when the traveling motor 202 travels the entire distance to the destination, the energy efficiency is improved. Further, the energy efficiency of the engine 201 is particularly deteriorated when the frequency of low speed running or stopping is generally increased. That is, energy efficiency can be improved by driving the traveling motor 202 instead of the engine 201 in an urban area or a section where traffic congestion occurs. From another viewpoint, the driving motor 202 is quieter than the engine 201. Therefore, when traveling in a section such as an urban area, it may be preferable that the traveling motor 202 is driven instead of the engine 201.
 そこで、本実施形態の駆動モード決定部304は、行動計画生成部144により生成された行動計画に基づき、目的地までの経路上に特定区間SS(例えば市街地(区間D))がある場合は、まず、特定区間SSの駆動モードとして走行用モータ202により走行する駆動モードを選択する。そして、駆動モード決定部304は、バッテリー203の充電率が低い場合(図14中の(i)参照)は、例えば非特定区間NSSの一部区間のみ(例えば自動車専用道路の区間Aのみ)の駆動モードとして走行用モータ202により走行する駆動モードを選択し、非特定区間NSSの残りの区間(例えば自動車専用道路の区間B,C)の駆動モードとしてエンジン201により走行する駆動モードを選択する。なお、駆動モード決定部304は、バッテリー203の充電率が低い場合、非特定区間NSSの全て区間(例えば自動車専用道路の区間A,B,C)の駆動モードとしてエンジン201により走行する駆動モードを選択してもよい。 Therefore, the drive mode determination unit 304 of the present embodiment, based on the action plan generated by the action plan generation unit 144, when there is a specific section SS (for example, an urban area (section D)) on the route to the destination, First, a driving mode for traveling by the traveling motor 202 is selected as the driving mode for the specific section SS. When the charging rate of the battery 203 is low (see (i) in FIG. 14), the drive mode determination unit 304, for example, only in a partial section of the non-specific section NSS (for example, only the section A of the automobile-only road). A driving mode for traveling by the traveling motor 202 is selected as the driving mode, and a driving mode for traveling by the engine 201 is selected as the driving mode for the remaining sections of the non-specific section NSS (for example, sections B and C of the exclusive road for automobiles). In addition, when the charging rate of the battery 203 is low, the drive mode determination unit 304 sets the drive mode in which the engine 201 travels as the drive mode of all sections of the non-specific section NSS (for example, sections A, B, and C of the automobile exclusive road). You may choose.
 また、駆動モード決定部304は、バッテリー203の充電率が中位の場合(図14中の(ii)参照)は、例えば非特定区間NSSの一部区間(例えば自動車専用道路の区間A,B)の駆動モードとして走行用モータ202により走行する駆動モードを選択し、非特定区間NSSの残りの区間(例えば自動車専用道路の区間C)の駆動モードとしてエンジン201を動作させる駆動モードを選択する。また、駆動モード決定部304は、バッテリー203の充電率が高い場合(図14中の(iii)参照)は、例えば非特定区間NSSの全ての区間(例えば自動車専用道路の区間A,B,C)の駆動モードとして走行用モータ202を動作させる駆動モードを選択してもよい。 Further, when the charging rate of the battery 203 is medium (see (ii) in FIG. 14), the drive mode determination unit 304 is, for example, a partial section of the non-specific section NSS (for example, sections A and B of an automobile-only road). ) Is selected as the driving mode, and the driving mode for operating the engine 201 is selected as the driving mode of the remaining section of the non-specific section NSS (for example, section C of the exclusive road for automobiles). In addition, when the charging rate of the battery 203 is high (see (iii) in FIG. 14), the drive mode determination unit 304, for example, all the sections of the non-specific section NSS (for example, sections A, B, and C of a dedicated road for automobiles). ) May be selected as the driving mode for driving the traveling motor 202.
 すなわち、本実施形態の駆動モード決定部304は、車両Mが走行予定の第1区間(例えば区間D)の走行環境に基づき、第1区間の駆動モードと、第1区間よりも手前側の第2区間(例えば区間A,B,C)の駆動モードとを予め選択する。例えば、本実施形態の駆動モード決定部304は、第1区間の駆動モードとして走行用モータ202により走行する駆動モードを選択する場合に、第2区間の駆動モードとして、走行用モータ202に電力を供給するバッテリー203の充電率が第1区間で必要量存在することになる駆動モード(例えば、エンジン201により走行する駆動モード)を選択する。 That is, the drive mode determination unit 304 of the present embodiment is based on the driving environment of the first section where the vehicle M is scheduled to travel (for example, the section D), and the driving mode of the first section and the first mode before the first section. Two drive modes (for example, sections A, B, and C) are selected in advance. For example, when the driving mode determination unit 304 of the present embodiment selects the driving mode for traveling by the traveling motor 202 as the driving mode for the first section, the driving mode determination unit 304 supplies power to the traveling motor 202 as the driving mode for the second section. A driving mode (for example, a driving mode in which the vehicle travels by the engine 201) in which a required amount of the charging rate of the battery 203 to be supplied exists in the first section is selected.
 図15は、バッテリー203の充電率が第1区間で必要量存在することになる駆動モードのいくつかの例を示す図である。図15に示すように、「走行用モータ202に電力を供給するバッテリー203の充電率が第1区間で必要量存在することになる駆動モード」とは、例えば、エンジン201により走行することで、事前に充電されたバッテリー203の充電率が第1区間まで温存される駆動モード(図15中の(a)参照)、エンジン201により走行するとともに、エンジン201の出力の一部を用いてバッテリー203が充電される駆動モード(図15中の(b)参照)、または、バッテリー203の充電率が第1区間で必要量存在するように、走行用モータ202、または走行用モータ202とエンジン201との組み合わせにより走行する駆動モード(図15中の(c)参照)等である。 FIG. 15 is a diagram illustrating some examples of drive modes in which the required amount of the charging rate of the battery 203 is present in the first section. As shown in FIG. 15, “the drive mode in which the charging rate of the battery 203 that supplies power to the traveling motor 202 is present in a necessary amount in the first section” is, for example, by traveling by the engine 201, A driving mode in which the charging rate of the battery 203 charged in advance is maintained until the first section (see (a) in FIG. 15), the battery 203 travels by the engine 201 and uses a part of the output of the engine 201. Driving mode (see (b) in FIG. 15) or the driving motor 202 or the driving motor 202 and the engine 201 so that the required amount of the charging rate of the battery 203 exists in the first section. Drive mode (see (c) in FIG. 15) and the like.
 次に、本実施形態の自動運転制御部120の処理の流れの一例を説明する。また以下では、説明の便宜上、走行用モータ202によって特定区間SSを走行するために必要な充電率をバッテリー203が有する場合を例に取り上げて説明する。 Next, an example of the processing flow of the automatic operation control unit 120 of this embodiment will be described. In the following, for convenience of explanation, a case where the battery 203 has a charging rate necessary for traveling in the specific section SS by the traveling motor 202 will be described as an example.
 図16は、本実施形態の自動運転制御部120の処理の流れの一例を示すフローチャートである。図16に示すように、駆動モードの選択に関する処理においては、まず、行動計画生成部144が行動計画を生成する(S100)。次に、駆動モード選択部148の走行環境導出部300が、行動計画生成部144により生成された行動計画、記憶部180に格納された高精度地図情報182、および通信装置55を通じて取得された情報(例えば交通量の状態を示す情報)等に基づいて、各区間Sの走行環境を導出する(S102)。
 次に、必要充電率導出部302は、行動計画生成部144により生成された行動計画と、駆動モード情報189に含まれるバッテリー203の充電率の減少率を示す情報等とに基づき、各区間Sの走行に必要なバッテリー203の充電率を導出する(S104)。
FIG. 16 is a flowchart illustrating an example of a process flow of the automatic operation control unit 120 of the present embodiment. As shown in FIG. 16, in the process related to the selection of the drive mode, first, the action plan generation unit 144 generates an action plan (S100). Next, the travel environment derivation unit 300 of the drive mode selection unit 148 has the action plan generated by the action plan generation unit 144, the high-precision map information 182 stored in the storage unit 180, and the information acquired through the communication device 55. Based on (for example, information indicating the traffic state), the driving environment of each section S is derived (S102).
Next, the required charging rate deriving unit 302 determines each section S based on the action plan generated by the action plan generating unit 144, information indicating the rate of decrease of the charging rate of the battery 203 included in the drive mode information 189, and the like. The charging rate of the battery 203 necessary for traveling is derived (S104).
 また、駆動モード決定部304は、走行環境導出部300により導出された各区間Sの走行環境に基づき、目的地までの経路上に車両Mの低速走行や停止の頻度が多くなる特定区間SS(市街地や渋滞が生じている区間等)が存在するか否かを判定する(S106)。そして、駆動モード決定部304は、目的地までの経路上に特定区間SSが存在する場合、特定区間SSの駆動モードとして、走行用モータ202で走行する駆動モードを選択する(S108)。なお、S106およびS108の処理の少なくとも一方は、S104の処理よりも前に行われてもよい。 In addition, the drive mode determination unit 304 is based on the travel environment of each section S derived by the travel environment deriving unit 300, and the specific section SS ( It is determined whether or not there is a city area or a section where traffic congestion occurs (S106). Then, when the specific section SS exists on the route to the destination, the drive mode determination unit 304 selects a drive mode in which the traveling motor 202 travels as the drive mode of the specific section SS (S108). Note that at least one of the processes of S106 and S108 may be performed before the process of S104.
 次に、駆動モード決定部304は、特定区間SSを走行用モータ202で走行するための必要充電率と、バッテリー充電率検出部204から受け取るバッテリー203の充電率を示す情報等とに基づき、特定区間SSよりも手前側の各区間Sの駆動モードを選択する(S110)。 Next, the drive mode determination unit 304 specifies based on the necessary charging rate for traveling with the traveling motor 202 in the specific section SS, information indicating the charging rate of the battery 203 received from the battery charging rate detection unit 204, and the like. The drive mode of each section S on the near side of the section SS is selected (S110).
 一方で、駆動モード決定部304は、目的地までの経路上に特定区間SSが存在しない場合、各区間Sの駆動モードを適宜選択する(S112)。上述したように、一般的には、走行用モータ202は、エンジン201に比べてエネルギー効率が高い。このため、駆動モード決定部304は、例えば、なるべく多くの区間Sの駆動モードとして、走行用モータ202により走行する駆動モードを選択し、残りの区間Sの駆動モードとして、エンジン201により走行する駆動モードを選択する。 On the other hand, when the specific section SS does not exist on the route to the destination, the drive mode determination unit 304 appropriately selects the drive mode of each section S (S112). As described above, generally, the traveling motor 202 is higher in energy efficiency than the engine 201. For this reason, the drive mode determination unit 304 selects, for example, a drive mode that travels by the travel motor 202 as the drive mode of as many sections S as possible, and a drive that travels by the engine 201 as the drive mode of the remaining sections S. Select a mode.
 そして、駆動モード決定部304は、選択した各区間Sの駆動モードを示す情報を走行制御部160に出力する(S114)。これにより、走行制御部160は、駆動モード決定部304から受け取る情報に基づき、エンジン201および走行用モータ202を駆動させる。 And the drive mode determination part 304 outputs the information which shows the drive mode of each selected area S to the traveling control part 160 (S114). Thus, travel control unit 160 drives engine 201 and travel motor 202 based on information received from drive mode determination unit 304.
 このような構成によれば、行動計画の各段階における駆動モードが行動計画に基づいて予め選択されることで、選択された駆動モードを行動計画の各段階において実現するために必要な措置を事前に行うことができる。これにより、行動計画の各段階における適した駆動モードを実現することができる。 According to such a configuration, the drive mode at each stage of the action plan is selected in advance based on the action plan, so that measures necessary for realizing the selected drive mode at each stage of the action plan are preliminarily set. Can be done. Thereby, the suitable drive mode in each step of an action plan is realizable.
 例えば本実施形態では、走行環境が異なる複数の区間Sを通して考慮されるエネルギー効率に基づいて複数の区間Sの各々における駆動モードを予め選択される。このため、例えば、低速走行や停止の頻度が多い区間を走行用モータ202によって走行し、高速走行が可能である区間をエンジン201によって走行することができる。これにより、走行環境が異なる複数の区間S(例えば目的地までの全行程)を通して見た場合におけるエネルギー効率の向上を図ることができる。 For example, in the present embodiment, the drive mode in each of the plurality of sections S is selected in advance based on the energy efficiency considered through the plurality of sections S having different traveling environments. For this reason, for example, the traveling motor 202 travels in a section where the low-speed traveling or the stop frequency is high, and the engine 201 can travel in a section where high-speed traveling is possible. As a result, it is possible to improve energy efficiency when viewed through a plurality of sections S (for example, the entire journey to the destination) having different traveling environments.
 本実施形態では、走行用モータ202に電力を供給するバッテリー203の充電率に基づいて複数の区間Sの各々における駆動モードが予め選択される。このため、走行用モータ202による走行が適した走行環境を、バッテリー203の充電切れを抑制して走行用モータ202によって走行することができる。 In the present embodiment, the driving mode in each of the plurality of sections S is selected in advance based on the charging rate of the battery 203 that supplies power to the traveling motor 202. For this reason, a traveling environment suitable for traveling by the traveling motor 202 can be traveled by the traveling motor 202 while suppressing the battery 203 from being discharged.
 本実施形態では、車両Mが走行予定の第1区間の走行環境に基づいて第1区間よりも手前側の第2区間の駆動モードが選択される。このため、第1区間において所望の駆動モードを確実に実現することができる。例えば、第1区間の駆動モードとして走行用モータ202により走行する駆動モードが選択される場合、第2区間の駆動モードとして、走行用モータに電力を供給するバッテリーの充電率が第1区間で必要量存在する駆動モードが選択される。これにより、第1区間を走行用モータ202によって確実に走行することができる。これにより、走行予定の各区間Sにおいて走行環境等に対して適した駆動モードをより確実に実現することができる。 In the present embodiment, the driving mode of the second section in front of the first section is selected based on the traveling environment of the first section where the vehicle M is scheduled to travel. For this reason, a desired drive mode can be reliably realized in the first section. For example, when the driving mode for traveling by the traveling motor 202 is selected as the driving mode for the first section, the charging rate of the battery that supplies power to the traveling motor is required for the first section as the driving mode for the second section. A drive mode present in quantity is selected. As a result, the first section can be reliably traveled by the travel motor 202. As a result, a driving mode suitable for the traveling environment or the like in each section S scheduled to travel can be realized more reliably.
 <第2実施形態>
 次に、第2実施形態について説明する。第2実施形態の車両制御システム100は、所定の場合にバッテリー203の充電率を充電率の許容下限値に近付けるように行動計画の各段階における駆動モードが選択される点で第1実施形態の車両制御システム100とは異なる。なお以下に説明する以外の構成は、上記第1実施形態と同様である。
Second Embodiment
Next, a second embodiment will be described. The vehicle control system 100 according to the second embodiment is different from that according to the first embodiment in that the drive mode at each stage of the action plan is selected so that the charging rate of the battery 203 is close to the allowable lower limit value of the charging rate in a predetermined case. Different from the vehicle control system 100. The configurations other than those described below are the same as those in the first embodiment.
 図17は、バッテリー203の充電率に関する制御を模式的に示す図である。図17に示すように、バッテリー203の充電率には、許容上限値PHVと許容下限値PLVとが設定される。そして、駆動モード選択部148は、バッテリー203の充電率を許容上限値PHVと許容下限値PLVとの間に維持するように、行動計画の各段階における駆動モード(例えば各区間Sにおける駆動モード)を予め選択する。 FIG. 17 is a diagram schematically showing control related to the charging rate of the battery 203. As shown in FIG. 17, an allowable upper limit PHV and an allowable lower limit PLV are set for the charging rate of the battery 203. Then, the drive mode selection unit 148 drives the drive mode at each stage of the action plan (for example, the drive mode in each section S) so as to maintain the charging rate of the battery 203 between the allowable upper limit value PHV and the allowable lower limit value PLV. Is selected in advance.
 そして、本実施形態の駆動モード決定部304は、目的地または目的地までの経路上に走行用モータ202に電力を供給するバッテリー203の充電が可能な場所がある場合に、その場所に到達するときにバッテリー203の充電率が充電率の許容下限値PLVに近付くように、行動計画の各段階における駆動モード(例えば走行予定の各区間Sにおける駆動モード)を予め選択する。 Then, when there is a place where the battery 203 that supplies power to the traveling motor 202 can be charged on the destination or the route to the destination, the drive mode determination unit 304 of the present embodiment reaches that place. The drive mode at each stage of the action plan (for example, the drive mode in each section S scheduled to travel) is selected in advance so that the charging rate of the battery 203 approaches the allowable lower limit value PLV of the charging rate.
 詳しく述べると、駆動モード決定部304は、ナビゲーション装置50を通じてユーザから入力された情報、または走行環境導出部300により導出された各区間Sの走行環境を示す情報等に基づき、目的地または目的地までの経路上に、走行用モータ202に電力を供給するバッテリー203の充電が可能な場所(以下、充電可能場所BPという)があるか否かを判定する。なお、目的地に充電可能場所BPがある場合とは、目的地として充電設備がある施設(例えば自宅)が設定された場合である。また、目的地までの経路上に充電可能場所BPがある場合とは、目的地までの経路上に充電設備がある施設や非接触充電レーンを含む道路がある場合、または目的地までの経路上にエンジン201によって走行することで回生エネルギーによって充電可能な場所(例えば自動車専用道路)がある場合等である。 More specifically, the drive mode determination unit 304 determines the destination or destination based on information input from the user through the navigation device 50 or information indicating the travel environment of each section S derived by the travel environment deriving unit 300. It is determined whether or not there is a place where the battery 203 that supplies power to the traveling motor 202 can be charged (hereinafter referred to as a chargeable place BP) on the route up to this point. The case where there is a chargeable place BP at the destination is a case where a facility (for example, a home) having a charging facility is set as the destination. In addition, when there is a chargeable place BP on the route to the destination, there is a facility with a charging facility or a road including a non-contact charging lane on the route to the destination, or on the route to the destination. Or when there is a place (for example, a road dedicated to automobiles) that can be charged by regenerative energy by running with the engine 201.
 そして、本実施形態の駆動モード決定部304は、目的地または目的地までの経路上に充電可能場所BPがある場合に、走行環境導出部300が導出した各区間Sの走行環境、必要充電率導出部302が導出した各区間Sの走行に必要なバッテリー203の充電率、およびバッテリー充電率検出部204から受け取るバッテリー203の充電率を示す情報等に基づき、充電可能場所BPに到達するときにバッテリー203の充電率が充電率の許容下限値PLVに近付くように、各区間Sの駆動モードを予め選択する。 Then, the drive mode determination unit 304 of the present embodiment, when there is a chargeable place BP on the destination or the route to the destination, the travel environment of each section S derived by the travel environment deriving unit 300, the required charging rate When reaching the chargeable place BP based on the charging rate of the battery 203 necessary for traveling in each section S derived by the deriving unit 302 and information indicating the charging rate of the battery 203 received from the battery charging rate detection unit 204 The drive mode of each section S is selected in advance so that the charging rate of the battery 203 approaches the allowable lower limit value PLV of the charging rate.
 図18は、本実施形態の駆動モード選択部148によって選択される各区間Sの駆動モードの一例を示す図である。なお図18に示す例では、説明の便宜上、第1駆動モード(エンジン201により走行する駆動モード)と第2駆動モード(走行用モータ202により走行する駆動モード)との2つの駆動モードのなかから各区間Sに適用される駆動モードが選択される場合を説明する。なお、駆動モード選択部148は、3種類以上の駆動モードのなかから、各区間Sに適用される駆動モードを選択してもよい。 FIG. 18 is a diagram illustrating an example of the drive mode of each section S selected by the drive mode selection unit 148 of the present embodiment. In the example shown in FIG. 18, for convenience of explanation, the first drive mode (drive mode driven by the engine 201) and the second drive mode (drive mode driven by the travel motor 202) are used. The case where the drive mode applied to each section S is selected will be described. The drive mode selection unit 148 may select a drive mode applied to each section S from among three or more types of drive modes.
 図18に示す例は、目的地または目的地までの経路上にある充電可能場所BPの手前側に複数の区間(区間A,B,C)がある場合を示す。本実施形態の駆動モード決定部304は、例えばバッテリー203の充電率が低い場合(図18中の(i)参照)は、目的地までの複数の区間Sのなかの一部区間(例えば区間A)の駆動モードとして走行用モータ202により走行する駆動モードを選択し、残りの区間(例えば区間B,C)の駆動モードとしてエンジン201により走行する駆動モードを選択する。 The example shown in FIG. 18 shows a case where there are a plurality of sections (sections A, B, and C) on the front side of the chargeable place BP on the destination or the route to the destination. For example, when the charging rate of the battery 203 is low (see (i) in FIG. 18), the drive mode determination unit 304 of the present embodiment is a partial section (for example, section A) of the plurality of sections S to the destination. ) Is selected as the driving mode, and the driving mode for driving by the engine 201 is selected as the driving mode for the remaining sections (for example, sections B and C).
 また、本実施形態の駆動モード決定部304は、例えばバッテリー203の充電率が中位の場合(図18中の(ii)参照)は、目的地までの複数の区間Sのなかの一部区間(例えば区間A,B)の駆動モードとして走行用モータ202により走行する駆動モードを選択し、残りの区間(例えば区間C)の駆動モードとしてエンジン201により走行する駆動モードを選択する。また、駆動モード決定部304は、例えばバッテリー203の充電率が高い場合(図18中の(iii)参照)は、目的地までの全ての区間S(例えば区間A,B,C)の駆動モードとして走行用モータ202により走行する駆動モードを選択する。 In addition, the drive mode determination unit 304 according to the present embodiment, for example, when the charging rate of the battery 203 is medium (see (ii) in FIG. 18), a part of the plurality of sections S to the destination. For example, the driving mode for traveling by the traveling motor 202 is selected as the driving mode (for example, section A, B), and the driving mode for traveling by the engine 201 is selected as the driving mode for the remaining section (for example, section C). Further, the drive mode determination unit 304, for example, when the charging rate of the battery 203 is high (see (iii) in FIG. 18), the drive modes in all the sections S (for example, the sections A, B, and C) to the destination. A driving mode for traveling by the traveling motor 202 is selected.
 図19は、目的地までの経路上に充電可能場所BPがある場合の駆動モードの一例を示す図である。図19に示すように、駆動モード決定部304は、非特定区間NSSとしての第1区間と、第1区間よりも手前側に特定区間SSとしての第2区間がある場合、第2区間の駆動モードとして走行用モータ202により走行する駆動モードを選択し、第1区間の駆動モードとしてエンジン201により走行してバッテリー203の充電を行う駆動モードを選択する。 FIG. 19 is a diagram showing an example of a drive mode when there is a chargeable place BP on the route to the destination. As illustrated in FIG. 19, the drive mode determination unit 304 drives the second section when there is a first section as the non-specific section NSS and a second section as the specific section SS in front of the first section. A driving mode for traveling by the traveling motor 202 is selected as the mode, and a driving mode for traveling by the engine 201 and charging the battery 203 is selected as the driving mode for the first section.
 図20は、本実施形態の自動運転制御部120の処理の流れの一例を示すフローチャートである。なお、S100、S102、S104、S106、およびS114の処理は、第1実施形態と同様である。 FIG. 20 is a flowchart illustrating an example of a process flow of the automatic operation control unit 120 of the present embodiment. Note that the processes of S100, S102, S104, S106, and S114 are the same as in the first embodiment.
 図20に示すように、本実施形態では、駆動モード決定部304は、目的地までの経路上に特定区間SSが存在する場合に、走行環境導出部300によって導出された各区間Sの走行環境に基づき、特定区間SSの直後にバッテリー203の充電を行うことができる十分な長さの非特定区間NSSがあるか否を判定する(S107)。 As shown in FIG. 20, in the present embodiment, the drive mode determination unit 304 determines the travel environment of each section S derived by the travel environment deriving unit 300 when the specific section SS exists on the route to the destination. Based on the above, it is determined whether there is a non-specific section NSS having a sufficient length that allows the battery 203 to be charged immediately after the specific section SS (S107).
 そして、駆動モード決定部304は、特定区間SSの直後にバッテリー203の充電を行うことができる十分な長さの非特定区間NSSがあると判定された場合に、特定区間SSの走行モードとして、非特定区間NSSに到達するときにバッテリー203の充電率が許容下限値PLVに近付くように特定区間SSの駆動モードを選択する(S108)。また、駆動モード決定部304は、上記特定区間SSの直後の非特定区間NSSの駆動モードとして、エンジン201により走行してバッテリー203の充電を行う駆動モードを選択する(S110)。 Then, when it is determined that there is a sufficiently long non-specific section NSS that can charge the battery 203 immediately after the specific section SS, the drive mode determination unit 304, as the travel mode of the specific section SS, The drive mode of the specific section SS is selected so that the charging rate of the battery 203 approaches the allowable lower limit value PLV when the non-specific section NSS is reached (S108). Further, the drive mode determination unit 304 selects a drive mode for running the engine 201 and charging the battery 203 as the drive mode of the non-specific section NSS immediately after the specific section SS (S110).
 そして、駆動モード決定部304は、特定区間SSの直後にバッテリー203の充電を行うことができる十分な長さの非特定区間NSSがないと判定された場合に、さらに後ろの区間Sの走行環境等に基づいて、上記特定区間SSおよび非特定区間NSSを含む複数の区間Sの各々における駆動モードを選択する(S112)。 Then, when it is determined that there is no sufficiently long non-specific section NSS that can charge the battery 203 immediately after the specific section SS, the driving mode determination unit 304 further travels in the subsequent section S. Based on the above, the drive mode in each of the plurality of sections S including the specific section SS and the non-specific section NSS is selected (S112).
 このような構成によれば、充電可能場所BPに到達するときにバッテリー203の充電率が充電率の許容下限値に近付くように各区間Sにおける駆動モードを予め選択されるため、なるべく多くの距離を走行用モータ202によって走行することができる。このため、エネルギー効率を向上させることができる。 According to such a configuration, since the driving mode in each section S is selected in advance so that the charging rate of the battery 203 approaches the allowable lower limit value of the charging rate when reaching the chargeable place BP, the distance as much as possible Can be driven by the driving motor 202. For this reason, energy efficiency can be improved.
 <変形例>
 次に、第2実施形態の変形例について説明する。本変形例の車両制御システム100は、充電可能場所BPがある場合に、バッテリー203の許容下限値PLVが変更される点で第2実施形態の車両制御システム100とは異なる。なお以下に説明する以外の構成は、上記第2実施形態と同様である。
<Modification>
Next, a modification of the second embodiment will be described. The vehicle control system 100 of the present modification is different from the vehicle control system 100 of the second embodiment in that the allowable lower limit value PLV of the battery 203 is changed when there is a chargeable place BP. The configurations other than those described below are the same as in the second embodiment.
 図21は、本変形例の駆動モードの選択に関する構成要素を示す機能構成図である。図21に示すように、駆動モード選択部148は、走行環境導出部300、必要充電率導出部302、および駆動モード決定部304に加えて、充電率許容下限値変更部303を有する。 FIG. 21 is a functional configuration diagram showing components relating to selection of the drive mode of the present modification. As illustrated in FIG. 21, the drive mode selection unit 148 includes a charge rate allowable lower limit value changing unit 303 in addition to the travel environment deriving unit 300, the necessary charge rate deriving unit 302, and the drive mode determining unit 304.
 図22は、本変形例のバッテリー203の充電率に関する制御を模式的に示す図である。図22に示すように、充電率許容下限値変更部303は、目的地または目的地までの経路上に充電可能場所BPがある場合に、バッテリー203の充電率の許容下限値PLVを、許容下限値PLV´に引き下げる。そして、本変形例の駆動モード決定部304は、目的地または目的地までの経路上に充電可能場所BPがある場合に、充電可能場所BPに到達するときにバッテリー203の充電率が、引き下げられた許容下限値PLV´に近付くように、行動計画の各段階における駆動モード(例えば各区間Sにおける駆動モード)を予め選択する。 FIG. 22 is a diagram schematically showing control related to the charging rate of the battery 203 of the present modification. As shown in FIG. 22, the charging rate allowable lower limit changing unit 303 sets the allowable lower limit PLV of the charging rate of the battery 203 to the allowable lower limit when there is a chargeable place BP on the destination or the route to the destination. Reduce to the value PLV '. The drive mode determination unit 304 of the present modification reduces the charging rate of the battery 203 when reaching the chargeable place BP when the chargeable place BP is on the destination or the route to the destination. The drive mode at each stage of the action plan (for example, the drive mode in each section S) is selected in advance so as to approach the allowable lower limit value PLV ′.
 すなわち、本変形例の駆動モード決定部304は、目的地または目的地までの経路上に充電可能場所BPがある場合に、走行環境導出部300が導出した各区間Sの走行環境、必要充電率導出部302が導出した各区間Sの走行に必要なバッテリー203の充電率、およびバッテリー充電率検出部204から受け取るバッテリー203の充電率を示す情報等に基づき、充電可能場所BPに到達するときにバッテリー203の充電率が充電率の許容下限値PLV´に近付くように、行動計画の各段階における駆動モード(例えば各区間Sの駆動モード)を予め選択する。 In other words, the drive mode determination unit 304 of the present modification includes the travel environment and the required charging rate of each section S derived by the travel environment deriving unit 300 when there is a chargeable place BP on the destination or the route to the destination. When reaching the chargeable place BP based on the charging rate of the battery 203 necessary for traveling in each section S derived by the deriving unit 302 and information indicating the charging rate of the battery 203 received from the battery charging rate detection unit 204 The drive mode (for example, the drive mode of each section S) at each stage of the action plan is selected in advance so that the charge rate of the battery 203 approaches the allowable lower limit value PLV ′ of the charge rate.
 例えば、本変形例の駆動モード決定部304は、目的地または目的地までの経路上に充電可能場所BPがある場合に、充電可能場所BPに到達するときにバッテリー203の充電率が、引き下げる前の許容下限値PLVよりも小さくなるように、各区間Sにおける駆動モードを予め選択する。なお、「引き下げる前の許容下限値」は、例えば、目的地または目的地までの経路上に充電可能場所BPがない場合における充電率の許容下限値であり、「通常の許容下限値」または「初期設定における許容下限値」等と称されてもよい。 For example, the drive mode determination unit 304 of the present modified example has the charge rate of the battery 203 before the charge rate is lowered when reaching the chargeable location BP when there is a chargeable location BP on the destination or the route to the destination. The drive mode in each section S is selected in advance so as to be smaller than the allowable lower limit value PLV. The “allowable lower limit before reduction” is, for example, the allowable lower limit of the charging rate when there is no chargeable place BP on the destination or the route to the destination, and “normal allowable lower limit” or “ It may be referred to as “allowable lower limit in initial setting” or the like.
 このような構成によれば、充電可能場所BPに到達するときにバッテリー203の充電率が、引き下げられた許容下限値に近付くように各区間Sにおける駆動モードを予め選択されるため、さらに多くの距離を走行用モータ202によって走行することができる。このため、エネルギー効率をさらに向上させることができる。 According to such a configuration, the driving mode in each section S is selected in advance so that the charging rate of the battery 203 approaches the lowered allowable lower limit value when reaching the chargeable place BP. The distance can be traveled by the travel motor 202. For this reason, energy efficiency can further be improved.
 以上、本発明の実施形態について図面を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。 As mentioned above, although embodiment of this invention was described using drawing, this invention is not limited to such embodiment at all and can add various deformation | transformation and substitution within the range which does not deviate from the summary of this invention. it can.
 100…車両制御システム、144…行動計画生成部、148…駆動モード選択部、160…走行制御部、201…エンジン(駆動源)、202…走行用モータ(駆動源)、203…バッテリー。 DESCRIPTION OF SYMBOLS 100 ... Vehicle control system, 144 ... Action plan production | generation part, 148 ... Drive mode selection part, 160 ... Traveling control part, 201 ... Engine (drive source), 202 ... Driving motor (drive source), 203 ... Battery.

Claims (11)

  1.  車両の自動運転の行動計画を生成する行動計画生成部と、
     前記行動計画生成部により生成された行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択する駆動モード選択部と、
     前記駆動モード選択部により選択された前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御する走行制御部と、
     を備える車両制御システム。
    An action plan generator for generating an action plan for automatic driving of the vehicle;
    Drive that pre-selects drive modes at each stage of the action plan from among a plurality of drive modes in which operation states of the plurality of drive sources of the vehicle are different based on the action plan generated by the action plan generation unit A mode selector,
    A travel control unit that controls the travel of the vehicle based on the drive mode at each stage of the action plan selected by the drive mode selection unit;
    A vehicle control system comprising:
  2.  前記駆動モード選択部は、走行環境が異なる複数の区間を通して考慮されるエネルギー効率に基づき、前記複数の区間の各々における駆動モードを予め選択する、
     請求項1に記載の車両制御システム。
    The drive mode selection unit pre-selects a drive mode in each of the plurality of sections based on energy efficiency considered through a plurality of sections having different traveling environments.
    The vehicle control system according to claim 1.
  3.  前記複数の駆動源は、走行用モータを含み、
     前記駆動モード選択部は、前記走行用モータに電力を供給するバッテリーの充電率に基づき、走行環境が異なる複数の区間の各々における駆動モードを予め選択する、
     請求項1または請求項2に記載の車両制御システム。
    The plurality of drive sources include a traveling motor,
    The drive mode selection unit preselects a drive mode in each of a plurality of sections having different travel environments based on a charging rate of a battery that supplies power to the travel motor.
    The vehicle control system according to claim 1 or 2.
  4.  前記駆動モード選択部は、前記車両が走行予定の第1区間の走行環境に基づき、前記第1区間よりも手前側の第2区間の駆動モードを選択する、
     請求項1から請求項3のいずれか1項に記載の車両制御システム。
    The drive mode selection unit selects a drive mode of a second section on the near side of the first section based on a traveling environment of the first section where the vehicle is scheduled to travel.
    The vehicle control system according to any one of claims 1 to 3.
  5.  前記複数の駆動源は、走行用モータを含み、
     前記駆動モード選択部は、前記第1区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択する場合に、前記第2区間の駆動モードとして、前記走行用モータに電力を供給するバッテリーの充電率が前記第1区間で必要量存在することになる駆動モードを選択する、
     請求項4に記載の車両制御システム。
    The plurality of drive sources include a traveling motor,
    When the driving mode selection unit selects the driving mode for traveling by the traveling motor as the driving mode for the first section, the driving mode selection unit is configured to supply a power to the traveling motor as the driving mode for the second section. Selecting a drive mode in which a required amount of charge rate is present in the first interval;
    The vehicle control system according to claim 4.
  6.  前記複数の駆動源は、エンジンを更に含み、
     前記駆動モード選択部は、前記第2区間の駆動モードとして前記エンジンにより走行する駆動モードを選択する、
     請求項5に記載の車両制御システム。
    The plurality of drive sources further include an engine;
    The drive mode selection unit selects a drive mode that is driven by the engine as a drive mode of the second section.
    The vehicle control system according to claim 5.
  7.  前記複数の駆動源は、エンジンと走行用モータとを含み、
     前記駆動モード選択部は、前記第1区間が特定区間であり、前記第2区間が前記特定区間に比べて高速走行可能な区間である場合に、前記第1区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択し、前記第2区間の駆動モードとして前記エンジンにより走行する駆動モードを選択する、
     請求項4に記載の車両制御システム。
    The plurality of drive sources include an engine and a traveling motor,
    When the first section is a specific section and the second section is a section capable of traveling at a higher speed than the specific section, the drive mode selection unit is configured to use the travel motor as a drive mode of the first section. To select the driving mode for traveling, and to select the driving mode for traveling by the engine as the driving mode of the second section,
    The vehicle control system according to claim 4.
  8.  前記複数の駆動源は、エンジンと走行用モータとを含み、
     前記駆動モード選択部は、前記第2区間が特定区間であり、前記第1区間が前記特定区間に比べて高速走行可能な区間である場合に、前記第2区間の駆動モードとして前記走行用モータにより走行する駆動モードを選択し、前記第1区間の駆動モードとして前記エンジンにより走行して前記走行用モータに電力を供給するバッテリーの充電を行う駆動モードを選択する、
     請求項4に記載の車両制御システム。
    The plurality of drive sources include an engine and a traveling motor,
    When the second section is a specific section and the first section is a section capable of traveling at a higher speed than the specific section, the drive mode selection unit is configured to use the travel motor as the drive mode of the second section. Selecting a driving mode for traveling, and selecting a driving mode for charging a battery that travels by the engine and supplies power to the traveling motor as the driving mode of the first section.
    The vehicle control system according to claim 4.
  9.  前記複数の駆動源は、走行用モータを含み、
     前記駆動モード選択部は、目的地または目的地までの経路上に前記走行用モータに電力を供給するバッテリーの充電が可能な場所がある場合に、前記場所に到達するときに前記バッテリーの充電率が充電率の許容下限値に近付くように前記行動計画の各段階における駆動モードを予め選択する、
     請求項1から請求項8のいずれか1項に記載の車両制御システム。
    The plurality of drive sources include a traveling motor,
    The drive mode selection unit may charge the battery when reaching the location when there is a location where the battery for supplying power to the traveling motor can be charged on the destination or the route to the destination. Pre-select the drive mode at each stage of the action plan so that is close to the allowable lower limit of the charging rate,
    The vehicle control system according to any one of claims 1 to 8.
  10.  車載コンピュータが、
     車両の自動運転の行動計画を生成し、
     前記生成された行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択し、
     前記選択された前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御する、
     車両制御方法。
    In-vehicle computer
    Generate an action plan for automatic vehicle driving,
    Based on the generated action plan, a drive mode at each stage of the action plan is selected in advance from among a plurality of drive modes in which operation states of a plurality of drive sources of the vehicle are different from each other,
    Controlling the driving of the vehicle based on the driving mode in each stage of the selected action plan;
    Vehicle control method.
  11.  車載コンピュータに、
     車両の自動運転の行動計画を生成させ、
     前記生成させた行動計画に基づき、前記車両が有する複数の駆動源の動作状態がそれぞれ異なる複数の駆動モードのなかから、前記行動計画の各段階における駆動モードを予め選択させ、
     前記選択させた前記行動計画の各段階における駆動モードに基づき、前記車両の走行を制御させる、
     車両制御プログラム。
    On-board computer
    Generate an action plan for automated driving of the vehicle,
    Based on the generated action plan, the drive mode in each stage of the action plan is selected in advance from a plurality of drive modes in which the operation states of the plurality of drive sources of the vehicle have different from each other,
    Based on the driving mode at each stage of the selected action plan, the driving of the vehicle is controlled.
    Vehicle control program.
PCT/JP2017/017355 2016-05-20 2017-05-08 Vehicle control system, vehicle control method, and vehicle control program WO2017199775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518221A JP6582339B2 (en) 2016-05-20 2017-05-08 Vehicle control system, vehicle control method, and vehicle control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-101336 2016-05-20
JP2016101336 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017199775A1 true WO2017199775A1 (en) 2017-11-23

Family

ID=60326424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017355 WO2017199775A1 (en) 2016-05-20 2017-05-08 Vehicle control system, vehicle control method, and vehicle control program

Country Status (2)

Country Link
JP (1) JP6582339B2 (en)
WO (1) WO2017199775A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153190A1 (en) * 2018-02-08 2019-08-15 深圳配天智能技术研究院有限公司 Method for controlling driving of electric vehicle, and controller, electric vehicle and storage medium
WO2019187854A1 (en) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 Control device and vehicle
JP2019187130A (en) * 2018-04-12 2019-10-24 トヨタ自動車株式会社 Control system for autonomous vehicle
CN110758121A (en) * 2019-11-13 2020-02-07 北京理工大学 Energy management system based on hierarchical control
JP2020082896A (en) * 2018-11-20 2020-06-04 本田技研工業株式会社 Vehicle control system
CN112208538A (en) * 2019-07-10 2021-01-12 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
JPWO2020188737A1 (en) * 2019-03-19 2021-09-13 三菱電機株式会社 Route search system and recommended route presentation method
JP2021149120A (en) * 2020-03-16 2021-09-27 本田技研工業株式会社 Movable body control device, movable body, and movable body control method
CN114435339A (en) * 2020-11-06 2022-05-06 本田技研工业株式会社 Control device, control method, and electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177091A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
JP2015030407A (en) * 2013-08-05 2015-02-16 トヨタ自動車株式会社 Movement information processor, movement information processing method and operation support system
JP2015157604A (en) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 Automatic driving assisting system, automatic driving assisting method, and computer program
JP2015214294A (en) * 2014-05-13 2015-12-03 三菱電機株式会社 Energy management device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177091A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
JP2015030407A (en) * 2013-08-05 2015-02-16 トヨタ自動車株式会社 Movement information processor, movement information processing method and operation support system
JP2015157604A (en) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 Automatic driving assisting system, automatic driving assisting method, and computer program
JP2015214294A (en) * 2014-05-13 2015-12-03 三菱電機株式会社 Energy management device for vehicle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153190A1 (en) * 2018-02-08 2019-08-15 深圳配天智能技术研究院有限公司 Method for controlling driving of electric vehicle, and controller, electric vehicle and storage medium
WO2019187854A1 (en) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 Control device and vehicle
JPWO2019187854A1 (en) * 2018-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Controls and vehicles
JP2021192583A (en) * 2018-04-12 2021-12-16 トヨタ自動車株式会社 Control system for autonomous vehicle
JP2019187130A (en) * 2018-04-12 2019-10-24 トヨタ自動車株式会社 Control system for autonomous vehicle
CN110370955A (en) * 2018-04-12 2019-10-25 丰田自动车株式会社 The control device of automatic driving vehicle
JP7201040B2 (en) 2018-04-12 2023-01-10 トヨタ自動車株式会社 Control device for self-driving vehicles
US11065974B2 (en) 2018-04-12 2021-07-20 Toyota Jidosha Kabushiki Kaisha Control system for autonomous vehicle
JP2020082896A (en) * 2018-11-20 2020-06-04 本田技研工業株式会社 Vehicle control system
JPWO2020188737A1 (en) * 2019-03-19 2021-09-13 三菱電機株式会社 Route search system and recommended route presentation method
CN112208538A (en) * 2019-07-10 2021-01-12 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
CN110758121B (en) * 2019-11-13 2021-06-04 北京理工大学 Energy management system based on hierarchical control
CN110758121A (en) * 2019-11-13 2020-02-07 北京理工大学 Energy management system based on hierarchical control
CN113479206A (en) * 2020-03-16 2021-10-08 本田技研工业株式会社 Mobile body control device, mobile body, and mobile body control method
JP2021149120A (en) * 2020-03-16 2021-09-27 本田技研工業株式会社 Movable body control device, movable body, and movable body control method
US11491986B2 (en) 2020-03-16 2022-11-08 Honda Motor Co., Ltd. Moving body control apparatus, moving body, and moving body control method
JP7229959B2 (en) 2020-03-16 2023-02-28 本田技研工業株式会社 Mobile body control device, mobile body and mobile body control method
CN113479206B (en) * 2020-03-16 2024-03-19 本田技研工业株式会社 Mobile body control device, mobile body, and mobile body control method
CN114435339A (en) * 2020-11-06 2022-05-06 本田技研工业株式会社 Control device, control method, and electric vehicle

Also Published As

Publication number Publication date
JPWO2017199775A1 (en) 2018-12-20
JP6582339B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6337382B2 (en) Vehicle control system, traffic information sharing system, vehicle control method, and vehicle control program
US10337872B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6275187B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6387548B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6582339B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6429203B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6745334B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6692898B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6540983B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6623468B2 (en) Vehicle control device, vehicle control method, and vehicle control program
WO2017187622A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6689365B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017206196A (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017218020A (en) Vehicle control device, vehicle control method and vehicle control program
JPWO2017179193A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2017168738A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6650331B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017214035A (en) Vehicle control system, vehicle control method, and vehicle control program
JP6758911B2 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2017158764A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017199317A (en) Vehicle control system, vehicle control method, and vehicle control program
JP2018037100A (en) Vehicle control system, vehicle control method and vehicle control program
JP2017226253A (en) Vehicle control system, vehicle control method and vehicle control program
WO2017179172A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2020125112A (en) Vehicle control system, vehicle control method, and vehicle control program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518221

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799200

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799200

Country of ref document: EP

Kind code of ref document: A1