WO2017199506A1 - 粒子分取装置及び粒子分取方法 - Google Patents

粒子分取装置及び粒子分取方法 Download PDF

Info

Publication number
WO2017199506A1
WO2017199506A1 PCT/JP2017/006503 JP2017006503W WO2017199506A1 WO 2017199506 A1 WO2017199506 A1 WO 2017199506A1 JP 2017006503 W JP2017006503 W JP 2017006503W WO 2017199506 A1 WO2017199506 A1 WO 2017199506A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting
unit
particle
sample
target particles
Prior art date
Application number
PCT/JP2017/006503
Other languages
English (en)
French (fr)
Inventor
達夫 清水
高橋 和也
遊 広野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/099,511 priority Critical patent/US11254557B2/en
Priority to EP17798944.9A priority patent/EP3460450B1/en
Priority to EP21207945.3A priority patent/EP3978903A1/en
Priority to CN201780028360.4A priority patent/CN109073532B/zh
Priority to JP2018518093A priority patent/JP6922901B2/ja
Publication of WO2017199506A1 publication Critical patent/WO2017199506A1/ja
Priority to US17/548,962 priority patent/US20220098027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/006Microdevices formed as a single homogeneous piece, i.e. wherein the mechanical function is obtained by the use of the device, e.g. cutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1023Microstructural devices for non-optical measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • This technology relates to a particle sorting apparatus and a particle sorting method. More specifically, the present invention relates to a particle sorting apparatus and the like that can take out only target microparticles at high speed and stably from a sheath flow that flows through a flow path.
  • a sheath flow including microparticles is formed in a flow path, and the microparticles in the sheath flow are irradiated with light to detect fluorescence and scattered light generated from the microparticles.
  • a fine particle sorting device that separates and collects a group of fine particles exhibiting predetermined optical characteristics is known. For example, in a flow cytometer, multiple types of cells contained in a sample are labeled with fluorescent dyes, and the fluorescent dyes labeled on each cell are optically identified, so that only specific types of cells are separated and collected. To be done.
  • fluid discharged from a flow cell, a microchip, or the like is made into droplets, and positive (+) or negative ( ⁇ ) charges are applied to the droplets.
  • droplet charging method for applying and separating target particles a micro-channel method for performing sorting in a microchip as disclosed in Patent Document 2, and the like.
  • Non-patent document 1 Non-patent document 2
  • Excitation optical system for excitation detection system for detecting fluorescence
  • electrical system that converts the detected light into an electrical signal by a photoelectric conversion element, amplifies it, and digitizes it, whether to sort based on the signal
  • the processing system for determining whether or not the size of the particle sorting apparatus is increased and the cost is increased in proportion to the parallel number of the sorting mechanisms.
  • a particle sorting device comprising a second sorting unit for sorting only target particles.
  • the first sorting unit and the second sorting unit are formed as separate members, and after sorting by the first sorting unit, sorting by the second sorting unit is performed. The structure performed may be sufficient.
  • the first sorting unit and the second sorting unit are formed as the same member, and after the sorting by the first sorting unit, the sorting by the second sorting unit is performed. It may be configured.
  • the particle molecular device according to the present technology may further include a stirring unit that returns a particle interval in the sorted sample sorted by the first sorting unit to a random state.
  • the measuring unit that measures the ratio of the target particles to the whole sample, and the sorting operation and the second sorting by the first sorting unit based on the measurement result by the measuring unit.
  • a sorting switching unit that switches the sorting operation by the unit to a parallel operation.
  • a first fractionation step of fractionating a preparative sample containing the target particles from an entire sample containing the target particles, and performing an abort process on the preparative sample A second fractionation step of fractionating only target particles.
  • the particle sorting method according to the present technology may include a stirring step of returning the particle spacing in the sorted sample to a random state after performing the first sorting step. Further, in the particle sorting method according to the present technology, further, a sorting switching step in which the first sorting step and the second sorting step are executed in parallel based on the ratio of the target particles to the whole sample. May be included.
  • the present technology performs the abort process on the fractionated sample and the first fractionation unit that sorts the fractionated sample including the target particle from the whole sample including the target particle without performing the abort process.
  • a particle sorting microchip comprising a second sorting unit for sorting only the target particles.
  • target particles widely include living body-related microparticles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
  • the living body-related microparticles include chromosomes, liposomes, mitochondria, organelles (organelles) that constitute various cells.
  • Cells include animal cells (such as blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • biologically relevant microparticles may include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
  • the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
  • Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethyl methacrylate, and the like.
  • Inorganic polymer materials include glass, silica, magnetic materials, and the like.
  • Metals include gold colloid, aluminum and the like.
  • the shape of these fine particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
  • a fine particle sorting technology capable of taking out only target fine particles from a sheath flow flowing through a flow path at high speed and stably.
  • the effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 10 is a diagram for explaining the sorting operation shown in FIG. 9. It is a figure which shows the function of the pressure chamber with which the microchip shown in FIG. 9 is provided.
  • FIG. 10 is a drawing substitute graph showing results of performance comparison between a cascade system and a parallel system based on parameter 2.
  • FIG. 6 is a drawing substitute graph showing the results of performance comparison between a cascade system and a parallel system based on parameter 3.
  • FIG. 10 is a drawing substitute graph showing the results of performance comparison between the cascade method and the parallel method based on the parameter 4;
  • Particle sorting device according to the first embodiment
  • Container (2) Liquid feeding unit (3) First sorting unit (3-1) Detection system (3-2) Processing system (3-3) Sorting System (4) Stirring section (5) Second sorting section (5-1) Sorting system (6) Storage section 2.
  • Particle sorting apparatus according to the second embodiment
  • First valve (2) Second valve (3) Sorted sample storage unit 3.
  • Particle sorting apparatus according to the third embodiment
  • Microchip for particle sorting according to the first embodiment (1) First sorting section (2) Liquid feeding section (3) Second sorting section 5.
  • Particle sorting method according to the first embodiment (1) Whole sample inflow step (2) First sorting step (3) Stirring step (4) Second sorting step (5) Target particle storage step Particle sorting method according to second embodiment
  • the particle sorting device 1 according to the present technology includes at least a first sorting unit 11 and a second sorting unit 12. Moreover, the said particle
  • the particle sorting device 1 includes the storage unit 14.
  • the storage unit 14 stores a whole sample containing target particles to be sorted.
  • the configuration of the container 14 is not particularly limited, and can be appropriately changed according to the storage environment of the target particles, the usage environment of the particle sorting apparatus, and the like, and a known structure can be adopted.
  • a structure equipped with a check valve etc. that cannot be mixed with other samples from the outside, or the external atmosphere such as a test tube and the entire sample
  • Many different structures are possible, such as the structure of the container in touch.
  • the particle sorter 1 concerning this art may be provided with the liquid feeding part 16 as needed.
  • the liquid feeding unit 16 causes the entire sample stored in the storage unit 14 to flow into the first sorting unit 11.
  • the structure of the liquid feeding part 16 may be any structure as long as the whole sample can be sent to the first fractionating part 11, and a known structure can be adopted.
  • a tubular member such as a tube
  • the configuration of the liquid feeding part 16 For example, a known liquid feed pump can be considered.
  • the particle sorting device 1 includes a first sorting unit 11 for sorting a target sample from the whole sample.
  • the first sorting unit 11 includes a detection system 110 that detects target particles from the entire sample, a sorting system 120 that sorts target particles based on detection results of the detection system 110, and detected optical information. And a processing system 130 for converting into electrical information. Each system will be described below.
  • the detection system 110 has a configuration in which, for example, a sample flow path into which the whole sample flows and a sheath liquid flow path into which the sheath liquid flows are formed, and a sheath flow including target particles is formed in the flow path. Yes.
  • the detection system 110 includes a labeling unit (not shown) that labels the target particles in the sheath flow with a fluorescent dye, and an irradiation unit (not shown) that irradiates the entire sample in the sheath flow with excitation light.
  • a light detection unit (not shown) that detects fluorescence and / or scattered light emitted from the target particle by irradiation of light by the irradiation unit.
  • the configuration of the labeling part is not particularly limited, and a known configuration can be adopted. Further, the type and number of fluorescent dyes that the labeling part labels on the target particles are not particularly limited, and FITC (fluorescein isothiocyanete: C 21 H 11 NO 5 S), PE (phycoerythrin), PerCP ( Peridininchlorophyll protein), PE-Cy5, PE-Cy7, and other known pigments can be appropriately selected and used as necessary. Furthermore, each sample to be sorted may be modified with a plurality of fluorescent dyes.
  • the configuration of the irradiation unit is not particularly limited, and a publicly known configuration can be adopted.
  • the light source included in the irradiation unit is not particularly limited, and for example, a semiconductor laser, that is, a laser diode, a solid laser, a gas laser, or the like It may be. Among these, by using a semiconductor laser, the apparatus can be configured to be small and inexpensive.
  • the wavelength of the light irradiated from the said irradiation part is not specifically limited, It can change suitably with the kind of target particle. For example, when the target particle is a cell, it is preferable not to use a wavelength of 300 nm or less because it may damage the target particle.
  • the configuration of the light detection unit is not particularly limited, and a known configuration can be adopted.
  • the light detection unit detects fluorescence and / or scattered light emitted from the target particle, and converts the optical signal into an electrical signal.
  • This signal conversion method is not particularly limited, and a known method can be used.
  • the electrical signal detected by the light detection unit is output to the processing system 130.
  • the processing system 130 in the first sorting unit 11 determines the optical characteristics of the sorted sample sorted by the sorting system 120 based on the input electrical signal. Then, the sorting information is output to the sorting system 120 so that the sorting sample containing the target particles is sorted by the sorting system 120 according to the optical characteristics. On the other hand, discard information is output to the sorting system 120 so that a sample that does not contain the target particles is discarded.
  • the configuration of the processing system 130 is not particularly limited, and the processing system 130 may be configured by a hard disk, a CPU, and a memory in which an OS is stored and a program for executing the sorting information and discard information output processing.
  • the sorting system 120 in the first sorting unit 11 sorts a sorted sample containing target particles from the entire sample based on the information output from the processing system 130. Specifically, this will be described with reference to FIG. In FIG. 2, the left-right direction indicates the time axis t through which the entire sample flows, squares indicate target particles, and ⁇ indicate non-target particles. As shown in FIG. 2, in the sorting system 120 of the first sorting unit 11, not only the target particles but also non-target particles are present adjacent to the target particles while the entire sample is flowing. Even so, the aborted sample (determination that the fractionation is not performed) is not performed, and the fractionated sample containing the non-target particle and the target particle is fractionated.
  • the sorting method by the sorting system 120 is not particularly limited, and any known method may be employed as long as it does not perform an abort process and sorts a sorting sample containing target particles.
  • the particle sorting device 1 may include the stirring unit 13 as necessary.
  • the stirring unit 13 is provided between the first sorting unit 11 and the second sorting unit 12 and changes the particle interval in the sorted sample. Specifically, the particle interval in the sorted sample sorted by the first sorting unit 11 is returned to a random state as in the case of the entire sample. Then, the preparative sample in which the particle interval is in a random state is sent to the second preparative unit 12.
  • the configuration of the stirring unit 13 is not particularly limited, and a known stirrer or the like can be employed.
  • the stirring unit 13 may be a so-called peristaltic dosing pump, for example.
  • a configuration in which the tubular member is compressed and relaxed is conceivable.
  • it does not specifically limit as a method to stir the said fractionation sample A well-known method is employable, For example, the method of loading a pressure with respect to the said fractionation sample etc. is mentioned.
  • the particle sorting device 1 includes a second sorting unit 12 for sorting target particles from the sorted sample.
  • the second sorting unit 12 includes a detection system 210 that detects target particles from the sample, a sorting system 220 that sorts target particles based on the detection result of the detection system 210, and a detected optical signal. And a processing system 230 for converting the signal into an electric signal.
  • a detection system 210 has the same configuration as the detection system 110 of the first sorting unit 11 except that the detection target is a sorted sample, description thereof is omitted.
  • the configuration of the processing system 230 is the same as that of the processing system 130 of the first sorting unit 11, and therefore the description thereof is omitted.
  • the sorting system 220 in the second sorting unit 12 sorts the target particles from the sorted sample based on the information output from the processing system 230. Specifically, this will be described with reference to FIG. In FIG. 3, the left-right direction indicates a time axis t through which the entire sample flows, squares indicate target particles, and ⁇ indicate non-target particles. As shown in FIG. 3, in the sorting system 220, unlike the sorting system 120 of the first sorting unit 11, only target particles are sorted, and an abort process is performed when a non-target particle is recognized. In addition, the sorting method by the sorting system 220 is not particularly limited, and any known method may be adopted as long as the target particles are sorted.
  • the particle sorter 1 concerning this art may be provided with storage part 16 as needed. Only the target particles sorted by the second sorting unit 12 are stored in the storing unit 16.
  • the configuration of the storage unit 16 is not particularly limited, and can be appropriately changed according to the storage environment of the target particles, the usage environment of the particle sorting apparatus, and the like, and a known structure can be adopted. For example, when there are conditions such that the target particles are easily damaged by the external environment, a sealed container in which the stored target particles do not come into contact with the external atmosphere can be used.
  • the sorting operation is performed twice by the first sorting unit 11 and the second sorting unit 12. (Hereinafter also referred to as “Yield”) needs to be equal to or greater than a desired value. For this reason, in the particle sorting apparatus 1 according to the present technology, the number of detected whole samples per unit time at the time of the sorting operation by the first sorting unit 11 is set to the desired recovery rate Ys of the final target particles. It is desirable to set in relation to Specifically, for example, an aspect in which the number of detected samples ⁇ per unit time in the first sorting unit 11 is set within a range in which the following Equation 1 is satisfied is conceivable.
  • the particle sorting apparatus 1 forms a sheath flow to sort the target particles, and forms a so-called flow cytometer.
  • the performance index of this flow cytometer is defined as shown in Table 1 below.
  • each parameter for deriving the formula 1 will be described based on the definition shown in Table 1. That is, in a flow cytometer, it is generally known that the number of particles passing through the detection unit per unit time follows a Poisson distribution. Here, if the average number of passing particles per unit time is ⁇ , the average number of passing particles per t time is expressed by ⁇ t. The probability that x number of target particles pass per t time is expressed by the following mathematical formula 2.
  • the probability that the target particle does not pass during the time t can be expressed by the following formula 3 based on the formula 2.
  • Equation 4 the probability that there is no particle in the front T 0 hour of the target particle and that the particle does not exist in the rear T 1 hour is based on Equation 2 below. This can be expressed by Equation 4.
  • the target particles (the number of passes per unit time is ⁇ T ) and the non-target particles (the number of passes per unit time is ⁇ U ) Can be mixed.
  • the particles included in this set are not correlated with each other.
  • the probability that the non-target particle does not pass during the front T 0 hour of the target particle and the non-target particle does not pass during the rear T 1 hour can be expressed by the following Equation 5.
  • the sorting efficiency E for the detected target particles will be described below with reference to FIG.
  • the time width (hereinafter referred to as “capture time width”) of the incoming particle group taken in by one sort operation is represented as T p .
  • the target particles are taken in when T 0 + T 1 > T p in FIG.
  • T 0 + T 1 ⁇ T p a determination is made that the target particle is not taken in (an abort process). For this reason, the fractionation efficiency E with respect to the detected target particle can be expressed by Equation 6 below.
  • the time zone can not be dubbed subsequent particles immediately after fractionation (hereinafter, "dead time T D ")". Therefore, based on Equation 1, the detected number ⁇ of the entire sample per unit time in the first sorting unit 11 of the particle sorting device 1 according to the present technology is related to the final target particle recovery rate Y. in the case shown, the it is necessary to consider the dead time T D.
  • the abort process is not performed in the flow cytometer, there is a possibility that when target particles that have reached the sorting section are captured, target particles that are present in the vicinity of the target particles may also be captured. In such a case, all the particles existing in the past in the time axis than the particles to be captured should have already been captured. Therefore, as shown in FIG. 6, the particles that may be captured together are more likely to be captured than the particles to be captured. Only particles present in the future time span T p / 2 can be recognized. For this reason, considering the probability that the remaining ⁇ r ⁇ 1 target particle population is mixed in the time width of T p / 2 for one target particle to be captured, the target particles captured by one sort operation The average value of the number can be expressed by the following formula 7.
  • the expected value T c can be expressed by the following Equation 8.
  • the first item of Equation 8 is when the first particle is taken in without aborting
  • the second item is when the first particle is aborted and the second particle is taken in
  • the third item is the first and second particles
  • the fourth item indicates the time when the first, second, and third particles are aborted and the fourth particle is captured.
  • Equation 9 is calculated.
  • the entire sample put into the particle sorting apparatus can be expressed by the following formula 11.
  • Equation 12 the ratio r of the number of target particles to the total number of particles can be expressed by Equation 12 below.
  • the recovery rate Y1 for the entire sample to be sorted in the first sorting unit 11 according to the present technology can be calculated.
  • the time spent in aborted next N ⁇ T c time spent in the dead time becomes N ⁇ T D.
  • the effective time contributing to fractionation per unit time is represented by 1 ⁇ N ⁇ T D ⁇ N ⁇ T c . Therefore, with respect to the average value of the number of target particles captured per unit time, the following equation 14 is established.
  • N can be expressed by the following Expression 15 by converting the Expression 14.
  • Equation 16 the average value of the number of target particles captured per unit time.
  • Equation 16 the following equation 17. This value is the number of target particles ⁇ T2 introduced into the second sorting unit 12 per unit time.
  • the average value of the number of non-target particles captured per unit time can be expressed by the following mathematical formula 18. This value is the target particle number ⁇ U2 introduced into the second sorting unit 12 per unit time.
  • the recovery rate Y1 with respect to the whole sample to be sorted in the first sorting unit 11 is “the number of target particles sorted (formula 17)” “the number of target particles ⁇ T in the input whole sample. ], And can be expressed by the following formula 19.
  • the recovery rate Y2 of the target particles with respect to the sample to be sorted in the second sorting unit 12 is calculated.
  • the following equation 20 is established.
  • N can be expressed by the following formula 21 by converting the formula 20.
  • Equation 21 the average value of the number of target particles captured per unit time can be expressed by Equation 22 below.
  • the recovery rate Y2 in the second sorting unit 12 is a value obtained by dividing the “number of sorted target particles (Formula 22)” by the “number of target particles ⁇ T2 in the input whole sample”. Therefore, the recovery rate Y2 can be expressed by the following formula 23.
  • the recovery rate Y Cascode is a value obtained by multiplying the recovery rate Y1 in the first fractionation unit 11 and the recovery rate Y2 in the second fractionation unit 12 as shown in the following formula 24.
  • the recovery rate Y Cascode is preferably equal to or higher than a desired recovery rate Ys of final target particles.
  • the first sorting unit 11 and the second sorting unit 12 are provided and a plurality of configurations for handling sorting are provided.
  • the target particles can be separated with high purity.
  • the size of the particle sorting device can be increased. Cost increase can be avoided as much as possible.
  • the entire sample per unit time in the first sorting unit 11 is set so that the recovery rate Y Cascode is equal to or higher than the desired recovery rate Ys of the final target particles. By setting the detection number ⁇ , the target particles can be separated with higher purity.
  • the first sorting unit 11 and the second sorting unit 12 are configured as separate members, but the particle sorting according to the second embodiment.
  • the first sorting unit 11 and the second sorting unit 12 are formed as the same member, and the single sorting unit 21 is the first sorting unit 11 and the second sorting unit according to the first embodiment. It is the structure which bears 12 functions. Accordingly, a first valve 22, a second valve 23, and a preparative sample storage unit 24 for circulating target particles are provided.
  • the particle sorting apparatus 2 includes a first valve 22 on a flow path through which an entire sample including target particles flows.
  • the first valve 22 is provided in a connection region between a flow path L that sends the whole sample to the sorting unit 21 and a flow path M through which particles sorted by the sorting unit 21 flow.
  • On-off valves 22a and 22b provided on the flow path L and on-off valves 22c provided on the flow path M are provided.
  • the particle sorting device 2 includes a second valve 23 on the flow path through which the particles sorted by the sorting unit 21 flow.
  • the second valve 23 is provided in a connection region between the flow path N through which the particles sorted by the sorting unit 21 flow, the flow path O connected to the storage unit 15, and the flow path M.
  • an open / close valve 23a provided on the flow path M
  • an open / close valve 23b provided on the flow path N
  • an open / close valve 23c provided on the flow path O.
  • the particle sorting device 2 includes a preparative sample storage unit 24 connected to the flow path M. Since the sorted sample storage unit 24 is connected to the flow path M, the sorted sample collected by the sorting unit 21 is stored. In the particle sorting device 2 according to the second embodiment, the sorted sample is agitated in the sorted sample storage unit 24, and the particle interval in the sorted sample is returned to a random state. That is, in the particle sorting device 2 according to the second embodiment, the sorted sample storage unit 24 also functions as the stirring unit 13 according to the first embodiment.
  • the configuration of the preparative sample storage unit 24 is not particularly limited, and can be appropriately changed according to the storage environment of the target particles, the usage environment of the particle sorting apparatus, and the like, and a known structure can be adopted. .
  • the on-off valves 22a and 22b of the first valve 22 are opened, and the on-off valve 22c is closed. Further, the on-off valves 23a and 23b of the second valve 23 are opened, and the on-off valve 23c is closed.
  • the sorting unit 21 functions in the same manner as the first sorting unit 11 of the first embodiment, and sorts a sorting sample including target particles from the entire sample. Then, the sorted sample is passed through the flow paths N and M, and finally stored in the sorted sample storage unit 24. Furthermore, in the said preparative sample storage part 24, a preparative sample is stirred and the particle
  • the on-off valve 22a of the first valve 22 is closed and the on-off valves 22b and 22c are opened, and the on-off valve 23a of the second valve 23 is closed and the on-off valves 23b and 23c are opened.
  • the sorting unit 21 functions in the same manner as the second sorting unit 12 of the first embodiment, and the target particles are sorted from the sorted sample.
  • the collected target particles flow through the flow path N and the flow path O and are stored in the storage portion 15.
  • the target particles circulate through the flow paths L, N, and M, and sorting is performed twice. Also with such a particle sorting apparatus 2, it is possible to sort target particles at high speed and with high purity. In addition, since the configuration is not simply provided with a plurality of sorting mechanisms, an increase in the size and cost of the particle sorting apparatus can be avoided as much as possible. Furthermore, in the particle sorting apparatus 2 according to the present technology, the entire sample per unit time in the sorting unit 21 in the first round so that the recovery rate Y Cascode is equal to or higher than the desired recovery rate Ys of the final target particles. By setting the detection number ⁇ , the target particles can be fractionated with higher purity.
  • the configuration of the first valve 22 and the second valve 23 shown in FIG. 7 is merely an example, and other configurations may be used as long as the target particles are circulated through the flow paths L, N, and M and the fractionation is performed a plurality of times.
  • the configuration of can be adopted.
  • the sorting method by the first sorting unit 11 and the second sorting unit 12 can be switched according to the ratio of the target particles in the whole sample. It is configured. Accordingly, a first valve 31, a second valve 32, a third valve 33, and a fourth valve 34 are provided. Below, it demonstrates centering around a different structure from the particle sorting device 1 which concerns on 1st embodiment, about the structure which is common in the particle sorting device 1 which concerns on 1st embodiment, attaches
  • a small amount of sample is flowed in advance with respect to the detection system 110, and the ratio of target particles in the entire sample is measured by the detection system 110.
  • the user can recognize the ratio of the target particles in the entire sample, it is not necessary to measure the ratio of the target particles in the entire sample in advance with the detection system 110.
  • the particle sorting device 3 includes a first valve 31.
  • the first valve 31 is provided on a flow path L that connects the storage unit 14 and the stirring unit 13. And the said 1st valve
  • the configuration of the first valve 31 is not particularly limited as long as it is a configuration capable of opening and closing the flow path L, and a known on-off valve or the like can be employed.
  • the particle sorting device 3 includes a second valve 32.
  • the second valve 32 is provided on a flow path N that is branched from a flow path M that connects the second fractionation unit 12 and the storage unit 15 and is connected to the stirring unit 13.
  • the second valve 32 opens and closes the flow path N according to the ratio of target particles in the entire sample.
  • the configuration of the second valve 32 is not particularly limited as long as it is a configuration capable of opening and closing the flow path N, and a known on-off valve or the like can be employed.
  • the particle sorting device 3 includes a third valve 33.
  • the third valve 33 is provided in a connection region between the flow path L and the flow path O branched from the flow path L and connected to the second sorting unit 12. Valves 33a and 33c and an on-off valve 33b provided on the flow path O are provided.
  • the particle sorting device 3 according to the third embodiment also includes a fourth valve 34.
  • the fourth valve 34 is provided in a connection region between the flow path N and the flow path P branched from the flow path N and connected to the first sorting unit 11, and is provided on the flow path N.
  • Valves 34a and 34c and an open / close valve 34b provided on the flow path P are provided.
  • the ratio of the target particles in the entire sample is based on a threshold value (the target particle ratio at which the recovery rate Y Parallel in the cascade method and the recovery rate Y Cascode in the parallel method are equal to each other). If it is lower, the closing valve 33a of the first valve 31 and the third valve 33 is closed to close the flow path L. Further, the closing valve 34a of the second valve 32 and the fourth valve 34 is closed to close the flow path N. As a result, the whole sample including the target particles is sent to the first fractionating unit 11 by driving the liquid feeding unit 16. Then, the first sorting unit 11 sorts only the sorted sample from the entire sample.
  • the sorted sample flows in the order of the flow path P, the stirring unit 13, and the flow path O and flows into the second sorting section 12. Then, only the target sample is collected from the sorted sample by the second sorting unit 12, and the target particle flows through the flow path M and is stored in the storage unit 15.
  • the number of detected samples ⁇ per unit time in the first sorting unit 11 is within a range where the following formula 25 is satisfied. It is preferable to set by.
  • the first valve 31 is opened and the on-off valve 33c is closed on the third valve 33, while the on-off valves 33a and 33b are opened.
  • the said flow path L and the flow path O are connected.
  • the second valve 31 is opened and the on-off valve 34c is closed in the fourth valve 34, while the on-off valves 34a, 34b are opened.
  • the said flow path P, the flow path N, and the flow path M are connected.
  • N can be expressed by the following Expression 27 by converting the Expression 26.
  • Equation 27 the average value of the number of target particles captured per unit time can be expressed by Equation 28 below.
  • the recovery rate in a single fractionation can be defined as a value obtained by dividing “the number of target particles sorted (formula 28)” by “the number of target particles ⁇ T in the input whole sample”. Therefore, the recovery rate Y can be expressed by the following mathematical formula 29.
  • Equation 30 the recovery rate Y Parallel in the case of the parallel method can be expressed by Equation 30 below.
  • the number of detected samples ⁇ per unit time in each of the sorting units 11 and 12 is expressed by the following Equation 31. As shown, it is preferable to set the recovery rate Y Parallel by the sorting units 11 and 12 to be equal to or higher than the desired recovery rate Ys of the final target particles.
  • the cascade type and the parallel type are switched by opening and closing the first valve 31, the second valve 32, the third valve 33, and the fourth valve 34. ing. That is, the first valve 31, the second valve 32, the third valve 33, and the fourth valve 34 correspond to a sorting switching unit according to the present technology.
  • the target particles can be purified with high purity and high speed according to the ratio of the target particles in the entire sample. Sorting can be performed. Furthermore, when the cascade system is selected, the target particles can be sorted at high speed and with high purity. In addition, since the configuration is not simply provided with a plurality of sorting mechanisms, an increase in the size and cost of the particle sorting apparatus can be avoided as much as possible. Further, in the particle sorting apparatus 3 according to the present technology, detection of the entire sample per unit time in the first sorting unit 11 so that the collection rate Y Cascode is equal to or higher than the desired collection rate Ys of the final target particles.
  • the target particles can be sorted at high speed and with high purity.
  • the configuration is not simply provided with a plurality of sorting mechanisms, an increase in the size and cost of the particle sorting apparatus can be avoided as much as possible.
  • the present technology also provides a particle sorting microchip.
  • a first embodiment of the particle sorting microchip according to the present technology will be described with reference to FIGS.
  • the particle sorting microchip 4 (hereinafter, also referred to as “microchip”) according to the present technology includes a first sorting section A for sorting a sorted sample including target particles from the whole sample, and a first sorting section.
  • a liquid feeding section 4B for feeding the fractionated sample separated at 4A and a second fractionating section 4C for fractionating only target particles from the fractionated sample are provided. The configuration of each section will be described below.
  • the microchip 4 includes a sample inlet 41 for introducing an entire sample including target particles.
  • a sample channel 42 through which the entire sample flows is connected to the sample inlet 41.
  • the microchip 4 also includes a sheath liquid inlet 43 for introducing a sheath liquid.
  • Two sheath liquid channels 44 and 44 are branched from the sheath liquid inlet 43, and the sheath liquid flows through the sheath liquid channels 44 and 44. Further, these sheath liquid channels 44 and 44 merge with the sample channel 42 to form a single main channel 45.
  • the irradiation light is irradiated by the irradiation unit 7A on the entire sample, particularly the target particles, flowing in the main channel 45.
  • the fluorescence and / or scattered light emitted from the whole sample by this light irradiation is detected by the light detection unit 8A.
  • the optical signal detected by the light detection unit 8A is converted into an electric signal and output to the drive unit 9A.
  • the drive unit 9 ⁇ / b> A performs a pressure adjustment in a pressure chamber 47 described later, and exhibits a function of feeding a fractionated sample containing target particles into the pressure chamber 47. The processing performed by the drive unit 9A will be described later.
  • the main channel 45 is branched into three channels downstream. Specifically, the main channel 45 is branched into a sorting channel 46 and two discard channels 48, 48.
  • the sorting channel 46 is a channel that contains the target particles and takes in the sorting sample determined by the driving unit 9A when the predetermined optical characteristics are satisfied.
  • a pressure chamber 47 into which a preparative sample containing target particles is taken is provided downstream of the preparative flow path 46. The inner space of the pressure chamber 47 is expanded in the plane direction (width direction of the sorting flow path 46) and also in the cross-sectional direction (height direction of the sorting flow path 46).
  • the pressure chamber 47 is formed to have a large vertical cross section with respect to the flow direction of the whole sample and the sheath liquid.
  • the whole sample that does not contain the target particles and is determined not to satisfy the predetermined optical characteristics by the drive unit 9A is not taken into the sorting channel 46, and either of the two waste channels 48, 48 is used. Flows to either side. Then, it is discharged from the disposal port 49 to the outside.
  • the irradiation unit 7A, the light detection unit 8A, the drive unit 9A, the sorting channel 46, and the pressure chamber 47 correspond to the first sorting unit of the present technology, and the particle fraction shown in FIG. The same function as the first sorting unit 11 of the sampling device 1 is exhibited.
  • the target particles are taken into the sorting channel 46 by generating a negative pressure in the sorting channel 46 by the drive unit 9A, and sucking the target particles into the sorting channel 46 using this negative pressure. Is done by.
  • a configuration for generating the negative pressure an actuator for increasing or decreasing the volume of the pressure chamber 47 is conceivable.
  • a piezoelectric element such as a piezo element is conceivable.
  • the actuator generates a stretching force in accordance with a change in applied voltage, causing a pressure change in the pressure chamber 47.
  • a flow occurs in the sorting flow path 46 along with this, the volume in the sorting flow path 46 changes at the same time.
  • the volume in the sorting channel 46 changes until it reaches a volume defined by the amount of displacement of the actuator corresponding to the applied voltage.
  • the drive unit 9A determines the optical characteristics of the entire sample, particularly the target particle, based on the input electrical signal.
  • the driving unit 9A determines the time (delay time) until the preparative sample containing the target particle moves from the main channel 45 to the branching unit. After elapses, a drive signal for acquiring the sample is output to the actuator.
  • the drive unit 9A applies a voltage that causes piezo contraction, increases the volume of the pressure chamber 47, and makes the internal pressure of the sorting channel 46 negative.
  • the fractionated sample is taken from the main channel 45 into the fractionation channel 46.
  • the drive unit 9A when it is determined that the fine particle is a non-target particle, the drive unit 9A outputs a non-acquisition drive signal to the actuator, as shown in FIGS. 10C and 10D. In such a case, the actuator does not operate, and non-target particles flow into one of the two waste flow paths 48 and 48.
  • the drive unit 9A repeats the determination of the optical characteristics of the target particle and the output of the drive signal to the actuator until the end of the analysis (see FIGS. 10E to 10F), and only the preparative sample containing the target particle is stored in the preparative flow path 46. (See FIG. 10F).
  • the target particles drawn into the sorting channel 46 are taken into the pressure chamber 47 as shown in FIG. 11A.
  • the symbol P indicates a sample sample taken into the pressure chamber 47
  • the symbol 47 a indicates an inlet of the sample sample P into the pressure chamber 47.
  • the flow of the preparative sample P becomes a jet (jet) when flowing into the pressure chamber 47 in which the inner space is expanded, and is separated from the flow path wall surface (see arrow in FIG. 11A). For this reason, the preparative sample P is taken away from the intake port 47 a to the back of the pressure chamber 47.
  • the first sorting section 4A exhibits the same function as the first sorting section 11 shown in FIG. For this reason, it is preferable that the detection number ⁇ of the entire sample per unit time in the first sorting section 4A is set in a range where the following mathematical formula 34 is satisfied.
  • liquid feeding section 4B a preparative sample channel 51 connected to the pressure chamber 47 provided in the first preparative section 4A, a stirring part 52 for stirring the preparative sample, and a stirring part 52 were passed.
  • the function of feeding the preparative sample that has flowed out from the first preparative section 4A is exhibited, and the particle interval of the preparative sample is the same as that of the whole sample in the stirring unit 52. , Again in a random state.
  • the preparative sample channel 51 is connected to the pressure chamber 47 so that the preparative sample separated in the first preparative section 4A is fed. Then, the sorted sample that has flowed through the sorting channel 51 is fed into the stirring unit 52.
  • the stirring unit 52 adopts a so-called peristaltic dosing pump configuration, and the stirring channel 55 connected to the preparative sample channel 51 and the discharge channel 53 and the compression / relaxation of the stirring channel 55 are controlled. And a rotating disk 56 for performing.
  • the stirring channel 55 is curved in a substantially U shape in plan view along the circumferential direction around the rotation axis S of the rotating disk 56.
  • the rotating disk 56 can be driven to rotate in the direction of the arrow X about the rotation axis S.
  • the rotating disk 56 includes three rollers 57 provided along the radial direction with respect to the rotation axis S.
  • the three rollers 57, 57, 57 are arranged at equal intervals along the circumferential direction with respect to the rotation axis S.
  • the rollers 57, 57, 57 rotate about the roller rotation axis T.
  • the trajectories of the rollers 57, 57, 57 are formed along the stirring channel 55.
  • the stirring channel 55 is repeatedly pressed and relaxed.
  • the preparative sample in which the particle interval is adjusted by the first preparative section 4A is again in a random state in the stirring channel 55 as in the case of the entire sample.
  • the sampled sample that has been agitated flows through the discharge channel 53 and is fed to the second sorting section 4C.
  • adopts the structure of a peristaltic dosing pump
  • the structure of the said stirring part 52 is not specifically limited,
  • the particle interval in the said preparative sample is again randomized.
  • a known configuration may be used as long as it can be brought into a state.
  • the stirring unit 52 adopts a so-called peristaltic dosing pump configuration, and compresses and relaxes the stirring channel 55. For this reason, a pulsating flow is generated in the stirring channel 55. Therefore, the particle sorting microchip according to the present technology is configured to absorb the pulsating flow generated in the stirring channel 55 by the pair of dampers 54.
  • the second sorting section 4 ⁇ / b> C includes a sample inlet 61 for introducing a sorted sample that has flowed through the discharge channel 53.
  • the sample inlet 61 is connected to a preparative sample channel 62 through which the preparative sample flows.
  • a sheath liquid inlet 63 for introducing the sheath liquid is also provided.
  • Two sheath liquid flow paths 64 and 64 are branched from the sheath liquid inlet 63, and the sheath liquid flows through the sheath liquid flow paths 64 and 64.
  • sheath liquid channels 64 and 64 merge with the sample channel 62 to form a single main channel 65.
  • this main flow path 65 the laminar flow of the preparative sample sent through the sample flow path 62 and the sheath liquid laminar flow sent through the sheath liquid flow paths 64 and 64 merge to form a layer of the preparative sample.
  • a flow is formed in which the flow is sandwiched between the sheath liquid laminar flow.
  • the irradiating unit 7B irradiates the fractionated sample flowing in the main channel 65, particularly the target particles, with the irradiation unit 7B. Fluorescence and / or scattered light emitted from the sample by this light irradiation is detected by the light detection unit 8B. The optical signal detected by the light detection unit 8B is converted into an electrical signal and output to the drive unit 9B.
  • the drive unit 9 ⁇ / b> B performs a pressure adjustment in the pressure chamber 67 connected to the main flow path 65, and exhibits a function of sending only target particles into the pressure chamber 67.
  • the main flow path 65 is branched into three flow paths downstream. Specifically, the main flow path 65 is branched into a sorting flow path 66 and two waste flow paths 68 and 68.
  • the sorting channel 66 is a channel into which target particles determined by the drive unit 9B when the predetermined optical characteristics are satisfied are taken in.
  • a pressure chamber 67 into which only target particles are taken is provided downstream of the sorting channel 66.
  • a storage channel 69 is connected to the pressure chamber 67, and target particles in the pressure chamber 67 flow through the storage channel 69 and are sent to a storage part (not shown) in which target particles are stored.
  • the non-target particles that are determined not to satisfy the predetermined optical characteristics by the drive unit 9B flow into one of the two waste flow paths 68 and 68 without being taken into the sorting flow path 66. . Thereafter, the waste is discharged from the disposal port 70 to the outside.
  • the sample inlet 61 is in the sample inlet 42 in the first sorting section 4A
  • the sorted sample channel 62 is in the sample channel 42
  • the sheath fluid inlet 63 is in the sheath fluid.
  • the sheath liquid channel 64 is in the sheath liquid channel 44
  • the main channel 65 is in the main channel 45
  • the sorting channel 66 is in the sorting channel 46
  • the pressure chamber 67 is in the same pressure chamber 47.
  • the disposal flow path 68 corresponds to the disposal flow path 48 and the disposal port 70 corresponds to the disposal port 49, and has the same configuration.
  • the irradiation unit 7B corresponds to the irradiation unit 7A in the first sorting section 4A
  • the light detection unit 8B corresponds to the light detection unit 8A
  • the drive unit 9B corresponds to the drive unit 9A
  • the structure itself is the same.
  • the irradiation unit 7B, the light detection unit 8B, the driving unit 9B, the sorting channel 66, and the pressure chamber 67 correspond to the second sorting unit of the present technology, and are illustrated in FIG.
  • the same function as that of the second sorting unit 12 of the particle sorting apparatus 1 shown is exhibited. That is, in the second sorting section 4C, only target particles are sorted from the sorted sample.
  • the microchip 4 configured as described above includes three substrate layers, the sample flow path 42, the sheath liquid flow 44, the main flow path 45, the sorting flow path 46, the pressure chamber 47, the waste flow path 48, the sample flow.
  • the channel 62, the sheath liquid flow 64, the main channel 65, the fractionation channel 66, the pressure chamber 67, the fractionation sample channel 51, the stirring channel 55, and the discharge channel 53 are the first substrate layers a 1 and 2. It is formed by the substrate layer a 2 layers th (see Fig. 12).
  • the sample inlet 41, aliquots passage 51, reservoir flow path 68, waste pot 70 is formed by the second layer of the substrate layer a 2 and 3-layer substrate layer a 3.
  • the microchip 4 can be configured by attaching a substrate layer on which the main flow path 45 and the like are formed. Formation of the main channel 45 and the like on the substrate layer can be performed by injection molding of a thermoplastic resin using a mold.
  • a thermoplastic resin known plastics can be used as materials for conventional microchips such as polycarbonate, polymethyl methacrylate resin (PMMA), cyclic polyolefin, polyethylene, polystyrene, polypropylene, polydimethylsiloxane (PDMS), and cycloolefin polymer. .
  • substrate layer a 1 to the rollers 53 of the agitating portion 52 are in contact are formed of a relatively soft resin, such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the target particles are high-speed and high-purity. Can be sorted.
  • the sorting work overlapped by the first sorting section 4A and the second sorting section 4C is possible and the configuration is not simply provided with a plurality of sorting mechanisms, the size and cost of the microchip itself are increased. Up can be avoided as much as possible.
  • the total number of detected samples per unit time in the first sorting section 4A so that the recovery rate Y Cascode is equal to or higher than the desired recovery rate Ys of the final target particles. By setting ⁇ , the target particles can be fractionated with higher purity.
  • FIG. 14 is a flowchart of the particle sorting method according to the first embodiment.
  • the method includes at least a first fractionation step S2 and a second fractionation step S4, and may include a whole sample inflow step S1, a stirring step S3, and a target particle storage step S5 as necessary. Good. Each step will be described below in the order in which the steps are performed.
  • the particle sorting method according to the present technology may include a whole sample inflow step S1 in which a whole sample containing target particles flows into, for example, the particle sorting apparatus 1 shown in FIG. .
  • the method for allowing the whole sample to flow in is not particularly limited, and for example, there is a method for compressing and relaxing the flow path through which the whole sample flows using the liquid feeding unit 16 and causing the whole sample in the storage unit 14 to flow. Conceivable.
  • the inflowed whole sample is subjected to sorting work by the first sorting unit 11 in the particle sorting device 1 shown in FIG.
  • the first sorting step S2 as in the first sorting unit 11, a sorting sample containing target particles is sorted without performing an abort process. Specifically, a sheath flow in which a laminar flow of the entire sample is sandwiched between sheath liquid laminar flows is formed, and fractionation is performed using the flow cytometry principle. That is, similar to the first sorting unit 11, the target particles in the sheath flow are irradiated with light to detect fluorescence and / or scattered light generated from the target particles and include target particles exhibiting predetermined optical characteristics. Separate only the preparative sample.
  • the number of detected samples ⁇ per unit time is preferably set within the range where the following Expression 35 is satisfied, as in the first sorting unit 11.
  • the sorting method in the first sorting step S1 is not particularly limited, and any known method may be adopted as long as it is a configuration that does not perform abort processing and sorts a sorting sample containing target particles. .
  • the particle sorting method according to the present technology may include a stirring step S3 for stirring the sample collected in the first sorting step S2. Specifically, in the stirring step S3, the molecular sample whose particle interval is adjusted in the first fractionation step S2 is stirred, and the particle interval is set to a random state again as in the case of the whole sample.
  • the agitation method in this agitation step S3 is not particularly limited, and examples thereof include a method of compressing / relaxing a flow path through which a preparative sample flows using a known peristaltic dosing pump.
  • the particle sorting method includes a second sorting step S4 in which only target particles are sorted from the sorted sample sorted in the first sorting step S2. .
  • sorting is performed using the flow cytometry principle. That is, a laminar flow of the sample sample forms a sheath flow sandwiched by a sheath liquid laminar flow, and the target particles in the sheath flow are irradiated with light to detect fluorescence and / or scattered light generated from the target particles. Only target particles exhibiting predetermined optical characteristics are separated.
  • sorting similar to that performed by the second sorting unit 12 included in the particle sorting device 1 shown in FIG. 1 is performed.
  • Target particle storage step S5 The particle sorting method according to the present technology may include a target particle storage step S5 for storing the target particles, if necessary.
  • the target particles sorted in the second sorting step S4 are stored.
  • the method for storing the target particles is not particularly limited, and a known method can be adopted in consideration of a storage environment suitable for the target particles.
  • the target particle is a cell, for example, in the storage step S5, temperature adjustment suitable for storing the cell, culture, or the like may be applied.
  • the particle sorting method according to the present technology is completed when the target particle storage step S5 ends.
  • the target particles can be obtained at high speed and with high purity. Sorting can be performed. Further, in the particle sorting method according to the present technology, detection of the entire sample per unit time in the first sorting step S1 so that the recovery rate Y Cascode is equal to or higher than the desired recovery rate Ys of the final target particles. By setting the number ⁇ , it is possible to sort the target particles with higher purity.
  • the present technology also provides a particle sorting method capable of switching between a cascade method and a parallel method according to the ratio of target particles in the entire sample.
  • the method relates to a particle sorting method using the particle sorting device 3 shown in FIG.
  • FIG. 15 is a flowchart showing a sorting switching step in the particle sorting method according to the second embodiment.
  • the first sorting unit 11 and the second sorting unit 12 are set to be connected in a dependent manner (cascading type setting step S101). Then, it is determined whether or not the user knows the ratio of the target particles in the entire sample (S102). If the user does not know the ratio (NO in S102), the process proceeds to the target particle ratio measurement step S103. .
  • the whole sample is allowed to flow into the first sorting unit 11, and the ratio of target particles is measured using the detection system 110 and the processing system 130 in the first sorting unit 11.
  • the method for measuring the target particles is not particularly limited, and a known method can be used. When the ratio of the target sample in the entire sample is in a known state (YES in S102), it is determined whether the ratio of the target particle is lower than a predetermined threshold (S104).
  • the detection number ⁇ of the entire sample per unit time in the first sorting unit 11 is set within a range in which the following Expression 36 is satisfied.
  • the number of detected samples ⁇ per unit time in each of the sorting units 11 and 12 is the recovery rate Y Parallel by the sorting units 11 and 12, as shown in the following Expression 37. Is preferably set to be equal to or higher than the desired recovery rate Ys of the final target particles.
  • the threshold value serving as a reference for switching between the cascade method and the parallel method Is expressed by a target particle ratio in which the recovery rate Y Parallel in the cascade system and the recovery rate Y Cascode in the parallel system are equal to each other, as expressed by the following formula 38.
  • step S104 when it is determined that the ratio of the target particles in the entire sample is lower than the threshold value (NO in S104), the following mathematical formula 39 is satisfied, so that the parallel method is changed ( Parallel type changing step S105). Thereafter, sorting by the first sorting unit 11 and sorting by the second sorting unit 12 are started (S106).
  • the recovery rate Y Parallel by the fractionating units 11 and 12 is the final target particle, as shown in the following equation 40, in the number of detected samples ⁇ per unit time in each of the fractionating units 11 and 12. It is preferable to set so as to be equal to or higher than the desired recovery rate Ys.
  • the determination step S104 when it is determined that the ratio of the target particles in the entire sample is higher than the threshold (YES in S104), since the following formula 41 is satisfied, the switching operation is not performed and the cascade method is used. Thus, the sorting by the first sorting unit 11 and the sorting by the second sorting unit 12 are started (S106).
  • the detection number ⁇ of the entire sample per unit time in the first sorting unit 11 is set within a range where the following formula 42 holds.
  • the target particles can be separated with high purity and high speed according to the ratio of the target particles in the entire sample. Can be taken. Furthermore, when the cascade system is selected, the target particles can be sorted at high speed and with high purity. Further, by setting the detection number ⁇ of the entire sample per unit time in the first fractionation unit 11 so that the recovery rate Y Cascode is equal to or higher than the desired recovery rate Ys of the final target particle, higher purity is achieved. The target particles can be collected with. On the other hand, even when the parallel method is selected, the target particles can be sorted at high speed and with high purity.
  • the ratio of target particles in the whole sample is measured in the measurement step S103.
  • the ratio of target particles may be measured, and the measurement step S103 may not be included.
  • the particle sorting apparatus may also have the following configuration.
  • a particle sorting apparatus comprising: (2) The first fractionation part and the second fractionation part are formed as separate members, and after the fractionation by the first fractionation part, the fractionation by the second fractionation part is performed. Taking device.
  • the order particle sorting method according to the present technology can also have the following configuration.
  • a particle sorting method (7)
  • Example demonstrated below shows an example of the typical Example of this technique, and, thereby, the scope of the present invention is not interpreted narrowly.
  • the inventors of the present application performed a performance comparison between a particle sorting apparatus that performs sorting by a cascade system and a particle sorting apparatus that performs sorting by a parallel system. Specifically, based on the above derived formula, several parameters (parameters 1 to 4) were set and performance comparison was performed, and the effect of the particle sorting method according to the present disclosure was quantitatively shown. .
  • the performance comparison results based on each parameter are shown in FIGS.
  • the horizontal axis is Event Rate
  • the vertical axis is Yield.
  • a dashed-dotted line shows the result of a parallel system
  • a dashed-two dotted line shows the result of a cascade system.
  • FIG. 16 is a drawing substitute graph showing the results of performance comparison between the cascade method and the parallel method based on the parameter 1.
  • the cascade method can always achieve a higher yield than the parallel method. That is, for example, when the Yield spec is 80%, it has been confirmed that about 35 keps operation is possible in the cascade system.
  • FIG. 17 is a drawing substitute graph showing results of performance comparison between the cascade method and the parallel method based on the parameter 2.
  • FIG. 18 is a drawing substitute graph showing results of performance comparison between the cascade method and the parallel method based on the parameter 3.
  • the cascade method can always achieve a higher yield than the parallel method. That is, for example, when the Yield spec is 80%, it has been confirmed that about 14 keps operation is possible in the cascade system.
  • FIG. 19 is a drawing substitute graph showing results of performance comparison between the cascade method and the parallel method based on the parameter 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

流路を通流するシースフローから目的とする微小粒子のみを高速かつ安定して取り出すことが可能な微小粒子分取技術を提供する。 アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取部と、前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、を備える、粒子分取装置。

Description

粒子分取装置及び粒子分取方法
 本技術は、粒子分取装置及び粒子分取方法に関する。より詳しくは、流路を通流するシースフローから目的とする微小粒子のみを高速かつ安定して取り出すことが可能な粒子分取装置等に関する。
 この種の粒子分取装置としては、例えば、流路内に微小粒子を含むシースフローを形成し、シースフロー中の微小粒子に光を照射して微小粒子から発生する蛍光及び散乱光を検出し、所定の光学特性を示す微小粒子群を分別回収する微小粒子分取装置が知られている。例えば、フローサイトメータでは、サンプル中に含まれる複数種類の細胞を蛍光色素により標識し、各細胞に標識された蛍光色素を光学的に識別することによって、特定の種類の細胞のみを分別、回収することが行われている。
 前記フローサイトメータにおいては、特許文献1に示されているような、フローセルやマイクロチップなどから排出される流体を液滴化して、その液滴にプラス(+)又はマイナス(-)の電荷を付与し、目的粒子を分取する、所謂液滴荷電方式や、特許文献2に示されているような、マイクロチップ内で分取を行うマイクロ流路方式などが知られている。
 このようなフローサイトメータの技術は、例えば免疫細胞療法などの分野で臨床用途として活用されることが期待され、無菌対応が可能で扱い易く、目的とする細胞を高純度で高速に分取することができる分取装置が求められている。(非特許文献1、非特許文献2)
特開2009-145213号公報 特開2014-036604号公報
Leukemia (2016) 30, 492-500; doi:10.1038/leu.2015.247; published online 6 October 2015 Baghbaderani et al., cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Preclinical and Clinical Applications, Stem Cell Reports (2015), http://dx.doi.org/10.1016/j.stemcr.2015.08.015
 しかし、従来の粒子分取技術では、分取を行う際にはある有限の体積中に存在する液体と粒子を一緒に取り込むため、目的粒子を分取しようとする場合、空間的に隣接する粒子との距離が近い場合には、その隣接粒子を伴連れして取り込む可能性が高くなる。このため、フローサイトメータにおいて目的粒子の高速分取を実現しようとすると、目的粒子と共に目的外粒子を伴連れする確率が高まり、分取された全体試料に対する目的粒子の比率(「純度」、「ピューリティ」ともいう)が低下するという問題があった。
 また、純度の低下が許容できない場合、隣接粒子との通過時間間隔が短い粒子に関してはその粒子が目的粒子である場合にも、処理系に置いて分取を行わないという判断(以下、「アボート」ともいう)を行う必要があり、投入した目的粒子数に対する分取された目的粒子数の比率(「収率」、「イールド」ともいう)が低下し、その結果として分取を高速化できないという問題があった。
 更に、粒子の分取を高速化するための手段としては、複数の分取機構を並列化して同時駆動させる方法が考えられるが、シース形成部に加えて、例えば染色された粒子の蛍光色素を励起するための励起光学系や、蛍光を検出するための検出系、検出した光を光電変換素子で電気信号に変換しそれを増幅しデジタル化する電気系、その信号に基づいて分取するかどうかを判断する処理系、などが分取機構の並列数に比例して粒子分取装置の大型化やコストアップを招くという問題があった。
 本技術は、アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取部と、前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、を備える、粒子分取装置を提供する。
 本技術に係る粒子分取装置において、前記第一分取部及び第二分取部は互いに別部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる構成であってもよい。
 また本技術に係る粒子分子装置において、前記第一分取部及び第二分取部は同一部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる構成であってもよい。
 更に本技術に係る粒子分子装置において、前記第一分取部により分取された分取試料における粒子間隔を無作為状態に戻す撹拌部と、を備えていてもよい。
 また本技術に係る粒子分子装置において、前記全体試料に対する目標粒子の比率を測定する測定部と、前記測定部による測定結果に基づいて、前記第一分取部による分取作業と第二分取部による分取作業とを並列作業に切り替える分取切り替え部と、を備えていてもよい。
 本技術は、アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取工程と、前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分工程と、を含む、粒子分取方法をも提供する。
 本技術に係る粒子分取方法において、前記第一分取工程を行った後、前記分取試料における粒子間隔を無作為状態に戻す撹拌工程と、を含んでいてもよい。
 また本技術に係る粒子分取方法において、更に、前記全体試料に対する目標粒子の比率に基づいて、前記第一分取工程と第二分取工程とを並列に実行させる分取切り替え工程と、を含んでいてもよい。
 更に、本技術は、アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取部と、前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、を備える、粒子分取用マイクロチップをも提供する。
 本技術において、「目的粒子」には、細胞や微生物、リポソームなどの生体関連微小粒子、あるいはラテックス粒子やゲル粒子、工業用粒子などの合成粒子などが広く含まれるものとする。
 前記生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。さらに、生体関連微小粒子には、核酸やタンパク質、これらの複合体などの生体関連高分子も包含され得るものとする。また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら微小粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
 本技術によれば、流路を通流するシースフローから目的とする微小粒子のみを高速かつ安定して取り出すことが可能な微小粒子分取技術が提供される。
 なお、ここに記載された効果は、必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であってもよい。
本技術に係る粒子分取装置の第一実施形態の概念を模式的に示す模式概念図である。 図1に示す粒子分取装置が備える第一分取部における分取処理を模式的に示す模式概念図である。 図1に示す粒子分取装置が備える第二分取部における分取処理を模式的に示す模式概念図である。 第一分取部において目的粒子を捕獲する際の、目的粒子と目的外粒子との位置関係を模式的に示す模式概念図である。 第一分取部における分取直後に後続粒子を取り込めない時間帯を模式的に示す模式概念図である。 第一分取部において、目的粒子を捕獲する際、当該目的粒子の近傍に存在する目的粒子を取り込む確率を説明するための模式概念図である。 本技術に係る粒子分取装置の第二実施形態の概念を模式的に示す模式概念図である。 本技術に係る粒子分取装置の第三実施形態の概念を模式的に示す模式概念図である。 本技術に係る粒子分取用マイクロチップの第一実施形態の概念を模式的に示す模式概念図である。 図9に示す分取動作を説明する図である。 図9に示すマイクロチップが備える圧力室の機能を示す図である。 図9に示すマイクロチップの撹拌部の側面図である。 図9に示すマイクロチップが備える撹拌部の詳細を示す拡大図である。 本技術に係る第一実施形態の粒子分取方法を示すフローチャートである。 本技術に係る第二実施形態の粒子分取方法を示すフローチャートである。 パラメータ1に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。 パラメータ2に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。 パラメータ3に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。 パラメータ4に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.第一実施形態に係る粒子分取装置
 (1)収容部
 (2)送液部
 (3)第一分取部
  (3-1)検出系
  (3-2)処理系
  (3-3)分取系
 (4)撹拌部
 (5)第二分取部
  (5-1)分取系
 (6)貯留部
 2.第二実施形態に係る粒子分取装置
 (1)第一バルブ
 (2)第二バルブ
 (3)分取試料収容部
 3.第三実施形態に係る粒子分取装置
 (1)第一バルブ
 (2)第二バルブ
 (3)第三バルブ
 (4)第四バルブ
 4.第一実施形態に係る粒子分取用マイクロチップ
 (1)第一分取区間
 (2)送液区間
 (3)第二分取区間
 5.第一実施形態に係る粒子分取方法
 (1)全体試料流入工程
 (2)第一分取工程
 (3)撹拌工程
 (4)第二分取工程
 (5)目的粒子貯留工程
 6.第二実施形態に係る粒子分取方法
  <1.第一実施形態に係る粒子分取装置>
 図1~6を用いて、本技術に係る粒子分取装置の第一実施形態について説明する。
 本技術に係る粒子分取装置1は、少なくとも、第一分取部11と、第二分取部12と、を備える。また、当該粒子分取装置1は、必要に応じて、攪拌部13、収容部14、貯留部15、送液部16を備えていてもよい。以下、粒子が流れる順に即して各部について説明する。当該粒子分取装置1では、第一分取部11による分取と、第二分取部12による分取と、二回の分取作業が行われる。尚、本技術に係る粒子分取装置1において、分取回数は特に限定されず、分取部が二以上備えている構成であればよい。
  (1)収容部
 本技術に係る粒子分取装置1は、前記収容部14を備える。当該収容部14には、分取対象である目的粒子が含まれる全体試料が収容される。この収容部14の構成としては特に限定されず、目的粒子の保存環境状況や、粒子分取装置の使用環境などに応じて適宜変更することができ、公知の構造を採用することができる。例えば、目的粒子を外部雰囲気から隔離する必要があるような場合には、逆止弁などを備えて外部から他の試料が混入することができない構造や、試験管などの外部雰囲気と全体試料が触れた状態の容器の構造など多種多様な構造が考えられる。
  (2)送液部
 本技術に係る粒子分取装置1は、必要に応じて、送液部16を備えていてもよい。この送液部16は、前記収容部14内に収容された全体試料を前記第一分取部11へと流入させる。この送液部16の構造としては、全体試料を第一分取部11へと送り出すことができる構成であればよく、公知の構造を採用することができる。
 例えば、前記収容部14に管状部材(チューブなど)が接続され、当該管状部材を介して全体試料が第一分取部11へと送液されるような場合には、送液部16の構成としては、公知の送液ポンプなどが考えられる。
  (3)第一分取部
 本技術に係る粒子分取装置1は、前記全体試料から目的試料を分取するための第一分取部11を備える。この第一分取部11は、全体試料から目的粒子を検出する検出系110と、検出系110の検出結果に基づいて目的粒子の分取を行う分取系120と、検出された光学情報を電気情報に変換する処理系130と、を備える。各系について、以下に説明する。
  (3-1)検出系
 本技術に係る第一分取部11では、前記送液部16により前記全体試料が検出系110へと送り出されるようになっている。
 この検出系110は、例えば、前記全体試料が流入する試料流路と、シース液が流入するシース液流路が形成され、流路内に目的粒子を含むシースフローが形成される構成となっている。
 また、この検出系110は、シースフロー中の目的粒子に対して蛍光色素を標識する標識部(図示外)や、シースフロー中の全体試料に対して励起光を照射する照射部(図示外)、当該照射部による光の照射により目的粒子から発せられる蛍光及び/又は散乱光を検出する光検出部(図示外)を備えている。
 前記標識部の構成としては特に限定されず、公知の構成を採用することができる。また、前記標識部が前記目的粒子に対して標識する蛍光色素の種類及び数は特に限定されるものではなく、FITC(fluorescein isothiocyanete:C2111NOS)、PE(phycoerythrin)、PerCP(periidininchlorophyll protein)、PE-Cy5及びPE-Cy7などの公知の色素を、必要に応じて適宜選択して使用することができる。更に、各分取対象試料が複数の蛍光色素で修飾されていてもよい。
 また、前記照射部の構成も特に限定されず、公知の構成を採用することができる、当該照射部が備える光源としては、特に限定されず、例えば、半導体レーザすなわちレーザダイオード、固体レーザまたはガスレーザ等であってもよい。このうち、半導体レーザを用いることで、装置を小型かつ安価に構成することができる。
 また、前記照射部から照射される光の波長は特に限定されず、目的粒子の種類により適宜変更することができる。例えば、前記目的粒子が細胞である場合、300nm以下の波長は目的粒子にダメージを与える可能性があるので使用しないことが好ましい。
 更に、光検出部の構成としても特に限定されず、公知の構成を採用することができる。この光検出部では、前記目的粒子から発せられた蛍光及び/又は散乱光を検出し、その光学信号を電気信号へと変換する。この信号変換方法としては特に限定されず、公知の方法を用いることができる。そして、前記光検出部により検出された電気信号は前記処理系130へと出力される。
  (3-2)処理系
 前記第一分取部11における処理系130では、入力された電気信号に基づいて分取系120により分取された分取試料の光学特性を判定する。そして、光学特性に応じて、目的粒子が含まれる分取試料が前記分取系120により分取されるよう、分取情報を分取系120に出力する。その一方で、目的粒子が含まれていない試料に関しては廃棄されるよう、廃棄情報を分取系120に出力する。
 この処理系130の構成は特に限定されず、前記分取情報及び廃棄情報の出力処理を実行するためのプログラムとOSが格納されたハードディスク、CPU及びメモリにより構成してもよい。
  (3-3)分取系
 第一分取部11における分取系120では、処理系130から出力された情報に基づいて、全体試料から、目的粒子が含まれる分取試料を分取する。
 具体的には、図2を用いて説明する。図2において、左右方向は全体試料が流れる時間軸tを示しており、四角は目的粒子を示し、△は目的外粒子を示している。図2に示すように、第一分取部11の分取系120では、全体試料が流れている中で、目的粒子だけでなく、目的粒子に隣接して目的外粒子が存在している場合であっても、アボート処理(分取を行わないという判断)を行わずに、当該目的外粒子及び目的粒子を含む分取試料を分取する。
 当該分取系120による分取方法は特に限定されず、アボート処理を行わず、目的粒子を含む分取試料を分取する構成であればよく、公知の方法を採用することができる。
  (4)撹拌部
 本技術に係る粒子分取装置1は、必要に応じて、攪拌部13を備えていてもよい。
 この撹拌部13は、前記第一分取部11と第二分取部12との間に設けられ、前記分取試料における粒子間隔の変更を行う。具体的には、第一分取部11により分取された分取試料中の粒子間隔を、全体試料時と同様、無作為な状態に戻す。そして、粒子間隔が無作為な状態となった分取試料を前記第二分取部12へと送液する。
 この撹拌部13の構成としては特に限定されず、公知の撹拌器等を採用することができる。第一分取部11と第二分取12とは管状部材により接続され、当該管状部材の内部を分取試料が流れる構成である場合、攪拌部13としては、例えば所謂ペリスタルティック・ドージングポンプなどが挙げられ、これにより前記管状部材を圧迫・弛緩する構成が考えられる。
 尚、前記分取試料を撹拌する方法としては特に限定されず、公知の方法を採用することができ、例えば、前記分取試料に対して圧力を負荷する方法などが挙げられる。
  (5)第二分取部
 本技術に係る粒子分取装置1は、前記分取試料から目的粒子を分取する第二分取部12を備える。この第二分取部12は、分取試料から目的粒子を検出する検出系210と、検出系210の検出結果に基づいて目的粒子の分取を行う分取系220と、検出された光学信号を電気信号に変換する処理系230と、を備える。各系について、以下に説明する。
 尚、検出系210に関しては、検出対象が分取試料であること以外は、第一分取部11の検出系110と同一の構成であるため、その説明は省略する。また、前記処理系230の構成に関しても、第一分取部11の処理系130と同一であるため、その説明を省略する。
  (5-1)分取系
 第二分取部12における分取系220では、処理系230から出力された情報に基づいて、分取試料から目的粒子を分取する。
 具体的には、図3を用いて説明する。図3において、左右方向は全体試料が流れる時間軸tを示しており、四角は目的粒子を示し、△は目的外粒子を示している。図3に示すように、分取系220では、第一分取部11の分取系120とは異なり、目標粒子のみを分取し、目的外粒子を認識した場合にはアボート処理を行う。
 尚、当該分取系220による分取方法は特に限定されず、目的粒子のみを分取する構成であればよく、公知の方法を採用することができる。
  (6)貯留部
 本技術に係る粒子分取装置1は、必要に応じて、貯留部16を備えていてもよい。
 この貯留部16には、前記第二分取部12により分取された目的粒子のみが貯留されるようになっている。
 当該貯留部16の構成としては特に限定されず、目的粒子の保存環境状況や粒子分取装置の使用環境などに応じて適宜変更することができ、公知の構造を採用することができる。例えば、目的粒子が外部環境により損傷を受けやすい等の条件がある場合には、貯留された目的粒子が外部雰囲気に触れない密閉容器などが挙げられる。
 以上のような本技術に係る粒子分取装置1では、例えば、第一分取部11及び第二分取部12により分取作業が二回行われるが、最終的に、目的粒子の回収率(以下、「イールド(Yield)」ともいう)を所望の値以上とする必要がある。
 このため、本技術に係る粒子分取装置1では、第一分取部11による分取作業の際の、単位時間あたりの全体試料の検出数を、最終的な目的粒子の所望の回収率Ysとの関係で設定することが望ましい。
 具体的には、例えば、第一分取部11における、単位時間あたりの全体試料の検出数λが、下記数式1が成り立つ範囲で設定する一態様が考えられる。
Figure JPOXMLDOC01-appb-M000001
 以下、前記数式1を算出する方法について、図4~6を用いて説明する。
 ここで前述の如く、本技術に係る粒子分取装置1では、シースフローを形成して目的粒子の分取を行っており、いわゆるフローサイトメータの構成をなしている。
 このフローサイトメータの性能指標を、下記表1に示すように定義する。
Figure JPOXMLDOC01-appb-T000002
 以下、表1に示される定義に基づいて、前記数式1を導き出すための各パラメータについて説明する。
 すなわち、フローサイトメータでは一般的に、単位時間当たりに検出部を通過する粒子数はPoisson分布に従うことが知られている。
 ここで、単位時間当たりの平均通過粒子数をλとすると,t時間当たりの平均通過粒子数はλtで表される。またt時間当たりにx個の目的粒子が通過する確率は、下記数式2で表される。
Figure JPOXMLDOC01-appb-M000003
 更に、t時間の間に、目的粒子が通過しない確率は、前記数式2に基づいて、下記数式3で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 また、ある目的粒子に着目し、当該目的粒子の前方T時間の間に粒子が存在せず,且つその後方T時間の間に粒子が存在しない確率は、前記数式2に基づいて、下記数式4で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 更に、フローサイトメータに関しては、目的粒子を分取するにあたり、当該目的粒子(単位時間当たりの通過数をλとする)と目的外粒子(単位時間当たりの通過数をλとする)とが混在することが考えられる。また、ある目的粒子を捕獲する場合、当該目的粒子とこの目的粒子の前後に存在する目的外粒子からなるλ+1個の集合を考えると、この集合に含まれる粒子は互いに相関が無いので,目的粒子の前方T時間の間に目的外粒子が通過せず且つその後方T時間の間に目的外粒子が通過しない確率は、下記数式5で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 次に、検出した目的粒子に対する分取効率Eについて、図4を用いて以下に説明する。
 ここで、一回の分取動作で取り込まれる到来粒子群の時間幅(以下、「捕獲時間幅」という)をTと表す。
 そして、フローサイトメータでは一般的に、分取試料中の目的粒子比率Pを確保するため、図4中、T+T>Tである場合はその目的粒子の取り込みを行う。その一方で、T+T≦Tである場合はその目的粒子の取り込みを行わないという判断(アボート処理)を行う。
 このため、検出した目的粒子に対する分取効率Eは、下記数式6で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 また、フローサイトメータにより分取を行う際、特にマイクロ流路方式を採用している場合は図5に示すように、分取直後に後続粒子を取り込めない時間帯(以下、「デッドタイムT」という)が存在する。従って、数式1に基づいて、本技術に係る粒子分取装置1の第一分取部11における単位時間あたりの全体試料の検出数λを、最終的な目的粒子の回収率Yとの関係で示す場合には、前記デッドタイムTをも考慮する必要がある。
 更に、フローサイトメータにおいて、アボート処理を行わない場合、分取部に到達した目的粒子を捕獲する時、当該目的粒子の近傍に存在する目的粒子をも取り込む可能性がある。
 かかる場合、捕獲しようとしている粒子より時間軸上過去に存在する粒子は既に全て捕獲されているはずなので、図6に示すように、一緒に取り込まれる可能性のある粒子は捕獲しようとしている粒子より未来の時間幅T/2内に存在している粒子だけと認識できる。
 このため、捕獲される目的粒子一個に対して残りλ-1個の目的粒子集団がT/2の時間幅に混入する確率を考慮すると、一回の分取動作で捕獲される目的粒子数の平均値は、下記数式7で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 また、フローサイトメータにおいて、アボート処理を行う場合に、ある目的粒子の捕獲を試みてから実際に目的粒子を捕獲するのに要する時間の期待値Tを考慮する必要がある。
 ここで、目的粒子の平均到来時間間隔は1/λであるため、e-λUTP≡Eと定義すると、期待値Tは、下記数式8で表すことができる。ここで、数式8の第1項目は最初の粒子をアボートせずに取り込む場合、第2項目は1番目の粒子をアボートし2番目の粒子を取り込む場合、第3項目は1、2番目の粒子をアボートし3番目の粒子を取り込む場合、第4項目は1、2、3番目の粒子をアボートし4番目の粒子を取り込む場合、等々、の時間を表している。
Figure JPOXMLDOC01-appb-M000009
 この数式8に基づいて、下記数式9が算出される。
Figure JPOXMLDOC01-appb-M000010
 尚、前記数式9の算出には、下記数式10に示す関係式を用いた。
Figure JPOXMLDOC01-appb-M000011
 更に前述の如く、フローサイトメータにおいて、分取を行う上で、目的粒子と目的外粒子が混入する場合がある。
 ここで、例えば、目的粒子が第一分取部11を通過する際の単位時間当たりの通過数をλと示し、目的外粒子が第一分取部11を通過する際の単位時間当たりの通過数をλと示した場合、粒子分取装置に投入される全体試料は、下記数式11で表すことができる。
Figure JPOXMLDOC01-appb-M000012
 更に前記数式11により、全粒子数に対する目的粒子数の比率rは、下記数式12で表すことができる。
Figure JPOXMLDOC01-appb-M000013
 以上から、目的粒子が第一分取部11を通過する際の単位時間当たりの通過数をλrと目的外粒子が第一分取部11を通過する際の単位時間当たりの通過数λは、下記数式13で表すことができる。
Figure JPOXMLDOC01-appb-M000014
 数式2~13に示すパラメータを用いて、本技術に係る第一分取部11における分取すべき全体試料に対する回収率Y1を算出することができる。
 ここで、単位時間当たりの分取回数をNとすると、アボートで費やされる時間はN・Tとなり、デッドタイムで費やされる時間はN・Tとなる。このため、単位時間当たり分取に寄与する有効な時間は1-N・T-N・Tで表される。従って、単位時間当たりに捕獲される目的粒子数の平均値に関しては、下記数式14に示す等式が成り立つ。
Figure JPOXMLDOC01-appb-M000015
 前記数式14を変換することにより、Nを下記数式15で表すことができる。
Figure JPOXMLDOC01-appb-M000016
 この数式15からすれば、単位時間当たりに捕獲される目的粒子数の平均値は、下記数式16で表すことができる。
Figure JPOXMLDOC01-appb-M000017
 そして、本技術における第一分取部11では、アボート処理を行わないため、前記数式Tの値が0となり、数式16は下記数式17に変換される。この値は単位時間当たりに第二分取部12に投入される目的粒子数λT2になる。
Figure JPOXMLDOC01-appb-M000018
 これと同様に、単位時間当たりに捕獲される目的外粒子数の平均値は、下記数式18で表すことができる。この値は単位時間当たりに第二分取部12に投入される目的粒子数λU2になる。
Figure JPOXMLDOC01-appb-M000019
 以上の結果から、第一分取部11における分取すべき全体試料に対する回収率Y1は、「分取された目的粒子数(数式17)」を「投入した全体試料中の目的粒子数λ」で除した値であり、下記数式19で示すことができる。
Figure JPOXMLDOC01-appb-M000020
 次に、第二分取部12における分取すべき分取試料に対する目的粒子の回収率Y2について算出する。
 先ず、単位時間当たりに捕獲される目的粒子数の平均値に関しては、下記数式20に示す等式が成り立つ。
Figure JPOXMLDOC01-appb-M000021
 前記数式20を変換することにより、Nを下記数式21で表すことができる。
Figure JPOXMLDOC01-appb-M000022
 この数式21からすれば、単位時間当たりに捕獲される目的粒子数の平均値は、下記数式22で表すことができる。
Figure JPOXMLDOC01-appb-M000023
 第二分取部12における回収率Y2は、「分取された目的粒子数(数式22)」を「投入した全体試料中の目的粒子数λT2」で除した値である。
 このため、回収率Y2は、下記数式23で表すことができる。
Figure JPOXMLDOC01-appb-M000024
 本技術に係る粒子分取装置1では、第一分取部11による分取と第二分取部12による分取とが行われることから、当該粒子分取装置1の分取による目的粒子の回収率YCascodeは、下記数式24に示されるように、第一分取部11における回収率Y1と第二分取部12における回収率Y2とを掛け合わせた値となる。
Figure JPOXMLDOC01-appb-M000025
 この数式24により、本技術に係る粒子分取装置1では、前記回収率YCascodeが、最終的な目的粒子の所望の回収率Ys以上であることが好ましい。
 以上のように構成された本技術に係る粒子分取装置1によれば、第一分取部11及び第二分取部12を備え、分取を担う構成を複数備えているため、高速且つ高純度で目的粒子の分取を行うことができる。
 また、第一分取部11及び第二分取部12により重畳した分取作業を可能としており、単純に分取機構を複数設ける構成としているわけではないため、粒子分取装置の大型化やコストアップを可及的に避けることができる。
 更に、本技術に係る粒子分取装置1において、回収率YCascodeが、最終的な目的粒子の所望の回収率Ys以上となるように、第一分取部11における単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
  <2.第二実施形態に係る粒子分取装置>
 次に、図7を用いて、本技術に係る粒子分取装置の第二実施形態について説明する。
 図1等に示す本技術に係る粒子分取装置1では、第一分取部11と第二分取部12とが互いに別部材として構成されているが、第二実施形態に係る粒子分取装置2では、第一分取部11と第二分取部12が同一部材として形成され、単一の分取部21が第一実施形態に係る第一分取部11及び第二分取部12の機能を担う構成となっている。これに伴い、目的粒子を循環させるための第一バルブ22、第二バルブ23及び分取試料収容部24を備えている。
 以下では、第一実施形態に係る粒子分取装置1と異なる構成、すなわち前記第一バルブ22、第二バルブ23及び分取試料収容部24の構成を中心に説明し、第一実施形態に係る粒子分取装置1と共通する構成については同一の符号を付してその説明を割愛する。
 尚、本実施形態が備える単一の分取部の構成は、第一実施形態に係る粒子分取装置1の第一分取部11及び第二分取部12の構成と同一であるため、その説明に関しても割愛する。
  (1)第一バルブ
 第二実施形態に係る粒子分取装置2は、目的粒子を含む全体試料が流れる流路上に、第一バルブ22を備える。この第一バルブ22は、前記全体試料を分取部21へと送る流路Lと、分取部21により分取された粒子が通流する流路Mとの連結領域に設けられており、流路L上に設けられる開閉弁22a,22bと、流路M上に設けられる開閉弁22cと、を備える。
  (2)第二バルブ
 粒子分取装置2は、分取部21により分取された粒子が流れる流路上に第二バルブ23を備える。この第二バルブ23は、分取部21により分取された粒子が流れる流路Nと、前記貯留部15に接続される流路Oと、前記流路Mと、の連結領域に設けられており、前記流路M上に設けられる開閉弁23aと、前記流路N上に設けられる開閉弁23bと、流路O上に設けられる開閉弁23cと、を備える。
  (3)分取試料収容部
 第二実施形態に係る粒子分取装置2は、前記流路Mに連結された分取試料収容部24を備える。この分取試料収容部24は、前記流路Mに連結されていることから、分取部21によって分取された前記分取試料が収容されるようになっている。
 また、第二実施形態に係る粒子分取装置2では、前記分取試料収容部24において、分取試料の撹拌が行われ、分取試料内の粒子間隔が無作為状態に戻される。すなわち、第二実施形態に係る粒子分取装置2では、分取試料収容部24が第一実施形態に係る撹拌部13としても機能している。
 この分取試料収容部24の構成としては特に限定されず、目的粒子の保存環境状況や粒子分取装置の使用環境などに応じて適宜変更することができ、公知の構造を採用することができる。
 このような第二実施形態に係る粒子分取装置2では先ず、前記第一バルブ22の開閉弁22a,22bを開き、且つ、開閉弁22cを閉めた状態とする。また、第二バルブ23の開閉弁23a,23bを開き、且つ、開閉弁23cを閉めた状態とする。
 かかる状態で、送液部16を駆動させることにより、収容部14内の全体試料が分取部21へと送液される。
 その後、分取部21は第一実施形態の第一分取部11と同一に機能し、全体試料から、目的粒子を含む分取試料を分取する。そして、分取された分取試料は、前記流路N、M内を通流し、最終的に分取試料収容部24へと収容される。更に、当該分取試料収容部24内にて、分取試料が撹拌され、分取試料内の粒子間隔が無作為状態に戻される。
 その後、前記第一バルブ22の開閉弁22aを閉め、且つ、開閉弁22b,22cを開いた状態とし、また第二バルブ23の開閉弁23aを閉め、且つ、開閉弁23b,23cを開いた状態とする。
 かかる状態で、送液部16を駆動させることにより、分取試料収容部24内の分取試料は流路M、流路L内を通流し、再び前記分取部21に流入するようになっている。
 この際には、分取部21が第一実施形態の第二分取部12と同一に機能し、分取試料から目的粒子が分取される。そして、分取された目的粒子は、流路N、流路Oを通流して前記貯留部15へと貯留されるようになる。
 すなわち、第二実施形態に係る粒子分取装置2では、目的粒子が流路L,N,Mを循環して分取が二回行われるようになっている。
 このような粒子分取装置2によっても、高速且つ高純度で目的粒子の分取を行うことができる。また、単純に分取機構を複数設ける構成としているわけではないため、粒子分取装置の大型化やコストアップを可及的に避けることができる。
 更に、本技術に係る粒子分取装置2において、回収率YCascodeが、最終的な目的粒子の所望の回収率Ys以上となるように、一巡目の分取部21における単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
 尚、図7に示す第一バルブ22及び第二バルブ23の構成は一例に過ぎず、目的粒子が流路L,N,Mを循環して分取が複数回行われる構成であれば、他の構成を採用しても差し支えない。
  <3.第三実施形態に係る粒子分取装置>
 次に、図8を用いて、本技術に係る粒子分取装置の第三実施形態について説明する。
 ここで、全体試料における目的粒子の比率が所定の閾値よりも低い場合には、第一実施形態及び第二実施形態に係る粒子分取装置1,2のように、前記第一分取部11及び第二分取部12により縦続的な分取を行うことが好ましい(以下、「縦続方式」という)。その一方で、全体試料における目的粒子の比率が所定の閾値よりも高い場合には、第一分取部11による分取と、第二分取部12による分取と、を並列的に行う方が分取の高速化に適している(以下、「並列方式」という)。
 このため、第三実施形態に係る粒子分取装置3では、全体試料における目的粒子の比率に応じて、第一分取部11及び第二分取部12による分取方法を切り替えることができるように構成されている。これに伴い、第一バルブ31、第二バルブ32、第三バルブ33及び第四バルブ34を備える。
 以下では、第一実施形態に係る粒子分取装置1と異なる構成を中心に説明し、第一実施形態に係る粒子分取装置1と共通する構成については同一の符号を付してその説明を割愛する。
 第三実施形態に係る粒子分取装置3では、予め検出系110に対して少量のサンプルを流し、当該検出系110により、全体試料における目的粒子の比率を測定する。
 尚、ユーザが全体試料における目的粒子の比率を認識することができる場合には、予め検出系110にて全体試料における目的粒子の比率を測定する必要はない。
  (1)第一バルブ
 第三実施形態に係る粒子分取装置3は、第一バルブ31を備える。この第一バルブ31は、前記収容部14と撹拌部13とを連結する流路L上に設けられている。そして、当該第一バルブ31は、全体試料における目的粒子の比率に応じて、流路Lの開放・閉塞を行う。
 この第一バルブ31の構成としては特に限定されず、流路Lの開放・閉塞を行うことが可能な構成であればよく、公知の開閉バルブなどを採用することができる。
  (2)第二バルブ
 第三実施形態に係る粒子分取装置3は、第二バルブ32を備える。この第二バルブ32は、第二分取部12と貯留部15とを連結する流路Mから分岐して前記撹拌部13に連結される流路N上に設けられている。そして、当該第二バルブ32は、全体試料における目的粒子の比率に応じて、流路Nの開放・閉塞を行う。
 この第二バルブ32の構成としては特に限定されず、流路Nの開放・閉塞を行うことが可能な構成であればよく、公知の開閉バルブなどを採用することができる。
  (3)第三バルブ
 第三実施形態に係る粒子分取装置3は、第三バルブ33を備える。この第三バルブ33は、前記流路Lと、当該流路Lから分岐して第二分取部12と連結する流路Oと、の連結領域に設けられ、流路L上に設けられる開閉弁33a,33cと、流路O上に設けられる開閉弁33bと、を備える。
  (4)第四バルブ
 第三実施形態に係る粒子分取装置3は、第四バルブ34をも備える。この第四バルブ34は、前記流路Nと、当該流路Nから分岐して第一分取部11と連結する流路Pと、の連結領域に設けられ、流路N上に設けられる開閉弁34a,34cと、流路P上に設けられる開閉弁34bと、を備える。
 このような第三実施形態に係る粒子分取装置3において、全体試料における目的粒子の比率が閾値(縦続方式における回収率YParallelと並列方式における回収率YCascodeが互いに等しくなる目的粒子比率)よりも低い場合には、第一バルブ31及び第三バルブ33の閉塞弁33aを閉めて流路Lを閉塞する。また、第二バルブ32及び第四バルブ34の閉塞弁34aを閉めて流路Nを閉塞する。
 その結果として、目的粒子を含む全体試料は送液部16の駆動により第一分取部11へと送られるようになる。そして、当該第一分取部11により、全体試料から分取試料のみが分取される。
 この分取試料は、前記流路P、攪拌部13、流路Oの順に通流し、前記第二分取部12へと流入する。そして、当該第二分取部12により分取試料から目的試料のみが分取され、当該目的粒子は流路Mを通流して、前記貯留部15に貯留される。
 かかる場合には、第一実施形態に係る粒子分取装置1と同一の構成であるため、第一分取部11における、単位時間あたりの全体試料の検出数λが、下記数式25が成り立つ範囲で設定することが好ましい。
Figure JPOXMLDOC01-appb-M000026
 一方、全体試料における目的粒子の比率が前記閾値よりも高い場合には、第一バルブ31を開き、且つ、第三バルブ33において開閉弁33cを閉める一方、開閉弁33a,33bを開く。これにより、前記流路Lと流路Oとを連通させる。
 また、第二バルブ31を開き、且つ、第四バルブ34において開閉弁34cを閉める一方、開閉弁34a,34bを開く。これにより、前記流路P、流路N、流路Mを連通させる。
 このように設定することにより、送液部16の駆動により収容部14から排出された全体試料は、第一分取部11による分取及び第二分取部12による分取に同時に供され、最終的には各分取部11,12により分取された目的粒子は貯留部15に貯留される。
 ここで、単位時間当たりの分取回数をNとすると、アボートで費やされる時間はN・Tとなり、デッドタイムで費やされる時間はN・Tとなる。このため、単位時間当たり分取に寄与する有効な時間は1-N・T-N・Tで表される。従って、単位時間当たりに捕獲される目的粒子数の平均値に関しては、下記数式26に示す等式が成り立つ。
Figure JPOXMLDOC01-appb-M000027
 前記数式26を変換することにより、Nを下記数式27で表すことができる。
Figure JPOXMLDOC01-appb-M000028
 この数式27からすれば、単位時間当たりに捕獲される目的粒子数の平均値は、下記数式28で表すことができる。
Figure JPOXMLDOC01-appb-M000029
 ここで、一回の分取における回収率は、「分取された目的粒子数(数式28)」を「投入した全体試料中の目的粒子数λ」で除した値、と定義することができるため、当該回収率Yは、下記数式29で表すことができる。
Figure JPOXMLDOC01-appb-M000030
 そして、並列方式とした場合、並列数をMとすると、数式29におけるλ及びλはそれぞれ、λ/M及びλ/Mに置き換えることができる。その結果、並列方式の場合における回収率YParallelは、下記数式30で表すことができる。
Figure JPOXMLDOC01-appb-M000031
 以上から、第三実施形態に係る粒子分取装置3において、並列方式を採用する場合には、各分取部11,12における、単位時間あたりの全体試料の検出数λが、下記数式31に示されるように、分取部11,12による回収率YParallelが最終的な目的粒子の所望の回収率Ys以上となるように、設定することが好ましい。
Figure JPOXMLDOC01-appb-M000032
 縦続方式と並列方式との切り替え基準についてより具体的に説明すると、前記数式30を満たす最大のイベントレートを「λParallel_max」とし、前記数式25を満たす最大のイベントレートを「λCascode_max」とした場合、下記数式32の条件の場合には、並列方式を選択する。一方で、下記数式33の条件の場合には、縦続方式を選択する。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
 このような第三実施形態に係る粒子分取装置3では、前記第一バルブ31、第二バルブ32、第三バルブ33及び第四バルブ34の開閉により、縦続式と並列式が切り替わるようになっている。
 すなわち、これら第一バルブ31、第二バルブ32、第三バルブ33及び第四バルブ34が、本技術に係る分取切り替え部に相当する。
 以上のような第三実施形態に係る粒子分取装置3によれば、並列方式と縦続方式の切り替えが可能であるため、全体試料における目的粒子の比率に応じて高純度且つ高速に目的粒子の分取を行うことができる。
 更に言えば、縦続方式を選択した場合には、高速且つ高純度で目的粒子の分取を行うことができる。また、単純に分取機構を複数設ける構成としているわけではないため、粒子分取装置の大型化やコストアップを可及的に避けることができる。また、本技術に係る粒子分取装置3において、回収率YCascodeが最終的な目的粒子の所望の回収率Ys以上となるように、第一分取部11における単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
 一方、並列方式を選択した場合であっても、高速且つ高純度で目的粒子の分取を行うことができる。また、単純に分取機構を複数設ける構成としているわけではないため、粒子分取装置の大型化やコストアップを可及的に避けることができる。
  <4.第一実施形態に係る粒子分取用マイクロチップ>
 本技術は、粒子分取用マイクロチップをも提供する。
 図9~13を用いて、本技術に係る粒子分取用マイクロチップの第一実施形態について説明する。
 本技術に係る粒子分取用マイクロチップ4(以下、「マイクロチップ」ともいう)は、全体試料から目的粒子を含む分取試料を分取する第一分取区間Aと、第一分取区間4Aにて分取された分取試料を送液する送液区間4Bと、前記分取試料から目的粒子のみを分取する第二分取区間4Cと、を備える。各区間の構成について、以下に説明する。
  (1)第一分取区間
 マイクロチップ4は、目的粒子を含む全体試料を導入するための試料インレット41を備える。この試料インレット41には全体試料が通流する試料流路42が接続されている。また、このマイクロチップ4は、シース液を導入するためのシース液インレット43を備える。このシース液インレット43からは二本のシース液流路44,44が分岐しており、前記シース液はこれらシース液流路44,44内を通流する。更に、これらシース液流路44,44は、前記試料流路42と合流して一本の主流路45を形成している。この主流路45において、試料流路42を送液される全体試料の層流と、シース液流路44,44を送液されるシース液層流と、が合流し、全体試料の層流がシース液層流に挟み込まれたシースフローを形成する。
 また、前記主流路45では、当該主流路45内を流れる全体試料、特に目的粒子に対して、照射部7Aにより励起光が照射される。この光照射により前記全体試料から発せられた蛍光及び/又は散乱光は、光検出部8Aにより検出される。この光検出部8Aにより検出された光学信号は電気信号へと変換され、駆動部9Aへと出力される。この駆動部9Aは、後述する圧力室47における圧力調整を行い、目的粒子を含む分取試料を前記圧力室47へと送り込む機能を発揮する。当該駆動部9Aが行う処理については後述する。
 更に、主流路45は下流において、三つの流路に分岐している。具体的には、主流路45は、分取流路46及び二本の廃棄流路48,48に分岐している。このうち、分取流路46は、目的粒子を含み、所定の光学特性を満たすと前記駆動部9Aによって判定された分取試料が取り込まれる流路である。また、分取流路46の下流には、目的粒子を含む分取試料が取り込まれる圧力室47が設けられている。この圧力室47の内空は、平面方向(分取流路46の幅方向)に拡張されるとともに、断面方向(分取流路46の高さ方向)にも拡張されている。すなわち、圧力室47では全体試料及びシース液の流れ方向に対する垂直断面が大きくなるように形成されている。
 一方、駆動部9Aによって所定の光学特性を満たさないと判定された、目的粒子を含まない全体試料は、分取流路46内に取り込まれることなく、二本の廃棄流路48,48のいずれか一方に流れる。その後、廃棄ポート49より外部に排出される。
 すなわち、マイクロチップ101において、前記照射部7A、光検出部8A、駆動部9A、分取流路46及び圧力室47は、本技術の第一分取部に相当し、図1に示す粒子分取装置1の第一分取部11と同一の機能を発揮する。
 目的粒子の分取流路46内への取り込みは、駆動部9Aによって分取流路46内に負圧を発生させ、この負圧を利用して目的粒子を分取流路46内に吸い込むことによって行われる。負圧を発生させる構成としては、前記圧力室47の体積を増減させるアクチュエータが考えられ、一例としてピエゾ素子などの圧電素子が考えられる。
 前記アクチュエータは、印加される電圧の変化に伴って伸縮力を発生し、圧力室47内に圧力変化を生じさせる。これに伴って分取流路46内に流動が生じると、同時に、分取流路46内の体積が変化する。分取流路46内の体積は、印加電圧に対応したアクチュエータの変位量によって規定される体積に到達するまで変化する。
 以下、図10及び11を用いて、駆動部9Aにより分取について詳細に説明する。
 駆動部9Aは、入力される電気信号に基づいて、全体試料、特に目的粒子の光学特性を判定する。粒子が目的粒子と判定された場合、駆動部9Aは、図10A及びBに示すように、当該目的粒子を含む分取試料が主流路45から分岐部に移動するまでの時間(遅れ時間)を経過した後に、アクチュエータに当該取試料を取得するための駆動信号を出力する。
 具体的には、アクチュエータがピエゾ素子である場合、駆動部9Aは、ピエゾ収縮となる電圧を印加し、圧力室47の容積を増加させ、分取流路46の内圧を負圧にすることで、分取試料を主流路45内から分取流路46内へ取り込む。
 一方、微小粒子が目的外粒子と判定された場合、駆動部9Aは、図10C及びDに示すように、アクチュエータに非取得の駆動信号を出力する。かかる場合、アクチュエータは動作せず、目的外粒子は二本の廃棄流路48,48のいずれか一方に流れる。
 駆動部9Aは、目的粒子の光学特性の判定と、アクチュエータへの駆動信号の出力とを分析終了まで繰り返し(図10E~F参照)、目的粒子を含む分取試料のみを分取流路46内に蓄積する(図10F参照)。
 分取流路46内へ引き込まれた目的粒子は、図11Aに示すように、圧力室47内に取り込まれる。図中、符号Pは、圧力室47内に取り込まれた分取試料を示し、符号47aは、圧力室47への分取試料Pの取込口を示す。分取試料Pの流れは、内空が拡張された圧力室47に流入する際に噴流(ジェット)となり、流路壁面から剥離する(図11A中矢印参照)。このため、分取試料Pは、取込口47aから離れて、圧力室47の奥まで取り込まれる。
 前述の如く、第一分取区間4Aでは、図1に示す第一分取部11と同一の機能を発揮する。このため、第一分取区間4Aにおける、単位時間あたりの全体試料の検出数λは、下記数式34が成り立つ範囲で設定されることが好ましい。
Figure JPOXMLDOC01-appb-M000035
  (2)送液区間
 次に、送液区間4Bについて説明する。この送液区間4Bには、第一分取区間4Aに設けられる圧力室47に接続される分取試料流路51と、分取試料を撹拌する撹拌部52と、攪拌部52を通流した分取試料が通流する排出流路53と、分取試料流路51及び排出流路53上に設けられる二つのダンパー54,54と、を備える。
 この送液区間4Bでは、第一分取区間4Aから流出された分取試料を送液する機能を発揮し、更に前記撹拌部52にて、分取試料の粒子間隔を全体試料の時と同様、再び無作為の状態とする。
 分取試料流路51は前記圧力室47と接続されており、第一分取区間4Aにて分取された分取試料が送液されるようになっている。そして、分取流路51内を通流した分取試料は、撹拌部52内へと送液される。
 次に、前記分取試料を撹拌する撹拌部52について、図12及び13を用いて説明する。
 撹拌部52は、所謂ペリスタルティック・ドージングポンプの構成を採用しており、分取試料流路51及び排出流路53に接続される撹拌流路55と、当該撹拌流路55の圧縮・弛緩を行う回転盤56と、を備える。前記撹拌流路55は、前記回転盤56の回転軸Sを中心に周方向に沿って平面視略U字状に湾曲している。
 一方、前記回転盤56は、回転軸Sを中心に矢線X方向に回転駆動することができる。この回転盤56は、前記回転軸Sに対して半径方向に沿って設けられるローラ57を三つ備える。三つのローラ57,57,57は、前記回転軸Sに対して周方向に沿って等間隔に配置される。
 そして、回転盤56が回転軸Sを中心に回転すると、各ローラ57,57,57は、ローラ回転軸Tを中心に回転する。この際、各ローラ57,57,57の軌跡は、前記撹拌流路55に沿って形成される。
 このように構成された回転盤56が回転することにより、撹拌流路55の圧迫・弛緩が繰り返し行われるようになっている。その結果、第一分取区間4Aにより、粒子間隔が整った分取試料は、攪拌流路55内にて、その粒子間隔が全体試料の時と同様、再び無作為の状態になる。
 そして、攪拌された分取試料は、排出流路53内を通流し、第二分取区間4Cへと送液される。
 尚、図12等で示す撹拌部52は、ペリスタルティック・ドージングポンプの構成を採用しているが、当該撹拌部52の構成は特に限定されず、前記分取試料における粒子間隔を再び無作為の状態とすることができる構成であれば、公知の構成を用いてもよい。
 前述のように、この送液区間4Bでは、撹拌部52が所謂ペリスタルティック・ドージングポンプの構成を採用しており、攪拌流路55を圧迫・弛緩する。このため、攪拌流路55において、脈流が発生することとなる。このため、本技術に係る粒子分取用マイクロチップでは、前記一対のダンパー54により、攪拌流路55で発生する脈流を吸収するように構成されている。
  (3)第二分取区間
 前記撹拌部52によって撹拌された分取試料は、前記排出流路53を通流して第二分取区間4Cへと送液される。
 この第二分取区間4Cは、排出流路53を通流してきた分取試料を導入するための試料インレット61を備える。この試料インレット61には前記分取試料が通流する分取試料流路62が接続されている。また、シース液を導入するためのシース液インレット63も備える。このシース液インレット63からは二本のシース液流路64,64が分岐しており、前記シース液はこれらシース液流路64,64内を通流する。更に、これらシース液流路64,64は、前記試料流路62と合流して、一本の主流路65を形成している。この主流路65において、試料流路62を送液される分取試料の層流と、シース液流路64,64を送液されるシース液層流と、が合流し、分取試料の層流がシース液層流に挟み込まれたシースフローを形成される。
 更に、前記主流路65では、当該主流路65内を流れる分取試料、特に目的粒子に対して、照射部7Bにより励起光が照射される。この光照射により前記分取試料から発せられた蛍光及び/又は散乱光は、光検出部8Bにより検出される。この光検出部8Bにより検出された光学信号は電気信号へと変換され、駆動部9Bへと出力される。この駆動部9Bは、前記主流路65と連結された圧力室67における圧力調整を行い、目的粒子のみを前記圧力室67へと送り込む機能を発揮する。
 更に、主流路65は下流において、三つの流路に分岐している。具体的には、主流路65は、分取流路66及び二本の廃棄流路68,68に分岐している。このうち、分取流路66は、所定の光学特性を満たすと前記駆動部9Bによって判定された目的粒子が取り込まれる流路である。また、分取流路66の下流には、目的粒子のみが取り込まれる圧力室67が設けられている。
 この圧力室67には貯留流路69が接続され、圧力室67内の目的粒子は当該貯留流路69を通流して、目的粒子が貯留される貯留部(図示外)に送液される。
 一方、駆動部9Bによって所定の光学特性を満たさないと判定された、目的外粒子は、分取流路66内に取り込まれることなく、二本の廃棄流路68,68のいずれか一方に流れる。その後、廃棄ポート70より外部に排出される。
 以上のような第二分取区間4Cにおいて、試料インレット61は第一分取区間4Aの試料インレット42に、分取試料流路62は同試料流路42に、シース液インレット63は同シース液インレット43に、シース液流路64は同シース液流路44に、主流路65は同主流路45に、分取流路66は同分取流路46に、圧力室67は同圧力室47に、廃棄流路68は同廃棄流路48に、廃棄ポート70は同廃棄ポート49に対応しており、同一の構成をなしている。また、照射部7Bは第一分取区間4Aの照射部7Aに、光検出部8Bは同光検出部8Aに、駆動部9Bは同駆動部9Aに対応し、構造自体は同一である。
 但し、第二分取区間4Cでは、前記照射部7B、光検出部8B、駆動部9B、分取流路66及び圧力室67が、本技術の第二分取部に相当し、図1に示す粒子分取装置1の第二分取部12と同一の機能を発揮するようになっている。すなわち、第二分取区間4Cでは、分取試料から目的粒子のみが分取される。
 以上のように構成されたマイクロチップ4は三層の基板層からなり、試料流路42、シース液流44、主流路45、分取流路46、圧力室47、廃棄流路48、試料流路62、シース液流64、主流路65、分取流路66、圧力室67、分取試料流路51、攪拌流路55及び排出流路53は、1層目の基板層aと2層目の基板層aにより形成されている(図12参照)。
 一方、試料インレット41、分取試料流路51、貯留流路68、廃棄ポット70は2層目の基板層aと3層目の基板層aにより形成されている。
 このマイクロチップ4は、主流路45等が形成された基板層を貼り合わせて構成できる。
 基板層への主流路45等の形成は、金型を用いた熱可塑性樹脂の射出成形により行うことができる。熱可塑性樹脂には、ポリカーボネート、ポリメタクリル酸メチル樹脂(PMMA)、環状ポリオレフィン、ポリエチレン、ポリスチレン、ポリプロピレン、ポリジメチルシロキサン(PDMS)及びシクロオレフィンポリマーなどの従来マイクロチップの材料として公知のプラスチックを採用できる。
 前述の如く、本技術に係るマイクロチップ4では、攪拌部52により撹拌流路55を圧迫・弛緩することにより分取試料における粒子間隔を無作為な状態に戻すことが好ましい。このため、攪拌部52の各ローラ53が接触する基板層aは比較的軟質な樹脂で形成されていることが好ましく、例えば、ポリジメチルシロキサン(PDMS)などが挙げられる。
 なお、マイクロチップ4の基板層の層構造は、三層に限定されることはないものとする。
 以上のような本技術に係るマイクロチップ4によれば、第一分取区間4A及び第二分取区間4Cを備え、分取を担う構成を複数備えているため、高速且つ高純度で目的粒子の分取を行うことができる。
 また、第一分取区間4A及び第二分取区間4Cにより重畳した分取作業を可能としており、単純に分取機構を複数設ける構成としているわけではないため、マイクロチップ自体の大型化やコストアップを可及的に避けることができる。
 更に、本技術に係るマイクロチップ4において、回収率YCascodeが、最終的な目的粒子の所望の回収率Ys以上となるように、第一分取区間4Aにおける単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
  <5.第一実施形態に係る粒子分取方法>
 本技術は、目的粒子を分取するための粒子分取方法をも提供する。
 図14は、第一実施形態に係る粒子分取方法のフローチャートである。
 当該方法は、少なくとも、第一分取工程S2と、第二分取工程S4と、を含み、必要に応じて、全体試料流入工程S1、攪拌工程S3、目的粒子貯留工程S5を含んでいてもよい。各工程について、工程が行われる順序に即して以下に説明する。
  (1)全体試料流入工程
 本技術に係る粒子分取方法では、目的粒子を含む全体試料を、例えば、図1に示す粒子分取装置1に流入させる全体試料流入工程S1を含んでいてもよい。
 全体試料を流入させる方法としては特に限定されず、例えば、前記送液部16を用いて全体試料が通流する流路を圧迫・弛緩し、前記収容部14内の全体試料を流入させる方法が考えられる。
  (2)第一分取工程
 流入された全体試料は、例えば、図1に示す粒子分取装置1における第一分取部11により分取作業に供される。
 第一分取工程S2では、前記第一分取部11と同様、アボート処理を行わずに、目的粒子を含む分取試料を分取する。
 具体的には、全体試料の層流がシース液層流に挟み込まれたシースフローを形成し、フローサイトメトリー原理を用いて分取を行う。
 すなわち、前記第一分取部11と同様、シースフロー中の目的粒子に光を照射して目的粒子から発生する蛍光及び/又は散乱光を検出し、所定の光学特性を示す目的粒子が含まれる分取試料のみを分別する。
 この第一分取工程S2では、前記第一分取部11と同様、単位時間あたりの全体試料の検出数λは、下記数式35が成り立つ範囲で設定されることが好ましい。
Figure JPOXMLDOC01-appb-M000036
 尚、第一分取工程S1による分取方法は特に限定されず、アボート処理を行わず、目的粒子を含む分取試料を分取する構成であればよく、公知の方法を採用することができる。
  (3)撹拌工程
 本技術に係る粒子分取方法は、第一分取工程S2により分取された分取試料を撹拌する撹拌工程S3を含んでいてもよい。
 具体的には、この撹拌工程S3では、第一分取工程S2により粒子間隔が調整された分子試料を撹拌し、その粒子間隔が全体試料の時と同様、再び無作為の状態とする。
 この撹拌工程S3における撹拌方法は特に限定されず、例えば、公知のペリスタルティック・ドージングポンプを用いて、分取試料が通流する流路を圧迫・弛緩する方法等が挙げられる。
  (4)第二分取工程
 本技術に係る粒子分取方法は、第一分取工程S2により分取された分取試料から目的粒子のみを分取する第二分取工程S4を含んでいる。
 この第二分取工程S4は、第一分取工程S2と同様、フローサイトメトリー原理を用いて分取を行う。すなわち、分取試料の層流がシース液層流に挟み込まれたシースフローを形成し、当該シースフロー中の目的粒子に光を照射して目的粒子から発生する蛍光及び/又は散乱光を検出し、所定の光学特性を示す目的粒子のみを分別する。
 換言すると、この第二分取工程S4では、図1に示す粒子分取装置1が備える第二分取部12と同様の分取が行われる。
  (5)目的粒子貯留工程
 本技術に係る粒子分取方法は、必要に応じて、目的粒子を貯留するための目的粒子貯留工程S5を含んでいてもよい。
 この目的粒子貯留工程S5では、前記第二分取工程S4により分取された目的粒子の貯留を行う。
 目的粒子を貯留する方法としては特に限定されず、目的粒子に適した保存環境などを考慮し、公知の方法を採用することができる。目的粒子が細胞である場合には、例えば、貯留工程S5にて、細胞を貯留するために適した温度調整や、培養等を適用しても差し支えない。
 本技術に係る粒子分取方法は、当該目的粒子貯留工程S5が終了することにより、完了する。
 以上の本技術に係る粒子分取方法によれば、第一分取工程S1及び第二分取工程S2を備え、分取を担う構成を複数備えているため、高速且つ高純度で目的粒子の分取を行うことができる。
 また、本技術に係る粒子分取方法において、回収率YCascodeが、最終的な目的粒子の所望の回収率Ys以上となるように、第一分取工程S1における単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
  <6.第二実施形態に係る粒子分取方法>
 図15を用いて、本技術に係る粒子分取方法の第二実施形態について説明する。
 本開示の粒子分取技術において、全体試料における目的粒子の比率が所定の閾値よりも低い場合には、第一分取工程S1及び第二分取工程S4を縦続的に行うことが好ましい(以下、「縦続方式」という)。その一方で、全体試料における目的粒子の比率が所定の閾値よりも高い場合には、第一分取工程S1と第二分取工程S4とを並列的に行う方が分取の高速化に適している(以下、「並列方式」という)。
 このため、本技術は、全体試料における目的粒子の比率に応じて、縦続方式と並列方式とを切り替えることが可能な粒子分取方法をも提供する。
 当該方法は、図8に示される粒子分取装置3を用いた粒子分取方法に関する。
 尚、図15は、第二実施形態に係る粒子分取方法における、分取切り替え工程を示すフローチャートである。
 この粒子分取方法では先ず、前記第一分取部11と第二分取部12とが従属的に接続された状態に設定する(縦続式設定工程S101)。
 そして、ユーザが全体試料における目的粒子の比率を知っているか否かを判定し(S102)、ユーザは当該比率を知らない場合には(S102におけるNO)、目的粒子比率の測定工程S103へと進む。
 この測定工程S103では、前記第一分取部11に対して全体試料を流入させ、当該第一分取部11における検出系110、処理系130を用いて、目的粒子の比率を測定する。尚、目的粒子を測定する方法は特に限定されず、公知の方法を用いることができる。
 そして、全体試料における目的試料の比率が既知の状態となったら(S102におけるYES)、目的粒子の比率が所定の閾値よりも低いか否かの判定を行う(S104)。
 ここで前述の如く、縦続方式において、第一分取部11における、単位時間あたりの全体試料の検出数λは、下記数式36が成り立つ範囲で設定されることが好ましい。
Figure JPOXMLDOC01-appb-M000037
 一方、並列方式として場合には、各分取部11,12における、単位時間あたりの全体試料の検出数λが、下記数式37に示されるように、分取部11,12による回収率YParallelが最終的な目的粒子の所望の回収率Ys以上となるように、設定することが好ましい。
Figure JPOXMLDOC01-appb-M000038
 以上から、前記数式36を満たす最大のイベントレートを「λParallel_max」とし、前記数式35を満たす最大のイベントレートを「λCascode_max」とした場合、縦続方式と並列方式との切り替え基準となる前記閾値は、下記数式38で表すように、縦続方式における回収率YParallelと並列方式における回収率YCascodeが互いに等しくなる目的粒子比率で表される。
Figure JPOXMLDOC01-appb-M000039
 そして、判定工程S104において、全体試料における目的粒子の比率が前記閾値よりも低いと判定された場合には(S104におけるNO)、下記数式39が成立するため、並列方式への変更が行われる(並列式変更工程S105)。
 その後、第一分取部11による分取と第二分取部12による分取が開始される(S106)。
Figure JPOXMLDOC01-appb-M000040
 かかる場合、各分取部11,12における、単位時間あたりの全体試料の検出数λが、下記数式40に示されるように、分取部11,12による回収率YParallelが最終的な目的粒子の所望の回収率Ys以上となるように、設定することが好ましい。
Figure JPOXMLDOC01-appb-M000041
 一方、判定工程S104において、全体試料における目的粒子の比率が前記閾値よりも高いと判定された場合には(S104におけるYES)、下記数式41が成立するため、切り替え作業は行わず、縦続方式にて、第一分取部11による分取と第二分取部12による分取が開始される(S106)。
Figure JPOXMLDOC01-appb-M000042
 かかる場合、第一分取部11における、単位時間あたりの全体試料の検出数λは、下記数式42が成り立つ範囲で設定することが好ましい。
Figure JPOXMLDOC01-appb-M000043
 以上のような第二実施形態に係る粒子分取方法によれば、並列方式と縦続方式の切り替えが可能であるため、全体試料における目的粒子の比率に応じて高純度且つ高速に目的粒子の分取を行うことができる。
 更に言えば、縦続方式を選択した場合には、高速且つ高純度で目的粒子の分取を行うことができる。また、回収率YCascodeが最終的な目的粒子の所望の回収率Ys以上となるように、第一分取部11における単位時間あたりの全体試料の検出数λを設定することにより、より高純度で目的粒子を分取することができる。
 一方、並列方式を選択した場合であっても、高速且つ高純度で目的粒子の分取を行うことができる。また、単純に分取機構を複数設ける構成としているわけではないため、粒子分取装置の大型化やコストアップを可及的に避けることができる。
 尚、図15に示す本技術に係る粒子分取方法では、測定工程S103により、全体試料における目的粒子の比率を測定しているが、予め検出系110に対して少量のサンプルを流し、全体試料における目的粒子の比率を測定するようにしてもよく、測定工程S103を含まなくともよい。
 なお、本技術に係る粒子分取装置は、以下のような構成も取ることができる。
(1)
 アボート処理を行わずに、目標粒子を含む全体思料から当該目標粒子を含む分取試料を分取する第一分取部と、
 前記第一分取部により分取された前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、
を備える、粒子分取装置。
(2)
 前記第一分取部及び第二分取部は互いに別部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる、(1)記載の粒子分取装置。
(3)
 前記第一分取部及び第二分取部は同一部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる、(1)記載の粒子分取装置。
(4)
 更に、前記第一分取部により分取された分取試料における粒子間隔を無作為状態に戻す撹拌部と、を備える、(2)又は(3)に記載の粒子分取装置。
(5)
 更に、前記全体試料に対する目標粒子の含有率を測定する測定部と、
 前記測定部による測定結果に基づいて、前記第一分取部による分取作業と第二分取部による分取作業とを並列作業に切り替える分取切り替え部と、を備える、(1)~(4)のいずれか一つに記載の粒子分取装置。
 また、本技術に係る位粒子分取方法は、以下のような構成も取ることができる。
(6)
 アボート処理を行わずに、目標粒子を含む全体思料から当該目標粒子を含む分取試料を分取する第一分取工程と、
 前記第一分取部により分取された前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分工程と、
を含む、粒子分取方法。
(7)
 前記第一分取工程を行った後、前記分取試料における粒子間隔を無作為状態に戻す撹拌工程と、を含む、(6)に記載の粒子分取装置。
(8)
 更に、前記全体試料に対する目標粒子の比率に基づいて、前記第一分取工程と第二分取工程とを並列に実行させる分取切り替え工程と、を含む、(6)又は(7)に記載の粒子分取装置。
 以下、実施例に基づいて本技術を更に詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 実施例として、本願発明者らは、縦続方式により分取を行う粒子分取装置と、並列方式により分取を行う粒子分取装置と、の性能比較を実施した。
 具体的には、前述の導き出された数式に基づいて、幾つかのパラメータ(パラメータ1~4)を設定して性能比較を行い、本開示に係る粒子分取方法の効果を定量的に示した。各パラメータに基づいた性能比較結果を図16~19に示す。ここで、各図において、横軸は、Event Rateであり、縦軸はYieldである.更に、各図において、一点鎖線は並列方式の結果を、二点鎖線は縦続方式の結果を示す。
 図16は、パラメータ1に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。パラメータ1としては、R=1.0、r=0.03、T=50us、TD=75usに設定した。
 図16から把握されるように、パラメータ1の場合、Event Rate=0-100kepsの範囲では、常に縦続方式のほうが並列方式と比べて高収率を実現できることが確認された。
 すなわち、例えばYieldスペックが80%の場合、縦続方式では約35keps動作が可能であることが確認された。
 図17は、パラメータ2に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。パラメータ1としては、R=0.9、r=0.03、T=50us、TD=75usに設定した。
 図17から把握されるように、パラメータ2の場合、Event Rate=0-5kepsの範囲では並列方式が、Event Rate=5k-100kepsの範囲では縦続方式の方が高収率を実現できることが確認された。
 すなわち、例えばYieldスペックが80%の場合、並列方式による分取が有利で、約4keps動作が可能であることが確認された。
 一方、Yieldスペックが少し低い60%の場合には、縦続方式による分取で約48keps動作が可能であることが確認された。
 図18は、パラメータ3に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。パラメータ3としては、R=1.0、r=0.10、T=50us、TD=75usに設定した。
 図18から把握されるように、パラメータ3の場合、Event Rate=0-100kepsの範囲では、常に縦続方式の方が並列方式に比べて高収率を実現できることが確認された。
 すなわち、例えばYieldスペックが80%の場合、縦続方式では約14keps動作が可能であることが確認された。
 図19は、パラメータ4に基づいた、縦続方式と並列方式による性能比較の結果を示す図面代用グラフである。パラメータ4としては、R=0.9、r=0.10、T=50us、TD=75usに設定した。
 図19から把握されるように、パラメータ4の場合、Event Rate=0-10kepsの範囲では並列方式が,Event Rate=10k-100kepsの範囲では縦続方式の方が高収率を実現できることが確認された。
 すなわち、例えばYieldスペックが80%の場合には並列方式による分取が有利で、約5keps動作が可能であることは確認された。
 一方、Yieldスペックが少し低い60%の場合には縦続方式による分取で約20keps動作が可能であることが確認された。
1、2、3 粒子分取装置
11 第一分取部
12 第二分取部

Claims (9)

  1.  アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取部と、
     前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、
    を備える、粒子分取装置。
  2.  前記第一分取部及び第二分取部は互いに別部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる、請求項1記載の粒子分取装置。
  3.  前記第一分取部及び第二分取部は同一部材として形成され、第一分取部による分取後、前記第二分取部による分取が行われる、請求項1記載の粒子分取装置。
  4.  更に、前記第一分取部により分取された分取試料における粒子間隔を無作為状態に戻す撹拌部と、を備える、請求項2又は3に記載の粒子分取装置。
  5.  更に、前記全体試料に対する目標粒子の比率を測定する測定部と、
     前記測定部による測定結果に基づいて、前記第一分取部による分取作業と第二分取部による分取作業とを並列作業に切り替える分取切り替え部と、を備える、請求項1記載の粒子分取装置。
  6.  アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取工程と、
     前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分工程と、
    を含む、粒子分取方法。
  7.  前記第一分取工程を行った後、前記分取試料における粒子間隔を無作為状態に戻す撹拌工程と、を含む、請求項6に記載の粒子分取装置。
  8.  更に、前記全体試料に対する目標粒子の比率に基づいて、前記第一分取工程と第二分取工程とを並列に実行させる分取切り替え工程と、を含む、請求項7に記載の粒子分取装置。
  9.  アボート処理を行わずに、目標粒子を含む全体試料から当該目標粒子を含む分取試料を分取する第一分取部と、
     前記分取試料に対してアボート処理を行い、前記目標粒子のみを分取する第二分取部と、
    を備える、粒子分取用マイクロチップ。
PCT/JP2017/006503 2016-05-17 2017-02-22 粒子分取装置及び粒子分取方法 WO2017199506A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/099,511 US11254557B2 (en) 2016-05-17 2017-02-22 Particle extraction apparatus and particle extraction method
EP17798944.9A EP3460450B1 (en) 2016-05-17 2017-02-22 Particle extraction apparatus and particle extraction method
EP21207945.3A EP3978903A1 (en) 2016-05-17 2017-02-22 Particle extraction apparatus and particle extraction method
CN201780028360.4A CN109073532B (zh) 2016-05-17 2017-02-22 颗粒提取装置和颗粒提取方法
JP2018518093A JP6922901B2 (ja) 2016-05-17 2017-02-22 粒子分取装置及び粒子分取方法
US17/548,962 US20220098027A1 (en) 2016-05-17 2021-12-13 Particle extraction apparatus and particle extraction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098927 2016-05-17
JP2016098927 2016-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/099,511 A-371-Of-International US11254557B2 (en) 2016-05-17 2017-02-22 Particle extraction apparatus and particle extraction method
US17/548,962 Continuation US20220098027A1 (en) 2016-05-17 2021-12-13 Particle extraction apparatus and particle extraction method

Publications (1)

Publication Number Publication Date
WO2017199506A1 true WO2017199506A1 (ja) 2017-11-23

Family

ID=60325899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006503 WO2017199506A1 (ja) 2016-05-17 2017-02-22 粒子分取装置及び粒子分取方法

Country Status (5)

Country Link
US (2) US11254557B2 (ja)
EP (2) EP3460450B1 (ja)
JP (2) JP6922901B2 (ja)
CN (2) CN109073532B (ja)
WO (1) WO2017199506A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054196A1 (ja) * 2018-09-10 2020-03-19 ソニー株式会社 微小粒子分取用流路ユニット及び微小粒子分取装置
JP2021175984A (ja) * 2016-05-17 2021-11-04 ソニーグループ株式会社 粒子分取装置及び粒子分取方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059747B2 (ja) * 2018-03-27 2022-04-26 ソニーグループ株式会社 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム
JP2021076455A (ja) * 2019-11-07 2021-05-20 ソニー株式会社 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505422A (ja) * 1998-02-26 2002-02-19 コールター インターナショナル コーポレイション 液滴前駆物質領域の分析に基づくフローサイトメータの液滴の選択的精製および富化選別
US20030170609A1 (en) * 2000-06-26 2003-09-11 Rudolf Rigler Method for selecting particles
JP2014202573A (ja) * 2013-04-04 2014-10-27 ソニー株式会社 粒子分取装置及び粒子分取方法
JP2015507204A (ja) * 2012-02-09 2015-03-05 ベックマン コールター, インコーポレイテッド 選別フローサイトメータ
WO2016031486A1 (ja) * 2014-08-28 2016-03-03 シスメックス株式会社 粒子撮像装置および粒子撮像方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489506A (en) * 1992-10-26 1996-02-06 Biolife Systems, Inc. Dielectrophoretic cell stream sorter
AU2002211389A1 (en) * 2000-10-03 2002-04-15 California Institute Of Technology Microfluidic devices and methods of use
US20070065808A1 (en) * 2002-04-17 2007-03-22 Cytonome, Inc. Method and apparatus for sorting particles
US6976590B2 (en) * 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
CA2482869C (en) * 2002-04-17 2014-11-18 Manish Deshpande Method and apparatus for sorting particles
EP1581350A4 (en) * 2002-09-16 2009-09-23 Cytonome Inc METHOD AND DEVICE FOR SORTING PARTICLES
US7390387B2 (en) * 2004-03-25 2008-06-24 Hewlett-Packard Development Company, L.P. Method of sorting cells in series
JP4047336B2 (ja) * 2005-02-08 2008-02-13 独立行政法人科学技術振興機構 ゲル電極付セルソーターチップ
JP4990746B2 (ja) 2007-12-14 2012-08-01 ベイバイオサイエンス株式会社 液体フローに含まれる生物学的粒子を分別する装置ならびにその方法
JP2010151777A (ja) * 2008-11-19 2010-07-08 Sony Corp 微小粒子解析装置、微小粒子解析用マイクロチップ及び微小粒子解析方法
JP5487638B2 (ja) * 2009-02-17 2014-05-07 ソニー株式会社 微小粒子分取のための装置及びマイクロチップ
US9057676B2 (en) * 2010-02-05 2015-06-16 Cytonome/St, Llc Multiple flow channel particle analysis system
CN102019277B (zh) * 2010-10-29 2013-05-22 北京惟馨雨生物科技有限公司 一种用于细胞和颗粒分离的分选仪及分选方法
WO2012094325A2 (en) * 2011-01-03 2012-07-12 Cytonome/St. Llc Method and apparatus for monitoring and optimizing particle sorting
MX338703B (es) * 2011-03-09 2016-04-28 3M Innovative Properties Co Aparato y metodo para procesar una muestra.
KR20140034200A (ko) * 2011-04-29 2014-03-19 세븐쓰 센스 바이오시스템즈, 인크. 혈액 스폿들 또는 다른 신체 유체들을 수집 및/또는 조작하기 위한 시스템들 및 방법들
US9846150B2 (en) * 2011-06-02 2017-12-19 Industry-Academic Cooperation Foundation Yonsei University High efficiency particle separating apparatus and method
CN103091232B (zh) * 2011-10-31 2015-09-30 深圳迈瑞生物医疗电子股份有限公司 粒子分析仪及其粒子测试控制方法、装置
JP6036496B2 (ja) * 2012-07-24 2016-11-30 ソニー株式会社 微小粒子分取方法
JP5910412B2 (ja) 2012-08-16 2016-04-27 ソニー株式会社 微小粒子分取方法及び微小粒子分取用マイクロチップ
CN103464229B (zh) * 2013-09-10 2015-07-15 东南大学 一种稀有细胞多级分选微流控器件
AU2014340259B2 (en) * 2013-10-21 2018-12-20 Biomet Biologics, Llc Cell washing device using a wave
US10960396B2 (en) * 2014-05-16 2021-03-30 Cytonome/St, Llc Thermal activated microfluidic switching
WO2016065465A1 (en) * 2014-10-31 2016-05-06 The University Of British Columbia Microfluidic-based real-time detector for fine particulate matter
US9851288B2 (en) * 2014-11-11 2017-12-26 Agency For Science, Technology And Research Event-driven coulter counter IC for high throughput particle counting
CN109073532B (zh) * 2016-05-17 2021-10-22 索尼公司 颗粒提取装置和颗粒提取方法
EP3633348A4 (en) * 2017-05-24 2020-06-17 Sony Corporation METHOD FOR OPTIMIZING SUCTION CONDITIONS FOR MICROPARTICLES AND MICROPARTICLE SEPARATING DEVICE
JP6871116B2 (ja) * 2017-09-15 2021-05-12 株式会社東芝 セルソータ
US10782219B2 (en) * 2017-12-22 2020-09-22 Industrial Technology Research Institute Particle counting method and device
US11524293B2 (en) * 2018-01-17 2022-12-13 Sartorius Stedim North America Inc. Cell separation device, method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505422A (ja) * 1998-02-26 2002-02-19 コールター インターナショナル コーポレイション 液滴前駆物質領域の分析に基づくフローサイトメータの液滴の選択的精製および富化選別
US20030170609A1 (en) * 2000-06-26 2003-09-11 Rudolf Rigler Method for selecting particles
JP2015507204A (ja) * 2012-02-09 2015-03-05 ベックマン コールター, インコーポレイテッド 選別フローサイトメータ
JP2014202573A (ja) * 2013-04-04 2014-10-27 ソニー株式会社 粒子分取装置及び粒子分取方法
WO2016031486A1 (ja) * 2014-08-28 2016-03-03 シスメックス株式会社 粒子撮像装置および粒子撮像方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175984A (ja) * 2016-05-17 2021-11-04 ソニーグループ株式会社 粒子分取装置及び粒子分取方法
JP7298652B2 (ja) 2016-05-17 2023-06-27 ソニーグループ株式会社 粒子分取装置及び粒子分取方法
WO2020054196A1 (ja) * 2018-09-10 2020-03-19 ソニー株式会社 微小粒子分取用流路ユニット及び微小粒子分取装置
CN112639440A (zh) * 2018-09-10 2021-04-09 索尼公司 微粒分选流道单元和微粒分选装置
JPWO2020054196A1 (ja) * 2018-09-10 2021-08-30 ソニーグループ株式会社 微小粒子分取用流路ユニット及び微小粒子分取装置
EP3851829A4 (en) * 2018-09-10 2021-11-03 Sony Group Corporation CHANNEL UNIT FOR FINE PARTICLE ISOLATION AND FINE PARTICLE ISOLATION DEVICE
JP7287399B2 (ja) 2018-09-10 2023-06-06 ソニーグループ株式会社 微小粒子分取用流路ユニット及び微小粒子分取装置

Also Published As

Publication number Publication date
JPWO2017199506A1 (ja) 2019-03-14
JP7298652B2 (ja) 2023-06-27
US11254557B2 (en) 2022-02-22
EP3460450A1 (en) 2019-03-27
EP3460450B1 (en) 2022-03-30
JP6922901B2 (ja) 2021-08-18
CN109073532A (zh) 2018-12-21
EP3460450A4 (en) 2019-05-01
US20220098027A1 (en) 2022-03-31
CN109073532B (zh) 2021-10-22
US20190144262A1 (en) 2019-05-16
EP3978903A1 (en) 2022-04-06
CN113866076A (zh) 2021-12-31
JP2021175984A (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3823756B1 (en) Microparticle sorting device and microparticle sorting method
US11666946B2 (en) Microparticle sorting method and microchip for sorting microparticles
JP7298652B2 (ja) 粒子分取装置及び粒子分取方法
US9448157B2 (en) Microparticle sorting apparatus, microchip for sorting microparticles and microparticle sorting method
JP6136843B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP6311312B2 (ja) 微小粒子測定装置及び微小粒子測定装置における送液方法
US20140027356A1 (en) Microparticle sorting method
CN104736718A (zh) 用于操纵流体样品中的组分的装置和方法
JP2017181278A (ja) 試料分取キット、試料分取装置
JP2024016251A (ja) 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション
WO2020054735A1 (en) Microparticle sorting device, cell therapeutic agent manufacturing device, microparticle sorting method and program
WO2022187608A1 (en) Systems and methods for concentrating sorted cell populations
JP2011064706A (ja) マイクロチップとその流路構造
US20210189309A1 (en) Microchip and sample sorting kit
WO2021100620A1 (ja) 粒子分取キット
EP4063827A1 (en) Microchip, sample isolation kit, and microparticle isolation device
US20240165621A1 (en) Biological particle sorting device and method for adjusting sorting condition in biological particle sorting device
US20240142369A1 (en) Particle sorting kit
CN116134304A (zh) 微粒分选装置及微粒分选方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798944

Country of ref document: EP

Effective date: 20181217