WO2017199368A1 - Light source and detection device - Google Patents

Light source and detection device Download PDF

Info

Publication number
WO2017199368A1
WO2017199368A1 PCT/JP2016/064734 JP2016064734W WO2017199368A1 WO 2017199368 A1 WO2017199368 A1 WO 2017199368A1 JP 2016064734 W JP2016064734 W JP 2016064734W WO 2017199368 A1 WO2017199368 A1 WO 2017199368A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
reflector
opening
Prior art date
Application number
PCT/JP2016/064734
Other languages
French (fr)
Japanese (ja)
Inventor
ミイシャオユウ
及川浩一
鎌田徹
田中公敏
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/064734 priority Critical patent/WO2017199368A1/en
Publication of WO2017199368A1 publication Critical patent/WO2017199368A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • This case relates to a light source and a detection device.
  • Patent Document 1 It is known to use an integrating sphere to obtain uniform light (for example, Patent Document 1). It is also known to provide a prism sheet having a triangular prism surface on a flat light guide plate (for example, Patent Document 2).
  • ⁇ Light can be made uniform by multiple reflections on the inner surface of the integrating sphere.
  • the integrating sphere is provided with an aperture for introducing and / or emitting light. For this reason, the uniformity of the light inside the integrating sphere may not be ensured.
  • This light source and detection device is to make the internal light uniform.
  • At least a part of the inner surface that reflects light is provided along a reflector having a concave curved surface on the inside, and an inner surface having a concave curved surface on the inner side of the reflector, and the light is provided on at least a part of the inner surface and the outer surface.
  • a light source comprising: a light guide plate that has at least one of a concave portion and a convex portion that scatters light and that propagates the light; and an irradiation portion that irradiates the light to the light guide plate.
  • a detection apparatus comprising the light source for irradiating light to a sample and a detector for detecting the state of the sample is used.
  • the internal light can be made uniform.
  • FIG. 1A is a cross-sectional view of a light source according to the first embodiment
  • FIG. 1B is a front view showing the arrangement of light guide plates and LEDs.
  • FIG. 2 is a cross-sectional view illustrating the reflector and the light guide plate in the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a reflector 1 and a light guide plate of the first modification of the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a light source according to the second embodiment.
  • FIG. 5 is a cross-sectional view illustrating a light source according to the first modification of the second embodiment.
  • FIG. 6 is a cross-sectional view illustrating a light source according to a second modification of the second embodiment.
  • FIG. 1A is a cross-sectional view of a light source according to the first embodiment
  • FIG. 1B is a front view showing the arrangement of light guide plates and LEDs.
  • FIG. 2 is a cross-sectional view illustrating the reflect
  • FIG. 7 is a cross-sectional view illustrating a light source according to a third modification of the second embodiment.
  • FIG. 8 is a cross-sectional view illustrating a light source according to a fourth modification of the second embodiment.
  • FIG. 9A and FIG. 9B are cross-sectional views illustrating the reflector and the light guide plate in the third embodiment.
  • FIG. 10A and FIG. 10B are cross-sectional views illustrating the reflector and the light guide plate in the first modification of the third embodiment.
  • FIG. 11A and FIG. 11B are cross-sectional views showing a reflector and a light guide plate in Modification 2 of Example 3.
  • FIG. 12A and FIG. 12B are cross-sectional views showing the reflector and the light guide plate in Modifications 3 and 4 of the third embodiment.
  • FIG. 13 is a block diagram of a detection apparatus according to the fourth embodiment.
  • FIG. 14 is a front view showing the arrangement of light guide plates and LEDs in the fifth embodiment.
  • FIG. 15A to FIG. 15C are diagrams showing the spectrum of each LED in Example 5, and
  • FIG. 15D is a diagram showing the spectrum of light irradiated on the sample.
  • 16 (a) to 16 (c) are other diagrams showing the spectrum of each LED in Example 5, and
  • FIG. 16 (d) is a diagram showing the time dependence of the intensity of light irradiated on the sample.
  • FIG. 1A is a cross-sectional view of a light source according to the first embodiment
  • FIG. 1B is a front view showing the arrangement of light guide plates and LEDs.
  • FIG. 1B shows the positional relationship among the end face of the reflector 12a, the end face of the light guide plate 14, LEDs (Light Emitting Diode) 16a and 16b, the opening 18b, and the detector 24 as viewed from the front. + Indicates the apex 60 of the hemisphere.
  • FIG. 1A corresponds to the AA cross section of FIG.
  • the light source 100 includes an integrating sphere 20 and LEDs 16a and 16b.
  • the integrating sphere 20 is hemispherical and includes a reflector 12 and a light guide plate 14.
  • the reflector 12 includes a reflector 12a having a hemispherical inner surface and a reflector 12b having a planar inner surface.
  • the light guide plate 14 is hemispherical and is provided along the inner surface of the reflector 12a.
  • openings 18a and 18b are formed at the apex 60 of the hemisphere, respectively.
  • a plurality of LEDs 16a are provided on the end face of the light guide plate 14 in the opening 18b.
  • a plurality of LEDs 16 b are provided on the outer end face of the light guide plate 14.
  • the reflector 12b is provided with an opening 18c at the center.
  • a detector 24 is provided in the opening 18a, and for example, a sample 22 is disposed in the opening 18c.
  • FIG. 2 is a cross-sectional view showing the reflector and the light guide plate in the first embodiment.
  • concave portions 30 are provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14.
  • the LED 16 emits light 50 a to the end face of the light guide plate 14.
  • the light 50a enters the light guide plate 14 from the end face.
  • the light 50 b propagating through the light guide plate 14 is scattered by the recess 30.
  • a part of the light scattered by the concave portion 30a of the inner surface 15a of the light guide plate 14 is radiated as light 50c into the integrating sphere 20.
  • the light 50 b reflected by the inner surface 15 a propagates in the light guide plate 14.
  • a part of the light 50d scattered by the concave portion 30b of the outer surface 15b of the light guide plate 14 is reflected by the inner surface of the reflector 12a and enters the light guide plate 14 from the outer surface 15b of the light guide plate 14 or is reflected by the outer surface 15b.
  • a part of the light 50 e irradiated from the inside of the integrating sphere 20 to the inner surface 15 a of the light guide plate 14 is reflected and a part of the light 50 e enters the light guide plate 14. In this way, the light 50b propagating through the light guide plate 14 is scattered by the recess 30 and becomes uniform.
  • the light that has entered the light guide plate 14 from the LEDs 16a and 16b becomes light 50 that propagates uniformly inside the integrating sphere 20 as shown in FIG.
  • the uniform light 52 is emitted from the opening 18c, and is irradiated to the sample 22, for example.
  • the light 52 has a uniform intensity and / or spectrum of the light 52 regardless of the position of the irradiated surface.
  • the detector 24 provided in the opening 18 a detects the state of the sample 22 by detecting light scattered or emitted from the sample 22.
  • the reflectors 12a and 12b are insulators such as a metal whose inner surface is a mirror surface or a resin (for example, foamed polystyrene) having a reflective film applied to the inner surface.
  • the light guide plate 14 is a material that is transparent to light 50 such as resin or glass.
  • the width W, the depth D, and the pitch P of the concave portions 30 formed on the inner surface 15a and the outer surface 15b of the light guide plate 14 are, for example, several hundred nm to several hundred ⁇ m.
  • the width W and the depth D are preferably about the wavelength of the light 50b or more.
  • the width W, the depth D, and the pitch P are uniform in the light guide plate 14.
  • the width W, the depth D, and the pitch P are substantially the same in the region 64 near the opening 18b and the far region 62 (region near the LED 16a) of the light guide plate 14, for example.
  • the sample 22 is an object irradiated with uniform light.
  • the color rendering property is preferably 85 or more, and the color temperature is preferably from 3000K to 7000K.
  • FIG. 3 is a cross-sectional view showing a reflector and a light guide plate in Modification 1 of Embodiment 1.
  • a plurality of convex portions 32 are provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14.
  • the width W, height H, and pitch P of the protrusions 32 are, for example, several hundred nm to several hundred ⁇ m.
  • the width W and height H are preferably about the wavelength of the light 50b or longer.
  • convex portions 32 may be provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14 instead of the concave portions 30. Both the recessed part 30 and the convex part 32 may be provided.
  • FIG. 4 is a cross-sectional view showing a light source according to the second embodiment.
  • the integrating sphere 20 is spherical.
  • the reflector 12 has a spherical inner surface.
  • the light guide plate 14 is spherical and is provided along the inner surface of the reflector 12. Openings 18 a and 18 c are formed in the reflector 12. Openings 18 b and 18 d are formed in the light guide plate 14.
  • the openings 18a and 18c are provided symmetrically with respect to the spherical center.
  • the openings 18a and 18b are formed to be continuous, and the openings 18c and 18d are formed to be continuous.
  • An LED 16a is disposed on the end face of the light guide plate 14 on the opening 18b side.
  • An LED 16b is disposed on the end face on the opening 18d side of the light guide plate 14a.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • the reflector 12 and the light guide plate 14 may be spherical.
  • FIG. 5 is a cross-sectional view showing a light source according to Modification 1 of Embodiment 2.
  • the light guide plate 14 includes hemispherical light guide plates 14a and 14b.
  • the openings 18b and 18d are provided at the apexes of the light guide plates 14a and 14b, respectively.
  • An LED 16a is disposed on the end face of the opening 18b of the light guide plate 14a.
  • An LED 16b is disposed on the end surface of the light guide plate 14a opposite to the opening 18a.
  • the light guide plate 14b is not provided with LEDs. Other configurations are the same as those of the second embodiment, and the description thereof is omitted.
  • FIG. 6 is a cross-sectional view illustrating a light source according to a second modification of the second embodiment.
  • an LED 16c is provided on the end surface opposite to the opening 18d of the light guide plate 14b.
  • Other configurations are the same as those of the first modification of the second embodiment, and a description thereof will be omitted.
  • FIG. 7 is a cross-sectional view showing a light source according to Modification 3 of Embodiment 2.
  • the sample 22 is provided at the center of the integrating sphere 20. Openings 18c and 18d for the sample 22 are not provided.
  • the light guide plate 14 is spherical.
  • the LED 16 is provided on the end surface of the light guide plate 14 on the opening 18b side. Other configurations are the same as those of the second embodiment, and the description thereof is omitted.
  • FIG. 8 is a cross-sectional view illustrating a light source according to Modification 4 of Embodiment 2. As shown in FIG. 8, the light source 105 is not provided with the light guide plate 14b. Other configurations are the same as those of the first modification of the second embodiment, and a description thereof will be omitted.
  • At least a part of the inner surface 15a of the reflector 12 is a concave curved surface (for example, a curved surface having a positive Gaussian curvature).
  • the reflector 12 reflects light.
  • the light guide plate 14 is provided on the inner side of the reflector 12 along the concave curved inner surface 11a.
  • the light guide plate 14 has a concave portion 30 or a convex portion 32 on the inner surface 15a and the outer surface 15b, and light propagates.
  • the LED 16 irradiates the light guide plate 14 with light. As a result, as shown in FIG.
  • the light propagating through the light guide plate 14 is scattered by the concave portion 30 or the convex portion 32 formed on the inner surface 15 a and the outer surface 15 b and further reflected by the concave curved surface inside the reflector 12. .
  • the inwardly concave curved surface may be at least a part of a spherical surface as in the first and second embodiments and the modifications thereof, for example.
  • the inwardly concave curved surface may be at least a part of an ellipsoidal surface or a part of a parabolic rotating body.
  • the inner surface 11a of the reflector 12 may have at least a part of a spherical surface. Thereby, at least a part of the spherical surface can multiplex-reflect light into the integrating sphere 20.
  • the light-guide plate 14 should just be provided along the surface of at least one part of a spherical surface. Thereby, the scattered light is irradiated onto the inner surface 11 a having at least a part of the spherical surface of the reflector 12. Therefore, the light inside the integrating sphere can be made uniform. It is sufficient that at least one of the concave portion 30 and the convex portion 32 is provided on at least one of the inner surface 15a and the outer surface 15b of the light guide plate 14.
  • the LED 16 preferably irradiates the end face of the light guide plate 14 with light. Thereby, light can be introduced into the light guide plate 14.
  • the LED 16 has been described as an example of the irradiation unit, the irradiation unit may be other than the LED.
  • the inner surface of the reflector 12 has at least a hemispherical surface, and the light guide plate 14 is at least hemispherical.
  • the reflector 12 can reflect more light in the integrating sphere 20, and the light guide plate 14 can scatter more light. Therefore, the light inside the integrating sphere 20 can be made uniform.
  • the spherical shape may not be a geometric sphere. Further, the hemisphere and the sphere need not be a complete hemisphere and a sphere. For example, the portions for providing the openings 18a to 18d, the LED 16, the sample 22, the detector 24, and / or other components may be omitted from the hemispherical shape and the spherical shape. Further, the hemisphere includes a semi-ellipsoidal shape and a parabolic rotating body shape. The spherical shape includes an ellipsoidal shape.
  • the inner surface of the reflector 12 has a hemispherical surface and a flat surface, and the light guide plate 14 is provided along the hemispherical surface.
  • the inside of the integrating sphere 20 becomes symmetric and the light can be made uniform.
  • the plane is preferably a plane passing through the center of the hemisphere.
  • the reflector 12 has an opening 18c as an exit through which light is emitted in a plane. Thereby, the light source can emit more uniform light.
  • the light at the symmetrical position in the integrating sphere 20 is more uniform.
  • the structure in the integrating sphere 20 is preferably symmetrical. For this reason, when the exit port is provided on a plane, the exit port preferably includes the center of the plane. When the exit port is provided on the hemispherical surface, the exit port preferably includes the apex of the hemispherical surface. Thereby, more uniform light can be emitted from the emission port.
  • the opening 18a (first opening) of the reflector 12 is provided at the apex of the hemispherical surface, and the light guide plate 14 has an opening 18b (second opening) connected to the opening 18a of the reflector 12.
  • the opening 18 a can be provided at a symmetrical position of the reflector 12 and the light guide plate 14. Therefore, the light can be made more uniform.
  • the inner surface of the reflector 12 preferably has a spherical surface, and the light guide plate 14 is preferably provided along at least a hemispherical surface among the spherical surfaces. Since the inner surface of the reflector 12 is a spherical surface, the inside of the integrating sphere 20 is symmetric. Further, since the light guide plate 14 is provided at least along the hemispherical surface, the scattered light can be increased and the light can be made more uniform.
  • the light guide plate 14 has a hemispherical shape, and the light guide plate 14 has an opening 18b connected to the opening 18a of the reflector 12 at the apex of the hemispherical shape. Thereby, the openings 18 a and 18 b can be provided at symmetrical positions of the reflector 12 and the light guide plate 14. Therefore, the light can be made more uniform.
  • FIG. 9A and FIG. 9B are cross-sectional views showing a reflector and a light guide plate in Example 3.
  • FIGS. 9A and 9B are diagrams corresponding to the regions 62 and 64, respectively, of FIG.
  • the width, depth, and pitch of the recesses 30 in the region 62 are defined as a width W1, a depth D1, and a pitch P1, respectively.
  • the width, depth, and pitch of the recess 30 in the region 64 are defined as width W2, depth D2, and pitch P2, respectively.
  • the widths W1 and W2 are substantially the same, and the pitches P1 and P2 are substantially the same.
  • the depth D2 of the region 64 is greater than the depth D1 of the region 62.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • the height of the region 64 is made larger than the height of the region 62.
  • FIG. 10A and FIG. 10B are cross-sectional views showing a reflector and a light guide plate in Modification 1 of Example 3.
  • FIG. FIG. 10A and FIG. 10B are diagrams corresponding to the regions 62 and 64, respectively, of FIG. As shown in FIGS. 10A and 10B, in the regions 62 and 64, the depths D1 and D2 are substantially the same, and the pitches P1 and P2 are substantially the same. The width W2 of the region 64 is larger than the width W1 of the region 62. Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
  • FIG. 11A and FIG. 11B are cross-sectional views showing a reflector and a light guide plate in Modification 2 of Example 3.
  • FIG. 11A and FIG. 11B are diagrams corresponding to the regions 62 and 64, respectively, of FIG. As shown in FIGS. 11A and 11B, in the regions 62 and 64, the widths W1 and W2 are substantially the same, and the depths D1 and D2 are substantially the same. The pitch P2 of the region 64 is smaller than the pitch P1 of the region 62. Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
  • Example 1 In Example 1 and its modification, reflection and / or scattering of the light 50 by the reflector 12a and the light guide plate 14 do not occur in the opening 18a. For this reason, the light density decreases in the vicinity of the opening 18a.
  • the scattering efficiency of the recess 30 in the vicinity region 64 of the opening 18a is higher than the scattering efficiency of the recess 30 in the region 62 far from the vicinity region 64 of the opening 18a. Thereby, scattering of the light 50 by the light guide plate 14 increases in the vicinity region 64 of the opening 18a. Therefore, the light density can be made uniform.
  • the depth D2 of the recess 30 in the region 64 may be made larger than the depth D1 of the recess 30 in the region 62 as in the third embodiment. Further, when the light guide plate 14 is provided with the convex portion 32, the height of the convex portion in the region 64 may be made larger than the height of the convex portion 32 in the region 62.
  • the concave portion in the region 64 may be made larger than the concave portion in the region 62 as in the first modification of the third embodiment. The same applies to the case where the light guide plate 14 is provided with the convex portion 32. Furthermore, as in the second modification of the third embodiment, the density of the recesses 30 in the region 64 can be made higher than the density of the recesses 30 in the region 62. The same applies to the case where the light guide plate 14 is provided with the convex portion 32.
  • At least one of the width, depth or height, and density of at least one of the concave portion 30 and the convex portion 32 is different between the regions 62 and 64. At least one of the width, the depth or the height, and the density may gradually change from the opening 18a side to the opposite side of the light guide plate 14.
  • At least one of the width, depth or height, and density of at least one of the concave portion 30 and the convex portion 32 can be made different between the regions 62 and 64.
  • FIG. 12A and 12 (b) are cross-sectional views showing a reflector and a light guide plate in Modifications 3 and 4 of Example 3.
  • FIG. 12A the particles 34 are dispersed in the light guide plate 14.
  • the particle size of the particle 34 is, for example, several hundred nm to several hundred ⁇ m.
  • the material of the particle 34 is a material that reflects and / or reflects the light 50, and for example, a metal particle, an insulator material, or a semiconductor material can be used.
  • FIG. 12B the bubbles 36 are dispersed in the light guide plate 14.
  • the particle diameter of the bubbles 36 is, for example, several hundred nm to several hundred ⁇ m.
  • the light guide plate 14 includes at least one of particles 34 and bubbles 36 that reflect or scatter light. Thereby, the light scattering efficiency in the light guide plate 14 can be increased.
  • Example 4 is an example of a detection apparatus using Examples 1 to 3 and a modification thereof.
  • FIG. 13 is a block diagram of a detection apparatus according to the fourth embodiment.
  • the detection device 106 includes a light source 100, a light collecting unit 42, a sensor 44, an LED control unit 46, and a control unit 40.
  • the light source 100 is a light source according to the first embodiment.
  • the condenser 42 collects the light in the integrating sphere 20.
  • the sensor 44 separates the light collected by the light collecting unit 42 or measures the illuminance. If the light in the integrating sphere 20 is uniform, the intensity and / or spectrum of the light collected by the light collecting unit 42 is substantially the same as the light 52 emitted from the light source 100 to the sample 22.
  • the LED control unit 46 controls the light emission intensity and / or the light emission time of the LEDs 16a and 16b.
  • the control unit 40 is, for example, a computer or a processor, and controls the detector 24, the sensor 44, and the LED
  • control unit 40 controls the LED control unit 46 based on the illuminance in the integrating sphere 20 detected by the sensor 44 to control the illuminance in the integrating sphere 20 to a desired illuminance.
  • the control unit 40 controls the LED control unit 46 based on the spectral information of the light in the integrating sphere 20 detected by the sensor 44, and controls the color rendering properties and / or the color temperature in the integrating sphere 20 to desired values.
  • the control unit 40 causes the detector 24 to detect the state of the sample 22 when the illuminance, color rendering properties, and / or color temperature in the integrating sphere 20 reach desired values.
  • the detector 24 takes a picture of the sample 22 using the light 54 emitted by the sample 22 or splits the light 54 emitted by the sample 22.
  • the light source 100 irradiates the sample 52 with the light 52.
  • the detector 24 detects the state of the sample 22. Since the light 52 emitted from the light source 100 is uniform, the sample 22 emits uniform light 54. Therefore, the state of the sample 22 can be detected with high accuracy. For example, when the detector 24 captures a photograph of the sample 22, the surface of the sample 22 is irradiated with uniform light, so that a highly accurate photograph can be captured.
  • Embodiments 2 to 4 and modifications thereof may be used in the detection device.
  • FIG. 14 is a front view showing the arrangement of light guide plates and LEDs in Example 5. As shown in FIG. 14, different types of LEDs 16x, 16y, and 16z are provided as the LEDs 16a and 16b. The LEDs 16x, 16y, and 16z are arranged equally, for example. Other configurations are the same as those of the fourth embodiment, and the description thereof is omitted.
  • FIG. 15 (a) to 15 (c) are diagrams showing the spectrum of each LED in Example 5, and FIG. 15 (d) is a diagram showing the spectrum of light irradiated on the sample.
  • FIG. 15A to FIG. 15C are emission spectra of the LEDs 16x to 16z, respectively. As shown in FIGS. 15A to 15C, the emission spectra of the LEDs 16x to 16z are different.
  • the control unit 40 controls the LED control unit 46 based on the result of the sensor 44.
  • the LED control unit 46 adjusts the intensity of the LEDs 16x, 16y, and 16z. Thereby, the spectrum of the light 52 irradiated to the sample 22 can be adjusted to a desired spectrum as shown in FIG.
  • FIG. 16 (a) to 16 (c) are other diagrams showing the spectrum of each LED in Example 5, and FIG. 16 (d) is a diagram showing the time dependence of the intensity of light irradiated on the sample.
  • FIG. 16A to FIG. 16C are emission spectra of the LEDs 16x to 16z, respectively. As shown in FIGS. 16A to 16C, the LEDs 16x to 16z emit light having spectra 70x, 70y, and 70z, respectively. The spectra 70x to 70z are different from each other.
  • the control unit 40 varies the periods during which the LED control unit 46 emits the LEDs 16x, 16y, and 16z. Thereby, as shown in FIG.
  • the spectrum of the light 52 irradiated to the sample 22 becomes the spectrum 70x in the period Tx, becomes the spectrum 70y in the period Ty, and becomes the spectrum 70z in the period Tz.
  • the sample 22 can be irradiated with light 52 having a different spectrum depending on the period.
  • the lights 50 and 54 are, for example, visible light, ultraviolet light, or infrared light in a narrow sense.
  • the electromagnetic wave includes X-rays and the like.

Abstract

This light source is provided with: a reflector 12 wherein at least a part of an inner surface that reflects light 50 is a curved surface recessed toward the inner side; a light guide plate 14, which is provided along the inner surface of the reflector 12, said inner surface having the curved surface recessed toward the inner side, and which has, at least in a part of the inner surface and an outer surface, a recessed section and/or a protruding section that scatters the light 50, said light guide plate propagating the light 50; and an irradiation unit that irradiates the light guide plate 14 with the light.

Description

光源および検出装置Light source and detection device
 本件は、光源および検出装置に関する。 This case relates to a light source and a detection device.
 均一な光を得るため積分球を用いることが知られている(例えば特許文献1)。また、平板状の導光板に三角状のプリズム面を有するプリズムシートを設けることが知られている(例えば特許文献2)。 It is known to use an integrating sphere to obtain uniform light (for example, Patent Document 1). It is also known to provide a prism sheet having a triangular prism surface on a flat light guide plate (for example, Patent Document 2).
特開2003-4631号公報JP 2003-4631 A 特開2003-202273号公報JP 2003-202273 A
 光が積分球の内面で多重反射することにより、光を均一化できる。しかしながら、積分球には、光を導入するおよび/または放射する開口が設けられる。このため、積分球内部の光の均一性が確保できなくなる場合がある。 ∙ Light can be made uniform by multiple reflections on the inner surface of the integrating sphere. However, the integrating sphere is provided with an aperture for introducing and / or emitting light. For this reason, the uniformity of the light inside the integrating sphere may not be ensured.
 本光源および検出装置は、内部の光を均一化することを目的とする。 The purpose of this light source and detection device is to make the internal light uniform.
 光を反射する内面の少なくとも一部は内側に凹の曲面である反射体と、前記反射体の前記内側に凹の曲面を有する内面に沿って設けられ、内面および外面の少なくとも一部に前記光が散乱する凹部および凸部の少なくとも一方を有し、前記光が伝搬する導光板と、前記導光板に前記光を照射する照射部と、を具備することを特徴とする光源を用いる。 At least a part of the inner surface that reflects light is provided along a reflector having a concave curved surface on the inside, and an inner surface having a concave curved surface on the inner side of the reflector, and the light is provided on at least a part of the inner surface and the outer surface. A light source comprising: a light guide plate that has at least one of a concave portion and a convex portion that scatters light and that propagates the light; and an irradiation portion that irradiates the light to the light guide plate.
 試料に光を照射する上記光源と、前記試料の状態を検出する検出器と、を具備することを特徴とする検出装置を用いる。 A detection apparatus comprising the light source for irradiating light to a sample and a detector for detecting the state of the sample is used.
 本光源および検出装置によれば、内部の光を均一化することができる。 According to the light source and the detection device, the internal light can be made uniform.
図1(a)は、実施例1に係る光源の断面図、図1(b)は導光板およびLEDの配置を示す正面図である。FIG. 1A is a cross-sectional view of a light source according to the first embodiment, and FIG. 1B is a front view showing the arrangement of light guide plates and LEDs. 図2は、実施例1における反射体および導光板を示す断面図である。FIG. 2 is a cross-sectional view illustrating the reflector and the light guide plate in the first embodiment. 図3は、実施例1の変形例1反射体および導光板を示す断面図である。FIG. 3 is a cross-sectional view illustrating a reflector 1 and a light guide plate of the first modification of the first embodiment. 図4は、実施例2に係る光源を示す断面図である。FIG. 4 is a cross-sectional view illustrating a light source according to the second embodiment. 図5は、実施例2の変形例1に係る光源を示す断面図である。FIG. 5 is a cross-sectional view illustrating a light source according to the first modification of the second embodiment. 図6は、実施例2の変形例2に係る光源を示す断面図である。FIG. 6 is a cross-sectional view illustrating a light source according to a second modification of the second embodiment. 図7は、実施例2の変形例3に係る光源を示す断面図である。FIG. 7 is a cross-sectional view illustrating a light source according to a third modification of the second embodiment. 図8は、実施例2の変形例4に係る光源を示す断面図である。FIG. 8 is a cross-sectional view illustrating a light source according to a fourth modification of the second embodiment. 図9(a)および図9(b)は、実施例3における反射体および導光板を示す断面図である。FIG. 9A and FIG. 9B are cross-sectional views illustrating the reflector and the light guide plate in the third embodiment. 図10(a)および図10(b)は、実施例3の変形例1における反射体および導光板を示す断面図である。FIG. 10A and FIG. 10B are cross-sectional views illustrating the reflector and the light guide plate in the first modification of the third embodiment. 図11(a)および図11(b)は、実施例3の変形例2における反射体および導光板を示す断面図である。FIG. 11A and FIG. 11B are cross-sectional views showing a reflector and a light guide plate in Modification 2 of Example 3. 図12(a)および図12(b)は、実施例3の変形例3および4における反射体および導光板を示す断面図である。FIG. 12A and FIG. 12B are cross-sectional views showing the reflector and the light guide plate in Modifications 3 and 4 of the third embodiment. 図13は、実施例4に係る検出装置のブロック図である。FIG. 13 is a block diagram of a detection apparatus according to the fourth embodiment. 図14は、実施例5における導光板およびLEDの配置を示す正面図である。FIG. 14 is a front view showing the arrangement of light guide plates and LEDs in the fifth embodiment. 図15(a)から図15(c)は、実施例5における各LEDのスペクトルを示す図、図15(d)は試料に照射される光のスペクトルを示す図である。FIG. 15A to FIG. 15C are diagrams showing the spectrum of each LED in Example 5, and FIG. 15D is a diagram showing the spectrum of light irradiated on the sample. 図16(a)から図16(c)は、実施例5における各LEDのスペクトルを示す別の図、図16(d)は試料に照射される光の強度の時間依存を示す図である。16 (a) to 16 (c) are other diagrams showing the spectrum of each LED in Example 5, and FIG. 16 (d) is a diagram showing the time dependence of the intensity of light irradiated on the sample.
 以下、図面を参照し実施例について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1(a)は、実施例1に係る光源の断面図、図1(b)は導光板およびLEDの配置を示す正面図である。図1(b)は、正面からみた反射体12aの端面、導光板14の端面、照射部であるLED(Light Emitting Diode)16aおよび16b、開口18bおよび検出器24の位置関係を示している。+は半球の頂点60を示す。図1(a)は図1(b)のA-A断面に相当する。 FIG. 1A is a cross-sectional view of a light source according to the first embodiment, and FIG. 1B is a front view showing the arrangement of light guide plates and LEDs. FIG. 1B shows the positional relationship among the end face of the reflector 12a, the end face of the light guide plate 14, LEDs (Light Emitting Diode) 16a and 16b, the opening 18b, and the detector 24 as viewed from the front. + Indicates the apex 60 of the hemisphere. FIG. 1A corresponds to the AA cross section of FIG.
 図1(a)および図1(b)に示すように、光源100は、積分球20およびLED16aおよび16bを備えている。積分球20は半球状であり、反射体12および導光板14を備えている。反射体12は、半球状の内面を有する反射体12aと、平面状の内面を有する反射体12bを有している。導光板14は半球状であり、反射体12aの内面に沿って設けられている。反射体12aおよび導光板14には半球の頂点60にそれぞれ開口18aおよび18bが形成されている。開口18bにおける導光板14の端面に複数のLED16aが設けられている。導光板14の外側の端面に複数のLED16bが設けられている。反射体12bには中心に開口18cが設けられている。開口18aには、例えば検出器24が設けられ、開口18cには例えば試料22が配置される。 1 (a) and 1 (b), the light source 100 includes an integrating sphere 20 and LEDs 16a and 16b. The integrating sphere 20 is hemispherical and includes a reflector 12 and a light guide plate 14. The reflector 12 includes a reflector 12a having a hemispherical inner surface and a reflector 12b having a planar inner surface. The light guide plate 14 is hemispherical and is provided along the inner surface of the reflector 12a. In the reflector 12a and the light guide plate 14, openings 18a and 18b are formed at the apex 60 of the hemisphere, respectively. A plurality of LEDs 16a are provided on the end face of the light guide plate 14 in the opening 18b. A plurality of LEDs 16 b are provided on the outer end face of the light guide plate 14. The reflector 12b is provided with an opening 18c at the center. For example, a detector 24 is provided in the opening 18a, and for example, a sample 22 is disposed in the opening 18c.
 図2は、実施例1における反射体および導光板を示す断面図である。図2に示すように、導光板14の内面15aおよび外面15bに凹部30が設けられている。LED16は導光板14の端面に光50aを出射する。光50aは端面から導光板14内に侵入する。導光板14内を伝搬する光50bは凹部30で散乱される。導光板14の内面15aの凹部30aで散乱された光の一部は、積分球20の内部に光50cとして放射される。内面15aで反射された光50bは導光板14内を伝搬する。導光板14の外面15bの凹部30bで散乱された光の一部の光50dは反射体12aの内面で反射し、導光板14の外面15bから導光板14に侵入するまたは外面15bで反射する。積分球20の内部から導光板14の内面15aに照射された光50eは、一部は反射し、一部は導光板14内に侵入する。このように、導光板14内を伝搬する光50bは、凹部30で散乱され、均一化する。 FIG. 2 is a cross-sectional view showing the reflector and the light guide plate in the first embodiment. As shown in FIG. 2, concave portions 30 are provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14. The LED 16 emits light 50 a to the end face of the light guide plate 14. The light 50a enters the light guide plate 14 from the end face. The light 50 b propagating through the light guide plate 14 is scattered by the recess 30. A part of the light scattered by the concave portion 30a of the inner surface 15a of the light guide plate 14 is radiated as light 50c into the integrating sphere 20. The light 50 b reflected by the inner surface 15 a propagates in the light guide plate 14. A part of the light 50d scattered by the concave portion 30b of the outer surface 15b of the light guide plate 14 is reflected by the inner surface of the reflector 12a and enters the light guide plate 14 from the outer surface 15b of the light guide plate 14 or is reflected by the outer surface 15b. A part of the light 50 e irradiated from the inside of the integrating sphere 20 to the inner surface 15 a of the light guide plate 14 is reflected and a part of the light 50 e enters the light guide plate 14. In this way, the light 50b propagating through the light guide plate 14 is scattered by the recess 30 and becomes uniform.
 図1(a)に戻り、図2のようにLED16aおよび16bから導光板14に侵入した光は積分球20の内部を均一に伝搬する光50となる。これにより、開口18cから均一な光52が出射され、例えば試料22に照射される。光52は、照射面の位置によらず、光52の強度および/またはスペクトルが均一となる。開口18aに設けられる検出器24は、試料22から散乱または放射された光を検出することで試料22の状態を検出する。 Referring back to FIG. 1A, the light that has entered the light guide plate 14 from the LEDs 16a and 16b becomes light 50 that propagates uniformly inside the integrating sphere 20 as shown in FIG. Thereby, the uniform light 52 is emitted from the opening 18c, and is irradiated to the sample 22, for example. The light 52 has a uniform intensity and / or spectrum of the light 52 regardless of the position of the irradiated surface. The detector 24 provided in the opening 18 a detects the state of the sample 22 by detecting light scattered or emitted from the sample 22.
 反射体12aおよび12bは、例えば内面が鏡面の金属、または内面に反射膜を塗布した樹脂(例えば発砲スチロール)等の絶縁体である。導光板14は、例えば樹脂またはガラス等の光50に対し透明な物質である。導光板14の内面15aおよび外面15bに形成された凹部30の幅W、深さDおよびピッチPは例えば数100nmから数100μmである。幅Wおよび深さDは光50bの波長程度かそれ以上が好ましい。幅W、深さDおよびピッチPは例えば導光板14内で均一である。幅W、深さDおよびピッチPは例えば導光板14のうち開口18bに近い領域64と遠い領域62(LED16aに近い領域)とでほぼ同じである。試料22は、均一な光が照射される物である。光50aを白色光とする場合、演色性は85以上であり、色温度は3000Kから7000Kであることが好ましい。 The reflectors 12a and 12b are insulators such as a metal whose inner surface is a mirror surface or a resin (for example, foamed polystyrene) having a reflective film applied to the inner surface. The light guide plate 14 is a material that is transparent to light 50 such as resin or glass. The width W, the depth D, and the pitch P of the concave portions 30 formed on the inner surface 15a and the outer surface 15b of the light guide plate 14 are, for example, several hundred nm to several hundred μm. The width W and the depth D are preferably about the wavelength of the light 50b or more. For example, the width W, the depth D, and the pitch P are uniform in the light guide plate 14. The width W, the depth D, and the pitch P are substantially the same in the region 64 near the opening 18b and the far region 62 (region near the LED 16a) of the light guide plate 14, for example. The sample 22 is an object irradiated with uniform light. When the light 50a is white light, the color rendering property is preferably 85 or more, and the color temperature is preferably from 3000K to 7000K.
 図3は、実施例1の変形例1における反射体および導光板を示す断面図である。図3に示すように、導光板14の内面15aおよび外面15bに複数の凸部32が設けられている。凸部32の幅W、高さHおよびピッチPは例えば数100nmから数100μmである。幅Wおよび高さHは光50bの波長程度かそれ以上が好ましい。 FIG. 3 is a cross-sectional view showing a reflector and a light guide plate in Modification 1 of Embodiment 1. As shown in FIG. 3, a plurality of convex portions 32 are provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14. The width W, height H, and pitch P of the protrusions 32 are, for example, several hundred nm to several hundred μm. The width W and height H are preferably about the wavelength of the light 50b or longer.
 実施例1の変形例1のように、導光板14の内面15aおよび外面15bには、凹部30の代わりに凸部32が設けられていてもよい。凹部30と凸部32の両方が設けられていてもよい。 As in Modification 1 of Example 1, convex portions 32 may be provided on the inner surface 15 a and the outer surface 15 b of the light guide plate 14 instead of the concave portions 30. Both the recessed part 30 and the convex part 32 may be provided.
 図4は、実施例2に係る光源を示す断面図である。図4に示すように、光源101において積分球20は球状である。反射体12は球状の内面を有する。導光板14は球状であり、反射体12の内面に沿って設けられる。反射体12には開口18aおよび18cが形成されている。導光板14には開口18bおよび18dが形成されている。開口18aおよび18cは球状の中心に対し対称に設けられている。開口18aと18bとは連なるように形成され、開口18cと18dとは連なるように形成されている。導光板14の開口18b側の端面にはLED16aが配置されている。導光板14aの開口18d側の端面にはLED16bが配置されている。その他の構成は実施例1と同じであり説明を省略する。実施例2のように、反射体12および導光板14は球状でもよい。 FIG. 4 is a cross-sectional view showing a light source according to the second embodiment. As shown in FIG. 4, in the light source 101, the integrating sphere 20 is spherical. The reflector 12 has a spherical inner surface. The light guide plate 14 is spherical and is provided along the inner surface of the reflector 12. Openings 18 a and 18 c are formed in the reflector 12. Openings 18 b and 18 d are formed in the light guide plate 14. The openings 18a and 18c are provided symmetrically with respect to the spherical center. The openings 18a and 18b are formed to be continuous, and the openings 18c and 18d are formed to be continuous. An LED 16a is disposed on the end face of the light guide plate 14 on the opening 18b side. An LED 16b is disposed on the end face on the opening 18d side of the light guide plate 14a. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. As in the second embodiment, the reflector 12 and the light guide plate 14 may be spherical.
 図5は、実施例2の変形例1に係る光源を示す断面図である。図5に示すように、導光板14は半球状の導光板14aおよび14bを有する。開口18bおよび18dはそれぞれ導光板14aおよび14bの頂点に設けられている。導光板14aの開口18bの端面にはLED16aが配置されている。導光板14aの開口18aと反対の端面にはLED16bが配置されている。導光板14bにはLEDは設けられていない。その他の構成は実施例2と同じであり説明を省略する。 FIG. 5 is a cross-sectional view showing a light source according to Modification 1 of Embodiment 2. As shown in FIG. 5, the light guide plate 14 includes hemispherical light guide plates 14a and 14b. The openings 18b and 18d are provided at the apexes of the light guide plates 14a and 14b, respectively. An LED 16a is disposed on the end face of the opening 18b of the light guide plate 14a. An LED 16b is disposed on the end surface of the light guide plate 14a opposite to the opening 18a. The light guide plate 14b is not provided with LEDs. Other configurations are the same as those of the second embodiment, and the description thereof is omitted.
 図6は、実施例2の変形例2に係る光源を示す断面図である。図6に示すように、光源103において、導光板14bの開口18dと反対の端面にLED16cが設けられている。その他の構成は実施例2の変形例1と同じであり説明を省略する。 FIG. 6 is a cross-sectional view illustrating a light source according to a second modification of the second embodiment. As shown in FIG. 6, in the light source 103, an LED 16c is provided on the end surface opposite to the opening 18d of the light guide plate 14b. Other configurations are the same as those of the first modification of the second embodiment, and a description thereof will be omitted.
 図7は、実施例2の変形例3に係る光源を示す断面図である。図7に示すように、光源104において、試料22は積分球20の中心に設けられている。試料22のための開口18cおよび18dは設けられていない。導光板14は球状である。LED16は、導光板14の開口18b側の端面に設けられている。その他の構成は実施例2と同じであり説明を省略する。 FIG. 7 is a cross-sectional view showing a light source according to Modification 3 of Embodiment 2. As shown in FIG. 7, in the light source 104, the sample 22 is provided at the center of the integrating sphere 20. Openings 18c and 18d for the sample 22 are not provided. The light guide plate 14 is spherical. The LED 16 is provided on the end surface of the light guide plate 14 on the opening 18b side. Other configurations are the same as those of the second embodiment, and the description thereof is omitted.
 図8は、実施例2の変形例4に係る光源を示す断面図である。図8に示すように、光源105には導光板14bが設けられていない。その他の構成は実施例2の変形例1と同じであり説明を省略する。 FIG. 8 is a cross-sectional view illustrating a light source according to Modification 4 of Embodiment 2. As shown in FIG. 8, the light source 105 is not provided with the light guide plate 14b. Other configurations are the same as those of the first modification of the second embodiment, and a description thereof will be omitted.
 実施例1、2およびその変形例によれば、反射体12の内面15aの少なくとも一部は内側に凹の曲面(例えば正のガウス曲率を有する曲面)である。反射体12は、光を反射する。導光板14は、反射体12の内側に凹の曲面の内面11aに沿って設けられ、内面15aおよび外面15bに凹部30または凸部32を有し、光が伝搬する。LED16は、導光板14に光を照射する。これにより、図2のように、導光板14を伝搬する光が内面15aおよび外面15bに形成された凹部30または凸部32で散乱され、反射体12の内側に凹の曲面でさらに反射される。これにより、反射体12に開口18aが設けられていても、積分球20内部の光を均一化できる。よって、開口18bから照射される光52の強度および/またはスペクトルを、照射面内で均一化できる。内側に凹の曲面は、例えば実施例1、2およびその変形例のように、球状面の少なくとも一部の面でもよい。また、内側に凹の曲面は、楕円体状面の少なくとも一部の面、または放物線の回転体状面の一部の面でもよい。 According to the first and second embodiments and the modifications thereof, at least a part of the inner surface 15a of the reflector 12 is a concave curved surface (for example, a curved surface having a positive Gaussian curvature). The reflector 12 reflects light. The light guide plate 14 is provided on the inner side of the reflector 12 along the concave curved inner surface 11a. The light guide plate 14 has a concave portion 30 or a convex portion 32 on the inner surface 15a and the outer surface 15b, and light propagates. The LED 16 irradiates the light guide plate 14 with light. As a result, as shown in FIG. 2, the light propagating through the light guide plate 14 is scattered by the concave portion 30 or the convex portion 32 formed on the inner surface 15 a and the outer surface 15 b and further reflected by the concave curved surface inside the reflector 12. . Thereby, even if the opening 18a is provided in the reflector 12, the light inside the integrating sphere 20 can be made uniform. Therefore, the intensity and / or spectrum of the light 52 irradiated from the opening 18b can be made uniform within the irradiation surface. The inwardly concave curved surface may be at least a part of a spherical surface as in the first and second embodiments and the modifications thereof, for example. In addition, the inwardly concave curved surface may be at least a part of an ellipsoidal surface or a part of a parabolic rotating body.
 実施例1のように反射体12の内面11aは、球状面の少なくとも一部の面を有すればよい。これにより、球状面の少なくとも一部の面が光を積分球20の内部に多重反射することができる。また、導光板14は、球状面の少なくとも一部の面に沿って設けられていればよい。これにより、散乱された光が反射体12の球状面の少なくとも一部の面を有する内面11aに照射される。よって、積分球内部の光を均一化できる。導光板14の内面15aおよび外面15bの少なくとも一方に凹部30および凸部32の少なくとも一方が設けられていればよい。 As in the first embodiment, the inner surface 11a of the reflector 12 may have at least a part of a spherical surface. Thereby, at least a part of the spherical surface can multiplex-reflect light into the integrating sphere 20. Moreover, the light-guide plate 14 should just be provided along the surface of at least one part of a spherical surface. Thereby, the scattered light is irradiated onto the inner surface 11 a having at least a part of the spherical surface of the reflector 12. Therefore, the light inside the integrating sphere can be made uniform. It is sufficient that at least one of the concave portion 30 and the convex portion 32 is provided on at least one of the inner surface 15a and the outer surface 15b of the light guide plate 14.
 LED16は導光板14の端面に光を照射することが好ましい。これにより、導光板14の内部に光を導入させることができる。照射部としてLED16を例に説明したが、照射部はLED以外でもよい。 The LED 16 preferably irradiates the end face of the light guide plate 14 with light. Thereby, light can be introduced into the light guide plate 14. Although the LED 16 has been described as an example of the irradiation unit, the irradiation unit may be other than the LED.
 実施例1および2のように、反射体12の内面は、少なくとも半球状面を有し、導光板14は少なくとも半球状であることが好ましい。これにより、反射体12は積分球20内の光をより多く反射でき、導光板14はより多くの光を散乱できる。よって、積分球20内部の光を均一化できる。なお、球状とは幾何学的な球でなくともよい。また、半球状および球状とは、完全な半球状および球状でなくともよい。例えば、半球状および球状から開口18aから18d、LED16、試料22、検出器24および/または他の部品等を設けるための部分が除かれていてもよい。さらに、半球状は半楕円体状および放物線の回転体状を含む。また球状は楕円体状を含む。 As in Examples 1 and 2, it is preferable that the inner surface of the reflector 12 has at least a hemispherical surface, and the light guide plate 14 is at least hemispherical. Thereby, the reflector 12 can reflect more light in the integrating sphere 20, and the light guide plate 14 can scatter more light. Therefore, the light inside the integrating sphere 20 can be made uniform. The spherical shape may not be a geometric sphere. Further, the hemisphere and the sphere need not be a complete hemisphere and a sphere. For example, the portions for providing the openings 18a to 18d, the LED 16, the sample 22, the detector 24, and / or other components may be omitted from the hemispherical shape and the spherical shape. Further, the hemisphere includes a semi-ellipsoidal shape and a parabolic rotating body shape. The spherical shape includes an ellipsoidal shape.
 実施例1のように、反射体12の内面は、半球状面と平面とを有し、導光板14は半球状面に沿って設けられている。このように、半球状の反射体12を用いることで、積分球20の内部は対称となり光を均一化できる。平面は半球面の中心を通る平面であることが好ましい。 As in Example 1, the inner surface of the reflector 12 has a hemispherical surface and a flat surface, and the light guide plate 14 is provided along the hemispherical surface. Thus, by using the hemispherical reflector 12, the inside of the integrating sphere 20 becomes symmetric and the light can be made uniform. The plane is preferably a plane passing through the center of the hemisphere.
 反射体12は平面に光を出射する出射口として開口18cを有する。これにより、より光源は均一な光を出射できる。積分球20内の対称な位置の光はより均一である。また、光を均一化するために積分球20内の構造は対称であることが好ましい。このため、出射口を平面に設ける場合、出射口は平面の中心を含むことが好ましい。出射口を半球状面に設ける場合、出射口は半球状面の頂点を含むことが好ましい。これにより、より均一な光を出射口から出射できる。 The reflector 12 has an opening 18c as an exit through which light is emitted in a plane. Thereby, the light source can emit more uniform light. The light at the symmetrical position in the integrating sphere 20 is more uniform. In order to make the light uniform, the structure in the integrating sphere 20 is preferably symmetrical. For this reason, when the exit port is provided on a plane, the exit port preferably includes the center of the plane. When the exit port is provided on the hemispherical surface, the exit port preferably includes the apex of the hemispherical surface. Thereby, more uniform light can be emitted from the emission port.
 反射体12の開口18a(第1開口)は半球状面の頂点に設けられ、導光板14は、反射体12の開口18aに連なる開口18b(第2開口)を有することが好ましい。これにより、開口18aは反射体12および導光板14の対称な位置に設けることができる。よって、光をより均一化できる。 It is preferable that the opening 18a (first opening) of the reflector 12 is provided at the apex of the hemispherical surface, and the light guide plate 14 has an opening 18b (second opening) connected to the opening 18a of the reflector 12. Thereby, the opening 18 a can be provided at a symmetrical position of the reflector 12 and the light guide plate 14. Therefore, the light can be made more uniform.
 実施例2およびその変形例のように、反射体12の内面は、球状面を有し、導光板14は、球状面のうち少なくとも半球状面に沿って設けられていることが好ましい。反射体12の内面が球状面のため、積分球20内が対称となる。さらに、導光板14が少なくとも半球状面に沿って設けられているため、散乱される光が多くできより光を均一化できる。 As in Example 2 and its modifications, the inner surface of the reflector 12 preferably has a spherical surface, and the light guide plate 14 is preferably provided along at least a hemispherical surface among the spherical surfaces. Since the inner surface of the reflector 12 is a spherical surface, the inside of the integrating sphere 20 is symmetric. Further, since the light guide plate 14 is provided at least along the hemispherical surface, the scattered light can be increased and the light can be made more uniform.
 導光板14は、半球状を有し、導光板14は、半球状の頂点に反射体12の開口18aと連なる開口18bを有する。これにより、開口18aおよび18bを反射体12および導光板14の対称な位置に設けることができる。よって、光をより均一化できる。 The light guide plate 14 has a hemispherical shape, and the light guide plate 14 has an opening 18b connected to the opening 18a of the reflector 12 at the apex of the hemispherical shape. Thereby, the openings 18 a and 18 b can be provided at symmetrical positions of the reflector 12 and the light guide plate 14. Therefore, the light can be made more uniform.
 図9(a)および図9(b)は、実施例3における反射体および導光板を示す断面図である。図9(a)および図9(b)は、図1(a)のそれぞれ領域62および64に相当する図である。図9(a)に示すように領域62における凹部30の幅、深さおよびピッチをそれぞれ幅W1、深さD1およびピッチP1とする。図9(b)に示すように領域64における凹部30の幅、深さおよびピッチをそれぞれ幅W2、深さD2およびピッチP2とする。図9(a)および図9(b)のように、領域62と64とで、幅W1およびW2はほぼ同じであり、ピッチP1およびP2はほぼ同じである。領域64の深さD2は領域62の深さD1より大きい。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例1のように、導光板14に凸部32を設ける場合、領域64の高さを領域62の高さより大きくする。 FIG. 9A and FIG. 9B are cross-sectional views showing a reflector and a light guide plate in Example 3. FIGS. 9A and 9B are diagrams corresponding to the regions 62 and 64, respectively, of FIG. As shown in FIG. 9A, the width, depth, and pitch of the recesses 30 in the region 62 are defined as a width W1, a depth D1, and a pitch P1, respectively. As shown in FIG. 9B, the width, depth, and pitch of the recess 30 in the region 64 are defined as width W2, depth D2, and pitch P2, respectively. As shown in FIGS. 9A and 9B, in the regions 62 and 64, the widths W1 and W2 are substantially the same, and the pitches P1 and P2 are substantially the same. The depth D2 of the region 64 is greater than the depth D1 of the region 62. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. When the convex portion 32 is provided on the light guide plate 14 as in the first modification of the first embodiment, the height of the region 64 is made larger than the height of the region 62.
 図10(a)および図10(b)は、実施例3の変形例1における反射体および導光板を示す断面図である。図10(a)および図10(b)は、図1(a)のそれぞれ領域62および64に相当する図である。図10(a)および図10(b)のように、領域62と64とで、深さD1およびD2はほぼ同じであり、ピッチP1およびP2はほぼ同じである。領域64の幅W2は領域62の幅W1より大きい。その他の構成は実施例3と同じであり説明を省略する。 FIG. 10A and FIG. 10B are cross-sectional views showing a reflector and a light guide plate in Modification 1 of Example 3. FIG. FIG. 10A and FIG. 10B are diagrams corresponding to the regions 62 and 64, respectively, of FIG. As shown in FIGS. 10A and 10B, in the regions 62 and 64, the depths D1 and D2 are substantially the same, and the pitches P1 and P2 are substantially the same. The width W2 of the region 64 is larger than the width W1 of the region 62. Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
 図11(a)および図11(b)は、実施例3の変形例2における反射体および導光板を示す断面図である。図11(a)および図11(b)は、図1(a)のそれぞれ領域62および64に相当する図である。図11(a)および図11(b)のように、領域62と64とで、幅W1およびW2はほぼ同じであり、深さD1およびD2はほぼ同じである。領域64のピッチP2は領域62のピッチP1より小さい。その他の構成は実施例3と同じであり説明を省略する。 FIG. 11A and FIG. 11B are cross-sectional views showing a reflector and a light guide plate in Modification 2 of Example 3. FIG. 11A and FIG. 11B are diagrams corresponding to the regions 62 and 64, respectively, of FIG. As shown in FIGS. 11A and 11B, in the regions 62 and 64, the widths W1 and W2 are substantially the same, and the depths D1 and D2 are substantially the same. The pitch P2 of the region 64 is smaller than the pitch P1 of the region 62. Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
 実施例1およびその変形例においては、開口18aで反射体12aおよび導光板14による光50の反射および/または散乱が生じない。このため、開口18aの近傍では光密度が小さくなる。 In Example 1 and its modification, reflection and / or scattering of the light 50 by the reflector 12a and the light guide plate 14 do not occur in the opening 18a. For this reason, the light density decreases in the vicinity of the opening 18a.
 実施例3およびその変形例のように、開口18aの近傍領域64における凹部30の散乱効率は、開口18aに近傍領域64より遠い領域62における凹部30の散乱効率より高い。これにより、開口18aの近傍領域64において導光板14による光50の散乱が多くなる。よって、光密度を均一にできる。 As in Example 3 and its modification, the scattering efficiency of the recess 30 in the vicinity region 64 of the opening 18a is higher than the scattering efficiency of the recess 30 in the region 62 far from the vicinity region 64 of the opening 18a. Thereby, scattering of the light 50 by the light guide plate 14 increases in the vicinity region 64 of the opening 18a. Therefore, the light density can be made uniform.
 散乱効率を異ならせるため、実施例3のように、領域64における凹部30の深さD2を領域62における凹部30の深さD1より大きくすればよい。また、導光板14に凸部32が設けられている場合、領域64における凸部の高さを、領域62における凸部32の高さより大きくすればよい。 In order to make the scattering efficiency different, the depth D2 of the recess 30 in the region 64 may be made larger than the depth D1 of the recess 30 in the region 62 as in the third embodiment. Further, when the light guide plate 14 is provided with the convex portion 32, the height of the convex portion in the region 64 may be made larger than the height of the convex portion 32 in the region 62.
 また、散乱効率を異ならせる他の方法として、実施例3の変形例1のように、領域64における凹部を、領域62における凹部より大きくしてもよい。導光板14に凸部32が設けられている場合も同じである。さらに、実施例3の変形例2のように、領域64における凹部30の密度を、領域62における凹部30の密度より高くすることもできる。導光板14に凸部32が設けられている場合も同じである。 Further, as another method of making the scattering efficiency different, the concave portion in the region 64 may be made larger than the concave portion in the region 62 as in the first modification of the third embodiment. The same applies to the case where the light guide plate 14 is provided with the convex portion 32. Furthermore, as in the second modification of the third embodiment, the density of the recesses 30 in the region 64 can be made higher than the density of the recesses 30 in the region 62. The same applies to the case where the light guide plate 14 is provided with the convex portion 32.
 実施例3およびその変形例では、領域62と64とで凹部30および凸部32の少なくとも一方の幅、深さまたは高さ、および密度の少なくとも1つが異なる例を説明した。導光板14の開口18a側から反対側にかけて、幅、深さまたは高さ、および密度の少なくとも1つが徐々に変化してもよい。 In the third embodiment and the modification thereof, an example has been described in which at least one of the width, depth or height, and density of at least one of the concave portion 30 and the convex portion 32 is different between the regions 62 and 64. At least one of the width, the depth or the height, and the density may gradually change from the opening 18a side to the opposite side of the light guide plate 14.
 実施例2およびその変形例においても凹部30および凸部32の少なくとも一方の幅、深さまたは高さ、および密度の少なくとも一方を領域62と64とで異ならせることができる。 Also in Example 2 and its modification, at least one of the width, depth or height, and density of at least one of the concave portion 30 and the convex portion 32 can be made different between the regions 62 and 64.
 図12(a)および図12(b)は、実施例3の変形例3および4における反射体および導光板を示す断面図である。図12(a)に示すように、導光板14に粒子34が分散している。粒子34の粒径は、例えば数100nmから数100μmである。粒子34の材料は、光50を反射および/または反射する材料であり、例えば金属粒子、絶縁体材料または半導体材料を用いることができる。図12(b)に示すように、導光板14に気泡36が分散している。気泡36の粒径は、例えば数100nmから数100μmである。 12 (a) and 12 (b) are cross-sectional views showing a reflector and a light guide plate in Modifications 3 and 4 of Example 3. FIG. As shown in FIG. 12A, the particles 34 are dispersed in the light guide plate 14. The particle size of the particle 34 is, for example, several hundred nm to several hundred μm. The material of the particle 34 is a material that reflects and / or reflects the light 50, and for example, a metal particle, an insulator material, or a semiconductor material can be used. As shown in FIG. 12B, the bubbles 36 are dispersed in the light guide plate 14. The particle diameter of the bubbles 36 is, for example, several hundred nm to several hundred μm.
 実施例3の変形例3および4によれば、導光板14は、光を反射または散乱する粒子34および気泡36の少なくとも一方を含む。これにより、導光板14における光の散乱効率を増加させることができる。 According to Modifications 3 and 4 of Example 3, the light guide plate 14 includes at least one of particles 34 and bubbles 36 that reflect or scatter light. Thereby, the light scattering efficiency in the light guide plate 14 can be increased.
 実施例4は、実施例1から3およびその変形例を用いた検出装置の例である。図13は、実施例4に係る検出装置のブロック図である。図13に示すように、検出装置106は、光源100、集光部42、センサ44、LED制御部46および制御部40を備える。光源100は実施例1に係る光源である。集光部42は積分球20内の光を集める。センサ44は、集光部42が集光した光を分光する、または照度を測定する。積分球20内の光が均一であれば、集光部42が集光した光の強度および/またはスペクトルは、光源100が試料22に出射する光52とほぼ同じである。LED制御部46は、LED16aおよび16bの発光強度および/または発光時間を制御する。制御部40は、例えばコンピュータまたはプロセッサであり、検出器24、センサ44おおびLED制御部46を制御する。 Example 4 is an example of a detection apparatus using Examples 1 to 3 and a modification thereof. FIG. 13 is a block diagram of a detection apparatus according to the fourth embodiment. As illustrated in FIG. 13, the detection device 106 includes a light source 100, a light collecting unit 42, a sensor 44, an LED control unit 46, and a control unit 40. The light source 100 is a light source according to the first embodiment. The condenser 42 collects the light in the integrating sphere 20. The sensor 44 separates the light collected by the light collecting unit 42 or measures the illuminance. If the light in the integrating sphere 20 is uniform, the intensity and / or spectrum of the light collected by the light collecting unit 42 is substantially the same as the light 52 emitted from the light source 100 to the sample 22. The LED control unit 46 controls the light emission intensity and / or the light emission time of the LEDs 16a and 16b. The control unit 40 is, for example, a computer or a processor, and controls the detector 24, the sensor 44, and the LED control unit 46.
 例えば、制御部40は、センサ44が検出した積分球20内の照度に基づき、LED制御部46を制御し、積分球20内の照度を所望の照度に制御する。制御部40は、センサ44が検出した積分球20内の光の分光情報に基づき、LED制御部46を制御し、積分球20内の演色性および/または色温度を所望の値に制御する。制御部40は、積分球20内の照度、演色性および/または色温度が所望の値になると、検出器24に試料22の状態を検出させる。例えば、検出器24は試料22が放射する光54を用い試料22の写真を撮像する、または試料22が放射する光54を分光する。 For example, the control unit 40 controls the LED control unit 46 based on the illuminance in the integrating sphere 20 detected by the sensor 44 to control the illuminance in the integrating sphere 20 to a desired illuminance. The control unit 40 controls the LED control unit 46 based on the spectral information of the light in the integrating sphere 20 detected by the sensor 44, and controls the color rendering properties and / or the color temperature in the integrating sphere 20 to desired values. The control unit 40 causes the detector 24 to detect the state of the sample 22 when the illuminance, color rendering properties, and / or color temperature in the integrating sphere 20 reach desired values. For example, the detector 24 takes a picture of the sample 22 using the light 54 emitted by the sample 22 or splits the light 54 emitted by the sample 22.
 実施例4によれば、光源100は試料22に光52を照射する。検出器24は、試料22の状態を検出する。光源100が出射する光52は均一なため、試料22は均一な光54を放射する。よって、試料22の状態を精度よく検出できる。例えば、検出器24が試料22の写真を撮像する場合、試料22の表面に均一な光が照射されるため、精度のよい写真が撮像できる。実施例2から4およびその変形例を検出装置に用いてもよい。 According to Example 4, the light source 100 irradiates the sample 52 with the light 52. The detector 24 detects the state of the sample 22. Since the light 52 emitted from the light source 100 is uniform, the sample 22 emits uniform light 54. Therefore, the state of the sample 22 can be detected with high accuracy. For example, when the detector 24 captures a photograph of the sample 22, the surface of the sample 22 is irradiated with uniform light, so that a highly accurate photograph can be captured. Embodiments 2 to 4 and modifications thereof may be used in the detection device.
 図14は、実施例5における導光板およびLEDの配置を示す正面図である。図14に示すように、LED16aおよび16bとして、異なる種類のLED16x、16yおよび16zが設けられている。LED16x、16yおよび16zは、例えば均等に配置されている。その他の構成は実施例4と同じであり説明を省略する。 FIG. 14 is a front view showing the arrangement of light guide plates and LEDs in Example 5. As shown in FIG. 14, different types of LEDs 16x, 16y, and 16z are provided as the LEDs 16a and 16b. The LEDs 16x, 16y, and 16z are arranged equally, for example. Other configurations are the same as those of the fourth embodiment, and the description thereof is omitted.
 図15(a)から図15(c)は、実施例5における各LEDのスペクトルを示す図、図15(d)は試料に照射される光のスペクトルを示す図である。図15(a)から図15(c)はそれぞれLED16xからLED16zの発光スペクトルである。図15(a)から図15(c)に示すように、LED16xからLED16zの発光スペクトルは異なっている。実施例4において、制御部40がセンサ44の結果に基づきLED制御部46を制御する。LED制御部46は、LED16x、16yおよび16zの強度を調整する。これにより、図15(d)のように、試料22に照射される光52のスペクトルを所望のスペクトルに調整できる。 15 (a) to 15 (c) are diagrams showing the spectrum of each LED in Example 5, and FIG. 15 (d) is a diagram showing the spectrum of light irradiated on the sample. FIG. 15A to FIG. 15C are emission spectra of the LEDs 16x to 16z, respectively. As shown in FIGS. 15A to 15C, the emission spectra of the LEDs 16x to 16z are different. In the fourth embodiment, the control unit 40 controls the LED control unit 46 based on the result of the sensor 44. The LED control unit 46 adjusts the intensity of the LEDs 16x, 16y, and 16z. Thereby, the spectrum of the light 52 irradiated to the sample 22 can be adjusted to a desired spectrum as shown in FIG.
 図16(a)から図16(c)は、実施例5における各LEDのスペクトルを示す別の図、図16(d)は試料に照射される光の強度の時間依存を示す図である。図16(a)から図16(c)はそれぞれLED16xからLED16zの発光スペクトルである。図16(a)から図16(c)に示すように、LED16xからLED16zはそれぞれスペクトル70x、70yおよび70zの光を出射する。スペクトル70xから70zは互いに異なっている。実施例4において、制御部40は、LED制御部46は、LED16x、16yおよび16zを発光させる期間を異ならせる。これにより、図16(d)のように、試料22に照射される光52のスペクトルは、期間Txではスペクトル70xとなり、期間Tyではスペクトル70yとなり、期間Tzではスペクトル70zとなる。このように、期間により異なるスペクトルの光52を試料22に照射できる。 16 (a) to 16 (c) are other diagrams showing the spectrum of each LED in Example 5, and FIG. 16 (d) is a diagram showing the time dependence of the intensity of light irradiated on the sample. FIG. 16A to FIG. 16C are emission spectra of the LEDs 16x to 16z, respectively. As shown in FIGS. 16A to 16C, the LEDs 16x to 16z emit light having spectra 70x, 70y, and 70z, respectively. The spectra 70x to 70z are different from each other. In the fourth embodiment, the control unit 40 varies the periods during which the LED control unit 46 emits the LEDs 16x, 16y, and 16z. Thereby, as shown in FIG. 16D, the spectrum of the light 52 irradiated to the sample 22 becomes the spectrum 70x in the period Tx, becomes the spectrum 70y in the period Ty, and becomes the spectrum 70z in the period Tz. Thus, the sample 22 can be irradiated with light 52 having a different spectrum depending on the period.
 実施例1から5およびその変形例において、光50および54は、狭義には例えば可視光、紫外線または赤外線である。より広義にはX線等を含む電磁波である。 In Examples 1 to 5 and the modifications thereof, the lights 50 and 54 are, for example, visible light, ultraviolet light, or infrared light in a narrow sense. In a broader sense, the electromagnetic wave includes X-rays and the like.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
  11 反射体の内面
  12、12a、12b 反射体
  14、14a、14b 導光板
  15a 導波板の内面
  15b 導光板の外面
  16、16a、16b、16x、16y、16z LED
  18a、18b、18c 開口
  20 積分球
  22 試料
  30 凹部
  32 凸部
  34 粒子
  36 気泡
  24 検出器
  50、50a-50e、52、54 光
11 Reflector inner surface 12, 12a, 12b Reflector 14, 14a, 14b Light guide plate 15a Wave guide plate inner surface 15b Light guide plate outer surface 16, 16a, 16b, 16x, 16y, 16z LED
18a, 18b, 18c Aperture 20 Integrating sphere 22 Sample 30 Concave part 32 Convex part 34 Particles 36 Bubble 24 Detector 50, 50a-50e, 52, 54 Light

Claims (14)

  1.  光を反射する内面の少なくとも一部は内側に凹の曲面である反射体と、
     前記反射体の前記内側に凹の曲面を有する内面に沿って設けられ、内面および外面の少なくとも一部に前記光が散乱する凹部および凸部の少なくとも一方を有し、前記光が伝搬する導光板と、
     前記導光板に前記光を照射する照射部と、
    を具備することを特徴とする光源。
    A reflector that is a concavely curved surface inside at least a part of the inner surface that reflects light;
    A light guide plate that is provided along an inner surface having a concave curved surface on the inner side of the reflector, has at least one of a concave portion and a convex portion for scattering the light on at least a part of the inner surface and the outer surface, and propagates the light. When,
    An irradiation unit for irradiating the light to the light guide plate;
    A light source comprising:
  2.  前記反射体の内面は、少なくとも半球状面を有し、
     前記導光板は少なくとも半球状であることを特徴とする請求項1記載の光源。
    The inner surface of the reflector has at least a hemispherical surface;
    The light source according to claim 1, wherein the light guide plate is at least hemispherical.
  3.  前記照射部は前記導光板の端面に前記光を照射する請求項1または2記載の光源。 The light source according to claim 1 or 2, wherein the irradiation unit irradiates the light onto an end surface of the light guide plate.
  4.  前記反射体の内面は、半球状面と平面とを有し、
     前記導光板は前記半球状面に沿って設けられていることを特徴とする請求項1から3のいずれか一項記載の光源。
    The inner surface of the reflector has a hemispherical surface and a flat surface,
    The light source according to claim 1, wherein the light guide plate is provided along the hemispherical surface.
  5.  前記反射体の内面は、球状面を有し、
     前記導光板は、前記球状面のうち少なくとも半球状面に沿って設けられていることを特徴とする請求項1から3のいずれか一項記載の光源。
    An inner surface of the reflector has a spherical surface;
    The light source according to any one of claims 1 to 3, wherein the light guide plate is provided along at least a hemispherical surface of the spherical surfaces.
  6.  前記反射体は第1開口を有し、前記導光板は前記第1開口に連なる第2開口を有することを特徴とする請求項1から5いずれか一項記載の光源。 6. The light source according to claim 1, wherein the reflector has a first opening, and the light guide plate has a second opening continuous with the first opening.
  7.  前記第2開口の近傍領域における前記凹部および凸部の少なくとも一方の前記光の散乱効率は、前記第2開口に前記近傍領域より遠い領域における前記凹部および凸部の少なくとも一方の散乱効率より高いことを特徴とする請求項6記載の光源。 The light scattering efficiency of at least one of the concave portion and the convex portion in the vicinity region of the second opening is higher than the scattering efficiency of at least one of the concave portion and the convex portion in a region farther from the vicinity region to the second opening. The light source according to claim 6.
  8.  前記導光板は、前記光を反射または散乱する粒子および気泡の少なくとも一方を含む請求項1から7のいずれか一項記載の光源。 The light source according to any one of claims 1 to 7, wherein the light guide plate includes at least one of particles and bubbles that reflect or scatter the light.
  9.  前記照射部は発光スペクトルの異なる複数の照射部を含むことを特徴とする請求項1から8のいずれか一項記載の光源。 The light source according to any one of claims 1 to 8, wherein the irradiation unit includes a plurality of irradiation units having different emission spectra.
  10.  前記反射体は前記平面に前記光を出射する出射口を有することを特徴とする請求項4記載の光源。 The light source according to claim 4, wherein the reflector has an emission port for emitting the light on the plane.
  11.  前記反射体は前記半球状面の頂点に第1開口を有し、
     前記導光板は、前記第1開口に連なる第2開口を有することを特徴とする請求項4または10記載の光源。
    The reflector has a first opening at the apex of the hemispherical surface;
    The light source according to claim 4, wherein the light guide plate has a second opening that is continuous with the first opening.
  12.  前記反射体は第1開口を有し、
     前記導光板は、半球状であり、
     前記導光板は、前記半球状の頂点に前記第1開口と連なる第2開口を有することを特徴とする請求項5記載の光源。
    The reflector has a first opening;
    The light guide plate is hemispherical,
    6. The light source according to claim 5, wherein the light guide plate has a second opening continuous with the first opening at the hemispherical apex.
  13.  前記反射体は前記第1開口の反対側に前記光を出射する出射口を有することを特徴とする請求項12記載の光源。 13. The light source according to claim 12, wherein the reflector has an exit opening that emits the light on the opposite side of the first opening.
  14.  試料に光を照射する請求項1から13のいずれか一項記載の光源と、
     前記試料の状態を検出する検出器と、
    を具備することを特徴とする検出装置。
    The light source according to any one of claims 1 to 13, wherein the sample is irradiated with light;
    A detector for detecting the state of the sample;
    A detection apparatus comprising:
PCT/JP2016/064734 2016-05-18 2016-05-18 Light source and detection device WO2017199368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064734 WO2017199368A1 (en) 2016-05-18 2016-05-18 Light source and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064734 WO2017199368A1 (en) 2016-05-18 2016-05-18 Light source and detection device

Publications (1)

Publication Number Publication Date
WO2017199368A1 true WO2017199368A1 (en) 2017-11-23

Family

ID=60325054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064734 WO2017199368A1 (en) 2016-05-18 2016-05-18 Light source and detection device

Country Status (1)

Country Link
WO (1) WO2017199368A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111402A (en) * 1996-10-04 1998-04-28 Gunze Ltd Light-diffusing sheet and its production
US5997155A (en) * 1997-03-31 1999-12-07 Physical Sciences, Inc. Integrating projection optic
JP2003004631A (en) * 2001-06-18 2003-01-08 Kawasaki Kiko Co Ltd Component-measuring apparatus
JP2004240331A (en) * 2003-02-07 2004-08-26 Kyocera Corp Reflection type liquid crystal display
JP2006323392A (en) * 2005-05-17 2006-11-30 E I Du Pont De Nemours & Co Diffuse reflection article
JP2007263787A (en) * 2006-03-29 2007-10-11 Nix Inc Ring-shaped collective irradiation instrument and irradiation angle regulation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111402A (en) * 1996-10-04 1998-04-28 Gunze Ltd Light-diffusing sheet and its production
US5997155A (en) * 1997-03-31 1999-12-07 Physical Sciences, Inc. Integrating projection optic
JP2003004631A (en) * 2001-06-18 2003-01-08 Kawasaki Kiko Co Ltd Component-measuring apparatus
JP2004240331A (en) * 2003-02-07 2004-08-26 Kyocera Corp Reflection type liquid crystal display
JP2006323392A (en) * 2005-05-17 2006-11-30 E I Du Pont De Nemours & Co Diffuse reflection article
JP2007263787A (en) * 2006-03-29 2007-10-11 Nix Inc Ring-shaped collective irradiation instrument and irradiation angle regulation device

Similar Documents

Publication Publication Date Title
JP5656461B2 (en) Light emitting device
WO2013157243A1 (en) Luminous flux control member, light emitting apparatus, and illuminating apparatus
JP2017208576A5 (en)
JP2009218076A (en) Vehicular lighting fixture
JP5888999B2 (en) Lighting device
US7332747B2 (en) Light-emitting diode for decoration
JP2018505535A (en) Aquarium lighting
JP6309660B2 (en) Light guide and light emitting device
US11249342B2 (en) Light emitting device, surface light source device and display device
WO2015005424A1 (en) Optical element and illumination device including optical element
WO2017199368A1 (en) Light source and detection device
JP6127347B2 (en) lighting equipment
JP6668689B2 (en) Lighting modules and large lighting devices
JP6012972B2 (en) Lighting device
WO2016178369A1 (en) Light flux control member, light-emitting device, planar light-source device, and display device
US20200348566A1 (en) Light bundle control member, light emitting device, area-light source device, and display device
JP6820768B2 (en) Surface light source device and display device
CN107781721B (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP5889956B2 (en) Lighting structure and portable computer
US20210364859A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
WO2017061370A1 (en) Light flux control member, light-emitting device, surface light source device and display device
JP2015103351A (en) Light guide plate and illumination device
JP7015132B2 (en) Light irradiation device
US11231619B2 (en) Light bundle control member, light emitting device, area light source device, and display device
JP6992280B2 (en) Vehicle lighting equipment and vehicle sensor modules

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902387

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP