WO2017197840A1 - 一种触摸屏感测图案及电容式触摸传感器 - Google Patents

一种触摸屏感测图案及电容式触摸传感器 Download PDF

Info

Publication number
WO2017197840A1
WO2017197840A1 PCT/CN2016/103563 CN2016103563W WO2017197840A1 WO 2017197840 A1 WO2017197840 A1 WO 2017197840A1 CN 2016103563 W CN2016103563 W CN 2016103563W WO 2017197840 A1 WO2017197840 A1 WO 2017197840A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
electrode
sensing unit
touch
consecutively arranged
Prior art date
Application number
PCT/CN2016/103563
Other languages
English (en)
French (fr)
Inventor
刘武
王朋
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2017197840A1 publication Critical patent/WO2017197840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of touch screen technologies, and in particular, to a touch screen sensing pattern and a capacitive touch sensor.
  • the capacitive touch screen includes a traditional independent capacitive touch screen and an integrated capacitive touch screen.
  • the integrated capacitive touch screen adds a touch sensor to the display module, which can be thin and light, and thus more in line with the development trend of the smart terminal.
  • Integrated capacitive touch screens are generally divided into two types: Oncell and Incell.
  • the touch sensors of the Oncell integrated capacitive touch screen are mostly fabricated by using a capacitive single-layer electrode pattern.
  • the first direction electrodes are Y1, Y2, Y3, and the second direction electrodes are X1, X2, X3, X4, X5, X6.
  • the first direction electrode may be a driving electrode, and the corresponding second direction electrode may be a sensing electrode; conversely, the first direction electrode may be a sensing electrode, and the corresponding second direction electrode is a driving electrode.
  • the driving electrode and the sensing electrode constitute a sensing unit, and the sensing unit needs to be led out to the edge of the screen of the touch screen to be connected to an external circuit.
  • the distance between the sensing electrode and the outgoing end in the sensing unit increases the distance between the driving electrode and the outgoing end. This is usually called the distance between the sensing unit and the outgoing end.
  • the sensing unit Since the sensing unit has a thin trace and the resistivity of the trace is high, the trace impedance of the sensing unit farther from the outlet end is much higher than the trace impedance of the sensing unit that is closer to the outlet end.
  • the impedance of the trace is attenuated, which causes the attenuation of the driving signal by the sensing unit farther from the outgoing end and the sensing unit closer to the outgoing end.
  • the attenuation of the sensing unit farther from the outlet end is relatively large, which seriously reduces the signal-to-noise ratio of the entire touch sensor.
  • the present application provides a touch screen sensing pattern and a capacitive touch sensor, which can improve the signal to noise ratio of the capacitive touch screen, and ensure that the touch can be effectively and correctly detected.
  • the present application provides a touch screen sensing pattern, including at least two sensing units, the sensing unit includes a sensing electrode and a driving electrode.
  • the sensing unit includes a sensing electrode and a driving electrode.
  • the amount of change in the sensing capacitance caused by the touch of the second sensing unit is greater than the amount of change in the sensing capacitance caused by the touch of the first sensing unit, including:
  • the width of the sensing electrode and the driving electrode in the second sensing unit is greater than the width of the sensing electrode and the driving electrode in the first sensing unit; and/or,
  • the area of the sensing electrode and the driving electrode in the second sensing unit is greater than the sum of the areas of the sensing electrode and the driving electrode in the first sensing unit.
  • the amount of change in the sensing capacitance caused by the touch of the second sensing unit is greater than the amount of change in the sensing capacitance caused by the touch of the first sensing unit, including:
  • the number of intersecting teeth of the sensing electrode and the driving electrode of the second sensing unit is greater than the number of intersecting teeth of the sensing electrode and the driving electrode of the first sensing unit.
  • the amount of change of the sensing capacitance caused by the touch of the second sensing unit is greater than the amount of change of the sensing capacitance caused by the touch of the first sensing unit, and the method further includes:
  • the number of intersecting teeth of the sensing electrode and the driving electrode of the second sensing unit is greater than the number of intersecting teeth of the sensing electrode and the driving electrode of the first sensing unit.
  • the present application further provides a touch screen sensing pattern, including at least two consecutively arranged sensing units, the sensing unit includes a sensing electrode and a driving electrode, and the sensing unit is accumulated along with a distance between the sensing electrode and the outgoing end of the sensing unit.
  • the distance between the middle driving electrode and the outgoing end gradually increases, and the amount of change in the sensing capacitance caused by the touch of the sensing unit gradually increases.
  • the amount of change in the sensing capacitance caused by the touch of the sensing unit is gradually increased, including:
  • the area of the sensing electrode and the driving electrode in the sensing unit is gradually increased.
  • the amount of change in the sensing capacitance caused by the touch of the sensing unit is gradually increased, including:
  • the number of crossed teeth of the sensing electrode and the driving electrode of the sensing unit is gradually increased.
  • the amount of change in the sensing capacitance caused by the touch of the sensing unit is gradually increased, and the method further includes:
  • the number of crossed teeth of the sensing electrode and the driving electrode of the sensing unit is gradually increased.
  • the present application further provides a touch screen sensing pattern, comprising at least two sets of consecutively arranged sensing units, the sensing unit comprising a sensing electrode and a driving electrode, and a distance between each sensing electrode and the outgoing end of the second group of consecutively arranged sensing units Accumulating the distance between each driving electrode and the outgoing end and greater than the distance between each sensing electrode and the outgoing end of the first group of consecutively arranged sensing units and accumulating the distance between each driving electrode and the outgoing end, and the second set of consecutively arranged sensing units are caused by touch
  • the sum of the amounts of change in the sense capacitance is greater than the sum of the amounts of change in the sense capacitance caused by the touch of the first group of consecutively arranged sense units.
  • the sum of the amount of change in the sensing capacitance caused by the touch in the second group of consecutively arranged sensing units is greater than the amount of change in the sensing capacitance caused by the touch in the first group of consecutively arranged sensing units.
  • the widths of the sensing electrodes and the driving electrodes of each sensing unit in each of the consecutively arranged sensing units are the same, and the widths of the sensing electrodes and the driving electrodes of each of the second group of consecutively arranged sensing units are greater than the first a width sum of the sensing electrode and the driving electrode of each of the plurality of consecutively arranged sensing units; and/or,
  • the area of the sensing electrode and the driving electrode of each sensing unit in each of the consecutively arranged sensing units is the same, and the sum of the sensing electrodes and the driving electrodes of each of the second group of consecutive sensing units is greater than the first The sum of the area of the sensing and driving electrodes of each of the sensing units of a group of consecutively arranged sensing units.
  • the sum of the amount of change in the sensing capacitance caused by the touch in the second group of consecutively arranged sensing units is greater than the amount of change in the sensing capacitance caused by the touch in the first group of consecutively arranged sensing units.
  • the number of intersecting teeth of the sensing electrodes and the driving electrodes of each sensing unit in each of the consecutively arranged sensing units is the same, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units is more than that of the first group.
  • the number of crossed teeth of the sensing electrode and the driving electrode of the sensing unit is the same, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units is more than that of the first group.
  • the sum of the amount of change in the sensing capacitance caused by the touch in the second group of consecutively arranged sensing units is greater than the amount of change in the sensing capacitance caused by the touch in the first group of consecutively arranged sensing units.
  • the number of intersecting teeth of the sensing electrodes and the driving electrodes of each sensing unit in each of the consecutively arranged sensing units is the same, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units is more than that of the first group.
  • the number of crossed teeth of the sensing electrode and the driving electrode of the sensing unit is the same, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units is more than that of the first group.
  • the present application also provides a capacitive touch sensor including any of the above touch screen sensing patterns.
  • the capacitive touch sensor is an Oncell stack or a separate capacitive touch screen stack.
  • the distance or distance between the second sensing unit or the second group of consecutively arranged sensing units and the outlet end of the present application is greater than the distance or distance between the first sensing unit or the first group of consecutively arranged sensing units and the outgoing end.
  • the length of the trace or the length of the trace between the second sensing unit or the second set of consecutively arranged sensing units and the outgoing end may be greater than the length of the first sensing unit or the first set of consecutively arranged sensing units or Line length and.
  • the amount of change or variation of the sensing capacitance caused by the touch of the second sensing unit or the second group of consecutively arranged sensing units of the present application is greater than that caused by the first sensing unit or the first group of consecutively arranged sensing units.
  • FIG. 1 is a schematic diagram of an electrode pattern of an Oncell stacked integrated capacitive touch screen
  • FIG. 2 is a schematic diagram of an induction unit in an electrode pattern of an Oncell stacked integrated capacitive touch screen
  • FIG. 3 is a schematic structural diagram of an embodiment of a touch screen sensing pattern of the present application.
  • FIG. 4 is a schematic structural diagram of another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 6 is a schematic structural diagram of another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 7 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 8 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 9 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 10 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 11 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 12 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 13 is a schematic structural diagram of still another embodiment of a touch screen sensing pattern according to the present application.
  • FIG. 14 is a schematic structural diagram of an Oncell stacked integrated capacitive touch screen applied in the present application.
  • FIG. 15 is a schematic structural diagram of an embodiment of a sensing pattern of an Oncell stacked integrated capacitive touch screen applied in the present application;
  • 16 is a schematic structural diagram of another embodiment of a sensing pattern of an Oncell stacked integrated capacitive touch screen applied in the present application.
  • the distance or distance between the second sensing unit or the second group of consecutively arranged sensing units and the outlet end of the present application is greater than the distance or distance between the first sensing unit or the first group of consecutively arranged sensing units and the outgoing end, and the second sensing unit Or the length of the trace or the length of the trace between the second group of consecutively arranged sensing units and the outgoing ends may be greater than the length of the traces or the lengths of the traces of the first sensing unit or the first group of consecutively arranged sensing units.
  • the amount of change or variation of the sensing capacitance caused by the touch of the second sensing unit or the second group of consecutively arranged sensing units of the present application is greater than that caused by the first sensing unit or the first group of consecutively arranged sensing units.
  • the present application provides a touch screen sensing pattern including at least two sensing units, and the sensing unit includes a sensing electrode and a driving electrode.
  • the distance between the sensing electrode and the outgoing end of the second sensing unit 32 is increased, the distance between the driving electrode and the outgoing end of the second sensing unit 32 is greater than the distance between the sensing electrode and the outgoing end of the first sensing unit 31, and the first sensing unit 31 is accumulated.
  • the distance between the driving electrode and the outgoing end is greater than the amount of change in the induced capacitance caused by the touch of the first sensing unit 32.
  • the distance between the sensing electrode and the outgoing end of the second sensing unit 32 is greater than the distance between the driving electrode and the outgoing end of the second sensing unit 32.
  • the distance between the sensing electrode and the outgoing end of the first sensing unit 31 is increased.
  • the driving electrode and the outgoing line of the first sensing unit 31 are accumulated.
  • the distance of the end, the length of the trace of the second sensing unit 32 is greater than the length of the trace of the first sensing unit 31, thereby causing the attenuation of the trace impedance of the second sensing unit 32 to reduce the signal-to-noise ratio of the entire touch sensor.
  • the amount of change of the induced capacitance caused by the touch of the second sensing unit 32 of the present application is greater than the amount of change of the sensing capacitance caused by the touch of the first sensing unit 31, thereby canceling the attenuation of the trace impedance of the second sensing unit 32, and improving
  • the signal-to-noise ratio of the second sensing unit 32 ensures that the touch can be effectively and correctly detected.
  • the distance between the driving electrode and the outgoing end of the second sensing unit 32 is greater than the distance between the sensing electrode and the outgoing end of the first sensing unit 31 due to the distance between the sensing electrode and the outgoing end of the second sensing unit 32.
  • the distance between the drive electrode and the outlet end of the sensing unit 31 is greater than the length of the trace of the first sensing unit 31.
  • the number of traces of the second sensing unit 32 is also less than the number of the traces. The number of traces of a sensing unit 31. Therefore, there is a remaining space in the vicinity of the wiring position of the second sensing unit 32.
  • the width of the sensing electrode and the driving electrode in the second sensing unit 32 of the present application is greater than the sensing electrode and the driving electrode in the first sensing unit 31, because there is a remaining space in the vicinity of the routing position of the second sensing unit 32.
  • the width of the sensing capacitance of the second sensing unit 32 caused by the touch is greater than the amount of change of the sensing capacitance caused by the touch of the first sensing unit 31.
  • the area of the sensing electrode and the driving electrode in the second sensing unit 32 of the present application is greater than the sensing electrode and the driving electrode in the first sensing unit 31, because there is a remaining space in the vicinity of the routing position of the second sensing unit 32.
  • the amount of change in the sense capacitance caused by the touch of the second sensing unit 32 is greater than the amount of change in the induced capacitance caused by the touch of the first sensing unit 31.
  • the width and sum of the sensing electrode and the driving electrode in the second sensing unit 32 of the present application may be greater than the first sensing unit 31 at the same time.
  • the width and the area sum are such that the amount of change in the induced capacitance caused by the touch of the second sensing unit 32 is greater than the amount of change in the induced capacitance caused by the touch of the first sensing unit 31.
  • the present application makes full use of the remaining space existing in the vicinity of the wiring position of the second sensing unit due to the decrease in the number of traces, by increasing the width and/or the area of the sensing electrode and the driving electrode in the second sensing unit 32. Filling the remaining space existing near the wiring position of the second sensing unit as the second sensing unit, so that the sensing can be touched, the sensing dead zone is reduced, and the sensing accuracy is improved. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the number of crossed teeth refers to the number of sawtooth teeth per unit area of the sensing electrode and the driving electrode.
  • the number of intersecting teeth of the sensing electrode and the driving electrode of the second sensing unit 42 in this embodiment is greater than the number of intersecting teeth of the sensing electrode and the driving electrode of the first sensing unit 41, so that the touch of the second sensing unit 42 changes.
  • the amount is larger than the amount of touch change of the first sensing unit 41.
  • the present application by increasing the number of crossed teeth of the sensing electrode and the driving electrode of the second sensing unit, the attenuation of the trace impedance of the second sensing unit 42 is cancelled, and the signal-to-noise ratio of the second sensing unit is improved. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the sensing electrode and the driving electrode of the sensing unit in the embodiment are horizontally intersected, that is, the sensing electrode and the driving electrode are in a zigzag manner in a horizontal direction, and the application is not limited to this manner.
  • the sensing electrode and the driving electrode of the sensing unit may also vertically intersect the teeth. That is, the sensing electrode and the driving electrode intersect in a zigzag manner in the vertical direction.
  • the sensing electrode and the driving electrode of the sensing unit may also be in other cross-formed forms.
  • the embodiment of the present application may further adopt a width sum of the sensing electrode and the driving electrode in the second sensing unit 72, and/or an area greater than the first sensing.
  • the unit 71 has a width sum, and/or an area sum, the number of intersecting teeth of the sensing electrode and the driving electrode of the second sensing unit 72 is greater than that of the first sensing unit 71, thereby making the second sensing unit 72
  • the touch change amount is larger than the touch change amount of the first sensing unit 71.
  • the present application makes full use of the remaining space of the second sensing unit 72 in the vicinity of the routing position due to the decrease in the number of routing lines.
  • the present application increases the width sum of the sensing electrodes and the driving electrodes in the second sensing unit 72, and/ Or, the area and the remaining space existing in the vicinity of the second sensing unit's routing position are filled into the second sensing unit, so that the sensing can be touched, the sensing dead zone is reduced, and the sensing accuracy is improved. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the application also offsets the attenuation of the trace impedance of the second sensing unit 72 by increasing the number of crossed teeth of the sensing electrode and the driving electrode of the second sensing unit 72, thereby improving the signal-to-noise ratio of the second sensing unit 72. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the present application provides a touch screen sensing pattern including at least two consecutively arranged sensing units, the sensing unit including a sensing electrode and a driving electrode.
  • the distance between the sensing electrode and the outgoing end of the sensing unit increases, the distance between the driving electrode and the outgoing end of the sensing unit increases gradually, and the amount of change of the sensing capacitance caused by the touch of the sensing unit gradually increases.
  • the distance between the driving electrode and the outgoing end of the sensing unit is gradually increased due to the distance between the sensing electrode and the outgoing end of the sensing unit, and the length of the sensing unit is gradually increased, thereby causing the attenuation of the impedance of the sensing unit to gradually increase. Reduces the signal-to-noise ratio of the entire touch sensor.
  • the amount of change in the sensing capacitance caused by the touch is gradually increased, thereby canceling the gradually increasing trace impedance attenuation of the sensing unit, improving the signal-to-noise ratio of the sensing unit, and ensuring that the touch can be effectively and correctly detected.
  • the distance between the sensing electrode and the outgoing end of the sensing unit increases, the distance between the driving electrode and the outgoing end of the sensing unit increases gradually, and the length of the sensing unit gradually increases.
  • the number of traces of the sensing unit is also gradually reduced. Therefore, there is a gradual increase in the remaining space near the position of the sensing unit.
  • the width of the sensing electrode and the driving electrode in the sensing unit of the present application is gradually increased, so that the sensing unit is caused by the sensing capacitance caused by the touch.
  • the amount of change gradually increases.
  • the area of the sensing unit and the driving electrode in the sensing unit of the present application is gradually increased, so that the sensing unit is caused by the sensing capacitance caused by the touch.
  • the amount of change gradually increases.
  • the width and area of the sensing electrode and the driving electrode in the sensing unit of the present application are gradually increased, and the sensing unit is caused by the touch, because the remaining space existing in the vicinity of the sensing unit of the sensing unit is gradually increased.
  • the amount of change in the sensing capacitance is gradually increased.
  • the distance between the driving electrode and the outgoing end of the sensing unit is gradually increased according to the distance between the sensing electrode and the outgoing end of the sensing unit, and the distance between the sensing unit and the outgoing line is gradually decreased, and the remaining space existing near the moving position gradually increases.
  • the present application fills the remaining space existing in the vicinity of the sensing unit wiring position as a sensing unit by increasing the width sum and/or the area sum of the sensing electrode and the driving electrode in the sensing unit, so as to enable Inductive touch reduces the blind area of induction and improves the accuracy of sensing. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the impedance attenuation of the sensing unit gradually increases.
  • the number of crossed teeth refers to the number of sawtooth teeth per unit area of the sensing electrode and the driving electrode. Referring to FIG. 9 , the number of intersecting teeth of the sensing electrode and the driving electrode of the sensing unit is gradually increased, thereby canceling the impedance attenuation of the sensing unit and increasing the signal-to-noise ratio of the sensing unit. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the sensing electrode and the driving electrode of the sensing unit in the embodiment are horizontally intersected, that is, the sensing electrode and the driving electrode are in a zigzag manner in a horizontal direction, and the application is not limited to this manner.
  • the sensing electrode and the driving electrode of the sensing unit may also vertically intersect the teeth, that is, the sensing electrodes and the driving electrodes cross in a zigzag manner in a vertical direction. See Figure 6, the sense The sensing and driving electrodes of the unit may also be in other forms of cross-deformation.
  • the embodiment of the present application may further adopt a width sum of a sensing electrode and a driving electrode in the sensing unit, and/or a sensing electrode and a driving electrode in the sensing unit. While the area and the gradual increase, the number of intersecting teeth of the sensing electrode and the driving electrode of the sensing unit is gradually increased, so that the amount of touch change of the sensing unit is gradually increased.
  • the present application makes full use of the remaining space of the sensing unit which gradually increases in the vicinity of the routing position due to the decrease in the number of routing lines.
  • the present application increases the width and/or area of the sensing electrode and the driving electrode in the sensing unit.
  • the remaining space gradually increasing near the position of the sensing unit is filled as a sensing unit, so that the sensing can be touched, the sensing dead zone is reduced, and the sensing accuracy is improved. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the application also increases the cross-counting number of the sensing electrode and the driving electrode of the sensing unit, cancels the attenuation of the trace impedance of the sensing unit, and improves the signal-to-noise ratio of the sensing unit. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the present application provides a touch screen sensing pattern including at least two sets of consecutively arranged sensing units, the sensing unit including a sensing electrode and a driving electrode.
  • the distance between each sensing electrode and the outgoing end of the second group of consecutively arranged sensing units 112 and the distance between each driving electrode and the outgoing end are greater than the distance between each sensing electrode and the outgoing end of the first group of consecutively arranged sensing units 111.
  • summing the distance between each of the driving electrodes and the outgoing end, and the sum of the amounts of change of the sensing capacitance caused by the touch of the second group of consecutively arranged sensing units 112 is greater than the sensing of the first group of consecutively arranged sensing units 111 by the touch The sum of the changes in capacitance.
  • the distance between each sensing electrode and the outgoing end of the second group of consecutively arranged sensing units 112 and the distance between each driving electrode and the outgoing end are greater than the distance between each sensing electrode and the outgoing end of the first group of consecutively arranged sensing units 111 and accumulate the driving a distance between the electrode and the outlet end, and a length of the second group of consecutively arranged sensing units 112 and a length greater than a length of the first group of consecutively arranged sensing units 111, thereby resulting in a second group of consecutively arranged sensing units 112
  • the trace impedance attenuation is greater than the trace impedance attenuation of the first set of consecutively arranged sensing units 111, reducing the signal to noise ratio level of the entire touch sensor.
  • the amount of change in the induced capacitance caused by the touch of the second group of consecutively arranged sensing units 112 of the present application And a greater than the sum of the amounts of change in the sensing capacitance caused by the touch of the first group of consecutively arranged sensing units 111, thereby canceling the attenuation of the trace impedance of the second group of consecutively arranged sensing units 112, ascending the second group of consecutively arranged
  • the signal-to-noise ratio of the second sensing unit 112 ensures that the touch can be effectively and correctly detected.
  • the distance between each sensing electrode and the outgoing end of the second group of consecutively arranged sensing units 112 and the distance between each driving electrode and the outgoing end are greater than the distance between each sensing electrode and the outgoing end of the first group of consecutively arranged sensing units 111.
  • the length of the wiring of the second group of consecutively arranged sensing units 112 and the length of the wiring of the sensing unit 111 of the first group of consecutively arranged, and the second group of consecutively arranged The number of traces of the sensing unit 112 is also smaller than the number of traces of the first group of consecutively arranged sensing units 111. Therefore, there is a remaining space in the vicinity of the wiring position of the second group of consecutively arranged sensing units 112 described in the present application.
  • the width and the width of the sensing electrodes and the driving electrodes of each sensing unit in each group of consecutively arranged sensing units are continuous, and the second group is continuous.
  • the widths of the sensing electrodes and the driving electrodes of each of the sensing units 112 are greater than the widths of the sensing electrodes and the driving electrodes of each of the sensing units 111 of the first group of consecutively arranged sensing units.
  • the amount of change in the induced capacitance caused by the touch of the two groups of consecutively arranged sensing units 112 is greater than the sum of the variations in the induced capacitance caused by the touch of the first group of consecutively arranged sensing units 111.
  • the area of the sensing electrodes and the driving electrodes of each sensing unit in each group of consecutively arranged sensing units is consistent, and the second group is continuous.
  • the area of the sensing electrode and the driving electrode in the array of sensing units 112 is greater than the area sum of the sensing electrodes and the driving electrodes in the first group of consecutively arranged sensing units 111, so that the second group of consecutively arranged sensing units 112 are touched.
  • the amount of change in induced capacitance is greater than the sum of changes in the induced capacitance caused by the touch of the first group of consecutively arranged sensing units 111.
  • the width and area of the sensing electrodes and the driving electrodes of each sensing unit in each group of consecutively arranged sensing units are the same. Width and area of the sensing electrode and the driving electrode in the second group of consecutively arranged sensing units 112 and at the same time greater than the width and area sum of the first group of consecutively arranged sensing units 111, so that the second group is continuously arranged Sensing unit 112 is induced by touch The amount of change in capacitance is greater than the sum of changes in the induced capacitance caused by the touch of the first group of consecutively arranged sensing units 111.
  • the present application makes full use of the second group of consecutively arranged sensing units 112 in the vicinity of the routing position, because the number of traces is reduced, and the remaining space existing near the routing position is increased by increasing the sensing of the second group of consecutively arranged sensing units 112. Filling the width and/or area of the electrode and the driving electrode to fill the remaining space existing near the wiring position of the second group of consecutively arranged sensing units 112 as a sensing unit, so as to be able to sense the touch and reduce the sensing dead zone. , improved the accuracy of the induction. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the trace length of the second group of consecutively arranged sensing units 122 is greater than the length of the traces of the first group of consecutively arranged sensing units 121,
  • the trace impedance attenuation of the second group of consecutively arranged sensing units 122 is greater than the sum of the trace impedance attenuations of the first group of consecutively arranged sensing units 121.
  • the number of crossed teeth refers to the number of sawtooth teeth per unit area of the sensing electrode and the driving electrode.
  • the number of intersecting teeth of the sensing electrodes and the driving electrodes of each sensing unit in each group of consecutively arranged sensing units is the same, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units 122 is more than The number of intersecting teeth of the sensing electrode and the driving electrode of the first group of consecutively arranged sensing units 121, so that the amount of change in the sensing capacitance caused by the touch of the second group of consecutively arranged sensing units 122 is greater than the first group of consecutive
  • the arrangement of the sensing unit 121 is caused by the amount of change in the induced capacitance caused by the touch.
  • the present application offsets the attenuation of the trace impedance by increasing the number of crossed teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units 121, and improves the signal-to-noise ratio of the second group of consecutively arranged sensing units 121. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the sensing electrode and the driving electrode of the sensing unit in the embodiment are horizontally intersected, that is, the sensing electrode and the driving electrode are in a zigzag manner in a horizontal direction, and the application is not limited to this manner.
  • the sensing electrode and the driving electrode of the sensing unit may also vertically intersect the teeth, that is, the sensing electrodes and the driving electrodes cross in a zigzag manner in a vertical direction.
  • the sensing electrode and the driving electrode of the sensing unit may also be in other cross-formed forms.
  • the embodiment of the present application may further adopt a width sum and/or a surface of the sensing electrode and the driving electrode in the second group of consecutively arranged sensing units 132.
  • the product sum is greater than the width and/or the area sum of the first group of consecutively arranged sensing units 131, and the number of intersecting teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units 132 is greater than
  • the number of intersecting teeth of the first group of consecutively arranged sensing units 131 is such that the amount of touch change of the second group of consecutively arranged sensing units 132 is greater than the amount of touch change of the first group of consecutively arranged sensing units 131.
  • the present application makes full use of the second group of consecutively arranged sensing units 132.
  • the remaining space exists in the vicinity of the routing position due to the reduced number of traces.
  • the present application increases the sensing electrodes in the second group of consecutively arranged sensing units 132.
  • the width and/or the area of the driving electrode are filled with the remaining space existing in the vicinity of the wiring position of the second group of consecutively arranged sensing units 132, so that the sensing unit can sense the touch, thereby reducing the sensing dead zone and improving Sensing accuracy. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the application also offsets the attenuation of the trace impedance by increasing the number of crossed teeth of the sensing electrodes and the driving electrodes of the second group of consecutively arranged sensing units 132, and improves the signal-to-noise ratio of the second group of consecutively arranged sensing units 132. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the present application also provides a capacitive touch sensor including any of the above touch screen sensing patterns.
  • the capacitive touch sensor described in the present application is an Oncell stack or a stand-alone capacitive touch screen stack.
  • an integrated capacitive touch screen with an Oncell stack is taken as an example, including a display module lower glass 141 , a sealant 142 , a display module upper glass 143 , a touch sensor 144 , a polarizer 145 , and a transparent optical adhesive 146 . Cover plate 147.
  • the touch sensor 144 is placed on the upper surface of the glass 143 on the display module.
  • the touch sensor 144 includes a sensing pattern, and the sensing pattern includes at least one sensing unit, and the sensing unit includes a sensing electrode and a driving electrode.
  • the distance between the driving electrode and the outgoing end of the sensing unit is gradually increased as the distance between the sensing electrode and the outgoing end of the sensing unit increases, and the width and the width of the sensing electrode and the driving electrode in the sensing unit are gradually increased.
  • the present application makes full use of the remaining space existing near the sensing unit far away from the outlet end, and fills the remaining space existing near the sensing unit far away from the outgoing end as a sensing unit, so that
  • the ability to sense touch reduces the blind area of the sensor and improves the accuracy of the sensing. Therefore, the present application can detect the touch more effectively without increasing the cost, and improve the accuracy of the detection position.
  • the width and non-width of the sensing electrode and the driving electrode in a group of sensing units close to the outlet end may be widened, and only the distance from the outlet end is far away from the sensing electrode and the driving electrode in the other group of sensing units. Width and widening.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种触摸屏感测图案及电容式触摸传感器,所述触摸屏感测图案,包括至少两个感应单元(31,32),所述感应单元(31,32)包括感应电极和驱动电极,当第二感应单元(32)中感应电极与出线端的距离累加第二感应单元(32)中驱动电极与出线端的距离大于第一感应单元(31)中感应电极与出线端的距离累加第一感应单元(31)中驱动电极与出线端的距离,所述第二感应单元(32)由触摸引起的感应电容的变化量大于所述第一感应单元(31)由触摸引起的感应电容的变化量。上述触摸屏感测图案可提高电容触摸屏的信噪比,保证触摸能被有效正确的检测出来。

Description

一种触摸屏感测图案及电容式触摸传感器
本申请要求于2016年5月20日提交中国专利局、申请号为201620466110.1,发明名称为“一种触摸屏感测图案及电容式触摸传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触摸屏技术领域,尤其涉及一种触摸屏感测图案及电容式触摸传感器。
背景技术
电容触摸屏包括传统的独立电容触摸屏和整合型电容触摸屏,整合型电容触摸屏将触摸传感器加入显示模组,可以实现轻薄化,因此更加符合智能终端的发展趋势。
整合型电容触摸屏一般分为Oncell与Incell两种叠构。参见图1,目前Oncell叠构整合型电容触摸屏的触摸传感器大多采用电容式单层电极图案的方式来制作。第一方向电极为Y1,Y2,Y3,第二方向电极为X1,X2,X3,X4,X5,X6。第一方向电极可以是驱动电极,对应的第二方向电极为感应电极;反之,第一方向电极可以是感应电极,对应的第二方向电极为驱动电极。
驱动电极和感应电极构成感应单元,感应单元需要通过走线引出到触摸屏的屏体边缘,以便与外部电路连接。感应单元中感应电极与出线端的距离累加驱动电极与出线端的距离通常称为感应单元与出线端的距离。以图2左侧第一列为例,感应单元依次为:
Y1X1,Y1X2,Y2X2,Y2X1,Y3X1,Y3X2。
由于感应单元的走线较细,且走线的电阻率较高,因而距离出线端较远的感应单元的走线阻抗要比距离出线端较近的感应单元的走线阻抗要高出许多。触摸传感器的驱动信号传输到感应单元的出线端的过程中,由于走线阻抗会有衰减,这样就导致了距离出线端较远的感应单元与距离出线端较近的感应单元对驱动信号的衰减程度不一样。特别是距离出线端较远的感应单元的衰减比较大,严重降低了整个触摸传感器的信噪比水平。
因此,如何提高电容触摸屏的信噪比,保证触摸能被有效正确的检测出来成为现有技术中亟需解决的技术问题。
发明内容
有鉴于此,本申请提供一种触摸屏感测图案及电容式触摸传感器,其可提高电容触摸屏的信噪比,保证触摸能被有效正确的检测出来。
本申请提供一种触摸屏感测图案,包括至少两个感应单元,所述感应单元包括感应电极和驱动电极,当第二感应单元中感应电极与出线端的距离累加第二感应单元中驱动电极与出线端的距离大于第一感应单元中感应电极与出线端的距离累加第一感应单元中驱动电极与出线端的距离,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量。
在本申请一具体实施例中,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量包括:
所述第二感应单元中感应电极和驱动电极的宽度和大于所述第一感应单元中感应电极和驱动电极的宽度和;和/或,
所述第二感应单元中感应电极和驱动电极的面积和大于所述第一感应单元中感应电极和驱动电极的面积和。
在本申请一具体实施例中,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量包括:
所述第二感应单元的感应电极和驱动电极的交叉齿数多于所述第一感应单元的感应电极和驱动电极的交叉齿数。
在本申请一具体实施例中,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量还包括:
所述第二感应单元的感应电极和驱动电极的交叉齿数多于所述第一感应单元的感应电极和驱动电极的交叉齿数。
本申请还提供一种触摸屏感测图案,包括至少两个连续排列的感应单元,所述感应单元包括感应电极和驱动电极,随着所述感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,所述感应单元由触摸引起的感应电容的变化量逐渐增大。
在本申请一具体实施例中,所述感应单元由触摸引起的感应电容的变化量逐渐增大包括:
所述感应单元中感应电极和驱动电极的宽度和逐渐增大;和/或,
所述感应单元中感应电极和驱动电极的面积和逐渐增大。
在本申请一具体实施例中,所述感应单元由触摸引起的感应电容的变化量逐渐增大包括:
所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多。
在本申请一具体实施例中,所述感应单元由触摸引起的感应电容的变化量逐渐增大还包括:
所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多。
本申请还提供一种触摸屏感测图案,包括至少两组连续排列的感应单元,所述感应单元包括感应电极和驱动电极,当第二组连续排列的感应单元中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和大于第一组连续排列的感应单元中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和。
在本申请一具体实施例中,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和包括:
每组连续排列的感应单元中各感应单元的感应电极和驱动电极的宽度和一致,所述第二组连续排列的感应单元中每个感应单元的感应电极和驱动电极的宽度和大于所述第一组连续排列的感应单元中每个感应单元的感应电极和驱动电极的宽度和;和/或,
每组连续排列的感应单元中各感应单元的感应电极和驱动电极的面积和一致,所述第二组连续排列的感应单元中每个感应单元的感应电极和驱动电极的面积和大于所述第一组连续排列的感应单元中每个感应单元的感应电极和驱动电极的面积和。
在本申请一具体实施例中,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和包括:
每组连续排列的感应单元中各感应单元的感应电极和驱动电极的交叉齿数一致,所述第二组连续排列的感应单元的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元的感应电极和驱动电极的交叉齿数。
在本申请一具体实施例中,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和还包括:
每组连续排列的感应单元中各感应单元的感应电极和驱动电极的交叉齿数一致,所述第二组连续排列的感应单元的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元的感应电极和驱动电极的交叉齿数。
本申请还提供一种电容式触摸传感器,包括上述任一种触摸屏感测图案。
在本申请一具体实施例中,所述电容式触摸传感器为Oncell叠构,或者独立电容式触摸屏叠构。
由以上技术方案可见,本申请所述第二感应单元或者第二组连续排列的感应单元与出线端的距离或者距离和大于第一感应单元或者第一组连续排列的感应单元与出线端的距离或者距离和,第二感应单元或者第二组连续排列的感应单元与出线端之间的走线长度或者走线长度和会大于第一感应单元或者第一组连续排列的感应单元的走线长度或者走线长度和。本申请所述第二感应单元或者第二组连续排列的感应单元由触摸引起的感应电容的变化量或者变化量和大于所述第一感应单元或者第一组连续排列的感应单元由触摸引起的感应电容的变化量或者变化量和,从而抵消第二感应单元或者第二组连续排列的感应单元的走线或者走线和大于第一感应单元或者第一组连续排列的感应单元而造成的阻抗衰减,提升第二感应单元或者第二组连续排列的感应单元的信噪比,保证触摸能被有效正确的检测出来。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是Oncell叠构整合型电容触摸屏的电极图案的示意图;
图2是Oncell叠构整合型电容触摸屏的电极图案中感应单元的示意图;
图3是本申请一种触摸屏感测图案的一实施例的结构示意图;
图4是本申请一种触摸屏感测图案的另一实施例的结构示意图;
图5是本申请一种触摸屏感测图案的另一实施例的结构示意图;
图6是本申请一种触摸屏感测图案的另一实施例的结构示意图;
图7是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图8是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图9是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图10是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图11是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图12是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图13是本申请一种触摸屏感测图案的再一实施例的结构示意图;
图14是本申请应用Oncell叠构整合型电容触摸屏的结构示意图;
图15是本申请应用Oncell叠构整合型电容触摸屏的感测图案的一实施例的结构示意图;
图16是本申请应用Oncell叠构整合型电容触摸屏的感测图案的另一实施例的结构示意图。
具体实施方式
本申请所述第二感应单元或者第二组连续排列的感应单元与出线端的距离或者距离和大于第一感应单元或者第一组连续排列的感应单元与出线端的距离或者距离和,第二感应单元或者第二组连续排列的感应单元与出线端之间的走线长度或者走线长度和会大于第一感应单元或者第一组连续排列的感应单元的走线长度或者走线长度和。本申请所述第二感应单元或者第二组连续排列的感应单元由触摸引起的感应电容的变化量或者变化量和大于所述第一感应单元或者第一组连续排列的感应单元由触摸引起的感应电容的变化量或者变化量和,从而抵消第二感应单元或者第二组连续排列的感应单元的走线或者走线和大于第一感应单元或者第一组连续排列的感应单元而造成的阻抗衰减,提升第二感应单元或者第二组连续排列的感应单元的信噪比,保证触摸能被有效正确的检测出来。
当然,实施本申请的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基 于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请保护的范围。
下面结合本申请附图进一步说明本申请具体实现。
在本申请具体实现中,本申请提供一种触摸屏感测图案,包括至少两个感应单元,所述感应单元包括感应电极和驱动电极。
参见图3,当第二感应单元32中感应电极与出线端的距离累加第二感应单元32中驱动电极与出线端的距离大于第一感应单元31中感应电极与出线端的距离累加第一感应单元31中驱动电极与出线端的距离,所述第二感应单元32由触摸引起的感应电容的变化量大于所述第一感应单元31由触摸引起的感应电容的变化量。
由于第二感应单元32中感应电极与出线端的距离累加第二感应单元32中驱动电极与出线端的距离大于第一感应单元31中感应电极与出线端的距离累加第一感应单元31中驱动电极与出线端的距离,第二感应单元32的走线长度大于第一感应单元31的走线长度,从而造成的第二感应单元32的走线阻抗衰减,降低了整个触摸传感器的信噪比水平。
本申请所述第二感应单元32由触摸引起的感应电容的变化量大于所述第一感应单元31由触摸引起的感应电容的变化量,从而抵消第二感应单元32的走线阻抗衰减,提升第二感应单元32的信噪比,保证触摸能被有效正确的检测出来。
参见图3,由于所述第二感应单元32中感应电极与出线端的距离累加所述第二感应单元32中驱动电极与出线端的距离大于第一感应单元31中感应电极与出线端的距离累加第一感应单元31中驱动电极与出线端的距离,所述第二感应单元32的走线长度大于第一感应单元31的走线长度,所述第二感应单元32的走线数量也少于所述第一感应单元31的走线数量。因此,所述第二感应单元32走线位置附近存在剩余空间。
由于本申请所述第二感应单元32走线位置附近存在剩余空间,本申请所述第二感应单元32中感应电极和驱动电极的宽度和大于所述第一感应单元31中感应电极和驱动电极的宽度和,令所述第二感应单元32由触摸引起的感应电容的变化量大于所述第一感应单元31由触摸引起的感应电容的变化量。
由于本申请所述第二感应单元32走线位置附近存在剩余空间,本申请所述第二感应单元32中感应电极和驱动电极的面积和大于所述第一感应单元31中感应电极和驱动电极的面积和,令所述第二感应单元32由触摸引起的感应电容的变化量大于所述第一感应单元31由触摸引起的感应电容的变化量。
由于本申请所述第二感应单元32走线位置附近存在剩余空间,本申请所述第二感应单元32中感应电极和驱动电极的宽度和以及面积和也可同时大于所述第一感应单元31的宽度和以及面积和,令所述第二感应单元32由触摸引起的感应电容的变化量大于所述第一感应单元31由触摸引起的感应电容的变化量。
本申请充分利用了第二感应单元走线位置附近因走线数量减少而存在的剩余空间,通过增大所述第二感应单元32中感应电极和驱动电极的宽度和,和/或,面积和,将所述第二感应单元走线位置附近存在的剩余空间填充为第二感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
在本申请另一具体实现方式中,参见图4,由于所述第二感应单元42的走线长度大于所述第一感应单元41的走线长度,所以所述第二感应单元42的走线阻抗衰减大于所述第一感应单元41的走线阻抗衰减。
交叉齿数是指感应电极和驱动电极呈锯齿状交叉,单位面积锯齿的数量。本实施例所述第二感应单元42的感应电极和驱动电极的交叉齿数多于所述第一感应单元41的感应电极和驱动电极的交叉齿数,从而令所述第二感应单元42的触摸变化量大于所述第一感应单元41的触摸变化量。
本申请通过增加第二感应单元的感应电极和驱动电极的交叉齿数,抵消所述第二感应单元42的走线阻抗衰减,提高了第二感应单元的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
具体的,本实施例所述感应单元的感应电极和驱动电极为齿水平交叉,即所述感应电极和驱动电极在水平方向上呈锯齿状交叉,本申请不限于此种方式。参见图5,所述感应单元的感应电极和驱动电极还可以为齿垂直交叉, 即所述感应电极和驱动电极在垂直方向上呈锯齿状交叉。参见图6,所述感应单元的感应电极和驱动电极还可以为其它交叉变形形式。
在本申请再一具体实现中,参见图7,本申请实施例还可以采用在所述第二感应单元72中感应电极和驱动电极的宽度和,和/或,面积和大于所述第一感应单元71宽度和,和/或,面积和的同时,所述第二感应单元72的感应电极和驱动电极的交叉齿数多于所述第一感应单元71,从而令所述第二感应单元72的触摸变化量大于所述第一感应单元71的触摸变化量。
本申请充分利用了第二感应单元72因走线数量减少,在走线位置附近存在的剩余空间,本申请通过增大所述第二感应单元72中感应电极和驱动电极的宽度和,和/或,面积和,将所述第二感应单元走线位置附近存在的剩余空间填充为第二感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
同时,本申请还通过增加第二感应单元72的感应电极和驱动电极的交叉齿数,抵消所述第二感应单元72的走线阻抗衰减,提高了第二感应单元72的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
在本申请再一具体实现中,本申请提供一种触摸屏感测图案,包括至少两个连续排列的感应单元,所述感应单元包括感应电极和驱动电极。
参见图8,随着所述感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,所述感应单元由触摸引起的感应电容的变化量逐渐增大。
由于感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,感应单元的走线长度逐渐增大,从而造成的感应单元的走线阻抗衰减逐渐增大,降低了整个触摸传感器的信噪比水平。
本申请所述感应单元由触摸引起的感应电容的变化量逐渐增大,从而抵消感应单元逐渐增大的走线阻抗衰减,提升感应单元的信噪比,保证触摸能被有效正确的检测出来。
参见图8,随着感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,所述感应单元的走线长度逐渐增大, 所述感应单元的走线数量也逐渐减少。因此,所述感应单元走线位置附近存在剩余空间逐渐增大。
由于本申请所述感应单元走线位置附近存在的剩余空间逐渐增大,本申请所述感应单元中感应电极和驱动电极的宽度和逐渐增大,令所述感应单元由触摸引起的感应电容的变化量逐渐增大。
由于本申请所述感应单元走线位置附近存在的剩余空间逐渐增大,本申请所述感应单元中感应电极和驱动电极的面积和逐渐增大,令所述感应单元由触摸引起的感应电容的变化量逐渐增大。
由于本申请所述感应单元走线位置附近存在的剩余空间逐渐增大,本申请所述感应单元中感应电极和驱动电极的宽度和及面积和同时逐渐增大,令所述感应单元由触摸引起的感应电容的变化量逐渐增大。
本申请随着感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,感应单元走线位置附近走线逐渐减少,在走线位置附近存在的剩余空间逐渐增大,本申请通过增大所述感应单元中感应电极和驱动电极的宽度和,和/或,面积和,将所述感应单元走线位置附近存在的剩余空间填充为感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
在本申请另一具体实现方式中,由于随着感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,所述感应单元的走线阻抗衰减逐渐增大。
交叉齿数是指感应电极和驱动电极呈锯齿状交叉,单位面积锯齿的数量。参见图9,本实施例所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多,从而抵消所述感应单元走线逐渐增大的阻抗衰减,提高了感应单元的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
具体的,本实施例所述感应单元的感应电极和驱动电极为齿水平交叉,即所述感应电极和驱动电极在水平方向上呈锯齿状交叉,本申请不限于此种方式。参见图5,所述感应单元的感应电极和驱动电极还可以为齿垂直交叉,即所述感应电极和驱动电极在垂直方向上呈锯齿状交叉。参见图6,所述感 应单元的感应电极和驱动电极还可以为其它交叉变形形式。
在本申请再一具体实现中,参见图10,本申请实施例还可以采用在所述感应单元中感应电极和驱动电极的宽度和,和/或,所述感应单元中感应电极和驱动电极的面积和逐渐增大的同时,所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多,从而令所述感应单元的触摸变化量逐渐增大。
本申请充分利用了感应单元因走线数量减少,在走线位置附近逐渐增大的剩余空间,本申请通过增大所述感应单元中感应电极和驱动电极的宽度和,和/或,面积和,将所述感应单元走线位置附近逐渐增大的剩余空间填充为感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
同时,本申请还通过增加感应单元的感应电极和驱动电极的交叉齿数,抵消感应单元的走线阻抗衰减,提高了感应单元的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
在本申请再一具体实现中,本申请提供一种触摸屏感测图案,包括至少两组连续排列的感应单元,所述感应单元包括感应电极和驱动电极。
参见图11,当第二组连续排列的感应单元112中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和大于第一组连续排列的感应单元111中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和,所述第二组连续排列的感应单元112由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元111由触摸引起的感应电容的变化量的和。
由于第二组连续排列的感应单元112中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和大于第一组连续排列的感应单元111中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和,第二组连续排列的感应单元112的走线长度和大于第一组连续排列的感应单元111的走线长度和,从而造成的第二组连续排列的感应单元112的走线阻抗衰减大于第一组连续排列的感应单元111的走线阻抗衰减,降低了整个触摸传感器的信噪比水平。
本申请第二组连续排列的感应单元112由触摸引起的感应电容的变化量 的和大于所述第一组连续排列的感应单元111由触摸引起的感应电容的变化量的和,从而抵消第二组连续排列的感应单元112的走线阻抗衰减,提升第二组连续排列的二感应单元112的信噪比,保证触摸能被有效正确的检测出来。
参见图11,由于第二组连续排列的感应单元112中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和大于第一组连续排列的感应单元111中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和,所述第二组连续排列的感应单元112的走线长度和大于第一组连续排列的感应单元111的走线长度和,所述第二组连续排列的感应单元112的走线数量和也少于所述第一组连续排列的感应单元111的走线数量和。因此,本申请所述第二组连续排列的感应单元112走线位置附近存在剩余空间。
由于本申请所述第二组连续排列的感应单元112走线位置附近存在剩余空间,每组连续排列的感应单元中各感应单元的感应电极和驱动电极的宽度和一致,所述第二组连续排列的感应单元112中每个感应单元的感应电极和驱动电极的宽度和大于所述第一组连续排列的感应单元111中每个感应单元的感应电极和驱动电极的宽度和,令所述第二组连续排列的感应单元112由触摸引起的感应电容的变化量和大于所述第一组连续排列的感应单元111由触摸引起的感应电容的变化量和。
由于本申请所述第二组连续排列的感应单元112走线位置附近存在剩余空间,每组连续排列的感应单元中各感应单元的感应电极和驱动电极的面积和一致,所述第二组连续排列的感应单元112中感应电极和驱动电极的面积和大于所述第一组连续排列的感应单元111中感应电极和驱动电极的面积和,令所述第二组连续排列的感应单元112由触摸引起的感应电容的变化量和大于所述第一组连续排列的感应单元111由触摸引起的感应电容的变化量和。
由于本申请所述第二组连续排列的感应单元112走线位置附近存在剩余空间,每组连续排列的感应单元中各感应单元的感应电极和驱动电极的宽度和及面积和一致,本申请所述第二组连续排列的感应单元112中感应电极和驱动电极的宽度和及面积和同时大于所述第一组连续排列的感应单元111的宽度和及面积和,令所述第二组连续排列的感应单元112由触摸引起的感应 电容的变化量和大于所述第一组连续排列的感应单元111由触摸引起的感应电容的变化量和。
本申请充分利用了第二组连续排列的感应单元112走线位置附近因走线数量减少,在走线位置附近存在的剩余空间,通过增大所述第二组连续排列的感应单元112中感应电极和驱动电极的宽度和,和/或,面积和,将所述第二组连续排列的感应单元112走线位置附近存在的剩余空间填充为感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
在本申请另一具体实现方式中,参见图12,由于所述第二组连续排列的感应单元122的走线长度和大于所述第一组连续排列的感应单元121的走线长度和,所以所述第二组连续排列的感应单元122的走线阻抗衰减和大于所述第一组连续排列的感应单元121的走线阻抗衰减和。
交叉齿数是指感应电极和驱动电极呈锯齿状交叉,单位面积锯齿的数量。本实施例所述每组连续排列的感应单元中各感应单元的感应电极和驱动电极的交叉齿数一致,所述第二组连续排列的感应单元122的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元121的感应电极和驱动电极的交叉齿数,从而令所述第二组连续排列的感应单元122由触摸引起的感应电容的变化量和大于所述第一组连续排列的感应单元121由触摸引起的感应电容的变化量和。
本申请通过增加第二组连续排列的感应单元121的感应电极和驱动电极的交叉齿数,抵消其走线阻抗衰减,提高了第二组连续排列的感应单元121的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
具体的,本实施例所述感应单元的感应电极和驱动电极为齿水平交叉,即所述感应电极和驱动电极在水平方向上呈锯齿状交叉,本申请不限于此种方式。参见图5,所述感应单元的感应电极和驱动电极还可以为齿垂直交叉,即所述感应电极和驱动电极在垂直方向上呈锯齿状交叉。参见图6,所述感应单元的感应电极和驱动电极还可以为其它交叉变形形式。
在本申请再一具体实现中,参见图13,本申请实施例还可以采用在所述第二组连续排列的感应单元132中感应电极和驱动电极的宽度和,和/或,面 积和大于所述第一组连续排列的感应单元131宽度和,和/或,面积和的同时,所述第二组连续排列的感应单元132的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元131的交叉齿数,从而令所述第二组连续排列的感应单元132的触摸变化量大于所述第一组连续排列的感应单元131的触摸变化量。
本申请充分利用了第二组连续排列的感应单元132因走线数量减少,在走线位置附近存在的剩余空间,本申请通过增大所述第二组连续排列的感应单元132中感应电极和驱动电极的宽度和,和/或,面积和,将所述第二组连续排列的感应单元132走线位置附近存在的剩余空间填充为感应单元,使之能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
同时,本申请还通过增加第二组连续排列的感应单元132的感应电极和驱动电极的交叉齿数,抵消其走线阻抗衰减,提高了第二组连续排列的感应单元132的信噪比。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
本申请还提供一种电容式触摸传感器,包括上述任一种触摸屏感测图案。
本申请所述电容式触摸传感器为Oncell叠构,或者独立电容式触摸屏叠构。
下面通过一具体应用详细说明本申请实现。
参见图14,以Oncell叠构的整合型电容触摸屏为例来说明,包括显示模组下玻璃141、封胶142、显示模组上玻璃143、触摸传感器144、偏光片145、透明光学胶146以及盖板147。其中,触摸传感器144放置于显示模组上玻璃143的上表面。
触摸传感器144包括感应图案,感应图案包括至少一感应单元,感应单元包括感应电极和驱动电极。
参见图15,随着所述感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离和逐渐增大,所述感应单元中感应电极和驱动电极的宽度和逐渐增大。
本申请充分利用了与出线端的距离远的感应单元附近存在的剩余空间,将与出线端的距离远的感应单元附近存在的剩余空间填充为感应单元,使之 能够感应触摸,减少了感应盲区,提升了感应准确度。因此,本申请可以在不增加成本的同时,更加有效的检测触摸,提高检测位置的准确度。
参见图16,本申请也可以将与出线端的距离近的一组感应单元中感应电极和驱动电极的宽度和不加宽,只将与出线端的距离远另一组感应单元中感应电极和驱动电极的宽度和加宽。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种触摸屏感测图案,包括至少两个感应单元,所述感应单元包括感应电极和驱动电极,其特征在于,当第二感应单元中感应电极与出线端的距离累加第二感应单元中驱动电极与出线端的距离大于第一感应单元中感应电极与出线端的距离累加第一感应单元中驱动电极与出线端的距离,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量。
  2. 根据权利要求1所述的触摸屏感测图案,其特征在于,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量包括:
    所述第二感应单元中感应电极和驱动电极的宽度和大于所述第一感应单元中感应电极和驱动电极的宽度和;和/或,
    所述第二感应单元中感应电极和驱动电极的面积和大于所述第一感应单元中感应电极和驱动电极的面积和。
  3. 根据权利要求1所述的触摸屏感测图案,其特征在于,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量包括:
    所述第二感应单元的感应电极和驱动电极的交叉齿数多于所述第一感应单元的感应电极和驱动电极的交叉齿数。
  4. 根据权利要求2所述的触摸屏感测图案,其特征在于,所述第二感应单元由触摸引起的感应电容的变化量大于所述第一感应单元由触摸引起的感应电容的变化量还包括:
    所述第二感应单元的感应电极和驱动电极的交叉齿数多于所述第一感应单元的感应电极和驱动电极的交叉齿数。
  5. 一种触摸屏感测图案,包括至少两个连续排列的感应单元,所述感应单元包括感应电极和驱动电极,其特征在于,随着所述感应单元中感应电极与出线端的距离累加所述感应单元中驱动电极与出线端的距离逐渐增大,所述感应单元由触摸引起的感应电容的变化量逐渐增大。
  6. 根据权利要求5所述的触摸屏感测图案,其特征在于,所述感应单元由触摸引起的感应电容的变化量逐渐增大包括:
    所述感应单元中感应电极和驱动电极的宽度和逐渐增大;和/或,
    所述感应单元中感应电极和驱动电极的面积和逐渐增大。
  7. 根据权利要求5所述的触摸屏感测图案,其特征在于,所述感应单元由触摸引起的感应电容的变化量逐渐增大包括:
    所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多。
  8. 根据权利要求6所述的触摸屏感测图案,其特征在于,所述感应单元由触摸引起的感应电容的变化量逐渐增大还包括:
    所述感应单元的感应电极和驱动电极的交叉齿数逐渐增多。
  9. 一种触摸屏感测图案,包括至少两组连续排列的感应单元,所述感应单元包括感应电极和驱动电极,其特征在于,当第二组连续排列的感应单元中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和大于第一组连续排列的感应单元中各感应电极与出线端的距离和累加各驱动电极与出线端的距离和,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和。
  10. 根据权利要求9所述的触摸屏感测图案,其特征在于,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和包括:
    每组连续排列的感应单元中各感应单元的感应电极和驱动电极的宽度和一致,所述第二组连续排列的感应单元中每个感应单元的感应电极和驱动电极的宽度和大于所述第一组连续排列的感应单元中每个感应单元的感应电极和驱动电极的宽度和;和/或,
    每组连续排列的感应单元中各感应单元的感应电极和驱动电极的面积和一致,所述第二组连续排列的感应单元中每个感应单元的感应电极和驱动电极的面积和大于所述第一组连续排列的感应单元中每个感应单元的感应电极和驱动电极的面积和。
  11. 根据权利要求9所述的触摸屏感测图案,其特征在于,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和包括:
    每组连续排列的感应单元中各感应单元的感应电极和驱动电极的交叉齿 数一致,所述第二组连续排列的感应单元的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元的感应电极和驱动电极的交叉齿数。
  12. 根据权利要求10所述的触摸屏感测图案,其特征在于,所述第二组连续排列的感应单元由触摸引起的感应电容的变化量的和大于所述第一组连续排列的感应单元由触摸引起的感应电容的变化量的和还包括:
    每组连续排列的感应单元中各感应单元的感应电极和驱动电极的交叉齿数一致,所述第二组连续排列的感应单元的感应电极和驱动电极的交叉齿数多于所述第一组连续排列的感应单元的感应电极和驱动电极的交叉齿数。
  13. 一种电容式触摸传感器,包括上述权利要求1-12中任一种触摸屏感测图案。
  14. 根据权利要求13所述的电容式触摸传感器,其特征在于,所述电容式触摸传感器为Oncell叠构,或者独立电容式触摸屏叠构。
PCT/CN2016/103563 2016-05-20 2016-10-27 一种触摸屏感测图案及电容式触摸传感器 WO2017197840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620466110.1 2016-05-20
CN201620466110.1U CN205983421U (zh) 2016-05-20 2016-05-20 一种触摸屏感测图案及电容式触摸传感器

Publications (1)

Publication Number Publication Date
WO2017197840A1 true WO2017197840A1 (zh) 2017-11-23

Family

ID=58019654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103563 WO2017197840A1 (zh) 2016-05-20 2016-10-27 一种触摸屏感测图案及电容式触摸传感器

Country Status (2)

Country Link
CN (1) CN205983421U (zh)
WO (1) WO2017197840A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509092B (zh) * 2017-02-27 2021-03-12 奕力科技(开曼)股份有限公司 双层互容式触控面板
CN110678766B (zh) * 2018-03-14 2021-10-26 深圳市汇顶科技股份有限公司 感应模组的检测方法、触控芯片、触摸屏及其组装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155002A1 (en) * 2011-12-20 2013-06-20 Kai-Ti Yang Mutual capacitance touch panel
CN103761016A (zh) * 2013-12-31 2014-04-30 深圳市华星光电技术有限公司 互容式触控面板及液晶显示装置
CN203966099U (zh) * 2014-07-17 2014-11-26 深圳市汇顶科技股份有限公司 一种单层布线的电容式二维触摸传感器及其触摸屏
CN205210854U (zh) * 2015-11-04 2016-05-04 深圳市汇顶科技股份有限公司 一种单层布线的电容式触摸传感器及触摸屏

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155002A1 (en) * 2011-12-20 2013-06-20 Kai-Ti Yang Mutual capacitance touch panel
CN103761016A (zh) * 2013-12-31 2014-04-30 深圳市华星光电技术有限公司 互容式触控面板及液晶显示装置
CN203966099U (zh) * 2014-07-17 2014-11-26 深圳市汇顶科技股份有限公司 一种单层布线的电容式二维触摸传感器及其触摸屏
CN205210854U (zh) * 2015-11-04 2016-05-04 深圳市汇顶科技股份有限公司 一种单层布线的电容式触摸传感器及触摸屏

Also Published As

Publication number Publication date
CN205983421U (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN103576998B (zh) 电容式触摸屏及单层布线电极阵列
KR101608794B1 (ko) 터치 디스플레이 장치
US10108063B2 (en) In-cell touch liquid crystal panel and array substrate thereof
CN101393502B (zh) 互电容式触摸屏及组合式互电容触摸屏
JP5154316B2 (ja) タッチパネル
US10444928B2 (en) Display device
JP5619370B2 (ja) タッチスクリーンを有するディスプレイ装置
TWI576750B (zh) Display device and sensor device with sensor
CN202771407U (zh) 电容式触摸屏及单层布线电极阵列
WO2014032376A1 (zh) 触控式液晶显示装置
CN104571746B (zh) 触摸屏、触摸面板和其驱动方法
CN103268178A (zh) 水平电场驱动模式的阵列基板及触摸屏
WO2017020344A1 (zh) 互电容触控单元、触控液晶面板及驱动方法
US20170185225A1 (en) Touch screen and method of determining a touch position
TWI460772B (zh) 觸控面板及觸控顯示裝置
WO2016155063A1 (zh) 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器
WO2016119408A1 (zh) 触控面板、显示装置及触摸驱动方法
CN104199579B (zh) 电容式触控显示装置、触摸检测方法及集成电路ic
WO2017197840A1 (zh) 一种触摸屏感测图案及电容式触摸传感器
KR101468650B1 (ko) 노이즈 차단구조를 갖는 고감도 터치패널
WO2015021617A1 (zh) 单层电容触控单元及电容式触摸屏
KR101512568B1 (ko) 터치 패널 및 이를 포함하는 터치스크린 장치
CN202720617U (zh) 一种单层电容式二维触摸传感器
CN202351849U (zh) 一种电容触摸屏
CN203588242U (zh) 双条搭桥结构的单层电容式二维触摸传感器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902219

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902219

Country of ref document: EP

Kind code of ref document: A1