WO2017197734A1 - 输电线路杆塔长效防腐的方法 - Google Patents

输电线路杆塔长效防腐的方法 Download PDF

Info

Publication number
WO2017197734A1
WO2017197734A1 PCT/CN2016/087805 CN2016087805W WO2017197734A1 WO 2017197734 A1 WO2017197734 A1 WO 2017197734A1 CN 2016087805 W CN2016087805 W CN 2016087805W WO 2017197734 A1 WO2017197734 A1 WO 2017197734A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
line tower
corrosion
power transmission
transmission tower
Prior art date
Application number
PCT/CN2016/087805
Other languages
English (en)
French (fr)
Inventor
石风旗
绳洁
王玉勇
明亮
聂文昭
田之伟
谢明明
赵海忠
王广虎
邢杨
Original Assignee
国网山东省电力公司高唐县供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网山东省电力公司高唐县供电公司 filed Critical 国网山东省电力公司高唐县供电公司
Publication of WO2017197734A1 publication Critical patent/WO2017197734A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention belongs to the field of power equipment materials, and in particular relates to a method for long-term anti-corrosion of a transmission line tower.
  • the anti-corrosion technology of the transmission line tower is mainly hot-dip galvanizing.
  • the method of using paint and paint anti-corrosion technology is also used.
  • the transmission line towers occupy a large proportion in the steel structure, and the factories with relatively large galvanizing capacity are distributed in the transmission tower manufacturing enterprises. Therefore, the improvement of the long-term anti-corrosion technology of transmission line towers, to reduce the corrosion of steel, extend the service life of transmission line towers, and improve the input-output ratio of transmission lines, the benefits are very significant.
  • the current coatings mainly include aluminum-zinc alloy coating, zinc-nickel alloy coating, zinc-titanium alloy coating, etc.
  • the purpose is to control the activity of silicon in the galvanizing process, and has achieved certain results in improving the life of the coating, but The reasons for high cost and immature technology have not been widely promoted and applied.
  • the invention is directed to the technical problems existing in the anticorrosion technology of the above-mentioned transmission line tower components, and proposes A method for long-term anti-corrosion of a transmission line tower with reasonable formula, simple method and good anti-corrosion effect.
  • the technical solution adopted by the present invention is that the present invention provides a method for long-term anti-corrosion of a transmission line tower, comprising the following steps:
  • the surface of the transmission line tower is derusted and decontaminated by an alkaline cleaning agent
  • the transmission line tower is passed through the furnace nose into a molten zinc liquid zinc pot containing a specific aluminum component to perform differential hot-plating treatment on the inner and outer surfaces of the transmission line tower;
  • the molten zinc liquid contains the following components according to a mass ratio: zinc: 45-65%, aluminum: 33-45%, magnesium: 0.5-9%, rare earth nickel: 0.5-4%, Titanium: 0.01% to 0.2%; the composition percentage of rare earth nickel is: Ni: 55.32, La: 24.68, Ce: 9.55, Pr: 7.45, Nd: 2.25, Si: 0.025, P: 0.003, Ca: 0.312, Mn: 0.1 , Mg: 0.31.
  • the alkaline cleaning agent in the step a is an alkaline high-bubble cleaning agent, wherein the alkaline cleaning agent is first mixed with water at a ratio of 1:500, and then the transmission line tower is placed in the mixed liquid. After soaking for 2 minutes, the surface of the tower was cleaned by high-pressure flushing with a 1:100 mixture of alkaline cleaner and water.
  • the differential thermal plating treatment on the inner and outer surfaces of the transmission line tower means that the amount of galvanized coating on the outer surface of the transmission line tower is 60-180 g/m 2 , and the inner surface of the transmission line tower The amount of galvanized coating is 30 to 120 g/m 2 .
  • the silane solution is an aminopropyltriethoxysilane hydrolyzate
  • the aminopropyltriethoxysilane hydrolyzate comprises three active ingredients: aminopropyltriethoxy Silane, water and ethanol have a mass ratio of 1:1 to 3:6 to 20.
  • the specific method of the metal surface silanization treatment is: first The transmission line tower is immersed in the aminopropyltriethoxysilane hydrolyzate, the immersion time is 2 min, then the transmission line tower is taken out, heat-cured, and a silane film is formed on the surface of the transmission line tower, wherein the curing temperature is 100 °C ⁇ 300 ° C, curing time is 0.5h ⁇ 2h.
  • the oil-repellent coating is a mixture comprising a chelating agent containing a Cr3 + element, Al(H 2 PO 4 ) 3 and a silica sol.
  • the environmentally-friendly chrome-free fingerprint-resistant layer is cured by an environmentally-friendly chrome-free fingerprint-resistant liquid
  • the environmentally-friendly chrome-free fingerprint-resistant liquid comprises an organic resin, nano SiO 2 and other auxiliaries.
  • the other auxiliary agent is a mixture of ethanol and deionized water, wherein the mass ratio of ethanol to deionized water is 1:1.5.
  • the present invention provides a long-term anti-corrosion method for a transmission line tower, and utilizes the mutual cooperation between the steps to achieve the purpose of multi-layer anti-corrosion of the original transmission line tower, thereby improving the service life of the transmission line tower and ensuring the service life of the transmission line tower.
  • the use of transmission lines is safe.
  • Figure 1 is an outline view of a silane film formed in step b;
  • Figure 3 is a DSC chart of a silane film
  • the alkaline cleaning agent is first mixed with water at a ratio of 1:500.
  • the alkaline cleaning agent selected in this embodiment is an alkaline high-bubble cleaning agent of the type ACOPOWER 298 supplied by Taiwan Fuying Co., Ltd., and then The transmission line tower is placed in the mixture, soaked for 2 minutes, and the mixture of the alkaline cleaner and water in a ratio of 1:100 is washed by high pressure flushing.
  • the choice of alkaline cleaning agent is mainly to achieve a better foundation for the subsequent steps while removing the oil stain and rust on the surface.
  • the main reason for not selecting the acidic or neutral cleaning agent as the cleaning agent is because the metal surface has a large amount of alkali.
  • the dried transmission line tower is dip-coated in a silane solution to perform silanization on the metal surface, and a silane film is formed on the surface of the transmission line tower.
  • the silane solution is an aminopropyltriethoxysilane hydrolyzate.
  • the aminopropyltriethoxysilane hydrolyzate comprises three active ingredients: aminopropyltriethoxysilane, water and ethanol, the mass ratio is 1:1 to 3:6-20, the immersion time is 2 min, then The transmission line tower is taken out, heated and solidified, and a silane film is formed on the surface of the transmission line tower, wherein the curing temperature is 100 ° C to 300 ° C, and the curing time is 0.5 h to 2 h.
  • Fig. 1 shows the shape of the silane film formed at 150 ° C and a curing time of 1 h.
  • the thermal stability of the silane film is an important indicator of its thermal performance, and the DSC and TG thermal analysis techniques are common methods for determining the thermal properties of the material.
  • DSC is different from the general differential thermal analysis method (DTA).
  • DSC records the temperature difference, while DSC records
  • the energy data can be obtained, that is, the heat of fusion of the polymer can be measured.
  • Thermogravimetric analysis is a technique for measuring the relationship between mass and temperature under the condition of program temperature control. The curve obtained by the analysis is the thermogravimetric curve (curve, and the thermal decomposition temperature of the polymer is obtained by analyzing the thermogravimetric curve).
  • the TG curve can be divided into three stages: in the first stage, the temperature is below 58.71 °C, and the weight loss rate changes little with the increase of temperature; the second stage, with the temperature rise High, the weight loss rate increases slowly, the weight loss rate increases after about 115.3 °C, and the weight loss increases rapidly. In the third stage, after the temperature reaches 452 °C, the weight loss rate decreases slightly, the weight loss continues to increase significantly, and the weight loss rate at 600 °C Up to 70.44%. The temperature at which the thermal weight loss was 2.5% was the thermal decomposition temperature, and therefore, the thermal decomposition temperature of the silane film was 250 °C.
  • the thermal weight loss of the silane film in argon is mainly caused by the degradation of the main chain.
  • the weight loss is mainly to remove some of the uncrosslinked oligomers (such as the condensation water loss between the residual osmanium bases, causing an increase in thermal weight loss; when the temperature rises, the membrane backbone begins Decomposition degradation occurs, which leads to a rapid increase in the weight loss rate of the resin until the loss of most of the organic components.
  • the glass transition temperature of the silane film crystal is 90.14 ° C, and a large absorption peak appears at 474.5 ° C. It is found in the TG curve of Fig. 2 that the weight loss rate of the silane film reaches 23 at this temperature. %, so as can be seen from Fig. 2 and Fig. 3, in the normal hot dip galvanizing process, the weight loss rate of the silane film is in an acceptable range.
  • Metal pretreatment with silane coupling agent has the advantages of simple process engineering, no toxicity, no pollution, wide use, low cost, and superior anti-corrosion effect than traditional phosphating and passivation processes.
  • the adhesion of the silane-treated metal surface to the hot-dip coating is greatly enhanced.
  • the silanol produced by hydrolysis can form a covalent bond with the metal matrix, and another organic functional group of the silane molecule can bond with the polymer to form a covalent bond, or form an interpenetrating network polymer, thereby improving the galvanized coating. Bond strength to the metal matrix.
  • the silane post-treatment transmission line tower is passed through the furnace nose into the molten zinc liquid zinc pot containing the specific aluminum component, and the height, angle and spacing of the upper and lower surface air knife purging are controlled to carry out the differential heat of the inner and outer surfaces of the transmission line tower.
  • the plating treatment, the difference between the inner and outer surfaces of the transmission line tower, the hot-plating treatment means that the amount of galvanized coating on the outer surface of the transmission line tower is 60-180 g/m 2 , and the amount of galvanized coating on the inner surface of the transmission line tower is 30 ⁇ 120g/m 2 , specifically, the height of the upper surface air knife is 180-220mm, the upper surface air knife and the horizontal plane angle are 1-2°, and the lower surface air knife is 180-220mm from the zinc liquid surface. The upper surface air knife and the horizontal plane angle are -2 to -1°.
  • the molten zinc liquid used contains the following components according to the mass ratio: zinc: 45 to 65%, aluminum: 33 to 45%, magnesium: 0.5.
  • rare earth nickel 0.5 to 4%, titanium: 0.01% to 0.2%; wherein, the composition percentage of rare earth nickel is: Ni: 55.32, La: 24.68, Ce: 9.55, Pr: 7.45, Nd: 2.25, Si : 0.025, P: 0.003, Ca: 0.312, Mn: 0.1, Mg: 0.31.
  • the main advantage of differentiating the inner and outer surfaces of the transmission line tower is to reduce the waste of resources and at the same time achieve the purpose of anti-corrosion.
  • the anti-corrosion coating used is a chelating agent containing Cr 3+ element, Al ( A mixture of H 2 PO 4 ) 3 and a silica sol.
  • the anticorrosive coating adopts a roll coating and/or a spraying process to make a coating layer formed on the surface of the hot-dip transmission line tower with a coating amount of 500 to 1500 mg/m 2 , which is controlled during roll coating.
  • the temperature of the transmission line tower can be between 60 °C and 120 °C.
  • the environmentally-friendly chrome-free fingerprint-resistant layer is cured by an environmentally-friendly chrome-free fingerprint-resistant liquid, and the environmentally-friendly chrome-free fingerprint-resistant liquid includes an organic resin, nano SiO 2 and other auxiliaries, among which other auxiliaries are ethanol and The mixture of deionized water, the mass ratio of ethanol to deionized water is 1:1.5.
  • the main purpose of roll coating organic chromium-free fingerprint-resistant coating is to provide a better protection for the anti-corrosion coating layer in addition to corrosion protection. Membrane to increase service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明属于电力设备材料领域,尤其涉及一种输电线路杆塔长效防腐的方法。包括以下步骤:a、首先用碱性清洗剂对输电线路杆塔的表面做除锈和去污清理;b、将处理后的输电线路杆塔浸涂在硅烷溶液中,进行金属表面硅烷化处理,在输电线路杆塔的表面形成硅烷膜;c、待b步骤完成后,将输电线路杆塔通过炉鼻子进入含有特定铝成分的熔融锌液锌锅中,进行输电线路杆塔内外表面差异化热镀处理;d、将镀锌后的输电线路杆塔再经空冷、水冷和吹干后,进行涂油防腐保护处理;e、在涂油防腐处理后,在输电线路杆塔的上再涂覆一层有机无铬耐指纹涂层;本发明提高了输电线路杆塔使用寿命,确保了输电线路的使用安全。

Description

输电线路杆塔长效防腐的方法 技术领域
本发明属于电力设备材料领域,尤其涉及一种输电线路杆塔长效防腐的方法。
背景技术
随着大气环境改变,大气中硫化物、氮氧化物等腐蚀性气体含量增加,酸雨环境下的输电线路杆塔腐蚀加快,沿海地区的海洋环境腐蚀严重,输电线路每两年都要进行再次的防腐处理,成本较高,同时还需要停电处理,经济损失严重。
目前,输电线路杆塔的防腐技术主要是热浸镀锌,在海洋环境下同时还采用油漆和涂料防腐技术并用的方法。输电线路杆塔在钢结构中占有很大的比重,镀锌能力比较大的工厂都分布在输电铁塔制造企业。因此,输电线路杆塔长效防腐技术水平的提高,对于减少钢材的腐蚀,延长输电线路杆塔服役年限,提高输电线路的投入产出比,效益十分显著。
输电线路杆塔部件在热镀锌之前为了去除表面的油污及铁锈,必须进行相应的脱脂与酸洗工艺。一般厂家采用化学去油或水基金属脱脂清洗剂去油,达到铁塔部件完全被水浸润为止。也可以采用高温热处理除油法,即把钢件放在热处理炉内升温到800℃左右,使油脂在高温条件下分解,然后采用硫酸或者盐酸进行酸洗除锈。脱脂剂酸洗处理不好会造成镀锌层附着力不好,镀不上锌或锌层脱落,而且除油与酸洗除锈分两步进行耗费能源、人力和时间。
同时,目前出现的镀层主要有铝锌合金镀层,锌镍合金镀层,锌钛合金镀层等,其目的在于控制镀锌过程中硅的活性,在提高镀层寿命方面也取得了一定的成效,但是由于成本高,技术不成熟等原因都没有得到大规模的推广和应用。
发明内容
本发明针对上述的输电线路杆塔部件在防腐技术上存在的技术问题,提出 一种配方合理、方法简单且防腐效果好、长久的输电线路杆塔长效防腐的方法。
为了达到上述目的,本发明采用的技术方案为,本发明提供一种输电线路杆塔长效防腐的方法,包括以下步骤:
a、首先用碱性清洗剂对输电线路杆塔的表面做除锈和去污清理;
b、将处理后的输电线路杆塔浸涂在硅烷溶液中,进行金属表面硅烷化处理,在输电线路杆塔的表面形成硅烷膜;
c、待b步骤完成后,将输电线路杆塔通过炉鼻子进入含有特定铝成分的熔融锌液锌锅中,进行输电线路杆塔内外表面差异化热镀处理;
d、将镀锌后的输电线路杆塔再经空冷、水冷和吹干后,进行涂油防腐保护处理;
e、在涂油防腐处理后,在输电线路杆塔的上再涂覆一层有机无铬耐指纹涂层;
其中,所述c步骤中,所述熔融锌液中按照质量比含有以下成份:锌:45~65%,铝:33~45%,镁:0.5~9%,稀土镍:0.5~4%,钛:0.01%~0.2%;稀土镍的成分百分比为:Ni:55.32,La:24.68,Ce:9.55,Pr:7.45,Nd:2.25,Si:0.025,P:0.003,Ca:0.312,Mn:0.1,Mg:0.31。
作为优选,所述a步骤中碱性清洗剂为碱性高泡清洗剂,具体方法为首先将碱性清洗剂按照1:500的比例与水混合,然后将输电线路杆塔放置于混合液中,浸泡2分钟中,然后将比例为1:100的碱性清洗剂和水的混合液采用高压冲水的方式对杆塔的表面进行清洗。
作为优选,所述c步骤中,所述输电线路杆塔内外表面差异化热镀处理是指输电线路杆塔的外表面的镀锌涂层量为60~180g/m2,输电线路杆塔的内表面的镀锌涂层量为30~120g/m2
作为优选,所述b步骤中,所述硅烷溶液为氨丙基三乙氧基硅烷水解液,所述氨丙基三乙氧基硅烷水解液包括三种有效成份:氨丙基三乙氧基硅烷、水和乙醇,其质量比为1:1~3:6~20。
作为优选,所述b步骤中,所述金属表面硅烷化处理的具体方法为:先将 输电线路杆塔浸渍在氨丙基三乙氧基硅烷水解液中,浸渍时间为2min,然后将输电线路杆塔取出,加热固化,在输电线路杆塔的表面形成硅烷膜,其中,所述固化温度为100℃~300℃,固化时间为0.5h~2h。
作为优选,所述d步骤中,所述涂油防腐的涂料为包括含有Cr3+元素的螯合剂、Al(H2PO4)3和硅溶胶的混合物。
作为优选,所述e步骤中,环保无铬型耐指纹层由环保无铬型耐指纹液涂抹固化而成,所述环保无铬型耐指纹液包括有机树脂、纳米SiO2及其他助剂。
作为优选,所述其他助剂为乙醇和去离子水的混合物,其中,乙醇和去离子水的质量比为1:1.5。
与现有技术相比,本发明的优点和积极效果在于,
1、本发明通过提供一种输电线路杆塔长效防腐的方法,利用各步骤之间的相互配合,使原有的输电线路杆塔的达到多层防腐的目的,提高了输电线路杆塔使用寿命,确保了输电线路的使用安全。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为b步骤中形成的硅烷膜外形图;
图2为硅烷膜的TG曲线图;
图3为硅烷膜的DSC曲线图;
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面 公开说明书的具体实施例的限制。
实施例1,首先将碱性清洗剂按照1:500的比例与水混合,本实施例所选用的碱性清洗剂由台湾福盈公司提供的型号为ACOPOWER 298的碱性高泡清洗剂,然后将输电线路杆塔放置于混合液中,浸泡2分钟中,再将比例为1:100的碱性清洗剂和水的混合液采用高压冲水的方式对杆塔的表面进行清洗。选用碱性清洗剂的主要是在达到去除表面的油污及铁锈的同时,为后续步骤提供更加良好的基础,不将酸性或中性清洗剂选为清洗剂的主要原因是因为金属表面有大量碱性轻基,要保留这些经基以便与酸性的桂轻基反应,若它们被酸性清洗剂所消耗掉则必降低其与硅烷的反应能力。研究表明,氨丙基三乙氧基硅烷应用于酸洗溶剂脱脂的金属表面时,对热镀锌涂层的粘结强度没有改善作用;当用碱性清洗剂清洗金属表面处理后,则发现该氨丙基三乙氧基硅烷有明显提高粘结强度的作用。当然,碱洗后的金属表面必须彻底干燥,否则残留水分及污染物会阻碍金属表面活性成分与硅羟基的反应。
然后将干燥后的输电线路杆塔浸涂在硅烷溶液中,进行金属表面硅烷化处理,在输电线路杆塔的表面形成硅烷膜,具体的说,硅烷溶液为氨丙基三乙氧基硅烷水解液,其中氨丙基三乙氧基硅烷水解液包括三种有效成份:氨丙基三乙氧基硅烷、水和乙醇,其质量比为1:1~3:6~20,浸渍时间为2min,然后将输电线路杆塔取出,加热固化,在输电线路杆塔的表面形成硅烷膜,其中,所述固化温度为100℃~300℃,固化时间为0.5h~2h。在金属表面硅烷化中,固化的步骤是非常必要的,对热镀锌层的粘结性及耐腐蚀都有较大影响。若硅烷溶液在金属表面自然干燥,许多分子间的连接完全丧失,并且膜的整体性将降低。经过合适的温度固化后,部分脱水而形成共价键,氨丙基三乙氧基硅烷被牢固的固化于金属表面。若固化不充分,则还会由于剩余的氢键吸入水分而对粘结效果产生不利的影响,图1为150℃、固化时间为1h形成的硅烷膜的形状。
考虑到后期的热镀锌工艺,因此,硅烷膜热的稳定性是其热性能的一项重要指标,而DSC与TG两种热分析技术是测定物质热性能的常用方法。DSC与一般的差热分析方法(DTA)不同,DSC记录的是温度差,而DSC除了记 录温差▽T外,还能得到能量的数据,即能测定聚合物的溶化热等。热失重分析是在程序控温的条件下测量物质质量与温度关系的一种技术,分析所得的曲线为热失重曲线(曲线,通过对其热失重曲线的分析得到聚合物热分解温度。)
由图2、图3可知,TG曲线可分成三个阶段:第一阶段,温度处于58.71℃以下,该阶段随着温度的升高,失重率变化很小;第二阶段,随着温度的升高,失重率缓慢地增加,约115.3℃后失重速率增大,失重量增加很快;第三阶段,温度到452℃后,失重率略减小,失重量继续明显增加,600℃时失重率达70.44%。根据热失重2.5%时的温度为热分解温度,因此,硅烷膜的热分解温度为250℃。硅烷膜在氩气中的热失重主要是主链降解造成的。当温度升高到以后,失重主要是脱除了部分未交联的低聚物(如残留的桂经基之间缩合失水,引起热失重的增加;当温度升高到时,膜主链开始产生解扣式降解,这些降解导致树脂在后失重率迅速增加,直至失去大部分有机成分。
从图3中可以看到硅烷膜结晶物的玻璃化温度在90.14℃,而在474.5℃时出现了大的吸收峰,结合图2的TG曲线发现,在该温度下硅烷膜的失重率达23%,所以通过图2、图3可知,在正常的热镀锌过程中,硅烷膜的失重率在可接收范围。
利用硅烷偶联剂进行金属预处理,除了具有工艺工程简单、无毒性、无污染、使用广泛、成本低,防腐蚀效果优于传统的磷化、钝化工艺等优点外,最大的功效在于经硅烷处理的金属表面对热镀涂层的结合力大大提高。水解产生的硅羟基,可以与金属基体形成共价键,而硅烷分子的另一有机官能团可以与聚合物键合而形成共价键,或者形成互穿网络聚合物,从而提高了镀锌涂层与金属基体的结合强度。
然后将硅烷后处理后的输电线路杆塔通过炉鼻子进入含有特定铝成分的熔融锌液锌锅中,控制上、下表面气刀吹扫的高度、角度和间距进行输电线路杆塔内外表面差异化热镀处理,输电线路杆塔内外表面差异化热镀处理是指输电线路杆塔的外表面的镀锌涂层量为60~180g/m2,输电线路杆塔的内表面的镀锌涂层量为30~120g/m2,具体的说,上表面气刀距锌液面高度为180~220mm, 上表面气刀与水平面角度1~2°,所述下表面气刀距锌液面高度为180~220mm,上表面气刀与水平面角度-2~-1°,本步骤中,所使用的熔融锌液中按照质量比含有以下成份:锌:45~65%,铝:33~45%,镁:0.5~9%,稀土镍:0.5~4%,钛:0.01%~0.2%;其中,稀土镍的成分百分比为:Ni:55.32,La:24.68,Ce:9.55,Pr:7.45,Nd:2.25,Si:0.025,P:0.003,Ca:0.312,Mn:0.1,Mg:0.31。
将输电线路杆塔的内外表面进行差异化处理的主要好处是减少资源的浪费,同时,也能够达到防腐的目的。
然后,将镀锌后的输电线路杆塔再经空冷、水冷和吹干后,进行涂油防腐保护处理,在这一步骤中,所用的防腐涂料为包括含有Cr3+元素的螯合剂、Al(H2PO4)3和硅溶胶的混合物。具体的,将该防腐涂料采用辊涂和/或喷淋工艺的方法使得在热镀输电线路杆塔的表面形成的涂层的附着量为500~1500mg/m2的涂层,在辊涂时控制输电线路杆塔温度在60℃~120℃之间即可。
最后,采用辊涂工艺在热浸镀锌输电线路杆塔表面涂覆一层1~2纳米的有机无铬耐指纹涂层即成为具有良好综合性能并且符合环保要求的高附加值的产品。该环保无铬型耐指纹层由环保无铬型耐指纹液涂抹固化而成,所述环保无铬型耐指纹液包括有机树脂、纳米SiO2及其他助剂,其中,其他助剂为乙醇和去离子水的混合物,乙醇和去离子水的质量比为1:1.5,辊涂有机无铬耐指纹涂层的主要目的除了提高防腐蚀以外,还能给防腐涂料层提供一层更好的保护膜,提高使用寿命。
通过上述的方法设置,这样就在原有的输电线路杆塔表面形成了四层防腐保护,最终提高了其使用寿命。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (8)

  1. 一种输电线路杆塔长效防腐的方法,其特征在于,包括以下步骤:
    a、首先用碱性清洗剂对输电线路杆塔的表面做除锈和去污清理;
    b、将处理后的输电线路杆塔浸涂在硅烷溶液中,进行金属表面硅烷化处理,在输电线路杆塔的表面形成硅烷膜;
    c、待b步骤完成后,将输电线路杆塔通过炉鼻子进入含有特定铝成分的熔融锌液锌锅中,进行输电线路杆塔内外表面差异化热镀处理;
    d、将镀锌后的输电线路杆塔再经空冷、水冷和吹干后,进行涂油防腐保护处理;
    e、在涂油防腐处理后,在输电线路杆塔的上再涂覆一层有机无铬耐指纹涂层;
    其中,所述c步骤中,所述熔融锌液中按照质量比含有以下成份:锌:45~65%,铝:33~45%,镁:0.5~9%,稀土镍:0.5~4%,钛:0.01%~0.2%;稀土镍的成分百分比为:Ni:55.32,La:24.68,Ce:9.55,Pr:7.45,Nd:2.25,Si:0.025,P:0.003,Ca:0.312,Mn:0.1,Mg:0.31。
  2. 根据权利要求1所述的输电线路杆塔长效防腐的方法,其特征在于,所述a步骤中碱性清洗剂为碱性高泡清洗剂,具体方法为首先将碱性清洗剂按照1:500的比例与水混合,然后将输电线路杆塔放置于混合液中,浸泡2分钟中,然后将比例为1:100的碱性清洗剂和水的混合液采用高压冲水的方式对杆塔的表面进行清洗。
  3. 根据权利要求1所述的输电线路杆塔长效防腐的方法,其特征在于,所述c步骤中,所述输电线路杆塔内外表面差异化热镀处理是指输电线路杆塔的外表面的镀锌涂层量为60~180g/m2,输电线路杆塔的内表面的镀锌涂层量为30~120g/m2
  4. 根据权利要求1所述的输电线路杆塔长效防腐的方法,其特征在于,所述b步骤中,所述硅烷溶液为氨丙基三乙氧基硅烷水解液,所述氨丙基三乙氧 基硅烷水解液包括三种有效成份:氨丙基三乙氧基硅烷、水和乙醇,其质量比为1:1~3:6~20。
  5. 根据权利要求4所述的输电线路杆塔长效防腐的方法,其特征在于,所述b步骤中,所述金属表面硅烷化处理的具体方法为:先将输电线路杆塔浸渍在氨丙基三乙氧基硅烷水解液中,浸渍时间为2min,然后将输电线路杆塔取出,加热固化,在输电线路杆塔的表面形成硅烷膜,其中,所述固化温度为100℃~300℃,固化时间为0.5h~2h。
  6. 根据权利要求1所述的输电线路杆塔长效防腐的方法,其特征在于,所述d步骤中,所述涂油防腐的涂料为包括含有Cr3+元素的螯合剂、Al(H2PO4)3和硅溶胶的混合物。
  7. 根据权利要求1所述的输电线路杆塔长效防腐的方法,其特征在于,所述e步骤中,环保无铬型耐指纹层由环保无铬型耐指纹液涂抹固化而成,所述环保无铬型耐指纹液包括有机树脂、纳米SiO2及其他助剂。
  8. 根据权利要求7所述的输电线路杆塔长效防腐的方法,其特征在于,所述其他助剂为乙醇和去离子水的混合物,其中,乙醇和去离子水的质量比为1:1.5。
PCT/CN2016/087805 2016-05-20 2016-06-30 输电线路杆塔长效防腐的方法 WO2017197734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610344796.1A CN105970138A (zh) 2016-05-20 2016-05-20 输电线路杆塔长效防腐的方法
CN201610344796.1 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017197734A1 true WO2017197734A1 (zh) 2017-11-23

Family

ID=56956927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087805 WO2017197734A1 (zh) 2016-05-20 2016-06-30 输电线路杆塔长效防腐的方法

Country Status (2)

Country Link
CN (1) CN105970138A (zh)
WO (1) WO2017197734A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030170A (zh) * 2020-07-27 2020-12-04 西安金诺表面精饰有限公司 一种镀镍件黄膜处理方法
CN115595523A (zh) * 2022-10-28 2023-01-13 安徽实友电力金具有限公司(Cn) 一种三角联板连接金具的生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588610A (zh) * 2018-06-13 2018-09-28 无锡银荣板业有限公司 一种钢板表面连续热浸镀锌钛合金的工艺方法
CN110541134A (zh) * 2019-10-19 2019-12-06 广西凯威铁塔有限公司 耐酸雨电力铁塔结构件热浸锌生产方法
CN111020317A (zh) * 2019-12-25 2020-04-17 天津市兴生辉锌制品有限公司 一种用于热浸镀锌的锌铝合金

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846342A (en) * 1994-02-03 1998-12-08 Henkel Corporation Surface treatment agent for zinciferous-plated steel
CN101885945A (zh) * 2010-07-02 2010-11-17 浙江大学 金属表面硅烷化处理方法及其应用
US20110159302A1 (en) * 2008-06-24 2011-06-30 Advanced Technologies, Inc. Iron alloy article, iron alloy member, and method for producing the iron alloy article
CN101186998B (zh) * 2007-12-17 2012-01-11 中国电力科学研究院 一种输电线路杆塔长效防腐合金镀层及其制备工艺
CN103289569A (zh) * 2013-05-09 2013-09-11 安徽工业大学 一种自润滑钝化液及用其涂覆的热镀锌自润滑涂层钢板
CN103665998A (zh) * 2013-11-13 2014-03-26 常熟市宝华建筑装璜材料有限公司 一种镀锌钢板表面硅烷预处理方法
CN104060252A (zh) * 2013-09-05 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 表面处理剂及其制备方法和热镀金属材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101352946B (zh) * 2007-07-23 2013-02-06 宝山钢铁股份有限公司 深冲用热镀铝锌钢板/带及其生产方法
CN101713069B (zh) * 2009-11-16 2011-05-04 浙江大学 添加剂均相改性硅烷溶液的制备方法及其用途
CN102277086B (zh) * 2011-09-07 2013-07-24 合肥华清方兴表面技术有限公司 无铬环保型不锈钢用耐指纹处理剂
CN105219142B (zh) * 2015-11-03 2017-09-29 攀钢集团攀枝花钢铁研究院有限公司 可直接静电粉末涂装防腐涂料及其应用和热镀金属材料及其制备方法
CN105316570A (zh) * 2015-12-11 2016-02-10 武汉钢铁(集团)公司 一种差厚锌层的热镀锌钢板及生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846342A (en) * 1994-02-03 1998-12-08 Henkel Corporation Surface treatment agent for zinciferous-plated steel
CN101186998B (zh) * 2007-12-17 2012-01-11 中国电力科学研究院 一种输电线路杆塔长效防腐合金镀层及其制备工艺
US20110159302A1 (en) * 2008-06-24 2011-06-30 Advanced Technologies, Inc. Iron alloy article, iron alloy member, and method for producing the iron alloy article
CN101885945A (zh) * 2010-07-02 2010-11-17 浙江大学 金属表面硅烷化处理方法及其应用
CN103289569A (zh) * 2013-05-09 2013-09-11 安徽工业大学 一种自润滑钝化液及用其涂覆的热镀锌自润滑涂层钢板
CN104060252A (zh) * 2013-09-05 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 表面处理剂及其制备方法和热镀金属材料
CN103665998A (zh) * 2013-11-13 2014-03-26 常熟市宝华建筑装璜材料有限公司 一种镀锌钢板表面硅烷预处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030170A (zh) * 2020-07-27 2020-12-04 西安金诺表面精饰有限公司 一种镀镍件黄膜处理方法
CN115595523A (zh) * 2022-10-28 2023-01-13 安徽实友电力金具有限公司(Cn) 一种三角联板连接金具的生产方法
CN115595523B (zh) * 2022-10-28 2023-11-10 安徽实友电力金具有限公司 一种三角联板连接金具的生产方法

Also Published As

Publication number Publication date
CN105970138A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2017197734A1 (zh) 输电线路杆塔长效防腐的方法
JP4170593B2 (ja) 電着塗装方法
CN107740085B (zh) 一种环保型复合彩色钝化液及其制备方法
CN110565148B (zh) 一种镁合金黑色微弧氧化膜纳米钝化剂及钝化的方法
CN101773901A (zh) 一种提高金属构件表面达克罗涂层性能的方法
CN104328371A (zh) 一种令钢管防腐防锈的热浸锌工艺
US5205874A (en) Process of protecting metallic and wood surfaces using silicate compounds
CN111621173A (zh) 一种环保镀锌层封闭液以及使用方法
CN104789021B (zh) 一种耐中高温地热环境的有机‑无机复合防腐涂层的制备方法
CN101392360A (zh) 重型汽车排气管热浸渗铝的工艺方法
CN109440042A (zh) 一种铁塔零散构件的镀锌方法
CN116065146A (zh) 一种发动机清洗提质的方法
CN110714178A (zh) 一种电力铁塔构件热镀锌工艺
CN107829060A (zh) 输电线路杆塔长效防腐的方法
AU2020102140A4 (en) Method for galvanizing steel member of support for solar photovoltaic or photothermal system
CN112695314A (zh) 一种增强金属零件耐蚀性的溶液及其配置方法
CN115044236A (zh) 一种耐腐蚀涂层的制备方法
CN102978602A (zh) 马氏体不锈钢耐蚀方法
CN113897571A (zh) 一种增强热镀锌附着力的工艺方法
JPS6049711B2 (ja) 片面溶融めつき鋼管の製造方法
CN107723641B (zh) 耐腐蚀镀层的热镀方法
CN104561873A (zh) 一种基于表面预处理碳钢热浸铝工艺
CN114214624B (zh) 一种钢铁材料复合涂层的制备方法
TWI828529B (zh) 無鉻防蝕塗料組成物、材料表面防蝕處理方法、及包含防蝕塗膜的扣件
CN107881450A (zh) 一种紧固件的无酸洗热浸镀锌工艺

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902114

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902114

Country of ref document: EP

Kind code of ref document: A1