WO2017197564A1 - 切换过程中的通信方法和装置 - Google Patents

切换过程中的通信方法和装置 Download PDF

Info

Publication number
WO2017197564A1
WO2017197564A1 PCT/CN2016/082221 CN2016082221W WO2017197564A1 WO 2017197564 A1 WO2017197564 A1 WO 2017197564A1 CN 2016082221 W CN2016082221 W CN 2016082221W WO 2017197564 A1 WO2017197564 A1 WO 2017197564A1
Authority
WO
WIPO (PCT)
Prior art keywords
address information
network element
gateway device
target
access network
Prior art date
Application number
PCT/CN2016/082221
Other languages
English (en)
French (fr)
Inventor
陆伟
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/082221 priority Critical patent/WO2017197564A1/zh
Priority to CN201680085857.5A priority patent/CN109155739B/zh
Priority to EP16901950.2A priority patent/EP3457629B1/en
Publication of WO2017197564A1 publication Critical patent/WO2017197564A1/zh
Priority to US16/192,808 priority patent/US10798620B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus in a handover process.
  • MEC Mobile Edge Computing
  • the MEC network element may be connected to the S1 User Plane (S1-U) interface between the Evolved Node B (the eNB or the eNodeB) and the Serving Gateway (SGW), and the MEC There is an interface between the network element and the SGW.
  • S1-U S1 User Plane
  • the eNB or the eNodeB Evolved Node B
  • SGW Serving Gateway
  • the embodiment of the invention provides a communication method and device in a handover process, so as to timely adjust the routing of the data flow between the MEC network element and the terminal when the terminal switches between the access network devices, so as to prevent the data flow from being interrupted. .
  • the embodiment of the present invention provides a communication method in a handover process, where the method includes: when a terminal switches from a source access network device to a target access network device, the gateway device acquires the target access network device. Address information; the gateway device obtains address information of the mobile edge computing MEC network element; the gateway device sends the address information of the target access network device to the MEC network element according to the address information of the MEC network element, And causing the MEC network element to modify the stored address information of the source access network device to address information of the target access network device.
  • the address information of the target access network device may be carried in a message sent by the gateway device to the MEC network element.
  • the gateway device may further send the identifier information of the terminal to the MEC network element.
  • the gateway device sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target access network device and identifier information of the terminal.
  • the modify session request message may be used to request the MEC network element to connect the stored source.
  • the address information of the network access device is modified to the address information of the target access network device.
  • the gateway device When the terminal switches from the source access network device to the target access network device, the gateway device sends the address information of the target access network device to the MEC network element, so that the MEC network element modifies the stored address information of the source access network device to The address information of the target access network device can timely adjust the routing of the data flow between the MEC network element and the terminal, thereby preventing the data flow from being interrupted.
  • the gateway device is a target gateway device corresponding to the target access network device
  • the method further includes: the target gateway device sending the address of the target gateway device to the MEC network element
  • the information is such that the MEC network element modifies the stored address information of the source gateway device corresponding to the source access network device to the address information of the target gateway device.
  • the obtaining, by the gateway device, the address information of the MEC network element includes: the gateway device receiving the address information of the MEC network element sent by the mobility management network element.
  • the method further includes: the gateway device sending the address information of the MEC network element to the mobility management network element.
  • the mobility management network element can obtain the address information of the MEC network element, and can send the address information of the MEC network element to the target access network device to establish a data transmission channel between the target access network device and the MEC network element.
  • the obtaining, by the gateway device, the address information of the target access network device includes: receiving, by the gateway device, address information of the target access network device that is sent by the mobility management network element.
  • an embodiment of the present invention provides a communication method in a handover process, where the method includes: when a terminal switches from a source access network device to a target access network device, the mobile edge calculation MEC network element receives the gateway device. The address information of the target access network device that is sent; the MEC network element modifies the stored address information of the source access network device to the address information of the target access network device.
  • the address information of the target access network device may be carried in a message sent by the gateway device.
  • the MEC network element receives a modify session request message sent by the gateway device, where the modify session request message includes address information of the target access network device.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source access network device to address information of the target access network device.
  • the MEC network element may also accept identification information of the terminal sent by the gateway device.
  • the MEC network element When the terminal switches from the source access network device to the target access network device, the MEC network element receives the address information of the target access network device sent by the gateway device, and modifies the stored address information of the source access network device to the target interface.
  • the address information of the network access device can adjust the routing of the data flow between the MEC network element and the terminal in time, thereby preventing the data flow from being interrupted.
  • the gateway device is a target gateway device corresponding to the target access network device
  • the method further includes: the MEC network element receiving the target gateway device sent by the target gateway device Address information; the MEC network element modifies the stored address information of the source gateway device corresponding to the source access network device to the address information of the target gateway device.
  • the address information of the target gateway device may be carried in a message sent by the target gateway device to the MEC network element.
  • the MEC network element receives a modify session request message sent by the target gateway device, where the modify session request message includes address information of the target gateway device.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source gateway device to address information of the target gateway device.
  • an embodiment of the present invention provides a gateway device, where the gateway device has a function of implementing a behavior of a gateway device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the gateway device comprises a processing unit and a communication unit, the processing unit being configured to support the gateway device to perform a corresponding function in the above method.
  • the communication unit is configured to support communication between the gateway device and other devices.
  • the gateway device may also include a storage unit for coupling with the processing unit, which stores program instructions and data necessary for the gateway device.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a MEC network element, where the MEC network element has a function of implementing MEC network element behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the MEC network element includes a processing unit and a communication unit, the processing unit being configured to support the MEC network element to perform a corresponding function in the above method.
  • the communication unit is configured to support communication between the MEC network element and other devices.
  • the MEC network element may further include a storage unit, where the storage unit is configured to be coupled to the processing unit, where the MEC network element is saved. Order instructions and data.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use by the gateway device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use in the MEC network element, including a program designed to perform the above aspects.
  • the gateway device when the terminal switches from the source access network device to the target access network device, the gateway device sends the address information of the target access network device to the MEC network element, so that the MEC network element stores the source access network.
  • the address information of the device is modified to the address information of the target access network device, and the routing of the data flow between the MEC network element and the terminal can be adjusted in time, thereby preventing the data flow from being interrupted.
  • FIG. 1 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a possible application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of communication of a communication method in a handover process according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a gateway device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic block diagram of another gateway device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a MEC network element according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of another MEC network element according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the terminal involved in the embodiments of the present invention may include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment). , UE), mobile station (MS), terminal device, and the like.
  • UE user equipment
  • MS mobile station
  • terminal device and the like.
  • the access network device in the embodiment of the present invention may be a base station (BS), and the base station is a device deployed in the radio access network to provide a wireless communication function for the terminal.
  • BS base station
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device with a base station function may be different, for example, in a Long Term Evolution (LTE) system, called an evolved Node B (eNB). Or eNodeB), in a 3G communication system, called a Node B or the like.
  • LTE Long Term Evolution
  • eNB evolved Node B
  • eNodeB in a 3G communication system
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station or a BS.
  • the mobility management network element may be a Mobility Management Entity (MME) or a General Packet Radio System (GPRS) Servicing GPRS Support Node (SGSN), but the present invention Not limited.
  • MME Mobility Management Entity
  • GPRS General Packet Radio System
  • SGSN GPRS Support Node
  • the following describes an embodiment of the present invention by taking an eNB and an MME as an example. It should be understood that although the eNB is used as an example to describe the access network device, and the MME is used as an example to describe the mobility management network element, the embodiments of the present invention are not limited to the system represented by these terms. The embodiments of the present invention are also applicable to other systems, and these variations are all within the scope of the embodiments of the present invention.
  • Embodiments of the present invention can be applied to the system architecture shown in FIG. 1.
  • the following describes the main network entities in the system architecture.
  • Evolved Universal Terrestrial Radio Access Network A network composed of multiple eNBs to implement wireless physical layer functions. Resource scheduling and radio resource management, wireless access control, and mobility management functions.
  • the eNB is connected to the SGW through the S1-U interface, and is used to transmit user data.
  • the S1 control plane interface (S1-MME interface) is connected to the MME, and the S1 application protocol (S1-AP) is used to implement the radio access bearer. Control and other functions.
  • MME Mainly responsible for all control plane functions of user and session management, including Non-Access Stratum (NAS) signaling and security, Tracking Area List (TAL) management, PGW and SGW The choices and so on.
  • NAS Non-Access Stratum
  • TAL Tracking Area List
  • SGW It is mainly responsible for data transmission, forwarding, and route switching of the terminal, and is used as a local mobility anchor point when the user equipment switches between eNBs.
  • Packet Data Network Gateway an external network that sends data to the terminal, which is responsible for the allocation of the Internet Protocol (IP) address of the terminal, and the data packet filtering and rate of the terminal. Control, generate billing information, and so on.
  • IP Internet Protocol
  • the PGW allocates an IP address to the terminal, and the terminal uses the IP address to connect to the external network for data transmission; all uplink data packets of the terminal. It will be sent to the external network through the PGW, and all downlink data packets of the external network will be sent to the terminal through the PGW.
  • EPS Evolved Packet System
  • the data packets sent or received by the terminal are transmitted through the EPS bearer (abbreviated as bearer) in the EPS network.
  • bearer Each terminal can have multiple bearers. Different bearers can meet the quality of service (QoS) requirements of different services.
  • the eNB and the SGW store the information of each bearer, that is, the bearer context, which includes the SGW tunnel end identifier (TEID) and the eNB TEID information of the bearer, where the SGW TEID is used for the uplink datagram sent by the eNB to the SGW.
  • the eNB TEID is used for the downlink data packet sent by the SGW to the eNB.
  • the eNB implements the synchronization of the bearer context with the MME through the S1-AP message, and the SGW synchronizes the bearer context with the MME through the GPRS Tunneling Protocol-Control Plane (GTP-C) message; thereby implementing the inter-eNB and the SGW.
  • GTP-C GPRS Tunneling Protocol-Control Plane
  • the eNB When receiving the uplink data packet of the terminal, the eNB encapsulates the uplink data packet of the terminal into an GPRS Tunneling Protocol-User Plane (GTP-U) packet according to the bearer context, where The uplink GTP-U packet includes a GTP-U header, and the GTP-U header contains the SGW TEID information of the bearer. Since different bearers use different SGW TEIDs, when the SGW receives the uplink GTP-U packets sent by the eNB, it can judge according to the GTP-U header.
  • GTP-U GPRS Tunneling Protocol-User Plane
  • the bearer to which the packet belongs when the SGW receives the downlink data packet addressed to the terminal, the SGW encapsulates the downlink data packet into a downlink GTP-U packet, where the downlink GTP-U packet includes the GTP-U packet.
  • the GTP-U header contains the eNB TEID information of the bearer.
  • the MEC network element is mainly composed of a data bus and an application, wherein the data bus is responsible for acquiring the data message of the terminal and forwarding it to the corresponding application, and the application sends the message to the data bus for routing after processing the data message.
  • a variety of applications can be installed on the MEC network element to enhance the user experience.
  • the application on the MEC network element can intercept the data sent by the terminal for modification, detection, forwarding, etc., and can directly respond to the data sent by the terminal.
  • the MEC network element can be installed with a video cache application. When the terminal requests the video service, the terminal request is processed by the video cache application. If there is no video requested by the terminal in the video cache application, the video cache application will continue to forward the user request to the SGW. If the video buffer application stores the video requested by the terminal, the video buffer application directly sends the video data message to the terminal. Therefore, deploying the MEC network element in the vicinity of the access network can effectively improve the service experience of the user.
  • the MEC network element is serially connected to the S1-U interface between the eNB and the SGW device.
  • the MEC network element can establish a connection with the SGW.
  • the MEC network element establishes a connection with the SGW through a preset interface, and is connected to the eNB through the S1-U interface.
  • the MEC network element and the SGW can obtain the address information of the other party and establish a data transmission channel between the MEC network element and the SGW.
  • the SGW may notify the eNB of the address information of the MEC network element as the address information of the SGW through the MME. That is, in the prior art, the SGW notifies the eNB of the address information of the SGW.
  • the SGW uses the address information of the MEC network element as the address information of the SGW, and the SGW notifies the eNB through the MME. At this time, from the perspective of the eNB, the eNB will use the MEC network element as the SGW.
  • FIG. 3 is a schematic flowchart of a communication method 300 in a handover process according to an embodiment of the present invention. As shown in FIG. 3, the communication method 300 includes the following.
  • the gateway device acquires address information of the target eNB.
  • the gateway device may receive address information of the target eNB transmitted by the MME.
  • the gateway device acquires address information of the MEC network element.
  • the address information of the MEC network element may be pre-configured on the gateway device, and the gateway device may obtain the address information of the pre-configured MEC network element; or the gateway device may also The address information of the MEC network element is obtained from the message sent by the MME.
  • the gateway device may further obtain the address information of the MEC network element according to the correspondence, where the correspondence may be between one or all of the identifier information of the terminal and the identifier information of the target eNB and the address information of the MEC network element.
  • the MEC network element query system stores the corresponding relationship, and the MEC network element query system can obtain the address information of the MEC network element by querying the MEC network element query system according to at least one of the identification information of the terminal, the identification information of the gateway device, and the address information of the gateway.
  • the connection between the source gateway device and the target gateway device may be established, and the source gateway device sends the address information of the MEC network element to the target gateway device.
  • the MEC network element and the gateway device may be an IP connection, and the address information of the MEC network element includes the IP address of the MEC network element; or the MEC network element and the gateway device may be a GTP-based tunnel connection.
  • the address information of the MEC network element includes the IP address and TEID of the MEC network element.
  • the gateway device sends the address information of the target eNB to the MEC network element according to the address information of the MEC network element.
  • the gateway device may further send the identifier information of the terminal to the MEC network element, where the identifier information of the terminal is used to identify the terminal that has the handover.
  • the content of the identification information of the terminal is not limited in the embodiment of the present invention, as long as the terminal can be identified.
  • the MEC network element can send the downlink data packet to the target eNB when receiving the downlink data packet of the terminal.
  • the MEC network element After the MEC network element receives the address information of the target eNB sent by the gateway device, the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB.
  • the MEC network element deletes the address information of the source eNB stored in the specified location in the memory, and stores the address information of the target eNB at the specified location.
  • the MEC network element replaces the address information of the source eNB stored in the specified location in the memory with the address information of the target eNB.
  • the user plane data transmission channel between the MEC network element and the target eNB can be established at this time.
  • the MEC network element may further receive the downlink data packet of the terminal, and send the downlink data packet to the target eNB according to the address information of the target eNB.
  • the gateway device when the terminal switches from the source access network device to the target access network device, the gateway device sends the address information of the target access network device to the MEC network element, so that the MEC network element will be stored.
  • the address information of the source access network device is modified to the address information of the target access network device, and the routing of the data flow between the MEC network element and the terminal can be adjusted in time, thereby preventing the data flow from being interrupted.
  • the communication method 300 may further include: the MEC network element receiving the target gateway device sent by the target gateway device The address information of the gateway device corresponding to the source access network device is changed to the address information of the target gateway device. In this way, when the gateway device also changes during the handover process, the connection between the MEC network element and the gateway device can be established in time, thereby preventing the data flow from being interrupted.
  • the gateway device in the embodiment of the present invention may be an SGW or a gateway device that has both the SGW function and the PGW function.
  • the source eNB and the target eNB may have an X2 interface or no X2 interface.
  • the handover preparation process can be performed through the X2 interface, and the source eNB can directly request the target eNB to perform resource reservation.
  • the MME is not involved in the handover process, and the interaction between the wireless side and the MME is reduced. See Figure 4 and Figure 5 for details.
  • the handover in the LTE system needs to be performed through the S1 interface. Since the source eNB and the target eNB cannot communicate directly, the MME undertakes signaling relay between the two eNBs, and the signaling handover process is more complicated than the handover based on the X2 interface. See Figure 6 and Figure 7 for details.
  • FIG. 4 is a schematic diagram of communication of a communication method 400 in another handover process according to an embodiment of the present invention.
  • the communication method 400 can be applied to the system architecture in which the X2 interface exists between the source eNB and the target eNB, and the SGW does not change during the handover process, that is, the source eNB and the target eNB correspond to the same SGW.
  • the source eNB can directly request the target eNB to perform resource reservation when the source eNB and the target eNB can perform the handover preparation process through the X2 interface.
  • the handover preparation process between the source eNB and the target eNB and the handover execution procedure between the terminal, the source eNB, and the target eNB may refer to the prior art.
  • the terminal switches to the target eNB the following is performed.
  • the target eNB sends a path switch request message to the MME, where the path switch request message includes address information of the target eNB.
  • the MME sends a modify bearer request message to the SGW, where the modify bearer request message includes address information of the target eNB.
  • the SGW sends a modify bearer response message to the MME, where the bearer response message includes the address information of the MEC network element.
  • the address information of the MEC network element here is sent by the SGW to the MME as the address information of the SGW. That is, the SGW sends the SGW address information included in the Modify Bearer Response message to the MME, which is actually the address information of the MEC network element.
  • the SGW sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target eNB.
  • the SGW notifies the MEC network element of the address information of the target eNB.
  • the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB, and sends a modify bearer response message to the SGW.
  • a user plane downlink data transmission channel between the MEC network element and the target eNB may be established, so that the MEC network element can send the downlink data stream of the terminal to the target eNB.
  • the MME sends a path switch request acknowledgement message to the target eNB, where the path switch request acknowledgement message includes address information of the MEC network element, so that the target eNB can establish a data transmission channel with the MEC network element.
  • the MME sends the path switch request acknowledgement message to the target eNB to include the address information of the SGW.
  • the address information of the SGW that the MME considers in the embodiment of the present invention is actually the address information of the MEC network element. Therefore, from the perspective of the MME and the eNB, there is no impact on the network.
  • the target eNB sends a release resource message to the source eNB.
  • the message of each part may also include the identifier information of the terminal, where the identifier information of the terminal is used to identify the terminal that has switched.
  • the 403 portion may be executed before the (404, 405) portion, or after the (404, 405) portion, or may be performed concurrently with the (404, 405) portion. This is not limited in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of communication of a communication method 500 in a handover process according to an embodiment of the present invention.
  • the communication method 500 can be applied to a system architecture in which an X2 interface exists between a source eNB and a target eNB, and the SGW changes during the handover of the cell, that is, the source eNB corresponds to a different SGW corresponding to the target eNB.
  • Handover preparation procedure between the source eNB and the target eNB, and the terminal, the source eNB, and the target eNB The switching execution process can refer to the prior art.
  • the terminal switches to the target eNB the following is performed.
  • the target eNB sends a path switch request message to the MME.
  • the MME sends a create session request message to the target SGW, where the create session request message includes address information of the target eNB.
  • the create session request message may further include the address information of the MEC network element.
  • the address of the MEC network element is sent to the MME as the address information of the SGW, so the information of the SGW saved on the MME is actually The upper part is the address information of the MEC network element.
  • the MEC network element address information is sent to the target SGW, so that the target SGW can obtain the MEC network element address information.
  • the target SGW obtains the address information of the MEC network element, and the target SGW sends a modify session request message to the MEC network element, where the modified session request message includes the target eNB address information and the address information of the target SGW.
  • This part is used for the address information of the target SGW to notify the MEC network element target eNB and the address information of the target SGW.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source eNB to the address information of the target eNB, and request the MEC network element to establish a user plane data channel with the target SGW.
  • the target SGW may obtain the address information of the MEC network element from the create session request message.
  • a connection is established between the source SGW and the target SGW, and the source SGW sends the MEC network element address information and the like to the target SGW. (This process is not shown in the figure above.)
  • the target SGW may also obtain the address information of the MEC network element by using other methods, and details are not described herein again.
  • the MEC network element modifies the stored address information of the source SGW to the address information of the target SGW, and the address information of the source eNB is modified to address information of the target eNB, and sends a modify session response message to the target SGW.
  • the modify session response message includes address information of the MEC network element.
  • the name of the message between the MEC network element and the SGW is not limited.
  • the purpose of this part is that the MEC network element notifies the SGW of the address information of its device.
  • the target SGW sends a create session response message to the MME, where the session response message is created. Includes address information of the MEC network element.
  • the address information of the target SGW is included in the session message created here.
  • the MEC network element is directly connected to the eNB. Therefore, the address information of the MEC network element is sent to the MME as the address information of the SGW. From the perspective of the MME, the MME has no perception and considers the MEC network.
  • the address information of the element is the address information of the SGW.
  • the MME sends a path switch request acknowledgement message to the target eNB, where the path switch request acknowledgement message includes address information of the MEC network element.
  • the MME sends the path switch request acknowledgement message to the target eNB to include the SGW device address information.
  • the MME sends the SGW address information (actually the address information of the MEC network element) that the MME considers received in the 505 part to the eNB, and the MME and the eNB do not perceive, and the MME considers that The address information of the MEC network element is the address information of the SGW.
  • a user-side data transmission channel between the target eNB and the MEC network element may be established, so that the target eNB can send the uplink data stream of the terminal to the MEC network element.
  • the target eNB sends a resource release message to the source eNB.
  • FIG. 6 is a schematic diagram of communication of a communication method 600 in another handover process according to an embodiment of the present invention.
  • the communication method 600 can be applied to the system architecture in which the X2 interface does not exist between the source eNB and the target eNB, and the SGW is unchanged in the process of switching the cell, that is, the source eNB corresponds to the same SGW as the target eNB.
  • the source eNB initiates a decision to trigger a handover process.
  • the source eNB sends a handover requirement message to the MME.
  • the MME sends a handover request message to the target eNB.
  • the target eNB sends a handover request acknowledgement message to the MME.
  • the MME sends a handover command message to the source eNB.
  • the source eNB sends a handover command message to the terminal.
  • the terminal sends a handover confirmation message to the target eNB.
  • the MME sends a modify bearer request message to the SGW.
  • the SGW sends a modify bearer response message to the MME.
  • Sections 601 to 609 are the same as those of the prior art, and the corresponding contents are appropriately omitted.
  • the switching request message of the 603 part of the prior art includes the address information of the SGW.
  • the address information of the SGW is actually the address information of the MEC network element.
  • the user-side data transmission channel between the target eNB and the MEC network element can be established, so that the target eNB sends the uplink data stream of the terminal to the MEC network element.
  • the SGW sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target eNB.
  • the MEC network element After receiving the modify session request message, modifies the stored address information of the source eNB to the address information of the target eNB, and sends a modify session response message to the SGW.
  • a user plane downlink data transmission channel between the MEC network element and the target eNB may be established, so that the MEC network element can send the downlink data stream of the terminal to the target eNB.
  • FIG. 7 is a schematic diagram of communication of a communication method 700 in another handover process according to an embodiment of the present invention.
  • the communication method 700 can be applied to a system architecture in which there is no X2 interface between the source eNB and the target eNB, and both the MME and the SGW change during the handover process.
  • the source eNB determines to initiate a handover process.
  • the source eNB sends a handover requirement message to the source MME.
  • the source MME sends a Forward Relocation Request message to the target MME.
  • the target MME sends a create session request message to the target SGW.
  • Sections 701 to 704 are the same as those of the prior art, and the corresponding contents are appropriately omitted herein.
  • the 704 part of the create session request message may further include address information of the MEC network element.
  • the target SGW sends a modify session request message to the MEC network element according to the address information of the MEC network element, where the modify session request message includes address information of the target SGW.
  • the MEC network element modifies the stored address information of the source SGW to the address information of the target SGW, and sends a modify session response message to the target SGW.
  • a user plane data transmission channel between the MEC network element and the target SGW can be established.
  • the SGW sends a create session response message to the target MME, where the session response message includes the address information of the target SGW, including the IP address and the TEID of the SGW.
  • the target MME sends a handover request message to the target eNB, where the handover request message includes address information of the MEC network element, that is, address information saved in the MME.
  • the MME considers the address information of the MEC network element as the address information of the SGW.
  • the target eNB sends a handover request acknowledgement message to the target MME.
  • a user-side data transmission channel between the target eNB and the MEC network element can be established, so that the eNB can send the uplink data stream of the terminal to the MEC network element.
  • Parts 710-718 are the same as the prior art, and are not described herein again.
  • the target SGW sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target eNB.
  • the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB, and sends a modify session response message to the target SGW.
  • a user plane downlink data transmission channel between the MEC network element and the target eNB may be established, so that the MEC network element can send the downlink data stream of the terminal to the target eNB.
  • the (705, 706) portion may also be performed concurrently with the (719, 720) portion, that is, after the 718 portion, the MEC network element is simultaneously established with the data channel between the SGW and the target eNB.
  • the message of each part of the method shown in FIG. 4 to FIG. 7 may further include the identifier information of the terminal, and the identifier information of the terminal is used to identify the terminal that has switched.
  • each network element such as a gateway device, a MEC network element, etc.
  • each network element in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform functional unit division on a gateway device, an MEC network element, and the like according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit. in.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 shows a possible structural diagram of the gateway device involved in the above embodiment.
  • the gateway device 800 includes a processing unit 810 and a communication unit 820.
  • the processing unit 810 is configured to perform control management on the action of the gateway device.
  • the processing unit 810 is configured to support the gateway device to perform the process 301, the process 302, and the process 303 in FIG. 3, the process 404 in FIG. 4, and the process in FIG. 503, process 610 in FIG. 6, process 705 and process 719 in FIG. 7, and/or other processes for the techniques described herein.
  • the communication unit 820 is configured to support communication between the gateway device and other network entities, such as the communication between the MME, the eNB, and the MEC network element shown in FIG. 2.
  • the gateway device 800 can also include a storage unit 830 for storing program codes and data of the gateway device.
  • the processing unit 810 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 820 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 830 can be a memory.
  • the gateway device When the processing unit 810 is a processor, the communication unit 820 is a communication interface, and the storage unit 830 is a memory, the gateway device according to the embodiment of the present invention may be the gateway device shown in FIG.
  • the gateway device 900 includes a processor 910, a communication interface 920, and a memory 930.
  • the gateway device 900 may further include a bus 940.
  • the communication interface 920, the processor 910, and the memory 930 may be connected to each other through a bus 940.
  • the bus 940 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • the bus 940 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • FIG. 10 is a schematic diagram showing a possible structure of an MEC network element involved in the foregoing embodiment.
  • the MEC network element 1000 includes a processing unit 1010 and a communication unit 1020.
  • the processing unit 1010 is configured to perform control management on the action of the MEC network element.
  • the processing unit 1010 is configured to support the MEC.
  • the network element performs process 304 in FIG. 3, process 405 in FIG. 4, process 504 in FIG. 5, process 611 in FIG. 6, process 706 and process 720 in FIG. 7, and/or for the techniques described herein. Other processes.
  • Communication unit 1020 is for supporting communication between MEC network elements and other network entities, such as with the eNB, SGW, etc. shown in FIG.
  • the MEC network element 1000 may further include a storage unit 1030 for storing program codes and data of the MEC network element.
  • the processing unit 1010 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1020 may be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and may include one or more interfaces.
  • the storage unit 1030 may be a memory.
  • the MEC network element involved in the embodiment of the present invention may be the MEC network element shown in FIG.
  • the MEC network element 1100 includes a processor 1110, a communication interface 1120, and a memory 1130.
  • the MEC network element 1100 may further include a bus 1140.
  • the communication interface 1120, the processor 1110, and the memory 1130 may be connected to each other through a bus 1140; the bus 1140 may be a PCI bus or an EISA bus or the like.
  • the bus 1140 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located at the gateway In the device or mobility management network element.
  • the processor and the storage medium may also exist as discrete components in the gateway device or the mobility management network element.
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种切换过程中的通信方法和装置。方法包括:当终端从源接入网设备切换至目标接入网设备时,网关设备获取目标接入网设备的地址信息;网关设备获取移动边缘计算MEC网元的地址信息;网关设备根据MEC网元的地址信息向MEC网元发送目标接入网设备的地址信息,以使得MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息。本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,网关设备向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。

Description

切换过程中的通信方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及切换过程中的通信方法和装置。
背景技术
为了增强用户的业务体验,可以在接入网附近部署移动边缘计算平台(Mobile Edge Computing,简称MEC)网元,MEC网元具有计算和存储的能力,能够获取终端的数据报文,并将数据报文处理完后进行路由。
MEC网元可以串接在演进型节点(Evolved Node B,简称eNB或eNodeB)与服务网关(Serving Gateway,简称SGW)之间的S1用户面(S1User Plane,简称S1-U)接口上,且MEC网元与SGW之间有接口。当终端在eNB之间移动时,MEC网元如何应对终端的切换,目前还没有相关的解决方案。
发明内容
本发明实施例提供了一种切换过程中的通信方法和装置,以期当终端在接入网设备之间切换时,及时调整MEC网元与终端之间的数据流的路由,以防止数据流中断。
一方面,本发明实施例提供了一种切换过程中的通信方法,所述方法包括:当终端从源接入网设备切换至目标接入网设备时,网关设备获取所述目标接入网设备的地址信息;所述网关设备获取移动边缘计算MEC网元的地址信息;所述网关设备根据所述MEC网元的地址信息向所述MEC网元发送所述目标接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
一个可能的设计中,所述目标接入网设备的地址信息可以携带在网关设备向所述MEC网元发送的消息中。可选地,所述网关设备还可以向所述MEC网元发送所述终端的标识信息。
例如,所述网关设备向所述MEC网元发送修改会话请求消息,所述修改会话请求消息包括所述目标接入网设备的地址信息和所述终端的标识信息。所述修改会话请求消息可以用于请求所述MEC网元将存储的所述源接 入网设备的地址信息修改为所述目标接入网设备的地址信息。
当终端从源接入网设备切换至目标接入网设备时,网关设备向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
在一个可能的设计中,所述网关设备为所述目标接入网设备对应的目标网关设备,所述方法还包括:所述目标网关设备向所述MEC网元发送所述目标网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
在一个可能的设计中,所述网关设备获取MEC网元的地址信息包括:所述网关设备接收移动性管理网元发送的所述MEC网元的地址信息。
在一个可能的设计中,所述方法还包括:所述网关设备向移动性管理网元发送所述MEC网元的地址信息。
这样,移动性管理网元能够获取到MEC网元的地址信息,可以将MEC网元的地址信息发送到目标接入网设备,以建立目标接入网设备与MEC网元之间的数据传输通道。
在一个可能的设计中,所述网关设备获取所述目标接入网设备的地址信息包括:所述网关设备接收移动性管理网元发送的所述目标接入网设备的地址信息。
另一方面,本发明实施例提供了一种切换过程中的通信方法,所述方法包括:当终端从源接入网设备切换至目标接入网设备时,移动边缘计算MEC网元接收网关设备发送的所述目标接入网设备的地址信息;所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
在一个可能的设计中,所述目标接入网设备的地址信息可以携带在网关设备发送的消息中。例如,所述MEC网元接收网关设备发送的修改会话请求消息,所述修改会话请求消息包括所述目标接入网设备的地址信息。所述修改会话请求消息可以用于请求所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
在一个可能的设计中,所述MEC网元还可以接受所述网关设备发送的终端的标识信息。
当终端从源接入网设备切换至目标接入网设备时,MEC网元接收网关设备发送的目标接入网设备的地址信息,并将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
在一个可能的设计中,所述网关设备为所述目标接入网设备对应的目标网关设备,所述方法还包括:所述MEC网元接收所述目标网关设备发送的所述目标网关设备的地址信息;所述MEC网元将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
在一可能的设计中,所述目标网关设备的地址信息可以携带在目标网关设备向所述MEC网元发送的消息中。例如,MEC网元接收目标网关设备发送的修改会话请求消息,所述修改会话请求消息包括所述目标网关设备的地址信息。所述修改会话请求消息可以用于请求所述MEC网元将存储的所述源网关设备的地址信息修改为所述目标网关设备的地址信息。
又一方面,本发明实施例提供了一种网关设备,该网关设备具有实现上述方法设计中网关设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述网关设备包括处理单元和通信单元,所述处理单元被配置为支持网关设备执行上述方法中相应的功能。所述通信单元用于支持网关设备与其他设备之间的通信。所述网关设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存网关设备必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供了一种MEC网元,该MEC网元具有实现上述方法设计中MEC网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述MEC网元包括处理单元和通信单元,所述处理单元被配置为支持MEC网元执行上述方法中相应的功能。所述通信单元用于支持MEC网元与其他设备之间的通信。所述MEC网元还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存MEC网元必要的程 序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述网关设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述MEC网元所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,网关设备向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
附图说明
图1是本发明实施例提供的一种可能的系统架构的示意图;
图2是本发明实施例提供的一种可能的应用场景的示意图;
图3是本发明实施例提供的一种切换过程中的通信方法的通信示意图;
图4是本发明实施例提供的另一种切换过程中的通信方法的通信示意图;
图5是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图6是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图7是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图8是本发明实施例提供的一种网关设备的示意性框图;
图9是本发明实施例提供的另一种网关设备的示意性框图;
图10是本发明实施例提供的一种MEC网元的示意性框图;
图11是本发明实施例提供的另一种MEC网元的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,名词“网络”和“系统”经常交替使用,但本领域技术人员可以理解其含义。本发明实施例所涉及到的终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。本发明实施例所涉及到接入网设备可以是基站(Base Station,BS),所述基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G通信系统中,称为节点B(Node B)等等。为方便描述,本发明实施例中,上述为终端提供无线通信功能的装置统称为基站或BS。
移动性管理网元可以是移动性管理实体(Mobility Management Entity,简称MME)或通用分组无线系统(General Packet Radio System,简称GPRS)业务支撑节点(Serving GPRS Support Node,简称SGSN),但本发明并不限定。
但为描述方便,下述以eNB、MME为例对本发明实施例的方案进行说明。应理解,下文中虽然使用eNB为例描述接入网设备,使用MME为例描述移动性管理网元,但本发明实施例不限于这些术语所代表的制式。本发明实施例也可应用于其他制式,这些变化均落入本发明实施例的范围内。
本发明实施例可以应用于图1所示的系统架构。下面首先介绍该系统架构中的主要网络实体。
演进型通用陆地无线接入网(Evolved UniversalTerrestrial Radio Access Network,简称E-UTRAN):由多个eNB组成的网络,实现无线物理层功能、 资源调度和无线资源管理、无线接入控制以及移动性管理功能。eNB通过S1-U接口和SGW相连,用于传送用户数据;通过S1控制面接口(S1-MME接口)和MME相连,采用S1应用协议(S1 Application Protocol,简称S1-AP)实现无线接入承载控制等功能。
MME:主要负责用户及会话管理的所有控制平面功能,包括非接入层(Non-Access Stratum,简称NAS)信令及安全、跟踪区列表(Tracking Area List,简称TAL)的管理、PGW与SGW的选择等。
SGW:主要负责终端的数据传输、转发以及路由切换等,并作为用户设备在eNB之间切换时的本地移动性锚定点。
分组数据网络网关(Packet Data Network Gateway,简称PDN GW或PGW):外部网络向终端发送数据的入口,负责终端的互联网协议(Internet Protocol,简称IP)地址的分配,终端的数据报文过滤、速率控制、生成计费信息等。
终端接入演进分组系统(Evolved Packet System,简称EPS)后,PGW为终端分配IP地址(IP address),终端通过该IP地址实现与外部网络的连接以进行数据传输;终端的所有上行数据报文会通过PGW发送至外部网络,外部网络所有的下行数据报文会通过PGW发送至终端。
终端发送或接收的数据报文在EPS网络内通过EPS承载(简称承载)进行传输,每个终端可以有多个承载,不同的承载可以满足不同业务的服务质量(Quality of Service,简称QoS)需求。eNB与SGW会存储每个承载的信息,即承载上下文,其中包含该承载的SGW隧道端点标识(Tunnel Endpoint Identifier,简称TEID)与eNB TEID信息,其中SGW TEID用于eNB发往SGW的上行数据报文,eNB TEID用于SGW发往eNB的下行数据报文。eNB通过S1-AP消息与MME实现承载上下文的同步,SGW通过GPRS隧道协议控制面(GPRS Tunneling Protocol-Control Plane,简称GTP-C)消息与MME实现承载上下文的同步;进而实现了eNB与SGW间的承载上下文同步。
eNB在收到终端的上行数据报文时,会根据承载上下文将终端的上行数据报文封装为上行的GPRS隧道协议用户面(GPRS Tunneling Protocol-User Plane,简称GTP-U)报文,其中,上行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的SGW TEID信息。由于不同的承载会使用不同的SGW TEID,因此SGW收到eNB发来的上行的GTP-U报文时,根据GTP-U头即可判断 该报文所属的承载;SGW收到发往终端的下行数据报文时,会将该下行数据包文封装为下行的GTP-U报文,其中,下行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的eNB TEID信息。
从逻辑上,MEC网元主要由数据总线与应用组成,其中数据总线负责获取终端的数据报文并转发给相应的应用,应用处理完数据报文后会将报文送还数据总线进行路由。MEC网元上可以安装多种应用,用于增强用户的业务体验。MEC网元上的应用可以截获终端发送的数据进行修改、检测、转发等,也可以对终端发送来的数据直接给出应答。例如MEC网元可以安装视频缓存应用,当终端请求视频业务时,终端的请求会被视频缓存应用处理,如果视频缓存应用中没有终端所请求的视频,视频缓存应用会继续转发该用户请求给SGW;如果视频缓存应用存储有终端所请求的视频,视频缓存应用会直接发送视频数据报文给终端。因此,将MEC网元部署在接入网附近对终端能够有效提升用户的业务体验。
图2是本发明实施例的应用场景的示意图。如图2所示,MEC网元串接在eNB与SGW设备之间的S1-U接口上。MEC网元可以与SGW建立连接。例如,MEC网元通过预设接口与SGW建立连接,通过S1-U接口与eNB相连。
MEC网元和SGW可以互相获取对方的地址信息,建立MEC网元与SGW之间的数据传输通道。SGW获取到MEC网元的地址信息后,可以将MEC网元的地址信息作为SGW的地址信息通过MME通知eNB。也就是说,在现有技术中SGW将SGW的地址信息通知eNB,而本发明实施例的应用场景中SGW将MEC网元的地址信息作为SGW的地址信息,由SGW通过MME通知eNB。此时,从eNB的角度看,eNB会将MEC网元作为SGW。
图3是本发明实施例提供的一种切换过程中的通信方法300的示意性流程图。如图3所示,通信方法300包括如下内容。
301、当终端从源eNB切换至目标eNB时,网关设备获取目标eNB的地址信息。
在一个示例中,网关设备可以接收MME发送的目标eNB的地址信息。
302、网关设备获取MEC网元的地址信息。
在一个示例中,MEC网元的地址信息可以预先配置在网关设备上,网关设备可以获取预先配置的MEC网元的地址信息;或者,网关设备也可以 从MME发送的消息中获取MEC网元的地址信息。
在另一个示例中,网关设备还可以根据对应关系获取MEC网元的地址信息,该对应关系可以为终端的标识信息和目标eNB的标识信息之一或全部与MEC网元的地址信息之间的对应关系。例如,MEC网元查询系统中存储该对应关系,根据终端的标识信息、网关设备的标识信息和网关的地址信息中的至少一种查询MEC网元查询系统即可获取MEC网元的地址信息。
在又一个示例中,如果当前网关设备为切换后的目标网关设备,则还可以在源网关设备与目标网关设备之间建立连接,源网关设备将MEC网元的地址信息等发送给目标网关设备。
在又一个示例中,MEC网元与网关设备之间可以为IP连接,MEC网元的地址信息包括MEC网元的IP地址;或者,MEC网元与网关设备之间可以为基于GTP的隧道连接,MEC网元的地址信息包括MEC网元的IP地址和TEID。
需要说明的是,上述301部分和302部分的执行先后顺序不限定。
303、网关设备根据MEC网元的地址信息向MEC网元发送目标eNB的地址信息。
在一个示例中,网关设备还可以向MEC网元发送终端的标识信息,终端的标识信息用于标识发生切换的终端。本发明实施例对终端的标识信息的内容不做限定,只要能够标识终端即可。这样能够使得MEC网元在接收到该终端的下行数据包时,向目标eNB发送该下行数据包。
304、MEC网元接收网关设备发送的目标eNB的地址信息后,MEC网元将存储的源eNB的地址信息修改为目标eNB的地址信息。
例如,MEC网元将存储器中指定位置存储的源eNB的地址信息删除,并在该指定位置存储目标eNB的地址信息。或者,MEC网元将存储器中指定位置存储的源eNB的地址信息替换为目标eNB的地址信息。
MEC网元修改终端的上下文信息后,此时可建立MEC网元与目标eNB之间的用户面数据传输通道。
在一个示例中,MEC网元还可以接收终端的下行数据包;根据目标eNB的地址信息向该目标eNB发送该下行数据包。
本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,网关设备向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储 的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
图3所示的方法中,若网关设备也发生变化,当网关设备为目标接入网设备对应的目标网关设备时,通信方法300还可以包括:MEC网元接收目标网关设备发送的目标网关设备的地址信息;MEC网元将存储的源接入网设备对应的网关设备的地址信息修改为目标网关设备的地址信息。这样,当切换过程中网关设备也发生改变时,能够及时建立MEC网元与网关设备之间的连接,进而能够防止数据流中断。
本发明实施例中的网关设备可以为SGW,也可以为兼具SGW功能和PGW功能的网关设备。
源eNB与目标eNB之间可以具有X2接口,也可以没有X2接口。当源eNB与目标eNB之间具有X2接口时,可以通过X2接口进行切换准备过程,源eNB可以直接要求目标eNB进行资源预留。这样切换过程中不涉及MME,减少了无线侧和MME的交互。具体详见图4和图5所示方案。
当源eNB与目标eNB之间没有X2接口时,需要通过S1接口执行LTE系统内的切换。由于源eNB和目标eNB之间不能直接通信,MME承担了两个eNB之间的信令中继,信令切换过程比基于X2接口的切换复杂。具体详见图6和图7所示方案。
下面结合图4至图7详细描述根据本发明实施例的通信方法在图2所示系统架构中的应用。
图4是根据本发明实施例提供的另一种切换过程中的通信方法400的通信示意图。通信方法400可以应用于源eNB和目标eNB之间存在X2接口的系统架构,且切换小区过程中SGW不改变,即源eNB和目标eNB对应同一SGW。
当终端从源eNB切换至目标eNB时,当源eNB与目标eNB之间可以通过X2接口进行切换准备过程,源eNB可以直接要求目标eNB进行资源预留。源eNB与目标eNB之间的切换准备过程以及终端、源eNB和目标eNB之间的切换执行过程可以参考现有技术。当终端切换至目标eNB时,执行以下内容。
401,目标eNB向MME发送路径切换请求消息,路径切换请求消息包括目标eNB的地址信息。
402,MME向SGW发送修改承载请求消息,修改承载请求消息包括目标eNB的地址信息。
403,SGW向MME发送修改承载响应消息,修改承载响应消息中包括MEC网元的地址信息。实现上,这里的MEC网元的地址信息是作为SGW的地址信息由SGW发送给MME的。也就是说,SGW向MME发送修改承载响应消息中包括的SGW地址信息实际上是MEC网元的地址信息。
404,SGW向MEC网元发送修改会话请求消息,修改会话请求消息包括目标eNB的地址信息。
需要说明的是,这里的消息名称不限制,SGW向MEC网元通知目标eNB的地址信息。
405,MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,向SGW发送修改承载响应消息。
此时可建立MEC网元与目标eNB之间的用户面下行数据传输通道,以便MEC网元能够将终端的下行数据流发送到目标eNB。
406,MME向目标eNB发送路径切换请求确认消息,路径切换请求确认消息包括MEC网元的地址信息,以便目标eNB能够建立与MEC网元之间的数据传输通道。
现有技术中,MME向目标eNB发送路径切换请求确认消息中包括SGW的地址信息。而本发明实施例中此处MME认为的SGW的地址信息实际上是MEC网元的地址信息。所以从MME、eNB角度看,对网络没有影响。
407,目标eNB向源eNB发送释放资源消息。
以上各个部分的消息中还可以包括终端的标识信息,终端的标识信息用于标识发生切换的终端。
应理解,403部分可以在(404,405)部分之前执行,也可以在(404,405)部分之后执行,或者也可以与(404,405)部分同时执行。本发明实施例中对此不做限定。
图5是根据本发明实施例提供的又一种切换过程中的通信方法500的通信示意图。通信方法500可以应用于源eNB和目标eNB之间存在X2接口的系统架构,且切换小区过程中SGW发生改变,即源eNB对应和目标eNB对应不同的SGW。
源eNB与目标eNB之间的切换准备过程以及终端、源eNB和目标eNB 之间的切换执行过程可以参考现有技术。当终端切换至目标eNB时,执行以下内容。
501,目标eNB向MME发送路径切换请求消息。
502,MME向目标SGW发送创建会话请求消息,创建会话请求消息包括目标eNB的地址信息。
可选地,创建会话请求消息中还可以包括MEC网元的地址信息,在初始建立连接时,MEC网元的地址是作为SGW的地址信息发送给MME的,所以MME上保存的SGW的信息实际上是MEC网元的地址信息,此时,将MEC网元地址信息发送给目标SGW,以便于目标SGW能够获取MEC网元地址信息。
503,目标SGW获取MEC网元的地址信息,目标SGW向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标eNB地址信息和目标SGW的地址信息。
需要说明的是:这里的消息名称不限制,本部分是用于目标SGW通知MEC网元目标eNB的地址信息和目标SGW的地址信息。
修改会话请求消息可以用于请求MEC网元将存储的源eNB的地址信息修改为目标eNB的地址信息,同时请求MEC网元与目标SGW建立用户面数据通道。
可选地,当502部分中的创建会话请求消息中还包括MEC网元的地址信息时,目标SGW可以从创建会话请求消息中获取MEC网元的地址信息。
可选地,源SGW与目标SGW之间建立连接,源SGW将MEC网元地址信息等发送给目标SGW。(该处理过程上图中未示出。)
目标SGW还可以采用其他方法获取MEC网元的地址信息,在此不再赘述。
504,MEC网元接收到创建会话请求消息后,将存储的源SGW的地址信息修改为目标SGW的地址信息,源eNB的地址信息修改为目标eNB的地址信息,向目标SGW发送修改会话响应消息,修改会话响应消息包括MEC网元的地址信息。
需要说明的是,MEC网元与SGW之间的消息名称不限制,此部分的目的是MEC网元通知SGW其设备的地址信息。
505,目标SGW向MME发送创建会话响应消息,创建会话响应消息中 包括MEC网元的地址信息。
在现有技术中,此处创建会话消息中包括目标SGW的地址信息。在本发明实施例中,与eNB直接相连接的是MEC网元,所以此处要将MEC网元的地址信息作为SGW的地址信息发送给MME,从MME的角度,MME无感知,认为MEC网元的地址信息即为SGW的地址信息。
506,MME向目标eNB发送路径切换请求确认消息,路径切换请求确认消息中包括MEC网元的地址信息。
按现有技术中,MME向目标eNB发送路径切换请求确认消息中包括SGW设备地址信息。本发明实施例的506部分中是MME将505部分中收到的MME认为的SGW地址信息(实际上是MEC网元的地址信息)发送给eNB,对MME与eNB来说,无感知,认为该MEC网元的地址信息就是SGW的地址信息。
此时可建立目标eNB与MEC网元之间的用户面上行数据传输通道,以便目标eNB能够将终端的上行数据流发送至该MEC网元。
507,目标eNB向源eNB发送资源释放消息。
图6是根据本发明实施例提供的又一种切换过程中的通信方法600的通信示意图。通信方法600可以应用于源eNB和目标eNB之间不存在X2接口的系统架构,且切换小区过程中SGW未改变,即源eNB对应和目标eNB对应同一SGW。
601,源eNB发起决定触发切换过程。
602,源eNB向MME发送切换需求消息。
603,MME向目标eNB发送切换请求消息。
604,目标eNB向MME发送切换请求确认消息。
605,MME向源eNB发送切换命令消息。
606,源eNB向终端发送切换命令消息。
607,终端向目标eNB发送切换确认消息。
608,MME向SGW发送修改承载请求消息。
609,SGW向MME发送修改承载响应消息。
601~609部分与现有技术相同,适当省略相应的内容。
需要说明的是,现有技术中603部分的切换请求消息中包括SGW的地址信息。但是在本发明实施例中,在终端接入网络时,为了将MEC网元串 接入S1接口,SGW的地址信息实际上是MEC网元的地址信息。
因此,经过603和604部分之后,可以建立目标eNB与MEC网元之间的用户面上行数据传输通道,以便目标eNB将终端的上行数据流发送到MEC网元。
610,SGW向MEC网元发送修改会话请求消息,修改会话请求消息包括目标eNB的地址信息。
611,MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,向SGW发送修改会话响应消息。
此时可建立MEC网元与目标eNB之间的用户面下行数据传输通道,以便MEC网元能够将终端的下行数据流发送到目标eNB。
图7是根据本发明实施例提供的又一种切换过程中的通信方法700的通信示意图。通信方法700可以应用于源eNB和目标eNB之间不存在X2接口的系统架构,且切换小区过程中MME和SGW都发生改变。
701,源eNB决定发起切换过程。
702,源eNB向源MME发送切换需求消息。
703,源MME向目标MME发送转发重定位请求消息。
704,目标MME向目标SGW发送创建会话请求消息。
701~704部分与现有技术相同,在此适当省略相应内容。
可选地,704部分的创建会话请求消息中还可以包括MEC网元的地址信息。
705,目标SGW根据MEC网元的地址信息向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标SGW的地址信息。
目标SGW获取MEC网元的地址信息采用的方法可以参考上文的描述,在此不再赘述。需要说明的是,消息的名称不限制。
706,MEC网元接收到修改会话请求消息后,将存储的源SGW的地址信息修改为目标SGW的地址信息,向目标SGW发送修改会话响应消息。
此时可建立MEC网元与目标SGW之间的用户面数据传输通道。
707,SGW向目标MME发送创建会话响应消息,创建会话响应消息中包括目标SGW的地址信息,包括SGW的IP地址与TEID。
708,目标MME向目标eNB发送切换请求消息,切换请求消息中包括MEC网元的地址信息,也就是在MME中保存的地址信息。对于MME而言, MME将MEC网元的地址信息认为SGW的地址信息。
709,目标eNB向目标MME发送切换请求确认消息。
此时可建立目标eNB与MEC网元之间的用户面上行数据传输通道,以便eNB能够将终端的上行数据流发送到MEC网元。
710~718部分与现有技术相同,在此不再赘述。
719,目标SGW向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标eNB的地址信息。
720,MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,向目标SGW发送修改会话响应消息。
此时可建立MEC网元与目标eNB之间的用户面下行数据传输通道,以便MEC网元能够将终端的下行数据流发送到目标eNB。
应理解,(705,706)部分还可以与(719,720)部分同时执行,也就是在718部分之后,使MEC网元同时建立与SGW和目标eNB之间的数据通道。
需要说明的是,图4至图7所示方法的各个部分的消息中还可以包括终端的标识信息,终端的标识信息用于标识发生切换的终端。
上文结合图3至图7详细描述了本发明实施例提供的切换过程中的通信方法,下面将结合图8至图11详细描述本发明实施例提供的装置。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,各个网元,例如网关设备、MEC网元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对网关设备、MEC网元等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的网关设备的一种可能的结构示意图。网关设备800包括处理单元810和通信单元820。处理单元810用于对网关设备的动作进行控制管理,例如,处理单元810用于支持网关设备执行图3中的过程301、过程302和过程303,图4中的过程404,图5中的过程503,图6中的过程610,图7中的过程705和过程719和/或用于本文所描述的技术的其它过程。通信单元820用于支持网关设备与其他网络实体的通信,例如与图2中示出的MME、eNB、MEC网元之间的通信。网关设备800还可以包括存储单元830,用于存储网关设备的程序代码和数据。
其中,处理单元810可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元820可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元830可以是存储器。
当处理单元810为处理器,通信单元820为通信接口,存储单元830为存储器时,本发明实施例所涉及的网关设备可以为图9所示的网关设备。
参阅图9所示,该网关设备900包括:处理器910、通信接口920、存储器930。可选的,网关设备900还可以包括总线940。其中,通信接口920、处理器910以及存储器930可以通过总线940相互连接;总线940可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线940可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
图10示出了上述实施例中所涉及的MEC网元的一种可能的结构示意图。MEC网元1000包括处理单元1010和通信单元1020。处理单元1010用于对MEC网元的动作进行控制管理,例如,处理单元1010用于支持MEC 网元执行图3中的过程304,图4中的过程405,图5中的过程504,图6中的过程611,图7中的过程706和过程720和/或用于本文所描述的技术的其它过程。通信单元1020用于支持MEC网元与其他网络实体的通信,例如与图2中示出的eNB、SGW等之间的通信。MEC网元1000还可以包括存储单元1030,用于存储MEC网元的程序代码和数据。
其中,处理单元1010可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1020可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1030可以是存储器。
当处理单元1010为处理器,通信单元1020为通信接口,存储单元1030为存储器时,本发明实施例所涉及的MEC网元可以为图11所示的MEC网元。
参阅图11所示,该MEC网元1100包括:处理器1110、通信接口1120、存储器1130。可选的,MEC网元1100还可以包括总线1140。其中,通信接口1120、处理器1110以及存储器1130可以通过总线1140相互连接;总线1140可以是PCI总线或EISA总线等。所述总线1140可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网关 设备或移动性管理网元中。当然,处理器和存储介质也可以作为分立组件存在于网关设备或移动性管理网元中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (14)

  1. 一种切换过程中的通信方法,其特征在于,包括:
    当终端从源接入网设备切换至目标接入网设备时,网关设备获取所述目标接入网设备的地址信息;
    所述网关设备获取移动边缘计算MEC网元的地址信息;
    所述网关设备根据所述MEC网元的地址信息向所述MEC网元发送所述目标接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述网关设备为所述目标接入网设备对应的目标网关设备,所述方法还包括:
    所述目标网关设备向所述MEC网元发送所述目标网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述网关设备获取MEC网元的地址信息,包括:
    所述网关设备接收移动性管理网元发送的所述MEC网元的地址信息。
  4. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述网关设备向移动性管理网元发送所述MEC网元的地址信息。
  5. 根据权利要求1或2所述的通信方法,其特征在于,所述网关设备获取所述目标接入网设备的地址信息,包括:
    所述网关设备接收移动性管理网元发送的所述目标接入网设备的地址信息。
  6. 一种切换过程中的通信方法,其特征在于,所述方法包括:
    当终端从源接入网设备切换至目标接入网设备时,移动边缘计算MEC网元接收网关设备发送的所述目标接入网设备的地址信息;
    所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  7. 根据权利要求6所述的通信方法,其特征在于,所述网关设备为所述目标接入网设备对应的目标网关设备,所述方法还包括:
    所述MEC网元接收所述目标网关设备发送的所述目标网关设备的地址信息;
    所述MEC网元将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
  8. 一种网关设备,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于当终端从源接入网设备切换至目标接入网设备时,获取所述目标接入网设备的地址信息,以及用于获取移动边缘计算MEC网元的地址信息;以及用于根据所述MEC网元的地址信息通过所述通信单元向所述MEC网元发送所述目标接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  9. 根据权利要求8所述的网关设备,其特征在于,所述网关设备为所述目标接入网设备对应的目标网关设备,所述处理单元还用于通过所述通信单元向所述MEC网元发送所述目标网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
  10. 根据权利要求8或9所述的网关设备,其特征在于,所述处理单元具体用于通过所述通信单元接收移动性管理网元发送的所述MEC网元的地址信息。
  11. 根据权利要求8或9所述的网关设备,其特征在于,所述处理单元还用于通过所述通信单元向移动性管理网元发送所述MEC网元的地址信息。
  12. 根据权利要求8或9所述的网关设备,其特征在于,所述处理单元具体用于通过所述通信单元接收移动性管理网元发送的所述目标接入网设备的地址信息。
  13. 一种移动边缘计算MEC网元,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于当终端从源接入网设备切换至目标接入网设备时,通过所述通信单元接收网关设备发送的所述目标接入网设备的地址信息;以及用于将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  14. 根据权利要求13所述的MEC网元,其特征在于,所述网关设备为所述目标接入网设备对应的目标网关设备,所述处理单元还用于通过所述通 信单元接收所述目标网关设备发送的所述目标网关设备的地址信息;以及用于将存储的所述源接入网设备对应的源网关设备的地址信息修改为所述目标网关设备的地址信息。
PCT/CN2016/082221 2016-05-16 2016-05-16 切换过程中的通信方法和装置 WO2017197564A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/082221 WO2017197564A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置
CN201680085857.5A CN109155739B (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置
EP16901950.2A EP3457629B1 (en) 2016-05-16 2016-05-16 Communication method and apparatus during switching
US16/192,808 US10798620B2 (en) 2016-05-16 2018-11-16 Communication method in handover process and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082221 WO2017197564A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/192,808 Continuation US10798620B2 (en) 2016-05-16 2018-11-16 Communication method in handover process and apparatus

Publications (1)

Publication Number Publication Date
WO2017197564A1 true WO2017197564A1 (zh) 2017-11-23

Family

ID=60324670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082221 WO2017197564A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置

Country Status (4)

Country Link
US (1) US10798620B2 (zh)
EP (1) EP3457629B1 (zh)
CN (1) CN109155739B (zh)
WO (1) WO2017197564A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174421A (zh) * 2018-03-05 2018-06-15 重庆邮电大学 一种5g网络中基于mec辅助的数据分流方法
WO2019179372A1 (zh) * 2018-03-23 2019-09-26 华为技术有限公司 业务切换处理方法、相关产品及计算机存储介质
US11159997B2 (en) 2017-02-27 2021-10-26 Huawei Technologies Co., Ltd. Communication method and apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197564A1 (zh) * 2016-05-16 2017-11-23 华为技术有限公司 切换过程中的通信方法和装置
CN111417152B (zh) * 2019-01-07 2023-03-28 中国移动通信有限公司研究院 一种数据的分流方法及装置、计算机可读存储介质
CN112333108B (zh) * 2019-08-05 2024-10-15 中兴通讯股份有限公司 业务调度的方法及装置
CN112953843B (zh) * 2019-11-26 2022-12-30 华为技术有限公司 一种数据传输方法及其装置
KR20210095457A (ko) 2020-01-23 2021-08-02 삼성전자주식회사 엣지 컴퓨팅 서비스를 위한 방법 및 장치
CN113395238B (zh) * 2020-03-12 2022-09-23 华为技术有限公司 一种认证授权方法及对应装置
CN114124817B (zh) * 2020-03-15 2023-03-14 腾讯科技(深圳)有限公司 基于边缘计算的通信方法、装置、介质及电子设备
CN112422685B (zh) * 2020-11-19 2022-02-01 中国联合网络通信集团有限公司 一种基于移动边缘计算mec的5g数据处理系统和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273668A1 (en) * 2004-05-20 2005-12-08 Richard Manning Dynamic and distributed managed edge computing (MEC) framework
CN103430516A (zh) * 2013-02-21 2013-12-04 华为技术有限公司 业务提供系统、方法、移动边缘应用服务器及支持节点

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079566A1 (ja) 2009-01-09 2010-07-15 日本電気株式会社 サービス提供装置、サービス提供システム、サービス提供方法および記憶媒体
KR101737425B1 (ko) * 2010-06-21 2017-05-18 삼성전자주식회사 응급 콜을 지원하는 이동 통신 시스템에서 보안 관리 방법 및 장치와 그 시스템
WO2012159310A1 (zh) * 2011-06-29 2012-11-29 华为技术有限公司 用于触发用户设备的方法和装置
CN102892109B (zh) * 2011-07-21 2018-05-11 中兴通讯股份有限公司 一种实现ip地址属性通知的方法和系统
CN103491527B (zh) * 2012-06-13 2018-09-04 中兴通讯股份有限公司 一种检索终端外部标识的方法及系统
US9167493B2 (en) * 2012-06-15 2015-10-20 At&T Intellectual Property I, L.P. Method and apparatus for providing a cloud-based mobility in a wireless network
CN103517360B (zh) * 2012-06-25 2017-04-19 华为终端有限公司 切换方法、系统及设备
EP2896233A4 (en) * 2012-09-12 2016-05-11 Nokia Technologies Oy METHOD AND DEVICE FOR MOBILITY CONTROL IN A HETEROGENIC NETWORK
CN105491625B (zh) * 2014-10-10 2019-11-29 华为技术有限公司 无线通信中切换接入点的方法、网络控制节点和用户设备
WO2017197564A1 (zh) * 2016-05-16 2017-11-23 华为技术有限公司 切换过程中的通信方法和装置
US10299184B1 (en) * 2017-03-28 2019-05-21 Sprint Communications Company L.P. Reselection of optimal network elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273668A1 (en) * 2004-05-20 2005-12-08 Richard Manning Dynamic and distributed managed edge computing (MEC) framework
CN103430516A (zh) * 2013-02-21 2013-12-04 华为技术有限公司 业务提供系统、方法、移动边缘应用服务器及支持节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BECK, M.T. ET AL.: "Mobile Edge Computing: A Taxonomy", THE SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN FUTURE INTERNET, 20 November 2014 (2014-11-20), pages 48 - 51, XP 055441221 *
HU , YUNCHAO ET AL.: "Mobile Edge Computing A key technology towards 5G", ETSI WHITE PAPER, 30 September 2015 (2015-09-30), XP055287768 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159997B2 (en) 2017-02-27 2021-10-26 Huawei Technologies Co., Ltd. Communication method and apparatus
CN108174421A (zh) * 2018-03-05 2018-06-15 重庆邮电大学 一种5g网络中基于mec辅助的数据分流方法
WO2019179372A1 (zh) * 2018-03-23 2019-09-26 华为技术有限公司 业务切换处理方法、相关产品及计算机存储介质
CN110300143A (zh) * 2018-03-23 2019-10-01 华为技术有限公司 业务切换处理方法、相关产品及计算机存储介质
CN110300143B (zh) * 2018-03-23 2021-10-15 华为技术有限公司 业务切换处理方法、相关装置及计算机存储介质
US11445411B2 (en) 2018-03-23 2022-09-13 Huawei Cloud Computing Technologies Co., Ltd. Service switching processing method, related product, and computer storage medium

Also Published As

Publication number Publication date
EP3457629B1 (en) 2020-09-30
US20190090167A1 (en) 2019-03-21
EP3457629A1 (en) 2019-03-20
EP3457629A4 (en) 2019-04-24
CN109155739A (zh) 2019-01-04
US10798620B2 (en) 2020-10-06
CN109155739B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2017197564A1 (zh) 切换过程中的通信方法和装置
US10674420B2 (en) Method, apparatus, and system for routing user plane data in mobile network
US10104541B2 (en) Method and apparatus for establishing user plane bearer
US10608842B2 (en) GTP-U downlink packet sending method and apparatus
CN109155946B (zh) 切换过程中的通信方法和装置
US9967781B2 (en) Apparatus and method for supporting handover
US10827348B2 (en) Data transmission method and apparatus
WO2015161482A1 (zh) Mptcp连接的移动性管理方法和装置
US20170325055A1 (en) Terminal device, base station device, mme, and communication control method
US10045230B2 (en) Data exchange method and apparatus
CN104041120B (zh) 异系统切换方法、装置及系统
WO2011113330A1 (zh) 一种业务通路切换方法及其装置
EP3454588B1 (en) Method and device for transmitting messages
WO2018082517A1 (zh) 删除用户面隧道的方法、网元及系统
KR20150143201A (ko) 로컬 브레이크 아웃을 위한 패킷 처리 방법, 이를 위한 장치 및 시스템
WO2016074468A1 (zh) 支持多pdn连接的优化切换的方法、网络节点及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901950

Country of ref document: EP

Effective date: 20181212