WO2017193975A1 - 一种信道状态信息反馈方法和装置 - Google Patents
一种信道状态信息反馈方法和装置 Download PDFInfo
- Publication number
- WO2017193975A1 WO2017193975A1 PCT/CN2017/084004 CN2017084004W WO2017193975A1 WO 2017193975 A1 WO2017193975 A1 WO 2017193975A1 CN 2017084004 W CN2017084004 W CN 2017084004W WO 2017193975 A1 WO2017193975 A1 WO 2017193975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- uplink control
- physical uplink
- control channel
- channel resource
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000004891 communication Methods 0.000 claims abstract description 20
- 230000004044 response Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 12
- 230000010363 phase shift Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 abstract description 21
- 238000010295 mobile communication Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 22
- 101150071746 Pbsn gene Proteins 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 230000015654 memory Effects 0.000 description 14
- 238000013507 mapping Methods 0.000 description 12
- 230000007480 spreading Effects 0.000 description 12
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 10
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 10
- 125000004122 cyclic group Chemical group 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
- H04L1/0073—Special arrangements for feedback channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1657—Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
Definitions
- the present application relates to the field of mobile communications, and in particular to a CSI (Channel State Information) feedback technique in a wireless communication system.
- CSI Channel State Information
- the UE User Equipment
- MCS Modulation and Coding Scheme
- the UE may report the downlink channel quality information to the network device by using CSI (Channel State Information), so that the network device selects a more reliable MCS for the UE and Better time-frequency resources.
- CSI Channel State Information
- the CSI mainly includes an RI (Rank Indication), a PMI (Precoding Matrix Indicator), and a CQI (Channel Quality Indicator).
- RI Rank Indication
- PMI Precoding Matrix Indicator
- CQI Channel Quality Indicator
- Channel quality indication Through the information reported by the CSI, the network device can learn the transmission order, the precoding matrix, and the highest MCS that can be used under the current downlink channel quality condition, which are recommended or measured by the UE, and based on the above information.
- the UE allocates appropriate MCS and time-frequency resources. It can be seen that whether the CSI message fed back by the UE can be correctly received by the network device directly affects the downlink data transmission quality and the downlink resource utilization rate.
- the coverage of the uplink control channel and the quality of the reception are required to ensure that the CSI is correctly received.
- more scenarios are needed to enhance the coverage of the uplink control channel. For example, in a high-frequency mobile communication network, since the attenuation of the high-band wireless signal is faster, a more reliable uplink control channel is needed.
- a distributed multi-point collaboration scenario when multiple distributed base stations are cooperatively scheduled, other base stations are required to obtain channel state information of the serving users.
- the coverage of the uplink control channel is also required to be enhanced, so that the CSI sent by the UE is received by multiple neighboring base stations at the same time, and the CSI acquisition delay of the neighboring cell for the UE is reduced, and the system performance is improved. Therefore, a solution for improving the reliability and coverage of the CSI feedback is needed to ensure correct reception of the CSI, thereby ensuring the reliability of downlink data transmission.
- This paper describes a method, device and system for CSI (Channel State Information) feedback, which aims to improve the reliability and coverage of CSI feedback, and thus ensure the reliability of downlink data transmission.
- CSI Channel State Information
- the embodiment of the present application provides a CSI feedback method, including: a network device sends a configuration message to a user equipment, where the configuration message includes more than one PRB configured for each CSI feedback of the user equipment.
- Physical Resource Block Physical uplink control channel resource information, where the PRB pair refers to two PRBs for transmitting physical uplink control channels distributed over two consecutive time slots, and each The time slot includes one of the two PRBs; the network device receives the CSI sent by the user equipment on the physical uplink control channel resource.
- the configuration message includes physical uplink control channel resource information that includes two pairs of physical resource blocks (PBRs) configured for each CSI feedback of the user equipment.
- PBRs physical resource blocks
- the configuration message may be a message existing in the prior art including the physical uplink control channel resource information, or may be another newly added message including the physical uplink control channel resource information.
- the CSI can adopt a more robust low bit rate coding or modulation mode, so as to improve the transmission reliability and transmission coverage of the CSI.
- the physical uplink control channel is mainly used to carry uplink control information, for example, PUCCH (Physical Uplink Control CHannel) and other uplink channels with the above functions defined as the network evolves.
- PUCCH Physical Uplink Control CHannel
- the method further comprises: the network device demodulating the CSI modulated into more than 10 symbols, or the CSI and HARQ response messages.
- the network device demodulates the CSI modulated into 20 symbols, or the CSI and HARQ response messages.
- the 20 symbols may be QPSK (Quadrature Phase Shift Keying) symbols.
- the method further includes: the network device coding each encoded CSI or the CSI and HARQ Reply message.
- the code may be RM (40, K), wherein the RM (40, K) is a Reed-Muller coding mode, and K is an integer greater than 0.
- the original information bits of one CSI are encoded to obtain 40 coded bits, or a CSI and HARQ response message are jointly encoded to obtain 40 coded bits, and finally modulated into 20 symbols, which reduces the code rate of the CSI code and improves the coding.
- Robustness allows CSI to transmit correctly in more severe channel environments or larger coverage areas.
- the encoding may also be other types of encoding methods in the prior art, and the number of bits obtained by the encoding may also be other values.
- the CSI or the CSI and HARQ response messages may be encoded into 80 bits by using other types of coding methods in the prior art, and then modulated into 40 QPSK symbols, and correspondingly allocated to a physical medium capable of carrying 40 QPSK symbols. The resource is transmitted.
- the specific coding mode, the number of bits generated by the specific coding, the number of symbols to be modulated, and the required physical resources are not limited.
- the network device receives one of the CSI or CSI and on one of the PRB pairs.
- Half of the symbol of the HARQ response message For example, 10 symbols in a CSI modulated into 20 QPSK symbols are received on one of the PRB pairs, and another 10 QPSK symbols of the CSI are received on another of the PRB pairs.
- the configuration message includes the inclusion of each CSI feedback configuration for the user equipment
- the physical uplink control channel resource information of the two PRBs includes one of the following situations: the configuration message includes two first physical uplink control channel resource indexes configured by the network device for each CSI feedback; and the configuration message includes the network device. a second physical uplink control channel resource index configured for each CSI feedback; wherein one of the first physical uplink control channel resource indexes indicates one PRB pair, and one of the second physical uplink control channel resource indexes indicates two PRBs Correct.
- the configuration of the first physical uplink control channel resource index is used to improve the transmission reliability of the CSI and the resource index in the prior art.
- the configuration of the first physical uplink control channel resource index is used to improve the transmission reliability of the CSI and the resource index in the prior art.
- the method further includes: the network device sending the physical uplink control channel resource index type information to the user equipment, where the physical uplink control channel resource The index type information is used to indicate the type of the physical uplink control channel resource index used in the configuration message.
- the method further includes: the two first physical uplinks configured for each CSI feedback Indicated by the control channel resource index Two PRB pairs are distributed over the same two consecutive time slots or distributed over two different consecutive time slots.
- the method further includes: the network device sends the first indication information to the user equipment, where The first indication information is used to indicate a distribution manner of the two PRB pairs indicated by the two first physical uplink control channel resource indexes configured for each CSI feedback.
- the embodiment of the present application provides a CSI feedback method, including: receiving, by a user equipment, a configuration message sent by a network device, where the configuration message includes more than one configured for each CSI feedback configuration of the user equipment.
- Physical uplink control channel resource information of a PRB (Physical Resource Block) pair where the PRB pair refers to two PRBs that are transmitted on two consecutive time slots for transmitting a physical uplink control channel, and each The time slot includes one of the two PRBs; the user equipment sends CSI on the physical uplink control channel resource.
- the configuration message includes physical uplink control channel resource information that includes two pairs of physical resource blocks (PBRs) configured for each CSI feedback of the user equipment.
- the configuration message may be a message existing in the prior art including the physical uplink control channel resource information, or may be another new message type including the physical uplink control channel resource information.
- the user equipment will encode the original bits of each of the CSIs or the original bits of the CSI and HARQ response messages.
- the code may be an RM (40, K) code, where the RM (40, K) is a Reed-Muller code, and K is an integer greater than 0.
- the user equipment modulates the encoded CSI or CSI and HARQ response messages into more than 10 symbols.
- the user equipment modulates the encoded CSI or CSI and HARQ response messages into 20 symbols.
- the symbol may be a QPSK (Quadrature Phase Shift Keying) symbol.
- the CSI or the CSI and HARQ response messages may be encoded into 80 bits by using other types of coding methods in the prior art, and then modulated into 40 QPSK symbols, and correspondingly allocated to a physical medium capable of carrying 40 QPSK symbols.
- the resource is transmitted.
- the specific coding mode, the number of bits generated by the specific coding, the number of symbols to be modulated, and the required physical resources are not limited.
- the original bits of each CSI or the original bits of the CSI and HARQ response messages are encoded. Thereafter, the method further includes scrambling the encoded data generated by the encoding.
- the user equipment sends the CSI on the PRB pair or the Half of the symbols of the CSI and HARQ response messages.
- the configuration message includes the inclusion of each CSI feedback configuration for the user equipment, in combination with the second aspect or the second to the fifth possible implementation manner of the second aspect.
- the physical uplink control channel resource information of the two PRBs includes one of the following situations: the configuration message includes configuring two first physical uplink control channel resource indexes for each CSI feedback; the configuration message includes feedback for each CSI And configuring a second physical uplink control channel resource index, where one of the first physical uplink control channel resource indexes indicates one PRB pair, and one of the second physical uplink control channel resource indexes indicates two PRB pairs.
- the method further includes: The user equipment receives the physical uplink control channel resource index type information sent by the network device, where the physical uplink control channel resource index type information is used to indicate the type of the physical uplink control channel resource index used in the configuration message.
- the method further includes: the two first physical uplinks configured for each CSI feedback
- the two PRB pairs indicated by the control channel resource index are distributed on the same two consecutive time slots or on two different consecutive time slots.
- the method further includes: receiving, by the user equipment, the first indication information sent by the network device, where The first indication information is used to indicate a distribution manner of the two PRB pairs indicated by the two first physical uplink control channel resource indexes configured for each CSI feedback.
- an embodiment of the present application provides a network device, where the network device has a function of implementing network device behavior in the foregoing method.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present application provides a user equipment, where the user equipment has a function of realizing user equipment behavior in the foregoing method.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present application provides a network device, where a structure of a network device includes a transmitter and a receiver.
- the transmitter and receiver are configured to support communication between a network device and a user equipment, the transmitter is configured to send information or data involved in the foregoing method to a user equipment, and the receiver is configured to support the network device to receive the foregoing method.
- a demodulator and/or a decoder may also be included in the structure of the network device.
- the demodulator is configured to demodulate or despread and demodulate information or data involved in the above method; the decoder is configured to decode or descramble information or data involved in the above method And decoding.
- a processor may also be included in the structure of the network device.
- the processor is configured to support a network device to perform a corresponding function of the above methods. It can be understood that when the demodulator and/or decoder are not included in the structure of the network device, the functions of the demodulator and/or decoder may also be at the receiver or the Completed in the processor.
- the network device can also include a memory for coupling with the processor to store program instructions and data necessary for the network device.
- the network device may also include an interface unit for supporting communication with other network devices, such as communication with a core network node.
- an embodiment of the present application provides a user equipment, where a structure of a user equipment includes a receiver and a transmitter.
- the transmitter is configured to support the user equipment to send information or data involved in the foregoing method to the network device
- the receiver is configured to support the user equipment to receive information or data sent by the network device involved in the foregoing method.
- an encoder and/or a modulator may also be included in the structure of the user equipment.
- the encoder is used to encode or encode and scramble the information or data involved in the above method; the modulator is used to modulate or modulate and spread the information or data involved in the above method.
- the user equipment may further include a processor.
- the processor is configured to support a user device to perform a corresponding function in the above method. It can be understood that when the modulator and/or the encoder are not included in the structure of the user equipment, the functions of the modulator and/or the encoder may also be in the transmitter or the processor. carry out.
- the user equipment may also include a memory for coupling with the processor to store program instructions and data necessary for the user equipment.
- the embodiment of the present application provides a communication system, where the system includes the network device and the user equipment in the foregoing aspect.
- the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
- the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the user equipment, which includes a program designed to perform the above aspects.
- the solution provided by the present application aims to improve the reliability and coverage of the CSI feedback by increasing the physical resource occupation, so as to ensure the correct reception of the CSI, thereby ensuring the reliability of downlink data transmission.
- FIG. 1 is a schematic diagram of a possible application scenario of the present application
- FIG. 2 is a schematic diagram of another possible application scenario of the present application.
- FIG. 3 is a schematic diagram of a possible physical uplink control channel resource mapping manner according to the present application.
- FIG. 4 is a schematic flowchart diagram of a CSI feedback method according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of two physical uplink control channel resource mapping manners in a CSI feedback method according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of a physical uplink control channel resource mapping manner in another CSI feedback method according to an embodiment of the present disclosure
- FIG. 7 is a schematic diagram of two physical uplink control channel resource mapping manners in another CSI feedback method according to an embodiment of the present disclosure
- FIG. 8 is a schematic diagram of a physical uplink control channel resource mapping manner in another CSI feedback method according to an embodiment of the present disclosure
- FIG. 9 is a schematic flowchart of data processing in a CSI feedback method according to an embodiment of the present disclosure.
- FIG. 10 is a schematic flowchart of data processing in another CSI feedback method according to an embodiment of the present disclosure.
- FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
- the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
- the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
- the technology described in this application may be applicable to an LTE (Long Term Evolution) system and a subsequent evolved system such as the 5th Generation mobile communication (5G), or other technologies using various wireless access technologies.
- a wireless communication system such as a system employing code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access, etc., is particularly suitable for enhancing uplink control channel coverage or A scenario for improving the reception quality of an uplink control channel, such as a high frequency wireless communication network, a wireless communication system applying distributed multipoint cooperation technology, and the like.
- FIG. 1 is a schematic diagram of a possible application scenario of the present application.
- the UE User Equipment
- the UE accesses the network device through the wireless interface for communication, and can also communicate with another user device, such as D2D (Device to Device) or M2M (Machine to Machine). Communication under the scene.
- the network device can communicate with the user device or with another network device, such as a communication between the macro base station and the access point.
- FIG. 2 is a schematic diagram of another possible application scenario of the application, where the application is distributed in the network. Multi-point collaboration technology.
- a plurality of eNBs perform cooperative scheduling, and the CSI (Channel State Information) that the UE feeds through the uplink channel is simultaneously received by the serving cell eNB and the coordinated cell eNB in which the UE is located.
- eNB1 is the serving cell base station of the UE
- eNB2 is the coordinated cell base station of the UE
- both eNB1 and eNB2 need to receive the CSI fed back by the UE.
- the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, control devices, or other processing devices connected to the wireless modem, and various forms of user devices ( User Equipment, UE), Mobile Station (MS), Terminal (Terminal) or Terminal Equipment (Terminal Equipment).
- UE User Equipment
- MS Mobile Station
- Terminal Terminal
- Terminal Equipment Terminal Equipment
- the network device involved in the present application includes a base station (BS), a network controller, or a mobile switching center, etc., wherein the device that directly communicates with the user equipment through the wireless channel is usually a base station, and the base station may include various forms.
- the macro base station, the micro base station, the relay station, the access point, or the remote radio unit (RRU), etc. of course, the wireless communication with the user equipment may also be other network equipments having wireless communication functions. This is not a sole limitation.
- the name of a device having a base station function may be different, for example, in an LTE network, called an evolved Node B (eNB or eNodeB), at 3G (the In the 3rd Generation, third generation network, it is called Node B and so on.
- eNB evolved Node B
- 3G the In the 3rd Generation, third generation network, it is called Node B and so on.
- FIG. 3 illustrates a possible physical uplink control channel resource mapping manner involved in the present application.
- the 3GPP (3rd Generation Partnership Project) TS 36.211 protocol standardizes the physical resource mapping manner of the PUCCH (Physical Uplink Control Channel) in the LTE system.
- PUCCH Physical Uplink Control Channel
- an LTE system is used as an example.
- Each sash represents a PRB (Physical Resource Block), and one PRB is represented by a slot (slot) in the time domain and in the frequency domain.
- n PRB is the PRB number, The total number of PRBs included in the upstream bandwidth of the system.
- the PRB number used to transmit the PUCCH in slot n s is determined by:
- symbol Means rounding down For the PUCCH formats 2/2a/2b resource index assigned to a certain UE, where the superscript 2 indicates that the resource index is a PUCCH formats 2/2a/2b resource index, superscript Is the antenna port index, It may be configured by the cqi-PUCCH-ResourceIndex field in the RRC (Radio Resource Control) configuration parameter IE (Information Element) CQI-ReportPeriodic of the UE level.
- m is equal to 0, 1, 2, respectively. 3rd physical resource used by PUCCH.
- two PRBs corresponding to the same m value in two slots are a PRB pair referred to in the present application.
- the UE can feed back CSI, uplink physical control channel PUCCH and PUSCH (Physical Uplink Shared Channel) through two uplink physical channels.
- the CSI feedback includes periodic CSI feedback and aperiodic CSI feedback.
- periodic CSI feedback is performed through the PUCCH
- aperiodic CSI is performed through the PUSCH.
- the PUCCH used for periodic CSI feedback is PUCCH of type 2/2a/2b, which is generally called PUCCH format 2/2a/2b (PUCCH formats 2/2a/2b). The specific differences of these three types of PUCCH are as follows:
- PUCCH format 2 Normal CP (Normal Cyclic Prefix) carries only the encoded 20-bit CSI and uses QPSK modulation. When Extended CP (Extended Cyclic Prefix), it carries the joint coding.
- CSI and HARQ (Hybrid Automatic Repeat Request) ACK (ACKnowledgement)/NACK (Negative ACKnowledgement) information joint coding to generate 20-bit coded data and adopt QPSK modulation.
- PUCCH format 2a supports only Normal CP, carries encoded 20-bit CSI (QPSK modulation) and 1-bit ACK/NACK information (BPSK (Binary Phase Shift Keying) modulation).
- QPSK modulation QPSK modulation
- BPSK Binary Phase Shift Keying
- PUCCH format 2b supports only Normal CP, carries encoded 20-bit CSI and 2-bit ACK/NACK information, both of which adopt QPSK modulation.
- the normal CP is a frame structure of the LTE, and the cyclic prefix corresponding to the OFDM (Orthogonal Frequency Division Multiplexing) symbol is a normal value; the Extended CP refers to another frame structure of the LTE.
- the cyclic prefix corresponding to the OFDM symbol it contains is an extended value, and the extended cyclic prefix length is greater than the length of the normal cyclic prefix.
- the UE encodes, scrambles, modulates, and spreads the original bits of information carried on the physical uplink control channel, and then maps the data to physical resources, and then generates an SC by using Inverse Fast Fourier Transformation (IFFT).
- IFFT Inverse Fast Fourier Transformation
- -FDMA Single Carrier Frequency Division Multiple Access
- the network device receives the radio frequency signal carrying the physical uplink control channel information through the antenna, and passes the FFT (Fast Fourier Transformation, Fast Fourier Transform, Equalization, despreading, Demodulation, De-scrambling, Decoding, etc. ultimately obtain the original bits of the information carried on the physical uplink control channel.
- FFT Fast Fourier Transformation, Fast Fourier Transform, Equalization, despreading, Demodulation, De-scrambling, Decoding, etc.
- sending and receiving processes of the foregoing physical uplink control channel are only illustrated as an example. According to different systems or scenarios, or according to different sending or receiving algorithms, the sending and receiving processes may not include one step in the foregoing process or In other steps, other processing may be added, and this application does not limit this.
- the CSI can be used to improve the reliability and coverage of the CSI feedback by increasing the physical resource occupation, so as to ensure the correct reception of the CSI.
- the reliability of downlink data transmission will be further described in detail below based on the common aspects related to the present application described above.
- FIG. 4 is a schematic flowchart diagram of a CSI feedback method according to an embodiment of the present application.
- the network device sends a configuration message to the UE, where the configuration message includes physical uplink control channel resource information including two PRB pairs configured for each CSI feedback of the user equipment, where the PRB pair refers to Two PRBs for transmitting a physical uplink control channel distributed over two consecutive time slots, and each of the time slots includes one of the two PRBs.
- the configuration message may be a message existing in the prior art including the physical uplink control channel resource information, or may be another new downlink message including the physical uplink control channel resource information. There is no restriction on the application.
- the configuration message includes two first physical uplink control channel resource indexes configured by the network device for each CSI feedback.
- the configuration message includes two first physical uplink control channel resource indexes configured by the network device as one CSI feedback on one antenna port, where one of the first physical uplink control channel resource indexes indicates one PRB pair.
- the LTE network is used as an example.
- the UE uses one antenna port to feed back CSI, it can be configured through the cqi-PUCCH-ResourceIndex field in the IE CQI-ReportPeriodic or the cqi-PUCCH-ResourceIndex-r10 field in the CQI-ReportPeriodic-r10 field.
- the cqi-PUCCH-ResourceIndex field or the cqi-PUCCH-ResourceIndex-r10 field may be expanded into an array format, such as among them Indicates the antenna port
- the first first physical uplink control channel resource index Indicates the antenna port
- the second first physical uplink control channel resource index specifically in this example It can also be configured separately by the cqi-PUCCH-ResourceIndex-r10 field and the cqi-PUCCH-ResourceIndexP1-r10 field in IE CQI-ReportPeriodic-r10.
- the network device may notify the UE to obtain the resource index from the cqi-PUCCH-ResourceIndex-r10 field and the cqi-PUCCH-ResourceIndexP1-r10 field.
- the two PRB pairs in the shaded portion as shown in Figures 5a and 5b are the physical uplink control channel resources allocated in this example.
- one-bit indication information may be added, indicating that two PRB pairs indicated by two first physical uplink control channel resource indexes are in the same two consecutive time slots, or in two different consecutive time slots. .
- the example includes two time slots in one subframe, where the indication information is used to indicate that two PRB pairs indicated by two first physical uplink control channel resource indexes are distributed in the same uplink subframe.
- the CSI information is transmitted in the physical resources corresponding to the two first physical uplink control channel resource indexes in one subframe, as shown in FIG. 5a.
- the two PRB pairs of the shaded portion are shown; when the indication information is 1, one of the physical resources corresponding to the two first physical uplink control channel resource indexes is respectively occupied in consecutive two subframes, and the CSI information is sent, for example, The physical resources of the shaded portion shown in FIG.
- the two consecutive uplink subframes described in this application may be discontinuous on the subframe number, such as the uplink subframe L and the uplink subframe L+t.
- t is an integer greater than 1
- the subframe L and the subframe There may be a downlink between frames L+t A non-uplink subframe, such as a frame and/or a special subframe.
- the uplink subframe L and the uplink subframe L+t are two consecutive uplink subframes, which are still referred to herein as two consecutive uplink subframes. .
- the two first physical uplink control channel resource indexes are configured, which can improve the transmission reliability of the CSI when needed, and maintain the resource index in the prior art.
- the physical resources corresponding to the physical resources, compatible with user terminals supporting the prior art.
- the configuration message includes two first physical uplink control channel resource indexes configured by the network device for each CSI feedback.
- the configuration message includes two first physical uplink control channel resource indexes configured by the network device for one CSI feedback on the two antenna ports, where the first physical uplink control channel resource index indicates a PRB pair.
- the LTE network is used as an example.
- the Cqi-PUCCH-ResourceIndex-r10 field and the cqi-PUCCH-ResourceIndexP1-r10 field in the IE CQI-ReportPeriodic-r10 can be respectively configured.
- the configuration message includes two first physical uplink control channel resource indexes configured by the network device for each CSI feedback.
- the configuration message includes four first physical uplink control channel resource indexes configured by the network device for two CSI feedbacks on the two antenna ports, where one of the first physical uplink control channel resource indexes indicates one PRB Correct.
- the LTE network is used as an example.
- the Cqi-PUCCH-ResourceIndex-r10 field and the cqi-PUCCH-ResourceIndexP1-r10 field in the IE CQI-ReportPeriodic-r10 can be respectively used.
- the method includes two slots in a subframe, where the indication information is used to indicate that four PRB pairs indicated by the four first physical uplink control channel resource indexes are in the same subframe, or Distributed in two consecutive uplink subframes, for example, when the indication information is 0, the two first physical uplink control channel resource indexes configured for the CSI transmitted on each antenna port are corresponding to one uplink subframe, such as The four PRB pairs in the shaded portion shown in FIG. 7a; when the indication information is 1, the two first physical uplink control channel resource indexes configured for the CSI transmitted on each antenna port correspond to two consecutive uplinks.
- the two consecutive uplink subframes described in this application may be discontinuous on the subframe number, for example, the uplink subframe L and the uplink subframe L+t.
- t is an integer greater than 1
- the subframe L There may be a downlink subframe and/or between subframe L+t Non uplink sub-frame and other special sub-frame, when the uplink subframe and the uplink subframe L L + t is two consecutive uplink subframe, still belonging to two consecutive uplink subframe referred to the present application.
- the configuration message includes a second physical uplink control channel resource index configured by the network device for each CSI feedback, where one of the second physical uplink control channel resource indexes indicates two PRB pairs.
- a single PUCCH format 2/2a/2b channel can carry more encoded CSI bits, thereby improving the reliability of CSI feedback.
- the network device may add a field in the IE CQI-ReportPeriodic and/or the IE CQI-ReportPeriodic-r10 to notify the UE whether a physical uplink control channel resource index indicates one PRB pair or two.
- a PRB pair may add a 1-bit field cqi-PUCCH-ResourceIndex-Type.
- cqi-PUCCH-ResourceIndex-Type When cqi-PUCCH-ResourceIndex-Type is configured to 0, it indicates that one physical uplink control channel resource index indicates one PRB pair, when cqi-PUCCH- When the ResourceIndex-Type is set to 1, it indicates that one physical uplink control channel resource index indicates two PRB pairs.
- the second physical uplink indicating the two PRB pairs may be configured by using the cqi-PUCCH-ResourceIndex field in the CQI-ReportPeriodic or the cqi-PUCCH-ResourceIndex-r10 field in the CQI-ReportPeriodic-r10 field.
- Control channel resource index when two CSIs are used to transmit two CSIs, the cqi-PUCCH-ResourceIndex-r10 and cqi-PUCCH-ResourceIndex-P1-r10 fields in CQI-ReportPeriodic-r10 can be used to configure two antenna ports respectively.
- the network device configures a physical resource including two PRB pairs for one CSI feedback through a second physical uplink control channel resource index, where the time slot n s is used to send the physical
- the number n PRB of the two PRBs of the uplink control channel is determined by:
- FIG. 8 shows a mapping manner of a resource index and a PRB pair obtained according to the above rules. It can be understood that when a CSI is sent by using two antenna ports, the above indications can also be configured by using the cqi-PUCCH-ResourceIndex field in CQI-ReportPeriodic or the cqi-PUCCH-ResourceIndex-r10 field in CQI-ReportPeriodic-r10.
- the second physical uplink control channel resource index of the PRB pair is different, the second physical uplink control channel resource index indicating the two PRB pairs respectively indicating one PRB pair on the antenna port 0 and one PRB on the antenna port 1
- the network device is required to notify the UE of the application of the configuration mode by using a downlink message.
- the position of the PRB pair on different antenna ports can be calculated by referring to the embodiment shown in FIG. 3 .
- the resource index configuration manner in the foregoing specific example the symbolic form indicating the resource index, the specific value of the resource index, and the configuration field used to configure the resource index or the specific field in the configuration message are all for clearer.
- the solution provided by the embodiment of the present application can be seen by those skilled in the art without any creative work.
- other specific implementation manners may be implemented, for example, other downlink messages are used.
- the resource index is added to the resource index or the other fields are added to the existing downlink message, and the resource index involved in the application is delivered.
- one wireless subframe includes two time slots, but in other possible subframes and time slots,
- a subframe includes a time slot, and the solution provided by the present application may also be applied, which is not limited in this application.
- the user equipment after receiving the configuration message, acquires physical uplink control channel resource information included therein.
- the user equipment transmits CSI on the physical uplink control channel resource.
- the user equipment encodes the CSI original information bits.
- the user equipment jointly encodes the CSI original bits and the 1-bit or 2-bit HARQ response message.
- the CSI original information bits are coded and modulated with low code rate, which can enhance the robustness of CSI feedback, thereby ensuring the reliability of CSI transmission and enhancing its transmission coverage.
- the user equipment encodes the original bits of the CSI original bits or the CSI and HARQ response messages by using an RM (40, K) coding manner to generate 40 coded bits, where RM (40, K) is Reed-Muller.
- K is an integer greater than 0, used to represent the length of the original information bits
- Table 1 shows a specific code base sequence corresponding to RM (40, K).
- the original bits of the CSI or the original bits of the CSI and HARQ response messages that need to be reported are a 0 , a 1 , a 2 , a 3 , ..., a K-1 , where K is the total number of original bits, and the LTE system
- the specific value of K is determined by the current feedback mode.
- Table 1 is an example of a code base sequence corresponding to RM (40, K)
- Table 1 above only serves as an example of the RM (40, K) code base sequence, and other base sequences obtained by transforming based on Table 1, such as interchange of row elements and/or interchange of column elements.
- the coded base sequence of the RM (40, K) may also be used; or the coded 40 coded bits may be obtained by other coding methods, which is not limited in this application.
- the user equipment may scramble the encoded CSI or CSI and HARQ response message bits.
- the scrambling can be performed with reference to the specific provisions in 3GPP TS 36.211, except that the length of the coding sequence that needs to be scrambled for this embodiment is 40.
- the user equipment modulates the encoded CSI bits or CSI and HARQ response message bits.
- the user equipment may modulate CSI bits or CSI and HARQ response message bits into 20 QPSK (Quadrature Phase Shift Keying) symbols.
- the CSI original information bits are coded and modulated with low code rate, which can enhance the robustness of CSI feedback, thereby ensuring the reliability of CSI transmission and enhancing its transmission coverage.
- the user equipment spreads the modulated 20 symbols for CSI or CSI and HARQ response messages.
- two PRB pairs corresponding to each CSI feedback are configured by two first physical uplink control channel resource indexes, or each CSI is sent when one CSI is sent by using two antenna ports.
- the two PRBs corresponding to the feedback are configured by using a second physical uplink control channel resource index, and each of the 20 symbols is a set of spreading operations.
- the method for symbol grouping is not limited in this application.
- the first 10 symbols may be grouped, the last 10 symbols may be another group, or 10 symbols may be randomly selected as a group, and the remaining 10 symbols are another group.
- a set of 10 symbols is d(0),...,d(9), and the length is Phase rotation is the sequence of At the antenna port Spread spectrum is performed to obtain a spread spectrum sequence.
- d(n) is the symbol to be spread, n is the index of the symbol; P is the number of antenna ports; The number of subcarriers included in each PRB, equal to 12; sequence Is a pilot sequence defined by the 3GPP TS36.211 protocol, having a length of 12; phase rotation Physical uplink control channel resource index Calculated by the following formula,
- the number of cyclic shifts of the PRBs for transmitting the PUCCH format 1 in the PRBs of the hybrid PUCCH format 1 and the PUCCH format 2/2a/2b may be RRC (Radio Resource Control) messages in the IE PUCCH-ConfigCommon.
- the field nCS-AN is configured; Indicates the number of PRBs that the base station can use to transmit PUCCH format 2/2a/2b. It may be that the RRC message is configured by the nRB-CQI field in the IE PUCCH-ConfigCommon;
- the cell-level scrambling sequence is determined by the following formula.
- the specific definition refers to the provisions in 3GPP TS 36.211, the pseudo-random sequence is initialized at the beginning of each frame, the initialization parameters
- the NTP message can be configured through the nPUCCH-Identity-r11 field in the IE PUCCH-ConfigDedicated-v1130; For the number of symbols in the upstream slot, for the normal cyclic prefix, The value is 7, for extended CP, The value is 6.
- each CSI feedback is configured through a second physical uplink control channel resource index, and the 20 symbols are subjected to a spreading operation together.
- Each modulation symbol d(0),...,d(19) and length are Phase rotation is the sequence of At the antenna port Spreading is performed on the above, wherein the symbols d(0), d(2), ..., d(18) are obtained by the following formula:
- n is the index of the symbol
- P is the number of antenna ports
- sequence It is a pilot sequence defined by a protocol.
- the length is 24 in this embodiment
- phase rotation Physical uplink control channel resource index Calculated by the following formula,
- l represents the symbol number in the subframe
- the cell-level scrambling sequence is determined by
- the specific definition refers to the provisions in 3GPP TS 36.211
- the pseudo-random sequence is initialized at the beginning of each frame, the initialization parameters
- the RRC message may be configured by the nPUCCH-Identity-r11 field in the IE PUCCH-ConfigDedicated-v1130. It is to be understood that the above-mentioned spreading mode is only used as an example, and the 20 symbols may be spread according to other spreading methods in the prior art, which is not limited in this application.
- the user equipment transmits half of the symbols of the modulated CSI or CSI and HARQ response messages on each PRB pair.
- the UE transmits one CSI using a single antenna port, and transmits half of the 20 symbols on each of the two PRB pairs; in another specific example, the UE uses a dual antenna port.
- the UE transmits two CSIs using dual antenna ports, two PRBs on each antenna port One of the 20 pairs of CSIs sent by one PRB pair of the pair, for example, one of the 20 symbols transmitting the first CSI on the first PRB pair on antenna port 0, and the second on antenna port 0
- the PRB pair transmits half of the 20 symbols of the second CSI
- the first PRB pair on the antenna port 1 transmits the other half of the 20 symbols of the first CSI
- the second PRB pair on the antenna port 1 Send the other half of the 20 symbols of the second CSI.
- the method for selecting one of the 20 symbols of the CSI is not limited in this application.
- the first 10 symbols may be grouped, the last 10 symbols may be another group, or may be randomly selected.
- the 10 symbols are a group, and the remaining 10 symbols are another group. It can be understood that one half of the 20 symbols may be separately spread, or may be spread together with the other half symbol.
- the network device receives the CSI fed back by the user equipment on the corresponding physical resource, and performs one or more operations in the corresponding demodulation, descrambling, and decoding on the received CSI to obtain the original information of the CSI. Bit.
- FIG. 9 is a schematic flowchart of data processing in a CSI feedback method according to an embodiment of the present application.
- the user equipment performs RM (40, K) encoding on the CSI original information bits in the channel status report or the original bits of the CSI and HARQ response messages to generate 40 coded bits.
- RM 40, K
- the specific coding mode refer to the section in the embodiment 402. The description of the code is not described here;
- the user equipment scrambles the coded bits.
- the specific scrambling mode refer to the description of the scrambling in the embodiment 402, and details are not described herein.
- the user equipment modulates the scrambled coded bits into 20 QPSK symbols, that is, d(0), ..., d(19) shown in the figure;
- the user equipment uses d(0), ..., d(19) to perform spreading using the phase rotation sequence for spreading, and the specific spreading method can refer to the description about spreading in the embodiment 402. I will not repeat them here;
- FIG. 9 shows a case where two APB ports for feedback CSI are included in one antenna port in the case of Normal CP.
- Normal CP has every time slot Symbols, in which the 2nd and 6th symbols of each slot are used to transmit DMRS (Demodulation Reference Signal), ie r DMRS in the figure, and the remaining 5 symbols are used to transmit PUCCH format 2
- DMRS Demodulation Reference Signal
- ie r DMRS Demodulation Reference Signal
- the remaining 5 symbols are used to transmit PUCCH format 2
- each time slot only The symbols, at this time, only the 4th symbol of each slot is used to transmit DMRS, and the remaining 5 symbols are used to transmit PUCCH format 2.
- the 1-bit or 2-bit HARQ ACK/NACK information carried by the PUCCH formats 2a/2b is separately modulated, the 1-bit HARQ ACK/NACK uses BPSK modulation, and the 2-bit HARQ ACK/NACK uses QPSK modulation, which is finally obtained.
- 1 modulation symbol d HARQACK/NACK .
- the ACK is encoded as '1' and the NACK is encoded as '0'.
- d HARQ ACK /NACK is modulated into the second DMRS of each slot.
- 3GPP TS36 The specification of .211 is different.
- the HARQ ACK/NACK is also mapped to the DMRSs of the two PRB pairs. It should be noted that, for clarity of illustration, d(0),...,d(9) is mapped to the second PRB pair in FIG. 9, and d(10),...,d(19) are mapped. On the first PRB pair, other mapping modes may be used in the actual operation. For details, refer to the description of the half symbol of the CSI that the user equipment sends to 20 symbols on each PRB pair in Embodiment 402. I won't go into details here.
- the user equipment performs an IFFT transform on each symbol to generate an SC-FDMA symbol, which is finally transmitted via the antenna through the intermediate radio frequency processing.
- FIG. 10 is a schematic flowchart of data processing in another CSI feedback method according to an embodiment of the present disclosure.
- FIG. 10 shows that the UE transmits a CSI by using two antenna ports, and each antenna port includes a PRB pair for feeding back CSI.
- d(0) in FIG. 10 is used.
- d(9) maps to the second PRB pair on antenna port 1, mapping d(10),...,d(19) to the first PRB pair on antenna port 0, in actual operation
- Other mappings may be used.
- the user equipment performs IFFT transformation on the symbols on the different antenna ports to generate SC-FDMA symbols, and finally transmits the signals through the antenna through the intermediate radio frequency processing.
- FIG. 11 is a schematic diagram showing a possible structure of a network device involved in the above embodiment.
- the structure of the network device includes a transmitter and a receiver.
- a demodulator and/or a decoder may also be included in the structure of the network device.
- the network device can also include a processor.
- an interface unit may also be included in the structure of the network device for supporting communication with other network devices, such as communication with a core network node.
- the network device involved in the present application includes a transmitter 1101, a receiver 1102, a demodulator 1103, a decoder 1104, a processor 1105, and a memory 1106.
- the transmitter 1101 and the receiver 1102 are configured to support transmission and reception of information between the network device and the UE in the foregoing embodiment.
- the demodulator 1103 is configured to support a network device to perform the demodulation operation involved in the foregoing embodiments.
- the decoder 1104 is configured to support a network device to perform decoding or descrambling and decoding operations involved in the above embodiments.
- the processor 1105 performs various functions for communicating with the UE. On the downlink, traffic data and signaling messages are processed by processor 1105 and processed by transmitter 1101 to generate downlink signals for transmission to the UE via the antenna.
- the uplink signal from the UE is received via the antenna, processed by the receiver 1102, and further despread, demodulated, descrambled, and decoded by the demodulator 1103 and the decoder 1104.
- the operations are finally processed by the processor 1105 to recover the service data and signaling information transmitted by the UE.
- the processor 1105 also performs the processing involved in the network device in FIGS. 3 through 10.
- the memory 1106 is used to store program codes and data of the network device.
- Figure 11 only shows a simplified design of the network device.
- the network device may include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
- the network device involved in the present application includes a transmitter, a receiver, a processor, and a memory.
- the network device in this example does not include a decoder and a demodulator.
- the functions of the decoder and/or demodulator may be in this example.
- the receiver in the example or the processor is completed.
- the functions of other structures in this example are the same as those shown in FIG. 11, and are not described herein again.
- Fig. 12 shows a simplified schematic diagram of one possible design structure of the UE involved in the above embodiment.
- the receiver and transmitter are included in the structure of the user equipment.
- the user equipment may also include an encoder and/or a modulator.
- the user equipment can also include a processor.
- the structure of the user equipment involved in the present application includes a receiver 1201, a transmitter 1202, a modulator 1203, an encoder 1204, a processor 1205, and a memory 1206.
- the traffic or signaling data to be transmitted is encoded or encoded and scrambled by the encoder 1204, modulated or modulated and spread by the modulator 1203, and the output samples are adjusted via the transmitter 1202 and an uplink is generated.
- the uplink signal is transmitted via an antenna to the network device described in the above embodiment.
- the antenna receives the downlink signal transmitted by the network device in the above embodiment, and the receiver 1201 adjusts the signal received from the antenna and provides input samples.
- the functions of the modulator 1203 and/or the encoder 1204 may also be performed in the transmitter 1202 or the processor 1205. In processor 1205, the traffic data and signaling messages are processed.
- the processor 1205 is further configured to perform control and management on the action of the UE, and is used to perform processing performed by the UE in the foregoing embodiment, for example, to control the UE to receive downlink information, and/or to perform the application according to the received downlink information. Other processes described by the technology. As an example, the processor 1205 is configured to support the UE in performing the processing procedures related to the UE in FIGS. 3 through 10.
- Memory 1206 is used to store program code and data for the UE.
- the structure of the user equipment involved in the present application includes a transmitter, a receiver, a processor, and a memory.
- the user equipment in this example does not include an encoder and a modulator, and the functions of the encoder and modulator in the example shown in FIG. 12 may be the transmission in this example. Completed in the processor or the processor.
- the functions of other structures in this example are the same as those shown in FIG. 12 and will not be described again here.
- the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
- the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
- An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
- the storage medium can also be an integral part of the processor.
- the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a user device or a network device.
- the processor and the storage medium can also exist as discrete components in the user device or network device.
- the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
- the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
- Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
- a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请涉及移动通信领域,尤其涉及无线通信系统中的CSI(Channel State Informat ion,信道状态信息)反馈技术。在一种CSI反馈方法中,网络设备为用户设备的一个CSI反馈分配包括两个PRB(Phys ical Resource Block,物理资源块)对的物理上行控制信道资源,用户设备对CSI比特采用低码率的编码调制方式,并在所述物理上行控制信道资源上发送CSI。通过本申请提供的方案,可以提升CSI反馈的可靠性和覆盖,进而保证下行数据传输的可靠性。
Description
本申请涉及移动通信领域,尤其涉及无线通信系统中的CSI(Channel State Information,信道状态信息)反馈技术。
在移动通信场景下,无线信道条件通常是在不断变化的。UE(User Equipment,用户设备)需要随着无线信道条件的变化及时调整上下行所使用的MCS(Modulation and Coding Scheme,调制编码方案),才能更有效地利用无线资源。对于下行传输而言,为了更好地适应无线信道的变化,UE可以通过CSI(Channel State Information,信道状态信息)将下行信道质量信息上报给网络设备,以便网络设备为UE选择更可靠的MCS以及更好的时频资源。CSI包括多类信息,例如在LTE(Long Term Evolution,长期演进)系统中,CSI主要包括RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)和CQI(Channel Quality Indicator,信道质量指示)。通过CSI上报的信息,网络设备可以获知UE所建议或测量的下行传输可使用的传输阶数、预编码矩阵、以及在当前下行信道质量条件下可使用的最高MCS等信息,并基于上述信息为UE分配合适的MCS和时频资源。可见,UE反馈的CSI消息能否被网络设备正确接收,会直接影响下行数据传输质量以及下行资源利用率。
在一些上行信道质量较差的场景下,需要提升上行控制信道的覆盖以及接收质量,以保证CSI被正确接收。随着无线通信技术的发展,也引入了更多需要增强上行控制信道覆盖的场景,例如,在高频移动通信网络中,由于高频段无线信号的衰减更快,就需要更可靠的上行控制信道传输;分布式多点协作场景中,多个分布式基站协作调度时,需要其他基站获取服务用户的信道状态信息,如果通过基站间的IP网络进行信息交互,会引入很大的时延,降低系统性能,此时也需要增强上行控制信道的覆盖,使得UE发送的CSI让周围多个基站同时收到,降低邻小区对于该UE的CSI获取时延,提升系统性能。因此,需要一种提升CSI反馈的可靠性和覆盖的方案,以保证CSI的正确接收,进而保证下行数据传输的可靠性。
发明内容
本文描述了一种CSI(Channel State Information,信道状态信息)反馈的方法,装置和系统,旨在提升CSI反馈的可靠性和覆盖,进而保证下行数据传输的可靠性。
第一方面,本申请实施例提供了一种CSI反馈方法,包括:网络设备向用户设备发送配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含多于一个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;网络设备接收用户设备在所述物理上行控制信道资源上发送的CSI。可选的,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息。可选的,所述配置消息可以是包括所述物理上行控制信道资源信息的现有技术中已有的消息,也可以是其他包括所述物理上行控制信道资源信息的新增的消息。通过为CSI反馈分配更多的物理上行控制信道资源,使得CSI可以采用鲁棒性更高的低码率编码或者调制方式,以期可以提升CSI的传输可靠性以及传输覆盖范围。所述物理上行控制信道主要用于承载上行控制信息,例如,
PUCCH(Physical Uplink Control CHannel)以及随着网络演变而定义的其他具有上述功能的上行信道。
在第一种可能的实现方式中,结合第一方面,所述方法还包括:网络设备解调每个调制成多于10个符号的所述CSI,或者所述CSI和HARQ应答消息。可选的,网络设备解调每个调制成20个符号的所述CSI,或者所述CSI和HARQ应答消息。可选的,所述20个符号可以是QPSK(Quadrature Phase Shift Keying,正交相移键控)符号。
在第二种可能的实现方式中,结合第一方面或第一方面第一种可能的实现方式,所述方法还包括:网络设备译码每个经过编码的所述CSI或者所述CSI和HARQ应答消息。可选的,所述编码可以是RM(40,K),其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数。将一个CSI的原始信息比特经过编码得到40个编码比特,或者将一个CSI和HARQ应答消息进行联合编码得到40个编码比特,最终调制成20个符号,降低了CSI编码的码率,提升了编码鲁棒性,使得CSI可以在更恶劣的信道环境或者更大的覆盖区域中正确传输。可以理解的,所述编码也可以是现有技术中其他类型的编码方式,编码所得到的比特数也可以是其他数值。例如,可以采用现有技术中其他类型的编码方式,将所述CSI或者所述CSI和HARQ应答消息编码成80比特,然后调制成40个QPSK符号,并对应分配可以承载40个QPSK符号的物理资源进行传输,本申请对具体编码方式,具体编码生成的比特数,调制成的符号数以及所需的物理资源数量不做唯一限定。
在第三种可能的实现方式中,结合第一方面或第一方面第一种或第二种可能的实现方式,在解调每个经过调制的所述CSI或者所述CSI和HARQ应答消息之前,还包括对经过扩频的符号进行解扩频。
在第四种可能的实现方式中,结合第一方面或第一方面第一种至第三种任一种可能的实现方式,在译码每个所述CSI或者所述CSI和HARQ应答消息之前,还包括对经过加扰的编码数据进行解扰。
在第五种可能的实现方式中,结合第一方面或第一方面第一种至第四种任一种可能的实现方式,网络设备在一个所述PRB对上接收一个所述CSI或者CSI和HARQ应答消息的符号的一半。例如,在一个所述PRB对上接收调制成20个QPSK符号的CSI中的10个符号,在另一个所述PRB对上接收所述CSI的另外10个QPSK符号。
在第六种可能的实现方式中,结合第一方面或第一方面第一种至第五种任一种可能的实现方式,配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB对的物理上行控制信道资源信息,包括如下情形中的一种:配置消息中包含网络设备为每个CSI反馈配置的两个第一物理上行控制信道资源索引;配置消息中包含网络设备为每个CSI反馈配置的一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。在为单个用户设备增加物理上行控制信道资源时,采用配置多个第一物理上行控制信道资源索引的方式,既可以在需要的时候提升CSI的传输可靠性,又可以保持现有技术中资源索引与物理资源的对应方式,兼容使用现有技术的用户终端。
在第七种可能的实现方式中,结合第一方面第六种可能的实现方式,所述方法还包括:网络设备发送物理上行控制信道资源索引类型信息给用户设备,所述物理上行控制信道资源索引类型信息用于指示所述配置消息中所使用的物理上行控制信道资源索引的类型。
在第八种可能的实现方式中,结合第一方面第六种或第一方面第七种可能的实现方式,所述方法还包括:所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的
两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
在第九种可能的实现方式中,结合第一方面第六种至第一方面第八种任一种可能的实现方式,所述方法还包括:网络设备发送第一指示信息给用户设备,所述第一指示信息用于指示所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对的分布方式。
第二方面,本申请实施例提供了一种CSI反馈方法,包括:用户设备接收网络设备发送的配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含多于一个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;用户设备在所述物理上行控制信道资源上发送CSI。可选的,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息。可选的,所述配置消息可以是包括所述物理上行控制信道资源信息的现有技术中已有的消息,也可以是其他包括所述物理上行控制信道资源信息的新增的消息类型。
在第一种可能的实现方式中,结合第二方面,用户设备将对每个所述CSI的原始比特或者所述CSI和HARQ应答消息的原始比特进行编码。可选的,所述编码可以是RM(40,K)编码,其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数。
在第二种可能的实现方式中,结合第二方面或第二方面第一种可能的实现方式,用户设备将所述经过编码的CSI或者CSI和HARQ应答消息调制成多于10个符号。可选的,用户设备将所述经过编码的CSI或者CSI和HARQ应答消息调制成20个符号。可选的,所述符号可以是QPSK(Quadrature Phase Shift Keying,正交相移键控)符号。可以理解的,第二方面第一种可能的实现方式中所述的编码也可以是现有技术中其他类型的编码方式,编码所得到的比特数也可以是其他数值。例如,可以采用现有技术中其他类型的编码方式,将所述CSI或者所述CSI和HARQ应答消息编码成80比特,然后调制成40个QPSK符号,并对应分配可以承载40个QPSK符号的物理资源进行传输,本申请对具体编码方式,具体编码生成的比特数,调制成的符号数以及所需的物理资源数量不做唯一限定。
在第三种可能的实现方式中,结合第二方面或第二方面第一种或第二种可能的实现方式,在每个CSI的原始比特或者所述CSI和HARQ应答消息的原始比特经过编码之后,还包括对编码生成的编码数据进行加扰。
在第四种可能的实现方式中,结合第二方面或第二方面第一种至第三种任一种可能的实现方式,在每个CSI或者CSI和HARQ应答消息经过调制后之后,还包括对调制符号进行扩频。
在第五种可能的实现方式中,结合第二方面或第二方面第一种至第四种任一种可能的实现方式,用户设备在一个所述PRB对上发送一个所述CSI或者所述CSI和HARQ应答消息的符号的一半。
在第六种可能的实现方式中,结合第二方面或第二方面第一种至第五种任一种可能的实现方式,配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB对的物理上行控制信道资源信息,包括如下情形中的一种:配置消息中包含为每个CSI反馈配置两个第一物理上行控制信道资源索引;配置消息中包含为每个CSI反馈配置一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。
在第七种可能的实现方式中,结合第二方面第六种可能的实现方式,所述方法还包括:
用户设备接收网络设备发送的物理上行控制信道资源索引类型信息,所述物理上行控制信道资源索引类型信息用于指示所述配置消息中所使用的物理上行控制信道资源索引的类型。
在第八种可能的实现方式中,结合第二方面第六种或第二方面第七种可能的实现方式,所述方法还包括:所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
在第九种可能的实现方式中,结合第二方面第六种至第二方面第八种任一种可能的实现方式,所述方法还包括:用户设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对的分布方式。
第三方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供了一种用户设备,该用户设备具有实现上述方法实际中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供了一种网络设备,网络设备的结构中包括发射器和接收器。所述发射器和接收器用于支持网络设备与用户设备之间的通信,所述发射器用于向用户设备发送上述方法中所涉及的信息或者数据,所述接收器用于支持网络设备接收上述方法中所涉及的用户设备发送的信息或者数据。在一个可能的实现方式中,网络设备的结构中还可以包括解调器和/或译码器。所述解调器用于对上述方法中所涉及的信息或者数据进行解调或者解扩频和解调;所述译码器用于对上述方法中所涉及的信息或者数据进行译码或者进行解扰和译码。在一个可能的实现方式中,网络设备的结构中还可以包括处理器。所述处理器被配置为支持网络设备执行上述方法中相应的功能。可以理解的是,当所述网络设备的结构中不包括所述解调器和/或译码器时,所述解调器和/或译码器的功能也可以在所述接收器或者所述处理器中完成。所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,保存网络设备必要的程序指令和数据。所述网络设备还可以包括接口单元,用于支持与其他网络设备之间的通信,如与核心网节点之间的通信。
第六方面,本申请实施例提供了一种用户设备,用户设备的结构中包括接收器和发射器。所述发射器用于支持用户设备向网络设备发送上述方法中所涉及的信息或者数据,所述接收器用于支持用户设备接收上述方法中所涉及的网络设备发送的信息或者数据。在一个可能的实现方式中,用户设备的结构中还可以包括编码器和/或调制器。所述编码器用于对上述方法中所涉及的信息或者数据进行编码或者进行编码和加扰;所述调制器用于对上述方法中所涉及的信息或者数据进行调制或者进行调制和扩频。在一个可能的实现方式中,用户设备还可以包括处理器。所述处理器被配置为支持用户设备执行上述方法中相应的功能。可以理解的是,当所述用户设备的结构中不包括所述调制器和/或编码器时,所述调制器和/或编码器的功能也可以在所述发射器或者所述处理器中完成。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,保存用户设备必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的网络设备和用户设备。
第八方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第九方面,本申请实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有技术,本申请提供的方案旨在通过增加物理资源占用提升CSI反馈的可靠性和覆盖,以期保证CSI的正确接收,进而保证下行数据传输的可靠性。
下面将参照所示附图对本申请实施例进行更详细的描述。
图1为本申请的一种可能的应用场景示意图;
图2为本申请的另一种可能的应用场景示意图;
图3为本申请所涉及的一种可能的物理上行控制信道资源映射方式示意图;
图4为本申请实施例提供的一种CSI反馈方法的流程示意图;
图5a和图5b为本申请实施例提供的一种CSI反馈方法中的两种物理上行控制信道资源映射方式示意图;
图6为本申请实施例提供的另一种CSI反馈方法中的物理上行控制信道资源映射方式示意图;
图7a和图7b为本申请实施例提供的又一种CSI反馈方法中的两种物理上行控制信道资源映射方式示意图;
图8为本申请实施例提供的再一种CSI反馈方法中的物理上行控制信道资源映射方式示意图;
图9为本申请实施例提供的一种CSI反馈方法中的数据处理流程示意图;
图10为本申请实施例提供的另一种CSI反馈方法中的数据处理流程示意图;
图11为本申请实施例提供的一种网络设备结构示意图;
图12为本申请实施例提供的一种用户设备结构示意图。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请描述的技术可以适用于LTE(Long Term Evolution,长期演进)系统以及后续的演进系统如5G(the 5th Generation mobile communication,第五代移动通信)等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要增强上行控制信道覆盖或者提升上行控制信道接收质量的场景,例如高频无线通信网络、应用分布式多点协作技术的无线通信系统等。
如图1所示,是本申请的一种可能的应用场景示意图。UE(User Equipment,用户设备)通过无线接口接入网络设备进行通信,也可以与另一用户设备进行通信,如D2D(Device to Device,设备对设备)或M2M(Machine to Machine,机器对机器)场景下的通信。网络设备可以与用户设备通信,也可以与另一网络设备进行通信,如宏基站和接入点之间的通信。
如图2所示,是本申请的另一种可能的应用场景示意图,该图所示的网络中应用分布式
多点协作技术。以LTE网络为例,多个eNB进行协作调度,UE通过上行信道反馈的CSI(Channel State Information,信道状态信息)会被其所在的服务小区eNB以及协作小区eNB同时接收,具体的,如图2中所示,eNB1为UE的服务小区基站,eNB2为UE的协作小区基站,eNB1和eNB2均需要接收UE反馈的CSI。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、控制设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile station,MS)、终端(Terminal)或终端设备(Terminal Equipment)等。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。本申请所涉及到的网络设备包括基站(Base Station,BS)、网络控制器或移动交换中心等,其中通过无线信道与用户设备进行直接通信的装置通常是基站,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等,当然,与用户设备进行无线通信的也可以是其他具有无线通信功能的网络设备,本申请对此不做唯一限定。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G(the 3rd Generation,第三代)网络中,称为节点B(Node B)等。
图3示出了本申请所涉及的一种可能的物理上行控制信道资源映射方式。以LTE系统为例,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)TS 36.211协议标准化了LTE系统中的PUCCH(Physical Uplink Control Channel,物理上行控制信道)的物理资源映射方式。具体结合图3,以LTE系统为例,每个框格表示一个PRB(Physical Resource Block,物理资源块),一个PRB由时域上一个slot(时隙)以及频域上(当前LTE系统中一般)个子载波构成,nPRB为PRB编号,为系统中上行带宽包含的PRB总数目。在slot ns用于发送PUCCH的PRB编号由下式决定:
其中,ns=0,1,2...19表示时隙编号;具体以PUCCH formats 2/2a/2b(PUCCH格式2/2a/2b)为例,(符号表示向下取整操作),为分配给某个UE的PUCCH formats 2/2a/2b资源索引,其中上标2表示该资源索引是PUCCH formats 2/2a/2b资源索引,上标是天线端口索引,可以是通过UE级的RRC(Radio Resource Control,无线资源控制)配置参数IE(Information Element,信息元素)CQI-ReportPeriodic中的cqi-PUCCH-ResourceIndex字段配置的。根据上述规则,以一个子帧中包含两个时隙为例,图3中标识出了包含ns=0,1的两个连续时隙的子帧中,m分别等于0,1,2,3时PUCCH所使用的物理资源。在一个子帧中,两个时隙中相同m值所对应的两个PRB即为本申请中所称的一个PRB对。
LTE系统中,UE可以通过两种上行物理信道反馈CSI,上行物理控制信道PUCCH和PUSCH(Physical Uplink Shared Channel,上行物理共享信道)。CSI反馈包括周期性CSI反馈和非周期性CSI反馈,一般而言,通过PUCCH进行周期性CSI反馈,通过PUSCH进行非周期CSI
反馈。用于周期CSI反馈的PUCCH为类型2/2a/2b的PUCCH,一般称之为PUCCH格式2/2a/2b(PUCCH formats 2/2a/2b),这三种类型的PUCCH具体差别如下所述:
PUCCH格式2:Normal CP(Normal Cyclic Prefix,正常的循环前缀)时,只携带经过编码后的20比特CSI,采用QPSK调制;Extended CP(Extended Cyclic Prefix,扩展的循环前缀)时,携带经过联合编码的CSI和HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)ACK(ACKnowledgement,应答消息)/NACK(Negative ACKnowledgement,否定应答)信息,联合编码生成20比特编码数据并采用QPSK调制。
PUCCH格式2a:只支持Normal CP,携带经过编码后的20比特CSI(QPSK调制)和1比特的ACK/NACK信息(BPSK(Binary Phase Shift Keying,二进制相移键控)调制)。
PUCCH格式2b:只支持Normal CP,携带经过编码后的20比特CSI和2比特的ACK/NACK信息,二者均采用QPSK调制。
其中Normal CP是指LTE的一种帧结构,其包含的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号对应的循环前缀是正常值;Extended CP是指LTE的另一种帧结构,其包含的OFDM符号对应的循环前缀是扩展值,扩展循环前缀长度大于正常循环前缀的长度。
通常情况下,UE对物理上行控制信道上承载的信息原始比特进行编码、加扰、调制、扩频后将其映射至物理资源,随后经过IFFT(Inverse Fast Fourier Transformation,快速傅立叶反变换)生成SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)基带信号,再经过中射频等处理由天线发送;网络设备通过天线接收到承载物理上行控制信道信息的射频信号,经过FFT(Fast Fourier Transformation,快速傅立叶变换)、均衡、解扩频、解调、解扰、译码等操作最终获得物理上行控制信道上承载的信息的原始比特。需要说明的是,上述物理上行控制信道的发送和接收处理过程仅作为示例说明,根据不同的系统或场景,或者根据不同的发送或者接收算法,发送和接收过程可能不包含上述过程中的一步或者几步,也可能增加其他处理过程,本申请对此不做限制。
通过本申请实施例提供的方案,可以通过增加物理资源占用,支持CSI采用鲁棒性更高的低码率编码调制方式,从而提升CSI反馈的可靠性和覆盖,以期保证CSI的正确接收进而保证下行数据传输的可靠性。下文将基于上面所述的本申请涉及的共性方面,对本申请实施例做进一步详细说明。
图4为本申请实施例提供的一种CSI反馈方法的流程示意图。
在401部分,网络设备向UE发送配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个。通过为CSI反馈分配更多的物理上行控制信道资源,使得CSI可以采用鲁棒性更高的低码率编码调制方式,从而可以提升CSI的传输可靠性以及传输覆盖范围。可选的,所述配置消息可以是包括所述物理上行控制信道资源信息的现有技术中已有的消息,也可以是其他包括所述物理上行控制信道资源信息的新增的下行消息,本申请对此不做限制。
在一个示例中,配置消息中包含网络设备为每个CSI反馈配置的两个第一物理上行控制信道资源索引。可选的,配置消息中包含网络设备为一个天线端口上的一个CSI反馈配置的两个第一物理上行控制信道资源索引,其中,一个所述第一物理上行控制信道资源索引指示一个PRB对。具体的,以LTE网络为例,当UE采用一个天线端口反馈CSI时,可以通过IE CQI-ReportPeriodic中的cqi-PUCCH-ResourceIndex字段或者CQI-ReportPeriodic-r10中
的cqi-PUCCH-ResourceIndex-r10字段配置上述两个资源索引,此时可以将cqi-PUCCH-ResourceIndex字段或者cqi-PUCCH-ResourceIndex-r10字段扩展成数组格式,如其中表示天线端口上的第一个第一物理上行控制信道资源索引,表示天线端口上的第二个第一物理上行控制信道资源索引,具体到本示例中也可以通过IE CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10字段和cqi-PUCCH-ResourceIndexP1-r10字段分别配置和此时网络设备可以通知UE从cqi-PUCCH-ResourceIndex-r10字段和cqi-PUCCH-ResourceIndexP1-r10字段中获取上述资源索引。结合图5a,当时,可以分别计算出和假设两个连续时隙的时隙号为0和1,则如图5a和5b所示的阴影部分的两个PRB对即为本示例中所分配的物理上行控制信道资源。可选地,可以增加1比特指示信息,指示两个第一物理上行控制信道资源索引所指示的两个PRB对是处于相同的两个连续时隙中,还是处于不同的两个连续时隙中。可选的,以一个子帧中包含两个时隙为例,所述指示信息可以用于指示两个第一物理上行控制信道资源索引所指示的两个PRB对是分布在同一个上行子帧中,还是分布在两个连续的上行子帧中,例如当该指示信息为0时,在一个子帧中占用两个第一物理上行控制信道资源索引对应的物理资源发送CSI信息,如图5a所示的阴影部分的两个PRB对;当该指示信息为1时,在连续两个子帧中分别占用两个第一物理上行控制信道资源索引对应的物理资源的一个进行CSI信息的发送,如图5b所示的阴影部分的物理资源分别位于两个连续的上行子帧中的两个PRB对上,其中子帧L和子帧L+1为两个连续的上行子帧,需要说明的是,本申请中所述的两个连续的上行子帧可能在子帧号上是不连续的,例如上行子帧L和上行子帧L+t,当t为大于1的整数时,子帧L和子帧L+t之间可能存在下行子帧和/或特殊子帧等非上行子帧,此时上行子帧L和上行子帧L+t是两个连续出现的上行子帧,仍属于本申请所称的两个连续的上行子帧。在为单个用户设备增加物理上行控制信道资源时,采用配置两个第一物理上行控制信道资源索引的方式,既可以在需要的时候提升CSI的传输可靠性,又可以保持现有技术中资源索引与物理资源的对应方式,兼容使用支持现有技术的用户终端。
在另一个示例中,配置消息中包含网络设备为每个CSI反馈配置的两个第一物理上行控制信道资源索引。可选的,配置消息中包含网络设备为两个天线端口上的一个CSI反馈配置的两个第一物理上行控制信道资源索引,其中,一个所述第一物理上行控制信道资源索引指示一个PRB对。具体的,以LTE网络为例,当UE采用两个天线端口反馈一个CSI时,可以通过IE CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10字段和cqi-PUCCH-ResourceIndexP1-r10字段分别配置和其中表示天线端口0上的第一物理上行控制信道资源索引,表示天线端口1上的第一物理上行控制信道资源索引。结合图6,当时,可以分别计算出在天线端口0上和在天线端口1上假设两个连续时隙的时隙号为0和1,则如图6所示的阴影部分的两个PRB对即为本示例中所分配的物理上行控制信道资源。
在又一个示例中,配置消息中包含网络设备为每个CSI反馈配置的两个第一物理上行控制信道资源索引。可选的,配置消息中包含网络设备为两个天线端口上的两个CSI反馈配置的四个第一物理上行控制信道资源索引,其中,一个所述第一物理上行控制信道资源索引指
示一个PRB对。具体的,以LTE网络为例,当UE采用两个天线端口反馈两个CSI时,可以通过IE CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10字段和cqi-PUCCH-ResourceIndexP1-r10字段分别配置和其中表示天线端口0上的两个第一物理上行控制信道资源索引,表示天线端口1上的两个第一物理上行控制信道资源索引。结合图图7a,当时,可以根据分别计算出在天线端口0和天线端口1上的4个PRB对,假设两个连续时隙的时隙号为0和1,则如图7a和7b所示的阴影部分的四个PRB对即为本示例中所分配的物理上行控制信道资源。可选地,可以增加1比特指示信息,指示四个第一物理上行控制信道资源索引所指示的四个PRB对是处于相同的两个连续时隙中,还是处于不同的两个连续时隙中。可选的,以一个子帧中包含两个时隙为例,所述指示信息可以用于指示四个第一物理上行控制信道资源索引所指示的四个PRB对是处于同一个子帧中,还是分布在两个连续的上行子帧中,例如当该指示信息为0时,为每个天线端口上发送的CSI配置的两个第一物理上行控制信道资源索引对应在一个上行子帧中,如图7a所示的阴影部分的四个PRB对;当该指示信息为1时,为每个天线端口上发送的CSI配置的两个第一物理上行控制信道资源索引对应在两个连续的上行子帧中,如图7b所示的阴影部分的物理资源分别位于两个连续子帧中的四个PRB对,其中子帧L和子帧L+1为两个连续的上行子帧,需要说明的是,本申请中所述的两个连续的上行子帧可能在子帧号上是不连续的,例如上行子帧L和上行子帧L+t,当t为大于1的整数时,子帧L和子帧L+t之间可能存在下行子帧和/或特殊子帧等非上行子帧,此时上行子帧L和上行子帧L+t是两个连续出现的上行子帧,仍属于本申请所称的两个连续的上行子帧。
在再一个示例中,配置消息中包含网络设备为每个CSI反馈配置的一个第二物理上行控制信道资源索引,其中,一个所述第二物理上行控制信道资源索引指示两个PRB对。通过占用更多的RB,单个PUCCH格式2/2a/2b信道可以承载更多的编码后CSI比特,进而提升的CSI反馈的可靠性。具体的,以LTE系统为例,网络设备可以在IE CQI-ReportPeriodic和/或IE CQI-ReportPeriodic-r10中增加一个字段,用来通知UE一个物理上行控制信道资源索引指示1个PRB对还是2个PRB对,例如,可以增加一个1bit的字段cqi-PUCCH-ResourceIndex-Type,当cqi-PUCCH-ResourceIndex-Type配置为0时表示一个物理上行控制信道资源索引指示1个PRB对,当cqi-PUCCH-ResourceIndex-Type配置为1时表示一个物理上行控制信道资源索引指示2个PRB对。当采用单天线端口发送CSI时,可以使用CQI-ReportPeriodic中的cqi-PUCCH-ResourceIndex字段或者CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10字段配置上述指示两个PRB对的第二物理上行控制信道资源索引;当采用两天线端口发送两个CSI时,可以使用CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10和cqi-PUCCH-ResourceIndex-P1-r10字段分别为两个天线端口配置两个上述指示两个PRB对的第二物理上行控制信道资源索引。当cqi-PUCCH-ResourceIndex-Type配置为1时,网络设备通过一个第二物理上行控制信道资源索引为一个CSI反馈配置包含2个PRB对的物理资源,其中,时隙ns上用于发送物理上行控制信道的2个PRB的编号nPRB由下式决定:
其中为上行系统包含的RB总数目,更为具体的,图8示出了根据上述规则得到的资源索引与PRB对的映射方式。可以理解的是,当采用两天线端口发送一个CSI时,也可以使用CQI-ReportPeriodic中的cqi-PUCCH-ResourceIndex字段或者CQI-ReportPeriodic-r10中的cqi-PUCCH-ResourceIndex-r10字段配置上述指示两个PRB对的第二物理上行控制信道资源索引,不同的是,所述指示两个PRB对的第二物理上行控制信道资源索引分别指示天线端口0上的一个PRB对和天线端口1上的一个PRB对,在采用此种资源配置方式的时候需要网络设备通过下行消息通知UE此配置方式的应用,此时在不同天线端口上的PRB对位置可以参考图3所示的实施例进行计算。
需要说明的是,上述具体示例中的资源索引配置方式、表示资源索引的符号形式、资源索引的具体取值以及用于配置资源索引的配置消息或者配置消息中的具体字段均是为了更清楚的说明本申请的实施例所提供的方案,本领域技术人员在不付出创造性劳动的情况下可知,为了实现本申请所提供的实施例,还可以有其他的具体实现方式,例如采用其他下行消息下发所述资源索引或者在已有的下行消息中新增其他字段来下发本申请中所涉及的资源索引,本申请对此不做限制。
需要说明的是,为了描述简便,本申请所提供的实施例以及相应的附图中,假设一个无线子帧中包含两个时隙,但在其他可能的子帧与时隙的对应关系下,例如一个子帧包含一个时隙,也可以应用本申请所提供的方案,本申请对此不做限定。
在一个示例中,用户设备接收到上述配置消息后,获取其中所包含的物理上行控制信道资源信息。
在402部分,用户设备在所述物理上行控制信道资源上发送CSI。
在一个示例中,用户设备将CSI原始信息比特进行编码。在另一个示例中,用户设备将CSI原始比特和1比特或者2比特的HARQ应答消息进行联合编码。将CSI原始信息比特采用低码率的编码调制方式,可以增强CSI反馈的鲁棒性,从而保证CSI传输的可靠性并增强其传输覆盖范围。可选的,用户设备采用RM(40,K)编码方式对CSI原始比特或者CSI和HARQ应答消息的原始比特进行编码,生成40个编码比特,其中RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数,用于表示原始信息比特的长度,表1给出了一种具体的RM(40,K)所对应的编码基序列。记需要上报的CSI的原始比特或者CSI和HARQ应答消息的原始比特为a0,a1,a2,a3,...,aK-1,其中K是原始比特总数目,以LTE系统为例,K的具体值由当前的反馈模式确定,可以参照3GPP TS 36.212中的具体规定,经过RM(40,K)编码后的CSI比特记为b0,b1,b2,b3,...,bB-1,其中B=40,且有
其中i表示编码比特的索引,i=0,1,2,…,B-1;an为待编码的原始比特,n为原始比特的索引;Mi,n为RM(40,K)编码的编码基序列。
表1一种RM(40,K)对应的编码基序列示例
i | Mi,0 | Mi,1 | Mi,2 | Mi,3 | Mi,4 | Mi,5 | Mi,6 | Mi,7 | Mi,8 | Mi,9 | Mi,10 | Mi,11 | Mi,12 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
5 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
6 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
7 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
8 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
9 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
10 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
11 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
12 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
13 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
14 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
15 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
16 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
17 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
18 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
19 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
21 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
22 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
23 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
24 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
25 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
26 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
27 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
28 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
29 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
31 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
33 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
34 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
35 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
36 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
37 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
38 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
39 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
需要说明的是,上述表1仅作为RM(40,K)编码基序列的一个示例,基于表1做出变换所获得的其他基序列,例如行元素的互换和/或列元素的互换,也可以作为RM(40,K)的编码基序列;或者,也可以采用其他编码方式获得所述经过编码的40个编码比特,本申请对此不做限定。
可选的,用户设备可以对编码后的CSI或者CSI和HARQ应答消息比特进行加扰。以LTE系统为例,可以参照3GPP TS 36.211中的具体规定进行加扰,不同的是,对于本实施例需要加扰的编码序列长度为40。
在一个示例中,用户设备对经过编码的CSI比特或者CSI和HARQ应答消息比特进行调制。可选的,用户设备可以将CSI比特或者CSI和HARQ应答消息比特调制成20个QPSK(Quadrature Phase Shift Keying,正交相移键控)符号。将CSI原始信息比特采用低码率的编码调制方式,可以增强CSI反馈的鲁棒性,从而保证CSI传输的可靠性并增强其传输覆盖范围。
在一个示例中,用户设备对CSI或者CSI和HARQ应答消息经过调制后的20符号进行扩频。
以LTE系统为例,在一个具体的示例中,每个CSI反馈所对应的两个PRB对通过两个第一物理上行控制信道资源索引配置,或者当采用两天线端口发送一个CSI时每个CSI反馈所对应的两个PRB对通过一个第二物理上行控制信道资源索引配置,所述20个符号中的每10个符号为一组各自进行扩频操作,本申请对符号分组的方式不做限定,例如可以取前10个符号为一组,后10个符号为另一组,也可以随机抽取10个符号为一组,余下的10个符号为另一组。为描述简便,记一组10个符号为d(0),...,d(9),其与长度为相位旋转为的序列在天线端口上进行扩频,得到扩频后的序列为
其中d(n)为待扩频的符号,n为所述符号的索引;P为天线端口数;为每个PRB中包含的子载波数,等于12;序列是由3GPP TS36.211协议定义的导频序列,其长度为12;相位旋转由物理上行控制信道资源索引通过下式计算得到,
其中,
当ns mod2=0时,有
当ns mod2=1时,有
其中,ns=0,1,2...19表示时隙编号;l表示子帧中符号编号,对于正常循环前缀,取值为7,对于扩展CP,取值为6;表示混合PUCCH格式1和
PUCCH格式2/2a/2b的PRB中用于发送PUCCH格式1的PRB的循环移位数,可以是RRC(Radio Resource Control,无线资源控制)消息通过IE PUCCH-ConfigCommon中的字段nCS-AN进行配置的;表示基站可用于发送PUCCH格式2/2a/2b的PRB数,可以是RRC消息通过IE PUCCH-ConfigCommon中的nRB-CQI字段来配置的;为小区级的加扰序列,由下式决定,
其中伪随机序列c(j)(其中j为伪随机序列具体元素的索引,对应上述公式,所述j通过计算获得),具体定义参考3GPP TS 36.211中的规定,伪随机序列在每一帧起始时进行初始化,初始化参数
可以通过RRC消息通过IE PUCCH-ConfigDedicated-v1130中的nPUCCH-Identity-r11字段进行配置;为上行时隙中的符号数,对于正常循环前缀,取值为7,对于扩展CP,取值为6。
以LTE系统为例,在另一个具体的示例中,每个CSI反馈所对应的两个PRB对通过一个第二物理上行控制信道资源索引配置,所述20个符号一起进行扩频操作。每个调制符号d(0),...,d(19)与长度为相位旋转为的序列在天线端口上进行扩频,其中符号d(0),d(2),...,d(18)根据如下公式得到扩频后的序列:
符号d(1),d(3),...,d(19)根据如下公式得到扩频后的序列:
其中d(n)为待扩频的符号,n为所述符号的索引;P为天线端口数;为每个PRB中包含的子载波数,等于12;序列是由协议定义的导频序列,具体参见3GPP TS36.211中的规定,与上一实施例不同的是本实施例中其长度为24;相位旋转由物理上行控制信道资源索引通过下式计算得到,
其中,
当ns mod2=0时,有
当ns mod2=1时,有
其中伪随机序列c(j)(其中j为伪随机序列具体元素的索引,对应上述公式,所述j通过计算获得),具体定义参考3GPP TS 36.211中的规定,伪随机序列在每一帧起始时进行初始化,初始化参数
可以是RRC消息通过IE PUCCH-ConfigDedicated-v1130中的nPUCCH-Identity-r11字段进行配置的。可以理解的,上述扩频方式仅作为示例,还可以根据现有技术中的其他扩频方式对所述20个符号进行扩频,本申请对此不做限定。
在一个示例中,用户设备在每个PRB对上发送经过调制的CSI或者CSI和HARQ应答消息的一半符号。在一个具体的示例中,UE采用单天线端口发送一个CSI,两个PRB对中的每个PRB对上发送所述20个符号中的一半;在另一个具体的示例中,UE采用双天线端口发送一个CSI,每个天线端口上的一个PRB对发送所述20个符号中的一半;在又一个具体的示例中,UE采用双天线端口发送两个CSI,每个天线端口上的两个PRB对中的一个PRB对发送任一个CSI的20个符号中的一半,例如,天线端口0上的第一个PRB对发送第一个CSI的20个符号中的一半,天线端口0上的第二个PRB对发送第二个CSI的20个符号中的一半,天线端口1上的第一个PRB对发送第一个CSI的20个符号中的另一半,天线端口1上的第二个PRB对发送第二个CSI的20个符号中的另一半。需要说明的是,所述一个CSI的20个符号中的一半的选取方式,本申请不做限定,例如可以取前10个符号为一组,后10个符号为另一组,也可以随机抽取10个符号为一组,余下的10个符号为另一组。可以理解的,所述20个符号中的一半符号,可以是单独进行扩频的,也可以是和另一半符号一起进行扩频的。
在一个示例中,网络设备在相应的物理资源上接收用户设备反馈的CSI,并对所接收的CSI进行相应的解调、解扰、译码中的一步或者多步操作,获得CSI的原始信息比特。
图9为本申请实施例提供的一种CSI反馈方法中的数据处理流程示意图。
首先,用户设备对信道状态报告中的CSI原始信息比特或者CSI和HARQ应答消息的原始比特进行RM(40,K)编码,生成40个编码比特,具体的编码方式可以参照实施例402部分中关于编码的描述,此处不再赘述;
然后,用户设备对编码比特进行加扰,具体的加扰方式可以参照实施例402部分中关于加扰的描述,此处不再赘述;
然后,用户设备将经过加扰的编码比特调制成20个QPSK符号,即图中所示的d(0),...,d(19);
然后,用户设备将d(0),...,d(19)分别采用用于扩频的相位旋转序列进行扩频,具体的扩频方式可以参照实施例402部分中关于扩频的描述,此处不再赘述;
然后,用户设备将经过扩频的20个QPSK符号分别映射至所分配的物理资源上。具体的,以LTE系统为例,图9示出了在Normal CP情况下,某一个天线端口上包含两个用于反馈CSI的PRB对的情况。对于PUCCH format 2,Normal CP每个时隙有个符号,其中每个时隙的第2和第6个符号用于传输DMRS(Demodulation Reference Signal,解调参考信号),即图中的rDMRS,剩余的5个符号被用于传输PUCCH format 2;在Extended CP情况下,每个时隙只有个符号,此时只有每个时隙的第4个符号用于传输DMRS,剩余的5个符号用于传输PUCCH format 2。对于PUCCH formats 2a/2b,其携带的1比特或2比特的HARQ
ACK/NACK信息会进行单独的调制,1比特HARQ ACK/NACK使用BPSK调制,2比特HARQ ACK/NACK使用QPSK调制,最终都得到1个调制符号dHARQACK/NACK。其中ACK被编码为‘1’,NACK被编码为‘0’,在Normal CP下,dHARQACK/NACK会被调制到每个时隙的第2个DMRS中去,具体的调制方式可以参考3GPP TS36.211的规定,不同的是,当一个CSI对应到两个PRB对时,HARQ ACK/NACK也会对应的映射到两个PRB对的DMRS中。需要说明的是,为了图示清晰,图9中将d(0),...,d(9)映射到第二PRB对上,将d(10),...,d(19)映射到了第一PRB对上,在实际操作中还可以采用其他的映射方式,具体可以参考实施例402中关于用户设备在每个PRB对上发送调制成20个符号的CSI的一半符号的描述,此处不再赘述。
最后,用户设备对每个符号进行IFFT变换,生成SC-FDMA符号,最终经过中射频处理经由天线发送。
图10为本申请实施例提供的另一种CSI反馈方法中的数据处理流程示意图。
图10中的编码、加扰、调制以及扩频的实施方法与图9相同,此处不再赘述。不同的是,图10示出了UE采用两天线端口发送一个CSI,每个天线端口上包含一个用于反馈CSI的PRB对的情况,为了图示清晰,图10中将d(0),...,d(9)映射到天线端口1上的第二PRB对上,将d(10),...,d(19)映射到了天线端口0上的第一PRB对上,在实际操作中还可以采用其他的映射方式,具体可以参考实施例402中关于用户设备在每个PRB对上发送调制成20个符号的CSI的一半符号的描述,此处不再赘述。在物理资源映射之后,用户设备对不同天线端口上的符号分别进行IFFT变换,生成SC-FDMA符号,最终经过中射频处理经由天线发送。
图11示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。
在一个示例中,网络设备的结构中包括发射器和接收器。在一个示例中,网络设备的结构中还可以包括解调器和/或译码器。在一个示例中,网路设备还可以包括处理器。在一个示例中,网络设备的结构中还可以包括接口单元,用于支持与其他网络设备之间的通信,如与核心网节点之间的通信。在图11所对应的示例中,本申请所涉及的网络设备的结构中包括发射器1101,接收器1102,解调器1103,译码器1104,处理器1105,存储器1106。
所述发射器1101和接收器1102用于支持网络设备与上述实施例中的所述的UE之间收发信息。所述解调器1103用于支持网络设备进行上述实施例中所涉及的解调操作。所述译码器1104用于支持网络设备进行上述实施例中所涉及的译码或者解扰和译码操作。所述处理器1105执行各种用于与UE通信的功能。在下行链路上,业务数据和信令消息由处理器1105进行处理,并由发射器1101处理生成下行链路信号,并经由天线发射给UE。在上行链路,来自所述UE的上行链路信号经由天线接收,由接收器1102进行处理,并进一步由解调器1103以及译码器1104进行解扩频、解调、解扰、译码等操作,最终由处理器1105进行处理来恢复UE所发送的业务数据和信令信息。处理器1105还执行图3至图10中涉及网络设备的处理过程。存储器1106用于存储网络设备的程序代码和数据。
可以理解的是,图11仅仅示出了所述网络设备的简化设计。在实际应用中,所述网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在另一个示例中,本申请所涉及的网络设备的结构中包括发射器,接收器,处理器,存储器。与图11所示的示例不同的是,本示例中所述网络设备不包含译码器和解调器,在图11所示的示例中译码器和/或解调器的功能可以在本示例中的所述接收器或者所述处理器中完成。本示例中其他结构的功能与图11所示的示例相同,此处不再赘述。
图12示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图。在一个示例中,用户设备的结构中包括接收器和发射器。在一个示例中,用户设备还可以包括编码器和/或调制器。在一个示例中,用户设备还可以包括处理器。在图12所对应的示例中,本申请所涉及的用户设备的结构中包括接收器1201,发射器1202,调制器1203,编码器1204,处理器1205,存储器1206。
在上行链路上,待发送的业务或者信令数据经过编码器1204的编码或者编码和加扰,调制器1203的调制或者调制和扩频,再经由发射器1202调节输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号,接收器1201调节从天线接收的信号并提供输入采样。可以理解的是,所述调制器1203和/或编码器1204的功能也可以在所述发射器1202或者所述处理器1205中完成。在处理器1205中,对业务数据和信令消息进行处理。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。所述处理器1205还用于对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理,例如用于控制UE接收下行信息和/或根据接收到的下行信息进行本申请所描述的技术的其他过程。作为示例,处理器1205用于支持UE执行图3至图10中涉及UE的处理过程。存储器1206用于存储用于所述UE的程序代码和数据。
在另一个示例中,本申请所涉及的用户设备的结构中包括发射器,接收器,处理器,存储器。与图12所示的示例不同的是,本示例中所述用户设备不包含编码器和调制器,在图12所示的示例中编码器和调制器的功能可以在本示例中的所述发射器或者所述处理器中完成。本示例中其他结构的功能与图12所示的示例相同,此处不再赘述。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备或网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
Claims (25)
- 一种CSI(Channel State Information,信道状态信息)反馈方法,所述方法包括:网络设备向用户设备发送配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;网络设备接收用户设备在所述物理上行控制信道资源上发送的CSI。
- 如权利要求1所述的方法,其特征在于,还包括:网络设备解调每个调制成20个QPSK(Quadrature Phase Shift Keying,正交相移键控)符号的所述CSI,或者所述CSI和HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)应答消息。
- 如权利要求1或2所述的方法,其特征在于,还包括:网络设备译码每个经过RM(40,K)编码的所述CSI或者所述CSI和HARQ应答消息,其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数。
- 如权利要求1至3任一项所述的方法,其特征在于,网络设备在一个所述PRB对上接收一个所述CSI或者所述CSI和HARQ应答消息的符号的一半。
- 如权利要求1至4任一项所述的方法,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB对的物理上行控制信道资源信息,包括如下情形中的一种:配置消息中包含网络设备为每个CSI反馈配置的两个第一物理上行控制信道资源索引;配置消息中包含网络设备为每个CSI反馈配置的一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。
- 如权利要求5所述的方法,其特征在于,所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
- 一种CSI(Channel State Information,信道状态信息)反馈方法,所述方法包括:用户设备接收网络设备发送的配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;用户设备在所述物理上行控制信道资源上发送CSI。
- 如权利要求7所述的方法,其特征在于,还包括:用户设备对每个所述CSI的原始比特,或者所述CSI和HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)应答消息的原始比特进行RM(40,K)编码,其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数。
- 如权利要求7或8所述的方法,其特征在于,还包括:用户设备将每个所述CSI或者所述CSI和HARQ应答消息调制成20个QPSK(Quadrature Phase Shift Keying,正交相移键控)符号。
- 如权利要求7至9任一项所述的方法,其特征在于,用户设备在一个所述PRB对上发送一个所述CSI或者所述CSI和HARQ应答消息的符号的一半。
- 如权利要求7至10任一项所述的方法,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB对的物理上行控制信道资源信息,包括如下情形中的一种:配置消息中包含为每个CSI反馈配置的两个第一物理上行控制信道资源索引;配置消息中包含为每个CSI反馈配置的一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。
- 如权利要求11所述的方法,其特征在于,所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
- 一种网络设备,包括:发射器,用于向用户设备发送配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;接收器,用于接收用户设备在所述物理上行控制信道资源上发送的CSI。
- 如权利要求13所述的网络设备,其特征在于,还包括解调器,用于解调调制成20个QPSK(Quadrature Phase Shift Keying,正交相移键控)符号的每个所述CSI,或者所述CSI和HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)应答消息。
- 如权利要求13或14所述的网络设备,其特征在于,还包括译码器,用于译码经过RM(40,K)编码的每个所述CSI或者所述CSI和HARQ应答消息,其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K为大于0的整数。
- 如权利要求13至15任一项所述的网络设备,其特征在于,所述接收器具体用于,在一个所述PRB对上接收一个所述CSI或者所述CSI和HARQ应答消息的符号的一半。
- 如权利要求13至16任一项所述的网络设备,其特征在于,还包括处理器,用于处理如下情形中的一种:在所述配置消息中为每个CSI反馈配置两个第一物理上行控制信道资源索引;在所述配置消息中为每个CSI反馈配置一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。
- 如权利要求17所述的方法,其特征在于,所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
- 一种用户设备,包括:接收器,用于接收网络设备发送的配置消息,所述配置消息中包含为所述用户设备的每个CSI反馈配置的包含两个PRB(Physical Resource Block,物理资源块)对的物理上行控制信道资源信息,其中所述PRB对是指分布在两个连续时隙上的用于传输物理上行控制信道的两个PRB,且每个所述时隙上包含所述两个PRB中的一个;发射器,用于在所述物理上行控制信道资源上发送CSI。
- 如权利要求19所述的用户设备,其特征在于,还包括编码器,用于对每个所述CSI,或者所述CSI和HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)应答消息进行RM(40,K)编码,其中所述RM(40,K)为里德-穆勒码(Reed-Muller)编码方式,K 为大于0的整数。
- 如权利要求19或20所述的用户设备,其特征在于,还包括调制器,用于将每个所述CSI或者所述CSI和HARQ应答消息调制成20个QPSK(Quadrature Phase Shift Keying,正交相移键控)符号。
- 如权利要求19至21任一项所述的用户设备,其特征在于,所述发射器具体用于,在一个所述PRB对上发送一个所述CSI或者所述CSI和HARQ应答消息的符号的一半。
- 如权利要求19至22任一项所述的用户设备,其特征在于,还包括处理器,用于解析所述配置消息中包含的物理上行控制信道资源信息,其中,所述配置消息中包含的物理上行控制信道资源信息包括如下情形中的一种:配置消息中包含为每个CSI反馈配置的两个第一物理上行控制信道资源索引;配置消息中包含为每个CSI反馈配置的一个第二物理上行控制信道资源索引;其中,一个所述第一物理上行控制信道资源索引指示一个PRB对,一个所述第二物理上行控制信道资源索引指示两个PRB对。
- 如权利要求23所述的方法,其特征在于,所述为每个CSI反馈配置的两个第一物理上行控制信道资源索引所指示的两个PRB对,分布在相同的两个连续时隙上,或者分布在不同的两个连续时隙上。
- 一种通信系统,其特征在于,包括如权利要求13-18任一项所述的网络设备和如权利要求19-24任一项所述的用户设备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17795593.7A EP3447957A4 (en) | 2016-05-13 | 2017-05-11 | METHOD AND DEVICE FOR RECYCLING CHANNEL STATUS INFORMATION |
US16/188,159 US10924244B2 (en) | 2016-05-13 | 2018-11-12 | Channel state information feedback method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610319325.5 | 2016-05-13 | ||
CN201610319325.5A CN107370585B (zh) | 2016-05-13 | 2016-05-13 | 一种信道状态信息反馈方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/188,159 Continuation US10924244B2 (en) | 2016-05-13 | 2018-11-12 | Channel state information feedback method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017193975A1 true WO2017193975A1 (zh) | 2017-11-16 |
Family
ID=60266220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/084004 WO2017193975A1 (zh) | 2016-05-13 | 2017-05-11 | 一种信道状态信息反馈方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10924244B2 (zh) |
EP (1) | EP3447957A4 (zh) |
CN (1) | CN107370585B (zh) |
WO (1) | WO2017193975A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011702B (zh) * | 2016-10-28 | 2021-04-09 | 华为技术有限公司 | 一种数据的传输、接收方法及系统 |
WO2019128576A1 (zh) * | 2017-12-29 | 2019-07-04 | 电信科学技术研究院有限公司 | 信道状态信息传输方法、通信设备及装置 |
US11129091B2 (en) * | 2018-05-25 | 2021-09-21 | Marvell Asia Pte, Ltd. | Methods and apparatus for providing a resource element (RE) identification system to process received uplink transmissions |
CN113630229B (zh) * | 2018-06-27 | 2022-11-25 | 华为技术有限公司 | 一种通信方法及装置 |
CN110830214B (zh) | 2018-08-10 | 2021-02-05 | 华为技术有限公司 | 用于发送srs的方法和装置 |
CN113098665B (zh) * | 2020-01-09 | 2022-02-25 | 大唐移动通信设备有限公司 | 一种为csi分配pucch资源的处理方法及装置 |
CN113573337B (zh) * | 2021-07-15 | 2024-02-23 | 深圳职业技术学院 | 工业物联网中的数据发送方法 |
CN117545091A (zh) * | 2022-07-27 | 2024-02-09 | 维沃移动通信有限公司 | 上行传输方法、装置、终端及介质 |
WO2024077621A1 (zh) * | 2022-10-14 | 2024-04-18 | Oppo广东移动通信有限公司 | 信道信息反馈的方法、发端设备和收端设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437901A (zh) * | 2011-12-31 | 2012-05-02 | 电信科学技术研究院 | 一种上行控制信息的联合反馈方法及装置 |
US20150092702A1 (en) * | 2013-10-01 | 2015-04-02 | Qualcomm Incorporated | Physical uplink control management in lte/lte-a systems with unlicensed spectrum |
CN104735691A (zh) * | 2013-12-20 | 2015-06-24 | 北京三星通信技术研究有限公司 | 信道状态信息汇报的方法及装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101782645B1 (ko) | 2010-01-17 | 2017-09-28 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 |
EP2385651A3 (en) * | 2010-05-06 | 2012-07-25 | HTC Corporation | Method of handling an uplink control channel and related communication device |
KR101761618B1 (ko) * | 2010-06-25 | 2017-07-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 |
US9912439B2 (en) * | 2011-11-10 | 2018-03-06 | Qualcomm Incorporated | Method and apparatus for sending channel state information using subframe-dependent control channel formats |
CN104995978B (zh) * | 2013-01-22 | 2019-05-14 | 夏普株式会社 | 终端装置、基站装置以及无线通信方法 |
EP3664353B1 (en) * | 2013-02-06 | 2022-05-04 | LG Electronics Inc. | Method for receiving signal and apparatus for same |
US11818717B2 (en) * | 2014-12-31 | 2023-11-14 | Texas Instruments Incorporated | Method and apparatus for uplink control signaling with massive Carrier Aggregation |
US9985742B2 (en) * | 2015-04-06 | 2018-05-29 | Samsung Electronics Co., Ltd. | Transmission power control for an uplink control channel |
US10506567B2 (en) * | 2015-05-08 | 2019-12-10 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving uplink signal in wireless communication system |
-
2016
- 2016-05-13 CN CN201610319325.5A patent/CN107370585B/zh active Active
-
2017
- 2017-05-11 WO PCT/CN2017/084004 patent/WO2017193975A1/zh active Application Filing
- 2017-05-11 EP EP17795593.7A patent/EP3447957A4/en active Pending
-
2018
- 2018-11-12 US US16/188,159 patent/US10924244B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437901A (zh) * | 2011-12-31 | 2012-05-02 | 电信科学技术研究院 | 一种上行控制信息的联合反馈方法及装置 |
US20150092702A1 (en) * | 2013-10-01 | 2015-04-02 | Qualcomm Incorporated | Physical uplink control management in lte/lte-a systems with unlicensed spectrum |
CN104735691A (zh) * | 2013-12-20 | 2015-06-24 | 北京三星通信技术研究有限公司 | 信道状态信息汇报的方法及装置 |
Non-Patent Citations (3)
Title |
---|
HUAWEI ET AL.: "CSI Feedback Enhancement for Carrier Aggregation Enhancement beyond 5 Carriers", 3GPPTSG RANWG1 MEETING #80 R1-150412, 8 February 2015 (2015-02-08), XP050933620 * |
HUAWEI ET AL.: "On CA Enhancements Supporting up to 32 Component Carriers", 3GPP TSG RAN WG1 MEETING #8 R1-150390, 8 February 2015 (2015-02-08), XP050933600 * |
See also references of EP3447957A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3447957A4 (en) | 2019-05-08 |
US10924244B2 (en) | 2021-02-16 |
EP3447957A1 (en) | 2019-02-27 |
US20190081760A1 (en) | 2019-03-14 |
CN107370585B (zh) | 2020-10-23 |
CN107370585A (zh) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10924244B2 (en) | Channel state information feedback method and apparatus | |
US10686579B2 (en) | Partial CQI feedback in wireless networks | |
US9197385B2 (en) | Systems and methods for demodulation reference signal selection | |
US10560926B2 (en) | Data and control multiplexing for uplink data transmission method and device | |
EP3468056A1 (en) | Method and device for signal scrambling and descrambling | |
CN104081872B (zh) | 解调参考信号传输方法、用户设备和基站 | |
AU2011277201B2 (en) | Method and system for multiplexing acknowledgement signals and sounding reference signals | |
RU2684580C1 (ru) | Способ передачи и способ приема информации управления восходящей линией и соответствующее устройство | |
CN108476087B (zh) | 无线接入节点、无线设备及其操作方法和存储介质 | |
CN105144816A (zh) | 网络辅助码字级干扰消除的方法 | |
EP3793251A1 (en) | Terminal device and base station device | |
EP3499758B1 (en) | Transmitting method and device and receiving method and device for transport block | |
WO2021160010A1 (zh) | 数据传输方法、装置、设备和存储介质 | |
CN109075897B (zh) | 数据传输方法、设备及系统 | |
WO2017000900A1 (zh) | 传输信息的方法和设备 | |
CN102882663A (zh) | 下行物理harq指示的发送和接收方法、用户设备及基站 | |
CN111615193A (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
WO2018025493A1 (ja) | 基地局、端末及び通信方法 | |
CN110268663B (zh) | 上行链路控制信息处理方法及用户设备 | |
CN111669823B (zh) | 一种被用于无线通信的节点中的方法和装置 | |
CN111431680A (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
JP2020061778A (ja) | 基地局、受信方法及び集積回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017795593 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017795593 Country of ref document: EP Effective date: 20181122 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17795593 Country of ref document: EP Kind code of ref document: A1 |