WO2017190839A1 - Torque sensor v - Google Patents

Torque sensor v Download PDF

Info

Publication number
WO2017190839A1
WO2017190839A1 PCT/EP2017/000557 EP2017000557W WO2017190839A1 WO 2017190839 A1 WO2017190839 A1 WO 2017190839A1 EP 2017000557 W EP2017000557 W EP 2017000557W WO 2017190839 A1 WO2017190839 A1 WO 2017190839A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
load
weight
chassis
leg
Prior art date
Application number
PCT/EP2017/000557
Other languages
English (en)
French (fr)
Inventor
Jörg Meyer
Bernd Schievelbusch
Christian TRENKLE
Original Assignee
Liebherr-Aerospace Lindenberg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr-Aerospace Lindenberg Gmbh filed Critical Liebherr-Aerospace Lindenberg Gmbh
Publication of WO2017190839A1 publication Critical patent/WO2017190839A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/07Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0004Force transducers adapted for mounting in a bore of the force receiving structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0071Specific indicating arrangements, e.g. of overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity
    • G01M1/125Determining position of centre of gravity of aircraft

Definitions

  • the invention relates to a device for load detection on at least one landing gear leg of an aircraft landing gear, wherein at least one bearing pin and / or at least one wheel axle of the leg is provided with at least one load sensor coupled to a computer.
  • the calculation methods for this load sheet are specified, for example, in the specification FAA-H-8083-1A "Aircraft Weight and Balance Handbook.”
  • the load agent uses, among other things, data for the unloaded weight of the aircraft as well as the refueled fuel quantities, the fill levels of the various aircraft Fuel tanks and the individual masses and positions of cargo and passengers, the mass values or measured values being given in pounds or kilograms can. All these data are subject to estimation errors, so the safety margins for the calculation of the center of mass must be large.
  • the weight and center of gravity or "weight and balance” of the aircraft is determined, after which the aircraft is weighed only at certain intervals.For the determination of the "zero fuel weight” before each departure of the Load Control Agent a weight and a center of gravity calculation ie A calculation of "weight and balance" of the aircraft and a loading plan is created, so the actual weight of the aircraft is not weighed.
  • a depressed switch can mean that the aircraft is in the air and an unpressed switch that the aircraft is on the ground.
  • the switching points for the proximity sensors and micro switches depend on the respective shock absorber stroke and have a certain spread due to the amount of oil in the chassis shock absorber and possibly leakage, the preload of the chassis, the friction in the suspension shock absorber and the temperature.
  • the weight-on-wheel determination according to the prior art can also be achieved by the integration of pressure sensors in the chassis.
  • the pressure in the shock absorber is measured via the pressure sensor and indirectly the load on each chassis leg is determined.
  • the weight-on-wheel determination can also be made via the deflection of the wheel axles.
  • several LVDT sensors are integrated in the wheel axles and the deflection of the wheel axle is determined. From the deflection, the load on the wheel axle is determined.
  • a disadvantage of the procedure known from the prior art or the corresponding devices is that no actual measurement of the aircraft weight before the flight is possible. Furthermore, the known methods and devices are not suitable to determine hard land shocks and to determine their number. Thus, according to the state of the art, no effective health monitoring is possible. In a known from the prior art determination of the weight on wheel this is known only as a status state of the respective wheel, but it is no direct weight determination of the aircraft possible. Namely check intervals are required to determine the actual aircraft empty weight, which are associated with increased expenditure of time and higher costs. Furthermore, according to the prior art, the center of gravity determination of the aircraft can disadvantageously only be performed by the load control agent.
  • the object of the invention is therefore to measure the absolute load of at least one leg, whereby, based on the measured load, the weight of the aircraft and / or further parameters can be determined.
  • a device for load detection on at least one landing gear leg of an aircraft landing gear wherein at least one bearing pin and / or at least one wheel axle of the leg at least one coupled to a computer load sensor is provided.
  • the device is provided on all landing gear legs of an aircraft, it can be used to carry out a direct weight determination of the aircraft with it or by means of the corresponding computer.
  • the corresponding load sensors may be integrated, for example, as shear force sensors in the bow and main landing gear.
  • the sensors may be provided on or in the chassis bearing or on or in the wheel axle, wherein the sensors are arranged such that the measured values acquired by them are proportional to the force transmitted by the chassis legs.
  • the weight force acting on the chassis legs and thus the weight of the aircraft can then be determined, for example, by means of a monitoring system implemented in the computer.
  • the weight determination can be determined at any time in which the aircraft is parked on the chassis legs on the ground and take place, for example, before, after and / or during the loading of the aircraft.
  • Another advantage of the device according to the invention with a plurality of landing gear legs is that thus a direct center of gravity determination of the aircraft is possible.
  • the three measured weight forces, which are introduced into the ground via three landing legs can be determined by the monitoring system of the current center of gravity of the aircraft. This can also be done during the loading of the aircraft so as to optimize the loading of the aircraft.
  • the device according to the invention makes it possible to reduce the refueling safety margins. So far, the refueling of an aircraft is due to relatively inaccurate estimates, such as its weight, so here correspondingly high safety margins must be considered in the amount of fuel.
  • kerosene reserves can be reduced, as a result of which the overall aircraft weight and thus its consumption can be reduced.
  • it is possible according to the invention to carry out a weight-on-wheel determination whereby the determination is made by the sensors or shear force sensors on the chassis legs and the determination of the weight carried out therewith, as to whether the aircraft is on the ground or in the air. This information can be used by the computer or other aircraft computer, for example, for other processes or procedures.
  • the device according to the invention can implement a health monitoring with regard to hard landing.
  • the monitoring system which can be implemented in the computer, for example, limits for hard landings are set. If the limit value of this limit value is detected by the load sensor, this information is displayed or stored. Also, the number of hard landings can be stored, whereby the life of the landing gear can be calculated or better calculated. Thus, load spectra can be recorded over the entire lifetime of the component. This life extensions are in principle possible with respect to the component.
  • the at least one load sensor is integrated in the bearing pin and / or in the wheel axle.
  • the integration of the load sensor in the bearing pin and / or in the wheel axle of the chassis eliminates inaccuracies that can occur due to leaks or oil quantities in the chassis shock absorber, due to preloadings of the chassis, friction in the shock absorber or due to temperature.
  • the computer determines the presence of a load on the chassis leg from measured values of the at least one load sensor and / or the occurrence of an exceeding of a limit value of the load of the chassis leg.
  • the detection of limit value excesses can thus be automated so that the pilot no longer manually manages such limit value overruns. recordings.
  • the detection of limit value exceedances is advantageously homogenized, since now concrete measured values are added to the respective limit value exceedances and the exceedances are thus better quantifiable and independent of subjective assessments of the pilot.
  • the device for load detection is formed on at least three chassis legs, wherein each chassis leg comprises at least one load sensor. If the respective aircraft does not include any other landing gear legs, the total force introduced via the chassis legs into the contact surface of the aircraft corresponds to the weight of the aircraft. If the aircraft comprises more than three chassis legs, then these can also be designed according to the invention with corresponding load sensors.
  • the computer determines the aircraft weight and / or the aircraft center of gravity from the measured values of the load sensors.
  • the determined aircraft weight and / or the center of gravity can be communicated to the pilot, for example via a corresponding display, so that the pilot can see and check the automatically measured and more accurate values compared to the prior art, if appropriate limit values are met and safe flight operations are not endangered is.
  • the at least one load sensor is a shear force sensor, in particular a magnetostrictive shear force sensor.
  • the shear force sensor can be better integrated within the structure of the leg or within the bearing pin and / or axle, whereby he can work more reliable than a likewise conceivable Dehnmessst Shape.
  • a monitoring system is provided which stores the measured values. The monitoring system can store the measured values recorded by the sensors over a longer period of time, which makes it easier to record the long-term load of the chassis legs. In this way, if appropriate, warning can be issued to the pilot or to maintenance personnel in good time if impermissible loads or impermissible accumulations of loads on the chassis legs have been detected by the monitoring system.
  • the invention is also directed to a landing gear leg with at least one device according to one of claims 1 to 7 as well as to an aircraft with at least one landing gear leg according to claim 8.
  • the invention further relates to a method for loading an aircraft, wherein a load detection device according to any one of claims 5 to 7 is used, the method comprising the steps:
  • the currently determined center of gravity can be taken into account and the loading can be carried out such that the center of gravity of the fully loaded aircraft lies within a desired range.
  • the currently determined weight of the aircraft can be used to detect or avoid overloading the aircraft.
  • Fig. 1 a landing gear leg with inventive device
  • Fig. 2 is a sectional view of a load sensor
  • FIG. 3 shows a schematic view of the arrangement of the device according to the invention in different chassis legs.
  • Figure 1 shows a device for load detection, which is provided on a chassis leg 10 of an aircraft.
  • the landing gear leg 10 may be the leg of an aircraft landing gear.
  • a load sensor 1 is provided or integrated in a bearing pin 2 of the chassis leg 10.
  • FIG. 1 shows schematically that further load sensors V and 1 "of other landing gear legs 10, not shown, of the aircraft via a monitoring system LGSCU or a computer on which the monitoring system is implemented for the evaluation of the sensors 1, 1 ', 1 "data are coupled together.
  • Figure 2 shows an embodiment of the load sensor 1, in which a shear force sensor is integrated within the structure of the bearing pin 2.
  • FIG. 3 shows the schematic arrangement of the device according to the invention with three chassis legs 10, 10 ', 10 ", which may be assigned to the nose wheel 10 and the rear wheels 10', 10". 3, corresponding load sensors 1, 1 ', 1 "are provided on the wheel axles 3.
  • the load sensors 1, 1', 1" are, as shown in FIG. 1, with the monitoring system for the evaluation of the load sensors 1, 1
  • they can be better protected against external influences such as friction or icing and can represent a particularly robust sensor technology as non-contact sensors.
  • the device according to the invention can be realized in conjunction with different chassis leg executions.
  • chassis legs can be used with one and / or with multiple wheels and with one and / or with multiple axles.
  • the current aircraft weight can be determined directly by the load sensors or shear force sensors.
  • the center of gravity of the aircraft can be performed directly.
  • the aircraft loading operation can be simplified, since in each case the current weight and the current center of gravity of the aircraft are known.
  • the load can be directed or controlled according to the actual conditions on the aircraft. According to the invention, it is thus also possible to automatically validate the load sheet of the aircraft directly after loading by means of the device according to the invention.
  • the apparatus may be further implemented without the use of more unreliable strain gauges.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Lasterfassung an wenigstens einem Fahrwerksbein eines Flugzeugfahrwerks, wobei an wenigstens einem Lagerbolzen und/oder an wenigstens einer Radachse des Fahrwerksbeins wenigstens ein mit einem Rechner gekoppelter Lastsensor vorgesehen ist.

Description

Torque Sensor V
Die Erfindung betrifft eine Vorrichtung zur Lasterfassung an wenigstens einem Fahrwerksbein eines Flugzeugfahrwerks, wobei an wenigstens einem Lagerbolzen und/oder an wenigstens einer Radachse des Fahrwerksbeins wenigstens ein mit einem Rechner gekoppelter Lastsensor vorgesehen ist.
Für den sicheren Betrieb von Fluggeräten ist es notwendig das Gewicht und/oder die Gewichtsverteilung des Fluggeräts zu kennen. Zur Gewichtsmessung von Flugzeugen ist es beispielsweise bekannt, von einer entsprechenden Bedienperson wie dem Load Control Agent ein sogenanntes Load Sheet erstellen zu lassen, aus dem sich das Gewicht und/oder die Gewichtsverteilung des Flugzeugs ergeben.
Die Berechnungsmethoden für dieses Load Sheet sind z.B. in der Vorschrift FAA- H-8083-1A„Aircraft Weight and Balance Handbook" festgelegt. Der Load Agent verwendet für seine Berechnungen u. a. Daten für das Leergewicht des Flugzeugs sowie die getankte Kraftstoffmengen, die Füllstände der verschiedenen Kraftstofftanks und die Einzelmassen und Positionen der Fracht und der Passagiere, wobei die Massewerte bzw. Messwerte in Pfund oder Kilogramm angegeben sein können. Alle diese Daten sind mit Schätzfehlern behaftet, weshalb die Sicherheitszuschläge für die Berechnung des Massenschwerpunktes groß sein müssen.
Im Rahmen der Muster- und Typzulassung, erfolgt die Bestimmung von Gewicht und Schwerpunkt bzw. „Weight and Balance" des Flugzeuges. Danach wird das Flugzeug nur noch in bestimmten Intervallen gewogen. Für die Ermittlung des„Zero Fuel Gewichts" vor jedem Abflug wird vom Load Control Agent eine Gewichts- sowie eine Schwerpunktsberechnung d.h. eine Berechnung von„Weight and Balance" des Flugzeugs und ein Beladungsplan erstellt. Das tatsächliche Flugzeuggewicht wird also nicht gewogen.
Zur Bestimmung von Weight on Wheel werden bei großen Flugzeugen in der Regel Näherungssensoren am Fahrwerk bzw. an beiden Hauptfahrwerken und am Bugfahrwerk integriert. Damit kann dann z.B. über eine entsprechende Anzeige„Target Near" oder„Target Far" angezeigt werden, womit die Zustände beschrieben werden, dass das Flugzeug in der Luft oder am Boden ist.
Bei kleineren Flugzeugen werden in der Regel Micro Switches an den Fahrwerken verwendet, wobei ein gedrückter Switch bedeuten kann, dass das Flugzeug in der Luft ist und ein nicht gedrückt Switch, dass das Flugzeug am Boden ist.
Die Schaltpunkte für die Nährungssensoren und Micro Switches sind abhängig vom jeweiligen Stoßdämpferhub und haben eine gewisse Streubreite bedingt durch die Ölmenge im Fahrwerksstoßdämpfer und evtl. Leckage, die Vorspannung des Fahrwerks, die Reibung im Fahrwerks-Stoßdämpfer und die Temperatur.
Die Weight-on-Wheel-Bestimmung nach dem Stand der Technik kann ebenfalls durch die Integration von Drucksensoren im Fahrwerk erreicht werden. Hierzu wird über den Drucksensor der Druck im Stoßdämpfer gemessen und indirekt die Last auf jedem Fahrwerksbein bestimmt. Die Weight-on-Wheel-Bestimmung kann auch über die Durchbiegung der Fahr- werksradachsen erfolgen. Hierzu werden mehrere LVDT Sensoren in den Radachsen integriert und die Durchbiegung der Radachse ermittelt. Aus der Durchbiegung wird die Last auf der Radachse bestimmt.
Bekannt ist auch die Verwendung eines am Main Landing Gear Beam angebrachten Sensor, der dort über die Durchbiegung dieses Beams feststellt, ob das Fahrwerk belastet ist oder nicht.
Nachteilig an der aus dem Stand der Technik bekannten Vorgehensweise bzw. den entsprechenden Vorrichtungen ist, dass keine tatsächliche Messung des Flugzeuggewichts vor dem Flug möglich ist. Ferner sind die bekannten Verfahren bzw. Vorrichtungen nicht dazu geeignet, harte Landestöße festzustellen sowie deren Anzahl zu ermitteln. Somit ist nach dem Stand der Technik kein effektives Health Monitoring möglich. Bei einer aus dem Stand der Technik bekannten Feststellung des Weight on Wheel ist diese nur als Statuszustand des jeweiligen Rades bekannt, jedoch ist daraus keine direkte Gewichtsermittlung des Flugzeugs möglich. Es werden nämlich zur Ermittlung des tatsächlichen Flugzeugleergewichts Checkintervalle benötigt, welche mit erhöhtem Zeitaufwand und höheren Kosten verbunden sind. Ferner kann gemäß dem Stand der Technik die Schwerpunktsermittlung des Flugzeuges nachteiligerweise lediglich rechnerisch durch den Load Control Agent erfolgen.
Aufgabe der Erfindung ist es daher die absolute Belastung wenigstens eines Fahrwerkbeins zu messen, wobei ausgehend von der gemessenen Belastung das Flugzeuggewicht und/oder weitere Parameter bestimmt werden können.
Diese Aufgabe wird durch eine Vorrichtung zur Lasterfassung an wenigstens einem Fahrwerksbein eines Flugzeugfahrwerks gelöst, wobei an wenigstens einem Lagerbolzen und/oder an wenigstens einer Radachse des Fahrwerkbeins wenigstens ein mit einem Rechner gekoppelter Lastsensor vorgesehen ist. Ist die Vorrichtung an allen Fahrwerksbeinen eines Flugzeugs vorgesehen, so kann damit bzw. mittels des entsprechenden Rechners eine direkte Gewichtsbestimmung des Flugzeugs durchgeführt werden. Hierbei können die entsprechenden Lastsensoren beispielsweise als Scherkraftsensoren im Bug- und Hauptfahrwerk integriert sein. Die Sensoren können dabei an oder im Fahrwerkslager oder an oder in der Radachse vorgesehen sein, wobei die Sensoren so angeordnet sind, dass die von ihnen erfassten Messwerte proportional zur von den Fahrwerksbeinen übertragenen Kraft sind. Aus den in den Fahrwerksbeinen ermittelten Scherkräften kann dann mittels beispielsweise eines im Rechner implementierten Monitoring-Systems die Gewichtskraft, welche auf die Fahrwerksbeine wirkt und somit das Flugzeuggewicht bestimmt werden. Die Gewichtsbestimmung kann dabei zu jedem Zeitpunkt bestimmt werden in dem das Flugzeug über seine Fahrwerksbeine auf dem Boden abgestellt ist und beispielsweise vor, nach und/oder während der Beladung des Flugzeugs erfolgen.
Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung mit mehreren Fahrwerksbeinen ist, dass damit eine direkte Schwerpunktsermittlung des Flugzeugs möglich ist. Über die beispielhaft genannten drei gemessenen Gewichtskräfte, welche über drei Fahrwerksbeine in den Boden eingeleitet werden, kann durch das Monitoring- System der aktuelle Schwerpunkt des Flugzeuges am Boden bestimmt werden. Dies kann auch während der Beladung des Flugzeugs erfolgen, um so die Beladung des Flugzeugs zu optimieren.
Ferner wird durch die erfindungsgemäße Vorrichtung eine Reduzierung der Betan- kungssicherheitsmargen ermöglicht. Bisher erfolgt die Betankung eines Flugzeugs aufgrund von relativ ungenauen Abschätzungen, beispielsweise von dessen Gewicht, sodass hier entsprechend hohe Sicherheitsmargen bei der Treibstoffmenge berücksichtigt werden müssen. Durch die direkte Messung des Flugzeuggewichts, wie sie erfindungsgemäß möglich ist, können Kerosinreserven reduziert werden, wodurch das Flugzeuggesamtgewicht und damit sein Verbrauch reduziert werden kann. Ferner ist es erfindungsgemäß möglich eine Weight-On-Wheel-Bestimmung durchzuführen, wobei durch die Sensoren bzw. Scherkraftsensoren an den Fahrwerks- beinen und der damit durchgeführten Ermittlung der Gewichtskraft die Feststellung erfolgt, ob sich das Flugzeug am Boden oder in der Luft befindet. Diese Information kann von dem Rechner oder weiteren Flugzeugrechnem beispielsweise für andere Vorgänge oder Verfahren genutzt werden.
Weiterhin ist es durch die erfindungsgemäße Vorrichtung möglich, ein Health Monitoring hinsichtlich von Hard Landings umzusetzen. Im Monitoring-System, welches beispielsweise in dem Rechner implementiert sein kann, werden Grenzwerte für harte Landungen festgelegt. Wird durch den Lastsensor eine Überschreitung dieses Grenzwerts festgestellt, so erfolgt eine Anzeige bzw. Abspeicherung dieser Information. Auch die Anzahl an harten Landungen kann gespeichert werden, womit die Lebensdauer des Fahrwerks berechnet bzw. besser berechnet werden kann. Somit können auch Lastspektren über die gesamte Lebensdauer des Bauteils aufgezeichnet werden. Damit sind auch Standzeitverlängerungen bezüglich des Bauteils grundsätzlich möglich.
Dementsprechend kann in einer bevorzugten Ausführung vorgesehen sein, dass der wenigstens eine Lastsensor in dem Lagerbolzen und/oder in der Radachse integriert ist. Durch die Integration des Lastsensors in dem Lagerbolzen und/oder in der Radachse des Fahrwerks werden Ungenauigkeiten eliminiert, die durch die Leckagen bzw. Ölmengen im Fahrwerkstoßdämpfer, durch Vorspannungen des Fahrwerks, Reibungen im Stoßdämpfer oder temperaturbedingt auftreten können.
In einer weiter bevorzugten Ausführung ist denkbar, dass der Rechner aus Messwerten des wenigstens einen Lastsensors das Vorliegen einer Belastung des Fahrwerksbeins und/oder das Auftreten einer Überschreitung eines Grenzwerts der Belastung des Fahrwerksbeins ermittelt.
Vorteilhafterweise kann so die Erfassung von Grenzwertüberschreitungen automatisiert werden, so dass der Pilot nicht mehr manuell derartige Grenzwertüberschrei- tungen aufzeichnen muss. Auch wird die Erfassung von Grenzwertüberschreitungen vorteilhafterweise homogenisiert, da nunmehr konkrete Messwerte zu den jeweiligen Grenzwertüberschreitungen aufgenommen werden und die Überschreitungen damit besser quantifizierbar und unabhängig von subjektiven Bewertungen des Piloten sind.
In einer weiteren bevorzugten Ausführung kann entsprechend vorgesehen sein, dass die Vorrichtung zur Lasterfassung an wenigstens drei Fahrwerksbeinen ausgebildet ist, wobei jedes Fahrwerksbein wenigstens einen Lastsensor umfasst. Um- fasst das jeweilige Fluggerät dabei keine weiteren Fahrwerksbeine, so entspricht die über die Fahrwerksbeine insgesamt in die Auflagefläche des Fluggeräts eingeleitete Kraft der Gewichtskraft des Fluggeräts. Umfasst das Fluggerät mehr als drei Fahrwerksbeine, so können auch diese mit entsprechenden Lastsensoren versehen erfindungsgemäß ausgebildet sein.
Ferner kann in einer weiteren Ausführung vorgesehen sein, dass der Rechner aus den Messwerten der Lastsensoren das Flugzeuggewicht und/oder den Flugzeugschwerpunkt ermittelt. Das ermittelte Flugzeuggewicht und/oder der Schwerpunkt können dem Piloten beispielsweise über eine entsprechende Anzeige mitgeteilt werden, so dass der Pilot die automatisch gemessenen und im Vergleich zum Stand der Technik genaueren Werte einsehen und überprüfen kann, ob entsprechende Grenzwerte eingehalten sind und ein sicherer Flugbetrieb nicht gefährdet ist.
In einer weiteren bevorzugten Ausführung ist denkbar, dass der wenigstens eine Lastsensor ein Scherkraftsensor, insbesondere ein magnetostriktiver Scherkraftsensor ist. Der Scherkraftsensor kann dabei besser innerhalb der Struktur des Fahrwerkbeins bzw. innerhalb von Lagerbolzen und/oder Radachse integriert sein, wodurch er zuverlässiger arbeiten kann als ein ebenfalls denkbarer Dehnmessstreifen. In einer weiteren bevorzugten Ausführung ist denkbar, dass ein Monitoring-System vorgesehen ist, das die Messwerte speichert. Das Monitoring-System kann dabei die von den Sensoren erfassten Messwerte über auch längere Zeit speichern, wodurch eine einfachere Erfassung der Langzeitbelastung der Fahrwerksbeine durchgeführt werden kann. Damit können gegebenenfalls rechtzeitig Warnung an den Piloten oder an Wartungspersonal ausgegeben werden, wenn unzulässige Belastungen oder unzulässige Häufungen von Belastungen der Fahrwerksbeine vom Monitoring-System erfasst worden sind.
Die Erfindung ist auch auf ein Fahrwerksbein mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 7 sowie auf ein Flugzeug mit wenigstens einem Fahrwerksbein nach Anspruch 8 gerichtet.
Die Erfindung betrifft ferner ein Verfahren zur Beladung eines Flugzeugs, wobei eine Vorrichtung zur Lasterfassung nach einem der Ansprüche der 5 bis 7 genutzt wird, wobei das Verfahren die Schritte umfasst:
Ermittlung des Flugzeuggewichts und/oder des Flugzeugschwerpunkts eines Flugzeugs mittels einer Vorrichtung nach einem der Ansprüche 5 bis 7; und
Beladen des Flugzeugs in Abhängigkeit von dem ermittelten Flugzeuggewicht und/oder Flugzeugschwerpunkt
Vorteilhafterweise kann beim Beladen des Flugzeuges der aktuell ermittelte Schwerpunkt berücksichtigt werden und das Beladen so durchgeführt werden, dass der Schwerpunkt des voll beladenen Flugzeugs in einem gewünschten Bereich liegt. Ähnlich kann das aktuell ermittelte Gewicht des Flugzeugs dazu genutzt werden, eine Überladung des Flugzeugs zu erkennen bzw. zu vermeiden.
Weitere Einzelheiten und Vorteile der Erfindung sind anhand der in den Figuren beispielhaft angegebenen Ausführungen aufgezeigt. Dabei zeigen: Fig. 1 : ein Fahrwerksbein mit erfindungsgemäßer Vorrichtung;
Fig. 2: eine Schnittansicht eines Lastsensors; und
Fig. 3: eine schematische Ansicht der Anordnung der erfindungsgemäßen Vorrichtung in unterschiedlichen Fahrwerksbeinen.
Figur 1 zeigt eine Vorrichtung zur Lasterfassung, welche an einem Fahrwerksbein 10 eines Fluggeräts vorgesehen ist. Bei dem Fahrwerksbein 10 kann es sich um das Bein eines Flugzeugfahrwerks handeln. In der in Figur 1 gezeigten Ausführung ist dabei ein Lastsensor 1 in einem Lagerbolzen 2 des Fahrwerksbeins 10 vorgesehen bzw. integriert. Im linken Bereich der Figur ist schematisch dargestellt, dass weitere Lastsensoren V und 1 " von weiteren nicht gezeigten Fahrwerksbeinen 10 des Fluggeräts über ein Monitoring-System LGSCU bzw. einen Rechner, auf dem das Monitoring-System implementiert ist, zur Auswertung der von den Sensoren 1 , 1 ', 1 " gesammelten Daten miteinander gekoppelt sind.
Figur 2 zeigt eine Ausführung des Lastsensors 1 , bei der ein Scherkraftsensor innerhalb der Struktur des Lagerbolzens 2 integriert ist.
Figur 3 zeigt die schematische Anordnung der erfindungsgemäßen Vorrichtung mit drei Fahrwerksbeinen 10, 10', 10", die dem Bugrad 10 und den Heckrädern 10', 10" zugeordnet sein können. Beim Ausführungsbeispiel der Figur 3 sind an den Radachsen 3 entsprechende Lastsensoren 1 , 1 ', 1 " vorgesehen. Die Lastsensoren 1 , 1 ', 1 " sind wie in Figur 1 gezeigt mit dem Monitoring-System zur Auswertung der von den Lastsensoren 1 , 1 ', 1 " gesammelten Daten gekoppelt. Durch die in Figur 2 gezeigte Integration der Lastsensoren 1 , 1 ', 1 " können diese besser vor äußeren Einflüssen, wie beispielsweise Reibung oder Vereisung, geschützt sein und als berührungslose Sensoren eine besonders robuste Sensortechnologie darstellen.
Wie der Figur 3 zu entnehmen ist kann die erfindungsgemäße Vorrichtung in Verbindung mit unterschiedlichen Fahrwerksbeinausführrungen realisiert werden. Dabei können Fahrwerksbeine mit einem und/oder mit mehreren Rädern sowie mit einer und/oder mit mehreren Achsen verwendet werden. Erfindungsgemäß kann durch die Lastsensoren bzw. Scherkraftsensoren das aktuelle Flugzeuggewicht direkt ermittelt werden. Die Schwerpunktsermittlung des Flugzeugs kann direkt durchgeführt werden. Hierdurch kann unter anderem der Flugzeugbeladevorgang vereinfacht werden, da jeweils das aktuelle Gewicht und der aktuelle Schwerpunkt des Flugzeugs bekannt sind. Daraufhin kann die Beladung entsprechend der tatsächlichen Verhältnisse am Flugzeug geleitet bzw. gesteuert werden. Erfindungsgemäß ist es somit auch möglich das Load Sheet des Flugzeugs direkt nach der Beladung automatisch mittels der erfindungsgemäßen Vorrichtung zu validieren.
Ferner ist eine direkte Prüfung möglich, bei der festgestellt wird, ob das zulässige Hilfsgewicht überschritten worden ist. In einer Ausführung der Vorrichtung mit Scherkraftsensoren kann die Vorrichtung ferner ohne die Verwendung von unzuverlässigeren Dehnmessstreifen ausgeführt werden.

Claims

Patentansprüche
1. Vorrichtung zur Lasterfassung an wenigstens einem Fahrwerksbein (10) eines Flugzeugfahrwerks, dadurch gekennzeichnet, dass an wenigstens einem Lagerbolzen (2) und/oder an wenigstens einer Radachse (3) des Fahrwerksbeins (10) wenigstens ein mit einem Rechner gekoppelter Lastsensor (1) in Form eines magnetostriktiven Scherkraftsensors vorgesehen ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der wenigstens eine Lastsensor (1) in dem Lagerbolzen (2) und/oder in der Radachse (3) integriert ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Rechner aus Messwerten des wenigstens einen Lastsensors (1) das Vorliegen einer Belastung des Fahrwerksbeins (10) und/oder das Auftreten einer Überschreitung eines Grenzwerts der Belastung des Fahrwerksbeins (10) ermittelt.
4. Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Vorrichtung zur Lasterfassung an wenigstens drei Fahrwerksbeinen (10) ausgebildet ist, wobei jedes Fahrwerksbein (10) wenigstens einen Lastsensor (10) umfasst.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Rechner aus den Messwerten der Lastsensoren (1) das Flugzeuggewicht und/oder den Flugzeugschwerpunkt ermittelt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Monitoring-System vorgesehen ist, dass die Messwerte speichert.
7. Fahrwerksbein mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 7.
8. Flugzeug mit wenigstens einem Fahrwerksbein nach Anspruch 7.
9. Verfahren zur Beladung eines Flugzeugs wobei eine Vorrichtung zur Lasterfassung an nach einem der Ansprüche 1 bis 6 genutzt wird, wobei das Verfahren die Schritte umfasst:
Ermittlung des Flugzeuggewichts und/oder des Flugzeugschwerpunkts eines Flugzeugs mittels einer Vorrichtung nach einem der Ansprüche 5 bis 7; und
Beladen des Flugzeugs in Abhängigkeit von dem ermittelten Flugzeuggewicht und/oder Flugzeugschwerpunkt.
PCT/EP2017/000557 2016-05-04 2017-05-04 Torque sensor v WO2017190839A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016005572.3 2016-05-04
DE102016005572.3A DE102016005572A1 (de) 2016-05-04 2016-05-04 Torque Sensor V

Publications (1)

Publication Number Publication Date
WO2017190839A1 true WO2017190839A1 (de) 2017-11-09

Family

ID=58672556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/000557 WO2017190839A1 (de) 2016-05-04 2017-05-04 Torque sensor v

Country Status (2)

Country Link
DE (1) DE102016005572A1 (de)
WO (1) WO2017190839A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597496B1 (de) 2018-07-16 2020-09-02 Safran Landing Systems UK Limited Flugzeugfahrwerkanordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975685A (en) * 1975-01-30 1976-08-17 Allmanna Svenska Elektriska Aktiebolaget Magnetoelastic shear force measuring means for measuring shear stress in tubular axles
US5456119A (en) * 1993-03-04 1995-10-10 Yazaki Corporation Sensing element for vehicle load measuring device
US20080011091A1 (en) * 2006-06-27 2008-01-17 Abnaki Systems, Inc. Method for measuring loading and temperature in structures and materials by measuring changes in natural frequencies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625053A (en) * 1970-01-14 1971-12-07 Blh Electronics On-board aircraft transducer
CA2755101C (en) * 2010-10-15 2018-07-10 Rosemount Aerospace Inc. Capacitive sensors for monitoring loads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975685A (en) * 1975-01-30 1976-08-17 Allmanna Svenska Elektriska Aktiebolaget Magnetoelastic shear force measuring means for measuring shear stress in tubular axles
US5456119A (en) * 1993-03-04 1995-10-10 Yazaki Corporation Sensing element for vehicle load measuring device
US20080011091A1 (en) * 2006-06-27 2008-01-17 Abnaki Systems, Inc. Method for measuring loading and temperature in structures and materials by measuring changes in natural frequencies

Also Published As

Publication number Publication date
DE102016005572A1 (de) 2017-11-09

Similar Documents

Publication Publication Date Title
DE69312687T2 (de) Anzeiger von gewicht und schwerpunkt von flugzeugen
CH656714A5 (de) Gewichtsmess- und ausgleichsvorrichtung.
EP2679967B1 (de) Vorrichtung zur Messung und Anzeige des Zuladegewichts eines Schienenfahrzeugs
WO2009118350A2 (de) Vorrichtung zur überwachung der bremswirkung
DE102019124281B4 (de) Sattelkupplung und Verwendung einer Sattelkupplung in einem Verfahren zur Bestimmung von Beladungs-, Verschleiß- und/oder Belastungszuständen
EP3541642A1 (de) Schienenfahrzeugfederung und federsystem für ein schienenfahrzeug
DE102016216931A1 (de) Anordnung und Verfahren zur On-Wing-Schubmessung von Flugzeugtriebwerken
DE102011004386A1 (de) Verfahren und Vorrichtung zur Kalibrierung von Lastmesssensoren
DE102016109425A1 (de) Messmodul mit Kraft- und Beschleunigungssensoren zur Gewichtsermittlung eines an ein Zugfahrzeug gekoppelten Anhängefahrzeuges
EP2705344B1 (de) Verfahren zum prüfen eines drehgestells eines schienenfahrzeugs sowie prüfstand für ein drehgestell eines schienenfahrzeugs
DE102005024335A1 (de) Verfahren und Vorrichtung zur Durchführung von Bremsenprüfungen bei Kraftfahrzeugen mit Druckluftbremsanlage
EP3262394A1 (de) Vorrichtung und verfahren zur erhöhung der sicherheit von achterbahnen und/oder karussels
WO2017190839A1 (de) Torque sensor v
DE4007610C2 (de) Meß- bzw. Überwachungseinrichtung für kraftbeanspruchte Teile
DE102009025245A1 (de) Anordnung zum Bestimmen des Druckes in einem Fahrwerksreifen eines Luftfahrzeugs
DE102010020445B4 (de) Bodenkontakterkennung
DE102019121497A1 (de) Flurförderzeug und Verfahren zur Überwachung eines Flurförderzeugs
EP3461662A1 (de) Dämpfungsvorrichtung
DE10115490C1 (de) Verfahren und Vorrichtung zum Eichen einer Überfahrwaage
EP3610229B1 (de) Vorrichtung und verfahren zur lastbestimmung für fahrzeuge
DE102018133095A1 (de) Verfahren zur Lastbestimmung bei einem Flurförderzeug und Flurförderzeug
DE102019215823A1 (de) Verfahren zum Kalibrieren von Achs- oder Radlastsensoren
DE676732C (de) Raddruckwaage
DE102018133570A1 (de) Verfahren zur Überwachung eines Ladungsträgerfahrzeugs, Überwachungsvorrichtung für ein Ladungsträgerfahrzeug, Ladungsträgerfahrzeug, Ladungsträgersystem und Wechselaufbau
EP4256284B1 (de) Achslasterfassungssystem, achssystem und nutzfahrzeug mit einem achslasterfassungssystem

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17721958

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17721958

Country of ref document: EP

Kind code of ref document: A1