WO2017179127A1 - 電力変換装置の制御装置 - Google Patents

電力変換装置の制御装置 Download PDF

Info

Publication number
WO2017179127A1
WO2017179127A1 PCT/JP2016/061829 JP2016061829W WO2017179127A1 WO 2017179127 A1 WO2017179127 A1 WO 2017179127A1 JP 2016061829 W JP2016061829 W JP 2016061829W WO 2017179127 A1 WO2017179127 A1 WO 2017179127A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control circuit
control
power
switching
Prior art date
Application number
PCT/JP2016/061829
Other languages
English (en)
French (fr)
Inventor
一浩 臼木
智久 狼
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018511800A priority Critical patent/JP6673624B2/ja
Priority to US16/090,336 priority patent/US10461660B2/en
Priority to PCT/JP2016/061829 priority patent/WO2017179127A1/ja
Priority to EP16898587.7A priority patent/EP3444935B1/en
Publication of WO2017179127A1 publication Critical patent/WO2017179127A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/79Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar semiconductor switches with more than two PN-junctions, or more than three electrodes, or more than one electrode connected to the same conductivity region
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • Embodiment of this invention is related with the control apparatus of a power converter device.
  • GS Gate Shift
  • GB Gate Block
  • CBT Circuit Breaker Trip
  • GS-GB-CBT is a series of protection interlocks in which GB is performed after GS and then CBT is performed. There is also a technique for stopping protection using BPP (bypass pair) instead of GS. BPP is to simultaneously connect a high voltage side arm and a low voltage side arm connected to the same phase among the converter arms of the power converter.
  • the GS period is generally about 40 ms to 100 ms.
  • power failure compensation is performed until the GS period is completed.
  • the power failure compensation is performed for the purpose of maintaining the gate pulse generation capability of the control device so that the protection interlock is completed for the entire power conversion device.
  • the control apparatus of a power converter device is provided with a power failure compensation circuit by dividing the control circuit.
  • a control circuit that generates a gate pulse is provided for each 12-phase arm. That is, a power failure compensation circuit is provided for each of the 12 phases. This complicates the circuit configuration and increases the size of the control device. In such a control device, it is desired to simplify the circuit configuration.
  • Embodiment of this invention provides the control apparatus of the power converter device which can simplify a circuit structure.
  • a control device for a separately excited power converter includes a first switching circuit and a second switching circuit.
  • the first switching circuit includes a plurality of first converter arms connected in series.
  • a plurality of second converter arms are connected in series.
  • One end of the first switching circuit and one end of the second switching circuit are connected to the high voltage side of the DC circuit.
  • the other end of the first switching circuit and the other end of the second switching circuit are connected to the low voltage side of the DC circuit.
  • the power conversion device converts AC power supplied from an AC power source into DC power, and supplies the DC power to the DC circuit.
  • the control device includes a first control circuit and a second control circuit.
  • the first control circuit is connected to the first switching circuit and controls each gate pulse of the plurality of first converter arms.
  • the second control circuit is connected to the second switching circuit and controls each gate pulse of the plurality of second converter arms.
  • the first control circuit includes a first power failure compensation circuit.
  • the first power failure compensation circuit supplies power to the first control circuit for a predetermined time when a power failure occurs in the first control circuit.
  • the second control circuit includes a second power failure compensation circuit.
  • the second power failure compensation circuit supplies power to the second control circuit for a predetermined time when a power failure occurs in the second control circuit.
  • FIG. 3 is a block diagram schematically illustrating a host control circuit according to the first embodiment.
  • FIG. 3 is a block diagram schematically showing first to third control circuits according to the first embodiment.
  • FIG. 6A and FIG. 6B are timing charts illustrating the protection stop operation of the power conversion device. It is a figure which illustrates the relationship of the phase angle of the converter arm which concerns on 2nd Embodiment. It is a figure which illustrates the combination of the bypass pair which concerns on 2nd Embodiment.
  • FIG. 1 is a block diagram schematically illustrating a main circuit unit and a control device of the power conversion device according to the first embodiment.
  • the control device 10 is connected to a main circuit unit 30 (hereinafter simply referred to as a main circuit unit 30) of the power conversion device.
  • the main circuit unit 30 is connected to the AC power supply 20 and the DC circuit 50.
  • the AC power supply 20 is, for example, a three-phase AC power supply.
  • the AC power supply 20 supplies three-phase AC power Pac to the main circuit unit 30.
  • the main circuit unit 30 converts the AC power supplied from the AC power source 20 into DC power, and supplies the DC power to the DC circuit 50.
  • the main circuit unit 30 performs conversion from AC power to DC power.
  • the main circuit unit 30 is a separately excited type.
  • the control device 10 controls power conversion by the main circuit unit 30.
  • the DC circuit 50 includes a high-voltage DC bus 50H and a low-voltage DC bus 50L.
  • the high voltage side DC bus 50H is a DC cable such as a submarine cable.
  • the low-voltage DC bus 50L may be a cable return, a ground return, a seawater return, or the like. That is, the low-voltage DC bus 50L is provided as necessary and can be omitted.
  • the main circuit unit 30 and the control device 10 are used in, for example, a DC power transmission system.
  • the main circuit unit 30 is connected to one end of the DC circuit 50, and a conversion device similar to the main circuit unit 30 is connected to the other end of the DC circuit 50.
  • the main circuit unit 30 converts AC power into DC power, and the conversion device on the opposite side returns the DC power to AC power.
  • AC power is converted into DC power
  • power is transmitted, and the DC power is reconverted into AC power, thereby supplying the AC power after the reconversion to a power system or the like.
  • the main circuit unit 30 includes an AC circuit breaker 31, transformers 32 and 33, a DC reactor 34, a first switching circuit 41, a second switching circuit 42, and a third switching circuit 43.
  • Each of the first switching circuit 41, the second switching circuit 42, and the third switching circuit 43 functions as, for example, a three-phase AC R-phase, S-phase, and T-phase AC / DC converter.
  • a plurality of first converter arms U1, X1, U2, and X2 are connected in series.
  • the second switching circuit 42 a plurality of second converter arms V1, Y1, V2, and Y2 are connected in series.
  • a plurality of third converter arms W1, Z1, W2, and Z2 are connected in series.
  • one of the first to third transducer arms is also simply referred to as a valve (or transducer arm). That is, in one switching circuit, a plurality of valves (here, four valves or a converter arm) are connected in series.
  • One end of the first switching circuit 41, one end of the second switching circuit 42, and one end of the third switching circuit 43 are connected to the high voltage side of the DC circuit 50.
  • the other end of the first switching circuit 41, the other end of the second switching circuit 42, and the other end of the third switching circuit 43 are connected to the low voltage side of the DC circuit 50.
  • Converter arms U1 and X1, converter arms V1 and Y1, and converter arms W1 and Z1 are bridge-connected.
  • the converter arms U2 and X2, the converter arms V2 and Y2, and the converter arms W2 and Z2 are bridge-connected. Furthermore, these two bridges are cascaded.
  • the AC circuit breaker 31 is provided between the AC power supply 20 and the main circuit unit 30.
  • the AC circuit breaker 31 interrupts the AC power supply 20 and the main circuit unit 30.
  • the transformer 32 includes a primary winding 32a and a secondary winding 32b.
  • the transformer 33 includes a primary winding 33a and a secondary winding 33b.
  • Each of the primary windings 32 a and 33 a of the transformers 32 and 33 is connected to the AC power supply 20 via the AC circuit breaker 31.
  • the secondary winding 32b of the transformer 32 includes an AC connection point between the converter arm U1 and the converter arm X1, an AC connection point between the converter arm V1 and the converter arm Y1, and a converter arm. It is connected to the AC connection point between W1 and the converter arm Z1.
  • the secondary winding 33b of the transformer 33 includes an AC connection point between the converter arm U2 and the converter arm X2, an AC connection point between the converter arm V2 and the converter arm Y2, and a converter arm. It is connected to an AC connection point between W2 and the converter arm Z2. Accordingly, the AC power transformed by the transformers 32 and 33 is supplied to the AC connection points of the first switching circuit 41, the second switching circuit 42, and the third switching circuit 43.
  • the transformers 32 and 33 are three-phase transformers.
  • the primary winding 32a of the transformer 32 is Y-connected.
  • the secondary winding 32b of the transformer 32 is Y-connected.
  • the primary winding 33a of the transformer 33 is Y-connected.
  • the secondary winding 33b of the transformer 33 is ⁇ -connected. Therefore, the phase of the AC power supplied to the converter arms U2, X2, the converter arms V2, Y2, and the converter arms W2, Z2 is as follows: the converter arms U1, X1, and the converter arms V1, Y1. And 30 ° with respect to the phase of the AC power supplied to the converter arms W1, Z1.
  • the three-phase transformer may be configured using three single-phase transformers.
  • the three-phase transformer may be a three-winding transformer having a tertiary winding.
  • the DC output points on the high voltage side of the first switching circuit 41, the second switching circuit 42, and the third switching circuit 43 are connected to the DC reactor 34, and are connected to the high voltage side DC bus 50H of the DC circuit 50 via the DC reactor 34. Has been.
  • the DC output points on the low voltage side of the first switching circuit 41, the second switching circuit 42, and the third switching circuit 43 are connected to the low voltage DC bus 50L of the DC circuit 50.
  • the main circuit unit 30 is a 12-phase rectifier circuit.
  • the main circuit unit 30 and the control device 10 convert the AC power supplied from the AC power supply 20 to DC power by controlling the switching of the first switching circuit 41, the second switching circuit 42, and the third switching circuit 43. .
  • the main circuit unit 30 applies a DC voltage between the high-voltage DC bus 50H and the low-voltage DC bus 50L.
  • the main circuit unit 30 is not limited to a 12-phase rectifier circuit, and may be a 6-phase rectifier circuit. Furthermore, a multi-phase rectifier circuit such as 24-phase, 36-phase, and 48-phase may be used. Further, the AC power of the AC power supply 20 may be, for example, single-phase AC power.
  • the control device 10 includes a first control circuit 11, a second control circuit 12, a third control circuit 13, and an upper control circuit 14.
  • the first control circuit 11 is for R phase, for example.
  • the second control circuit 12 is for S phase, for example.
  • the third control circuit 13 is for T phase, for example.
  • Gate pulses GU1, GX1, GU2, and GX2 are transmitted from the first control circuit 11 to the first switching circuit 41 via an optical cable.
  • the first control circuit 11 controls the gate pulses GU1, GX1, GU2, and GX2 of the plurality of converter arms U1, X1, U2, and X2 (R phase).
  • a valve monitor signal MU1 indicating whether a voltage is applied in the forward direction or a voltage is applied in the reverse direction via the optical cable.
  • MX1, MU2, and MX2 are transmitted to the first control circuit 11.
  • Gate pulses GV1, GY1, GV2, and GY2 are transmitted from the second control circuit 12 to the second switching circuit 42 via an optical cable.
  • the second control circuit 12 controls the gate pulses GV1, GY1, GV2, and GY2 of the plurality of converter arms V1, Y1, V2, and Y2 (S phase). Also, from each converter arm V1, Y1, V2, Y2, a valve monitor signal MV1 indicating whether a voltage is applied in the forward direction or a voltage is applied in the reverse direction via the optical cable. , MY1, MV2, and MY2 are transmitted to the second control circuit 12.
  • gate pulses GW1, GZ1, GW2, and GZ2 are transmitted to the third switching circuit 43 through an optical cable.
  • the third control circuit 13 controls the gate pulses GW1, GZ1, GW2, and GZ2 of the plurality of converter arms W1, Z1, W2, and Z2 (T phase). Further, from each converter arm W1, Z1, W2, Z2, a valve monitor signal MW1 indicating whether a voltage is applied in the forward direction or a voltage is applied in the reverse direction via the optical cable. , MZ1, MW2, and MZ2 are transmitted to the third control circuit 13.
  • FIG. 2 is a block diagram schematically showing the first converter arm U1 according to the first embodiment.
  • the converter arm U1 includes, for example, a plurality of thyristors TH1 to TH7, a plurality of resistors RS1 to RS7, a plurality of capacitors C1 to C7, a plurality of voltage dividing resistors RD1 to RD7, Reactors AL1, AL2 are included.
  • the first converter arm U1 includes a step-down terminal K and a low-pressure terminal A.
  • transducer arms X1, U2, X2, transducer arms V1, Y1, V2, Y2, and transducer arms W1, Z1, W2, Z2 have substantially the same configuration as the transducer arm U1. is there. Detailed description thereof will be omitted.
  • the thyristors TH1 to TH7 are connected in series between the terminal K and the terminal A. In this example, seven thyristors TH1 to TH7 are connected in series. The number of thyristors may be 7 or less, or 8 or more. There may be one thyristor. The number of thyristors connected in series may be appropriately set according to the applied voltage value or the like.
  • Reactor AL1 is connected to one end of each thyristor TH1 to TH7 connected in series.
  • the reactor AL1 is connected between the terminal K and the cathode terminal of the thyristor TH7.
  • the reactor AL2 is connected to the other end of each thyristor TH1 to TH7 connected in series.
  • the reactor AL2 is connected between the anode terminal of the thyristor TH1 and the terminal A.
  • the circuit configuration such as the reactor, the connection position, and the like are not limited to this example.
  • the resistor RS1 is connected in series with the capacitor C1.
  • the resistor RS1 and the capacitor C1 are connected in parallel with the thyristor TH1.
  • the resistor RS1 and the capacitor C1 form a so-called snubber circuit for the thyristor TH1.
  • a snubber circuit including a resistor RS2 and a capacitor C2 is connected in parallel to the thyristor TH2.
  • a snubber circuit including a resistor RS3 and a capacitor C3 is connected in parallel to the thyristor TH3.
  • a snubber circuit including a resistor RS4 and a capacitor C4 is connected in parallel to the thyristor TH4.
  • a snubber circuit including a resistor RS5 and a capacitor C5 is connected in parallel to the thyristor TH5.
  • a snubber circuit including a resistor RS6 and a capacitor C6 is connected in parallel to the thyristor TH6.
  • a snubber circuit including a resistor RS7 and a capacitor C7 is connected in parallel to the thyristor TH7.
  • the voltage dividing resistors RD1 to RD7 are connected to each snubber circuit in parallel.
  • Each of the voltage dividing resistors RD1 to RD7 is a DC component voltage dividing resistor.
  • Each of the voltage dividing resistors RD1 to RD7 is also used as, for example, a current limiting resistor of a valve voltage detection circuit (not shown) that detects a forward or reverse voltage of each thyristor TH1 to TH7.
  • the output of the valve voltage detection circuit is transmitted as a valve monitor signal MU1 to the first control circuit 11 using an optical cable or the like.
  • the thyristors TH1 to TH7 have gate light guides G11 to G17 (optical fibers).
  • the gate light guides G11 to G17 are optical cables that transmit the gate pulse GU1.
  • the gate light guides G11 to G17 input optical signals to the gates of the thyristors TH1 to TH7.
  • Each thyristor TH1 to TH7 is ignited (turned on) in response to the input of the optical signal. That is, each thyristor TH1 to TH7 is an optical thyristor.
  • the gate light guides G11 to G17 are connected to the first control circuit 11.
  • the first control circuit 11 inputs a pulsed optical signal as a gate pulse GU1 to the gates of the thyristors TH1 to TH7 via the gate light guides G11 to G17. As a result, the thyristors TH1 to TH7 are fired.
  • the first control circuit 11 inputs pulsed optical signals to the thyristors TH1 to TH7 substantially simultaneously. Each thyristor TH1-TH7 fires substantially simultaneously. As a result, the converter arm U1 is turned on (conductive state).
  • the first control circuit 11 controls the ON timing of the converter arm U1 by the input of the optical signal.
  • the first control circuit 11 generates an optical signal that is a gate pulse for each of the converter arms U1, X1, U2, and X2, and controls the ON timing of each.
  • optical thyristors are used for the thyristors TH1 to TH7.
  • Each thyristor TH1 to TH7 is not limited to an optical thyristor, but may be a thyristor that is fired by inputting an electric signal to a gate.
  • the switching element is not limited to a thyristor, and may be another separately-excited switching element.
  • the converter arm U1 has been described, but the same applies to the other converter arms X1, U2, X2, the converter arms V1, Y1, V2, Y2, and the converter arms W1, Z1, W2, Z2. Therefore, explanation and illustration are omitted.
  • the main circuit unit 30 includes a DC current detector 35, a DC voltage detector 36, AC current detectors 37a to 37c, AC current detectors 38a to 38c, and AC voltage detection. And 39a to 39c and AC voltage detectors 40a to 40c.
  • the DC current detector 35 detects the DC current Idc output from the main circuit unit 30 and inputs the detected value of the DC current Idc to the upper control circuit 14.
  • the DC voltage detector 36 detects the DC voltage Vdc output from the main circuit unit 30.
  • the DC voltage detector 36 inputs the detected value of the DC voltage Vdc to the upper control circuit 14.
  • AC current detectors 37 a to 37 c detect the AC current Iaca of each phase on the secondary side of the transformer 32 and input the detected value of the AC current Iaca to the upper control circuit 14.
  • the AC current detectors 38 a to 38 c detect the AC current Iacb of each phase on the secondary side of the transformer 33 and input the detected value of the AC current Iacb to the upper control circuit 14.
  • AC voltage detectors 39 a to 39 c detect the AC voltage Vaca of each phase on the secondary side of the transformer 32 and input the detected value of the AC voltage Vaca to the upper control circuit 14.
  • the AC voltage detectors 40 a to 40 c detect the AC voltage Vacb of each phase on the secondary side of the transformer 33 and input the detected value of the AC voltage Vacb to the upper control circuit 14.
  • the alternating current detectors 37a to 37c and 38a to 38c may detect the alternating current on the primary side of the transformers 32 and 33.
  • the AC voltage detectors 39a to 39c and 40a to 40c may detect the AC voltage on the primary side of the transformers 32 and 33.
  • an AC current detector that detects an AC current on the primary side of each transformer 32, 33, an AC current detector that detects an AC current on the secondary side, and an AC voltage on the primary side of each transformer 32, 33 An AC voltage detector that detects the AC voltage and an AC voltage detector that detects an AC voltage on the secondary side may be provided.
  • FIG. 3 is a block diagram schematically illustrating the host control circuit according to the first embodiment.
  • the upper control circuit 14 is connected to each of the first control circuit 11, the second control circuit 12, and the third control circuit 13.
  • the upper control circuit 14 may be configured separately from the first to third control circuits 11 to 13. In other words, the upper control circuit 14 may be connected to each of the first to third control circuits 11 to 13 via wire or wirelessly.
  • the host control circuit 14 is configured to detect the detected values of the input AC currents Iaca, Iacb, AC voltages Vaca, Vacb, DC current Idc, and DC voltage Vdc, and start command and stop command, DC power command value, not shown, Based on the DC current command value, the DC voltage command value, etc., the respective converter arms U1, X1, U2, X2, the respective converter arms V1, Y1, V2, Y2, and the respective converter arms W1, Z1, W2 , A command (phase control pulse PHS) corresponding to the energization period of Z2 is output to the first control circuit 11, the second control circuit 12, and the third control circuit 13, respectively.
  • a command (phase control pulse PHS) corresponding to the energization period of Z2 is output to the first control circuit 11, the second control circuit 12, and the third control circuit 13, respectively.
  • the upper control circuit 14 includes a phase control circuit 14a and a failure detection circuit 14b.
  • the phase control circuit 14a generates the above-described phase control pulse PHS, and outputs the generated phase control pulse PHS to each of the first to third control circuits 11 to 13.
  • the first to third control circuits 11 to 13 transmit failure signals F1 to F3 of the respective control circuits to the failure detection circuit 14b.
  • the failure detection circuit 14b has a function of monitoring the operating states of the first to third control circuits 11 to 13 and determining whether or not a failure has occurred in the first to third control circuits 11 to 13.
  • the phase control circuit 14a is connected to the failure detection circuit 14b, and can output a phase control pulse PHS in response to the occurrence of a failure in the first to third control circuits 11 to 13.
  • FIG. 4 is a block diagram schematically showing the first to third control circuits according to the first embodiment.
  • the first control circuit 11 includes a first control power supply 11a, a first power failure detection circuit 11b, a first power failure compensation circuit 11c, a first gate pulse generation circuit 11d, and a first valve monitor.
  • a circuit 11e, a first pulse monitoring circuit 11f, and a first OR circuit 11g are included.
  • the first power failure detection circuit 11b, the first pulse monitoring circuit 11f, and the first OR circuit 11g constitute a first abnormality detection circuit that detects an abnormality of the first control circuit 11.
  • the first control power supply 11a supplies power to the first gate pulse generation circuit 11d and the first valve monitor circuit 11e.
  • the first power failure detection circuit 11b monitors the state of the first control power supply 11a. For example, when the first control power supply 11a fails and the output voltage is determined to be zero or below the threshold, the first control circuit 11 Judged as a power outage.
  • the first power failure compensation circuit 11c supplies power to the first gate pulse generation circuit 11d and the first valve monitor circuit 11e for a predetermined time when the first control circuit 11 fails. For example, a battery or a capacitor is used for the first power failure compensation circuit 11c.
  • the first valve monitor circuit 11e receives the valve monitor signals MU1, MX1, MU2, and MX2 from the first switching circuit 41, and applies them to the converter arms U1, X1, U2, and X2 of the first switching circuit 41 based on the signals. It is determined whether the applied voltage is a forward voltage or a reverse voltage, and the signal is transmitted to the first gate pulse generation circuit 11d.
  • the first gate pulse generating circuit 11d is based on the command (phase control pulse) from the higher control circuit 14 and the determination result (forward voltage or reverse voltage) by the first valve monitor circuit 11e. Gate pulses GU1, GX1, GU2, and GX2 are generated.
  • the first power failure detection circuit 11b outputs the output to the first OR circuit 11g when the first control circuit 11 determines that the power failure has occurred.
  • the first pulse monitoring circuit 11f monitors whether the first gate pulse generation circuit 11d is abnormal.
  • the first pulse monitoring circuit 11f is, for example, when the pulse width of the gate pulse GU1, GX1, GU2, or GX2 that is the output of the first gate pulse generating circuit 11d is not within a predetermined value, or during one cycle.
  • the first gate pulse generation circuit when the number of pulses is larger than a predetermined value, when the number of pulses is abnormal, when the pulse is not output for a predetermined period, or when the output value of the pulse is insufficient below the predetermined value. It is determined that 11d is abnormal.
  • the value of the pulse output is, for example, a voltage value when the pulse output is a voltage signal, and a light amount value when the pulse output is an optical signal.
  • the first power failure detection circuit 11b outputs an abnormal signal to the first OR circuit 11g when the first control circuit 11 determines that the power failure has occurred.
  • the first pulse monitoring circuit 11f determines that the first gate pulse generation circuit 11d is abnormal
  • the first pulse monitoring circuit 11f outputs an abnormality signal to the first OR circuit 11g.
  • the first OR circuit 11g receives either the abnormal signal from the first power failure detection circuit 11b or the abnormal signal from the first pulse monitoring circuit 11f
  • the first OR circuit 11g receives the failure signal F1 of the first control circuit 11. Output to the upper control circuit 14.
  • the second control circuit 12 includes a second control power supply 12a, a second power failure detection circuit 12b, a second power failure compensation circuit 12c, a second gate pulse generation circuit 12d, a second valve monitor circuit 12e, and a second pulse.
  • a monitoring circuit 12f and a second OR circuit 12g are included.
  • the second power failure detection circuit 12b, the second pulse monitoring circuit 12f, and the second OR circuit 12g constitute a second abnormality detection circuit that detects an abnormality of the second control circuit 12.
  • the operation of the second OR circuit 12g includes the first control power supply 11a, the first power failure detection circuit 11b, the first power failure compensation circuit 11c, the first gate pulse generation circuit 11d, and the first valve that constitute the first control circuit 11. The operation is the same as that of the monitor circuit 11e, the first pulse monitoring circuit 11f, and the first OR circuit 11g. The repeated description here is omitted.
  • the third control circuit 13 includes a third control power supply 13a, a third power failure detection circuit 13b, a third power failure compensation circuit 13c, a third gate pulse generation circuit 13d, a third valve monitor circuit 13e, and a third pulse.
  • a monitoring circuit 13f and a third OR circuit 13g are included.
  • the third power failure detection circuit 13b, the third pulse monitoring circuit 13f, and the third OR circuit 13g constitute a third abnormality detection circuit that detects an abnormality of the third control circuit 13.
  • the third OR circuit 13g operates in the first control power supply 11a, the first power failure detection circuit 11b, the first power failure compensation circuit 11c, the first gate pulse generation circuit 11d, and the first valve that constitute the first control circuit 11. The operation is the same as that of the monitor circuit 11e, the first pulse monitoring circuit 11f, and the first OR circuit 11g. The repeated description here is omitted.
  • the power failure compensation circuit is provided in each control circuit.
  • the power failure compensation circuit may be provided outside the control circuit.
  • control apparatus of the power converter device includes one control circuit for each set of a plurality of converter arms (a plurality of valves) connected in series, and further, for each aggregated control circuit.
  • a power failure compensation circuit is provided.
  • the power failure compensation circuit is provided for each control circuit.
  • the first switching circuit (R phase), the second switching circuit (S phase), and the third switching circuit (T phase) may be separated from each other for insulation. is there. Therefore, in the power conversion device, by providing a control circuit by physically dividing the first switching circuit (R phase), the second switching circuit (S phase), and the third switching circuit (T phase), the R phase It is possible to individually arrange control circuits in the vicinity of each of the S-phase and T-phase switching circuits. For this reason, the total length of the optical cable used between the AC / DC converter and the control circuit can be shortened. Furthermore, the maintenance unit can be minimized by providing a control circuit for each of the R phase, the S phase, and the T phase, and the maintenance time can be shortened by dividing the maintenance time.
  • three switching circuits and three control circuits have been described as examples in the case of three-phase alternating current.
  • two switching circuits are provided, and two control circuits are provided corresponding to the two switching circuits.
  • the control device 10 has a function of safely protecting and stopping the power conversion device when at least one of the first to third control circuits 11 to 13 fails. Specifically, the protection is stopped not by the gate shift (GS) operation but by the bypass pair (BPP) operation.
  • the bypass pair operation refers to an operation in which the high-pressure side valve and the low-pressure side valve connected to the same phase among the valves of the AC / DC converter are simultaneously conducted.
  • U1 and X1, U2 and X2 are each a bypass pair.
  • FIG. 5 is a block diagram schematically illustrating a part of the main circuit unit and the control device of the power conversion device according to the first embodiment.
  • the protection stop operation using the bypass pair according to the embodiment will be described with reference to FIGS. 4 and 5.
  • the first control power supply 11a of the first control circuit 11 fails and the first control circuit 11 fails.
  • the power failure occurs in the first control circuit 11
  • power is supplied from the first power failure compensation circuit 11c in the first control circuit 11
  • power is supplied from the first power failure compensation circuit 11c for a predetermined time.
  • the failure of the first control power supply 11a (the occurrence of a power failure in the first control circuit 11) is detected by the first power failure detection circuit 11b, passes through the first OR circuit 11g, and passes through the first control circuit 11.
  • the upper control circuit 14 Upon receiving this notification, the upper control circuit 14 immediately outputs a bypass pair command to one control circuit other than the first control circuit 11. Further, the output of the phase control pulse PHS is stopped with respect to the first control circuit 11 and the control circuit that has not output the bypass pair command.
  • the host control circuit 14 outputs a bypass pair command BP2 for setting the plurality of converter arms V1, Y1, V2, and Y2 to the bypass pair state to the second control circuit 12, and the first control circuit 11 and the first control circuit 11 3 The output of the phase control pulse PHS to the control circuit 13 is stopped.
  • the second control circuit 12 outputs the gate pulses GV1, GY1, GV2, and GY2 to the converter arms V1, Y1, V2, and Y2 constituting the second switching circuit 42 in accordance with the bypass pair command BP2.
  • Each gate pulse GV1, GY1, GV2, GY2 is output by the second gate pulse generation circuit 12d.
  • the upper control circuit 14 outputs the bypass pair command BP2 to the second control circuit 12, but the upper control circuit 14 Are used to output the gate pulses GV1, GY1, GV2, and GY2 so that the converter arms V1, Y1, V2, and Y2 are in a bypass pair state.
  • Such logic may be composed of the upper control circuit 14 and the second control circuit 12.
  • the protection gate output when the partial commutation failure of the gate pulse occurs This is because the function may be lost, and in some cases, the thyristor constituting the converter arm may be damaged. Therefore, if the converter arm is completely turned off even after a power failure, the possibility of damaging the thyristor constituting the converter arm can be reduced even if the protective gate output function is lost. For example, as long as the power failure compensation time, a half cycle of the system frequency may be ensured. The half-cycle time is, for example, about 10 milliseconds (ms) when the system frequency is 50 Hz.
  • the upper control circuit 14 outputs the bypass pair command BP2 to the second control circuit 12.
  • the host control circuit 14 outputs a bypass pair command BP3 to the third control circuit 13, and the host control circuit 14 The output of the phase control pulse PHS to the control circuit 12 may be stopped.
  • the second control circuit 12 or the third control circuit 13 fails.
  • the converter arms U1, X1, U2, and X2 are put into a bypass pair state.
  • the upper control circuit 14 outputs the bypass pair command BP1 to the first control circuit 11.
  • FIG. 6A and FIG. 6B are timing charts illustrating the protection stop operation of the power conversion device.
  • FIG. 6A is a timing chart showing the protection stop operation when the gate shift according to the reference example is used.
  • FIG. 6B is a timing chart showing a protection stop operation when the bypass pair according to the embodiment is used.
  • GS indicates gate shift.
  • GB indicates a gate block.
  • CBT indicates a CB (breaker) trip.
  • BPP indicates a bypass pair.
  • the protection stop operation when the protection stop operation is performed by “GS-GB-CBT”, it takes about T1 (ms) to complete the GS operation. That is, the power failure compensation time must be T1 (ms) or more. T1 depends on the inductance of the DC circuit and the gate shift phase, but is generally about 40 ms to 100 ms. In this case, it is necessary to secure at least 40 ms as a power failure compensation time.
  • the protection stop operation is performed by “BPP-CBT-GB”.
  • T2 is, for example, about 10 ms as a half cycle time with a system frequency of 50 Hz.
  • a power failure compensation time of 10 ms or more may be ensured. More preferably, it is good to set it as 20 ms or more including a margin.
  • the power failure compensation circuit is aggregated for each control circuit, and further, by adopting the protection stop operation using the bypass pair, compared with the protection stop operation using the gate shift, Since the protection stop operation can be performed quickly and the power failure compensation time can be shortened, the power failure compensation circuit can have a longer life and a smaller capacity.
  • the first gate pulse generation circuit 11d fails for some reason and cannot output the gate pulse GU1.
  • the abnormality (phase loss) of the first gate pulse generation circuit 11d is detected by the first pulse monitoring circuit 11f, and is transmitted to the first OR circuit 11g as an abnormality signal.
  • the abnormal signal is notified as a failure signal F1 from the first control circuit 11 to the upper control circuit 14 via the first OR circuit 11g.
  • the upper control circuit 14 Upon receiving this notification, the upper control circuit 14 immediately outputs a bypass pair command to one control circuit other than the first control circuit 11. Further, the output of the phase control pulse PHS is stopped with respect to the first control circuit 11 and the control circuit that has not output the bypass pair command.
  • the operation is the same as the operation assuming that the first control power supply 11a of the first control circuit 11 described above fails and the first control circuit 11 fails. Therefore, the description thereof is omitted here. In the case of this failure, not the power failure but the first control power supply 11a of the first gate pulse generation circuit 11d is maintained. For this reason, gate pulses other than the failed gate pulse GU1 can be output.
  • each of the first to third control circuits 11 to 13 includes the first to third power failure detection circuits 11b, 12b, 13b and the first to third power failure compensation circuits 11c, 12c. , 13c may not be provided.
  • the power failure detection circuit and the pulse monitoring circuit are provided in each of the first to third control circuits 11 to 13, but the failure detection circuit 14b includes the first to third controls. It suffices to detect which of the circuits 11 to 13 is abnormal. For this reason, a circuit for monitoring the failure of any of the first to third control circuits 11 to 13 may be provided on the higher control circuit 14 side.
  • FIG. 7 is a diagram illustrating the phase angle relationship of the converter arm according to the second embodiment.
  • the phases of the converter arms U2 and X2 are shifted by 30 ° with respect to the phases of the converter arms U1 and X1.
  • the phases of the converter arms V2, Y2 are shifted by 30 ° with respect to the phases of the converter arms V1, Y1.
  • the phases of the converter arms W2, Z2 are shifted by 30 ° with respect to the phases of the converter arms W1, Z1.
  • the converter arms U1 and X1, the converter arms V1 and Y1, and the converter arms W1 and Z1 are offset from each other by 120 °.
  • first control circuit 11 fails, bypass using a plurality of transducer arms (V1, Y1, V2, Y2, W1, Z1, W2, Z2) other than the plurality of transducer arms U1, X1, U2, and X2. Configure a pair.
  • second control circuit 12 fails, it is bypassed using a plurality of transducer arms (U1, X1, U2, X2, W1, Z1, W2, Z2) other than the plurality of transducer arms V1, Y1, V2, Y2. Configure a pair.
  • the third control circuit 13 fails, it is bypassed using a plurality of transducer arms (U1, X1, U2, X2, V1, Y1, V2, Y2) other than the plurality of transducer arms W1, Z1, W2, and Z2. Configure a pair.
  • FIG. 8 is a diagram illustrating combinations of bypass pairs according to the second embodiment. As shown in FIG. 8, there are four cases of combinations for each of the R phase, the S phase, and the T phase. That is, when the first control circuit 11 for the R phase fails, “V1, Y1, V2, Y2”, “V1, Y1, W2, Z2”, “W1, Z1, V2, Y2”, “W1, Z1” , W2, Z2 ". When the second control circuit 12 for S phase fails, “U1, X1, U2, X2”, “U1, X1, W2, Z2”, “W1, Z1, U2, X2”, “W1, Z1, W2” , Z2 ". When the T-phase third control circuit 13 fails, “U1, X1, U2, X2”, “U1, X1, V2, Y2”, “V1, Y1, U2, X2”, “V1, Y1, V2” , Y2 ".
  • the plurality of converters that output the gate pulse from the non-failed control circuit and have the control circuit failed it is possible to configure a bypass pair other than the arm. As a result, the AC / DC converter can be safely stopped without causing a failure of one control circuit throughout.

Abstract

実施形態によれば、他励式の電力変換装置の制御装置が提供される。電力変換装置は、第1、第2スイッチング回路を備え、交流電源から供給される交流電力を直流電力に変換し、直流電力を直流回路に供給する。第1スイッチング回路は、複数の第1変換器アームが直列接続される。第2スイッチング回路は、複数の第2変換器アームが直列接続される。制御装置は、第1、第2制御回路を備える。第1制御回路は、第1スイッチング回路と接続され複数の第1変換器アームのそれぞれのゲートパルスを制御する。第2制御回路は、第2スイッチング回路と接続され複数の第2変換器アームのそれぞれのゲートパルスを制御する。第1制御回路は、停電時に第1制御回路に所定時間電力を供給する第1停電補償回路を含む。第2制御回路は、停電時に第2制御回路に所定時間電力を供給する第2停電補償回路を含む。

Description

電力変換装置の制御装置
 本発明の実施形態は、電力変換装置の制御装置に関する。
 サイリスタ素子を用いた他励式の電力変換装置の保護停止には、例えば、「GS(Gate Shift)-GB(Gate Block)-CBT(Circuit Breaker Trip)」という手法が用いられる。HVDC(High Voltage Direct Current)などの直流送電方式においては、ゲートパルスを生成する制御装置が故障したときに、「GS-GB-CBT」を用いて電力変換装置を停止させる場合がある。GSとはサイリスタの点弧位相を90°以上にして電力変換装置をインバータ領域で運転させることである。GBとはゲートパルスを停止することである。CBTとは電力変換装置の交流側に接続される遮断器を解放することである。「GS-GB-CBT」とはGS後にGBを行いさらにCBTを行う一連の保護連動のことである。また、GSの代わりにBPP(バイパスペア)を用いて、保護停止させる手法がある。BPPとは電力変換器の変換器アームのうち、同じ相に接続されている高圧側アームと低圧側アームとを同時に導通させることである。
 GS期間は、一般的に、40ms~100ms程度であるが、例えば、制御装置の制御電源が喪失するような故障のときには、GS期間が完了するまで停電補償が行われている。停電補償は、電力変換装置全体として保護連動が完了するように制御装置のゲートパルス発生能力を維持する目的で行われる。このため、電力変換装置の制御装置は、制御回路を分割し停電補償回路を備えている。例えば、12個の変換器アーム(バルブ)を備えた12相の電力変換装置の構成であれば、12相の各アーム毎に、ゲートパルスを生成する制御回路が設けられる。つまり、12相の各相に停電補償回路が設けられている。このため、回路構成が複雑となり、制御装置が大型化する。このような制御装置においては、回路構成を簡素にすることが望まれている。
特開昭48-86034号公報 特開2008-228147号公報
 本発明の実施形態は、回路構成を簡素にできる電力変換装置の制御装置を提供する。
 本発明の実施形態によれば、他励式の電力変換装置の制御装置が提供される。前記電力変換装置は、第1スイッチング回路と、第2スイッチング回路と、を備える。前記第1スイッチング回路は、複数の第1変換器アームが直列接続される。前記第2スイッチング回路は、複数の第2変換器アームが直列接続される。前記第1スイッチング回路の一端と前記第2スイッチング回路の一端とが直流回路の高圧側と接続される。前記第1スイッチング回路の他端と前記第2スイッチング回路の他端とが前記直流回路の低圧側と接続される。前記電力変換装置は、交流電源から供給される交流電力を直流電力に変換し、前記直流電力を前記直流回路に供給する。前記制御装置は、第1制御回路と、第2制御回路と、を備える。前記第1制御回路は、前記第1スイッチング回路と接続され前記複数の第1変換器アームのそれぞれのゲートパルスを制御する。前記第2制御回路は、前記第2スイッチング回路と接続され前記複数の第2変換器アームのそれぞれのゲートパルスを制御する。前記第1制御回路は、第1停電補償回路を含む。前記第1停電補償回路は、前記第1制御回路の停電時に前記第1制御回路に所定時間電力を供給する。前記第2制御回路は、第2停電補償回路を含む。前記第2停電補償回路は、前記第2制御回路の停電時に前記第2制御回路に所定時間電力を供給する。
 本発明の実施形態によれば、回路構成を簡素にできる電力変換装置の制御装置を提供することができる。
第1の実施形態に係る電力変換装置の主回路部及び制御装置を模式的に表すブロック図である。 第1の実施形態に係る変換器アームを模式的に表すブロック図である。 第1の実施形態に係る上位制御回路を模式的に表すブロック図である。 第1の実施形態に係る第1~第3制御回路を模式的に表すブロック図である。 第1の実施形態に係る電力変換装置の主回路部及び制御装置の一部を模式的に表すブロック図である。 図6(a)及び図6(b)は、電力変換装置の保護停止動作を例示するタイミングチャート図である。 第2の実施形態に係る変換器アームの位相角の関係を例示する図である。 第2の実施形態に係るバイパスペアの組み合わせを例示する図である。
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る電力変換装置の主回路部及び制御装置を模式的に表すブロック図である。
 図1に表したように、制御装置10は、電力変換装置の主回路部30(以下、単に主回路部30という)と接続されている。主回路部30は、交流電源20及び直流回路50に接続されている。交流電源20は、例えば、三相交流電源である。交流電源20は、三相交流電力Pacを主回路部30に供給する。
 主回路部30は、交流電源20から供給された交流電力を直流電力に変換し、直流電力を直流回路50に供給する。主回路部30は、交流電力から直流電力への変換を行う。主回路部30は、他励式である。制御装置10は、主回路部30による電力の変換を制御する。
 直流回路50は、高圧側直流母線50Hと、低圧側直流母線50Lと、を含む。高圧側直流母線50Hは、例えば、海底ケーブルなどの直流ケーブルである。低圧側直流母線50Lは、ケーブル帰路でもよいし、大地帰路や海水帰路などでもよい。すなわち、低圧側直流母線50Lは、必要に応じて設けられ、省略可能である。
 主回路部30及び制御装置10は、例えば、直流送電システムに用いられる。直流送電システムにおいては、直流回路50の一端に主回路部30が接続され、直流回路50の他端に主回路部30と同様の変換装置が接続される。直流送電システムでは、主回路部30において交流電力から直流電力に変換し、反対側の変換装置において直流電力から交流電力に戻す。このように、直流送電システムでは、交流電力を直流電力に変換して送電を行い、直流電力を交流電力に再変換することにより、再変換後の交流電力を電力系統などに供給する。
 主回路部30は、交流遮断器31と、変圧器32、33と、直流リアクトル34と、第1スイッチング回路41と、第2スイッチング回路42と、第3スイッチング回路43と、を含む。これら第1スイッチング回路41、第2スイッチング回路42及び第3スイッチング回路43のそれぞれは、例えば、3相交流のR相、S相及びT相の交直変換器として機能する。第1スイッチング回路41では、複数の第1変換器アームU1、X1、U2、X2が直列に接続されている。第2スイッチング回路42では、複数の第2変換器アームV1、Y1、V2、Y2が直列に接続されている。第3スイッチング回路43では、複数の第3変換器アームW1、Z1、W2、Z2が直列に接続されている。ここで、第1~第3変換器アームの1つを単にバルブ(または変換器アーム)とも呼ぶ。つまり、1つのスイッチング回路においては、複数のバルブ(ここでは、4つのバルブまたは変換器アーム)が直列接続されている。
 第1スイッチング回路41の一端と、第2スイッチング回路42の一端と、第3スイッチング回路43の一端とは、直流回路50の高圧側と接続される。第1スイッチング回路41の他端と、第2スイッチング回路42の他端と、第3スイッチング回路43の他端とは、直流回路50の低圧側と接続される。
 変換器アームU1とX1、変換器アームV1とY1、及び、変換器アームW1とZ1は、ブリッジ接続される。変換器アームU2とX2、変換器アームV2とY2、及び、変換器アームW2とZ2は、ブリッジ接続される。さらに、これらの2つのブリッジは、カスケード接続されている。
 交流遮断器31は、交流電源20と主回路部30との間に設けられている。交流遮断器31は、交流電源20と主回路部30とを遮断する。
 変圧器32は、一次巻線32aと、二次巻線32bと、を含む。変圧器33は、一次巻線33aと、二次巻線33bと、を含む。変圧器32、33の一次巻線32a、33aのそれぞれは、交流遮断器31を介して交流電源20に接続されている。変圧器32の二次巻線32bは、変換器アームU1と変換器アームX1との間の交流接続点、変換器アームV1と変換器アームY1との間の交流接続点、及び、変換器アームW1と変換器アームZ1との間の交流接続点に接続されている。変圧器33の二次巻線33bは、変換器アームU2と変換器アームX2との間の交流接続点、変換器アームV2と変換器アームY2との間の交流接続点、及び、変換器アームW2と変換器アームZ2との間の交流接続点に接続されている。これにより、変圧器32、33で変圧された交流電力が、第1スイッチング回路41、第2スイッチング回路42及び第3スイッチング回路43のそれぞれの交流接続点に供給される。
 この例において、変圧器32、33は、三相変圧器である。変圧器32の一次巻線32aは、Y接続されている。変圧器32の二次巻線32bは、Y接続されている。変圧器33の一次巻線33aは、Y接続されている。変圧器33の二次巻線33bは、△接続されている。従って、変換器アームU2、X2と、変換器アームV2、Y2と、変換器アームW2、Z2とに供給される交流電力の位相は、変換器アームU1、X1と、変換器アームV1、Y1と、変換器アームW1、Z1とに供給される交流電力の位相に対して30°ずれる。なお、三相変圧器は、3つの単相の変圧器を用いて構成するようにしてもよい。あるいは、三相変圧器は、三次巻線を有する三巻線変圧器であってもよい。
 第1スイッチング回路41、第2スイッチング回路42及び第3スイッチング回路43の高圧側の直流出力点は、直流リアクトル34に接続され、直流リアクトル34を介して直流回路50の高圧側直流母線50Hに接続されている。第1スイッチング回路41、第2スイッチング回路42及び第3スイッチング回路43の低圧側の直流出力点は、直流回路50の低圧側直流母線50Lに接続されている。
 この例において、主回路部30は、12相の整流回路である。主回路部30及び制御装置10は、第1スイッチング回路41、第2スイッチング回路42及び第3スイッチング回路43のスイッチングを制御することにより、交流電源20から供給された交流電力を直流電力に変換する。主回路部30は、高圧側直流母線50Hと低圧側直流母線50Lとの間に直流電圧を印加する。
 なお、主回路部30は、12相の整流回路に限ることなく、6相の整流回路でもよい。さらには、24相、36相、48相などのより多相の整流回路でもよい。また、交流電源20の交流電力は、例えば、単相交流電力でもよい。
 実施形態に係る制御装置10は、第1制御回路11と、第2制御回路12と、第3制御回路13と、上位制御回路14と、を含む。第1制御回路11は、例えば、R相用である。第2制御回路12は、例えば、S相用である。第3制御回路13は、例えば、T相用である。第1制御回路11からは、光ケーブルを介して第1スイッチング回路41へゲートパルスGU1、GX1、GU2、GX2が伝送される。第1制御回路11は、複数の変換器アームU1、X1、U2、X2(R相)のそれぞれのゲートパルスGU1、GX1、GU2、GX2を制御する。
 また、各変換器アームU1、X1、U2、X2からは、光ケーブルを介して各バルブが順方向に電圧が印加されているか、あるいは、逆方向に電圧が印加されているかを示すバルブモニタ信号MU1、MX1、MU2、MX2が第1制御回路11に送信される。
 第2制御回路12からは、光ケーブルを介して第2スイッチング回路42へゲートパルスGV1、GY1、GV2、GY2が伝送される。第2制御回路12は、複数の変換器アームV1、Y1、V2、Y2(S相)のそれぞれのゲートパルスGV1、GY1、GV2、GY2を制御する。
 また、各変換器アームV1、Y1、V2、Y2からは、光ケーブルを介して各バルブが順方向に電圧が印加されているか、あるいは、逆方向に電圧が印加されているかを示すバルブモニタ信号MV1、MY1、MV2、MY2が第2制御回路12に送信される。
 第3制御回路13からは、光ケーブルを介して第3スイッチング回路43へゲートパルスGW1、GZ1、GW2、GZ2が伝送される。第3制御回路13は、複数の変換器アームW1、Z1、W2、Z2(T相)のそれぞれのゲートパルスGW1、GZ1、GW2、GZ2を制御する。
 また、各変換器アームW1、Z1、W2、Z2からは、光ケーブルを介して各バルブが順方向に電圧が印加されているか、あるいは、逆方向に電圧が印加されているかを示すバルブモニタ信号MW1、MZ1、MW2、MZ2が第3制御回路13に送信される。
 図2は、第1の実施形態に係る第1変換器アームU1を模式的に表すブロック図である。
 図2に表したように、変換器アームU1は、例えば、複数のサイリスタTH1~TH7と、複数の抵抗RS1~RS7と、複数のコンデンサC1~C7と、複数の分圧抵抗RD1~RD7と、リアクトルAL1、AL2と、を含む。第1変換器アームU1は、降圧側の端子Kと、低圧側の端子Aと、を含む。なお、他の変換器アームX1、U2、X2、変換器アームV1、Y1、V2、Y2、変換器アームW1、Z1、W2、Z2の構成は、変換器アームU1の構成と実質的に同じである。これらについての詳細な説明は省略する。
 各サイリスタTH1~TH7のそれぞれは、端子Kと端子Aとの間で直列に接続されている。この例では、7つのサイリスタTH1~TH7が直列に接続されている。サイリスタの数は、7つ以下でもよいし、8つ以上でもよい。サイリスタは、1つでもよい。直列に接続するサイリスタの数は、印加される電圧値などに応じて適宜設定すればよい。
 リアクトルAL1は、直列に接続された各サイリスタTH1~TH7の一端に接続されている。この例では、リアクトルAL1は、端子KとサイリスタTH7のカソード端子との間に接続されている。リアクトルAL2は、直列に接続された各サイリスタTH1~TH7の他端に接続されている。この例では、リアクトルAL2は、サイリスタTH1のアノード端子と端子Aとの間に接続されている。なお、リアクトルなどの回路構成や接続位置などは、本例に限定されない。
 抵抗RS1は、コンデンサC1と直列に接続されている。抵抗RS1及びコンデンサC1は、サイリスタTH1と並列に接続されている。抵抗RS1及びコンデンサC1は、サイリスタTH1に対して、いわゆるスナバ回路を形成する。
 同様に、サイリスタTH2には、抵抗RS2及びコンデンサC2を含むスナバ回路が並列に接続される。サイリスタTH3には、抵抗RS3及びコンデンサC3を含むスナバ回路が並列に接続される。サイリスタTH4には、抵抗RS4及びコンデンサC4を含むスナバ回路が並列に接続される。サイリスタTH5には、抵抗RS5及びコンデンサC5を含むスナバ回路が並列に接続される。サイリスタTH6には、抵抗RS6及びコンデンサC6を含むスナバ回路が並列に接続される。サイリスタTH7には、抵抗RS7及びコンデンサC7を含むスナバ回路が並列に接続される。
 各分圧抵抗RD1~RD7は、各スナバ回路に並列に接続されている。各分圧抵抗RD1~RD7は、直流成分の分圧抵抗である。各分圧抵抗RD1~RD7は、例えば、各サイリスタTH1~TH7の順方向または逆方向の電圧を検出するバルブ電圧検出回路(図示せず)の電流制限抵抗等にも用いられる。本図では図示されないが、バルブ電圧検出回路の出力は、バルブモニタ信号MU1として第1制御回路11へ光ケーブル等を使用して送信される。
 各サイリスタTH1~TH7は、ゲート用ライトガイドG11~G17(光ファイバ)を有する。ゲート用ライトガイドG11~G17は、ゲートパルスGU1を伝送する光ケーブルである。ゲート用ライトガイドG11~G17は、サイリスタTH1~TH7のゲートに光信号を入力する。各サイリスタTH1~TH7は、光信号の入力に応じて点弧(ターンオン)する。すなわち、各サイリスタTH1~TH7は、光サイリスタである。
 各ゲート用ライトガイドG11~G17は、第1制御回路11に接続されている。第1制御回路11は、各ゲート用ライトガイドG11~G17を介して各サイリスタTH1~TH7のゲートにパルス状の光信号をゲートパルスGU1として入力する。これにより、各サイリスタTH1~TH7を点弧させる。第1制御回路11は、各サイリスタTH1~TH7に実質的に同時にパルス状の光信号を入力する。各サイリスタTH1~TH7は、実質的に同時に点弧する。これにより、変換器アームU1が、オン状態(導通状態)になる。
 このように、第1制御回路11は、光信号の入力により、変換器アームU1のオンタイミングを制御する。第1制御回路11は、変換器アームU1、X1、U2、X2毎にゲートパルスである光信号を生成し、それぞれのオンタイミングを制御する。
 この例では、各サイリスタTH1~TH7に光サイリスタを用いている。各サイリスタTH1~TH7は、光サイリスタに限ることなく、ゲートに電気信号を入力することによって点弧するサイリスタでもよい。また、スイッチング素子は、サイリスタに限ることなく、他の他励式のスイッチング素子でもよい。
 図2では、変換器アームU1について説明したが、他の変換器アームX1、U2、X2、変換器アームV1、Y1、V2、Y2、変換器アームW1、Z1、W2、Z2についても同様であるため、説明及び図示は省略する。
 さらに、図1に表すように、主回路部30は、直流電流検出器35と、直流電圧検出器36と、交流電流検出器37a~37cと、交流電流検出器38a~38cと、交流電圧検出器39a~39cと、交流電圧検出器40a~40cと、をさらに含む。
 直流電流検出器35は、主回路部30から出力される直流電流Idcを検出し、直流電流Idcの検出値を上位制御回路14に入力する。直流電圧検出器36は、主回路部30から出力される直流電圧Vdcを検出する。直流電圧検出器36は、直流電圧Vdcの検出値を上位制御回路14に入力する。
 交流電流検出器37a~37cは、変圧器32の二次側の各相の交流電流Iacaを検出し、交流電流Iacaの検出値を上位制御回路14に入力する。交流電流検出器38a~38cは、変圧器33の二次側の各相の交流電流Iacbを検出し、交流電流Iacbの検出値を上位制御回路14に入力する。
 交流電圧検出器39a~39cは、変圧器32の二次側の各相の交流電圧Vacaを検出し、交流電圧Vacaの検出値を上位制御回路14に入力する。交流電圧検出器40a~40cは、変圧器33の二次側の各相の交流電圧Vacbを検出し、交流電圧Vacbの検出値を上位制御回路14に入力する。
 なお、各交流電流検出器37a~37c、38a~38cは、各変圧器32、33の一次側の交流電流を検出してもよい。各交流電圧検出器39a~39c、40a~40cは、各変圧器32、33の一次側の交流電圧を検出してもよい。例えば、各変圧器32、33の一次側の交流電流を検出する交流電流検出器と、二次側の交流電流を検出する交流電流検出器と、各変圧器32、33の一次側の交流電圧を検出する交流電圧検出器と、二次側の交流電圧を検出する交流電圧検出器と、をそれぞれ設けてもよい。
 図3は、第1の実施形態に係る上位制御回路を模式的に表すブロック図である。
 図3に表すように、上位制御回路14は、第1制御回路11、第2制御回路12及び第3制御回路13のそれぞれと接続されている。上位制御回路14は、第1~第3制御回路11~13と別体で構成されていてもよい。すなわち、上位制御回路14は、第1~第3制御回路11~13のそれぞれと有線または無線を介して接続されていてもよい。
 上位制御回路14は、入力された交流電流Iaca、Iacb、交流電圧Vaca、Vacb、直流電流Idc及び直流電圧Vdcのそれぞれの検出値及び図示されていない、起動指令や停止指令、直流電力指令値、直流電流指令値、直流電圧指令値等に基づき、それに応じた各変換器アームU1、X1、U2、X2、各変換器アームV1、Y1、V2、Y2、及び各変換器アームW1、Z1、W2、Z2の通電期間に相当する指令(位相制御パルスPHS)を、第1制御回路11、第2制御回路12及び第3制御回路13にそれぞれに出力する。
 上位制御回路14は、位相制御回路14aと、故障検出回路14bと、を含む。位相制御回路14aは、上記の位相制御パルスPHSを生成し、生成した位相制御パルスPHSを、第1~第3制御回路11~13のそれぞれに対して出力する。第1~第3制御回路11~13は、故障が発生した場合に、各々の制御回路の故障信号F1~F3を故障検出回路14bに送信する。故障検出回路14bは、第1~第3制御回路11~13の動作状態を監視し、第1~第3制御回路11~13に故障が発生したか否かを判定する機能を備える。位相制御回路14aは、故障検出回路14bと接続されており、第1~第3制御回路11~13の故障の発生に応じて位相制御パルスPHSを出力することができる。
 図4は、第1の実施形態に係る第1~第3制御回路を模式的に表すブロック図である。
 図4に表すように、第1制御回路11は、第1制御電源11aと、第1停電検出回路11bと、第1停電補償回路11cと、第1ゲートパルス発生回路11dと、第1バルブモニタ回路11eと、第1パルス監視回路11fと、第1論理和回路11gと、を含む。第1停電検出回路11b、第1パルス監視回路11f及び第1論理和回路11gは、第1制御回路11の異常を検出する第1異常検出回路を構成する。
 第1制御電源11aは、第1ゲートパルス発生回路11d及び第1バルブモニタ回路11eに電源を供給する。第1停電検出回路11bは、第1制御電源11aの状態を監視し、例えば、第1制御電源11aが故障し、その出力電圧がゼロまたは閾値以下と判定した場合に、第1制御回路11が停電状態と判定する。第1停電補償回路11cは、第1制御回路11の停電時に第1ゲートパルス発生回路11d及び第1バルブモニタ回路11eに所定時間電力を供給する。第1停電補償回路11cには、例えば、バッテリや、コンデンサなどが用いられる。
 図2で図示を省略したバルブ電圧検出回路からの出力であるバルブモニタ信号MU1、MX1、MU2、MX2は、第1スイッチング回路41を構成する各変換器アームU1、X1、U2、X2から出力される。第1バルブモニタ回路11eは、第1スイッチング回路41からバルブモニタ信号MU1、MX1、MU2、MX2を受信し、その信号に基づき第1スイッチング回路41の変換器アームU1、X1、U2、X2に印加されている電圧が順電圧であるか逆電圧であるかを判定し、その信号を第1ゲートパルス発生回路11dに送信する。
 第1ゲートパルス発生回路11dは、上位制御回路14からの指令(位相制御パルス)と、第1バルブモニタ回路11eによる判定結果(順電圧または逆電圧)と、に基づいて、第1スイッチング回路41に与えるゲートパルスGU1、GX1、GU2、GX2を発生させる。
 第1停電検出回路11bは、第1制御回路11が停電状態と判定するとその出力を第1論理和回路11gに出力する。
 第1パルス監視回路11fは、第1ゲートパルス発生回路11dの異常の有無を監視する。第1パルス監視回路11fは、例えば、第1ゲートパルス発生回路11dの出力であるゲートパルスGU1、GX1、GU2、GX2のパルス幅が所定値以内に無いパルス幅異常の場合や、1サイクル中のパルスの数が所定値より大きいパルス数異常の場合や、パルスが所定期間出力されない欠相の場合や、パルスの出力の値が所定値より不足する出力不足の場合に、第1ゲートパルス発生回路11dが異常と判定する。パルス出力の値は、例えば、パルス出力が電圧信号のときには電圧値であり、パルス出力が光信号のときには光量値である。
 第1停電検出回路11bは、第1制御回路11が停電状態と判定するとその出力を第1論理和回路11gに異常信号を出力する。第1パルス監視回路11fは、第1ゲートパルス発生回路11dが異常と判断すると、その出力を第1論理和回路11gに異常信号を出力する。第1論理和回路11gは、第1停電検出回路11bからの異常信号または第1パルス監視回路11fからの異常信号のどちらかを一方でも受信した場合は、第1制御回路11の故障信号F1を上位制御回路14に出力する。
 第2制御回路12は、第2制御電源12aと、第2停電検出回路12bと、第2停電補償回路12cと、第2ゲートパルス発生回路12dと、第2バルブモニタ回路12eと、第2パルス監視回路12fと、第2論理和回路12gと、を含む。第2停電検出回路12b、第2パルス監視回路12f及び第2論理和回路12gは、第2制御回路12の異常を検出する第2異常検出回路を構成する。
 第2制御回路12を構成する第2制御電源12a、第2停電検出回路12b、第2停電補償回路12c、第2ゲートパルス発生回路12d、第2バルブモニタ回路12e、第2パルス監視回路12f、及び第2論理和回路12gの動作は、第1制御回路11を構成する第1制御電源11a、第1停電検出回路11b、第1停電補償回路11c、第1ゲートパルス発生回路11d、第1バルブモニタ回路11e、第1パルス監視回路11f、及び第1論理和回路11gの動作と同様である。ここでの繰り返しの説明を省略する。
 第3制御回路13は、第3制御電源13aと、第3停電検出回路13bと、第3停電補償回路13cと、第3ゲートパルス発生回路13dと、第3バルブモニタ回路13eと、第3パルス監視回路13fと、第3論理和回路13gと、を含む。第3停電検出回路13b、第3パルス監視回路13f及び第3論理和回路13gは、第3制御回路13の異常を検出する第3異常検出回路を構成する。
 第3制御回路13を構成する第3制御電源13a、第3停電検出回路13b、第3停電補償回路13c、第3ゲートパルス発生回路13d、第3バルブモニタ回路13e、第3パルス監視回路13f、及び第3論理和回路13gの動作は、第1制御回路11を構成する第1制御電源11a、第1停電検出回路11b、第1停電補償回路11c、第1ゲートパルス発生回路11d、第1バルブモニタ回路11e、第1パルス監視回路11f、及び第1論理和回路11gの動作と同様である。ここでの繰り返しの説明を省略する。
 なお、実施形態においては、各制御回路内に停電補償回路を備える構成としたが、制御回路の外部に停電補償回路を備える構成としてもよい。
 このように、実施形態に係る電力変換装置の制御装置は、直列接続された複数の変換器アーム(複数のバルブ)1セット毎に1つの制御回路を備え、さらに、集約された制御回路毎に停電補償回路を備えている。すなわち、停電補償回路が制御回路毎に集約して設けられている。これにより、制御装置の回路構成を簡素にすることができる。
 さらに、大容量の電力変換装置では、第1スイッチング回路(R相)と、第2スイッチング回路(S相)と、第3スイッチング回路(T相)と、が絶縁のためそれぞれ離隔されることがある。そこで、電力変換装置では、第1スイッチング回路(R相)、第2スイッチング回路(S相)、第3スイッチング回路(T相)毎に物理的に分割して制御回路を設けることで、R相、S相、T相のスイッチング回路のそれぞれの近くに個別に制御回路を配置することが可能となる。このため、交直変換器と制御回路との間に用いる光ケーブルの合計長を短くすることができる。
 さらに、制御回路を、R相、S相、T相毎に設けることで、メンテナンス単位を最小化でき、メンテナンス時間を短く分割することにより、メンテナンス時間の短縮を図ることができる。
 実施形態においては、三相交流の場合で3つのスイッチング回路及び3つの制御回路を例示して説明した。実施形態としては、少なくとも2つのスイッチング回路が直流回路に並列に接続されていて、それに対応して2つの制御回路を備えていればよい。例えば、単相交流で、フルブリッジの整流回路を用いた場合には、2つのスイッチング回路が設けられ、2つのスイッチング回路に対応して2つの制御回路が設けられる。
 ここで、制御装置10は、第1~第3制御回路11~13の少なくともいずれか1つが停電したときに、電力変換装置を安全に保護停止させる機能を有する。具体的には、ゲートシフト(GS)動作ではなく、バイパスペア(BPP)動作により保護停止を行う。バイパスペア動作とは、交直変換器のバルブのうち、同じ相に接続されている高圧側バルブと低圧側バルブとを同時に導通させる動作のことをいう。第1スイッチング回路41の場合、例えば、U1とX1、U2とX2、がそれぞれバイパスペアとなる。
 図5は、第1の実施形態に係る電力変換装置の主回路部及び制御装置の一部を模式的に表すブロック図である。
 以下、実施形態に係るバイパスペアを用いた保護停止動作について、図4及び図5に基づいて説明する。
 図4及び図5において、例えば、第1制御回路11の第1制御電源11aが故障し、第1制御回路11が停電することを想定する。第1制御回路11が停電すると、第1制御回路11内では、電源が第1停電補償回路11cから供給されるようになり、第1停電補償回路11cから所定時間電力が供給される。第1制御電源11aが故障したこと(第1制御回路11内で停電が起きたこと)は、第1停電検出回路11bで検出され、第1論理和回路11gを経由し、第1制御回路11から上位制御回路14に故障信号F1として通知される。
 この通知を受けた上位制御回路14は、直ちに、第1制御回路11以外の1つの制御回路に対し、バイパスペア指令を出力する。また、第1制御回路11及びバイパスぺア指令を出力していない制御回路に対して位相制御パルスPHSの出力を停止する。
 例えば、上位制御回路14は、第2制御回路12に対して、複数の変換器アームV1、Y1、V2、Y2をバイパスペア状態にするバイパスペア指令BP2を出力し、第1制御回路11及び第3制御回路13への位相制御パルスPHSの出力を停止する。
 第2制御回路12は、バイパスペア指令BP2に従って、第2スイッチング回路42を構成する各変換器アームV1、Y1、V2、Y2に対して、各ゲートパルスGV1、GY1、GV2、GY2を出力する。各ゲートパルスGV1、GY1、GV2、GY2は、第2ゲートパルス発生回路12dにより出力される。なお、ここでは、変換器アームV1、Y1、V2、Y2をバイパスペア状態にするために、上位制御回路14から第2制御回路12に対し、バイパスペア指令BP2を出力したが、上位制御回路14から第2制御回路12に対して出力する位相制御信号PHSを使用し、変換器アームV1、Y1、V2、Y2がバイパスペア状態になるように各ゲートパルスGV1、GY1、GV2、GY2が出力されるようなロジックを上位制御回路14及び第2制御回路12で構成してもよい。
 第1制御回路11が停電し、第1停電補償回路11cから第1制御回路11に電力が供給される所定時間、すなわち、停電補償時間は、バイパスペア指令BP2が出力されてから、バイパスペア指令BP2が与えられていない別の変換器アーム(例えば、U1、X1、U2、X2、W1、Z1、W2、Z2など)が正常にターンオフするまでの時間以上確保されていればよい。停電により、第1制御回路11の第1ゲートパルス発生回路11dのゲートパルス発生機能が喪失する。このとき、変換器アームU1、X1、U2、X2及び変換器アームW1、Z1、W2、Z2の中に通電中のアームがあった場合、ゲートパルスの有する部分転流失敗発生時の保護ゲート出力機能が喪失し、場合によっては変換器アームを構成するサイリスタの破損に至る可能性があるからである。したがって、停電しても変換器アームが完全にターンオフした後であれば、たとえ保護ゲート出力機能が失われたとしても、変換器アームを構成するサイリスタを破損させる可能性を低減できる。例えば、停電補償時間として、系統周波数の半サイクル分確保されていればよい。半サイクル分の時間とは、例えば、系統周波数が50Hzのときに、10ミリ秒(ms)程度である。
 なお、ここでは、第1制御回路11の第1制御電源11aが故障し、第1制御回路11が停電することを想定し、変換器アームV1、Y1、V2、Y2をバイパスペア状態にするために上位制御回路14から第2制御回路12に対しバイパスペア指令BP2を出力するようにした。これの代わりに、変換器アームW1、Z1、W2、Z2をバイパスペア状態にするために上位制御回路14から第3制御回路13に対しバイパスペア指令BP3を出力し、上位制御回路14から第2制御回路12に対する位相制御パルスPHSの出力を停止してもよい。
 第2制御回路12または第3制御回路13が停電した場合も同様である。例えば、変換器アームU1、X1、U2、X2をバイパスペア状態にする。この場合、上位制御回路14から第1制御回路11に対しバイパスペア指令BP1を出力する。
 図6(a)及び図6(b)は、電力変換装置の保護停止動作を例示するタイミングチャート図である。
 図6(a)は、参考例に係るゲートシフトを用いた場合の保護停止動作を示すタイミングチャート図である。
 図6(b)は、実施形態に係るバイパスペアを用いた場合の保護停止動作を示すタイミングチャート図である。
 図中、GSはゲートシフトを示す。GBはゲートブロックを示す。CBTはCB(遮断器)トリップを示す。BPPはバイパスペアを示す。
 図6(a)に表すように、「GS-GB-CBT」により保護停止動作を行う場合、GS動作の完了にはT1(ms)程度の時間を要する。つまり、停電補償時間としては、T1(ms)以上を確保しなくてはならない。T1は、直流回路のインダクタンスやゲートシフト位相に依存するが、一般的に、40ms~100ms程度である。この場合、停電補償時間として、少なくとも40ms以上を確保しなくてはならない。
 これに対して、実施形態によれば、図6(b)に表すように、「BPP-CBT-GB」により保護停止動作を行う。この場合、BPP動作の完了にはT1よりも短いT2(ms)の時間ですむ。つまり、停電補償時間としては、T2(ms)以上確保出来ればよい。T2は、例えば、系統周波数が50Hzの半サイクル分の時間として、10ms程度である。この場合、停電補償時間として、10ms以上を確保すればよい。より望ましくは、マージンを含め、例えば、20ms以上とするのが良い。
 このように、実施形態によれば、停電補償回路を制御回路毎に集約して備え、さらに、バイパスペアを用いた保護停止動作を採用することにより、ゲートシフトを用いた保護停止動作と比べ、保護停止動作を迅速に実施することができ、さらに、停電補償時間を短くできるため、停電補償回路を長寿命化、小容量化することが可能となる。
(第2の実施形態)
 第1の実施形態においては、第1~第3制御回路11~13の少なくとも1つの制御電源が喪失した場合について説明した。
 次に、第1~第3制御回路11~13の少なくとも1つが故障しゲートパルスを出力できない場合について説明する。
 ここで、図4、図5において、第1ゲートパルス発生回路11dが何らかの原因で故障し、ゲートパルスGU1を出力することができない場合を想定する。この場合、第1ゲートパルス発生回路11dの異常(欠相)は、第1パルス監視回路11fで検出され、異常信号として第1論理和回路11gに送信される。異常信号は、第1論理和回路11gを経由し第1制御回路11から上位制御回路14に故障信号F1として通知される。
 この通知を受けた上位制御回路14は、直ちに、第1制御回路11以外の1つの制御回路に対して、バイパスペア指令を出力する。また、第1制御回路11及びバイパスぺア指令を出力していない制御回路に対して位相制御パルスPHSの出力を停止する。
 以下、先に述べた第1制御回路11の第1制御電源11aが故障し、第1制御回路11が停電することを想定した動作と同様であるので、ここでの説明は省略する。
 尚、本故障の場合、停電ではなく、第1ゲートパルス発生回路11dの第1制御電源11aは維持される。このため、故障したゲートパルスGU1以外のゲートパルスは出力可能な状態である。このような故障のみを想定した場合は、第1~第3制御回路11~13のそれぞれは、第1~第3停電検出回路11b、12b、13b及び第1~第3停電補償回路11c、12c、13cを備えていなくてもよい。
 なお、停電検出回路やパルス監視回路は、本実施形態では、第1~第3制御回路11~13のそれぞれの中に設けられているが、故障検出回路14bとしては、第1~第3制御回路11~13のどの回路で異常が起きたかを検出できれば良い。このため、上位制御回路14側で何らかの第1~第3制御回路11~13の故障監視を行う回路を設けることでもよい。
 図7は、第2の実施形態に係る変換器アームの位相角の関係を例示する図である。
 図7に表すように、第1スイッチング回路41の場合、変換器アームU2、X2の位相は、変換器アームU1、X1の位相に対して30°ずれる。第2スイッチング回路42の場合、変換器アームV2、Y2の位相は、変換器アームV1、Y1の位相に対して30°ずれる。第3スイッチング回路43の場合、変換器アームW2、Z2の位相は、変換器アームW1、Z1の位相に対して30°ずれる。変換器アームU1、X1と、変換器アームV1、Y1と、変換器アームW1、Z1と、はそれぞれ120°ずれている。
 第1制御回路11が故障した場合、複数の変換器アームU1、X1、U2、X2以外の複数の変換器アーム(V1、Y1、V2、Y2、W1、Z1、W2、Z2)を用いてバイパスペアを構成する。第2制御回路12が故障した場合、複数の変換器アームV1、Y1、V2、Y2以外の複数の変換器アーム(U1、X1、U2、X2、W1、Z1、W2、Z2)を用いてバイパスペアを構成する。第3制御回路13が故障した場合、複数の変換器アームW1、Z1、W2、Z2以外の複数の変換器アーム(U1、X1、U2、X2、V1、Y1、V2、Y2)を用いてバイパスペアを構成する。
 図8は、第2の実施形態に係るバイパスペアの組み合わせを例示する図である。
 図8に表すように、R相、S相、T相毎に4ケースずつの組み合わせがある。つまり、R相用の第1制御回路11が故障した場合、「V1、Y1、V2、Y2」、「V1、Y1、W2、Z2」、「W1、Z1、V2、Y2」、「W1、Z1、W2、Z2」の4ケースとなる。S相用の第2制御回路12が故障した場合、「U1、X1、U2、X2」、「U1、X1、W2、Z2」、「W1、Z1、U2、X2」、「W1、Z1、W2、Z2」の4ケースとなる。T相用の第3制御回路13が故障した場合、「U1、X1、U2、X2」、「U1、X1、V2、Y2」、「V1、Y1、U2、X2」、「V1、Y1、V2、Y2」の4ケースとなる。
 このように、実施形態においては、第1~第3制御回路11~13のいずれかが故障した場合でも、故障していない制御回路からゲートパルスを出力し、制御回路が故障した複数の変換器アーム以外でバイパスペアを構成させることが可能となる。これにより、1つの制御回路の故障が全体に波及することなく、交直変換器を安全に停止させることができる。
 実施形態によれば、回路構成を簡素にできる電力変換装置の制御装置が提供できる。
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、第1制御回路、第1停電補償回路、第2制御回路、第2停電補償回路、第3制御回路及び第3停電補償回路などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
 その他、本発明の実施の形態として上述した電力変換装置の制御装置を基にして、当業者が適宜設計変更して実施し得る全ての電力変換装置の制御装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1.  複数の第1変換器アームを直列接続して構成する第1スイッチング回路と、複数の第2変換器アームを直列接続して構成する第2スイッチング回路と、を備え、前記第1スイッチング回路の一端と前記第2スイッチング回路の一端とが直流回路の高圧側に接続され、前記第1スイッチング回路の他端と前記第2スイッチング回路の他端とが前記直流回路の低圧側に接続され、交流電源から供給される交流電力を直流電力に変換し、前記直流電力を前記直流回路に供給する他励式の電力変換装置の制御装置であって、
     前記第1スイッチング回路を構成する前記複数の第1変換器アームのそれぞれのゲートパルスを制御する第1制御回路と、
     前記第2スイッチング回路を構成する前記複数の第2変換器アームのそれぞれのゲートパルスを制御する第2制御回路と、
     を備え、
     前記第1制御回路は、前記第1制御回路の停電時に前記第1制御回路に所定時間電力を供給する第1停電補償回路を含み、
     前記第2制御回路は、前記第2制御回路の停電時に前記第2制御回路に所定時間電力を供給する第2停電補償回路を含む電力変換装置の制御装置。
  2.  前記電力変換装置は、複数の第3変換器アームを直列接続して構成する第3スイッチング回路をさらに備え、
     前記第3スイッチング回路は、一端が前記直流回路の前記高圧側に接続され、他端が前記直流回路の前記低圧側に接続され、
     前記制御装置は、前記第3スイッチング回路を構成する前記複数の第3変換器アームのそれぞれのゲートパルスを制御する第3制御回路をさらに備え、
     前記第3制御回路は、前記第3制御回路の停電時に前記第3制御回路に所定時間電力を供給する第3停電補償回路を含む請求項1記載の電力変換装置の制御装置。
  3.  前記第1制御回路、前記第2制御回路及び前記第3制御回路のそれぞれと接続された上位制御回路と、
     前記第1制御回路の異常を検出する第1異常検出回路と、
     前記第2制御回路の異常を検出する第2異常検出回路と、
     前記第3制御回路の異常を検出する第3異常検出回路と、
     をさらに備え、
     前記上位制御回路は、正常時において、前記第1スイッチング回路を構成する前記複数の第1変換器アームのそれぞれの位相制御パルスを前記第1制御回路へ出力し、前記第2スイッチング回路を構成する前記複数の第2変換器アームのそれぞれの位相制御パルスを前記第2制御回路へ出力し、前記第3スイッチング回路を構成する前記複数の第3変換器アームのそれぞれの位相制御パルスを前記第3制御回路へ出力し、
     前記上位制御回路は、前記第1異常検出回路からの信号を受信した場合、前記第1制御回路に対して、前記位相制御パルスの出力を停止するとともに、前記第2制御回路と前記第3制御回路に対して、前記第2スイッチング回路及び前記第3スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力し、
     前記上位制御回路は、前記第2異常検出回路からの信号を受信した場合、前記第2制御回路に対して、前記位相制御パルスの出力を停止するとともに、前記第1制御回路と前記第3制御回路に対して、前記第1スイッチング回路及び前記第3スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力し、
     前記上位制御回路は、前記第3異常検出回路からの信号を受信した場合、前記第3制御回路に対して、前記位相制御パルスの出力を停止するとともに、前記第1制御回路と前記第2制御回路に対して、前記第1スイッチング回路及び前記第2スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力する請求項2記載の電力変換装置の制御装置。
  4.  前記所定時間は、前記バイパスペア指令が出力されてから、前記バイパスペア指令を受けていない、前記第1変換器アーム、前記第2変換器アーム及び前記第3変換器アームのいずれかがターンオフするまでの時間以上である請求項3記載の電力変換装置の制御装置。
  5.  前記第1制御回路は、前記第1制御回路に電源を供給する第1制御電源をさらに含み、
     前記第1異常検出回路は、前記第1制御電源の状態を監視して前記第1制御回路の停電を検出する機能をさらに有し
     前記第2制御回路は、前記第2制御回路に電源を供給する第2制御電源をさらに含み、
     前記第2異常検出回路は、前記第2制御電源の状態を監視して前記第2制御回路の停電を検出する機能をさらに有し、
     前記第3制御回路は、前記第3制御回路に電源を供給する第3制御電源をさらに含み、
     前記第3異常検出回路は、前記第3制御電源の状態を監視して前記第3制御回路の停電を検出する機能をさらに有する請求項3または4に記載の電力変換装置の制御装置。
  6.  前記第1異常検出回路は、前記第1制御回路のゲートパルスの状態を監視して前記第1制御回路のゲートパルスの異常を検出する機能をさらに有し、
     前記第2異常検出回路は、前記第2制御回路のゲートパルスの状態を監視して前記第2制御回路のゲートパルスの異常を検出する機能をさらに有し、
     前記第3異常検出回路は、前記第3制御回路のゲートパルスの状態を監視して前記第3制御回路のゲートパルスの異常を検出する機能をさらに有する請求項3~5のいずれか1つに記載の電力変換装置の制御装置。
  7.  複数の第1変換器アームを直列接続して構成する第1スイッチング回路と、複数の第2変換器アームを直列接続して構成する第2スイッチング回路と、を備え、前記第1スイッチング回路の一端と前記第2スイッチング回路の一端とが直流回路の高圧側に接続され、前記第1スイッチング回路の他端と前記第2スイッチング回路の他端とが前記直流回路の低圧側に接続され、交流電源から供給される交流電力を直流電力に変換し、前記直流電力を前記直流回路に供給する他励式の電力変換装置の制御装置であって、
     前記第1スイッチング回路と接続され前記複数の第1変換器アームのそれぞれのオンタイミングを制御する第1制御回路と、
     前記第2スイッチング回路と接続され前記複数の第2変換器アームのそれぞれのオンタイミングを制御する第2制御回路と、
     前記第1制御回路及び前記第2制御回路のそれぞれと接続された上位制御回路と、
     を備え、
     前記上位制御回路は、前記第1制御回路の故障を検出したときに、前記第2制御回路に対して、前記第2スイッチング回路を使用してバイパスペアの状態にするバイパスペア指令を出力し、
     前記上位制御回路は、前記第2制御回路の故障を検出したときに、前記第1制御回路に対して、前記第1スイッチング回路を使用してバイパスペアの状態にするバイパスペア指令を出力する電力変換装置の制御装置。
  8.  前記電力変換装置は、複数の第3変換器アームを直列接続して構成する第3スイッチング回路をさらに備え、
     前記第3スイッチング回路は、一端が前記直流回路の前記高圧側と接続され、他端が前記直流回路の前記低圧側と接続され、
     前記制御装置は、前記上位制御回路及び前記第3スイッチング回路のそれぞれと接続され前記複数の第3変換器アームのそれぞれのオンタイミングを制御する第3制御回路をさらに備え、
     前記上位制御回路は、前記第1制御回路の故障を検出したときに、前記第2制御回路と前記第3制御回路に対して、前記第2スイッチング回路及び前記第3スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力し、
     前記上位制御回路は、前記第2制御回路の故障を検出したときに、前記第1制御回路と前記第3制御回路に対して、前記第1スイッチング回路及び前記第3スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力し、
     前記上位制御回路は、前記第3制御回路の故障を検出したときに、前記第1制御回路と前記第2制御回路に対して、前記第1スイッチング回路及び前記第2スイッチング回路の少なくともいずれかを使用してバイパスペアの状態にするバイパスペア指令を出力する請求項7記載の電力変換装置の制御装置。
PCT/JP2016/061829 2016-04-12 2016-04-12 電力変換装置の制御装置 WO2017179127A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018511800A JP6673624B2 (ja) 2016-04-12 2016-04-12 電力変換装置の制御装置
US16/090,336 US10461660B2 (en) 2016-04-12 2016-04-12 Control device of power conversion device
PCT/JP2016/061829 WO2017179127A1 (ja) 2016-04-12 2016-04-12 電力変換装置の制御装置
EP16898587.7A EP3444935B1 (en) 2016-04-12 2016-04-12 Control device for power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061829 WO2017179127A1 (ja) 2016-04-12 2016-04-12 電力変換装置の制御装置

Publications (1)

Publication Number Publication Date
WO2017179127A1 true WO2017179127A1 (ja) 2017-10-19

Family

ID=60042420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061829 WO2017179127A1 (ja) 2016-04-12 2016-04-12 電力変換装置の制御装置

Country Status (4)

Country Link
US (1) US10461660B2 (ja)
EP (1) EP3444935B1 (ja)
JP (1) JP6673624B2 (ja)
WO (1) WO2017179127A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886034A (ja) * 1972-02-17 1973-11-14
JPS502854A (ja) * 1973-05-10 1975-01-13
JPS6051469A (ja) * 1983-08-26 1985-03-22 Hitachi Ltd 電力変換装置の駆動回路
JPH04344171A (ja) * 1991-05-20 1992-11-30 Toshiba Corp パルス発生装置
JPH07245953A (ja) * 1994-03-04 1995-09-19 Toshiba Corp 交直変換装置の制御システム
WO2015015623A1 (ja) * 2013-08-01 2015-02-05 株式会社日立製作所 半導体装置及び電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638416A (en) * 1984-03-01 1987-01-20 Siemens Aktiengesellschaft Method and apparatus for high-voltage D.C. transmission with a bypass circuit for malfunctions
US5028825A (en) * 1989-10-18 1991-07-02 International Business Machines Corporation Self-powered SCR gate drive circuit with optical isolation
JP2739027B2 (ja) * 1993-08-19 1998-04-08 三菱電機株式会社 電力変換器の制御装置
SE505746C2 (sv) * 1995-04-07 1997-10-06 Asea Brown Boveri Skyddsutrustning vid en bipolär strömriktarstation
JP3715457B2 (ja) * 1999-02-25 2005-11-09 芝府エンジニアリング株式会社 直列補償装置
JP5134839B2 (ja) 2007-03-15 2013-01-30 東芝三菱電機産業システム株式会社 電力変換器のゲートパルス発生回路
KR101731156B1 (ko) * 2012-03-30 2017-04-27 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치
IL227354A0 (en) 2013-07-04 2013-12-31 Dekel Salomon Bag on wheels
US9614457B2 (en) * 2013-10-18 2017-04-04 Abb Schweiz Ag Modular thyristor-based rectifier circuits
JP6078458B2 (ja) * 2013-11-13 2017-02-08 東芝三菱電機産業システム株式会社 サイリスタ変換器の電圧検出異常検出回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886034A (ja) * 1972-02-17 1973-11-14
JPS502854A (ja) * 1973-05-10 1975-01-13
JPS6051469A (ja) * 1983-08-26 1985-03-22 Hitachi Ltd 電力変換装置の駆動回路
JPH04344171A (ja) * 1991-05-20 1992-11-30 Toshiba Corp パルス発生装置
JPH07245953A (ja) * 1994-03-04 1995-09-19 Toshiba Corp 交直変換装置の制御システム
WO2015015623A1 (ja) * 2013-08-01 2015-02-05 株式会社日立製作所 半導体装置及び電力変換装置

Also Published As

Publication number Publication date
EP3444935B1 (en) 2021-03-10
EP3444935A1 (en) 2019-02-20
US20190123660A1 (en) 2019-04-25
EP3444935A4 (en) 2019-11-27
JPWO2017179127A1 (ja) 2019-02-07
US10461660B2 (en) 2019-10-29
JP6673624B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5286413B2 (ja) 低周波遮断器
KR20170108062A (ko) 선박 상에서의 전기 에너지의 분배
US20160099569A1 (en) Energy generating device with functionally reliable potential separation
US20150162782A1 (en) Method and system for a dual conversion uninterruptible power supply
WO2017119109A1 (ja) 交直変換装置及びその制御方法
JP2008172925A (ja) マトリックスコンバータのバックアップ運転装置
US5552952A (en) Detection and isolation circuit for a failed bridge power rectifier and an electrical system employing same
GB2512632A (en) Electrical component failure protection circuit
EP0762622B1 (en) High voltage DC link converter control and protection system
JP2004254360A (ja) 交流−交流電力変換器のバックアップ装置
WO2017179127A1 (ja) 電力変換装置の制御装置
JP7155076B2 (ja) 制御装置及び電力変換システム
US6998735B2 (en) Controlled rectifier bridge, control system, and method for controlling rectifier bridge by disabling gate control signals
JP2003230275A (ja) Pwmサイクロコンバータの保護方法
JP6437683B2 (ja) デルタ―レス高調波相殺装置
JP5523297B2 (ja) 電力変換装置
JP3208369U (ja) デルタ―レス高調波相殺装置
KR101561391B1 (ko) 고전압 직류 송전 시스템
RU2761430C1 (ru) УСТРОЙСТВО ВОССТАНОВЛЕНИЯ ПОЛНОФАЗНОГО НАПРЯЖЕНИЯ В 4-х ПРОВОДНОЙ СЕТИ 0,4/0,23 кВ
RU2661479C1 (ru) Подстанция электропередачи постоянного тока
WO2020121466A1 (ja) 電力供給システムおよび電力供給方法
EP3370333B1 (en) Power conversion device
JP2019033667A (ja) デルタ―レス高調波相殺装置
JP2022148181A (ja) 電気鉄道用三相電力変換システム
JPS61251437A (ja) 電鉄用電源設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016898587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016898587

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898587

Country of ref document: EP

Kind code of ref document: A1