WO2017175725A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2017175725A1
WO2017175725A1 PCT/JP2017/013976 JP2017013976W WO2017175725A1 WO 2017175725 A1 WO2017175725 A1 WO 2017175725A1 JP 2017013976 W JP2017013976 W JP 2017013976W WO 2017175725 A1 WO2017175725 A1 WO 2017175725A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
liquid
heat
reservoir
Prior art date
Application number
PCT/JP2017/013976
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 杉村
三枝 弘
川久保 昌章
加藤 大輝
伊藤 哲也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017070672A external-priority patent/JP6572931B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017001883.8T priority Critical patent/DE112017001883T5/en
Priority to US16/091,917 priority patent/US10845124B2/en
Priority to CN201780021725.0A priority patent/CN108885034B/en
Publication of WO2017175725A1 publication Critical patent/WO2017175725A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • This disclosure relates to a heat exchanger.
  • Patent Document 1 Conventionally, as a refrigeration cycle apparatus using such a heat exchanger, for example, there is one described in Patent Document 1 below.
  • the refrigeration cycle apparatus described in Patent Document 1 includes a gas-liquid separator that separates a refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, a refrigerant circuit in which the refrigerant circulates, a first-mode refrigerant circuit, and a second-mode refrigerant circuit. And switching means for switching to one of the refrigerant circuit.
  • the gas-liquid separator separates the refrigerant flowing out of the outdoor heat exchanger into a gas-phase refrigerant and a liquid-phase refrigerant, causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet, and causes the liquid-phase refrigerant to be liquefied. It becomes the structure which can be made to flow out from a phase refrigerant exit.
  • the refrigerant circuit in the first mode is a refrigerant circuit that causes the liquid-phase refrigerant to flow out from the liquid-phase refrigerant outlet of the gas-liquid separator, flow into the second decompression means and the evaporator, and further sucked into the compressor.
  • the refrigerant circuit in the second mode is a refrigerant circuit that causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet of the gas-liquid separator and to be sucked into the compressor.
  • the unit including the valves is a reservoir of the reservoir. It is preferable to provide in the vicinity.
  • the heat exchanger and the liquid reservoir are arranged in front of the vehicle and the influence of water dripping from the liquid reservoir in the first place, there is an increased risk that the valves will be covered with water, and some measures are required.
  • valve when the valve is arranged in the vicinity of the reservoir, in the first mode refrigerant circuit, heat from the high-temperature gas flowing into the valve is easily transmitted to the reservoir, and the refrigerant flowing into the reservoir is gasified. If the gasification of the refrigerant proceeds, it will lead to the outflow of the gas refrigerant and the gas-liquid separation performance will be hindered, so some measures are required.
  • the present disclosure can reduce the risk that the valves will be exposed to water when the valves constituting the refrigeration cycle together with the heat exchanger and the liquid reservoir are disposed, and can ensure gas-liquid separation performance against thermal damage from the valves.
  • An object is to provide a heat exchanger.
  • the present disclosure is a heat exchanger used in a refrigeration cycle, and includes a heat exchange unit (3, 4) for exchanging heat between refrigerant passing through the inside and air, and a gas-liquid two-phase refrigerant flowing out from the heat exchange unit.
  • a liquid reservoir (5) that separates gas-liquid into a gas-phase refrigerant and a liquid-phase refrigerant and stores the liquid-phase refrigerant, and adjusts a flow state of the refrigerant flowing through the refrigerant flow path constituting the refrigeration cycle
  • a refrigerant adjusting unit (21, 22) that adjusts an outflow state and an outflow destination of the refrigerant that is supplied to the heat exchanging unit (3) and flows out of the heat exchanging unit (4) or the reservoir (5).
  • the liquid reservoir is formed with a liquid storage region (51a) mainly storing liquid phase refrigerant and an air storage region (51b) mainly storing gas phase refrigerant.
  • the refrigerant adjusting unit is provided on the opposite side of the liquid storage region with the air storage region interposed therebetween.
  • the present disclosure by arranging the first adjustment unit 21 and the second adjustment unit 22 above the liquid reservoir 5, it is possible to reliably prevent the first adjustment unit 21 and the second adjustment unit 22 from receiving water. Can be reduced. Further, since the refrigerant adjustment unit is disposed on the opposite side of the liquid storage region across the gas storage region, even if a part of the liquid phase refrigerant is gasified due to heat damage caused by the refrigerant adjustment unit, the liquid storage region The outflow of the gas refrigerant from can be suppressed.
  • this outflow path becomes a place where the pressure loss is high in the refrigeration cycle.
  • the pressure loss it is necessary to provide a large-diameter outflow path, which deteriorates the vehicle mountability.
  • the diameter of the outflow path is reduced in consideration of the vehicle mountability, the pressure loss increases and the heating performance is reduced.
  • the refrigerant adjusting unit can be disposed close to the air storage region, the path length can be shortened even if the outflow path of the gas-phase refrigerant is increased. Therefore, vehicle mountability can be ensured while reducing pressure loss.
  • FIG. 1 is a heat exchanger according to the first embodiment and is a diagram illustrating a state of cooling operation.
  • Drawing 2 is a heat exchanger concerning a 1st embodiment, and is a figure showing the state of heating operation.
  • FIG. 3 is a view for explaining the liquid level height inside the liquid reservoir.
  • FIG. 4 is a diagram for explaining the heat exchanger according to the second embodiment.
  • FIG. 5 is a view for explaining a heat exchanger according to the third embodiment.
  • FIG. 6 is a view for explaining a heat exchanger according to the fourth embodiment.
  • FIG. 7 is a view for explaining a heat exchanger according to the fifth embodiment.
  • FIG. 8 is a diagram for explaining a heat exchanger according to a comparative example.
  • FIG. 1 is a heat exchanger according to the first embodiment and is a diagram illustrating a state of cooling operation.
  • Drawing 2 is a heat exchanger concerning a 1st embodiment, and is a figure showing the state of heating operation.
  • FIG. 3
  • FIG. 9 is a diagram for explaining the heat exchanger according to the sixth embodiment.
  • FIG. 10 is a diagram for explaining the liquid level disturbance due to the inflow of the liquid refrigerant.
  • FIG. 11 is a heat exchanger according to the seventh embodiment and is a view for explaining an example of forming a buffer space.
  • FIG. 12 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example in which a buffer space is formed.
  • Drawing 13 is a heat exchanger concerning a 7th embodiment, and is a figure for explaining the example which forms buffer space.
  • FIG. 14 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example of forming a buffer space.
  • FIG. 15 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example in which a buffer space is formed.
  • the heat exchanger 2 includes an upstream heat exchange unit 3, a downstream heat exchange unit 4, and a reservoir 5.
  • the upstream heat exchange unit 3 includes two upstream cores 32 and 34 and header tanks 31, 33, and 35. In the present embodiment, an example having two upstream cores 32 and 34 is shown, but the number of cores may be single or three or more.
  • the upstream cores 32 and 34 are portions for exchanging heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
  • a header tank 31 is attached to the upstream end of the upstream core 32.
  • a header tank 35 is attached to the downstream end of the upstream core 34.
  • a header tank 33 is attached to the downstream end of the upstream core 32 and the upstream end of the upstream core 34 so as to extend over both.
  • the inlet tank 15 is provided in the header tank 31.
  • a connection channel 11 is provided in the header tank 35.
  • the refrigerant flowing in from the inflow channel 15 flows into the upstream core 32 from the header tank 31.
  • the refrigerant that has flowed through the upstream core 32 flows into the header tank 33.
  • the refrigerant that has flowed through the header tank 33 flows into the upstream core 34.
  • the refrigerant that has flowed through the upstream core 34 flows into the header tank 35.
  • the refrigerant flowing into the header tank 35 flows out to the connection flow path 11.
  • the connection flow path 11 is connected to the liquid reservoir 5.
  • the refrigerant that has flowed out into the connection channel 11 flows into the liquid reservoir 51 of the liquid reservoir 5.
  • the liquid reservoir 5 has a liquid reservoir 51, a connection channel 11, a connection channel 12, and a connection channel 13.
  • the liquid reservoir 51 is a part that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 11 into a liquid-phase refrigerant and a gas-phase refrigerant and accumulates the liquid-phase refrigerant.
  • the connecting channel 11, the connecting channel 12, and the connecting channel 13 are connected to the liquid reservoir 51.
  • the connection flow path 11 is a flow path that connects the upstream heat exchange unit 3 and the liquid reservoir 5.
  • the connection flow path 12 is a flow path that connects the liquid reservoir 5 and the downstream heat exchange unit 4. As shown in FIG. 1, the liquid-phase refrigerant that has flowed out of the connection flow path 12 during the cooling operation flows into the downstream heat exchange unit 4.
  • the connection flow path 13 is a flow path for allowing the gas-phase refrigerant to flow out from the liquid reservoir 5.
  • the downstream heat exchange unit 4 includes a header tank 41, a downstream core 42, and a header tank 43.
  • An outflow channel 14 is connected to the header tank 43.
  • the header tank 43 is provided at the downstream end of the downstream core 42.
  • a header tank 41 is provided at the upstream end of the downstream core 42.
  • a connection channel 12 is connected to the header tank 41.
  • the liquid phase refrigerant flows into the header tank 41 from the connection flow path 12, and the liquid phase refrigerant flows into the downstream core 42 from the header tank 41.
  • the downstream core 42 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes. Accordingly, the liquid-phase refrigerant that has flowed into the downstream core 42 is directed to the header tank 43 while being supercooled.
  • the outflow channel 14 is connected to an expansion valve that constitutes the refrigeration cycle apparatus, and an evaporator is connected before the expansion valve.
  • a first adjusting unit 21 and a second adjusting unit 22 as a refrigerant adjusting unit are provided above the liquid reservoir 5.
  • the first adjustment unit 21 is provided with a high-pressure refrigerant inlet 21a and a refrigerant outlet 21b.
  • the high-pressure refrigerant inlet 21 a is an inlet through which high-pressure refrigerant flowing from the compressor or the heat radiating means flows through the flow path 17.
  • the refrigerant outlet 21b is an outlet through which the refrigerant that has flowed in is directly brought into a high pressure or a low pressure and flows out toward the upstream heat exchange unit 3 through the inflow channel 15.
  • the second adjusting unit 22 includes a gas-phase refrigerant inlet 22a and a compressor outlet 22b.
  • the gas-phase refrigerant inlet 22a is an inlet through which the gas-phase refrigerant flowing out from the reservoir 5 through the connection channel 13 flows.
  • the compressor outlet 22b is an outlet for sending the refrigerant flowing into the compressor through the compressor passage 16.
  • the heat exchanger 2 includes the upstream heat exchange unit 3 and the downstream heat exchange unit 4 that exchange heat between the refrigerant passing through the interior and the air, and the upstream heat exchange unit 3.
  • the gas-liquid two-phase refrigerant flowing out from the gas-liquid is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the flow of the refrigerant flowing in through the reservoir 5 for storing the liquid-phase refrigerant and the refrigerant flow path constituting the refrigeration cycle
  • a first adjusting unit 21 as a refrigerant adjusting unit that adjusts the state and supplies the upstream heat exchanging unit 3 to the upstream heat exchanging unit 3 and adjusts the outflow state and the outflow destination of the refrigerant flowing out of the downstream heat exchanging unit 4 or the reservoir 5;
  • a second adjustment unit 22 is a refrigerant adjusting unit that adjusts the state and supplies the upstream heat exchanging unit 3 to the upstream heat exchanging unit 3 and adjusts the outflow state and the outflow
  • the liquid reservoir 5 is formed with a liquid storage region 51a in which mainly liquid phase refrigerant is stored and an air storage region 51b in which mainly gas phase refrigerant is stored.
  • coolant adjustment parts are provided in the opposite side to the liquid storage area
  • the first adjustment unit 21 and the second adjustment unit 22 are refrigerant adjustment units disposed on the opposite side of the liquid storage region 51a across the air storage region 51b, the heat adjustment caused by the refrigerant adjustment unit causes Even if a part of the liquid-phase refrigerant is gasified, the outflow of the gas refrigerant from the liquid storage region 51a can be suppressed.
  • the outflow path of the gas-phase refrigerant can be increased in diameter and shortened, and both suppression of pressure loss and securing of vehicle mounting properties can be achieved.
  • the gas storage area 51b is arranged at a position that is at least half of the liquid reservoir 51 in the height direction.
  • the height of the liquid reservoir 5 is set by accumulating “leakage over time”, “absorption of load fluctuation”, and “margin”. “Aging leakage” is the amount of refrigerant that leaks from each part according to the number of years of use when the heat exchanger 2 is used in a refrigeration cycle, and anticipates that amount. “Load fluctuation absorption” is intended to allow for fluctuations in the amount of liquid-phase refrigerant that flows in when operating the refrigeration cycle. Since “aging leak” and “load fluctuation absorption” are the liquid level height required for the design of the liquid reservoir 5, it is preferable that the connection flow path 12 is provided above this height.
  • the first adjustment unit 21A and the second adjustment unit 22A are offset and arranged above the liquid reservoir 5.
  • the connecting flow path 13A in a crank shape and extending the inflow flow path 15A, the first adjusting portion 21A and the second adjusting portion 22A can be arranged not directly above the reservoir 5.
  • connection flow path 11 is provided for allowing the gas-liquid two-phase refrigerant flowing out from the upstream heat exchange section 3 to flow into the liquid reservoir 5.
  • the connection flow path 11 is connected to communicate with an inflow port 501 provided in the air storage region 51b.
  • coolant adjustment part are the one end side in the refrigerant
  • the piping path can be shortened and an increase in refrigerant pressure loss can be suppressed.
  • the adjustment unit 22 and the liquid reservoir 5 are arranged. More specifically, when viewed from the direction in which the longitudinal direction of the liquid reservoir 5 is seen, that is, from the upper side or the lower side with respect to the longitudinal direction of the liquid reservoir 5, the first adjusting unit 21, the second adjusting unit 22, and the liquid reservoir. When looking at 5, they are arranged so that a part of each overlaps. By arranging in this way, space saving can be realized.
  • the embodiment is not limited to arranging the first adjustment unit 21 and the second adjustment unit 22 and the liquid reservoir 5 so as to completely overlap. .
  • the heat exchanger 2 ⁇ / b> B is arranged such that the first adjustment unit 21 ⁇ / b> B and the second adjustment unit 22 ⁇ / b> B are arranged in the horizontal direction.
  • a flow path 17B is connected to the first adjustment unit 21B and is disposed immediately above the header tank 31.
  • the first adjustment unit 21B and the header tank 31 are connected by an extremely short inflow channel 15B.
  • the second adjustment unit 22 ⁇ / b> B is disposed immediately above the liquid reservoir 5. Since the distance between the liquid reservoir 5 and the second adjustment unit 22B is increased, the connection flow path 13B is extended.
  • the first adjusting unit 21 and the second adjusting unit 22 that are refrigerant adjusting units are connected to the upstream side heat exchanging unit 3 through the connection flow path 13B for flowing out the refrigerant, and constitute a refrigeration cycle.
  • a flow path 16B for the compressor that flows out the refrigerant to the compressor is connected.
  • the heat exchanger 2 ⁇ / b> C is configured so that the liquid-phase refrigerant flowing out from the liquid storage region 51 a of the liquid storage device 5 merges with the refrigerant flowing out from the compressor outlet / outlet 22 b. It is configured. More specifically, a connection channel 12 ⁇ / b> C that connects the lower part of the liquid reservoir 5 and the connection channel 13 is provided.
  • the upstream heat exchange part 3 which heat-exchanges the refrigerant
  • Side heat exchanging section 4. The reservoir 5, the first adjusting unit 21 and the second adjusting unit 22 that are refrigerant adjusting units, the upstream heat exchanging unit 3, and the downstream heat exchanging unit 4 are integrally coupled.
  • the 1st adjustment part 21 is provided between the high pressure refrigerant
  • the 2nd adjustment part 22 is provided between the gaseous-phase refrigerant
  • the first adjustment unit 21 and the liquid reservoir 5 are provided on opposite sides of the second adjustment unit 22.
  • the gas-phase refrigerant inlet 22a can be disposed at the shortest distance from the air-storage region 51b, so that the pressure loss of the gas-phase refrigerant can be reduced.
  • the heat exchanger 2D includes an upstream heat exchange unit 3, a downstream heat exchange unit 4, and a liquid reservoir 5.
  • the upstream heat exchange unit 3 includes two upstream cores 32 and 34 and header tanks 31, 33, and 35. In the present embodiment, an example having two upstream cores 32 and 34 is shown, but the number of cores may be single or three or more.
  • the upstream cores 32 and 34 are portions for exchanging heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
  • a header tank 31 is attached to the upstream end of the upstream core 32.
  • a header tank 35 is attached to the downstream end of the upstream core 34.
  • a header tank 33 is attached to the downstream end of the upstream core 32 and the upstream end of the upstream core 34 so as to extend over both.
  • the inlet tank 15 is provided in the header tank 31.
  • a connection channel 11 is provided in the header tank 35.
  • the refrigerant flowing in from the inflow channel 15 flows into the upstream core 32 from the header tank 31.
  • the refrigerant that has flowed through the upstream core 32 flows into the header tank 33.
  • the refrigerant that has flowed through the header tank 33 flows into the upstream core 34.
  • the refrigerant that has flowed through the upstream core 34 flows into the header tank 35.
  • the refrigerant flowing into the header tank 35 flows out to the connection flow path 11.
  • the connection flow path 11 is connected to the liquid reservoir 5.
  • the liquid reservoir 5 has a liquid reservoir 51, a connection channel 11, a connection channel 12, and a connection channel 13.
  • the liquid reservoir 51 is a part that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 11 into a liquid-phase refrigerant and a gas-phase refrigerant and accumulates the liquid-phase refrigerant.
  • connection flow path 11 is a flow path that connects the upstream heat exchange unit 3 and the liquid reservoir 5.
  • connection flow path 12 is a flow path that connects the liquid reservoir 5 and the downstream heat exchange unit 4.
  • the liquid-phase refrigerant that has flowed out of the connection flow path 12 flows into the downstream heat exchange unit 4.
  • connection path 13 is a path that connects the liquid reservoir 5 and the refrigerant adjustment unit 6.
  • a liquid storage space 511 is formed in the liquid reservoir 51.
  • An inlet 512 and an outlet 513 are formed so as to be connected to the liquid storage space 511.
  • the connection channel 11 is connected to the inflow port 512.
  • the connection channel 12 is connected to the outflow port 513.
  • a refrigerant adjustment unit 6 is provided above the liquid reservoir 5.
  • An inflow channel 17 and an inflow channel 15 are connected to the refrigerant adjustment unit 6.
  • the inflow channel 17 is a channel into which high-pressure refrigerant flowing from the compressor flows.
  • the inflow channel 15 is a channel through which the refrigerant that has flowed in is kept at a high pressure or a low pressure and flows out toward the upstream heat exchange unit 3.
  • the refrigerant flow adjustment section 6 is connected to a connection flow path 13 and a flow path 16 for the compressor.
  • the connection flow path 13 is a flow path into which the gas-phase refrigerant flowing out from the liquid reservoir 5 flows.
  • the compressor-bound flow path 16 is a flow path for sending the refrigerant flowing in to the compressor.
  • the refrigerant adjustment unit 6 includes a main body part 61 in which an internal flow path is formed and a valve body and a valve seat are arranged, a seal part 63, and an actuator 64 that drives the valve body.
  • the refrigerant that has flowed out into the connection flow path 11 flows into the buffer region 66 of the refrigerant adjustment unit 6 via the inflow port 512.
  • the buffer region 66 is formed above the connection flow path 13.
  • a communication hole 67 is provided so that the refrigerant flowing from the inlet 512 can flow into the buffer region 66.
  • the communication hole 67 is provided at a location where the main body portion 61 faces the inflow port 512.
  • the refrigerant flowing from the inlet 512 flows into the buffer region 66.
  • the liquid refrigerant flowing from the connection channel 11 can cool the heat damage caused by the SH gas passing from the connection channel 17 to the connection channel 15, thereby suppressing gasification in the upper part of the liquid storage space and ensuring gas-liquid separation. can do.
  • the downstream heat exchange unit 4 includes a header tank 41, a downstream core 42, and a header tank 43.
  • An outflow channel 14 is connected to the header tank 43.
  • the header tank 43 is provided at the downstream end of the downstream core 42.
  • a header tank 41 is provided at the upstream end of the downstream core 42.
  • a connection channel 12 is connected to the header tank 41.
  • the liquid phase refrigerant flows into the header tank 41 from the connection flow path 12, and the liquid phase refrigerant flows into the downstream core 42 from the header tank 41.
  • the downstream core 42 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes. Accordingly, the liquid-phase refrigerant that has flowed into the downstream core 42 is directed to the header tank 43 while being supercooled.
  • the outflow channel 14 is connected to an expansion valve that constitutes the refrigeration cycle apparatus, and an evaporator is connected before the expansion valve.
  • the refrigerant adjustment unit 6 is provided above the liquid storage space 511 that is a liquid storage region.
  • the refrigerant inflow path from the upstream heat exchange unit 3 to the liquid storage space 511 that is the liquid storage region is configured to pass through the refrigerant adjustment unit 6.
  • the refrigerant adjusting unit 6 is disposed above the liquid storage space 511 and no measures are taken, the liquid refrigerant stagnates below the liquid storage space 511 during heating operation, and the amount of refrigerant circulating in the refrigeration cycle decreases. There is a risk that. A decrease in the refrigerant amount leads to a decrease in heating performance and a decrease in the amount of circulating oil. If the circulating oil amount decreases, the compressor may be locked. Therefore, the refrigerant inflow path from the heat exchange unit 3 to the liquid storage space 511 is routed through the refrigerant adjustment unit 6 so that the refrigerant can be recirculated into the refrigeration cycle without flowing into the liquid storage space 511 during heating. it can.
  • the inflow port 512 connects with the connection flow path 11 into which the refrigerant
  • 3 is provided with a connection flow path 12 through which the refrigerant flowing out from 3 and entering the liquid storage space 511, which is a liquid storage area, flows out to the heat exchanging section 4, and the outlet 513 is disposed below the inlet 512.
  • the inflow port 512 is disposed above the liquid storage space 511 that is a liquid storage area.
  • the refrigerant adjustment unit 6E is disposed below. Will flow. In order to reduce the influence of such gas inflow, it is preferable to arrange the refrigerant adjustment unit 6 upward as in the present embodiment.
  • the heat exchanger 2G according to the sixth embodiment shown in FIG. 9 further suppresses the liquid level disturbance in the liquid reservoir due to the liquid refrigerant flowing from above with respect to the configuration of the heat exchanger 2D.
  • a conduit 68G is provided.
  • the lower end 681G of the conduit 68G is arranged to be positioned below the outflow port 513.
  • a buffer region 66G is provided in the main body 61G constituting the refrigerant adjustment unit 6F.
  • a communication hole 67G is provided so that the refrigerant flowing from the inlet 512 can flow into the buffer region 66G.
  • the communication hole 67G is provided at a location where the main body 61G faces the inflow port 512.
  • An opening 682G is provided below the buffer region 66G of the main body 61G.
  • a conduit 68G is disposed so as to penetrate through the opening 682G.
  • the valve body 69G is lowered to block the conduit 68G. Since the return hole 691G is provided in the valve body 69G, the refrigerant rising from the opening provided in the lower end 681G returns to the refrigeration cycle through the return hole 691G.
  • the gap portion 65H is provided without using the seal portion 63.
  • the gap portion 65H forms a gap portion 65H by retracting a part of the main body portion 61H.
  • the heat exchanger 2J includes a liquid reservoir 5J and a refrigerant adjustment unit 6J.
  • a buffer region 66J is formed in the refrigerant adjustment unit 6J.
  • the buffer region 66J is formed above the outflow channel 13J.
  • a communication hole 67 is provided so that the refrigerant flowing in from the inflow port 512 can flow into the buffer region 66J.
  • the communication hole 67 is provided at a location where the main body portion 61J faces the inflow port 512.
  • the refrigerant flowing from the inlet 512 flows into the buffer region 66J.
  • the refrigerant temporarily stored in the buffer region 66J flows down from the outflow passage 13J to the liquid storage space 511. Therefore, the refrigerant falls gently, and the liquid level disturbance is reduced.
  • the heat exchanger 2K includes a liquid reservoir 5K.
  • a buffer region 66K is formed in the liquid reservoir 5K.
  • the buffer region 66K is formed between the refrigerant adjustment unit 6 and the buffer plate 52Ka.
  • the buffer plate 52Ka is a plate-like member disposed in the liquid storage space 511. As shown in FIG. 13, the buffer plate 52Ka is provided with a plurality of through holes 521a. As shown in FIG. 14, a buffer plate 52Kb provided with a single through hole 521b can also be used. As shown in FIG. 15, a buffer plate 52 ⁇ / b> Kc having a recess 521 c on the side surface may be used so as to form a gap between the inner wall of the liquid reservoir 51. When the buffer plate 52Kc is used, the refrigerant flows along the inner wall surface of the liquid reservoir 51, so that the effect of suppressing the liquid level disturbance is enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger 2 is provided with: a liquid reservoir 5 in which gas-liquid separation of a gas-liquid double-phase refrigerant, which has flowed out from an upstream-side heat exchanging part 3, into a gas-phase refrigerant and a liquid-phase refrigerant is carried out, and the liquid-phase refrigerant is retained; and a first adjustment part 21 and a second adjustment part 22 that adjust the flow state of refrigerant that flows in and supply the refrigerant to the upstream-side heat exchanging part 3, and adjust the outflow state and outflow destination of refrigerant that flows out from a downstream-side heat exchanging part 4 or the liquid reservoir 5. In the liquid reservoir 5 are formed a liquid reservoir area 51a in which mainly liquid-phase refrigerant accumulates, and a gas reservoir area 51b in which mainly gas-phase refrigerant accumulates. The first adjustment part 21 and the second adjustment part 22 are provided on the opposite side of the liquid reservoir area 51a, with the gas reservoir area 51b therebetween.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年4月8日に出願された日本国特許出願2016-078225号と、2017年3月31日に出願された日本国特許出願2017-070672号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2016-078225 filed on April 8, 2016 and Japanese Patent Application No. 2017-070672 filed on March 31, 2017. Claims the benefit of that priority, the entire contents of which are incorporated herein by reference.
 本開示は、熱交換器に関する。 This disclosure relates to a heat exchanger.
 従来、この種の熱交換器が用いられた冷凍サイクル装置として、例えば下記特許文献1に記載されたものがある。この特許文献1に記載れた冷凍サイクル装置は、冷媒を気相冷媒と液相冷媒とに分離する気液分離器と、冷媒が循環する冷媒回路を第1モードの冷媒回路と第2モードの冷媒回路との一方に切り替える切替手段とを有している。具体的には、その気液分離器は、室外熱交換器から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を気相冷媒出口から流出させ、液相冷媒を液相冷媒出口から流出させることが可能な構成となっている。また、第1モードの冷媒回路は、気液分離器の液相冷媒出口から液相冷媒を流出させて第2減圧手段及び蒸発器に流入させ、更に圧縮機に吸入させる冷媒回路である。第2モードの冷媒回路は、気液分離器の気相冷媒出口から気相冷媒を流出させて圧縮機に吸入させる冷媒回路である。 Conventionally, as a refrigeration cycle apparatus using such a heat exchanger, for example, there is one described in Patent Document 1 below. The refrigeration cycle apparatus described in Patent Document 1 includes a gas-liquid separator that separates a refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, a refrigerant circuit in which the refrigerant circulates, a first-mode refrigerant circuit, and a second-mode refrigerant circuit. And switching means for switching to one of the refrigerant circuit. Specifically, the gas-liquid separator separates the refrigerant flowing out of the outdoor heat exchanger into a gas-phase refrigerant and a liquid-phase refrigerant, causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet, and causes the liquid-phase refrigerant to be liquefied. It becomes the structure which can be made to flow out from a phase refrigerant exit. The refrigerant circuit in the first mode is a refrigerant circuit that causes the liquid-phase refrigerant to flow out from the liquid-phase refrigerant outlet of the gas-liquid separator, flow into the second decompression means and the evaporator, and further sucked into the compressor. The refrigerant circuit in the second mode is a refrigerant circuit that causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet of the gas-liquid separator and to be sucked into the compressor.
特開2014-149123号公報JP 2014-149123 A
 上記特許文献1には特段の記載は無いが、冷凍サイクルを構成するバルブ類を設ける場合、貯液器から流出する気相冷媒の圧損を低減するため、バルブ類を含むユニットは貯液器の近傍に設けることが好ましい。しかしながら、熱交換器及び貯液器が車両前方に配置されることや、そもそも貯液器から滴下する水の影響を鑑みると、バルブ類が水を被るおそれが高まり、何らかの対策が必要となる。更に、バルブを貯液器近傍に配置すると、第1モードの冷媒回路では、バルブに流入する高温ガスからの熱が貯液器に伝わりやすくなり、貯液器に流れ込んだ冷媒がガス化する。冷媒のガス化が進行すると、ガス冷媒の流出に繋がり気液分離性能が阻害されるため、何らかの対策が必要となる。 Although there is no special description in the above-mentioned Patent Document 1, in the case where valves constituting the refrigeration cycle are provided, in order to reduce the pressure loss of the gas-phase refrigerant flowing out of the reservoir, the unit including the valves is a reservoir of the reservoir. It is preferable to provide in the vicinity. However, in view of the fact that the heat exchanger and the liquid reservoir are arranged in front of the vehicle and the influence of water dripping from the liquid reservoir in the first place, there is an increased risk that the valves will be covered with water, and some measures are required. Further, when the valve is arranged in the vicinity of the reservoir, in the first mode refrigerant circuit, heat from the high-temperature gas flowing into the valve is easily transmitted to the reservoir, and the refrigerant flowing into the reservoir is gasified. If the gasification of the refrigerant proceeds, it will lead to the outflow of the gas refrigerant and the gas-liquid separation performance will be hindered, so some measures are required.
 本開示は、熱交換器や貯液器と共に冷凍サイクルを構成するバルブ類を近傍に配置するにあたって、バルブ類が水を被るおそれを低減し、バルブからの熱害に対する気液分離性能を確保できる熱交換器を提供することを目的とする。 The present disclosure can reduce the risk that the valves will be exposed to water when the valves constituting the refrigeration cycle together with the heat exchanger and the liquid reservoir are disposed, and can ensure gas-liquid separation performance against thermal damage from the valves. An object is to provide a heat exchanger.
 本開示は、冷凍サイクルに用いられる熱交換器であって、内部を通過する冷媒と空気とを熱交換させる熱交換部(3,4)と、熱交換部から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器(5)と、前記冷凍サイクルを構成する冷媒流路を通って流入する冷媒の流動状態を調整して前記熱交換部(3)に供給し、前記熱交換部(4)又は前記貯液器(5)から流出する冷媒の流出状態及び流出先を調整する冷媒調整部(21,22)と、を備える。前記貯液器には、主に液相冷媒が溜まる貯液領域(51a)と、主に気相冷媒が溜まる貯気領域(51b)とが形成されている。前記冷媒調整部は、前記貯気領域を挟んで前記貯液領域とは反対側に設けられている。 The present disclosure is a heat exchanger used in a refrigeration cycle, and includes a heat exchange unit (3, 4) for exchanging heat between refrigerant passing through the inside and air, and a gas-liquid two-phase refrigerant flowing out from the heat exchange unit. A liquid reservoir (5) that separates gas-liquid into a gas-phase refrigerant and a liquid-phase refrigerant and stores the liquid-phase refrigerant, and adjusts a flow state of the refrigerant flowing through the refrigerant flow path constituting the refrigeration cycle And a refrigerant adjusting unit (21, 22) that adjusts an outflow state and an outflow destination of the refrigerant that is supplied to the heat exchanging unit (3) and flows out of the heat exchanging unit (4) or the reservoir (5). . The liquid reservoir is formed with a liquid storage region (51a) mainly storing liquid phase refrigerant and an air storage region (51b) mainly storing gas phase refrigerant. The refrigerant adjusting unit is provided on the opposite side of the liquid storage region with the air storage region interposed therebetween.
 本開示によれば、第1調整部21及び第2調整部22を、貯液器5よりも上方に配置することで、第1調整部21及び第2調整部22が水を被る恐れを確実に低減することができる。更に、冷媒調整部が貯気領域を挟んで貯液領域とは反対側に配置されているので、冷媒調整部に起因する熱害によって液相冷媒の一部がガス化しても、貯液領域からのガス冷媒の流出を抑制することができる。 According to the present disclosure, by arranging the first adjustment unit 21 and the second adjustment unit 22 above the liquid reservoir 5, it is possible to reliably prevent the first adjustment unit 21 and the second adjustment unit 22 from receiving water. Can be reduced. Further, since the refrigerant adjustment unit is disposed on the opposite side of the liquid storage region across the gas storage region, even if a part of the liquid phase refrigerant is gasified due to heat damage caused by the refrigerant adjustment unit, the liquid storage region The outflow of the gas refrigerant from can be suppressed.
 更に、第2モードの冷媒回路では、気相冷媒の流出先にバルブが設けられているため、この流出経路は冷凍サイクル中で圧力損失が高い場所になる。圧力損失を低減するためには、大径の流出経路を設ける必要があり、車両搭載性が悪化する。一方、車両搭載性を考慮して流出経路を小径化すると、圧力損失が高まり、暖房性能の低下を招くことになる。これに対して、冷媒調整部を貯気領域に近接配置することができるので、気相冷媒の流出経路を大径化したとしても、その経路長を短くすることができる。従って、圧力損失を低減しつつ、車両搭載性も確保することができる。 Furthermore, in the second mode refrigerant circuit, since the valve is provided at the outflow destination of the gas phase refrigerant, this outflow path becomes a place where the pressure loss is high in the refrigeration cycle. In order to reduce the pressure loss, it is necessary to provide a large-diameter outflow path, which deteriorates the vehicle mountability. On the other hand, if the diameter of the outflow path is reduced in consideration of the vehicle mountability, the pressure loss increases and the heating performance is reduced. On the other hand, since the refrigerant adjusting unit can be disposed close to the air storage region, the path length can be shortened even if the outflow path of the gas-phase refrigerant is increased. Therefore, vehicle mountability can be ensured while reducing pressure loss.
 尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。 The reference numerals in parentheses described in the “Summary of the Invention” and “Claims” indicate the correspondence with the “Mode for Carrying Out the Invention” to be described later. It does not indicate that the “claims” are limited to the “modes for carrying out the invention” described below.
図1は、第1実施形態に係る熱交換器であって、冷房運転の状態を示す図である。FIG. 1 is a heat exchanger according to the first embodiment and is a diagram illustrating a state of cooling operation. 図2は、第1実施形態に係る熱交換器であって、暖房運転の状態を示す図である。 Drawing 2 is a heat exchanger concerning a 1st embodiment, and is a figure showing the state of heating operation. 図3は、貯液器内部の液面高さを説明するための図である。FIG. 3 is a view for explaining the liquid level height inside the liquid reservoir. 図4は、第2実施形態に係る熱交換器を説明するための図である。FIG. 4 is a diagram for explaining the heat exchanger according to the second embodiment. 図5は、第3実施形態に係る熱交換器を説明するための図である。FIG. 5 is a view for explaining a heat exchanger according to the third embodiment. 図6は、第4実施形態に係る熱交換器を説明するための図である。FIG. 6 is a view for explaining a heat exchanger according to the fourth embodiment. 図7は、第5実施形態に係る熱交換器を説明するための図である。FIG. 7 is a view for explaining a heat exchanger according to the fifth embodiment. 図8は、比較例に係る熱交換器を説明するための図である。FIG. 8 is a diagram for explaining a heat exchanger according to a comparative example. 図9は、第6実施形態に係る熱交換器を説明するための図である。FIG. 9 is a diagram for explaining the heat exchanger according to the sixth embodiment. 図10は、液冷媒の流入による液面乱れを説明するための図である。FIG. 10 is a diagram for explaining the liquid level disturbance due to the inflow of the liquid refrigerant. 図11は、第7実施形態に係る熱交換器であって、緩衝空間を形成する例について説明するための図である。FIG. 11 is a heat exchanger according to the seventh embodiment and is a view for explaining an example of forming a buffer space. 図12は、第7実施形態に係る熱交換器であって、緩衝空間を形成する例について説明するための図である。FIG. 12 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example in which a buffer space is formed. 図13は、第7実施形態に係る熱交換器であって、緩衝空間を形成する例について説明するための図である。Drawing 13 is a heat exchanger concerning a 7th embodiment, and is a figure for explaining the example which forms buffer space. 図14は、第7実施形態に係る熱交換器であって、緩衝空間を形成する例について説明するための図である。FIG. 14 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example of forming a buffer space. 図15は、第7実施形態に係る熱交換器であって、緩衝空間を形成する例について説明するための図である。FIG. 15 is a heat exchanger according to the seventh embodiment and is a diagram for explaining an example in which a buffer space is formed.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1及び図2に示されるように、第1実施形態に係る熱交換器2は、上流側熱交換部3と、下流側熱交換部4と、貯液器5と、を備えている。上流側熱交換部3は、2つの上流側コア32,34と、ヘッダタンク31,33,35と、を有している。本実施形態では一例として2つの上流側コア32,34を有するものを示したが、コアは単一でも3つ以上でも構わない。上流側コア32,34は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。 As shown in FIGS. 1 and 2, the heat exchanger 2 according to the first embodiment includes an upstream heat exchange unit 3, a downstream heat exchange unit 4, and a reservoir 5. The upstream heat exchange unit 3 includes two upstream cores 32 and 34 and header tanks 31, 33, and 35. In the present embodiment, an example having two upstream cores 32 and 34 is shown, but the number of cores may be single or three or more. The upstream cores 32 and 34 are portions for exchanging heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
 上流側コア32の上流側端には、ヘッダタンク31が取り付けられている。上流側コア34の下流側端には、ヘッダタンク35が取り付けられている。上流側コア32の下流側端及び上流側コア34の上流側端には、双方に跨って配置されるヘッダタンク33が取り付けられている。 A header tank 31 is attached to the upstream end of the upstream core 32. A header tank 35 is attached to the downstream end of the upstream core 34. A header tank 33 is attached to the downstream end of the upstream core 32 and the upstream end of the upstream core 34 so as to extend over both.
 ヘッダタンク31には流入流路15が設けられている。ヘッダタンク35には接続流路11が設けられている。流入流路15から流入した冷媒は、ヘッダタンク31から上流側コア32に流入する。上流側コア32を流れた冷媒は、ヘッダタンク33に流入する。ヘッダタンク33内を流れた冷媒は、上流側コア34に流入する。上流側コア34を流れた冷媒は、ヘッダタンク35に流入する。ヘッダタンク35に流入した冷媒は、接続流路11に流出する。接続流路11は貯液器5に繋がれている。接続流路11に流出した冷媒は、貯液器5の液溜部51内部に流入する。 The inlet tank 15 is provided in the header tank 31. A connection channel 11 is provided in the header tank 35. The refrigerant flowing in from the inflow channel 15 flows into the upstream core 32 from the header tank 31. The refrigerant that has flowed through the upstream core 32 flows into the header tank 33. The refrigerant that has flowed through the header tank 33 flows into the upstream core 34. The refrigerant that has flowed through the upstream core 34 flows into the header tank 35. The refrigerant flowing into the header tank 35 flows out to the connection flow path 11. The connection flow path 11 is connected to the liquid reservoir 5. The refrigerant that has flowed out into the connection channel 11 flows into the liquid reservoir 51 of the liquid reservoir 5.
 貯液器5は、液溜部51と、接続流路11と、接続流路12と、接続流路13と、を有している。液溜部51は、接続流路11から流入する気液二相冷媒を液相冷媒と気相冷媒とに分離し、液相冷媒を溜める部分である。 The liquid reservoir 5 has a liquid reservoir 51, a connection channel 11, a connection channel 12, and a connection channel 13. The liquid reservoir 51 is a part that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 11 into a liquid-phase refrigerant and a gas-phase refrigerant and accumulates the liquid-phase refrigerant.
 液溜部51には、接続流路11と、接続流路12と、接続流路13と、が繋がれている。接続流路11は、上流側熱交換部3と貯液器5とを繋ぐ流路である。接続流路12は、貯液器5と下流側熱交換部4とを繋ぐ流路である。図1に示されるように、冷房運転時に接続流路12から流出した液相冷媒は、下流側熱交換部4に流入する。接続流路13は、貯液器5から気相冷媒を流出させる流路である。 The connecting channel 11, the connecting channel 12, and the connecting channel 13 are connected to the liquid reservoir 51. The connection flow path 11 is a flow path that connects the upstream heat exchange unit 3 and the liquid reservoir 5. The connection flow path 12 is a flow path that connects the liquid reservoir 5 and the downstream heat exchange unit 4. As shown in FIG. 1, the liquid-phase refrigerant that has flowed out of the connection flow path 12 during the cooling operation flows into the downstream heat exchange unit 4. The connection flow path 13 is a flow path for allowing the gas-phase refrigerant to flow out from the liquid reservoir 5.
 下流側熱交換部4は、ヘッダタンク41と、下流側コア42と、ヘッダタンク43と、を有している。ヘッダタンク43には、流出流路14が繋がれている。ヘッダタンク43は、下流側コア42の下流側端に設けられている。下流側コア42の上流側端には、ヘッダタンク41が設けられている。ヘッダタンク41には、接続流路12が繋がれている。 The downstream heat exchange unit 4 includes a header tank 41, a downstream core 42, and a header tank 43. An outflow channel 14 is connected to the header tank 43. The header tank 43 is provided at the downstream end of the downstream core 42. A header tank 41 is provided at the upstream end of the downstream core 42. A connection channel 12 is connected to the header tank 41.
 接続流路12からヘッダタンク41に液相冷媒が流入し、ヘッダタンク41から下流側コア42に液相冷媒が流入する。下流側コア42は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。従って、下流側コア42に流れこんだ液相冷媒は、過冷却されながらヘッダタンク43に向かう。 The liquid phase refrigerant flows into the header tank 41 from the connection flow path 12, and the liquid phase refrigerant flows into the downstream core 42 from the header tank 41. The downstream core 42 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes. Accordingly, the liquid-phase refrigerant that has flowed into the downstream core 42 is directed to the header tank 43 while being supercooled.
 下流側コア42からヘッダタンク43に流れ込んだ液相冷媒は、流出流路14に流出する。流出流路14は、冷凍サイクル装置を構成する膨張弁に繋がっており、膨張弁より先にはエバポレータが繋がれている。 The liquid refrigerant that has flowed into the header tank 43 from the downstream core 42 flows out to the outflow passage 14. The outflow channel 14 is connected to an expansion valve that constitutes the refrigeration cycle apparatus, and an evaporator is connected before the expansion valve.
 貯液器5の上方には、冷媒調整部としての第1調整部21及び第2調整部22が設けられている。第1調整部21には、高圧冷媒流入口21aと、冷媒流出口21bとが設けられている。高圧冷媒流入口21aは、コンプレッサや放熱手段から流れ込む高圧冷媒が流路17を通して流入する流入口である。冷媒流出口21bは、流入した冷媒をそのまま高圧で若しくは低圧にして、流入流路15を通して上流側熱交換部3に向けて流出させる流出口である。 A first adjusting unit 21 and a second adjusting unit 22 as a refrigerant adjusting unit are provided above the liquid reservoir 5. The first adjustment unit 21 is provided with a high-pressure refrigerant inlet 21a and a refrigerant outlet 21b. The high-pressure refrigerant inlet 21 a is an inlet through which high-pressure refrigerant flowing from the compressor or the heat radiating means flows through the flow path 17. The refrigerant outlet 21b is an outlet through which the refrigerant that has flowed in is directly brought into a high pressure or a low pressure and flows out toward the upstream heat exchange unit 3 through the inflow channel 15.
 第2調整部22には、気相冷媒流入口22aと、コンプレッサ行き流出口22bとが設けられている。気相冷媒流入口22aは、貯液器5から接続流路13を通して流出する気相冷媒が流入する流入口である。コンプレッサ行き流出口22bは、流入した冷媒を、コンプレッサ行き流路16を通してコンプレッサに送り出す流出口である。 The second adjusting unit 22 includes a gas-phase refrigerant inlet 22a and a compressor outlet 22b. The gas-phase refrigerant inlet 22a is an inlet through which the gas-phase refrigerant flowing out from the reservoir 5 through the connection channel 13 flows. The compressor outlet 22b is an outlet for sending the refrigerant flowing into the compressor through the compressor passage 16.
 上記したように、第1実施形態に係る熱交換器2は、内部を通過する冷媒と空気とを熱交換させる上流側熱交換部3及び下流側熱交換部4と、上流側熱交換部3から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器5と、冷凍サイクルを構成する冷媒流路を通って流入する冷媒の流動状態を調整して上流側熱交換部3に供給し、下流側熱交換部4又は貯液器5から流出する冷媒の流出状態及び流出先を調整する冷媒調整部としての第1調整部21及び第2調整部22と、を備える。貯液器5には、主に液相冷媒が溜まる貯液領域51aと、主に気相冷媒が溜まる貯気領域51bとが形成されている。冷媒調整部である第1調整部21及び第2調整部22は、貯気領域51bを挟んで貯液領域51aとは反対側に設けられている。 As described above, the heat exchanger 2 according to the first embodiment includes the upstream heat exchange unit 3 and the downstream heat exchange unit 4 that exchange heat between the refrigerant passing through the interior and the air, and the upstream heat exchange unit 3. The gas-liquid two-phase refrigerant flowing out from the gas-liquid is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the flow of the refrigerant flowing in through the reservoir 5 for storing the liquid-phase refrigerant and the refrigerant flow path constituting the refrigeration cycle A first adjusting unit 21 as a refrigerant adjusting unit that adjusts the state and supplies the upstream heat exchanging unit 3 to the upstream heat exchanging unit 3 and adjusts the outflow state and the outflow destination of the refrigerant flowing out of the downstream heat exchanging unit 4 or the reservoir 5; A second adjustment unit 22. The liquid reservoir 5 is formed with a liquid storage region 51a in which mainly liquid phase refrigerant is stored and an air storage region 51b in which mainly gas phase refrigerant is stored. The 1st adjustment part 21 and the 2nd adjustment part 22 which are refrigerant | coolant adjustment parts are provided in the opposite side to the liquid storage area | region 51a on both sides of the air storage area | region 51b.
 このように、第1調整部21及び第2調整部22を、貯液器5よりも上方に配置することで、第1調整部21及び第2調整部22が水を被る恐れを確実に低減することができる。更に、冷媒調整部である第1調整部21及び第2調整部22が貯気領域51bを挟んで貯液領域51aとは反対側に配置されているので、冷媒調整部に起因する熱害によって液相冷媒の一部がガス化しても、貯液領域51aからのガス冷媒の流出を抑制することができる。加えて、気相冷媒の流出経路を大径化し且つ短く構成することが可能となり、圧力損失の抑制と車両搭載性の確保とを両立させることができる。 Thus, by arranging the first adjustment unit 21 and the second adjustment unit 22 above the liquid reservoir 5, it is possible to reliably reduce the risk of the first adjustment unit 21 and the second adjustment unit 22 receiving water. can do. Furthermore, since the first adjustment unit 21 and the second adjustment unit 22 that are refrigerant adjustment units are disposed on the opposite side of the liquid storage region 51a across the air storage region 51b, the heat adjustment caused by the refrigerant adjustment unit causes Even if a part of the liquid-phase refrigerant is gasified, the outflow of the gas refrigerant from the liquid storage region 51a can be suppressed. In addition, the outflow path of the gas-phase refrigerant can be increased in diameter and shortened, and both suppression of pressure loss and securing of vehicle mounting properties can be achieved.
 貯気領域51bは、液溜部51の高さ方向の半分以上の位置に配置される。図3に示されるように、貯液器5の高さは、「経年漏れ」「負荷変動吸収」「余裕等」を積み上げることで設定されている。「経年漏れ」とは、熱交換器2が冷凍サイクルに用いられた場合に、使用年数によって各部から漏れ出す冷媒量を想定し、その分を見込んでいるものである。「負荷変動吸収」とは、冷凍サイクルを運転するにあたって、流入する液相冷媒の量の変動量を見込んだものである。「経年漏れ」及び「負荷変動吸収」分は、貯液器5の設計上必要となる液面高さであるので、接続流路12は、この高さよりも上方に設けられることが好ましい。 The gas storage area 51b is arranged at a position that is at least half of the liquid reservoir 51 in the height direction. As shown in FIG. 3, the height of the liquid reservoir 5 is set by accumulating “leakage over time”, “absorption of load fluctuation”, and “margin”. “Aging leakage” is the amount of refrigerant that leaks from each part according to the number of years of use when the heat exchanger 2 is used in a refrigeration cycle, and anticipates that amount. “Load fluctuation absorption” is intended to allow for fluctuations in the amount of liquid-phase refrigerant that flows in when operating the refrigeration cycle. Since “aging leak” and “load fluctuation absorption” are the liquid level height required for the design of the liquid reservoir 5, it is preferable that the connection flow path 12 is provided above this height.
 図4に示されるように、第2実施形態に係る熱交換器2Aでは、第1調整部21A及び第2調整部22Aをオフセットさせて、貯液器5の上方に配置している。接続流路13Aをクランク状にして設け、流入流路15Aを延伸することで、貯液器5の直上でなくとも第1調整部21A及び第2調整部22Aを配置することができる。 As shown in FIG. 4, in the heat exchanger 2A according to the second embodiment, the first adjustment unit 21A and the second adjustment unit 22A are offset and arranged above the liquid reservoir 5. By providing the connecting flow path 13A in a crank shape and extending the inflow flow path 15A, the first adjusting portion 21A and the second adjusting portion 22A can be arranged not directly above the reservoir 5.
 また本実施形態では、上流側熱交換部3から流出する気液二相冷媒を貯液器5に流入させる接続流路11を備えている。接続流路11は、貯気領域51bに設けられてなる流入口501に連通するように繋がれている。このような構成により、冷房時に高温の冷媒が通る第1調整部21からの熱害に対して、上流側熱交換部3において熱交換した冷媒を供給することで、その熱害の影響を低減することができる。熱害の影響の低減により、貯液器5の充填特性を向上させることができる。また、暖房時には、気液分離性を向上させることができる。 Moreover, in this embodiment, the connection flow path 11 is provided for allowing the gas-liquid two-phase refrigerant flowing out from the upstream heat exchange section 3 to flow into the liquid reservoir 5. The connection flow path 11 is connected to communicate with an inflow port 501 provided in the air storage region 51b. With such a configuration, the influence of the heat damage is reduced by supplying the heat exchanged heat in the upstream heat exchange unit 3 against the heat damage from the first adjustment unit 21 through which the high-temperature refrigerant passes during cooling. can do. By reducing the influence of heat damage, the filling characteristics of the liquid reservoir 5 can be improved. In addition, gas-liquid separation can be improved during heating.
 また本実施形態では、貯液器5及び冷媒調整部としての第1調整部21及び第2調整部22は、上流側熱交換部3及び下流側熱交換部4の冷媒流れ方向における一端側に配置されている。このように配置することで、配管経路を短くし、冷媒の圧損増加を抑制することができる。 Moreover, in this embodiment, the 1st adjustment part 21 and the 2nd adjustment part 22 as the reservoir 5 and a refrigerant | coolant adjustment part are the one end side in the refrigerant | coolant flow direction of the upstream heat exchange part 3 and the downstream heat exchange part 4. Has been placed. By arranging in this way, the piping path can be shortened and an increase in refrigerant pressure loss can be suppressed.
 また本実施形態では、冷媒調整部である第1調整部21及び第2調整部22から貯液器5を見た場合にそれぞれの一部が重複するように、第1調整部21及び第2調整部22と貯液器5が配置されている。より具体的には、貯液器5の長手方向を見通す方向から見た場合、すなわち貯液器5の長手方向に対し上方又は下方から第1調整部21及び第2調整部22と貯液器5とを見た場合に、それぞれの一部が重複するように配置されている。このように配置することで、省スペース化が実現できる。もっとも、図1及び図2を参照しながら説明したように、第1調整部21及び第2調整部22と貯液器5とが完全に重複するように配置することに実施形態は限られない。 Moreover, in this embodiment, when the reservoir 5 is seen from the 1st adjustment part 21 and the 2nd adjustment part 22 which are refrigerant | coolant adjustment parts, 1st adjustment part 21 and 2nd so that each may overlap. The adjustment unit 22 and the liquid reservoir 5 are arranged. More specifically, when viewed from the direction in which the longitudinal direction of the liquid reservoir 5 is seen, that is, from the upper side or the lower side with respect to the longitudinal direction of the liquid reservoir 5, the first adjusting unit 21, the second adjusting unit 22, and the liquid reservoir. When looking at 5, they are arranged so that a part of each overlaps. By arranging in this way, space saving can be realized. However, as described with reference to FIG. 1 and FIG. 2, the embodiment is not limited to arranging the first adjustment unit 21 and the second adjustment unit 22 and the liquid reservoir 5 so as to completely overlap. .
 図5に示されるように、第3実施形態に係る熱交換器2Bは、第1調整部21B及び第2調整部22Bが横方向に沿って並ぶように配置されている。第1調整部21Bには流路17Bが繋がれており、ヘッダタンク31の直上に配置されている。第1調整部21Bとヘッダタンク31とは、極めて短い流入流路15Bによって繋がれている。第2調整部22Bは、貯液器5の直上に配置されている。貯液器5と第2調整部22Bとの距離が長くなるので、接続流路13Bが延伸される。 As shown in FIG. 5, the heat exchanger 2 </ b> B according to the third embodiment is arranged such that the first adjustment unit 21 </ b> B and the second adjustment unit 22 </ b> B are arranged in the horizontal direction. A flow path 17B is connected to the first adjustment unit 21B and is disposed immediately above the header tank 31. The first adjustment unit 21B and the header tank 31 are connected by an extremely short inflow channel 15B. The second adjustment unit 22 </ b> B is disposed immediately above the liquid reservoir 5. Since the distance between the liquid reservoir 5 and the second adjustment unit 22B is increased, the connection flow path 13B is extended.
 また本実施形態では、冷媒調整部である第1調整部21及び第2調整部22には、上流側熱交換部3に冷媒を流出する接続流路13Bが繋がれると共に、冷凍サイクルを構成するコンプレッサへ冷媒を流出するコンプレッサ行き流路16Bが繋がれている。 In the present embodiment, the first adjusting unit 21 and the second adjusting unit 22 that are refrigerant adjusting units are connected to the upstream side heat exchanging unit 3 through the connection flow path 13B for flowing out the refrigerant, and constitute a refrigeration cycle. A flow path 16B for the compressor that flows out the refrigerant to the compressor is connected.
 図6に示されるように、第4実施形態に係る熱交換器2Cは、貯液器5の貯液領域51aから流出する液相冷媒がコンプレッサ行き流出口22bから流出する冷媒と合流するように構成されている。より具体的には、貯液器5の下部と、接続流路13とを繋ぐ接続流路12Cが設けられている。 As shown in FIG. 6, the heat exchanger 2 </ b> C according to the fourth embodiment is configured so that the liquid-phase refrigerant flowing out from the liquid storage region 51 a of the liquid storage device 5 merges with the refrigerant flowing out from the compressor outlet / outlet 22 b. It is configured. More specifically, a connection channel 12 </ b> C that connects the lower part of the liquid reservoir 5 and the connection channel 13 is provided.
 また本実施形態では、流れこんだ冷媒を空気と熱交換させて貯液器5に送り出す上流側熱交換部3と、貯液器5から流出した液相冷媒が流れ込み、空気と熱交換させる下流側熱交換部4と、を有している。貯液器5と、冷媒調整部である第1調整部21及び第2調整部22と、上流側熱交換部3と、下流側熱交換部4と、が一体的に結合されている。 Moreover, in this embodiment, the upstream heat exchange part 3 which heat-exchanges the refrigerant | coolant which flowed in and sends it to the reservoir 5 and the downstream which the liquid phase refrigerant | coolant which flowed out from the reservoir 5 flows in and heat-exchanges with air. Side heat exchanging section 4. The reservoir 5, the first adjusting unit 21 and the second adjusting unit 22 that are refrigerant adjusting units, the upstream heat exchanging unit 3, and the downstream heat exchanging unit 4 are integrally coupled.
 また本実施形態では、第1調整部21は、コンプレッサから流れ込む高圧冷媒が流入する高圧冷媒流入口21aと、冷媒流出口21bとの間に設けられ、流路を開閉する機能と冷媒の圧力を低下させる機能とを有する。第2調整部22は、貯液器5から流れ込む気相冷媒が流入する気相冷媒流入口22aと、コンプレッサ行き流出口22bとの間に設けれ、流路を開閉する機能を有する。第2調整部22を挟んで、第1調整部21と貯液器5とが互いに反対側に位置するように設けられている。第2調整部22を貯液器5側に配置することで、貯気領域51bから最短距離で気相冷媒流入口22aを配置することができるため、気相冷媒の圧損低減が図れる。高温冷媒が流れる第1調整部を貯液器5から引き離すことで、熱害による充填率低下を避けることができる。また、このように配置することで、高圧冷媒の流れる第1調整部21からの熱を第2調整部22で緩和することができるので、貯液器5上部のガス化を抑制できると共に気液分離性を確保できる。 Moreover, in this embodiment, the 1st adjustment part 21 is provided between the high pressure refrigerant | coolant inflow port 21a into which the high pressure refrigerant | coolant which flows in from a compressor flows in, and the refrigerant | coolant outflow port 21b, and has the function which opens and closes a flow path, and the pressure of a refrigerant | coolant. It has a function to lower. The 2nd adjustment part 22 is provided between the gaseous-phase refrigerant | coolant inlet 22a into which the gaseous-phase refrigerant | coolant which flows in from the reservoir 5 flows in, and the compressor outlet / outlet 22b, and has a function which opens and closes a flow path. The first adjustment unit 21 and the liquid reservoir 5 are provided on opposite sides of the second adjustment unit 22. By disposing the second adjustment unit 22 on the liquid reservoir 5 side, the gas-phase refrigerant inlet 22a can be disposed at the shortest distance from the air-storage region 51b, so that the pressure loss of the gas-phase refrigerant can be reduced. By pulling away the first adjusting portion through which the high-temperature refrigerant flows from the liquid reservoir 5, it is possible to avoid a decrease in the filling rate due to heat damage. Moreover, since the heat from the 1st adjustment part 21 into which a high pressure refrigerant | coolant flows can be relieve | moderated by the 2nd adjustment part 22 by arrange | positioning in this way, gasification of the upper part of the reservoir 5 can be suppressed, and gas liquid Separability can be secured.
 図7に示されるように、第5実施形態に係る熱交換器2Dは、上流側熱交換部3と、下流側熱交換部4と、貯液器5と、を備えている。上流側熱交換部3は、2つの上流側コア32,34と、ヘッダタンク31,33,35と、を有している。本実施形態では一例として2つの上流側コア32,34を有するものを示したが、コアは単一でも3つ以上でも構わない。上流側コア32,34は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。 As shown in FIG. 7, the heat exchanger 2D according to the fifth embodiment includes an upstream heat exchange unit 3, a downstream heat exchange unit 4, and a liquid reservoir 5. The upstream heat exchange unit 3 includes two upstream cores 32 and 34 and header tanks 31, 33, and 35. In the present embodiment, an example having two upstream cores 32 and 34 is shown, but the number of cores may be single or three or more. The upstream cores 32 and 34 are portions for exchanging heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
 上流側コア32の上流側端には、ヘッダタンク31が取り付けられている。上流側コア34の下流側端には、ヘッダタンク35が取り付けられている。上流側コア32の下流側端及び上流側コア34の上流側端には、双方に跨って配置されるヘッダタンク33が取り付けられている。 A header tank 31 is attached to the upstream end of the upstream core 32. A header tank 35 is attached to the downstream end of the upstream core 34. A header tank 33 is attached to the downstream end of the upstream core 32 and the upstream end of the upstream core 34 so as to extend over both.
 ヘッダタンク31には流入流路15が設けられている。ヘッダタンク35には接続流路11が設けられている。流入流路15から流入した冷媒は、ヘッダタンク31から上流側コア32に流入する。上流側コア32を流れた冷媒は、ヘッダタンク33に流入する。ヘッダタンク33内を流れた冷媒は、上流側コア34に流入する。上流側コア34を流れた冷媒は、ヘッダタンク35に流入する。ヘッダタンク35に流入した冷媒は、接続流路11に流出する。接続流路11は貯液器5に繋がれている。 The inlet tank 15 is provided in the header tank 31. A connection channel 11 is provided in the header tank 35. The refrigerant flowing in from the inflow channel 15 flows into the upstream core 32 from the header tank 31. The refrigerant that has flowed through the upstream core 32 flows into the header tank 33. The refrigerant that has flowed through the header tank 33 flows into the upstream core 34. The refrigerant that has flowed through the upstream core 34 flows into the header tank 35. The refrigerant flowing into the header tank 35 flows out to the connection flow path 11. The connection flow path 11 is connected to the liquid reservoir 5.
 貯液器5は、液溜部51と、接続流路11と、接続流路12と、接続流路13と、を有している。液溜部51は、接続流路11から流入する気液二相冷媒を液相冷媒と気相冷媒とに分離し、液相冷媒を溜める部分である。 The liquid reservoir 5 has a liquid reservoir 51, a connection channel 11, a connection channel 12, and a connection channel 13. The liquid reservoir 51 is a part that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 11 into a liquid-phase refrigerant and a gas-phase refrigerant and accumulates the liquid-phase refrigerant.
 液溜部51には、接続流路11と、接続流路12と、接続流路13と、が繋がれている。接続流路11は、上流側熱交換部3と貯液器5とを繋ぐ流路である。接続流路12は、貯液器5と下流側熱交換部4とを繋ぐ流路である。接続流路12から流出した液相冷媒は、下流側熱交換部4に流入する。接続経路13は、貯液器5と冷媒調整部6とを繋ぐ通路である。 The connecting channel 11, the connecting channel 12, and the connecting channel 13 are connected to the liquid reservoir 51. The connection flow path 11 is a flow path that connects the upstream heat exchange unit 3 and the liquid reservoir 5. The connection flow path 12 is a flow path that connects the liquid reservoir 5 and the downstream heat exchange unit 4. The liquid-phase refrigerant that has flowed out of the connection flow path 12 flows into the downstream heat exchange unit 4. The connection path 13 is a path that connects the liquid reservoir 5 and the refrigerant adjustment unit 6.
 液溜部51には、貯液空間511が形成されている。貯液空間511に繋がるように、流入口512及び流出口513が形成されている。流入口512には、接続流路11が繋がれている。流出口513には、接続流路12が繋がれている。 A liquid storage space 511 is formed in the liquid reservoir 51. An inlet 512 and an outlet 513 are formed so as to be connected to the liquid storage space 511. The connection channel 11 is connected to the inflow port 512. The connection channel 12 is connected to the outflow port 513.
 貯液器5の上方には、冷媒調整部6が設けられている。冷媒調整部6には、流入流路17と、流入流路15とが繋がれている。流入流路17は、コンプレッサから流れ込む高圧冷媒が流入する流路である。流入流路15は、流入した冷媒をそのまま高圧で若しくは低圧にして、上流側熱交換部3に向けて流出させる流路である。 A refrigerant adjustment unit 6 is provided above the liquid reservoir 5. An inflow channel 17 and an inflow channel 15 are connected to the refrigerant adjustment unit 6. The inflow channel 17 is a channel into which high-pressure refrigerant flowing from the compressor flows. The inflow channel 15 is a channel through which the refrigerant that has flowed in is kept at a high pressure or a low pressure and flows out toward the upstream heat exchange unit 3.
 冷媒調整部6には、接続流路13と、コンプレッサ行き流路16とが繋がれている。接続流路13は、貯液器5から流出する気相冷媒が流入する流路である。コンプレッサ行き流路16は、流入した冷媒をコンプレッサに送り出す流路である。 The refrigerant flow adjustment section 6 is connected to a connection flow path 13 and a flow path 16 for the compressor. The connection flow path 13 is a flow path into which the gas-phase refrigerant flowing out from the liquid reservoir 5 flows. The compressor-bound flow path 16 is a flow path for sending the refrigerant flowing in to the compressor.
 冷媒調整部6は、内部流路が形成され、弁体及び弁座が配置されている本体部61と、シール部63と、弁体を駆動するアクチュエータ64と、を備えている。 The refrigerant adjustment unit 6 includes a main body part 61 in which an internal flow path is formed and a valve body and a valve seat are arranged, a seal part 63, and an actuator 64 that drives the valve body.
 接続流路11に流出した冷媒は、流入口512を経由して、冷媒調整部6の緩衝領域66に流入する。緩衝領域66は、接続流路13の上方に形成されている。流入口512から流入する冷媒が緩衝領域66に流れ込むことができるように、連通穴67が設けられている。連通穴67は、本体部61が流入口512に対向する箇所に設けられている。 The refrigerant that has flowed out into the connection flow path 11 flows into the buffer region 66 of the refrigerant adjustment unit 6 via the inflow port 512. The buffer region 66 is formed above the connection flow path 13. A communication hole 67 is provided so that the refrigerant flowing from the inlet 512 can flow into the buffer region 66. The communication hole 67 is provided at a location where the main body portion 61 faces the inflow port 512.
 流入口512から流入する冷媒は、緩衝領域66に流れ込む。接続流路11から流入する液冷媒により接続流路17から接続流路15を通るSHガスによる熱害を冷やすことができるため、貯液空間上部のガス化を抑制でき、気液分離性を確保することができる。 The refrigerant flowing from the inlet 512 flows into the buffer region 66. The liquid refrigerant flowing from the connection channel 11 can cool the heat damage caused by the SH gas passing from the connection channel 17 to the connection channel 15, thereby suppressing gasification in the upper part of the liquid storage space and ensuring gas-liquid separation. can do.
 下流側熱交換部4は、ヘッダタンク41と、下流側コア42と、ヘッダタンク43と、を有している。ヘッダタンク43には、流出流路14が繋がれている。ヘッダタンク43は、下流側コア42の下流側端に設けられている。下流側コア42の上流側端には、ヘッダタンク41が設けられている。ヘッダタンク41には、接続流路12が繋がれている。 The downstream heat exchange unit 4 includes a header tank 41, a downstream core 42, and a header tank 43. An outflow channel 14 is connected to the header tank 43. The header tank 43 is provided at the downstream end of the downstream core 42. A header tank 41 is provided at the upstream end of the downstream core 42. A connection channel 12 is connected to the header tank 41.
 接続流路12からヘッダタンク41に液相冷媒が流入し、ヘッダタンク41から下流側コア42に液相冷媒が流入する。下流側コア42は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。従って、下流側コア42に流れこんだ液相冷媒は、過冷却されながらヘッダタンク43に向かう。 The liquid phase refrigerant flows into the header tank 41 from the connection flow path 12, and the liquid phase refrigerant flows into the downstream core 42 from the header tank 41. The downstream core 42 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes. Accordingly, the liquid-phase refrigerant that has flowed into the downstream core 42 is directed to the header tank 43 while being supercooled.
 下流側コア42からヘッダタンク43に流れ込んだ液相冷媒は、流出流路14に流出する。流出流路14は、冷凍サイクル装置を構成する膨張弁に繋がっており、膨張弁より先にはエバポレータが繋がれている。 The liquid refrigerant that has flowed into the header tank 43 from the downstream core 42 flows out to the outflow passage 14. The outflow channel 14 is connected to an expansion valve that constitutes the refrigeration cycle apparatus, and an evaporator is connected before the expansion valve.
 上記したように、本実施形態では、冷媒調整部6は、貯液領域である貯液空間511の上方に設けられている。また、上流側熱交換部3から貯液領域である貯液空間511へ至る冷媒の流入経路は、冷媒調整部6を経由するように構成されている。 As described above, in the present embodiment, the refrigerant adjustment unit 6 is provided above the liquid storage space 511 that is a liquid storage region. In addition, the refrigerant inflow path from the upstream heat exchange unit 3 to the liquid storage space 511 that is the liquid storage region is configured to pass through the refrigerant adjustment unit 6.
 冷媒調整部6を貯液空間511の上方に配置し、なんらの対策も取らないと、暖房運転時に液冷媒が貯液空間511の下方に停滞し、冷凍サイクル内を循環する冷媒量が減少してしまう恐れがある。冷媒量の減少は、暖房性能の低下や循環オイル量の低下に繋がる。循環オイル量の低下が進行すると、コンプレッサがロックしてしまう恐れがある。そこで、熱交換部3から貯液空間511へ至る冷媒の流入流路を、冷媒調整部6を経由させることで、暖房時に冷媒を貯液空間511に流さずに冷凍サイクル内に還流させることができる。 If the refrigerant adjusting unit 6 is disposed above the liquid storage space 511 and no measures are taken, the liquid refrigerant stagnates below the liquid storage space 511 during heating operation, and the amount of refrigerant circulating in the refrigeration cycle decreases. There is a risk that. A decrease in the refrigerant amount leads to a decrease in heating performance and a decrease in the amount of circulating oil. If the circulating oil amount decreases, the compressor may be locked. Therefore, the refrigerant inflow path from the heat exchange unit 3 to the liquid storage space 511 is routed through the refrigerant adjustment unit 6 so that the refrigerant can be recirculated into the refrigeration cycle without flowing into the liquid storage space 511 during heating. it can.
 また本実施形態では、流入口512に繋がり、上流側熱交換部3から流出する冷媒を貯液領域である貯液空間511に流入させる接続流路11と、流出口513に繋がり、熱交換部3から流出し貯液領域である貯液空間511に入った冷媒を熱交換部4に流出させる接続流路12とが設けられており、流入口512よりも流出口513が下方に配置されている。流入口512は、貯液領域である貯液空間511の上方に配置されている、 Moreover, in this embodiment, it connects with the inflow port 512, connects with the connection flow path 11 into which the refrigerant | coolant which flows out out of the upstream heat exchange part 3 flows in into the liquid storage space 511 which is a liquid storage area | region, and the outflow port 513, and is connected to a heat exchange part. 3 is provided with a connection flow path 12 through which the refrigerant flowing out from 3 and entering the liquid storage space 511, which is a liquid storage area, flows out to the heat exchanging section 4, and the outlet 513 is disposed below the inlet 512. Yes. The inflow port 512 is disposed above the liquid storage space 511 that is a liquid storage area.
 このように構成することで、冷媒調整部6を通ることで高温となった冷媒が一部ガス化しても、流出口513に至るまでに冷却されるので、ガスが含まれた冷媒が熱交換部4に至らないようにすることができる。一方、図8に示す比較例の熱交換器2Eでは、冷媒調整部6Eを下方に配置しているので、弁68Eが高温となった場合に、ガスが含まれた冷媒が熱交換部4に流れることになる。このようなガス流入の影響を低減するため、本実施形態のように冷媒調整部6を上方に配置することが好ましい。 With this configuration, even if a part of the refrigerant that has become hot due to passing through the refrigerant adjustment unit 6 is gasified, the refrigerant is cooled down to the outlet 513, so that the refrigerant containing the gas exchanges heat. It is possible not to reach part 4. On the other hand, in the heat exchanger 2E of the comparative example shown in FIG. 8, the refrigerant adjustment unit 6E is disposed below. Will flow. In order to reduce the influence of such gas inflow, it is preferable to arrange the refrigerant adjustment unit 6 upward as in the present embodiment.
 図9に示される第6実施形態に係る熱交換器2Gは、熱交換器2Dの構成に対して、更に、液冷媒が上方から流入することによる前記貯液器内の液面乱れを抑制するための導管68Gを備えている。導管68Gの下端681Gは、流出口513よりも下方に位置するように配置されている。 The heat exchanger 2G according to the sixth embodiment shown in FIG. 9 further suppresses the liquid level disturbance in the liquid reservoir due to the liquid refrigerant flowing from above with respect to the configuration of the heat exchanger 2D. A conduit 68G is provided. The lower end 681G of the conduit 68G is arranged to be positioned below the outflow port 513.
 冷媒調整部6Fを構成する本体部61Gには、緩衝領域66Gが設けられている。流入口512から流入する冷媒が緩衝領域66Gに流れ込むことができるように、連通穴67Gが設けられている。連通穴67Gは、本体部61Gが流入口512に対向する箇所に設けられている。 A buffer region 66G is provided in the main body 61G constituting the refrigerant adjustment unit 6F. A communication hole 67G is provided so that the refrigerant flowing from the inlet 512 can flow into the buffer region 66G. The communication hole 67G is provided at a location where the main body 61G faces the inflow port 512.
 本体部61Gの緩衝領域66G下方には、開口部682Gが設けられている。開口部682Gを貫通するように、導管68Gが配置されている。暖房運転の場合、弁体69Gが下降し、導管68Gを塞ぐようになる。弁体69Gには、戻り穴691Gが設けられているので、下端681Gに設けられた開口から上昇した冷媒は、戻り穴691Gを通って冷凍サイクルに還流する。 An opening 682G is provided below the buffer region 66G of the main body 61G. A conduit 68G is disposed so as to penetrate through the opening 682G. In the case of the heating operation, the valve body 69G is lowered to block the conduit 68G. Since the return hole 691G is provided in the valve body 69G, the refrigerant rising from the opening provided in the lower end 681G returns to the refrigeration cycle through the return hole 691G.
 図10に示される熱交換器2Hでは、シール部63を用いずに空隙部65Hが設けられている。空隙部65Hは、本体部61Hの一部を後退させることで、空隙部65Hを形成している。ところで、ガス化領域を低減する観点から流入口512の接続位置を上方に設定すると、図10に示されるように、冷媒が滝状に流入し、貯液空間511内の液面が乱れる課題が発生する。 In the heat exchanger 2H shown in FIG. 10, the gap portion 65H is provided without using the seal portion 63. The gap portion 65H forms a gap portion 65H by retracting a part of the main body portion 61H. By the way, when the connection position of the inflow port 512 is set upward from the viewpoint of reducing the gasification region, as shown in FIG. 10, the refrigerant flows in a waterfall shape and the liquid level in the liquid storage space 511 is disturbed. appear.
 そこで、液面乱れの課題を解決するための第7実施形態に係る熱交換器2Jについて、図11を参照しながら説明する。熱交換器2Jは、貯液器5J及び冷媒調整部6Jを備えている。冷媒調整部6Jには、緩衝領域66Jが形成されている。 Therefore, a heat exchanger 2J according to a seventh embodiment for solving the problem of liquid level disturbance will be described with reference to FIG. The heat exchanger 2J includes a liquid reservoir 5J and a refrigerant adjustment unit 6J. A buffer region 66J is formed in the refrigerant adjustment unit 6J.
 緩衝領域66Jは、流出流路13Jの上方に形成されている。流入口512から流入する冷媒が緩衝領域66Jに流れ込むことができるように、連通穴67が設けられている。連通穴67は、本体部61Jが流入口512に対向する箇所に設けられている。 The buffer region 66J is formed above the outflow channel 13J. A communication hole 67 is provided so that the refrigerant flowing in from the inflow port 512 can flow into the buffer region 66J. The communication hole 67 is provided at a location where the main body portion 61J faces the inflow port 512.
 流入口512から流入する冷媒は、緩衝領域66Jに流れ込む。緩衝領域66Jに一時的に貯留された冷媒は、流出流路13Jから貯液空間511に流れ落ちる。そのため、冷媒の落下が穏やかなものとなり、液面乱れが低減される。 The refrigerant flowing from the inlet 512 flows into the buffer region 66J. The refrigerant temporarily stored in the buffer region 66J flows down from the outflow passage 13J to the liquid storage space 511. Therefore, the refrigerant falls gently, and the liquid level disturbance is reduced.
 続いて、液面乱れの課題を解決するための熱交換器2Fについて、図12を参照しながら説明する。熱交換器2Kは、貯液器5Kを備えている。貯液器5Kには、緩衝領域66Kが形成されている。 Subsequently, a heat exchanger 2F for solving the problem of liquid level disturbance will be described with reference to FIG. The heat exchanger 2K includes a liquid reservoir 5K. A buffer region 66K is formed in the liquid reservoir 5K.
 緩衝領域66Kは、冷媒調整部6と緩衝板52Kaとの間に形成されている。緩衝板52Kaは、貯液空間511内に配置されている板状部材である。図13に示されるように、緩衝板52Kaには、複数の貫通穴521aが設けられている。図14に示されるように、単一の貫通穴521bが設けられた緩衝板52Kbを用いることもできる。図15に示されるように、液溜部51の内壁との間に隙間を形成するように、側面に凹部521cを設けた緩衝板52Kcを用いることもできる。緩衝板52Kcを用いると、冷媒は液溜部51の内壁面を伝って流れるので、液面乱れの抑制効果が高まる。 The buffer region 66K is formed between the refrigerant adjustment unit 6 and the buffer plate 52Ka. The buffer plate 52Ka is a plate-like member disposed in the liquid storage space 511. As shown in FIG. 13, the buffer plate 52Ka is provided with a plurality of through holes 521a. As shown in FIG. 14, a buffer plate 52Kb provided with a single through hole 521b can also be used. As shown in FIG. 15, a buffer plate 52 </ b> Kc having a recess 521 c on the side surface may be used so as to form a gap between the inner wall of the liquid reservoir 51. When the buffer plate 52Kc is used, the refrigerant flows along the inner wall surface of the liquid reservoir 51, so that the effect of suppressing the liquid level disturbance is enhanced.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (18)

  1.  冷凍サイクルに用いられる熱交換器であって、
     内部を通過する冷媒と空気とを熱交換させる熱交換部(3,4)と、
     熱交換部から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器(5)と、
     前記冷凍サイクルを構成する冷媒流路を通って流入する冷媒の流動状態を調整して前記熱交換部(3)に供給し、前記熱交換部(4)又は前記貯液器(5)から流出する冷媒の流出状態及び流出先を調整する冷媒調整部(21,22)と、を備え、
     前記貯液器には、主に液相冷媒が溜まる貯液領域(51a)と、主に気相冷媒が溜まる貯気領域(51b)とが形成され、
     前記冷媒調整部は、前記貯気領域を挟んで前記貯液領域とは反対側に設けられている、熱交換器。
    A heat exchanger used in a refrigeration cycle,
    A heat exchange section (3, 4) for exchanging heat between the refrigerant passing through the interior and the air;
    A liquid reservoir (5) for separating the gas-liquid two-phase refrigerant flowing out from the heat exchange section into a gas-phase refrigerant and a liquid-phase refrigerant and storing the liquid-phase refrigerant;
    The flow state of the refrigerant flowing in through the refrigerant flow path constituting the refrigeration cycle is adjusted and supplied to the heat exchange unit (3), and flows out from the heat exchange unit (4) or the liquid reservoir (5). A refrigerant adjusting section (21, 22) for adjusting the outflow state and the outflow destination of the refrigerant to be
    The liquid reservoir is formed with a liquid storage region (51a) mainly storing liquid phase refrigerant and an air storage region (51b) mainly storing gas phase refrigerant,
    The said refrigerant | coolant adjustment part is a heat exchanger provided in the opposite side to the said liquid storage area | region on both sides of the said air storage area | region.
  2.  請求項1に記載の熱交換器であって、
     前記冷媒調整部は、前記貯液領域の上方に設けられている、熱交換器。
    The heat exchanger according to claim 1,
    The said refrigerant | coolant adjustment part is a heat exchanger provided above the said liquid storage area | region.
  3.  請求項2に記載の熱交換器であって、
     前記熱交換部から前記貯液領域へ至る冷媒の流入経路は、前記冷媒調整部を経由する、熱交換器。
    The heat exchanger according to claim 2,
    The refrigerant inflow path from the heat exchange unit to the liquid storage region passes through the refrigerant adjustment unit.
  4.  請求項1から3のいずれか1項に記載の熱交換器であって、
     更に、流入口(512)に繋がり、前記熱交換部から流出する冷媒を前記貯液領域に流入させる接続流路(11)と、流出口(513)に繋がり、前記熱交換部から流出し前記貯液領域に入った冷媒を前記熱交換部に流出させる接続流路(12)と、を備え、
     前記流入口よりも前記流出口が下方に配置されており、前記流入口は前記貯液領域の上方に配置されている、熱交換器。
    The heat exchanger according to any one of claims 1 to 3,
    Furthermore, it connects to the inflow port (512) and connects to the connection channel (11) for allowing the refrigerant flowing out from the heat exchange part to flow into the liquid storage region, and to the outflow port (513), and flows out from the heat exchange part to A connection channel (12) for allowing the refrigerant that has entered the liquid storage region to flow out to the heat exchange section, and
    The heat exchanger, wherein the outflow port is disposed below the inflow port, and the inflow port is disposed above the liquid storage region.
  5.  請求項4に記載の熱交換器であって、
     前記流入口と前記貯液空間の液面との間に、前記流入口から流入する冷媒が直接前記液面に到達することを抑制する緩衝領域(66J,66K)が設けられている、熱交換器。
    The heat exchanger according to claim 4,
    A buffer region (66J, 66K) is provided between the inlet and the liquid level of the liquid storage space to prevent the refrigerant flowing from the inlet from directly reaching the liquid level. vessel.
  6.  請求項5に記載の熱交換器であって、
     前記流入口は前記冷媒調整部の内部に連通しており、
     前記緩衝領域(66J)は、前記冷媒調整部の内部に設けられている、熱交換器。
    The heat exchanger according to claim 5, wherein
    The inflow port communicates with the inside of the refrigerant adjustment unit,
    The said buffer area | region (66J) is a heat exchanger provided in the inside of the said refrigerant | coolant adjustment part.
  7.  請求項5に記載の熱交換器であって、
     前記緩衝領域(66K)は、前記流入口と前記一端との間の前記貯液空間に、緩衝板(52Ka,52Kb,52Kc)が設けられることで形成されている、熱交換器。
    The heat exchanger according to claim 5, wherein
    The buffer region (66K) is a heat exchanger formed by providing a buffer plate (52Ka, 52Kb, 52Kc) in the liquid storage space between the inlet and the one end.
  8.  請求項7に記載の熱交換器であって、
     前記緩衝板(52Ka)には複数の貫通穴(521a)が設けられている、熱交換器。
    The heat exchanger according to claim 7,
    A heat exchanger in which the buffer plate (52Ka) is provided with a plurality of through holes (521a).
  9.  請求項7に記載の熱交換器であって、
     前記緩衝板(52Kc)の側面に凹部(521c)が設けられている、熱交換器。
    The heat exchanger according to claim 7,
    A heat exchanger in which a recess (521c) is provided on a side surface of the buffer plate (52Kc).
  10.  請求項4に記載の熱交換器であって、
     前記流入口から流入する冷媒を、前記貯液空間に溜められている冷媒の液面よりも下方に導くように延びる導管(68G)が設けられている、熱交換器。
    The heat exchanger according to claim 4,
    A heat exchanger provided with a conduit (68G) extending so as to guide the refrigerant flowing in from the inflow port below the liquid level of the refrigerant stored in the liquid storage space.
  11.  請求項10に記載の熱交換器であって、
     前記貯液器には、前記貯液空間に溜められている冷媒を流出させる流出口(513)が設けられており、
     前記導管の下端は前記流出口よりも下方に位置するように配置されている、熱交換器。
    The heat exchanger according to claim 10, wherein
    The liquid reservoir is provided with an outlet (513) through which the refrigerant stored in the liquid storage space flows out,
    The heat exchanger is arranged such that a lower end of the conduit is positioned below the outlet.
  12.  請求項1に記載の熱交換器であって、
     前記貯液器及び前記冷媒調整部は、前記熱交換部の冷媒流れ方向における一端側に配置されている、熱交換器。
    The heat exchanger according to claim 1,
    The liquid reservoir and the refrigerant adjustment unit are heat exchangers arranged on one end side in the refrigerant flow direction of the heat exchange unit.
  13.  請求項12記載の熱交換器であって、
     前記貯液器の長手方向を見通す方向から前記貯液器を見た場合にそれぞれの一部が重複するように、前記冷媒調整部及び前記貯液器が配置されている、熱交換器。
    The heat exchanger according to claim 12, wherein
    The heat exchanger in which the refrigerant adjusting unit and the liquid reservoir are arranged so that a part of each of the liquid reservoirs overlaps when the liquid reservoir is viewed from a direction looking through the longitudinal direction of the liquid reservoir.
  14.  請求項12記載の熱交換器であって、
     前記冷媒調整部には、前記熱交換部に冷媒を流出する冷媒流出口(21b)と、前記冷凍サイクルを構成するコンプレッサへ冷媒を流出するコンプレッサ行き流出口(22b)と、が形成されている、熱交換器。
    The heat exchanger according to claim 12, wherein
    The refrigerant adjusting part is formed with a refrigerant outlet (21b) for flowing out the refrigerant to the heat exchanging part and a compressor outlet (22b) for flowing out the refrigerant to the compressor constituting the refrigeration cycle. ,Heat exchanger.
  15.  請求項12記載の熱交換器であって、
     更に、前記貯液器の前記貯気領域と前記冷媒調整部とを繋ぐ流出流路(13)を備える、熱交換器。
    The heat exchanger according to claim 12, wherein
    The heat exchanger further includes an outflow channel (13) that connects the air storage region of the liquid storage unit and the refrigerant adjusting unit.
  16.  請求項14記載の熱交換器であって、
     前記貯液器の前記貯液領域から流出する液相冷媒が前記コンプレッサ行き流出口から流出する冷媒と合流するように構成されている、熱交換器。
    The heat exchanger according to claim 14, wherein
    A heat exchanger configured such that the liquid-phase refrigerant flowing out from the liquid storage region of the liquid reservoir merges with the refrigerant flowing out from the outlet for the compressor.
  17.  請求項1に記載の熱交換器であって、
     前記熱交換部は、
     流れこんだ冷媒を空気と熱交換させて前記貯液器に送り出す上流側熱交換部(3)と、
     前記貯液器から流出した液相冷媒が流れ込み、空気と熱交換させる下流側熱交換部(4)と、を有し、
     前記貯液器と、前記冷媒調整部と、前記上流側熱交換部と、前記下流側熱交換部と、が一体的に結合されている、熱交換器。
    The heat exchanger according to claim 1,
    The heat exchange part is
    An upstream heat exchange section (3) for exchanging heat of the flowing refrigerant with air and sending it to the reservoir;
    A downstream heat exchange section (4) for allowing the liquid phase refrigerant flowing out of the reservoir to flow in and exchange heat with air, and
    The heat exchanger in which the liquid reservoir, the refrigerant adjustment unit, the upstream heat exchange unit, and the downstream heat exchange unit are integrally coupled.
  18.  請求項14記載の熱交換器であって、
     前記冷媒調整部は、
     前記コンプレッサから流れ込む高圧冷媒が流入する高圧冷媒流入口(21a)と、前記冷媒流出口との間に設けられ、流路を開閉する機能と冷媒の圧力を低下させる機能とを有する第1調整部(21)と、
     前記貯液器から流れ込む気相冷媒が流入する気相冷媒流入口(22a)と、前記コンプレッサ行き流出口との間に設けれ、流路を開閉する機能を有する第2調整部(22)と、を有し、
     前記第2調整部を挟んで、前記第1調整部と前記貯液器とが互いに反対側に位置するように設けられている、熱交換器。
    The heat exchanger according to claim 14, wherein
    The refrigerant adjustment unit is
    A first adjustment unit that is provided between the high-pressure refrigerant inlet (21a) into which the high-pressure refrigerant flowing from the compressor flows and the refrigerant outlet and has a function of opening and closing the flow path and a function of reducing the pressure of the refrigerant. (21) and
    A second adjusting portion (22) provided between the gas-phase refrigerant inlet (22a) into which the gas-phase refrigerant flowing from the liquid reservoir flows and the compressor outlet and having a function of opening and closing the flow path; Have
    A heat exchanger provided such that the first adjustment unit and the liquid reservoir are located on opposite sides of the second adjustment unit.
PCT/JP2017/013976 2016-04-08 2017-04-03 Heat exchanger WO2017175725A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017001883.8T DE112017001883T5 (en) 2016-04-08 2017-04-03 heat exchangers
US16/091,917 US10845124B2 (en) 2016-04-08 2017-04-03 Heat exchanger
CN201780021725.0A CN108885034B (en) 2016-04-08 2017-04-03 Heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-078225 2016-04-08
JP2016078225 2016-04-08
JP2017070672A JP6572931B2 (en) 2016-04-08 2017-03-31 Heat exchanger
JP2017-070672 2017-03-31

Publications (1)

Publication Number Publication Date
WO2017175725A1 true WO2017175725A1 (en) 2017-10-12

Family

ID=60001144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013976 WO2017175725A1 (en) 2016-04-08 2017-04-03 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2017175725A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303746A (en) * 2006-05-11 2007-11-22 Denso Corp Refrigerating cycle and part assembly for refrigerating cycle
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303746A (en) * 2006-05-11 2007-11-22 Denso Corp Refrigerating cycle and part assembly for refrigerating cycle
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6572931B2 (en) Heat exchanger
CN103388694A (en) Electronic expansion valve
JP5184314B2 (en) Cooling system
US20210372570A1 (en) Cryogenic storage system
JP6562025B2 (en) Heat exchanger
CN204494925U (en) Reservoir and aircondition
WO2017175725A1 (en) Heat exchanger
JP6049722B2 (en) Capacitor with a receiver / dehydrator top inlet that can stabilize the plateau of the injection volume
JP2010112355A (en) Egr cooler
KR102621904B1 (en) Water-cooled battery cooling system and cooling method using the same
WO2017175726A1 (en) Heat exchanger
KR20100060442A (en) Heat exchanger of symmetry flow pass type
JP2017172549A (en) Cooling device for casing supporting part for rotary machine, rotary machine and cooling method for casing supporting part of rotary machine
JP6160527B2 (en) Cooling device for internal combustion engine and intake gas cooling device for internal combustion engine
JP2014029225A (en) Air conditioning device
JP3955770B2 (en) Heat exchanger with receiver tank and refrigeration system
KR101385230B1 (en) Heat Exchanger
JP2007285201A (en) Degassing structure
JP2009214803A (en) Fuel tank device
JP2019163893A (en) Heat exchanger and refrigeration cycle device
JP5712973B2 (en) Vehicle heat exchange device
CN107489607B (en) Air conditioning system and compressor cooling method
JP4082159B2 (en) Fuel cell cooling system
KR20220049233A (en) Cooling Water Module for Vehicle
JP2011169522A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779103

Country of ref document: EP

Kind code of ref document: A1