WO2017173957A1 - 天维菌素用于控制农林作物中有害昆虫的用途 - Google Patents

天维菌素用于控制农林作物中有害昆虫的用途 Download PDF

Info

Publication number
WO2017173957A1
WO2017173957A1 PCT/CN2017/079063 CN2017079063W WO2017173957A1 WO 2017173957 A1 WO2017173957 A1 WO 2017173957A1 CN 2017079063 W CN2017079063 W CN 2017079063W WO 2017173957 A1 WO2017173957 A1 WO 2017173957A1
Authority
WO
WIPO (PCT)
Prior art keywords
avermectin
rice
test
tianweimycin
agricultural
Prior art date
Application number
PCT/CN2017/079063
Other languages
English (en)
French (fr)
Inventor
黄隽
王继栋
张辉
沈亮
李美红
林甲壇
张灵坚
王玲萍
Original Assignee
浙江海正药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江海正药业股份有限公司 filed Critical 浙江海正药业股份有限公司
Priority to AU2017247268A priority Critical patent/AU2017247268A1/en
Priority to US16/091,326 priority patent/US20190116795A1/en
Publication of WO2017173957A1 publication Critical patent/WO2017173957A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins

Definitions

  • the present invention relates to the novel use of avermectin A and/or avermectin B for controlling harmful insects in agricultural and forestry crops.
  • the 16-membered macrolide compound produced by Streptomyces has high activity and broad spectrum characteristics, and has been widely used in the control of pests and diseases of agricultural and forestry plants.
  • 28 pesticides such as avermectin were recommended as the fourth batch of 5 highly toxic pesticides (methionine, parathion) for seven crop pests such as rice.
  • methionine, parathion highly toxic pesticides
  • Substitute for methyl parathion, monocrotophos and phosphonamine, and 56 supporting technologies were also announced.
  • Avermectin is a new class of antibiotics.
  • avermectin preparations were used to control the dilution ratio of non-resistant pests at 15,000 times, and now the dilution ratio of 1.8% avermectin preparation to control pests is 2000 to 3000 times.
  • Avidin is more active than avermectin, with less residue, lower toxicity and better safety. It is the future development direction of avermectin, but it does not solve the potential danger to aquatic organisms.
  • the newly marketed milbemycins show higher toxicity to aquatic organisms than avermectin and carbaryl salts.
  • CN201410208660.9 discloses a compound of the following formula (I):
  • R is selected from CH 3 or C 2 H 5 , and when R is -CH 3 , it is avermectin A, and when R is C 2 H 5 , it is avermectin B.
  • the patent application also discloses that the compound of the formula (I) has the control of the cinnabar, the two-spotted spider mites, the diamondback moth, the beet armyworm, the spodoptera, the cotton bollworm, the small tiger, the golden worm, the armyworm, the pine caterpillar, The role of pine wood nematodes and rice aphids in pests and diseases of agricultural and forestry crops.
  • this document does not disclose the difference in pharmacological toxicity and pharmacological activity between avermectin A and avermectin B.
  • the invention provides the use of a compound of formula (I) in the manufacture of a medicament for controlling harmful insects in agricultural and forestry crops:
  • R is selected from CH 3 or C 2 H 5 , and when R is CH 3 , it is avermectin A, and when R is C 2 H 5 , it is avermectin B.
  • the agricultural and forestry crop is selected from the group consisting of rice, cotton, tea, vegetables, and sugar cane. Soy, potato, fruit, fruit, corn, vine, ornamental, pasture and pasture or canola.
  • the agricultural and forestry crop is selected from the group consisting of rice, cotton, vegetables, fruit trees, or ornamental plants.
  • the harmful insect is selected from the group consisting of:
  • Blattaria for example, Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Coptotermes formosanus Shiraki ;
  • Phthiraptera for example, Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp. ;
  • Thysanoptera for example, Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella occidentalis, Frankliniella occidentalis Pergande);
  • Homoptera for example, Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, samovar Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylrodera vastatrix, Aphis gossypii (Pemphigus spp.), Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp .), Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Bemisia tabaci, Aonidiella aurantii, Ivydiox Hederae), Pseudococcus spp., P
  • Hymenoptera for example, Diprionspp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa Species (Vespa spp.);
  • Diptera for example, Aedes spp., Anophelesspp., Culex spp., Drosophila melanogaster, Musca domestica (Musca spp.), Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Yellow fly species Cuterebra spp.), Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., ⁇ Species (Tabanus spp.), Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyiahyoscyami, Ceratitis capitata , Dacusoleae, Tipula paludosa, Hylemyia spp., plaque Fly species (Liriomyza
  • Hemiptera for example, Belostomatidae, Corixidae, Nepidae, Notonectidae, Cydnidae, Pentatomidae , Scutelleridae, Plataspiddae, Coreidae, Lygaeidae, Pyrrhocoridae, Miridae, Tingididae, Reduviidae, Anthocoridae, Saldidae, Cimicidae, Gerridae;
  • Siphonaptera for example, Xenopsylla cheopis, Ceratophyllus spp. Arachnida, for example, Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., blunt (Ornithodoros spp.), Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp .), Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes Spp.), Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus Spp.), Hemitarsonemus spp., Brevipalpus spp.;
  • Plant parasitic nematodes for example, the genus Pratylenchus spp., the similar perforated nematode (Radopholus similis), the Ditylenchus dipsaci, the Tylenchulus semipenetrans, the Heterodera spp .), Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., S. elegans Species (Xiphinema spp.), Trichoderma spp., Bursaphelenchus spp.
  • the harmful insect is selected from the group consisting of Blattaria, Thysanoptera, Homoptera or Hemiptera.
  • the harmful insect is selected from the group consisting of Bemisia tabaci, Frankliniella occidentalis Pergande, Laodelphax striatellus, Nilaparvata lugens, and whitebacked planthopper. (Sogatella furcifera), rice leaf roller, rice stem borer, rice stem borer or Coptotermes formosanus Shiraki.
  • the harmful insect is selected from the group consisting of Laodelphax striatellus, Nilaparvata lugens or Sogatella furcifera, and wherein the compound of the formula (I) is Tianwei A mixture of bacteriocin A and avermectin B.
  • the harmful insect is selected from the group consisting of rice leaf roller, rice stem borer or rice stem borer, and wherein the compound of formula (I) is avermectin A and Tianwei bacteria a mixture of prime B.
  • the weight of the avermectin A and the avermectin B in the mixture The ratio is ⁇ 9:1, preferably ⁇ 19:1.
  • vivitin A and avermectin B are structurally similar, ivermectin B is significantly more toxic to aquatic organisms (eg, zebrafish, algae, large mites, etc.).
  • aquatic organisms eg, zebrafish, algae, large mites, etc.
  • the toxicity of avermectin A and avermectin A to aquatic organisms is only the level of poisoning.
  • viscerin A and avermectin B have little difference in the spectrum and activity of pests and diseases.
  • the toxicity of the aquatic organism can be greatly reduced, and the weight ratio of ivermectin A to avermectin B in the mixture is ⁇ 9:1, especially when the weight ratio is ⁇ 19:1, the toxicity of the mixture to aquatic organisms is greatly reduced, only the level of poisoning, and the killing effect on harmful insects in agricultural and forestry crops remains almost unchanged, so it has green environmental protection. specialty.
  • avermectin A and/or avermectin B of the present invention have a more significant killing effect on pests and parasites than avermectin, ivermectin and milbemycin, and on aquatic organisms. It is less toxic and has better application prospects.
  • the compound of the formula (I) according to the invention can be prepared in the form of a conventional preparation.
  • the conventional preparation forms include, for example, solutions, emulsions, wettable powders, water-dispersible granules, suspensions, powders, foams, pastes, tablets, granules, aerosols, natural products impregnated with active compounds.
  • compositions, microcapsules, seed coatings, preparations using a burning device include, for example, fumigation cartridges and smoking cans, cans and rings) and ultra low volume sprays (cold spray, heat) Spray).
  • formulations can be prepared by methods known in the art. For example, they may be mixed by mixing the active compound with the spreading agent, i.e., with a liquid diluent or carrier, a liquefied diluent or carrier, a solid diluent or carrier, and optionally a surfactant, i.e., an emulsifier. And/or a dispersing agent and/or a blowing agent.
  • the spreading agent i.e., with a liquid diluent or carrier, a liquefied diluent or carrier, a solid diluent or carrier, and optionally a surfactant, i.e., an emulsifier.
  • a dispersing agent and/or a blowing agent i.e., a surfactant, i.e., an emulsifier.
  • an organic solvent can be used as a co-solvent.
  • the liquid diluent or carrier may include, for example, an aromatic hydrocarbon (e.g., xylene, toluene, alkylnaphthalene, etc.), a chlorinated aromatic hydrocarbon, or a chlorinated aliphatic hydrocarbon (e.g., chlorobenzene, ethylene chloride, methylene chloride, etc.).
  • aliphatic hydrocarbons such as cyclohexane or paraffin (such as mineral oil fraction)
  • alcohols such as butanol, ethylene glycol and ethers or esters thereof
  • ketones such as acetone, methyl ethyl ketone, methyl Isobutyl ketone, cyclohexanone, etc.
  • a strong polar solvent for example, dimethylformamide, dimethyl sulfoxide, etc.
  • the liquefied gas diluent or carrier may include a substance that is present as a gas at ambient temperature and pressure, such as an aerosol spray such as furan, propane, nitrogen, carbon dioxide, halogenated hydrocarbons.
  • the solid diluent may include, for example, pulverized natural minerals (for example, kaolin, clay, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, etc.), pulverized synthetic minerals (for example, finely divided silicic acid, oxidation). Aluminum, silicate, etc.).
  • natural minerals for example, kaolin, clay, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, etc.
  • pulverized synthetic minerals for example, finely divided silicic acid, oxidation.
  • the solid carrier of the particles may include, for example, pulverized and graded rocks (eg, calcite, marble, pumice, sepiolite, dolomite, etc.), synthetic inorganic or organic powder particles, and organic matter (eg, sawdust, coconut shell, corn). Fine particles of cobs, tobacco stems, etc.).
  • pulverized and graded rocks eg, calcite, marble, pumice, sepiolite, dolomite, etc.
  • synthetic inorganic or organic powder particles eg, sawdust, coconut shell, corn. Fine particles of cobs, tobacco stems, etc.
  • Emulsifiers and/or blowing agents may include, for example, nonionic or anionic emulsifiers (eg, polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers (eg, alkyl aryl polyglycol ethers), alkyl sulfonic acids). Salt, alkyl sulfate, aryl sulfonate, etc.), albumin hydrolysate, and the like.
  • nonionic or anionic emulsifiers eg, polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers (eg, alkyl aryl polyglycol ethers), alkyl sulfonic acids). Salt, alkyl sulfate, aryl sulfonate, etc.), albumin hydrolysate, and the like.
  • a dispersing agent such as polycarboxylate, lignosulfonate, alkylnaphthalenesulfonate (diffusion agent NNO), TERSPERSE 2020 (manufactured by Huntsman, Inc., alkylnaphthalenesulfonate) or the like A variety.
  • the binder can also be used in formulations (powders, granules, emulsions), for example, carboxymethylcellulose, natural or synthetic polymers (e.g., gum arabic, polyvinyl alcohol, polyvinyl acetate, etc.) and the like.
  • formulations for example, carboxymethylcellulose, natural or synthetic polymers (e.g., gum arabic, polyvinyl alcohol, polyvinyl acetate, etc.) and the like.
  • Coloring agents such as inorganic pigments (e.g., iron oxide, titanium oxide, Prussian blue, etc.), organic pigments (such as alizarin dyes, azo dyes or metal phthalocyanine dyes), and trace elements (e.g., iron salts, manganese) may also be used. Salt, boron salt, copper salt, cobalt salt, molybdenum salt or zinc salt, etc.).
  • the formulations may contain from 0.1 to 99% by weight, preferably from 0.5 to 90% by weight, of the abovementioned active compound.
  • Example 1 Killing effect of avermectin on Bemisia tabaci.
  • Each of the original medicinal DMF was dissolved and formulated into a 10000 mg/L solution for use.
  • the blade immersion liquid membrane method was used. Dilute various chemicals with tap water to 0.25mg/L, 0.5mg/L, 1.0mg/L, 2.5mg/L, 5.0mg/L, 10mg/L and 20mg/L, and extract fresh tomato leaves. After soaking for 5 s in the liquid, take it out and put it indoors to dry. Place one tomato leaf in each dish. Each treatment was set to 3 replicates, soaked in water, dried, and placed in a petri dish as a control. The tobacco powder was smashed into the petri dish, and each dish was about 30 to 40 heads. The plastic wrap was used to seal the dish, and several small holes were placed on the wrap to facilitate ventilation.
  • the relative virulence index of the largest LC 50 agent was set to 1, and the LC 50 value of each agent was divided by the maximum LC 50 to determine the relative virulence index of each agent.
  • Example 2 Killing effect of tianweimycin on Laodelphax striatellus.
  • Each of the original medicinal DMF was dissolved and formulated into a 10000 mg/L solution for use.
  • the source of the test insects the adult larvae of the larvae collected from the rice fields of Jiaxing, Zhejiang, were raised indoors with rice seedlings.
  • This test uses a soaking method.
  • the test agent was diluted with tap water into five series of concentrations on the basis of the preliminary test to prepare the test solution.
  • lambda-cyhalothrin and imidacloprid are diluted to 5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L and 100 mg/L;
  • avermectin is diluted to 0.25 mg/L, 0.5 mg/L, 1.0.
  • avermectin A was diluted to 0.05 mg/L, 0.10 mg/L, 0.25 mg/L, 0.5 mg/L and 1.0 mg/L.
  • the relative virulence index of the largest LC 50 agent was set to 1, and the LC 50 value of each agent was divided by the maximum LC 50 to determine the relative virulence index of each agent.
  • Example 3 Killing effect of ivermectin on brown planthopper (Nilaparvata lugens).
  • Each of the original medicinal DMF was dissolved and formulated into a 10000 mg/L solution for use.
  • Test insect source The brown planthopper, which was collected from the rice field in Jiaxing, Zhejiang, was raised indoors with rice seedlings.
  • the relative virulence index of the largest LC 50 agent was set to 1, and the LC 50 value of each agent was divided by the maximum LC 50 to determine the relative virulence index of each agent.
  • Example 4 Killing effect of ivermectin on Frankliniella occidentalis Pergande.
  • Each of the original medicinal DMF was dissolved and formulated into a 10000 mg/L solution for use.
  • Impregnation method is employed.
  • the test agent was diluted with tap water into five series of concentrations on the basis of the preliminary test to prepare the test solution.
  • imidacloprid is diluted to 5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L and 100 mg/L
  • avermectin is diluted to 0.25 mg/L, 0.5 mg/L, 1.0 mg/L, 2.5 mg/ L, 5.0 mg / L
  • the mixture of methicillin, avermectin I and avermectin II were diluted to 0.05 mg / L, 0.10 mg / L, 0.25 mg / L, 0.5 mg / L and 1.0 Mg/L.
  • the sealed dip box was placed in a HPG280H light incubator with a temperature of 26 ° C and a humidity of 70%. The death of the western flower thrips was checked 48 h after the drug, and the control mortality was less than 10%. use The spss 19 software performs experimental data statistics and analysis.
  • the relative virulence index of the largest LC 50 agent was set to 1, and the LC 50 value of each agent was divided by the maximum LC 50 to determine the relative virulence index of each agent.
  • imidacloprid is used as a standard drug, and its relative virulence index is set to 1.
  • the relative virulence index of tianweimycin mixture II is 252.135, which is the most toxic to the adults of western flower thrips. It is higher than imidacloprid, avermectin and carbaryl salt; the relative virulence index of tianweimycin mixture I is 155.701, which is relatively high in virulence to western adult thrips, and higher than imidacloprid and avermectin. And a lot of salt. It can be seen that the avermectin mixture I and the avermectin mixture II have higher activity on the western flower bud horse, which is superior to the other three agents.
  • Example 5 Killing effect of tianweimycin on Coptotermes formosanus Shiraki.
  • Each of the original medicinal DMF was dissolved and formulated into a 10000 mg/L solution for use.
  • test agent was diluted with tap water into 5 series concentration on the basis of pre-test to be used as test solution. Specifically, avermectin was diluted to 0.01 mg/L, 0.025 mg/L, 0.05 mg/L, 0.10 mg/L and 0.25 mg/L; avermectin A and avermectin B were diluted to 0.001 mg/ L, 0.0025mg/L, 0.005mg/L, 0.01 mg/L and 0.025 mg/L.
  • the test termites were placed in petri dishes of 15 cm in diameter, and 20 worker ants were placed in each petri dish.
  • a microinjector was used to dispense 1 ⁇ l of the drug solution into the thoracic abdomen of each termite, and a total of 3 repetitions were made. Place one bacterium in each dish for termites to inhabit and place a wet cotton wool ball to moisturize. After the drip was completed, the culture dish was placed in a constant temperature and humidity chamber at 18 ⁇ 1 ° C for cultivation, and the death was observed at 24 h and 48 h after the drip. The death of the termite body in all parts of the body is completely dead. Test data statistics and analysis were performed using spss 19 software.
  • the relative virulence index of the largest LC 50 agent was set to 1, and the LC 50 value of each agent was divided by the maximum LC 50 to determine the relative virulence index of each agent.
  • Example 6 Field efficacy test of avermectin against rice leaf roller
  • the test crop is rice, the variety is late rice Longping 48, and the control object is rice rice leaf roller.
  • the test consisted of 7 treatments, with 4 replicates per treatment, for a total of 28 plots. Each cell is arranged in a random block group with an area of 66.7 m 2 per cell. Rice management is good, and the water and fertilizer conditions and management conditions of each test plot are consistent. Spray the spray with a hand-type hand-held sprayer for 1 time, convert the amount of the plant according to the dosage of 40 ml/mu, and spray evenly on the leaves. Set isolation between each treatment to avoid mutual interference. A blank control was set, and the blank control was sprayed with water. Rice is at the booting stage, and the fourth generation of rice leaf roller is at the peak of 1-2 years.
  • the effect and prevention effect are all above 90%, which is better than the equivalent dose of avermectin, and the ratio of the avermectin mixture to the control of rice leaf roller is similar.
  • Example 7 Field efficacy test of tianweimycin against rice stem borer
  • the test crop is rice, the variety is late rice glutinous rice 84, and the control object is rice stem borer.
  • the test consisted of 7 treatments, with 4 replicates per treatment, for a total of 28 plots. Each cell is arranged in a random block group with an area of 66.7 m 2 per cell. Rice management is good, and the water and fertilizer conditions and management conditions of each test plot are consistent. Use the type of back-type manual sprayer to spray 1 medicine, convert the amount of the plant according to the dosage of 40 ml/mu, and spray evenly on the leaves. Set isolation between each treatment to avoid mutual interference. A blank control was set, and the blank control was sprayed with water. The rice is in the peak period of the tillering, and the third generation of the larvae of the larvae of the third generation is at the peak of the first age.
  • Example 8 Indoor efficacy test of tianweimycin against rice stem borer
  • the rice variety in the laboratory experiment was Late Rice Ning 84, and the experiment was carried out with seedlings about 10 days after sowing.
  • the rice stems of rice stem borer were harvested from the paddy rice and distributed in test tubes. When the eggs of the rice stem borer were hatched, they were immediately attached to the rice leaves that had been sprayed with the medicament.
  • the test agent is diluted 2000 times, and spray application is applied to uniformly apply the medicine on the front and back sides of the leaf. 10 seedlings were planted per pot, and each seedling was infected with l. A total of 6 kinds of pesticides were studied for the control effect.
  • Each of the medicaments was set up with 4 replicates, and each of the three pots of rice seedlings was treated repeatedly, and each treatment was isolated to avoid mutual interference. Set a blank control, the blank control is not to spray anything. The number of dead hearts and the number of insects were investigated 15 days after the infestation. The test results are shown in Table 8.
  • Example 9 Toxicity test of vivitin A on zebrafish.
  • zebrafish As a sensitive model organism, zebrafish is sensitive to a variety of environmental pollutants and is widely used in various ecological risk assessments.
  • Test fish and water Zebrafish (Brachydanio rerio) was purchased from Zhejiang Academy of Agricultural Sciences, with the same size, average body length 2-3cm, average body weight 0.3g. Domesticated for 7 days indoors before the test. The natural mortality rate is zero. Feeding was stopped 1 day before the test and was not fed during the test. The test water is tap water after removing residual chlorine for more than 24 hours, and the pH is 6.8.
  • Tianweimycin (the mass ratio of tianweimycin A / weiweimycin B is 95/5) (Zhejiang Haizheng Pharmaceutical Co., Ltd.);
  • Tianweimycin (the ratio of avermectin A / tianweimycin B is 90/10) (Zhejiang Haizheng Pharmaceutical Co., Ltd.);
  • Tianweimycin (the mass ratio of tianweimycin A / tianweimycin B is 85/15) (Zhejiang Haizheng Pharmaceutical Co., Ltd.);
  • tianweimycin B (the content of tianweimycin A is 0.51%) ((Zhejiang Haizheng Pharmaceutical Co., Ltd.);
  • Emamectin Benzoate (Zhejiang Shenghua Baike Biological Co., Ltd.).
  • the sample was formulated as a 50 mg/ml mother liquor in DMF.
  • Example 10 Field efficacy test of tianweimycin against cabbage yellow stripe
  • the test was conducted in Linhai City, and the test crop was cabbage, and the control object was yellow stripe.
  • the experiment consisted of 7 treatments, with 3 replicates per treatment, for a total of 21 plots. Each cell is arranged in a random block group with an area of 66.7 m 2 per cell.
  • the drug is sprayed once by a backpack-type manual sprayer, and the amount of the plant is converted according to the dosage of 50 ml/mu of the medicament.
  • the leaves are evenly sprayed, and each treatment is isolated. Avoid mutual interference.
  • a blank control was set, and the blank control was sprayed with water.
  • the number of insects was investigated before the drug, and the number of live insects was investigated at 1d, 3d, and 7d after the drug, and a total of 4 investigations were conducted. 20 strains were randomly investigated in each plot. Calculate the rate of decrease in the population and correct the control effect. No other pesticides have been used during the test. The test results are shown in Table 10.
  • Pt 0 pre-treatment number of insects
  • Pt 1 number of post-medication insects.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及如下式(I)的化合物用于控制农林作物中有害昆虫的用途,其中R选自-CH3或-C2H5,并且当R为-CH3时为天维菌素A,当R为-C2H5时为天维菌素B。本发明所述的天维菌素A和/或天维菌素B对农林作物中的有害昆虫,例如烟粉虱、西花蓟马、灰飞虱、褐飞虱、白背飞虱、稻纵卷叶螟、水稻二化螟、水稻三化螟和台湾乳白蚁具有显著的防治作用,而且毒性低,对环境更友好,具有很好的应用前景。

Description

天维菌素用于控制农林作物中有害昆虫的用途 发明领域
本发明涉及天维菌素A和/或天维菌素B在防治农林作物中有害昆虫的新用途。
背景技术
由链霉菌产生的十六元大环内酯类化合物具有高活性、广谱性的特点,已在农林植物的害虫、害螨防治中得到广泛应用。2008年召开的高毒农药替代示范项目总结会上,针对水稻等七大作物病虫害,专家推荐阿维菌素等28个农药品种作为第四批5种高毒农药(甲胺磷、对硫磷、甲基对硫磷、久效磷和磷胺)的替代品,同时公布了56项配套使用技术。阿维菌素是一种新型抗生素类,是由日本北里大学大村智等和美国Merck公司首先开发的一类具有杀虫、杀螨、杀线虫活性的十六元大环内酯化合物,由链霉菌中灰色链霉菌Streptomyces avermitilis发酵产生。在5种高毒农药被禁用之后,阿维菌素显示出高速发展的势头,用量日益增加,成为我国农业用药的常用品种。随着阿维菌素应用的不断普及,害虫对阿维菌素产品抗药性增加,使其用药量也加大。在国内市场,1995年1.8%的阿维菌素制剂防治无抗性害虫稀释倍数在15000倍,现在1.8%阿维菌素制剂防治害虫的稀释倍数在2000~3000倍。甲维盐比阿维菌素活性更高、残留更少、毒性更低、安全性更好,是阿维菌素未来的发展方向,但是其也没有解决对水生生物潜在的危险。新上市的米尔贝霉素更是表现出比阿维菌素和甲维盐更高的对水生生物的毒性。
由于对水生生物毒性高,过去水稻市场一直是阿维菌素的禁地。虽然国家通过了其在水稻上应用的临时法令,给予阿维菌素在水稻病虫害防治中使用的地位,但由于阿维菌素对鱼等水生生物的毒性为高毒,其在水稻上的登记使用对水生生物存在着潜在危险。每亩水稻1~2克的用量不会对水生生物造成危害,可是如果抗药性产生后,使用者势必会加大制剂使用量,这将对水生生物的安全造成威胁。这样一来,国家对于阿维菌素可在大田作物上使用的临时法令将可能会撤销。除此之外,在农业领域,我国将大力推进生物农药等绿色农药的应用,促进高效绿色农业的发展,因此,开发新的高效、低毒、低残留的用于水稻的农药新品种已成为当务之急。
CN201410208660.9公开了如下式(I)的化合物:
Figure PCTCN2017079063-appb-000001
其中R选自CH3或C2H5,并且当R为-CH3时为天维菌素A,当R为C2H5时为天维菌素B。该专利申请还公开了式(I)的化合物具有防治朱砂叶螨、二斑叶螨,小菜蛾、甜菜夜蛾、斜纹夜蛾、棉铃虫,小地老虎、金针虫,粘虫、松毛虫、松材线虫以及水稻螟虫等农林作物害虫和害螨的作用。然而,该文献并未公开天维菌素A与天维菌素B之间的药理毒性和药理活性差异。
发明内容
本发明一方面提供了如下式(I)的化合物在制备用于控制农林作物中有害昆虫的药物中的用途:
Figure PCTCN2017079063-appb-000002
其中R选自CH3或C2H5,并且当R为CH3时为天维菌素A,当R为C2H5时为天维菌素B。
本发明所示的式(I)化合物可有效抵抗通常敏感性和抗性物种及其整个或单个发育阶段。
在一个优选的技术方案中,所述农林作物选自稻、棉花、茶、蔬菜、甘蔗、 大豆、马铃薯、果树、果树果实、玉米、藤本植物、观赏植物、牧场和牧草或加拿大油菜。
在一个优选的技术方案中,所述农林作物选自稻、棉花、蔬菜、果树或观赏植物。
在一个优选的技术方案中,所述有害昆虫选自:
蜚蠊目(Blattaria),例如,东方蜚蠊(Blatta orientalis)、美洲大蠊(Periplaneta americana)、马德拉蜚蠊(Leucophaea maderae)、德国蠊(Blattella germanica)、台湾乳白蚁(Coptotermes formosanus Shiraki);
虱目(Phthiraptera),例如,体虱(Pediculus humanus corporis)、血虱属(Haematopinus spp.)、毛虱属(Linognathus spp.)、嚼虱属(Trichodectes spp.)、畜虱属(Damalinia spp.);
缨翅目(Thysanoptera),例如,温室条篱蓟马(Hercinothrips femoralis)、烟蓟马(Thrips tabaci)、棕榈蓟马(Thrips palmi)、苜蓿蓟马(Frankliniella occidentalis)、西花蓟马(Frankliniella occidentalis Pergande);
同翅目(Homoptera),例如,甘蓝粉虱(Aleurodes brassicae)、木薯粉虱(Bemisia tabaci)、温室粉虱(Trialeurodes vaporariorum)、棉蚜(Aphis gossypii)、甘蓝蚜(Brevicoryne brassicae)、茶藨隐瘤蚜(Cryptomyzus ribis)、甜菜蚜(Aphis fabae)、苹果蚜(Aphis pomi)、苹果绵蚜(Eriosoma lanigerum)、梅大尾蚜(Hyalopterus arundinis)、葡萄根瘤蚜(Phylloxera vastatrix)、瘿绵蚜属(Pemphigus spp.)、麦长管蚜(Macrosiphum avenae)、瘤蚜属(Myzus spp.)、忽布疣蚜(Phorodon humuli)、禾谷缢管蚜(Rhopalosiphum padi)、小绿叶蝉属(Empoasca spp.)、乌盔蚧(Saissetia oleae)、灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)、烟粉虱(Bemisia tabaci)、红肾圆盾蚧(Aonidiella aurantii)、常春藤圆盾蚧(Aspidiotus hederae)、粉蚧属(Pseudococcus spp.)、木虱属(Psylla spp.)、白背飞虱(Sogatella furcifera);
膜翅目(Hymenoptera),例如,松叶蜂属种(Diprionspp.)、实叶蜂属种(Hoplocampa spp.)、毛蚁属种(Lasius spp.)、小家蚁(Monomorium pharaonis)、胡蜂属种(Vespa spp.);
双翅目(Diptera),例如,伊蚊属种(Aedes spp.)、按蚊属种(Anophelesspp.)、库蚊属种(Culex spp.)、黑尾果蝇(Drosophila melanogaster)、家蝇属种(Musca spp.)、厕蝇属种(Fannia spp.)、红头丽蝇(Calliphora erythrocephala)、绿蝇属种(Lucilia spp.)、金蝇属种(Chrysomyia spp.)、黄蝇属种(Cuterebra spp.)、胃蝇属种(Gastrophilus spp.)、Hyppobosca spp.、螫蝇属种(Stomoxys spp.)、狂蝇属种(Oestrus spp.)、皮蝇属种(Hypoderma spp.)、虻属种(Tabanus spp.)、Tannia spp.、Bibio hortulanus、瑞典麦秆蝇(Oscinella frit)、草种蝇属种(Phorbia spp.)、藜泉蝇(Pegomyiahyoscyami)、地中海蜡实蝇(Ceratitis capitata)、橄榄大实蝇(Dacusoleae)、欧洲大蚊(Tipula paludosa)、黑蝇属种(Hylemyia spp.)、斑潜 蝇属种(Liriomyza spp.);
半翅目(Hemiptera),例如,负子蝽科(Belostomatidae),划蝽科(Corixidae),蝎蝽科(Nepidae),仰蝽科(Notonectidae),土蝽科(Cydnidae),蝽科(Pentatomidae),盾蝽科(Scutelleridae),龟蝽科(Plataspiddae),缘蝽科(Coreidae),长蝽科(Lygaeidae),红蝽科(Pyrrhocoridae),盲蝽科(Miridae),网蝽科(Tingididae),猎蝽科(Reduviidae),花蝽科(Anthocoridae),跳蝽科(Saldidae),臭蝽科(Cimicidae),水黾科(Gerridae);
蚤目(Siphonaptera),例如,印鼠客蚤(Xenopsylla cheopis)、角叶蚤属种(Ceratophyllus spp.)。蛛形纲(Arachnida),例如,中东金蝎(Scorpio maurus)、黑寡妇蜘蛛(Latrodectus mactans)、粗脚粉螨(Acarus siro)、锐缘蜱属种(Argas spp.)、钝缘蜱属种(Ornithodoros spp.)、鸡皮刺螨(Dermanyssus gallinae)、茶藨瘿螨(Eriophyes ribis)、桔芸锈螨(Phyllocoptruta oleivora)、牛蜱属种(Boophilus spp.)、扇头蜱属种(Rhipicephalus spp.)、花蜱属种(Amblyomma spp.)、璃眼蜱属种(Hyalomma spp.)、硬蜱属种(Ixodes spp.)、痒螨属种(Psoroptes spp.)、皮螨属种(Chorioptes spp.)、疥螨属种(Sarcoptes spp.)、跗线螨属种(Tarsonemus spp.)、苜蓿苔螨(Bryobia praetiosa)、全爪螨属种(Panonychus spp.)、叶螨属种(Tetranychus spp.)、半跗线螨属种(Hemitarsonemus spp.)、短须螨属种(Brevipalpus spp.);
植物寄生线虫,例如,短体线虫属种(Pratylenchus spp.)、相似穿孔线虫(Radopholus similis)、起绒草茎线虫(Ditylenchusdipsaci)、半穿刺线虫(Tylenchulus semipenetrans)、异皮线虫属种(Heterodera spp.)、球异皮线虫属种(Globodera spp.)、根结线虫属种(Meloidogyne spp.)、滑刃线虫属种(Aphelenchoides spp.)、长针线虫属种(Longidorus spp.)、剑线虫属种(Xiphinema spp.)、毛刺线虫属种(Trichodorus spp.)、伞滑刃线虫属种(Bursaphelenchus spp.);
黏虫(oriental armyworm)、革螨科(gamasid mite)、瘿螨科(Eriophyidae)。
在一个优选的技术方案中,所述有害昆虫选自蜚蠊目(Blattaria)、缨翅目(Thysanoptera)、同翅目(Homoptera)或半翅目(Hemiptera)。
在一个优选的技术方案中,所述有害昆虫选自烟粉虱(Bemisia tabaci)、西花蓟马(Frankliniella occidentalis Pergande)、灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)、白背飞虱(Sogatella furcifera)、稻纵卷叶螟、水稻二化螟、水稻三化螟或台湾乳白蚁(Coptotermes formosanus Shiraki)。
在一个优选的技术方案中,所述有害昆虫选自灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)或白背飞虱(Sogatella furcifera),并且其中所述式(I)的化合物为天维菌素A和天维菌素B的混合物。
在一个优选的技术方案中,所述有害昆虫选自稻纵卷叶螟、水稻二化螟或水稻三化螟,并且其中所述式(I)的化合物为天维菌素A和天维菌素B的混合物。
在一个优选的技术方案中,所述混合物中天维菌素A与天维菌素B的重量 比≥9:1,优选≥19:1。
本发明人惊奇的发现,天维菌素A和天维菌素B虽然结构很相似,但天维菌素B对水生生物(例如,斑马鱼,水藻,大型溞等)的毒性却明显高于天维菌素A,天维菌素A对水生生物的毒性仅为中毒水平。更意外的是,天维菌素A和天维菌素B对病虫害的防治谱及其活性相差不大。本发明通过控制天维菌素A和天维菌素B两组分的比例,可使其对水生生物的毒性大大降低,当混合物中天维菌素A与天维菌素B的重量比≥9:1,特别是重量比≥19:1时,该混合物对水生生物的毒性大大降低,仅为中毒水平,而对农林作物中的有害昆虫的灭杀效果几乎保持不变,因此具有绿色环保的特点。而且本发明的天维菌素A和/或天维菌素B与阿维菌素、伊维菌素、米尔贝霉素相比,对害虫、寄生虫的灭杀效果更显著,对水生生物的毒性更低,具有更好的应用前景。
本发明所述式(I)的化合物可制成常规制剂形式。所述常规制剂形式包括例如,溶液剂、乳剂、可湿性粉剂、水分散性颗粒剂、悬浮剂、粉剂、泡沫剂、糊剂、片剂、颗粒剂、气雾剂、经活性化合物浸渍的天然及合成物、微胶囊剂、种子包衣剂、使用燃烧装置(burning device)的制剂(燃烧装置包括例如熏蒸筒和烟熏筒、罐和圈)及超低容量喷雾剂(冷雾剂、热雾剂)。
这些制剂可通过本领域已知的方法制备。例如,它们可通过将活性化合物与展着剂一起混合,即,与液体稀释剂或载体、液化气稀释剂或载体、固体稀释剂或载体混合,并任选地使用表面活性剂,即乳化剂和/或分散剂和/或发泡剂而制得。
当使用水作为展着剂时,可使用例如有机溶剂作为助溶剂。液体稀释剂或载体可包括,例如芳香烃类(例如二甲苯、甲苯、烷基萘等)、氯化芳族烃或氯化脂族烃(例如氯苯、氯化乙烯、二氯甲烷等)、脂族烃(例如环己烷或石蜡(例如矿物油馏分))、醇类(例如丁醇、乙二醇和其醚或酯等)、酮类(例如丙酮、甲基乙基酮、甲基异丁基酮、环己酮等)、强极性溶剂(例如二甲基甲酰胺、二甲亚砜等)、水等。
液化气稀释剂或载体可包括在环境温度和常压下以气体存在的物质,例如气溶胶喷雾剂,如呋喃、丙烷、氮气、二氧化碳、卤代烃。
固体稀释剂可包括例如粉碎的天然矿物(例如高岭土、粘土、滑石、白垩、石英、绿坡缕石、蒙脱石或硅藻土等)、粉碎的合成矿物(例如细分散的硅酸、氧化铝、硅酸盐等)等。
颗粒的固体载体可包括例如,粉碎并分级的岩石(例如方解石、大理石、浮石、海泡石、白云石等)、合成的无机或有机粉末的颗粒,及有机物(例如锯屑、椰壳、玉米穗轴、烟草茎等)的细小颗粒。
乳化剂和/或发泡剂可包括例如,非离子或阴离子乳化剂(例如聚氧乙烯脂肪酸酯、聚氧乙烯脂肪醇醚(例如烷基芳基聚乙二醇醚)、烷基磺酸盐、烷基硫酸盐、芳基磺酸盐等)、白蛋白水解产物等。
分散剂如聚羧酸盐、木质素磺酸盐、烷基萘磺酸盐(扩散剂NNO)、TERSPERSE 2020(美国亨斯迈公司出品,烷基萘磺酸盐类)等中的一种或多种。
粘合剂也可用于制剂(粉剂、颗粒剂、乳剂),例如,羧甲基纤维素、天然或合成聚合物(例如阿拉伯树胶、聚乙烯醇、聚乙酸乙烯酯等)等。
还可使用着色剂,例如,无机颜料(例如氧化铁、氧化钛、普鲁士蓝等)、有机颜料(例如茜素染料、偶氮染料或金属酞菁染料),及微量元素(例如铁盐、锰盐、硼盐、铜盐、钴盐、钼盐或锌盐等)。
所述制剂可含有0.1-99重量%,优选0.5-90重量%的上述活性化合物。
具体实施方式
以下通过实施例对本发明进一步进行说明,必须指出,这些实施例是用于说明本发明,而不应理解为对本发明的限制。
实施例1:天维菌素对烟粉虱(Bemisia tabaci)的杀灭作用。
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
96%啶虫脒(Acetamiprid)(浙江海正化工股份有限公司);
91%米尔贝霉素原药(Milbemycin)(浙江海正化工股份有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司)。
分别将各原药用DMF溶解,配制成10000mg/L的溶液,备用。
采用叶片浸渍液膜法。将各种药剂用自来水稀释成0.25mg/L,0.5mg/L,1.0mg/L,2.5mg/L,5.0mg/L,10mg/L和20mg/L的药液,摘取新鲜番茄叶片放在药液中浸泡5s后取出、放在室内晾干,每个培养皿放1片番茄叶。每个处理设3个重复,用清水浸泡叶片、晾干后放人培养皿内作为对照。将烟粉虱成虫轻轻拍入培养皿内,每皿约有成虫30~40头,用保鲜膜为培养皿封口,在保鲜膜上扎若干个小孔以利于透气。24h后,在双目显微镜下检查烟粉虱成虫死亡情况(用解剖针轻轻触动烟粉虱成虫,身体不动者为死亡)。用spss 19软件进行试验数据统计和分析。
设具最大LC50药剂的相对毒力指数为1,用最大LC50除以各药剂的LC50值,求出各药剂的相对毒力指数。
上述4种药剂对烟粉虱成虫室内毒力见表1。
表1不同药剂对烟粉虱成虫的室内毒力
Figure PCTCN2017079063-appb-000003
Figure PCTCN2017079063-appb-000004
由表1可知,以啶虫脒作为标准药剂,设定其相对毒力指数为1,天维菌素A的相对毒力指数为110.478,对烟粉虱成虫的毒力最高,且远远高于其它3中药剂。可见,天维菌素A对烟粉虱具有较高的活性,优于其他3种药剂。
实施例2:天维菌素对灰飞虱(Laodelphax striatellus)的杀灭作用。
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
98%吡虫啉(Imidacloprid)(浙江海正化工股份有限公司);
95%高效氯氟氰菊酯(Cyhalothrin)(江苏剑牌农药化工有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司)。
分别将各原药用DMF溶解,配制成10000mg/L的溶液,备用。
供试虫源:采自浙江嘉兴水稻田中的灰飞虱成虫,于室内用稻苗饲养。
本试验采用浸苗法。将供试药剂在预试验基础上用自来水稀释成5个系列浓度做供试药液。具体地,高效氯氟氰菊酯和吡虫啉稀释成5mg/L,10mg/L,25mg/L,50mg/L和100mg/L;阿维菌素稀释成0.25mg/L,0.5mg/L,1.0mg/L,2.5mg/L和5.0mg/L;天维菌素A稀释成0.05mg/L,0.10mg/L,0.25mg/L,0.5mg/L和1.0mg/L。取室内播种的25d左右秧龄且无稻飞虱虫卵的稻苗,留少许稻根,在预先配制好的药液中浸泡30s,取出晾干,再放人3cm×20cm的试管中,管底有少许水。每管2-3根稻苗,每处理重复3次,以清水处理为对照。每支试管各接灰飞虱40-50头,用黑布扎口,置于(26±1)℃养虫室内。处理72h后检查死活虫数。以对照死亡率小于10%试验为有效试验。用spss 19软件进行试验数据统计和分析。
设具最大LC50药剂的相对毒力指数为1,用最大LC50除以各药剂的LC50值,求出各药剂的相对毒力指数。
上述4种药剂对灰飞虱成虫室内毒力见表2。
表2不同药剂对灰飞虱成虫的室内毒力
Figure PCTCN2017079063-appb-000005
由表2可知,以吡虫啉作为标准药剂,设定其相对毒力指数为1,天维菌素A的相对毒力指数为107.490,对烟粉虱成虫的毒力最高,且远远高于其它3中药剂。可见,天维菌素A对灰飞虱具有较高的活性,优于其他3种药剂。
实施例3:天维菌素对褐飞虱(Nilaparvata lugens)的杀灭作用。
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
98%吡虫啉(Imidacloprid)(浙江海正化工股份有限公司);
95%高效氯氟氰菊酯(cyhalothrin)(江苏剑牌农药化工有限公司);
天维菌素(Tenvermectin,A:B=7:3(重量比))(浙江海正药业股份有限公司)。
分别将各原药用DMF溶解,配制成10000mg/L的溶液,备用。
供试虫源:采自浙江嘉兴水稻田中的褐飞虱成虫,于室内用稻苗饲养。
本试验采用浸苗法。将供试药剂在预试验基础上用自来水稀释成5个系列浓度做供试药液。具体地,高效氯氟氰菊酯和吡虫啉均稀释成5mg/L,10mg/L,25mg/L,50mg/L和100mg/L;阿维菌素稀释成0.25mg/L,0.5mg/L,1.0mg/L,2.5mg/L和5.0mg/L;天维菌素(Tenvermectin,A:B=7:3)稀释成0.05mg/L,0.10mg/L,0.25mg/L,0.5mg/L和1.0mg/L。取室内播种的25d左右秧龄且无稻飞虱虫卵的稻苗,留少许稻根,在预先配制好的药液中浸泡30s,取出晾干,再放人3cm×20cm的试管中,管底有少许水。每管2-3根稻苗,每处理重复3次,以清水处理为对照。每支试管各接灰飞虱40-50头,用黑布扎口,置于(26±1)℃养虫室内。处理72h后检查死活虫数。以对照死亡率小于10%试验为有效试验。用spss 19软件进行试验数据统计和分析。
设具最大LC50药剂的相对毒力指数为1,用最大LC50除以各药剂的LC50值,求出各药剂的相对毒力指数。
上述4种药剂对褐飞虱成虫室内毒力见表3。
表3不同药剂对褐飞虱成虫的室内毒力
Figure PCTCN2017079063-appb-000006
由表3可知,以吡虫啉作为标准药剂,设定其相对毒力指数为1,天维菌素(Tenvermectin,A:B=7:3)的相对毒力指数为99.923,对褐飞虱成虫的毒力最高,且远远高于其它3中药剂。可见,天维菌素(Tenvermectin,A:B=7:3)对褐飞虱具有较高的活性,优于其他3种药剂。
实施例4:天维菌素对西花蓟马(Frankliniella occidentalis Pergande)的杀灭作用。
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
98%吡虫啉(Imidacloprid)(浙江海正化工股份有限公司);
90%甲氨基阿维菌素苯甲酸盐(甲维盐)(Emamectin Benzoate)(浙江升华拜克生物股份有限公司);
天维菌素混合液I(Tenvermectin,A:B=9:1)(浙江海正药业股份有限公司),
天维菌素混合液II(Tenvermectin,A:B=1:9)(浙江海正药业股份有限公司)。
分别将各原药用DMF溶解,配制成10000mg/L的溶液,备用。
采用浸渍法。将供试药剂在预试验基础上用自来水稀释成5个系列浓度做供试药液。具体地,吡虫啉稀释成5mg/L,10mg/L,25mg/L,50mg/L和100mg/L;阿维菌素稀释成0.25mg/L,0.5mg/L,1.0mg/L,2.5mg/L,5.0mg/L;甲维盐、天维菌素混合液I和天维菌素混合液II均稀释成0.05mg/L,0.10mg/L,0.25mg/L,0.5mg/L和1.0mg/L。把养虫盒底部浸入配好的药液中1cm,使药液通过铜网进入养虫盒。将吸虫器中定量西花蓟马(15~20头)弹入养虫盒药液中,用玻璃棒轻搅10s,迅速将养虫盒白药液中提出,待药液自养虫盒中流尽后,用吸水纸从养虫盒底部将铜网上的残留药液吸干,再在养虫盒中放入长3cm的菜豆片(蓟马饲料),最后用封口膜将养虫盒封口。每处理重复3次,以清水处理做空白对照。将封口浸虫盒置于温度为26℃、湿度70%的HPG280H型光照培养箱中,药后48h检查西花蓟马死亡情况,以对照死亡率小于10%试验为有效试验。用 spss 19软件进行试验数据统计和分析。
设具最大LC50药剂的相对毒力指数为1,用最大LC50除以各药剂的LC50值,求出各药剂的相对毒力指数。
上述5种药剂对西花蓟马成虫室内毒力见表4。
表4不同药剂对西花蓟马成虫的室内毒力
Figure PCTCN2017079063-appb-000007
由表4可知,以吡虫啉作为标准药剂,设定其相对毒力指数为1,天维菌素混合液II的相对毒力指数为252.135,对西花蓟马成虫的毒力最高,且远远高于吡虫啉、阿维菌素和甲维盐;天维菌素混合液I的相对毒力指数为155.701,对西花蓟马成虫的毒力相对较高,且高出吡虫啉、阿维菌素和甲维盐许多。可见,天维菌素混合液I和天维菌素混合液II对西花蓟马均具有较高的活性,优于其他3种药剂。
实施例5:天维菌素对台湾乳白蚁(Coptotermes formosanus Shiraki)的杀灭作用。
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司);
92%天维菌素B(Tenvermectin B)(浙江海正药业股份有限公司)。
分别将各原药用DMF溶解,配制成10000mg/L的溶液,备用。
方法:将供试药剂在预试验基础上用自来水稀释成5个系列浓度做供试药液。具体地,阿维菌素稀释成0.01mg/L,0.025mg/L,0.05mg/L,0.10mg/L和0.25mg/L;天维菌素A和天维菌素B稀释成0.001mg/L,0.0025mg/L,0.005mg/L, 0.01mg/L和0.025mg/L。将供试白蚁分别放入直径为15cm的培养皿中,每个培养皿内放入20头工蚁。试验时用微量进样器向每头白蚁的胸腹部点滴1μl药液,共做3次重复。每个培养皿中放入1块菌圃,供白蚁栖息,同时放入1个湿的脱脂棉球保湿。点滴完毕将培养皿置于18±1℃的恒温恒湿箱内黑暗条件下进行培养,分别于点滴后24h和48h观测死亡情况。以毛笔触及白蚁身体各部位完全不动的判为死亡。用spss 19软件进行试验数据统计和分析。
设具最大LC50药剂的相对毒力指数为1,用最大LC50除以各药剂的LC50值,求出各药剂的相对毒力指数。
3种药剂对台湾乳白蚁的室内毒力见表5。
表5不同药剂对台湾乳白蚁的室内毒力
Figure PCTCN2017079063-appb-000008
由表5可知,以阿维菌素为标准药剂,设定其相对毒力指数为1,天维菌素A和B的相对毒力指数分别为4.77和6.21,对台湾乳白蚁的毒力明显高于阿维菌素。天维菌素B对台湾乳白蚁具有更高的活性,优于其他2种药剂。
实施例6:天维菌素防治稻纵卷叶螟田间药效试验
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司);
92%天维菌素B(Tenvermectin B)(浙江海正药业股份有限公司)。
在实验室内将上述原药分别配成1.8%阿维菌素乳油、1.8%天维菌素乳油A(天维菌素A单组分,其中杂质天维菌素B组分含量为0.02%)、1.8%天维菌素乳油B(天维菌素A:天维菌素B=9:1(重量比,下同))、1.8%天维菌素乳油C(天维菌素A:天维菌素B=5:1)、1.8%天维菌素乳油D(天维菌素A:天维菌素B=1:1)、1.8%天维菌素乳油E(天维菌素B单组分,其中杂质天维菌素A组分含量为0.51%)的制剂备用。试验作物为水稻,品种为晚稻隆平48,防治对象为水稻稻纵卷叶螟。
试验设7个处理,每处理4次重复,共28个小区。各小区随机区组排列,每小区面积为66.7m2,水稻管理较好,各试验小区的水肥条件和管理条件均一致。采 用型背负式手动喷雾器喷施1次药,按40毫升/亩药剂用量折算小区用量,叶面均匀喷雾,每个处理之间设隔离,避免相互干扰。设空白对照,空白对照喷施清水。水稻处于孕穗期,第4代稻纵卷叶螟1-2龄高峰期。于药后14d调查,采取5点取样,每点连续取5丛稻,每小区共调查25丛,调查卷叶率,计算防治药效。试验结果见表6。
稻纵卷叶螟防效计算公式:
Figure PCTCN2017079063-appb-000009
表6防治稻纵卷叶螟田间试验结果
Figure PCTCN2017079063-appb-000010
*其中,差异显著性栏中的相同的字母表示没有显著差异。
试验结果表明:天维菌素A与天维菌素B以不同重量比混合时(天维菌素A单组分,天维菌素A:天维菌素B=9:1,天维菌素A:天维菌素B=5:1,天维菌素A:天维菌素B=1:1,天维菌素B单组分),对稻纵卷叶螟有较显著的防治效果,防治效果均在90%以上,优于同等用药量的阿维菌素,且各比例天维菌素混合物对稻纵卷叶螟的防治效果相似。
实施例7:天维菌素防治水稻二化螟田间药效试验
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司);
92%天维菌素B(Tenvermectin B)(浙江海正药业股份有限公司)。
在实验室内将上述原药分别配成1.8%阿维菌素乳油、1.8%天维菌素乳油A(天维菌素A单组分,其中杂质天维菌素B组分含量为0.02%)、1.8%天维菌素乳油B(天维菌素A:天维菌素B=9:1(重量比,下同))、1.8%天维菌素乳油C(天维菌素A:天维菌素B=5:1)、1.8%天维菌素乳油D(天维菌素A:天维菌素B=1:1)、1.8%天维菌素乳油E(天维菌素B单组分,其中杂质天维菌素A组分含量为0.51%)的制剂备用。试验作物为水稻,品种为晚稻宁84,防治对象为水稻二化螟。
试验设7个处理,每处理4次重复,共28个小区。各小区随机区组排列,每小区面积为66.7m2,水稻管理较好,各试验小区的水肥条件和管理条件均一致。采用型背负式手动喷雾器喷施1次药,按40毫升/亩药剂用量折算小区用量,叶面均匀喷雾,每个处理之间设隔离,避免相互干扰。设空白对照,空白对照喷施清水。水稻处于分蘖盛期,第3代二化螟幼虫1龄高峰期。于药后15d调查,采取5点取样,每点连续取5丛稻,每小区共调查25丛,调查枯心率,计算防治药效。试验结果见表7。
二化螟防效计算公式:
Figure PCTCN2017079063-appb-000011
表7防治水稻二化螟田间试验结果
Figure PCTCN2017079063-appb-000012
*其中,差异显著性栏中相同的字母表示没有显著差异。
试验结果表明:天维菌素A与天维菌素B以不同重量比混合时(天维菌素A单组分,天维菌素A:天维菌素B=9:1,天维菌素A:天维菌素B=5:1,天维菌素A:天维菌素B=1:1,天维菌素B单组分),对水稻二化螟有较显著的防治效果,防治效果均在80%以上,优于同等用药量的阿维菌素,且各比例天维菌素混合物对水稻二化螟的防治效果相似。
实施例8:天维菌素防治水稻三化螟室内药效试验
供试药剂:
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司);
92%天维菌素B(Tenvermectin B)(浙江海正药业股份有限公司)。
在实验室内将上述原药分别配成1.8%阿维菌素乳油、1.8%天维菌素乳油A(天维菌素A单组分,其中杂质天维菌素B组分含量为0.02%)、1.8%天维菌素乳油B(天维菌素A:天维菌素B=9:1(重量比,下同))、1.8%天维菌素乳油C(天维菌素A:天维菌素B=5:1)、1.8%天维菌素乳油D(天维菌素A:天维菌素B=1:1)、1.8%天维菌素乳油E(天维菌素B单组分,其中杂质天维菌素A组分含量为0.51%)的制剂备用。
室内实验的水稻品种为晚稻宁84,采用播种后10d左右的苗进行实验。
从稻田水稻上采回水稻三化螟卵块,分装于试管中,待水稻三化螟卵孵化,便立即接上已经喷好药剂的水稻叶片。供试药剂稀释2000倍,采用喷雾施药,使叶片正反面均匀着药,滴水为止。每盆播苗10株,每株苗接虫l头。共研究6种药剂的防效,每种药剂设置4个重复,每个重复处理三盆稻苗,每个处理之间隔离,避免相互干扰。设空白对照,空白对照为不喷任何东西。在接虫后15d调查枯心数和虫伤株数。试验结果见表8。
室内水稻三化螟防效计算公式:
Figure PCTCN2017079063-appb-000013
表8防治水稻三化螟室内试验结果
Figure PCTCN2017079063-appb-000014
Figure PCTCN2017079063-appb-000015
*其中,差异显著性栏中相同字母表示没有显著差异。
试验结果表明:天维菌素A与天维菌素B以不同重量比混合时(天维菌素A单组分,天维菌素A:天维菌素B=9:1,天维菌素A:天维菌素B=5:1,天维菌素A:天维菌素B=1:1,天维菌素B单组分),对水稻三化螟有较显著的防治效果,防治效果均在90%以上,优于同等用药量的阿维菌素,且各比例天维菌素混合物对水稻三化螟的防治效果相似。
实施例9:天维菌素A对斑马鱼的毒性试验。
斑马鱼作为一种敏感的模式生物,对多种环境污染物较为敏感,被广泛应用于各种生态风险评估中。
供试鱼和用水:斑马鱼(Brachydanio rerio)采购于浙江省农业科学院,大小一致,平均体长2-3cm,平均体重0.3g。试验前在室内驯养7天。自然死亡率为0。试验前1天停止喂食,试验期间不喂食。试验用水为经暴晒24小时以上去除余氯后的自来水,pH值为6.8。
供试药剂:
99.4%天维菌素A(天维菌素B质量含量为0.02%)(浙江海正药业股份有限公司);
天维菌素(天维菌素A/天维菌素B质量比为95/5)(浙江海正药业股份有限公司);
天维菌素(天维菌素A/天维菌素B质量比为90/10)(浙江海正药业股份有限公司);
天维菌素(天维菌素A/天维菌素B质量比为85/15)(浙江海正药业股份有限公司);
99.1%天维菌素B(天维菌素A质量含量为0.51%)((浙江海正药业股份有限公司);
92%阿维菌素(Abamectin)(浙江钱江生物化学股份有限公司);
91%米尔贝霉素(Milbemycin)(浙江海正药业股份有限公司);
96%伊维菌素(Ivermectin)(浙江海正药业股份有限公司);
90%甲氨基阿维菌素苯甲酸盐(甲维盐)(Emamectin Benzoate)(浙江升华拜克生物股份有限公司)。
样品以DMF配制成50mg/ml母液。
方法:采用半静态法。每个样品设0.5ppm,1.0ppm和2.0ppm 3个级差,每个级差设3组平行,每组养10尾,并设空白对照(不加药剂和仅加溶剂各1组)。样品按浓度需要取相应体积的母液,并以DMF定容至150μl后,加入试验组(含1.6L水)。室温控制在22±2℃,连续96小时,每24小时换一次水,并重新加样品。记录最初8小时,以及24、48、72、96小时时鱼的死亡率,及时捞出死鱼。最后按LC50的大小划分为三个等级:>10ppm为低毒农药,1.0-10ppm为中毒农药,<1.0ppm为高毒农药。试验结果见表9。
表9不同药剂对斑马鱼的毒性试验
Figure PCTCN2017079063-appb-000016
Figure PCTCN2017079063-appb-000017
结果表明:天维菌素A:B=90:10的浓度在1ppm时,斑马鱼的96小时存活率仍大于50%,说明天维菌素A:B=90:10对斑马鱼的96小时LC50>1ppm,为中毒;而且天维菌素对斑马鱼的毒性随着A组分比例的提高而降低。而阿维菌素、伊维菌素、米尔贝霉素和甲维盐在0.5ppm时,斑马鱼的8小时存活率均为0,说明阿维菌素、伊维菌素、米尔贝霉素和甲维盐对斑马的96小时LC50<0.5ppm,为高毒。
实施例10:天维菌素防治白菜黄条跳甲田间药效试验
供试药剂:
95%天维菌素A(Tenvermectin A)(浙江海正药业股份有限公司);
92%天维菌素B(Tenvermectin B)(浙江海正药业股份有限公司)。
98%吡虫啉(Imidacloprid)(浙江海正化工股份有限公司);
99%啶虫脒(Acetamiprid)(浙江海正化工股份有限公司);
95%高效氯氟氰菊酯(Cyhalothrin)(江苏剑牌农药化工有限公司);
在实验室内将上述原药分别配成1.8%阿维菌素乳油、1.8%天维菌素A乳油、1.8%天维菌素B乳油、5%吡虫啉乳油、5%啶虫脒乳油、2.5%高效氯氟氰菊酯乳油的制剂备用。
试验设在临海市,试验作物为白菜,防治对象为黄条跳甲。
试验设7个处理,每处理3次重复,共21个小区。各小区随机区组排列,每小区面积为66.7m2,采用背负式手动喷雾器喷施1次药,按50毫升/亩药剂用量折算小区用量,叶面均匀喷雾,每个处理之间设隔离,避免相互干扰。设空白对照,空白对照喷施清水。药前调查虫口基数,药后1d、3d、7d调查活虫数,共调查4次。每小区随机调查20株。计算虫口减退率,校正防治效果。试验期间未使用过其他杀虫剂。试验结果见表10。
Figure PCTCN2017079063-appb-000018
Figure PCTCN2017079063-appb-000019
Pt0:药前虫数;Pt1:药后虫数。
表10防治白菜黄条跳甲田间试验结果
Figure PCTCN2017079063-appb-000020
试验结果表明:天维菌素A与天维菌素B对白菜黄条跳甲药后1天、3天、7天基本无防治效果,防治效果明显劣于其他药剂。
本发明的天维菌素的用途已经通过具体的实例进行了描述,本领域技术人员可借鉴本发明内容,适当改变原料、工艺条件等环节来实现相应的其它目的,其相关改变都没有脱离本发明的内容,所有类似的替换和改动对于本领域技术人员来说是显而易见的,都被视为包括在本发明的范围之内。

Claims (7)

  1. 下式(I)的化合物中的一种或两者的混合物在制备用于防治农林作物中有害昆虫的药物中的用途:
    Figure PCTCN2017079063-appb-100001
    其中R选自CH3或C2H5,并且当R为CH3时为天维菌素A,当R为C2H5时为天维菌素B。
  2. 根据权利要求1所述的用途,其中所述农林作物选自稻、棉花、茶、蔬菜、甘蔗、大豆、马铃薯、果树、果树果实、玉米、藤本植物、观赏植物、牧场和牧草或加拿大油菜,优选为稻、棉花、蔬菜、果树或观赏植物。
  3. 根据权利要求1或2所述的用途,其中所述有害昆虫选自蜚蠊目(Blattaria)、虱目(Phthiraptera)、缨翅目(Thysanoptera)、同翅目(Homoptera)、半翅目(Hemiptera)、膜翅目(Hymenoptera)、双翅目(Diptera)、蚤目(Siphonaptera)、植物寄生线虫、黏虫(oriental armyworm)、革螨科(gamasid mite)或瘿螨科(Eriophyidae),优选为蜚蠊目(Blattaria)、缨翅目(Thysanoptera)、同翅目(Homoptera)或半翅目(Hemiptera)。
  4. 根据权利要求1-3任一项所述的用途,其中所述有害昆虫选自烟粉虱(Bemisia tabaci)、西花蓟马(Frankliniella occidentalis Pergande)、灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)、白背飞虱(Sogatella furcifera)、稻纵卷叶螟、水稻二化螟、水稻三化螟或台湾乳白蚁(Coptotermes formosanus Shiraki)。
  5. 根据权利要求1-4任一项所述的用途,其中所述有害昆虫为灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)、白背飞虱(Sogatella furcifera)、稻纵卷叶螟、水稻二化螟或水稻三化螟。
  6. 根据权利要求1-5任一项所述的用途,其中所述有害昆虫为灰飞虱(Laodelphax striatellus)、褐飞虱(Nilaparvata lugens)或白背飞虱(Sogatella furcifera)。
  7. 根据权利要求1-6任一项所述的用途,其中所述用途是天维菌素A和天维菌 素B的混合物在制备用于控制农林作物中有害昆虫的药物中的用途,优选的,所述混合物中天维菌素A与天维菌素B的重量比≥9:1,更优选≥19:1。
PCT/CN2017/079063 2016-04-07 2017-03-31 天维菌素用于控制农林作物中有害昆虫的用途 WO2017173957A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2017247268A AU2017247268A1 (en) 2016-04-07 2017-03-31 Use of tenvermectin in control of harmful insects in agricultural and forest crops
US16/091,326 US20190116795A1 (en) 2016-04-07 2017-03-31 Use of tenvermectin in control of harmful insects in agricultural and forest crops

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610211064.5 2016-04-07
CN201610211064.5A CN107258798A (zh) 2016-04-07 2016-04-07 天维菌素用于控制农林作物中有害昆虫的用途

Publications (1)

Publication Number Publication Date
WO2017173957A1 true WO2017173957A1 (zh) 2017-10-12

Family

ID=60000739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079063 WO2017173957A1 (zh) 2016-04-07 2017-03-31 天维菌素用于控制农林作物中有害昆虫的用途

Country Status (4)

Country Link
US (1) US20190116795A1 (zh)
CN (1) CN107258798A (zh)
AU (1) AU2017247268A1 (zh)
WO (1) WO2017173957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931144A (zh) * 2022-06-21 2022-08-23 台州科技职业学院 一种大环内酯类化合物及其在防治农林害虫和害螨中的应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109832285A (zh) * 2017-11-29 2019-06-04 江苏龙灯化学有限公司 一种杀虫组合物
CN110540944B (zh) * 2018-05-28 2022-08-02 深圳市天维生物药业有限公司 一种天维菌素产生菌及其应用
CN110540567B (zh) 2018-05-28 2024-07-30 深圳市天维生物药业有限公司 一种天维菌素b的晶型及其制备方法和用途
CN108849934A (zh) * 2018-06-13 2018-11-23 惠州市新视觉实业有限公司 一种含天维菌素和梅岭霉素的农药组合物
CN112500866B (zh) * 2020-11-27 2021-11-26 新疆农业科学院微生物应用研究所(中国新疆-亚美尼亚生物工程研究开发中心) 一种膨润土液体地膜及其制备方法和应用
CN115530173B (zh) * 2021-08-31 2024-08-02 广西壮族自治区农业科学院 一种防治甘蔗螟虫的增效杀虫剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156720A (en) * 1977-04-11 1979-05-29 Merck & Co., Inc. Carbohydrate derivatives of milbemycin and processes therefor
DE4031039A1 (de) * 1989-10-03 1991-04-11 Ciba Geigy Ag 13(alpha)-zuckerderivate von milbemycinen, deren herstellung und verwendung gegen ekto- und endoparasiten am nutztier
US20110201567A1 (en) * 2010-01-22 2011-08-18 University Of Southern California Ivermectin Antagonizes Ethanol Inhibition in P2X4 Receptors
CN104910228A (zh) * 2014-03-10 2015-09-16 浙江农林大学 十六元大环内酯类化合物及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354593B1 (de) * 1986-01-25 1993-03-03 Hoechst Aktiengesellschaft Schädlingsbekämpfungsmittel
CN106167815A (zh) * 2016-05-30 2016-11-30 浙江农林大学 天维菌素衍生物的制备方法及用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156720A (en) * 1977-04-11 1979-05-29 Merck & Co., Inc. Carbohydrate derivatives of milbemycin and processes therefor
DE4031039A1 (de) * 1989-10-03 1991-04-11 Ciba Geigy Ag 13(alpha)-zuckerderivate von milbemycinen, deren herstellung und verwendung gegen ekto- und endoparasiten am nutztier
US20110201567A1 (en) * 2010-01-22 2011-08-18 University Of Southern California Ivermectin Antagonizes Ethanol Inhibition in P2X4 Receptors
CN104910228A (zh) * 2014-03-10 2015-09-16 浙江农林大学 十六元大环内酯类化合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931144A (zh) * 2022-06-21 2022-08-23 台州科技职业学院 一种大环内酯类化合物及其在防治农林害虫和害螨中的应用

Also Published As

Publication number Publication date
AU2017247268A1 (en) 2018-11-01
US20190116795A1 (en) 2019-04-25
CN107258798A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2017173957A1 (zh) 天维菌素用于控制农林作物中有害昆虫的用途
JP5553824B2 (ja) 相乗的活性成分組合せ
JP2009542743A (ja) 殺虫及び殺ダニ特性を有する活性成分の組み合わせ
EP3001905B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
US20100204167A1 (en) Active compound combinations having insecticidal and acaricidal properties
JP2010539203A (ja) 殺虫及び殺ダニ特性を有する活性成分組合せ
CN101018482A (zh) 基于选择性杀虫剂和安全剂的杀虫药剂
KR20090028818A (ko) 살충 및 살비성을 지닌 활성 성분의 배합물
JP2009542746A (ja) 殺虫及び殺ダニ特性を有する活性化合物の組み合わせ
JP2009542745A (ja) 殺虫性及び殺ダニ性を有する活性成分複合剤
ES2664088T3 (es) Combinaciones de principios activos con propiedades insecticidas y acaricidas
MX2008015840A (es) Combinaciones de principios activos con propiedades insecticidas y acaracidas.
TW201642747A (zh) 含新菸鹼類、擬除蟲菊酯及阿維菌素殺蟲劑之增效殺蟲組合物
CN115279189A (zh) 具有杀有害生物效用的组合物及与其相关的方法
CN1437847A (zh) 雷公藤浸提物制剂在农林害虫防治上的用途
US20170064958A1 (en) Active compound combinations having insecticidal properties
CN105794813B (zh) 一种杀虫组合物及其控制农业害虫的方法
ES2878099T3 (es) Mezclas de alcaloides de sabadilla y espinosinas y usos de las mismas
CN106973937B (zh) 一种含有丁氟螨酯的杀线虫组合物
TWI759258B (zh) 農藥調配物、製造方法及使用方法
WO2009007036A1 (de) Wirkstoffkombinationen mit insektiziden, akariziden und nematiziden eigenschaften
CN107484758A (zh) 一种杀虫组合物
CN105794798B (zh) 一种杀虫组合物
CN107980789A (zh) 一种含有丁氯虫酰胺的杀虫组合物及其应用
CN105557721B (zh) 一种杀虫组合物

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017247268

Country of ref document: AU

Date of ref document: 20170331

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778621

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778621

Country of ref document: EP

Kind code of ref document: A1