WO2017173745A1 - 一种无压灌溉装置 - Google Patents

一种无压灌溉装置 Download PDF

Info

Publication number
WO2017173745A1
WO2017173745A1 PCT/CN2016/091983 CN2016091983W WO2017173745A1 WO 2017173745 A1 WO2017173745 A1 WO 2017173745A1 CN 2016091983 W CN2016091983 W CN 2016091983W WO 2017173745 A1 WO2017173745 A1 WO 2017173745A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water storage
soil
irrigation
pressureless
Prior art date
Application number
PCT/CN2016/091983
Other languages
English (en)
French (fr)
Inventor
邓洋
颜小雪
刘准
Original Assignee
严利容
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严利容 filed Critical 严利容
Publication of WO2017173745A1 publication Critical patent/WO2017173745A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/06Watering arrangements making use of perforated pipe-lines located in the soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the invention belongs to the field of irrigation technology, in particular to a pressureless irrigation device.
  • Negative pressure irrigation means that the elevation of the irrigation water source is lower than the elevation of the emitter, and the water supply head is negative during operation; and the pressureless irrigation is an irrigation method in which the elevation of the irrigation water source is equal to the elevation of the emitter.
  • negative pressure irrigation is the most efficient irrigation method due to its use of soil, plant, atmospheric water potential energy and capillary action, it has many shortcomings. Negative pressure irrigation is very difficult to achieve. The sealing of the water system has strict requirements, and it cannot be leaked. Especially if the underground part is damaged, it will be very difficult to find and repair. Second, the gas dissolved in the water will be precipitated under negative pressure, if not treated in time.
  • the unique structure of the negative pressure emitter (negative pressure emitter and soil water exchange)
  • the premise is that the outer wall can form a water-permeable and water-tight water film.
  • the water output is too small, and the soil humidification range is limited.
  • the wetness can be increased only by increasing the density of the negative pressure emitter or increasing the water supply surface of the single negative pressure emitter. Degree, making the investment increase, maintenance is more difficult;
  • the negative pressure emitter is different from the soil texture, there are obvious discontinuous, inconsistent interface, whether the water supply is smooth, and depends on the contact of the negative pressure emitter with the soil. The degree of tightness has certain uncertainty. Therefore, current pressureless irrigation has become a more effective irrigation method in soil irrigation.
  • Patent application CN 102160518 A discloses a novel pressureless irrigation device, which is used by opening a water supply tank outlet valve, and the irrigation water flows into the water level control pool.
  • the intake pipe is flooded.
  • the gas is changed to the inlet water until the water level in the intake pipe is equal to the water level in the water supply tank, and the irrigation water stops flowing into the water level control tank.
  • the water level of the pool is stabilized at a water level slightly higher than h1, and the irrigation water is taken from the U-shaped tank of the emitter.
  • the permeable cover plate and the gravel filter layer enter the fill area in the upper part of the U-shaped trough, forming a water level equal to the water level control pool, lower than the soil saturated water layer on the upper edge of the U-shaped trough, and the saturated water layer. It rises to the root layer of the crop in the form of capillary water.
  • the water consumption of the crop makes the water level of the water level control tank lower than h1, the intake pipe is exposed to the water surface, and the water is in the form of bubbles.
  • the irrigation water flows into the water level control pool again.
  • the water consumption of the crop causes the water supply process to be repeated, the water supply volume increases and decreases with the water consumption, adaptive irrigation, simple operation and convenient use.
  • the structure and pipeline layout of the pressureless irrigation device are complicated, the construction is inconvenient, the cost is high, and it is not easy to promote in a wide range.
  • the pressureless irrigation device a part of the irrigation water is lost in the form of continuous evaporation, so the utilization rate of the irrigation water is obviously reduced, and the irrigation water utilization rate of the pressureless irrigation device is not high, and the precise control cannot be achieved. water.
  • the present invention provides a pressureless irrigation device that stores and transports irrigation water to the soil through a water storage column to allow the plant to absorb; at the same time, the pressureless The irrigation unit provides precise water control.
  • a pressureless irrigation device in contact with soil planted to irrigate the plant;
  • the pressureless irrigation device comprises: a water layer, the water layer being laid inside the soil, The water layer is connected to the water pipe to turn on the irrigation water; the top of the water layer is provided with a plurality of through holes; the water storage column is buried in the interior of the soil, and the water storage column passes through The through hole is in contact with the irrigation water; wherein the water storage column is made of a water absorbing material; and the control system includes a humidity sensor inserted in a surface layer of the soil and electrically connected to the humidity sensor a connected controller; wherein the humidity sensor monitors humidity of the soil to generate a first signal, the humidity sensor transmits the first signal to the controller; a water supply valve, the water supply valve is disposed at the Between the water passing layer and the water pipe, the water supply valve is electrically connected to the controller; wherein the controller generates a second signal according to the first signal, and the controller sends the second signal to a water supply valve for controlling
  • vent pipe communicating with the water-passing layer is further included; wherein the free end of the vent pipe is exposed to the surface layer of the soil.
  • the water-passing layer includes a waterproof bottom plate and a water-permeable cover plate disposed opposite to each other, and a water storage chamber for accommodating the irrigation water is formed between the waterproof bottom plate and the water-permeable cover plate; A hole is disposed on the permeable cover.
  • the water passing layer further includes a support column interposed between the waterproof bottom plate and the water permeable cover.
  • a distance between the waterproof bottom plate and the water permeable cover plate is 2 cm to 3 cm.
  • the water storage column includes an upper water storage portion and a lower water storage portion; wherein the upper water storage portion is disposed on the water permeable cover, and the lower water storage portion is inserted into the through hole .
  • the upper water storage portion has a thickness of 1 cm to 2 cm; and a vertical distance between the bottom end of the lower water storage portion and the bottom surface of the water permeable cover plate is 1 cm to 1.5 cm.
  • the distance between the top end of the water storage column and the surface layer of the soil does not exceed 160 cm.
  • the water storage column is made of a polyvinyl alcohol sponge.
  • the invention combines a water storage column with good water absorption and water retention performance with a humidity sensor in a control system.
  • the humidity sensor is used to monitor the humidity of the soil, and the on-off of the water supply valve is controlled to implement timely irrigation;
  • the water storage column can play the role of uniform and slow water seepage, realize timely irrigation, uniform irrigation and high-efficiency irrigation, thereby improving the uniformity of irrigation, increasing the utilization rate of irrigation water and reducing the cost of the pressureless irrigation device.
  • Figure 1 is a front elevational view of a pressureless irrigation device in accordance with an embodiment of the present invention
  • Figure 2 is a partial enlarged view of the area A in Figure 1;
  • FIG 3 is a top plan view of a water sub-layer in accordance with an embodiment of the present invention.
  • FIG. 1 is a front view of a pressureless irrigation device according to an embodiment of the present invention
  • FIG. 2 is a region A of FIG. A partial enlarged view of a domain
  • FIG. 3 is a top plan view of a water-passing layer in accordance with an embodiment of the present invention.
  • a pressureless irrigation device is in contact with soil 12 planted with plants 11 to irrigate the plant 11; with specific reference to Figures 1 to 3, the pressureless irrigation device comprises: a water layer 21.
  • the water-passing layer 21 is laid inside the soil 12, and one end thereof is connected to the water pipe 23 through a water supply valve 25, and the water pipe 23 is connected with irrigation water for irrigating the plant 11;
  • the top of the water-passing layer 21 is provided with a plurality of a through hole 211, and a bottom end of the water storage column 22 embedded in the soil 12 is inserted into the plurality of through holes 211 so as to be in contact with the irrigation water located inside the water passing layer 21 through the through hole 211;
  • System 24 includes a humidity sensor 241 and a controller 242 electrically coupled thereto, the humidity sensor 241 being interposed at the surface of the soil 12 to monitor the humidity of the soil 12 and to generate a first signal indicative of the current humidity state of the soil 12.
  • the humidity sensor 241 sends the first signal to the controller 242; the controller 242 is electrically connected to the water supply valve 25, the controller 242 generates a second signal according to the first signal, and sends a second signal to the water supply valve 25, The switch of the water supply valve 25 is controlled.
  • the controller 242 controls the water supply valve 25 to open, and the irrigation water flows to the inside of the water passing layer 21 via the water pipe 23, and the water storage column 22 is The bottom end absorbs the part of the irrigation water and transmits it to the soil 12 through the top end thereof to complete the irrigation until the humidity sensor 241 detects that the humidity of the soil 12 is acceptable, and the controller 242 controls the water supply valve 25 to close, preventing the irrigation water from continuing. Flowing into the interior of the water layer 21, i.e., completing the irrigation;
  • a preset value of humidity may be set on the humidity sensor 241 according to the requirement of the plant 11.
  • the controller 242 controls the water supply.
  • the valve 25 is opened; and when the humidity sensor 241 detects that the humidity of the soil 12 reaches the preset value, the controller 242 controls the water supply valve 25 to close.
  • the controller 242 may be a component such as a relay that can realize automatic control.
  • the vent pipe 26 is in communication with the other end of the water-passing layer 21, and the vent pipe 26 is opposed to the water supply valve 25; the vent pipe 26 is placed vertically, the free end of which passes through the soil 12 and is exposed to the soil 12 The surface layer; that is, the vent pipe 26 is in communication with the atmosphere.
  • the water-passing layer 21 includes a waterproof bottom plate 212, a water-permeable cover plate 213, and a support column 214 interposed between the waterproof bottom plate 212 and the water-permeable cover plate 213; the support column 214 is waterproof to the bottom.
  • a supporting function is formed between the plate 212 and the water permeable cover 213 to ensure that a water storage chamber 215 for storing irrigation water is formed between the waterproof bottom plate 212 and the water permeable cover 213, and the plurality of through holes 211 are disposed on the water permeable cover.
  • the distance H1 between the waterproof bottom plate 212 and the water-permeable cover plate 213 is 2 cm to 3 cm, that is, the height of the support post 214 is 2 cm to 3 cm.
  • the through hole 211 and the support column 214 are arranged in a staggered state; that is, the support column 214 is disposed on the water permeable cover 213 without the through hole 211. Below, it is not opposed to the through hole 211 to prevent the support column 214 from coming into contact with the water storage column 22 inserted in the through hole 211, thereby hindering the good flow of the irrigation water in the water storage chamber 215.
  • the water storage column 22 includes a connected upper water storage portion 221 and a lower water storage portion 222.
  • the upper water storage portion 221 is disposed above the water permeable cover plate 213, and the lower water storage portion 222 is inserted into the through hole 211. in.
  • the thickness h1 of the upper water storage portion 221 is 1 cm to 2 cm, and the bottom end of the lower water storage portion 222 is lower than the bottom surface of the water permeable cover 213, and the bottom end of the lower water storage portion 222 is exposed to the water permeable cover 213.
  • the height of the bottom surface is 1 cm to 1.5 cm, that is, the vertical distance h2 of the bottom end of the lower water storage portion 222 from the bottom surface of the water-permeable cover plate 213 is 1 cm to 1.5 cm.
  • the vertical distance h2 of the bottom end of the lower water storage portion 222 from the bottom surface of the water-permeable cover plate 213 is half of the distance H1 between the waterproof bottom plate 212 and the water-permeable cover plate 213.
  • the polyvinyl alcohol sponge (referred to as PVA sponge) is the preferred material for the water storage column 22 because of its good water absorption and water retention performance; of course, the present invention is not limited thereto, and the material of the water storage column 22 It can also be any other material that has good water absorption and water retention properties, and will not be further described herein.
  • the distance H2 from the top end of the water storage column 22 to the surface layer of the soil 12, that is, the depth of the water storage column 22 is not arbitrary, but the texture of the soil 12 and the plant to be planted 11
  • the type is determined. Specifically, on the one hand, in terms of the texture of the soil 12, in the case of pressureless irrigation, the irrigation water is sufficiently moistened by capillary action to the soil 12 planned to be wet, and the particles of different sizes in the soil 12 correspond to The rise height of the capillary water is also very different, and the height of the capillary water rise is relatively large, and the depth of the water storage column 22 can be deeper, and vice versa; therefore, according to the soil 12 The type of texture is divided.
  • the depth of the water storage column 22 is the most deep. Generally, the depth of the water storage column is not more than 160cm. The sand is the shallowest, and the buried depth is generally less than 80cm. The loam between the clay and the sand is buried. The depth is generally not more than 100cm. On the other hand, under the condition that the water storage column 22 is not penetrated by the roots of the plant 11, the growth of the roots of the plants 11 should also be considered. For example, for general field crops and vegetables, the depth of the cultivation layer is generally 20 cm. Left and right, this depth is the most active root of the plant 11 and the depth that is most easily reached by the infiltration of the infiltrated water. Therefore, the depth of the water storage column 22 should be kept within the range of 20 cm to 40 cm. That is to say, for the pressureless irrigation device according to the embodiment, the buried depth of the water storage column 22 may be controlled to not exceed 160 cm.
  • the pressureless irrigation device described in this embodiment is more suitable for plants of shallow roots, such as clover, hibiscus, white orchid, rose, leeks, celery, pepper, etc., which is the above-mentioned general field crops and vegetables. For better irrigation results.
  • the pressureless irrigation device combines the water storage column 22 having good water absorption and water retention performance with the humidity sensor 241 in the control system 24, and on the other hand, monitors the humidity of the soil 12 by using the humidity sensor 241, and controls the water supply valve.
  • the water storage column 22 can play a role of uniform and slow water seepage, realizing timely irrigation, uniform irrigation, and efficient irrigation, thereby improving irrigation uniformity and increasing irrigation water.
  • the utilization rate reduces the cost of the pressureless irrigation device.

Abstract

一种无压灌溉装置,其与种植有植物的土壤(12)相接触,以对植物进行灌溉;该无压灌溉装置包括:铺设于土壤(12)内部的过水层(21),其与水管(23)相连以接通灌溉用水;过水层(21)的顶部开设有若干通孔(211);埋设于土壤(12)内部的蓄水柱(22),其通过通孔(211)与灌溉用水接触;其中,蓄水柱(22)的材质为吸水材料;控制系统(24)以及与之电连接的供水阀门(25),供水阀门(25)设置于过水层(21)与水管(23)之间,控制系统(24)通过监测土壤(12)的湿度来控制供水阀门(25)的开关,以控制灌溉用水是否流入过水层(21)的内部。这种无压灌溉装置提高了灌水均匀度,增大了灌溉用水的利用率,且降低了装置成本。

Description

一种无压灌溉装置 技术领域
本发明属于灌溉技术领域,具体地讲,涉及一种无压灌溉装置。
背景技术
目前较为成熟的用于土壤灌溉的方法一般分为负压灌溉和无压灌溉。负压灌溉即灌溉水源的高程低于灌水器的高程,运行时供水水头为负值;而无压灌溉是灌溉水源的高程与灌水器的高程相等的一种灌溉方法。虽然负压灌溉因其利用土壤、植物、大气的水势能差和毛细管作用进行灌溉,是迄今为止效率最高的灌溉方法,但其也具有诸多缺点,负压灌溉实现起来非常困难,一是对输水系统的密封性有很严格的要求,不能漏气,尤其是地下部分一旦密封损坏,查找和维修将十分困难;二是在负压情况下溶解在水中的气体将被析出,如果不及时处理,将产生断流。因此,需要定时排气,而排气过程又十分的复杂和麻烦,费力耗时,同时也增加了管理上的难度;三是负压灌水器特有的结构(负压灌水器与土壤水交换的前提条件是外壁能形成透水不透气的水膜)使之出水量过小,土壤湿润范围有限,只能通过增加负压灌水器布置密度或增加单个负压灌水器供水面的方法,提高湿润均匀度,使投入增加,维护更加困难;四是负压灌水器与土壤质地不同,有明显的孔隙不连续、大小不一致的分界面,供水是否通畅,还要取决于负压灌水器与土壤接触的紧密程度,具有一定的不确定性。因此,目前无压灌溉成为土壤灌溉中的一种更为有效的灌溉方法。
专利申请CN 102160518 A公开了一种新型无压灌溉装置,该无压灌溉装置的使用方法为:打开供水罐出水阀门,灌溉用水流入水位控制池,当池水位超过h1,淹没进气管,由进气改为进水,直到进气管内的水位与供水罐内的水位等高,灌溉用水停止流入水位控制池,池水位稳定在略高于h1的水位上,灌溉用水从灌水器U型槽内底部,经透水盖板和砂石反滤层进入U型槽内上部的填土区,形成与水位控制池水位等高,低于U型槽上沿的土壤饱和水层,饱和水层的水以毛细管水的形式上升至作物根系层,作物耗水使水位控制池的水位低于h1,进气管露出水面,以气泡的形式进气,灌溉用水又流入水位控制池,池水位升 高,重新淹没进气管,作物耗水引发供水过程重复,供水量随耗水量增减,自适应灌溉,操作简单,使用方便。但所述无压灌溉装置结构、管道布设较为复杂,施工不便,成本高,不易大范围地推广。此外,在所述无压灌溉装置中,有一部分灌溉用水以持续蒸发的形式散失掉,因此会明显降低灌溉用水的利用率,该无压灌溉装置的灌水利用率不高,不能够实现精确控水。
发明内容
为解决上述现有技术存在的问题,本发明提供了一种无压灌溉装置,该无压灌溉装置通过蓄水柱存储并传输灌溉用水至土壤中,以使植物进行吸收;同时,该无压灌溉装置可实现精确控水。
为了达到上述发明目的,本发明采用了如下的技术方案:
一种无压灌溉装置,与种植有植物的土壤相接触,以对所述植物进行灌溉;所述无压灌溉装置包括:过水层,所述过水层铺设于所述土壤的内部,所述过水层与水管相连,以接通灌溉用水;所述过水层的顶部开设有若干通孔;蓄水柱,所述蓄水柱埋设于所述土壤的内部,所述蓄水柱通过所述通孔与所述灌溉用水接触;其中,所述蓄水柱的材质为吸水材料;控制系统,所述控制系统包括插置于所述土壤的表层的湿度传感器以及与所述湿度传感器电连接的控制器;其中,所述湿度传感器监测所述土壤的湿度以产生第一信号,所述湿度传感器发送所述第一信号至所述控制器;供水阀门,所述供水阀门设置于所述过水层与所述水管之间,所述供水阀门与所述控制器电连接;其中,所述控制器根据所述第一信号产生第二信号,所述控制器发送所述第二信号至所述供水阀门,以控制所述供水阀门的开关;当所述控制系统监测到所述土壤的湿度低于预设值时,所述控制系统控制所述供水阀门打开,所述灌溉用水经由所述水管流至所述过水层的内部;所述蓄水柱吸收并传输所述灌溉用水至所述土壤中;当所述控制系统监测到所述土壤的湿度达到所述预设值时,所述控制系统控制所述供水阀门关闭,所述灌溉用水停止流入所述过水层的内部。
进一步地,还包括与所述过水层相连通的通气管;其中,所述通气管的自由端外露于所述土壤的表层。
进一步地,所述过水层包括相对设置的防水底板和透水盖板,所述防水底板与所述透水盖板之间形成用于容纳所述灌溉用水的蓄水腔;其中,所述若干通孔设置于所述透水盖板上。
进一步地,所述过水层还包括夹设于所述防水底板和所述透水盖板之间的支撑柱。
进一步地,所述防水底板与所述透水盖板之间的间距为2cm~3cm。
进一步地,所述蓄水柱包括上蓄水部和下蓄水部;其中,所述上蓄水部设置于所述透水盖板上,所述下蓄水部插置于所述通孔中。
进一步地,所述上蓄水部的厚度为1cm~2cm;所述下蓄水部的底端与所述透水盖板的底表面之间的垂直距离为1cm~1.5cm。
进一步地,所述蓄水柱的顶端与所述土壤的表层的距离不超过160cm。
进一步地,所述蓄水柱的材质为聚乙烯醇海绵。
本发明将具有良好吸水、保水性能的蓄水柱与控制系统中的湿度传感器相结合,一方面,利用湿度传感器监测土壤的湿度,并控制供水阀门的通断来实施及时灌水;另一方面,蓄水柱能够起到均匀缓慢渗水的作用,实现了及时灌水、均匀灌水、高效灌水,从而提高了灌水均匀度,增大了灌溉用水的利用率,降低了无压灌溉装置的成本。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的实施例的无压灌溉装置的主视图;
图2是图1中A区域的局部放大图;
图3是根据本发明的实施例的过水层的俯视图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,为了清楚起见,可以夸大元件的形状和尺寸,并且相同的标号将始终被用于表示相同或相似的元件。
图1是根据本发明的实施例的无压灌溉装置的主视图,图2是图1中A区 域的局部放大图,图3是根据本发明的实施例的过水层的俯视图。
根据本发明的实施例的无压灌溉装置,其与种植有植物11的土壤12相接触,以对该植物11进行灌溉;具体参照图1至图3,该无压灌溉装置包括:过水层21、蓄水柱22、水管23、控制系统24、供水阀门25以及通气管26。其中,过水层21铺设于土壤12的内部,且其一端通过供水阀门25与水管23相连,水管23连接有用于灌溉所述植物11的灌溉用水;所述过水层21的顶部开设有若干通孔211,而埋设于土壤12内部的蓄水柱22的底端即对应插置于所述若干通孔211中,从而可通过通孔211与位于过水层21内部的灌溉用水接触;控制系统24包括湿度传感器241以及与之电连接的控制器242,湿度传感器241插置于土壤12的表层处,以对土壤12的湿度进行监测,并产生表示土壤12当前湿度状态的第一信号,且湿度传感器241将该第一信号发送至控制器242处;控制器242电连接于所述供水阀门25,控制器242根据第一信号产生第二信号,并发送第二信号至供水阀门25,以对供水阀门25的开关进行控制。
当所述湿度传感器241监测到土壤12处于缺水状态时,控制器242即控制所述供水阀门25打开,灌溉用水经由水管23流至所述过水层21的内部,而蓄水柱22由其底端吸收这部分灌溉用水,并经其顶端传输至土壤12中,从而完成灌溉,直至该湿度传感器241监测到土壤12的湿度合格,控制器242即控制供水阀门25关闭,阻止灌溉用水继续流入过水层21的内部,即完成灌溉;如此往复。
其中,可根据所述植物11的要求在湿度传感器241上设定一湿度的预设值,当湿度传感器241监测到土壤12此时的湿度低于该预设值时,控制器242即控制供水阀门25打开;而当湿度传感器241监测到土壤12此时的湿度达到该预设值时,控制器242即控制供水阀门25关闭。
其中,所述控制器242可以是继电器等可实现自动控制的元件。
具体地,所述通气管26与过水层21的另一端相连通,且通气管26与供水阀门25相对;通气管26呈竖直放置,其自由端穿过土壤12并外露于土壤12的表层;也就是说,通气管26与大气相连通。如此,当灌溉用水流向过水层21的内部时,即可保证过水层21的内部的气压与大气相一致,从而减小所述灌溉用水流入过水层21的内部的压力。
更为具体地,过水层21包括相对设置的防水底板212、透水盖板213、以及夹设在防水底板212和透水盖板213之间的支撑柱214;支撑柱214对防水底 板212与透水盖板213之间形成一支撑作用,以保证防水底板212与透水盖板213之间形成用于存储灌溉用水的蓄水腔215,而所述若干通孔211即设置在透水盖板213上。
其中,防水底板212与透水盖板213之间的间距H1为2cm~3cm,也就是说,支撑柱214的高度为2cm~3cm。
其中,为了保证灌溉用水能够在蓄水腔215内自由流动,通孔211与支撑柱214呈交错的状态排布;也就是说,支撑柱214设置在透水盖板213的不具有通孔211的下方,其并未与通孔211相对,以防止支撑柱214与插置在通孔211中的蓄水柱22接触,而阻碍了灌溉用水在蓄水腔215内的良好流动。
蓄水柱22包括相连的上蓄水部221和下蓄水部222;其中,上蓄水部221设置于透水盖板213之上,而下蓄水部222即插置于所述通孔211中。
其中,上蓄水部221的厚度h1为1cm~2cm;而下蓄水部222的底端低于透水盖板213的底表面,且下蓄水部222的底端外露于透水盖板213的底表面的高度为1cm~1.5cm,也就是说下蓄水部222的底端距透水盖板213的底表面的垂直距离h2为1cm~1.5cm。如此,当灌溉用水流至蓄水板21的内部、即蓄水腔215内部时,灌溉用水的高度在不低于(H1-h2)时,蓄水柱22方可与此部分灌溉用水相接触,从而吸收并传输这部分灌溉用水至土壤12,以对植物11进行灌溉。
其中,下蓄水部222的底端距透水盖板213的底表面的垂直距离h2为防水底板212与透水盖板213之间的间距H1的一半。
在本实施例中,聚乙烯醇海绵(简称PVA海绵)因其具有良好的吸水及保水性能而成为蓄水柱22的首选材质;当然,本发明并不限制于此,蓄水柱22的材质还可以是其他任意具有良好的吸水、保水性能的材料,此处不再一一赘述。
值得说明的是,蓄水柱22的顶端距离土壤12的表层的距离H2、即所述蓄水柱22的埋设深度并不是任意的,而是由所述土壤12的质地以及所种植的植物11的种类所决定的。具体来讲,一方面,就土壤12的质地而言,在进行无压灌溉时,灌溉用水靠毛细管作用而使计划湿润的土壤12得到充分的湿润,而土壤12中不同粒径的颗粒物所对应的毛管水上升高度也大相径庭,毛管水上升高度较大,则蓄水柱22的埋设深度可较深,反之则较浅;因此,根据对土壤12 质地的种类划分,蓄水柱22的埋设深度最深一般为黏土,其埋设深度一般不超过160cm,沙土最浅,其埋设深度一般不超过80cm,而介于黏土和沙土之间的壤土,其埋设深度一般不超过100cm。另一方面,在保证蓄水柱22不被植物11的根系穿透的条件下,还应该考虑植物11的根系的生长情况,比如对于一般大田作物及蔬菜来说,其耕作层深度一般在20cm左右,这一深度是植物11的根系最为活跃、渗灌向上浸润水分最易达到的深度,因此蓄水柱22的埋设深度应保持在20cm~40cm的范围内。也就是说,对于本实施例所述的无压灌溉装置,控制蓄水柱22的埋设深度不超过160cm即可。
值得说明的是,本实施例所述的无压灌溉装置比较适用于浅根系的植物11,如三叶草、扶桑、白兰花、玫瑰、韭菜、芹菜、辣椒等,也就是上述一般的大田作物及蔬菜,以获得更好的灌溉效果。
根据本实施例的无压灌溉装置将具有良好吸水、保水性能的蓄水柱22与控制系统24中的湿度传感器241相结合,一方面,利用湿度传感器241监测土壤12的湿度,并控制供水阀门25的通断来实施及时灌水;另一方面,蓄水柱22能够起到均匀缓慢渗水的作用,实现了及时灌水、均匀灌水、高效灌水,从而提高了灌水均匀度,增大了灌溉用水的利用率,降低了无压灌溉装置的成本。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (15)

  1. 一种无压灌溉装置,与种植有植物的土壤相接触,以对所述植物进行灌溉;其中,所述无压灌溉装置包括:
    过水层,所述过水层铺设于所述土壤的内部,所述过水层与水管相连,以接通灌溉用水;所述过水层的顶部开设有若干通孔;
    蓄水柱,所述蓄水柱埋设于所述土壤的内部,所述蓄水柱通过所述通孔与所述灌溉用水接触;其中,所述蓄水柱的材质为吸水材料;
    控制系统,所述控制系统包括插置于所述土壤的表层的湿度传感器以及与所述湿度传感器电连接的控制器;其中,所述湿度传感器监测所述土壤的湿度以产生第一信号,所述湿度传感器发送所述第一信号至所述控制器;
    供水阀门,所述供水阀门设置于所述过水层与所述水管之间,所述供水阀门与所述控制器电连接;其中,所述控制器根据所述第一信号产生第二信号,所述控制器发送所述第二信号至所述供水阀门,以控制所述供水阀门的开关;
    当所述控制系统监测到所述土壤的湿度低于预设值时,所述控制系统控制所述供水阀门打开,所述灌溉用水经由所述水管流至所述过水层的内部;所述蓄水柱吸收并传输所述灌溉用水至所述土壤中;当所述控制系统监测到所述土壤的湿度达到所述预设值时,所述控制系统控制所述供水阀门关闭,所述灌溉用水停止流入所述过水层的内部。
  2. 根据权利要求1所述的无压灌溉装置,其中,还包括与所述过水层相连通的通气管;其中,所述通气管的自由端外露于所述土壤的表层。
  3. 根据权利要求1所述的无压灌溉装置,其中,所述过水层包括相对设置的防水底板和透水盖板,所述防水底板与所述透水盖板之间形成用于容纳所述灌溉用水的蓄水腔;其中,所述若干通孔设置于所述透水盖板上。
  4. 根据权利要求3所述的无压灌溉装置,其中,所述过水层还包括夹设于所述防水底板和所述透水盖板之间的支撑柱。
  5. 根据权利要求3所述的无压灌溉装置,其中,所述防水底板与所述透水盖板之间的间距为2cm~3cm。
  6. 根据权利要求3所述的无压灌溉装置,其中,所述蓄水柱包括上蓄水部 和下蓄水部;其中,所述上蓄水部设置于所述透水盖板上,所述下蓄水部插置于所述通孔中。
  7. 根据权利要求6所述的无压灌溉装置,其中,所述上蓄水部的厚度为1cm~2cm;所述下蓄水部的底端与所述透水盖板的底表面之间的垂直距离为1cm~1.5cm。
  8. 根据权利要求6所述的无压灌溉装置,其中,所述上蓄水部的顶端与所述土壤的表层的距离不超过160cm。
  9. 根据权利要求1所述的无压灌溉装置,其中,所述蓄水柱的材质为聚乙烯醇海绵。
  10. 根据权利要求2所述的无压灌溉装置,其中,所述过水层包括相对设置的防水底板和透水盖板,所述防水底板与所述透水盖板之间形成用于容纳所述灌溉用水的蓄水腔;其中,所述若干通孔设置于所述透水盖板上。
  11. 根据权利要求10所述的无压灌溉装置,其中,所述过水层还包括夹设于所述防水底板和所述透水盖板之间的支撑柱。
  12. 根据权利要求10所述的无压灌溉装置,其中,所述防水底板与所述透水盖板之间的间距为2cm~3cm。
  13. 根据权利要求10所述的无压灌溉装置,其中,所述蓄水柱包括上蓄水部和下蓄水部;其中,所述上蓄水部设置于所述透水盖板上,所述下蓄水部插置于所述通孔中。
  14. 根据权利要求10所述的无压灌溉装置,其中,所述上蓄水部的厚度为1cm~2cm;所述下蓄水部的底端与所述透水盖板的底表面之间的垂直距离为1cm~1.5cm。
  15. 根据权利要求10所述的无压灌溉装置,其中,所述上蓄水部的顶端与所述土壤的表层的距离不超过160cm。
PCT/CN2016/091983 2016-04-07 2016-07-28 一种无压灌溉装置 WO2017173745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610212719.0 2016-04-07
CN201610212719.0A CN105766567B (zh) 2016-04-07 2016-04-07 一种无压灌溉装置

Publications (1)

Publication Number Publication Date
WO2017173745A1 true WO2017173745A1 (zh) 2017-10-12

Family

ID=56394893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091983 WO2017173745A1 (zh) 2016-04-07 2016-07-28 一种无压灌溉装置

Country Status (2)

Country Link
CN (1) CN105766567B (zh)
WO (1) WO2017173745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053719A (zh) * 2022-07-03 2022-09-16 厦门千日红园艺有限公司 一种三角梅基质种植用的病虫害治理设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105766567B (zh) * 2016-04-07 2020-01-17 邓洋 一种无压灌溉装置
CN108353768B (zh) * 2018-01-05 2020-07-07 西藏自治区农牧科学院蔬菜研究所 一种用于热带水果的智能浇灌系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2194123A (en) * 1986-08-05 1988-03-02 Jan Mazura Subsoil watering system
CN2502504Y (zh) * 2001-10-02 2002-07-31 祝长友 渗水管
CN2577567Y (zh) * 2002-11-05 2003-10-08 杨建忠 防堵塞渗灌管
CN1547886A (zh) * 2003-05-07 2004-11-24 蔡焕杰 一种无压根区局部控水地下灌溉系统
CN102160518A (zh) * 2011-03-10 2011-08-24 中国农业科学院农田灌溉研究所 新型无压灌溉装置
CN202009604U (zh) * 2011-03-10 2011-10-19 中国农业科学院农田灌溉研究所 新型无压灌溉装置
CN202918806U (zh) * 2012-11-06 2013-05-08 胡晓华 埋入式植物自动供水装置
CN204560476U (zh) * 2015-01-17 2015-08-19 江西师范大学 一种多功能全自动节水灌溉装置
CN204598880U (zh) * 2015-04-13 2015-09-02 内蒙古草原生态畜牧产业研究院股份有限公司 地埋式牧草节水灌溉系统
CN105766567A (zh) * 2016-04-07 2016-07-20 邓洋 一种无压灌溉装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2492062Y (zh) * 2001-06-03 2002-05-22 刘恩美 塑料微渗灌管
CN1386406A (zh) * 2002-06-07 2002-12-25 刘采联 一种自动均衡浸灌装置
CN1212055C (zh) * 2003-05-13 2005-07-27 中山大学 一种绿化生态箱
CN201216101Y (zh) * 2008-07-17 2009-04-08 王秀丽 节水灌溉装置
CN201617064U (zh) * 2010-03-08 2010-11-03 颛正勤 根灌渗透施水肥装置
CN102726274A (zh) * 2011-04-14 2012-10-17 南京邮电大学 一种虹吸灌溉管道及基于该管道的农作物节能灌溉方法
CN201957530U (zh) * 2011-04-14 2011-09-07 南京邮电大学 一种虹吸灌溉管道
CN202918809U (zh) * 2012-12-07 2013-05-08 王玉珍 蔬菜种植土壤润湿自动控制装置
CN203646229U (zh) * 2013-11-19 2014-06-18 董夏冰 防过压式灌溉装置
CN204540101U (zh) * 2015-04-16 2015-08-12 浙江元成园林集团股份有限公司 一种景观用的可移动模块式的绿块装置
CN105191756B (zh) * 2015-10-13 2017-12-05 中国农业科学院农田灌溉研究所 无压灌溉装置用灌水器
CN205116276U (zh) * 2015-11-28 2016-03-30 杭州启澄科技有限公司 一种雨水收集灌溉系统
CN205105792U (zh) * 2015-11-30 2016-03-30 杭州萧山园林集团有限公司 一种生态型可移动模块化绿化器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2194123A (en) * 1986-08-05 1988-03-02 Jan Mazura Subsoil watering system
CN2502504Y (zh) * 2001-10-02 2002-07-31 祝长友 渗水管
CN2577567Y (zh) * 2002-11-05 2003-10-08 杨建忠 防堵塞渗灌管
CN1547886A (zh) * 2003-05-07 2004-11-24 蔡焕杰 一种无压根区局部控水地下灌溉系统
CN102160518A (zh) * 2011-03-10 2011-08-24 中国农业科学院农田灌溉研究所 新型无压灌溉装置
CN202009604U (zh) * 2011-03-10 2011-10-19 中国农业科学院农田灌溉研究所 新型无压灌溉装置
CN202918806U (zh) * 2012-11-06 2013-05-08 胡晓华 埋入式植物自动供水装置
CN204560476U (zh) * 2015-01-17 2015-08-19 江西师范大学 一种多功能全自动节水灌溉装置
CN204598880U (zh) * 2015-04-13 2015-09-02 内蒙古草原生态畜牧产业研究院股份有限公司 地埋式牧草节水灌溉系统
CN105766567A (zh) * 2016-04-07 2016-07-20 邓洋 一种无压灌溉装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053719A (zh) * 2022-07-03 2022-09-16 厦门千日红园艺有限公司 一种三角梅基质种植用的病虫害治理设备
CN115053719B (zh) * 2022-07-03 2023-06-23 厦门千日红园艺有限公司 一种三角梅基质种植用的病虫害治理设备

Also Published As

Publication number Publication date
CN105766567B (zh) 2020-01-17
CN105766567A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN100591203C (zh) 灌溉系统
CN107231974B (zh) 滴灌供水农业大棚系统及大棚种植方法
CN101023732B (zh) 一种灌溉系统
US10154629B2 (en) Pressureless irrigation device
CN100475025C (zh) 一种负水头灌溉系统
CN102160518B (zh) 新型无压灌溉装置
CN103503741B (zh) 灌溉系统及应用该灌溉系统浇灌水紫树幼苗的方法
JP5731791B2 (ja) 灌漑システムおよび灌漑方法
WO2017173745A1 (zh) 一种无压灌溉装置
CN206181905U (zh) 一种智能节水环保花盆
CN106069638A (zh) 一种太阳能式屋顶绿化节水灌溉系统
CN202009604U (zh) 新型无压灌溉装置
JP2015043711A (ja) 栽培施設における炭酸ガス制御装置
KR20190133810A (ko) 기압차를 이용한 흡인량조절장치
CN206491110U (zh) 一种立体沙培种植系统
CN203884348U (zh) 压力可调式地下负压渗灌装置
CN208080008U (zh) 葡萄扦插育苗装置
CN206101172U (zh) 一种太阳能式屋顶绿化节水灌溉系统
CN205431356U (zh) 一种道路绿化带自动滴灌装置
CN103262779A (zh) 一种平板紧密叠合与管体结合的毛细渗灌器
CN206559868U (zh) 一种自动水循环花盆
CN204907310U (zh) 盆栽节水灌溉装置
WO2007147288A1 (fr) Mécanisme de distribution d'eau à commande automatique pour terminal de filtration et d'irrigation de terres de type réseau de tubes
TWI577274B (zh) 環保省水之組合式穴井灌溉系統
CN214316362U (zh) 一种自浇灌的陶瓷自吸水花盆

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897678

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897678

Country of ref document: EP

Kind code of ref document: A1