WO2017163478A1 - 光コネクタ及び光結合構造 - Google Patents

光コネクタ及び光結合構造 Download PDF

Info

Publication number
WO2017163478A1
WO2017163478A1 PCT/JP2016/082475 JP2016082475W WO2017163478A1 WO 2017163478 A1 WO2017163478 A1 WO 2017163478A1 JP 2016082475 W JP2016082475 W JP 2016082475W WO 2017163478 A1 WO2017163478 A1 WO 2017163478A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
ferrule end
ferrule
face
optical fiber
Prior art date
Application number
PCT/JP2016/082475
Other languages
English (en)
French (fr)
Inventor
修 島川
祥 矢加部
卓朗 渡邊
貴子 細川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017163478A1 publication Critical patent/WO2017163478A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present invention relates to an optical connector and an optical coupling structure.
  • Non-Patent Document 1 discloses a ferrule used for an optical connector for connecting multi-core optical fibers.
  • the ferrule has a plurality of holes for holding a plurality of optical fibers, and a guide hole into which a positioning guide pin is inserted. By inserting a guide pin into the guide hole, the ferrule is accurately positioned.
  • FIG. 8A is a side sectional view showing an example of the structure of a PC type ferrule.
  • the ferrule 100 has a hole 102 for holding the optical fiber 120 on the central axis.
  • the optical fiber 120 is inserted through the hole 102.
  • the optical fibers 120 are optically coupled to each other by pressing the distal end surface of the optical fiber 120 in physical contact with the distal end surface of the optical fiber 120 of the mating connector. This method is mainly used when connecting single optical fibers.
  • the above method has the following problems. If the connection is made with foreign matter attached to the ferrule end face 104, the foreign matter comes into close contact with the ferrule end face 104 due to the pressing force. In order to remove the adhered foreign matter, it is necessary to use a contact-type cleaner, and in order to prevent the foreign matter from sticking, it is necessary to frequently perform cleaning. In the case of a multi-core ferrule that connects a plurality of optical fibers 120 at the same time, a predetermined pressing force is required for each optical fiber 120. Therefore, the greater the number of optical fibers 120, the greater the force required for connection. It becomes.
  • One aspect of the present invention has been made in view of such a problem, and an object thereof is to provide an optical connector and an optical coupling structure that can adjust the distance between the end faces of optical fibers with high accuracy.
  • an optical connector includes an optical fiber, a ferrule end face that faces the mating connector, and a ferrule that holds the optical fiber, and is provided on the ferrule end face. And a spacer for defining a distance between the ferrule end face and the mating connector.
  • the front end face of the optical fiber is exposed at the ferrule end face, and the normal directions of the front end face and the ferrule end face of the optical fiber are inclined with respect to the optical axis direction of the optical fiber.
  • the spacer has an opening through which an optical path extending from the distal end surface of the optical fiber passes.
  • the spacer has a first region joined to the ferrule end surface and a second region that contacts the ferrule end surface and is not joined to the ferrule end surface.
  • An optical coupling structure includes first and second optical connectors that are connected to each other.
  • the first and second optical connectors have an optical fiber, a ferrule end face, and an optical fiber. And a ferrule to be held.
  • the ferrule end face of the first optical connector and the ferrule end face of the second optical connector face each other, and the front end face of the optical fiber is exposed at the ferrule end face in each of the first and second optical connectors.
  • the normal direction of each of the front end face and the ferrule end face of the optical fiber is inclined with respect to the optical axis direction of the optical fiber, and the ferrule end face of the first optical connector
  • a spacer that defines a distance from the ferrule end face of the second optical connector, and a guide pin that fixes a relative position between the first optical connector and the second optical connector.
  • the spacer has an opening through which an optical path extending between the distal end surface of the optical fiber of the first optical connector and the distal end surface of the optical fiber of the second optical connector passes.
  • the spacer includes a first region joined to one of the ferrule end face of the first optical connector and the ferrule end face of the second optical connector, the ferrule end face of the first optical connector, and the ferrule of the second optical connector. And a second region that is in contact with the end face and is not joined to either the ferrule end face of the first optical connector or the ferrule end face of the second optical connector.
  • the distance between the end faces of the optical fibers can be adjusted with high accuracy.
  • FIG. 1 is a perspective view showing an optical connector according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view showing a ferrule and guide pins of the optical connector of FIG.
  • FIG. 3 is a front view showing a ferrule end face and a spacer of the optical connector of FIG.
  • FIG. 4 is a side sectional view showing an optical coupling structure constituted by an optical connector and a mating connector according to an embodiment.
  • FIG. 5 is an enlarged side cross-sectional view showing a portion D in FIG.
  • FIG. 6A is a side view showing a method of polishing the ferrule end face and the optical fiber.
  • FIG. 6B is an enlarged side sectional view showing the ferrule end face and the end face of the optical fiber.
  • FIG. 7A is a side sectional view showing an operation of joining a spacer to the ferrule end face of the optical connector.
  • FIG. 7B is a side sectional view schematically showing a state in which a spacer is bonded to the ferrule end face.
  • 8A and 8B are diagrams schematically showing a conventional optical coupling structure.
  • An optical connector includes an optical fiber, a ferrule end face that faces the counterpart connector, a ferrule that holds the optical fiber, and a ferrule end face and the counterpart connector provided on the ferrule end face. And a spacer for defining an interval between the first and second spacers.
  • the front end face of the optical fiber is exposed at the ferrule end face, and the normal directions of the front end face and the ferrule end face of the optical fiber are inclined with respect to the optical axis direction of the optical fiber.
  • the spacer has an opening through which an optical path extending from the distal end surface of the optical fiber passes.
  • the spacer has a first region joined to the ferrule end surface and a second region that contacts the ferrule end surface and is not joined to the ferrule end surface.
  • An optical coupling structure includes first and second optical connectors that are connected to each other.
  • the first and second optical connectors have an optical fiber, a ferrule end face, and an optical fiber. And a ferrule to be held.
  • the ferrule end face of the first optical connector and the ferrule end face of the second optical connector face each other, and the front end face of the optical fiber is exposed at the ferrule end face in each of the first and second optical connectors.
  • the normal direction of each of the front end face and the ferrule end face of the optical fiber is inclined with respect to the optical axis direction of the optical fiber, and the ferrule end face of the first optical connector
  • a spacer that defines a distance from the ferrule end face of the second optical connector, and a guide pin that fixes a relative position between the first optical connector and the second optical connector.
  • the spacer has an opening through which an optical path extending between the distal end surface of the optical fiber of the first optical connector and the distal end surface of the optical fiber of the second optical connector passes.
  • the spacer includes a first region joined to one of the ferrule end face of the first optical connector and the ferrule end face of the second optical connector, the ferrule end face of the first optical connector, and the ferrule of the second optical connector. And a second region that is in contact with the end face and is not joined to either the ferrule end face of the first optical connector or the ferrule end face of the second optical connector.
  • a spacer that defines the distance from the mating connector is provided on the ferrule end face.
  • a spacer is provided that defines the distance between the ferrule end face of the first optical connector and the ferrule end face of the second optical connector.
  • the spacer since the spacer has the second region that is in contact with the ferrule end surface and is not joined to the ferrule end surface, the thickness of the spacer is ensured in the second region that is not joined. Can do. Therefore, by interposing this spacer between the ferrule end faces, the distance between the end faces of the optical fibers exposed at the ferrule end faces can be reliably defined to a desired distance. Therefore, it is possible to adjust the distance between the end faces of the optical fibers with high accuracy.
  • the second region may include at least a part of the inner edge that forms the opening of the spacer. Further, the second region may include all of the inner edge that forms the opening of the spacer. In this case, since the thickness of the spacer can be ensured at the inner edge forming the opening, a desired interval can be ensured at the position of the opening of the spacer.
  • the outer dimension of the spacer may be equal to or smaller than the outer dimension of the ferrule end face. In this case, since the spacer is within the region of the ferrule end face, it is possible to suppress the spacer from protruding from the ferrule end face. Therefore, it is possible to avoid the problem that the protruding spacer is caught around and the spacer is peeled off.
  • the thickness of the spacer may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the spacer may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the optical connector may include a spring that biases the ferrule in the direction of pressing the mating connector, and the pressing force of the spring may be 2N or more and 6N or less.
  • the pressing force of the spring may be 2N or more and 6N or less.
  • the inclination angle in the normal direction of the front end face of the optical fiber with respect to the optical axis direction and the inclination angle in the normal direction of the ferrule end face with respect to the optical axis direction may both be 10 ° or more and 20 ° or less.
  • the return light from the tip surface of the optical fiber toward the mating connector can be greatly separated from the optical axis of the optical fiber. Therefore, it is possible to make it difficult for the return light to enter the optical fiber of the mating connector, and to suppress multiple reflections of light between the front end surfaces of the optical fiber.
  • the difference of the coupling strength between the several polarization components of light can be suppressed by making the inclination-angle of each normal line direction with respect to an optical axis direction into 20 degrees or less.
  • the protruding amount of the optical fiber from the ferrule end face may be 1 ⁇ m or less.
  • the protruding amount of the optical fiber may be 1 ⁇ m or less.
  • the radius of curvature of the ferrule end face may be 50 mm or more.
  • the radius of curvature of the ferrule end face may be 50 mm or more.
  • the position of the optical fiber of the first optical connector and the position of the optical fiber of the second optical connector intersect the optical axis in a cross section along the optical axis of the optical fiber.
  • the directions may be offset from each other.
  • the optical path extending from the tip surface of the optical fiber by the refraction at the tip surface is Tilt in a direction that intersects the optical axis.
  • the position of the optical fiber of the first optical connector and the position of the optical fiber of the second optical connector are shifted from each other in the direction intersecting the optical axis.
  • the optical fiber of the optical connector and the optical fiber of the second optical connector can be suitably optically coupled.
  • FIG. 1 is a perspective view showing an optical connector 1 according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view schematically showing the ferrule 2 and the spacer 3 of the optical connector 1.
  • the optical connector 1 includes a ferrule 2 and a spacer 3.
  • the ferrule 2 has a rectangular parallelepiped appearance, and is made of, for example, a resin such as polyphenylene sulfide (PPS) containing glass particles.
  • PPS polyphenylene sulfide
  • Ferrule 2 is connected to the mating connector in the connection direction A1.
  • the ferrule 2 has a ferrule end face 2a provided on one end side in the connection direction A1 and facing the mating connector, and a rear end face 2b provided on the other end side in the connection direction A1.
  • the ferrule 2 has a side surface 2d extending along the connection direction A1, a bottom surface 2e, and an upper surface 2f.
  • the rear end face 2b is formed with an introduction hole for receiving a plurality of optical fibers collectively.
  • the plurality of optical fibers are introduced in the form of a 0.25 mm strand, a 0.9 mm core, a tape core, or the like.
  • the ferrule 2 further includes a plurality of optical fiber holding holes 2c, and an optical fiber 5 is inserted into each optical fiber holding hole 2c.
  • the optical fiber 5 is, for example, a single mode fiber.
  • the plurality of optical fiber holding holes 2c penetrate from the introduction hole to the ferrule end surface 2a, and the front end surface 5a of each optical fiber 5 is exposed at the ferrule end surface 2a.
  • Each optical fiber holding hole 2c extends in the connection direction A1, and the center axis direction of each optical fiber holding hole 2c and the optical axis direction of the optical fiber 5 both coincide with the connection direction A1.
  • the front end surfaces 5a of the plurality of optical fibers 5 are arranged in a line along the direction A2 intersecting the connection direction A1 on the ferrule end surface 2a.
  • a set of a plurality of tip surfaces 5a arranged in a line is arranged in two stages in a direction A3 intersecting the direction A2.
  • the positions in the direction A3 of the set of the front end surfaces 5a arranged in a line are displaced from each other vertically relative to the center position of the ferrule end surface 2a in the direction A3.
  • the direction A2 is, for example, a direction orthogonal to the connection direction A1 and parallel to the ferrule end surface 2a and the upper surface 2f.
  • the direction A3 is a direction orthogonal to the plane extending in the connection direction A1 and the direction A2, for example.
  • the optical connector 1 further includes a pair of guide pins 6a and 6b.
  • the pair of guide pins 6a and 6b are inserted into the guide holes 2g and 2h of the ferrule 2, respectively, and project from the ferrule end surface 2a in the connection direction A1.
  • the guide pins 6 a and 6 b are inserted into the guide holes of the ferrule of the mating connector connected to the ferrule 2.
  • the guide pins 6a and 6b fix the relative positions of the ferrule 2 and the ferrule of the mating connector.
  • the pair of guide pins 6a and 6b are arranged along the direction A2, and are provided at positions sandwiching the plurality of optical fibers 5 (in other words, both sides in the row direction A2 on the distal end surface 5a of the optical fibers 5). .
  • the spacer 3 is a member formed in a film shape (thin film shape).
  • the spacer 3 is disposed on the ferrule end surface 2a.
  • the spacer 3 has a facing surface 3a facing the ferrule end surface 2a, and at least a part of the facing surface 3a is in contact with the ferrule end surface 2a.
  • the spacer 3 is sandwiched between the ferrule end surface 2a and the ferrule end surface of the mating connector, thereby defining a distance between the ferrule end surface 2a and the ferrule end surface of the mating connector.
  • FIG. 3 is a front view showing a state in which the spacer 3 and the ferrule end surface 2a are viewed from the connection direction A1.
  • the spacer 3 has an opening 3b that exposes the ferrule end face 2a.
  • the openings 3b are used to pass through a plurality of optical paths extending between the front end surfaces 5a of the plurality of optical fibers 5 and the respective front end surfaces of the plurality of optical fibers of the mating connector. Expose 5a.
  • the opening 3b projects the guide pins 6a and 6b.
  • the opening 3b is formed in a rectangular shape surrounding the guide pins 6a and 6b and the front end surfaces 5a of the plurality of optical fibers 5 when viewed from the axial direction of the guide pins 6a and 6b (that is, the connection direction A1).
  • the opening 3b is formed with the direction A2 as a longitudinal direction.
  • the length of the opening 3b in the direction A2 is 5.31 mm
  • the width of the opening 3b in the direction A3 intersecting the direction A2 is 0.71 mm.
  • the outer dimension of the spacer 3 is equal to or smaller than the outer dimension of the ferrule end surface 2a. That is, when the spacer 3 and the ferrule end surface 2a are viewed from the connection direction A1, the outer edge of the spacer 3 is located inside the outer edge of the ferrule end surface 2a. Thereby, peeling of the spacer 3 resulting from catching to the peripheral part of the spacer 3 is suppressed.
  • the thickness of the spacer 3 in the connection direction A1 is, for example, not less than 5 ⁇ m and not more than 30 ⁇ m, and is 20 ⁇ m as an example. Thereby, the space
  • the material of the spacer 3 for example, a resin such as PPS is used, and the same material as that of the ferrule 2 is used. Further, the facing surface 3a of the spacer 3 has a first region R1 joined to the ferrule end surface 2a and a second region R2 not joined to the ferrule end surface 2a.
  • the joining of the spacer 3 and the ferrule end surface 2a is performed by, for example, welding (laser welding or the like).
  • welding laser welding or the like.
  • the facing surface 3a and the ferrule end surface 2a are welded.
  • the facing surface 3a and the ferrule end surface 2a are not welded to each other. That is, in the second region R2, the facing surface 3a and the ferrule end surface 2a only contact each other.
  • the second region R2 is, for example, a region including the opening 3b of the spacer 3, and has a rectangular shape extending in the direction A2 and the direction A3.
  • the first region R1 is located outside the second region R2, and has a rectangular shape surrounding the second region R2.
  • FIG. 4 is a side sectional view showing the optical coupling structure 10 including the optical connector 1 of the present embodiment.
  • the optical connector 1 further includes a pin keeper 7 that holds the guide pins 6a and 6b, a spring 8 that urges the pin keeper 7 and the ferrule 2 in the connection direction A1, and a housing 9 that houses the spring 8.
  • the pin keeper 7 includes a pair of holding holes 7a for holding the guide pins 6a and 6b.
  • the spring 8 is provided on the opposite side of the ferrule 2 across the pin keeper 7 and is accommodated in the housing 9. One end of the spring 8 is supported inside the housing 9, and the other end of the spring 8 is in contact with the pin keeper 7. The spring 8 presses the ferrule 2 against the mating connector 11.
  • the spring constant of the spring 8 is a value at which the pressing force by the spring 8 is 2N or more and 6N or less.
  • the optical coupling structure 10 includes an optical connector 1 (first optical connector) and a counterpart connector 11 (second optical connector).
  • the mating connector 11 includes a ferrule 12 and a plurality of optical fibers 15.
  • the ferrule end surface 2a of the ferrule 2 of the optical connector 1 and the ferrule end surface 12a of the ferrule 12 of the mating connector 11 face each other in the connection direction A1.
  • the ferrule 12 has guide holes 12g and 12h into which the guide pins 6a and 6b are inserted from the ferrule end face 12a.
  • the mating connector 11 includes, for example, a pin keeper 17, a spring 18, and a housing 19.
  • the configurations of the pin keeper 17, the spring 18 and the housing 19 can be the same as the configurations of the pin keeper 7, the spring 8 and the housing 9 of the optical connector 1.
  • the guide pins 6 a and 6 b inserted through the ferrule 2 of the optical connector 1 are inserted into the guide holes 12 g and 12 h of the ferrule 12 of the mating connector 11, respectively.
  • the mating connector 11 is connected in the connection direction A1.
  • the spacer 3 is sandwiched between the ferrule end surface 2a of the optical connector 1 and the ferrule end surface 12a of the mating connector 11, thereby defining a distance between the ferrule end surfaces 2a and 12a. Therefore, the spacer 3 abuts on the ferrule end surface 12 a of the mating connector 11. Then, the optical fiber 5 of the optical connector 1 and the optical fiber 15 of the mating connector 11 are optically coupled through the opening 3 b of the spacer 3.
  • FIG. 5 is an enlarged cross-sectional view of a portion D shown in FIG.
  • the front end surfaces 5a and 15a of the optical fibers 5 and 15 are exposed at the ferrule end surfaces 2a and 12a, respectively, and are preferably flush with the ferrule end surfaces 2a and 12a.
  • the normal direction V1 of the end faces 5a and 15a of the optical fibers 5 and 15 is the central axis direction of the optical fiber holding holes 2c and 12c, that is, the optical fibers 5 and 15. Is inclined with respect to the optical axis direction V2.
  • the tilt angle ⁇ in the normal direction V1 with respect to the optical axis direction V2 is the tilt angle ⁇
  • the tilt angle ⁇ is, for example, 10 ° or more and 20 ° or less, and more specifically 12 °. Further, this inclination angle ⁇ coincides with the inclination angle of the end faces 5a, 15a with respect to the plane orthogonal to the optical axis of the optical fibers 5, 15.
  • the normal direction of the ferrule end faces 2a and 12a coincides with the normal direction V1 of the tip faces 5a and 15a.
  • the optical path L1 of the light emitted from the tip surfaces 5a and 15a is refracted in the direction opposite to the direction of inclination of the tip surfaces 5a and 15a at the tip surfaces 5a and 15a. Accordingly, the central axis of the optical fiber 5 of the optical connector 1 and the central axis of the optical fiber 15 of the mating connector 11 are shifted from each other in the refraction direction (direction A3).
  • the amount of deviation in this direction A3 is, for example, 1 ⁇ m or more.
  • the gap K is provided between the distal end surface 5a of the optical fiber 5 of the optical connector 1 and the distal end surface 15a of the optical fiber 15 of the counterpart connector 11 without using an optical element such as a lens or a refractive index matching agent. It is optically coupled directly.
  • the interval K is filled with air, for example.
  • the optical connector 1 after the optical fiber 5 is passed through and held in the optical fiber holding hole 2c of the ferrule 2, the front end surface 5a and the ferrule end surface 2a of the optical fiber 5 are polished, and the ferrule end surface 2a has a spacer.
  • the optical connector 1 is completed by joining 3.
  • polishing method of the front end surface 5a and the ferrule end surface 2a and the joining method of the spacer 3 to the ferrule end surface 2a are demonstrated among the manufacturing methods of the optical connector 1.
  • FIG. 6A is a side view schematically showing an apparatus for polishing the ferrule end face 2a and the front end face 5a of the optical fiber 5
  • FIG. 6B is an enlarged view of the ferrule end face 2a and the front end face 5a of the optical fiber 5.
  • the apparatus 20 for polishing the ferrule end face 2a and the tip end face 5a includes a polishing paper 21 on which the ferrule end face 2a and the tip end face 5a are rubbed, and a plate member 22 that supports the polishing paper 21.
  • the ferrule 2 is held, and polishing is performed by rubbing the held ferrule end surface 2 a of the ferrule 2 and the front end surface 5 a of the optical fiber 5 along the polishing paper 21.
  • the ferrule end face 2a and the tip face 5a are preferably close to a plane.
  • the ferrule end surface 2a and the front end surface 5a are slightly curved in the process of being rubbed by polishing.
  • the front end surface 5a slightly protrudes from the ferrule end surface 2a.
  • the curvatures of the ferrule end surface 2a and the front end surface 5a are suppressed, and the protrusion amounts P1, P2 of the front end surface 5a from the ferrule end surface 2a are suppressed.
  • polishing is performed using a hard polishing paper 21 and a hard plate material 22 such as using a polishing paper 21 made of diamond.
  • the ferrule 2 is pressed and polished so that the ferrule 2 moves in parallel along the polishing paper 21 on the polishing paper 21, whereby the ferrule end face 2 a of the ferrule 2 is uniformly cut.
  • the polishing is performed while the ferrule end surface 2a and the front end surface 5a are maintained in a state close to a flat surface, and the radius of curvature of the ferrule end surface 2a is, for example, 50 mm or more, more preferably 100 mm or more.
  • FIG. 7A is a side sectional view schematically showing a method of joining the spacer 3 to the ferrule end face 2a
  • FIG. 7B is a side sectional view schematically showing a state in which the spacer 3 is joined.
  • the plate-shaped jig 31, the elastic jig 32, the optical mask 33, and the plate-shaped jig 34 are placed on the spacer 3 in this order.
  • the laser beam S is applied from above the plate-shaped jig 34 (out-of-plane direction of the plate-shaped jig 34) while suppressing the displacement of the spacer 3 by pressing the spacer 3 with the plate-shaped jig 34.
  • Irradiation welds the spacer 3 and the ferrule end face 2a to each other.
  • the elastic jig 32 absorbs the relative inclination between the plate-like jig 31 and the plate-like jig 34.
  • the plate-shaped jig 31, the elastic jig 32, and the plate-shaped jig 34 are configured by members that transmit at least light having the wavelength of the laser beam S.
  • the plate-shaped jig 31 is an acrylic plate having a thickness of 2 mm
  • the elastic jig 32 is a silicone film having a thickness of 2 mm
  • the plate-shaped jig 34 is an acrylic plate having a thickness of 10 mm.
  • the optical mask 33 protects the second region R2 including the opening 3b of the spacer 3 from the laser light S.
  • the laser beam S is not irradiated on the second region R2, but only on the first region R1.
  • the laser beam S passes through the spacer 3 and reaches the ferrule end surface 2a, and welds the ferrule end surface 2a and the facing surface 3a of the spacer 3.
  • the thickness of the spacer 3 is slightly reduced (for example, about several ⁇ m) in the first region R1.
  • the second region R2 that does not melt is provided, the initial thickness of the spacer 3 is secured and the interval K is reliably defined by the second region R2.
  • the spacer 3 that defines the distance K with the mating connector 11 is provided on the ferrule end surface 2 a.
  • a spacer 3 that defines a distance K between the ferrule end surface 2 a of the optical connector 1 and the ferrule end surface 12 a of the mating connector 11 is provided.
  • the non-contact optical coupling structure 10 can be realized, and the ferrule end faces 2a and 12a can be easily cleaned (or need not be cleaned). And even if the optical connector 1 is repeatedly attached and detached, adhesion of foreign matters to the ferrule end faces 2a and 12a and damage to the ferrule end faces 2a and 12a do not occur, so that durability against repeated attachment and detachment can be enhanced.
  • a plurality of optical fibers 5 and 15 can be connected simultaneously without requiring a large force for connection. Further, since the optical fiber holding holes 2c and 12c are opened at the ferrule end surfaces 2a and 12a, the front end surfaces 5a and 15a of the optical fibers 5 and 15 are exposed at the ferrule end surfaces 2a and 12a, and the optical fiber of the mating connector 11 is used. 15 is optically coupled without a lens. Therefore, the number of optical members present in the optical path can be reduced, and optical connection loss can be suppressed.
  • the spacer thickness decreases as the spacer is bonded to the ferrule end surface, and the desired interval K is defined by the decrease in the thickness. There is concern that will not be.
  • the spacer 3 since the spacer 3 contacts the ferrule end surface 2a and has the second region R2 that is not joined to the ferrule end surface 2a, the spacer 3 is in the second region R2 that is not joined. Can be ensured.
  • the distance K between the end faces 5a and 15a of the optical fibers 5 and 15 exposed on the ferrule end faces 2a and 12a can be adjusted with high accuracy.
  • the second region R2 that is in contact with the ferrule end surfaces 2a and 12a and is not joined to the ferrule end surfaces 2a and 12a includes an inner edge that forms the opening 3b of the spacer 3, and therefore, at the position of the opening 3b of the spacer 3. A desired interval K can be secured.
  • the outer dimension of the spacer 3 is equal to or smaller than the outer dimension of the ferrule end surface 2a. Therefore, since the spacer 3 fits in the area
  • the thickness of the spacer 3 is not less than 5 ⁇ m and not more than 30 ⁇ m.
  • the optical coupling structure 10 in which multiple reflection of light between the front end surfaces 5a and 15a of the optical fibers 5 and 15 is suppressed is realized.
  • the distance K between the two end surfaces 5a and 15a is shortened by using the thin spacer 3 so that the distance between the two end surfaces 5a and 15a of the two optical fibers 5 and 15 is reduced.
  • these optical fibers 5 and 15 can be connected to each other with a low coupling loss.
  • the optical connector 1 includes a spring 8 that biases the ferrule 2 in a direction in which the mating connector 11 is pressed, and the pressing force of the spring 8 is 2N or more and 6N or less.
  • the pressing force of the spring 8 is 2N or more and 6N or less.
  • the inclination angle ⁇ in the normal direction V1 of the tip surface 5a of the optical fiber 5 with respect to the optical axis direction V2 and the inclination angle ⁇ in the normal direction V1 of the ferrule end surface 2a with respect to the optical axis direction V2 are both 10 ° or more and 20 ° or less.
  • the protruding amounts P1 and P2 of the optical fiber 5 from the ferrule end surface 2a are 1 ⁇ m or less.
  • the distance K between the front end surfaces 5a and 15a of the optical fibers 5 and 15 can be managed with high accuracy.
  • the radius of curvature of the ferrule end face 2a is 50 mm or more.
  • the distance K between the end faces 5a, 15a of the optical fibers 5, 15 can be managed with high accuracy.
  • the position of the optical fiber 5 of the optical connector 1 and the position of the optical fiber 15 of the mating connector 11 intersect the optical axis in the cross section along the optical axis of the optical fibers 5 and 15. Are shifted from each other in the direction A3.
  • the normal direction V1 of the front end surfaces 5a, 15a of the optical fibers 5, 15 is inclined with respect to the optical axis direction V2 of the optical fibers 5, 15, the front end surfaces 5a, 15a Due to the refraction, the optical path L1 extending from the front end surfaces 5a and 15a of the optical fibers 5 and 15 is inclined in the direction A3 intersecting the optical axis of the optical fibers 5 and 15.
  • the position of the optical fiber 5 of the optical connector 1 and the position of the optical fiber 15 of the counterpart connector 11 are shifted from each other in the direction A3 intersecting the optical axis.
  • the optical fiber 5 and the optical fiber 15 of the mating connector 11 can be suitably optically coupled.
  • the optical connector and the optical coupling structure according to the present invention are not limited to the above-described embodiments, and various other modifications are possible.
  • the gap K between the ferrule end faces 2a and 12a is filled with air.
  • the medium has a constant refractive index
  • the gap K may be filled with a medium other than air.
  • polishes the ferrule end surface and the front end surface of an optical fiber can be changed suitably.
  • the member used when joining the spacer to the ferrule end face is not limited to the above-described plate-shaped jig 31, elastic jig 32, optical mask 33, and plate-shaped jig 34, and can be changed as appropriate.
  • the example in which the inner edge forming the opening 3b of the spacer 3 is rectangular has been described.
  • the shape and size of the inner edge forming the opening 3b can be appropriately changed.
  • the example in which the second region R2 that is not joined to the ferrule end surfaces 2a and 12a of the facing surface 3a of the spacer 3 includes the inner edge that forms the opening 3b of the spacer 3 has been described.
  • the region R2 may be a region including only a part of the inner edge, or may be a region outside the opening 3b without including the inner edge.
  • the location, size, and shape of the second region R2 that is not joined to the ferrule end surfaces 2a and 12a and the first region R1 that is joined to the ferrule end surfaces 2a and 12a can be appropriately changed.
  • the springs 8 and 18 can be omitted from either the optical connector 1 or the mating connector 11, and the configurations of the ferrule, pin keeper, spring, and housing of the optical connector 1 and the mating connector 11 are changed as appropriate. Is possible. Further, the number, shape and size of the guide pins 6a and 6b can be changed as appropriate. Moreover, although the present invention is applied to the multi-core ferrule in the above-described embodiment, it can also be applied to a single-core ferrule.
  • mating connector (second optical connector), 20 ... device, 21 ... abrasive paper, 22 ... Plate material 31, 34 ... Plate-shaped jig, 32 ... Elastic jig, 33 ... Optical mask, A1 ... Connection direction, A2, A3 ... Direction, K ... Distance, L1 ... Optical path, P1, P2 ... Projection amount, R1 ... 1st region, R2 ... 2nd region, S ... Light, V1 ... normal direction, V2 ... optical axis, theta ... tilt angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一形態に係る光コネクタ1は、光ファイバと、相手側コネクタと対向するフェルール端面2aを有し、光ファイバを保持するフェルール2と、フェルール端面2a上に設けられてフェルール端面2aと相手側コネクタとの間隔を規定するスペーサ3と、を備える。フェルール端面2aにおいて光ファイバの先端面は露出しており、光ファイバの先端面及びフェルール端面2aのそれぞれの法線方向は、光ファイバの光軸方向に対して傾斜している。スペーサ3は、光ファイバの先端面から延びる光路を通過させる開口3bを有する。スペーサ3は、フェルール端面2aに接合されている第1領域R1、及びフェルール端面2aに接触すると共にフェルール端面2aに接合されていない第2領域R2、を有する。

Description

光コネクタ及び光結合構造
 本発明は、光コネクタ及び光結合構造に関するものである。
 非特許文献1には、多芯光ファイバ同士を接続する光コネクタに用いられるフェルールが開示されている。このフェルールは、複数本の光ファイバを保持するための複数の孔と、位置決め用のガイドピンが挿入されるガイド孔とを有する。このガイド孔にガイドピンが挿入されることにより、フェルールの精密な位置決めがなされる。
S. Nagasawa et al., "A high-performancesingle-mode multifiber connector using oblique and direct endface contactbetween multiple fibers arranged in a plastic ferrule,"IEEE Photonics Technology Letters, vol. 3, no. 10, pp. 937-939(1991)
 光ファイバ同士のコネクタ接続の方式として、一般的にPC(Physical Contact)方式が知られている。図8(a)は、PC方式のフェルールの構造の一例を示す側断面図である。フェルール100は、光ファイバ120を保持するための孔102を中心軸線上に有する。光ファイバ120は孔102に挿通される。このPC方式では、光ファイバ120の先端面を相手側コネクタの光ファイバ120の先端面と物理的に接触させて押圧することにより、光ファイバ120同士を光結合させる。この方式は、主に単心光ファイバ同士を接続する際に用いられる。
 しかしながら、上記の方式には次の問題がある。フェルール端面104に異物が付着した状態で接続してしまうと、押圧力によってフェルール端面104に異物が密着してしまう。密着した異物を取り除くためには接触式のクリーナを使用する必要があり、また、異物の密着を防ぐためには頻繁に清掃を行う必要がある。また、複数本の光ファイバ120を同時に接続する多芯フェルールの場合、1本の光ファイバ120毎に所定の押圧力が要求されるので、光ファイバ120の本数が多くなるほど接続に大きな力が必要となる。
 上記の問題に対し、例えば図8(b)に示されるように、互いに接続される2本の光ファイバ120の先端面121間に間隔を設ける構造が考えられる。しかしながら、先端面121間に間隔を設ける構造では、当該間隔の長さ次第で光の結合状態が変わりうるため、当該間隔の調整を高精度に行う必要がある。
 本発明の一側面は、このような問題に鑑みてなされたものであり、光ファイバの先端面間の間隔の調整を高精度に行うことができる光コネクタ及び光結合構造を提供することを目的とする。
 前述した問題を解決するために、本発明の一実施形態に係る光コネクタは、光ファイバと、相手側コネクタと対向するフェルール端面を有し、光ファイバを保持するフェルールと、フェルール端面上に設けられてフェルール端面と相手側コネクタとの間隔を規定するスペーサと、を備える。フェルール端面において光ファイバの先端面は露出しており、光ファイバの先端面及びフェルール端面のそれぞれの法線方向は、光ファイバの光軸方向に対して傾斜している。スペーサは、光ファイバの先端面から延びる光路を通過させる開口を有する。スペーサは、フェルール端面に接合されている第1領域、及びフェルール端面に接触すると共にフェルール端面に接合されていない第2領域、を有する。
 本発明の一実施形態に係る光結合構造は、互いに接続される第1及び第2の光コネクタを備え、第1及び第2の光コネクタは、光ファイバと、フェルール端面を有すると共に光ファイバを保持するフェルールとをそれぞれ備える。第1の光コネクタのフェルール端面と、第2の光コネクタのフェルール端面とが互いに対向し、第1及び第2の光コネクタのそれぞれにおいて、フェルール端面において光ファイバの先端面が露出している。光ファイバの光軸に沿った断面において、光ファイバの先端面及びフェルール端面のそれぞれの法線方向は、光ファイバの光軸方向に対して傾斜しており、第1の光コネクタのフェルール端面と、第2の光コネクタのフェルール端面との間隔を規定するスペーサと、第1の光コネクタと第2の光コネクタとの相対位置を固定するガイドピンとを更に備える。スペーサは、第1の光コネクタの光ファイバの先端面と、第2の光コネクタの光ファイバの先端面との間に延びる光路を通過させる開口を有する。スペーサは、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面のいずれか一方に接合されている第1領域と、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面に接触すると共に、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面のいずれにも接合されていない第2領域と、を有する。
 本発明の一側面によれば、光ファイバの先端面間の間隔の調整を高精度に行うことができる。
図1は、本発明の一実施形態に係る光コネクタを示す斜視図である。 図2は、図1の光コネクタのフェルールとガイドピンを示す側断面図である。 図3は、図1の光コネクタのフェルール端面及びスペーサを示す正面図である。 図4は、一実施形態に係る光コネクタと、相手側コネクタとによって構成された光結合構造を示す側断面図である。 図5は、図4のD部を拡大して示す側断面図である。 図6(a)は、フェルール端面及び光ファイバを研磨する方法を示す側面図である。図6(b)は、フェルール端面及び光ファイバの先端面を拡大して示す側断面図である。 図7(a)は、光コネクタのフェルール端面にスペーサを接合させる作業を示す側断面図である。図7(b)は、フェルール端面にスペーサを接合した状態を模式的に示す側断面図である。 図8(a)及び図8(b)は、従来の光結合構造を模式的に示す図である。
[本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。本発明の一実施形態に係る光コネクタは、光ファイバと、相手側コネクタと対向するフェルール端面を有し、光ファイバを保持するフェルールと、フェルール端面上に設けられてフェルール端面と相手側コネクタとの間隔を規定するスペーサと、を備える。フェルール端面において光ファイバの先端面は露出しており、光ファイバの先端面及びフェルール端面のそれぞれの法線方向は、光ファイバの光軸方向に対して傾斜している。スペーサは、光ファイバの先端面から延びる光路を通過させる開口を有する。スペーサは、フェルール端面に接合されている第1領域、及びフェルール端面に接触すると共にフェルール端面に接合されていない第2領域、を有する。
 本発明の一実施形態に係る光結合構造は、互いに接続される第1及び第2の光コネクタを備え、第1及び第2の光コネクタは、光ファイバと、フェルール端面を有すると共に光ファイバを保持するフェルールとをそれぞれ備える。第1の光コネクタのフェルール端面と、第2の光コネクタのフェルール端面とが互いに対向し、第1及び第2の光コネクタのそれぞれにおいて、フェルール端面において光ファイバの先端面が露出している。光ファイバの光軸に沿った断面において、光ファイバの先端面及びフェルール端面のそれぞれの法線方向は、光ファイバの光軸方向に対して傾斜しており、第1の光コネクタのフェルール端面と、第2の光コネクタのフェルール端面との間隔を規定するスペーサと、第1の光コネクタと第2の光コネクタとの相対位置を固定するガイドピンとを更に備える。スペーサは、第1の光コネクタの光ファイバの先端面と、第2の光コネクタの光ファイバの先端面との間に延びる光路を通過させる開口を有する。スペーサは、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面のいずれか一方に接合されている第1領域と、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面に接触すると共に、第1の光コネクタのフェルール端面及び第2の光コネクタのフェルール端面のいずれにも接合されていない第2領域と、を有する。
 前述の光コネクタでは、相手側コネクタとの間隔を規定するスペーサがフェルール端面上に設けられている。同様に、前述の光結合構造では、第1の光コネクタのフェルール端面と第2の光コネクタのフェルール端面との間隔を規定するスペーサが設けられている。これにより、フェルール端面と相手側コネクタとの間(又は、第1及び第2の光コネクタのフェルール端面の間)に所定の間隔を容易に設けることができる。ここで、仮に、フェルール端面に接触するスペーサの面の全てがフェルール端面に接合する場合、フェルール端面へのスペーサの接合に伴ってスペーサの厚みが減少し、この厚みの減少により所望の間隔が規定されなくなる懸念がある。しかしながら、前述の光コネクタ及び光結合構造では、スペーサがフェルール端面に接触すると共にフェルール端面に接合されていない第2領域を有するので、この接合されていない第2領域においてスペーサの厚みを確保することができる。従って、このスペーサをフェルール端面間に介在させることにより、フェルール端面に露出する光ファイバの先端面間の間隔を確実に所望の間隔に規定できる。従って、光ファイバの先端面間の間隔の調整を高精度に行うことができる。
 また、当該第2領域は、スペーサの開口を形成する内縁の少なくとも一部を含んでいてもよい。更に、当該第2領域は、スペーサの開口を形成する内縁の全てを含んでいてもよい。この場合、開口を形成する内縁でスペーサの厚みを確保することができるので、スペーサの開口の位置で所望の間隔を確保することができる。
 また、スペーサの外形寸法は、フェルール端面の外形寸法以下であってもよい。この場合、スペーサがフェルール端面の領域内に収まるので、スペーサがフェルール端面からはみ出すことを抑制できる。従って、はみ出したスペーサが周囲に引っ掛かってスペーサが剥離する問題を回避することができる。
 また、スペーサの厚さは5μm以上且つ30μm以下であってもよい。このようにスペーサの厚さを5μm以上且つ30μm以下とすることにより、光ファイバの先端面間における光の多重反射が抑制された光結合構造が実現される。更に、このように薄いスペーサによって2つの光ファイバの先端面間の間隔を規定することにより、2つの先端面間の距離を短くし、レンズを介さない構成であるにもかかわらず、低い結合損失でもってこれらの光ファイバ同士を接続することができる。
 また、光コネクタは、相手側コネクタを押圧する方向にフェルールを付勢するバネを備え、バネの押圧力は2N以上且つ6N以下であってもよい。バネの押圧力を2N以上とすることにより、光コネクタを相手側コネクタに確実に接続させることができる。また、バネの押圧力を6N以下とすることにより、フェルール端面において生じる滑りを抑制することができる。更に、バネの押圧力を6N以下とすることにより、過大な押圧力によってフェルール又はスペーサが弾性変形し、これによりスペーサによって規定される間隔が変化してしまうことを抑制することができる。
 また、光軸方向に対する光ファイバの先端面の法線方向の傾斜角度、及び光軸方向に対するフェルール端面の法線方向の傾斜角度は、共に10°以上且つ20°以下であってもよい。このように、光軸方向に対する各法線方向の傾斜角度を10°以上とすることにより、光ファイバの先端面から相手側コネクタに向かう戻り光を光ファイバの光軸から大きく離すことができる。従って、戻り光を相手側コネクタの光ファイバに入射させにくくすることができ、光ファイバの先端面間における光の多重反射を抑制することができる。また、光軸方向に対する各法線方向の傾斜角度を20°以下とすることにより、光の複数の偏光成分間における結合強度の差を抑えることができる。
 また、フェルール端面からの光ファイバの突き出し量が1μm以下であってもよい。このように光ファイバの突き出し量を1μm以下に抑えることにより、光ファイバの先端面間の間隔を高精度に管理できる。
 また、フェルール端面の曲率半径が50mm以上であってもよい。このようにフェルール端面の曲率半径を50mm以上としてフェルール端面を平面に近い状態とすることにより、光ファイバの先端面間の間隔を高精度に管理できる。
 また、前述した光結合構造では、光ファイバの光軸に沿った断面において、第1の光コネクタの光ファイバの位置と、第2の光コネクタの光ファイバの位置とは、光軸に交差する方向に互いにずれていてもよい。この光結合構造では、光ファイバの先端面の法線方向が光ファイバの光軸方向に対して傾斜しているので、当該先端面における屈折により、光ファイバの先端面から延びる光路は、光ファイバの光軸に交差する方向に傾く。このような構成であっても、第1の光コネクタの光ファイバの位置と、第2の光コネクタの光ファイバの位置とが光軸に交差する方向に互いにずれていることによって、第1の光コネクタの光ファイバと第2の光コネクタの光ファイバとを好適に光結合させることができる。
[本願発明の実施形態の詳細]
 本発明の実施形態に係る光コネクタ及び光結合構造の具体例を、以下に図面を参照しつつ説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。以下の説明では、図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。
 図1は、本発明の一実施形態に係る光コネクタ1を示す斜視図である。図2は、光コネクタ1のフェルール2及びスペーサ3を模式的に示す側断面図である。図1及び図2に示されるように、光コネクタ1は、フェルール2及びスペーサ3を備えている。フェルール2は、直方体状の外観を有しており、例えばポリフェニレンサルファイド(PPS)等の樹脂にガラスの粒子が含まれたものによって構成されている。
 フェルール2は、相手側コネクタと接続方向A1に接続する。フェルール2は、接続方向A1の一端側に設けられて相手側コネクタと対向するフェルール端面2aと、接続方向A1の他端側に設けられた後端面2bとを有する。また、フェルール2は、接続方向A1に沿って延びる側面2dと、底面2e及び上面2fとを有する。後端面2bには、複数本の光ファイバをまとめて受け入れる導入孔が形成されている。例えば、複数本の光ファイバは、0.25mm素線、0.9mm心線、又はテープ心線等の形で導入される。
 フェルール2は、複数の光ファイバ保持孔2cを更に備え、各光ファイバ保持孔2cには光ファイバ5が挿入されている。光ファイバ5は例えばシングルモードファイバである。複数の光ファイバ保持孔2cは、前述の導入孔からフェルール端面2aにまで貫通しており、各光ファイバ5の先端面5aがフェルール端面2aにおいて露出している。
 各光ファイバ保持孔2cは接続方向A1に延びており、各光ファイバ保持孔2cの中心軸方向、及び光ファイバ5の光軸方向は、共に接続方向A1に一致している。複数の光ファイバ5の先端面5aは、フェルール端面2aにおいて、接続方向A1と交差する方向A2に沿って一列に並んでいる。一列に並んだ複数の先端面5aの組は、方向A2に交差する方向A3に2段に並んでいる。一列に並ぶ先端面5aの組の方向A3の位置は、方向A3におけるフェルール端面2aの中央位置に対して上下それぞれにずれている。なお、方向A2は、例えば接続方向A1に直交すると共にフェルール端面2a及び上面2fに平行な方向である。方向A3は、例えば接続方向A1及び方向A2に延在する平面に直交する方向である。
 光コネクタ1は、一対のガイドピン6a,6bを更に備える。一対のガイドピン6a,6bは、それぞれフェルール2のガイド孔2g,2hに挿通されると共に、フェルール端面2aから接続方向A1に突出している。ガイドピン6a,6bは、フェルール2に接続される相手側コネクタのフェルールのガイド孔に挿入される。ガイドピン6a,6bは、フェルール2と相手側コネクタのフェルールとの相対位置を固定する。一対のガイドピン6a,6bは、方向A2に沿って並んでおり、複数の光ファイバ5を挟む位置(言い換えれば、光ファイバ5の先端面5aにおける列の方向A2の両側)に設けられている。
 スペーサ3は、フィルム状(薄膜状)に形成された部材である。スペーサ3は、フェルール端面2a上に配置される。スペーサ3は、フェルール端面2aに対向する対向面3aを有し、この対向面3aの少なくとも一部がフェルール端面2aに接触している。スペーサ3は、フェルール端面2aと相手側コネクタのフェルール端面との間に挟まれることにより、フェルール端面2aと相手側コネクタのフェルール端面との間隔を規定する。
 図3は、接続方向A1からスペーサ3及びフェルール端面2aを見た状態を示す正面図である。図3に示されるように、スペーサ3は、フェルール端面2aを露出させる開口3bを有する。開口3bは、複数の光ファイバ5の先端面5aと、相手側コネクタの複数の光ファイバの各先端面との間に延びる複数本の光路を通過させるために、複数の光ファイバ5の先端面5aを露出させる。また、開口3bは、ガイドピン6a,6bを突出させる。すなわち、開口3bは、ガイドピン6a,6bの軸線方向(すなわち接続方向A1)から見たときに、ガイドピン6a,6b及び複数の光ファイバ5の先端面5aを囲む長方形状に形成される。一例として、開口3bは、方向A2を長手方向として形成されている。例えば、方向A2における開口3bの長さは5.31mmであり、方向A2と交差する方向A3における開口3bの幅は0.71mmである。
 スペーサ3の外形寸法は、フェルール端面2aの外形寸法以下である。すなわち、接続方向A1からスペーサ3及びフェルール端面2aを見たときに、スペーサ3の外縁は、フェルール端面2aの外縁よりも内側に位置している。これにより、スペーサ3の周縁部への引っ掛かりに起因するスペーサ3の剥離が抑制される。スペーサ3の接続方向A1の厚さは、例えば5μm以上且つ30μm以下であって、一例として20μmである。これにより、フェルール端面2aと相手側コネクタのフェルール端面との間隔が5μm以上且つ30μm以下(一例として20μm)に規定される。
 スペーサ3の材料としては、例えば、PPS等の樹脂が用いられ、フェルール2の材料と同一のものが用いられる。また、スペーサ3の対向面3aは、フェルール端面2aに接合されている第1領域R1と、フェルール端面2aに接合されていない第2領域R2と、とを有する。スペーサ3とフェルール端面2aとの接合は、例えば溶着(レーザ溶着等)によって行われる。前述のようにスペーサ3の材料とフェルール2の材料とが互いに同一である場合には、スペーサ3の線膨張係数とフェルール2の線膨張係数とが互いに同程度であるため、温度変化時にスペーサ3がフェルール2から剥離する懸念がなく、溶着接合による信頼性が高い。
 スペーサ3の第1領域R1においては、対向面3aとフェルール端面2aとが溶着されている。一方、スペーサ3の第2領域R2においては、対向面3aとフェルール端面2aとは互いに溶着されていない。すなわち、第2領域R2においては、対向面3aとフェルール端面2aとは互いに接触するのみである。第2領域R2は、例えば、スペーサ3の開口3bを含む領域であり、方向A2及び方向A3に延在する長方形状とされている。第1領域R1は、第2領域R2の外側に位置しており、第2領域R2を囲む長方形状とされている。
 図4は、本実施形態の光コネクタ1を備えた光結合構造10を示す側断面図である。光コネクタ1は、ガイドピン6a,6bを保持するピンキーパー7と、ピンキーパー7及びフェルール2を接続方向A1に付勢するバネ8と、バネ8を収容するハウジング9とを更に備える。ピンキーパー7は、ガイドピン6a,6bのそれぞれを保持する一対の保持穴7aを備える。
 バネ8は、ピンキーパー7を挟んでフェルール2の反対側に設けられており、ハウジング9に収容されている。バネ8の一端はハウジング9の内部に支持されており、バネ8の他端はピンキーパー7に当接している。バネ8は、フェルール2を相手側コネクタ11に押圧する。バネ8のバネ定数は、バネ8による押圧力が2N以上且つ6N以下となる値とされている。
 光結合構造10は、光コネクタ1(第1の光コネクタ)と相手側コネクタ11(第2の光コネクタ)を備えている。相手側コネクタ11は、フェルール12と、複数本の光ファイバ15とを備えている。光結合構造10では、光コネクタ1のフェルール2のフェルール端面2aと、相手側コネクタ11のフェルール12のフェルール端面12aとが互いに接続方向A1に対向している。フェルール12は、ガイドピン6a,6bがフェルール端面12aから挿入されるガイド孔12g,12hを有する。
 相手側コネクタ11は、例えば、ピンキーパー17、バネ18及びハウジング19を備えている。ピンキーパー17、バネ18及びハウジング19の構成は、光コネクタ1のピンキーパー7、バネ8及びハウジング9の構成と同一にすることができる。また、光結合構造10においては、光コネクタ1のフェルール2に挿通されたガイドピン6a,6bが相手側コネクタ11のフェルール12のガイド孔12g,12hそれぞれに挿入されることによって、光コネクタ1と相手側コネクタ11とが接続方向A1に接続する。
 前述したように、スペーサ3は、光コネクタ1のフェルール端面2aと相手側コネクタ11のフェルール端面12aとの間に挟まれることにより、これらのフェルール端面2a,12a間の間隔を規定する。そのために、スペーサ3は、相手側コネクタ11のフェルール端面12aに当接する。そして、スペーサ3の開口3bを介して、光コネクタ1の光ファイバ5と、相手側コネクタ11の光ファイバ15とが光結合する。
 図5は、図4に示されたD部を拡大して示す断面図である。図5に示されるように、光ファイバ5,15のそれぞれの先端面5a,15aは、フェルール端面2a,12aにおいて露出しており、好適にはフェルール端面2a,12aのそれぞれと面一である。光ファイバ5,15の光軸に沿った断面において、光ファイバ5,15の先端面5a,15aの法線方向V1は、光ファイバ保持孔2c,12cの中心軸方向、すなわち光ファイバ5,15の光軸方向V2に対して傾斜している。
 光軸方向V2に対する法線方向V1の傾斜角度を傾斜角度θとすると、傾斜角度θは、例えば、10°以上且つ20°以下であり、より具体的には12°である。また、この傾斜角度θは、光ファイバ5,15の光軸に直交する面に対する先端面5a,15aの傾斜角度に一致する。
 本実施形態において、フェルール端面2a,12aの法線方向は、先端面5a,15aの法線方向V1と一致している。先端面5a,15aから出射する光の光路L1は、先端面5a,15aにおいて先端面5a,15aの傾斜の向きとは逆向きに屈折する。従って、光コネクタ1の光ファイバ5の中心軸線と、相手側コネクタ11の光ファイバ15の中心軸線とは、互いに屈折方向(方向A3)にずれている。この方向A3へのずれ量は例えば1μm以上である。また、光コネクタ1の光ファイバ5の先端面5aと、相手側コネクタ11の光ファイバ15の先端面15aには、レンズ等の光学要素又は屈折率整合剤等を介することなく、間隔Kのみを介して直接的に光結合される。間隔Kは例えば空気で満たされている。
 また、光コネクタ1では、光ファイバ5がフェルール2の光ファイバ保持孔2cに通されて保持された後に、光ファイバ5の先端面5a及びフェルール端面2aが研磨され、そして、フェルール端面2aにスペーサ3が接合されることによって光コネクタ1が完成する。以下では、光コネクタ1の製造方法のうち、先端面5a及びフェルール端面2aの研磨方法と、フェルール端面2aへのスペーサ3の接合方法について説明する。
 図6(a)はフェルール端面2a及び光ファイバ5の先端面5aを研磨する装置を模式的に示す側面図であり、図6(b)はフェルール端面2a及び光ファイバ5の先端面5aを拡大した状態を模式的に示す側断面図である。図6(a)に示されるように、フェルール端面2a及び先端面5aを研磨する装置20は、フェルール端面2a及び先端面5aが擦られる研磨紙21と、研磨紙21を支持する板材22とを備える。この装置20では、フェルール2が保持されると共に、保持されたフェルール2のフェルール端面2a及び光ファイバ5の先端面5aが研磨紙21に沿って擦られることにより、研磨が実行される。
 ところで、フェルール端面2a及び先端面5aは、平面に近い方が好ましい。しかしながら、実際には図6(b)に拡大して示すように、フェルール端面2a及び先端面5aは研磨で擦られる過程で僅かに曲面状となる。また、フェルール端面2aからは先端面5aが若干突出した状態となっている。しかしながら、本実施形態では、フェルール端面2a及び先端面5aの曲率を抑えると共に、フェルール端面2aからの先端面5aの突き出し量P1,P2が抑えられている。
 例えば、研磨紙21及び板材22として柔らかめの部材を用いてバフ研磨を行った場合には、研磨時に、硬い光ファイバ5は削れずにフェルール2のみが削れるという事象が生じうる。本実施形態では、この事象を回避するため、例えばダイヤモンドで構成された研磨紙21を用いる等、硬質の研磨紙21及び硬質の板材22を用いて研磨を行う。これにより、フェルール2と光ファイバ5が共に削られるので、フェルール端面2aからの先端面5aの突き出し量P1,P2が1μm以下となる。そして、複数の突き出し量P1,P2のばらつきも1μm以下に抑えられる。
 また、フェルール2が研磨紙21上で研磨紙21に沿って平行移動するようにフェルール2を押さえて研磨が行われることにより、フェルール2のフェルール端面2aが満遍なく削られる。これにより、フェルール端面2a及び先端面5aが平面に近い状態を維持して研磨が行われ、フェルール端面2aの曲率半径は、例えば50mm以上、より好ましくは100mm以上となる。
 図7(a)はフェルール端面2aにスペーサ3を接合させる方法を模式的に示す側断面図であり、図7(b)はスペーサ3を接合させた状態を模式的に示す側断面図である。図7(a)に示されるように、スペーサ3を接合する作業では、例えば、スペーサ3上に板状治具31、弾性治具32、光学マスク33及び板状治具34をこの順に乗せる。
 そして、板状治具34によってスペーサ3の加圧を行うことによりスペーサ3の位置ずれを抑制しながら、板状治具34の上(板状治具34の面外方向)からレーザ光Sを照射してスペーサ3とフェルール端面2aとを互いに溶着する。このとき、弾性治具32は、板状治具31と板状治具34との相対的な傾きを吸収する。板状治具31、弾性治具32及び板状治具34は、少なくともレーザ光Sの波長の光を透過する部材によって構成される。一例では、板状治具31は厚さが2mmのアクリル板であり、弾性治具32は厚さが2mmのシリコーン膜であり、板状治具34は厚さが10mmのアクリル板である。
 光学マスク33は、スペーサ3の開口3bを含む第2領域R2をレーザ光Sから保護する。これにより、レーザ光Sは、第2領域R2には照射されず、第1領域R1のみに照射される。第1領域R1において、レーザ光Sは、スペーサ3を透過してフェルール端面2aに到達し、フェルール端面2aとスペーサ3の対向面3aとを溶着する。このとき、フェルール端面2aと対向面3aがレーザ光Sによって溶融するので、第1領域R1では、スペーサ3の厚さが若干(例えば数μm程度)薄くなる。しかしながら、本実施形態では、溶融しない第2領域R2が設けられるので、この第2領域R2により、スペーサ3の初期の厚みが確保されて間隔Kが確実に規定される。
 以上のように、光コネクタ1では、相手側コネクタ11との間隔Kを規定するスペーサ3がフェルール端面2a上に設けられている。同様に、光結合構造10では、光コネクタ1のフェルール端面2aと相手側コネクタ11のフェルール端面12aとの間隔Kを規定するスペーサ3が設けられている。これにより、フェルール端面2aと相手側コネクタ11との間(又は、フェルール端面2aとフェルール端面12aとの間)に所定の間隔Kを容易に設けることができる。
 従って、非接触の光結合構造10を実現し、フェルール端面2a,12aの清掃を容易に(或いは清掃不要に)することができる。そして、光コネクタ1を繰り返し着脱させても、フェルール端面2a,12aへの異物の付着及びフェルール端面2a,12aの破損が生じないので、繰り返しの着脱に対する耐久性を高めることができる。
 また、光コネクタ1及び光結合構造10では、PC方式と異なり、接続に大きな力を必要とせずに、複数本の光ファイバ5,15を同時に接続することができる。更には、光ファイバ保持孔2c,12cがフェルール端面2a,12aにおいて開口しているので、光ファイバ5,15の先端面5a,15aがフェルール端面2a,12aにおいて露出し相手側コネクタ11の光ファイバ15とレンズを介さずに光結合されることとなる。従って、光路に存在する光学部材の数を少なくでき、光接続損失を抑えることができる。
 ところで、仮に、フェルール端面に接触するスペーサの面の全てがフェルール端面に接合する場合、フェルール端面へのスペーサの接合に伴ってスペーサの厚みが減少し、この厚みの減少により所望の間隔Kが規定されなくなる懸念がある。しかしながら、光コネクタ1及び光結合構造10では、スペーサ3がフェルール端面2aに接触すると共にフェルール端面2aに接合されていない第2領域R2を有するので、この接合されていない第2領域R2においてスペーサ3の厚みを確保することができる。従って、スペーサ3をフェルール端面2a,12a間に介在させることにより、フェルール端面2a,12aに露出する光ファイバ5,15の先端面5a,15a間の間隔Kの調整を高精度に行うことができる。更に、フェルール端面2a,12aに接触すると共にフェルール端面2a,12aに接合されていない第2領域R2は、スペーサ3の開口3bを形成する内縁を含んでいるので、スペーサ3の開口3bの位置で所望の間隔Kを確保できる。
 また、スペーサ3の外形寸法は、フェルール端面2aの外形寸法以下である。よって、スペーサ3がフェルール端面2aの領域内に収まるので、スペーサ3がフェルール端面2aからはみ出すことを抑制できる。従って、はみ出したスペーサ3が周囲に引っ掛かってスペーサ3が剥離する問題を回避することができる。
 また、スペーサ3の厚さは5μm以上且つ30μm以下である。これにより、光ファイバ5,15の先端面5a,15a間における光の多重反射が抑制された光結合構造10が実現される。更に、このように薄いスペーサ3によって2つの光ファイバ5,15の先端面5a,15a間の間隔Kを規定することにより、2つの先端面5a,15a間の距離を短くし、レンズを介さない構成であるにもかかわらず、低い結合損失でもってこれらの光ファイバ5,15同士を接続することができる。
 また、光コネクタ1は、相手側コネクタ11を押圧する方向にフェルール2を付勢するバネ8を備え、バネ8の押圧力は2N以上且つ6N以下である。バネ8の押圧力を2N以上とすることにより、ガイドピン6a,6bのそれぞれをガイド孔12g,12hに確実に挿入し、光コネクタ1を相手側コネクタ11に確実に接続させることができる。また、バネ8の押圧力を6N以下とすることにより、フェルール端面2aにおいて生じる滑りを抑制することができる。更に、バネ8の押圧力を6N以下とすることにより、過大な押圧力によってフェルール2又はスペーサ3が弾性変形し、これによりスペーサ3によって規定される間隔Kが変化してしまうことを抑制することもできる。
 また、光軸方向V2に対する光ファイバ5の先端面5aの法線方向V1の傾斜角度θ、及び光軸方向V2に対するフェルール端面2aの法線方向V1の傾斜角度θは、共に10°以上且つ20°以下である。このように、光軸方向V2に対する法線方向V1の傾斜角度θを10°以上とすることにより、光ファイバ5の先端面5aから相手側コネクタ11に向かう戻り光を光ファイバ15の光軸から大きく離すことができる。従って、戻り光を相手側コネクタ11の光ファイバ15に入射させにくくすることができ、光ファイバ5,15の先端面5a,15a間における光の多重反射を抑制することができる。また、光軸方向V2に対する法線方向V1の傾斜角度θを20°以下とすることにより、光の複数の偏光成分間における結合強度の差を抑えることができる。
 また、フェルール端面2aからの光ファイバ5の突き出し量P1,P2は1μm以下である。このように光ファイバ5の突き出し量P1,P2を1μm以下に抑えることにより、光ファイバ5,15の先端面5a,15a間の間隔Kを高精度に管理できる。
 また、フェルール端面2aの曲率半径は50mm以上である。このようにフェルール端面2aの曲率半径を50mm以上としてフェルール端面2aを平面に近い状態とすることにより、光ファイバ5,15の先端面5a,15a間の間隔Kを高精度に管理できる。
 また、光結合構造10では、光ファイバ5,15の光軸に沿った断面において、光コネクタ1の光ファイバ5の位置と、相手側コネクタ11の光ファイバ15の位置とは、光軸に交差する方向A3に互いにずれている。この光結合構造10では、光ファイバ5,15の先端面5a,15aの法線方向V1が光ファイバ5,15の光軸方向V2に対して傾斜しているので、当該先端面5a,15aにおける屈折により、光ファイバ5,15の先端面5a,15aから延びる光路L1は、光ファイバ5,15の光軸に交差する方向A3に傾く。このような構成であっても、光コネクタ1の光ファイバ5の位置と、相手側コネクタ11の光ファイバ15の位置とが光軸に交差する方向A3に互いにずれていることによって、光コネクタ1の光ファイバ5と相手側コネクタ11の光ファイバ15とを好適に光結合させることができる。
 本発明に係る光コネクタ及び光結合構造は、前述の実施形態に限られるものではなく、他に様々な変形が可能である。例えば、前述の実施形態では、フェルール端面2a,12a間の間隔Kが空気で満たされていたが、屈折率が一定の媒質であれば空気以外の媒質で上記の間隔Kを満たしてもよい。また、フェルール端面及び光ファイバの先端面を研磨する装置の構成は適宜変更可能である。更に、フェルール端面にスペーサを接合させるときに用いられる部材としても、前述の板状治具31、弾性治具32、光学マスク33及び板状治具34に限られず適宜変更可能である。
 また、前述の実施形態では、スペーサ3の開口3bを形成する内縁が長方形状である例について説明したが、開口3bを形成する内縁の形状及び大きさは適宜変更可能である。更に、前述の実施形態では、スペーサ3の対向面3aのフェルール端面2a,12aに接合されていない第2領域R2がスペーサ3の開口3bを形成する内縁を含む例について説明したが、この第2領域R2は、当該内縁の一部のみを含む領域であってもよいし、当該内縁を含まずに開口3bから外れた領域であってもよい。このようにフェルール端面2a,12aに接合されていない第2領域R2、及びフェルール端面2a,12aに接合されている第1領域R1、の場所、大きさ及び形状については適宜変更可能である。
 また、光コネクタ1及び相手側コネクタ11のいずれか一方からバネ8,18を省略することも可能であり、光コネクタ1及び相手側コネクタ11のフェルール、ピンキーパー、バネ及びハウジングの構成は適宜変更可能である。更に、ガイドピン6a,6bの本数、形状及び大きさも適宜変更可能である。また、前述の実施形態では多芯フェルールに本発明を適用しているが、単心フェルールにも適用可能である。
1…光コネクタ(第1の光コネクタ)、2,12…フェルール、2a,12a…フェルール端面、2b…後端面、2c,12c…光ファイバ保持孔、2d…側面、2e…底面、2f…上面、2g,2h,12g,12h…ガイド孔、3…スペーサ、3a…対向面、3b…開口、5,15…光ファイバ、5a,15a…先端面、6a,6b…ガイドピン、7,17…ピンキーパー、7a…保持穴、8,18…バネ、9、19…ハウジング、10…光結合構造、11…相手側コネクタ(第2の光コネクタ)、20…装置、21…研磨紙、22…板材、31,34…板状治具、32…弾性治具、33…光学マスク、A1…接続方向、A2,A3…方向、K…間隔、L1…光路、P1,P2…突き出し量、R1…第1領域、R2…第2領域、S…レーザ光、V1…法線方向、V2…光軸方向、θ…傾斜角度。

Claims (11)

  1.  光ファイバと、
     相手側コネクタと対向するフェルール端面を有し、前記光ファイバを保持するフェルールと、
     前記フェルール端面上に設けられて前記フェルール端面と前記相手側コネクタとの間隔を規定するスペーサと、を備え、
     前記フェルール端面において前記光ファイバの先端面は露出しており、
     前記光ファイバの前記先端面及び前記フェルール端面のそれぞれの法線方向は、前記光ファイバの光軸方向に対して傾斜しており、
     前記スペーサは、前記光ファイバの前記先端面から延びる光路を通過させる開口を有し、
     前記スペーサは、前記フェルール端面に接合されている第1領域、及び前記フェルール端面に接触すると共に前記フェルール端面に接合されていない第2領域、を有する、
    光コネクタ。
  2.  前記第2領域は、前記スペーサの前記開口を形成する内縁の少なくとも一部を含んでいる、
    請求項1に記載の光コネクタ。
  3.  前記第2領域は、前記スペーサの前記開口を形成する内縁の全てを含んでいる、
    請求項1に記載の光コネクタ。
  4.  前記スペーサの外形寸法は、前記フェルール端面の外形寸法以下である、
    請求項1~3のいずれか一項に記載の光コネクタ。
  5.  前記スペーサの厚さは5μm以上且つ30μm以下である、
    請求項1~4のいずれか一項に記載の光コネクタ。
  6.  前記相手側コネクタを押圧する方向に前記フェルールを付勢するバネを備え、
     前記バネの押圧力は2N以上且つ6N以下である、
    請求項1~5のいずれか一項に記載の光コネクタ。
  7.  前記光軸方向に対する前記光ファイバの前記先端面の法線方向の傾斜角度、及び前記光軸方向に対する前記フェルール端面の法線方向の傾斜角度は、共に10°以上且つ20°以下である、
    請求項1~6のいずれか一項に記載の光コネクタ。
  8.  前記フェルール端面からの前記光ファイバの突き出し量が1μm以下である、
    請求項1~7のいずれか一項に記載の光コネクタ。
  9.  前記フェルール端面の曲率半径が50mm以上である、
    請求項1~8のいずれか一項に記載の光コネクタ。
  10.  互いに接続される第1及び第2の光コネクタを備え、
     前記第1及び第2の光コネクタは、光ファイバと、フェルール端面を有すると共に前記光ファイバを保持するフェルールとをそれぞれ備え、
     前記第1の光コネクタの前記フェルール端面と、前記第2の光コネクタの前記フェルール端面とが互いに対向し、
     前記第1及び第2の光コネクタのそれぞれにおいて、前記フェルール端面において前記光ファイバの先端面が露出しており、
     前記光ファイバの光軸に沿った断面において、前記光ファイバの前記先端面及び前記フェルール端面のそれぞれの法線方向は、前記光ファイバの光軸方向に対して傾斜しており、
     前記第1の光コネクタの前記フェルール端面と、前記第2の光コネクタの前記フェルール端面との間隔を規定するスペーサと、
     前記第1の光コネクタと前記第2の光コネクタとの相対位置を固定するガイドピンとを更に備え、
     前記スペーサは、前記第1の光コネクタの前記光ファイバの前記先端面と、前記第2の光コネクタの前記光ファイバの前記先端面との間に延びる光路を通過させる開口を有し、
     前記スペーサは、
     前記第1の光コネクタの前記フェルール端面及び前記第2の光コネクタの前記フェルール端面のいずれか一方に接合されている第1領域と、
     前記第1の光コネクタの前記フェルール端面及び前記第2の光コネクタの前記フェルール端面に接触すると共に、前記第1の光コネクタの前記フェルール端面及び前記第2の光コネクタの前記フェルール端面のいずれにも接合されていない第2領域と、を有する、
    光結合構造。
  11.  前記断面において、前記第1の光コネクタの前記光ファイバの位置と、前記第2の光コネクタの前記光ファイバの位置とは、前記光軸に交差する方向に互いにずれている、
    請求項10に記載の光結合構造。
PCT/JP2016/082475 2016-03-23 2016-11-01 光コネクタ及び光結合構造 WO2017163478A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059039 2016-03-23
JP2016059039A JP2017173539A (ja) 2016-03-23 2016-03-23 光コネクタ及び光結合構造

Publications (1)

Publication Number Publication Date
WO2017163478A1 true WO2017163478A1 (ja) 2017-09-28

Family

ID=59901031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082475 WO2017163478A1 (ja) 2016-03-23 2016-11-01 光コネクタ及び光結合構造

Country Status (2)

Country Link
JP (1) JP2017173539A (ja)
WO (1) WO2017163478A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106891A1 (ja) * 2017-11-29 2019-06-06 住友電気工業株式会社 光コネクタの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144510A (ja) * 2018-02-23 2019-08-29 住友電気工業株式会社 光コネクタ、光接続構造、及び光コネクタの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120504A (ja) * 1989-09-27 1991-05-22 Hewlett Packard Co <Hp> 光ファイバコネクタ
JP2000047058A (ja) * 1998-07-31 2000-02-18 Sumitomo Electric Ind Ltd 光コネクタ用のフェルール及び光コネクタ
JP2004318180A (ja) * 2004-08-06 2004-11-11 Sumitomo Electric Ind Ltd 光ファイバアレイおよび光導波路
JP2006084498A (ja) * 2004-09-14 2006-03-30 Fujikura Ltd 光減衰器
US20150378108A1 (en) * 2014-06-30 2015-12-31 Ultra Communications, Inc. Fiber optic end-face transparent protector
JP2016061942A (ja) * 2014-09-18 2016-04-25 住友電気工業株式会社 フェルール
JP2016184106A (ja) * 2015-03-26 2016-10-20 株式会社フジクラ 光ファイバ付きフェルール、光コネクタシステム及び光ファイバ付きフェルールの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120504A (ja) * 1989-09-27 1991-05-22 Hewlett Packard Co <Hp> 光ファイバコネクタ
JP2000047058A (ja) * 1998-07-31 2000-02-18 Sumitomo Electric Ind Ltd 光コネクタ用のフェルール及び光コネクタ
JP2004318180A (ja) * 2004-08-06 2004-11-11 Sumitomo Electric Ind Ltd 光ファイバアレイおよび光導波路
JP2006084498A (ja) * 2004-09-14 2006-03-30 Fujikura Ltd 光減衰器
US20150378108A1 (en) * 2014-06-30 2015-12-31 Ultra Communications, Inc. Fiber optic end-face transparent protector
JP2016061942A (ja) * 2014-09-18 2016-04-25 住友電気工業株式会社 フェルール
JP2016184106A (ja) * 2015-03-26 2016-10-20 株式会社フジクラ 光ファイバ付きフェルール、光コネクタシステム及び光ファイバ付きフェルールの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106891A1 (ja) * 2017-11-29 2019-06-06 住友電気工業株式会社 光コネクタの製造方法
CN111386483A (zh) * 2017-11-29 2020-07-07 住友电气工业株式会社 用于制造光学连接器的方法
JPWO2019106891A1 (ja) * 2017-11-29 2020-11-26 住友電気工業株式会社 光コネクタの製造方法
US11048050B2 (en) 2017-11-29 2021-06-29 Sumitomo Electric Industries, Ltd. Method for manufacturing optical connector
JP7040530B2 (ja) 2017-11-29 2022-03-23 住友電気工業株式会社 光コネクタの製造方法

Also Published As

Publication number Publication date
JP2017173539A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6601248B2 (ja) 光コネクタフェルール及び光コネクタ
CN108351478B (zh) 光连接器及光耦合构造
CA2569263C (en) Optical ferrule
WO2018037675A1 (ja) 光コネクタの製造方法
WO1998040772A1 (fr) Element de transmission optique et son procede de production
WO2017163478A1 (ja) 光コネクタ及び光結合構造
JP2017173512A (ja) 光コネクタフェルール
WO2017149844A1 (ja) 光コネクタ付きファイバ、及び光結合構造
JP2016184105A (ja) 光ファイバ付きフェルール及び光コネクタシステム
WO2017086390A1 (ja) 光コネクタ、光ファイバ接続装置、光コネクタ製造方法及び光ファイバ接続方法
JP6514931B2 (ja) 光ファイバ付きフェルール及び光コネクタシステム
US11467352B2 (en) Ferrule, fiber-attached ferrule, and method of manufacturing fiber-attached ferrule
JP7198155B2 (ja) フェルール、ファイバ付きフェルール及びファイバ付きフェルールの製造方法
US20220026645A1 (en) Ferrule and optical connector
JP6597439B2 (ja) 光コネクタフェルール、光コネクタ及び光結合構造
US11675142B2 (en) Ferrule, fiber-equipped ferrule, and method for manufacturing fiber-equipped ferrule
WO2018042795A1 (ja) 光コネクタの製造方法
WO2023022219A1 (ja) 光コネクタ、光コネクタ接続構造および光実装回路
JP3129871B2 (ja) 多心光コネクタおよびその製造方法
JP2020095182A (ja) 光コネクタフェルール及び光コネクタ
JP4222669B2 (ja) 多心光コネクタの製造方法
JP2020095183A (ja) 光コネクタ
JP2018031998A (ja) アダプタ及び光接続構造
JP2018124442A (ja) フェルール
JPH07318757A (ja) 光コネクタおよびその接続方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895501

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895501

Country of ref document: EP

Kind code of ref document: A1