WO2017160124A2 - Recombinant expression vector for producing norovirus vaccine - Google Patents

Recombinant expression vector for producing norovirus vaccine Download PDF

Info

Publication number
WO2017160124A2
WO2017160124A2 PCT/KR2017/002945 KR2017002945W WO2017160124A2 WO 2017160124 A2 WO2017160124 A2 WO 2017160124A2 KR 2017002945 W KR2017002945 W KR 2017002945W WO 2017160124 A2 WO2017160124 A2 WO 2017160124A2
Authority
WO
WIPO (PCT)
Prior art keywords
soluble
water
protein
norovirus
expression vector
Prior art date
Application number
PCT/KR2017/002945
Other languages
French (fr)
Korean (ko)
Other versions
WO2017160124A3 (en
Inventor
성백린
황범증
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority claimed from KR1020170033689A external-priority patent/KR101914779B1/en
Publication of WO2017160124A2 publication Critical patent/WO2017160124A2/en
Publication of WO2017160124A3 publication Critical patent/WO2017160124A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Definitions

  • the present invention relates to a recombinant expression vector for producing a water-soluble norovirus vaccine, and more particularly, the present invention relates to a recombinant expression vector for producing a water-soluble norovirus vaccine antigen and efficiently inducing self-assembly into virus like particles. It relates to a water-soluble norovirus vaccine production method using the same.
  • Norovirus is a global causative agent of gastroenteritis and kills more than 200,000 children under 5 years of age in developing countries.
  • Noroviruses belonging to the Caliciviridae family are membrane-free viruses and are about 30 to 40 nm in diameter. It consists of 7.6 kbp long single-stranded (+) RNAs and has three open reading frames (ORFs).
  • ORF2 is encoded by the major structural protein VP1, which forms the norovirus
  • ORF3 is encoded by the VP2 protein, but is not directly involved in structure formation.
  • VP1 is a total of 59 kDa in size and forms a dimer.
  • the VP1 protein consists of two domains, the S domain (S domain) acts to form a structure, the P domain (P domain) is involved in the actual immune response.
  • VLP Virus-Like Particles
  • VLPs are highly complex and sophisticated constructs that specifically express viral structural proteins to exhibit a structure similar in appearance to wild-type viruses. Because of its similar structure to wild-type virus, it can induce a high immune response in the body and can stimulate both T-cell and B-cell immune pathways.
  • the complexity of the structure is that it is very difficult to create a complete VLP.
  • Norovirus VLPs are mainly known to be produced in baculovirus-insect cells and are also known to produce VLPs in yeast.
  • VLP vaccine production method using insects has the advantage that the structure of the VLP is sophisticated, but there is a problem that the production cost is high, the production efficiency is low.
  • the production of VLP using yeast is also a high cost and low efficiency method compared to the E. coli production system.
  • E. coli only reported that the structural protein (VP1) was soluble in water, and it was not known that VLP was formed.
  • E. coli expression systems are known to be difficult to produce elaborately folded proteins because of the rapid cell division of E. coli itself and no post-translation modification. If norovirus VLPs derived from E. coli can be developed, it is expected that low-cost vaccines can be supplied compared to vaccines using other expression systems.
  • the present inventors have intensively tried to provide a method for producing a large amount of water-soluble norovirus VLP having biological activity in Escherichia coli, and thus, a fusion protein that enhances the water-soluble expression of the protein in Escherichia coli was coupled to the N-terminus of the norovirus VP1 protein.
  • a fusion protein that enhances the water-soluble expression of the protein in Escherichia coli was coupled to the N-terminus of the norovirus VP1 protein.
  • An object of the present invention is a water-soluble noro comprising a gene encoding a protein that promotes water-soluble expression of a target protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus-derived VP1 gene sequence. It is to provide a recombinant expression vector for the production of viral vaccines.
  • Still another object of the present invention is to provide a host cell transformed with the recombinant expression vector for producing the water-soluble norovirus vaccine.
  • Still another object of the present invention is to (a) a gene encoding a protein that promotes water soluble expression of a target protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus derived VP1 gene sequence
  • Producing a recombinant expression vector for producing a water-soluble norovirus vaccine comprising: (b) introducing the expression vector into a host cell to produce a transformant, and (c) culturing the transformant to produce a recombinant fusion protein.
  • the present invention is to solve the above-described problems, genes encoding proteins that promote the water-soluble expression of the target protein, genes encoding 1 to 6 histidines, genes encoding protein cleavage recognition site and norovirus-derived VP1
  • a recombinant expression vector for the production of a water soluble norovirus vaccine comprising a gene sequence is provided.
  • expression vector is a linear or circular DNA molecule consisting of fragments encoding a target protein operably linked to additional fragments provided for transcription of the expression vector. Such additional fragments include promoter and termination code sequences. Expression vectors also include one or more origins of replication, one or more selection markers, and the like. Expression vectors are generally derived from plasmid or viral DNA or contain elements of both.
  • target protein is a protein that a person of ordinary skill in the art intends to produce in large quantities, and means any protein capable of expression in a host cell by inserting a polynucleotide encoding the protein into a recombinant expression vector.
  • protein that promotes the water soluble expression of a protein refers to a peptide that is reported to be able to express the fusion protein in water soluble form and refers to glutathione S transferase (GST), maltose binding protein, ubiquitin, taoredoxin, and the like. This includes, but is not limited to the present invention can be used without limitation as long as it is a generally known water-soluble expression promoting protein.
  • the protein for promoting the water-soluble expression of the target protein may be selected from hRBD, LysRS or fusion protein of hRBD and LysRS.
  • hRBD human RNA binding domain
  • human aminoacyl tRNA synthetase N-terminal domain refers to an N-terminal domain to which RNA binds in a human-derived aminoacyl tRNA synthetase domain. , which is not present in the tRNA synthetase of Escherichia coli or yeast, and is small in size but has a function of interacting with RNA, in particular, the hRBD of the present invention refers to the N-terminal domain of human-derived LysRS.
  • lysyl tRNA synthetase or “lysyl tRNA synthetase” is a member of an aminoacyl tRNA synthetase, which in some mammals modulates the various functions of the proteins that make up the aminoacyl tRNA synthetase. To form macromolecular complexes that act as molecular reservoirs.
  • fusion protein or “recombinant protein” refers to a protein in which another protein is linked or another amino acid sequence is added to the N-terminus or C-terminus of the original protein sequence of interest.
  • the hRBD may be an amino acid sequence represented by SEQ ID NO: 1.
  • the LysRS may be a LysRS-derived peptide sequence represented by SEQ ID NO: 3.
  • the hRBD and LysRS fusion protein may be an amino acid sequence represented by SEQ ID NO: 5.
  • the gene encoding the 1 to 6 histidine may be represented by SEQ ID NO: 7.
  • the protein cleavage enzyme may be TEV, and specifically, the sequence encoding the TEV recognition site may be represented by SEQ ID NO: 8.
  • the present invention also provides a host cell transformed with the expression vector.
  • transformation means that DNA is introduced into a host such that the DNA is replicable as an extrachromosomal factor or by chromosomal integration completion.
  • Method for transforming the expression vector according to the present invention is electroporation (electrophoration), calcium phosphate (CaPO 4 ) method, calcium chloride (CaCl 2 ) method, microinjection (microinjection), polyethylene glycol (PEG) method, DEAE-dex It may include, but is not limited to, the Tran method, the cationic liposome method or the lithium acetate-DMSO method.
  • the host cell is preferably a high DNA introduction efficiency, a host cell having a high expression efficiency of the introduced DNA, and any microorganism including prokaryotic and eukaryotic may be used.
  • the host cell may be E. coli .
  • the invention also includes (a) a gene encoding a protein that promotes water soluble expression of a desired protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus derived VP1 gene sequence Producing a recombinant expression vector for producing a water-soluble norovirus vaccine, (b) introducing the expression vector into a host cell to produce a transformant, and (c) culturing the transformant to express the recombinant fusion protein. It provides a water-soluble norovirus vaccine production method comprising the step of inducing and obtaining it.
  • the recombinant expression vector of the present invention and a method for producing norovirus vaccines using the same can effectively produce norovirus VLP vaccines in E. coli, as well as structurally sophisticated VLPs, thereby producing low-cost and high-efficiency norovirus VLP vaccines. It became.
  • Figure 1 is a schematic diagram showing the structure of a recombinant expression vector for the production of water-soluble norovirus according to an embodiment of the present invention.
  • FIG. 2 is a result of confirming the water solubility of the expressed VP1 protein according to an embodiment of the present invention by SDS-PAGE.
  • A was incubated for 3 hours at 37 ° C after overexpression
  • B was incubated for one day at 16 ° C after overexpression, and in each case, the left panel showed the result of the expression of VP1 (69 kDa) in which hRBD was recombined.
  • Right panel is the result of control VP1 (59 kDa).
  • FIG. 3 is a chromatogram result of purifying and confirming VP1 protein expressed according to an embodiment of the present invention through nickel affinity chromatography.
  • Figure 5 shows the results confirmed by SDS-PAGE after cutting the norovirus VP1 using TEV protein cleavage enzyme.
  • Figure 6 is a chromatogram (A) and SDS-PAGE (B) showing the results of the size exclusion chromatography to purify the VLP formed after cleavage with TEV protein cleavage enzyme.
  • FIG. 8 shows the results of ELISA experiments on insect cell-derived VLP (A) and E. coli-derived VLP (B).
  • Norovirus VLP production from Norovirus Hu / GII.4 / Hiroshima / 55/2005 / JPN was used to produce VLPs through Escherichia coli, and the VP1 gene was provided by the International Vaccine Institute (IVI).
  • the pGE-RBD3 vector was used as an expression vector, and the above vector was prepared by replacing and editing the gene that specifies only the RNA binding domain portion of LysRS instead of the LysRS gene in the pGE-LysRS3 vector.
  • pGE-RBD3 vector was digested by treatment with Xba I and Kpn I restriction enzymes, and a polynucleotide sequence (SEQ ID NO: 2) encoding six histidine tags (Histag) encoding hRBD (SEQ ID NO: 1) in the truncated expression vector.
  • the polynucleotide sequence (SEQ ID NO: 7), the polynucleotide sequence encoding the TEV recognition sequence (ENLYFQ) (SEQ ID NO: 8), and the polynucleotide sequence encoding the VP1 (SEQ ID NO: 9) DNA fragments were inserted (FIG. 1).
  • the recombinant plasmid thus completed was transformed into E. coli host HMS174.
  • the initial culture for expressing the protein was incubated at 37 ° C. in 3 ml LB medium containing 50 ⁇ g / ml ampicillin for one day, and then, 1 ml of E. coli cultured the previous day in 15 ml LB medium containing the same concentration of ampicillin was added.
  • both the control VP1 and the recombinant VP1 were expressed insoluble at 37 ° C. (FIG. 2A), but when expressed at 16 ° C., about 90% of the control VP1 was expressed in the insoluble form, whereas VP1 was expressed significantly improved in water solubility compared to the control VP1 and the amount of expression was also significantly increased than the control VP1 (Fig. 2B). From this, hRBD was found to be a suitable fusion partner to enhance the water solubility of VP1 protein expression in E. coli.
  • Proteins identified as water soluble were purified by nickel (Ni) affinity chromatography.
  • Ni nickel affinity chromatography
  • 500 ml of E. coli was finally expressed and harvested and purified. Specifically, it was first equilibrium with A buffer [50 mM Tris-HCl (pH 7.5), 300 mM sodium chloride, 10% glycerol, 2 mM 2-mercaptoethanol, Triton X-100 0.05%, and 10 mM imidazole] and equilibrium Sample protein was purified using one Ni-NTA column resin (GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, UK).
  • the concentration of purified protein was quantified using BSA (Amresco, Solon, OH, USA), and as a result, 5.38 mg / ml of VP1 protein was obtained.
  • the purified VP1 protein was mixed at 30% glycerol in a 1: 1 ratio and stored at -20 ° C.
  • FIG. 3 The result of confirming the purified VP1 by nickel affinity chromatography is shown in FIG. 3, and the result of confirming the purification through SDS-PAGE is shown in FIG. 4.
  • the protein expressed and purified above was confirmed to be appropriately cleaved by TEV protein cleavage enzyme (AcTEV Protease, Cat. 12575-015, Invitrogen life technology).
  • the experiment was conducted at 25 ° C., and the fusion partner protein was gradually cleaved at intervals of 0, 0.5, 1, 3, and 7 hours.
  • the purified VP1 protein was 0, 0.5
  • VP1 protein is generally present in the form of dimers (dimers), it is known that each dimer gathers to form a VLP.
  • SDS-PAGE was performed using VP1 cleaved with TEV protein cleavage enzyme and non-cleaved VP1 (hRBD-VP1) at 16 ° C. to confirm whether the VP1 protein expressed in E. coli was also dimerized.
  • VP1 was mixed with the SDS loading dye to which DTT was added or removed, and the samples were loaded by boiling or not and then compared to the SDS-PAGE gel.
  • Biochemical analysis was performed to determine whether the dimers of VP1 protein cleaved with TEV protein cleavage enzymes form VLPs. Specifically, size exclusion chromatography was performed at 4 ° C. through a Superdex-200 analytical gel-filtration column.
  • the fusion protein was cleaved overnight at 4 ° C. using AcTEV protein cleavage enzyme the day before.
  • the column was subjected to an equilibrium with a buffer [Ammonium acetate 250 mM (pH 6.0)], and after completion of the equilibrium, the VP1 sample from which the fusion partner protein was cleaved was loaded and purified. After purification, calibration was performed using ferritin (440 kDa), aldolase (158 kDa), cornalbumin (75 kDa), ovalbumin (44 kDa), and blue dextran 2000 (GE Healthcare). The molecular weight of the protein indicated by the peak was determined.
  • the norovirus VLP had a molecular weight of 10 MDa and the maximum purification limit of the column used by us was 800 kDa, so that it would be purified from Void when the VLP was properly formed.
  • the high peak of Void norovirus VLP was found (Fig. 6A), and the purified and harvested fractions were confirmed by SDS-PAGE. It could be confirmed (FIG. 6B).
  • the hRBD cut by TEV protein cleavage enzyme was also purified by chromatography.
  • the VP1 protein purified from Void was observed by electron microscopy to confirm the formation of VLP.
  • Purified norovirus VLPs were first raised on a copper grid for 1 minute and then stained for 15 seconds using 2% uranyl acetate. The pretreated sample was dried at room temperature for 30 minutes and then photographed using a transmission electron microscopy (TEM, Transmission electron microscopy; JEM-1011, JEOL, Japan). The experiment was conducted by the Research Support Department of the Medical Life Research Institute, Yonsei University College of Medicine.
  • VLP As a result, as shown in FIG. 7, it was confirmed that the purified VP1 protein forms VLP (FIG. 7A).
  • the diameter of the identified VLP was 34 nm and was similar to that of the norovirus VLP and wild type norovirus (FIG. 7B) produced using the baculovirus-insect cell expression system.
  • VP1 to which hRBD was fused without protein cleavage with TEV protein cleavage enzyme was able to confirm aggregation without forming VLP (FIG. 7C).
  • mice experiments were performed 6 weeks old BALB / c (Orient-bio) and inoculated twice (day 1, day 21). Groups (n 3) were divided for E. coli-derived VLPs and baculovirus-insect-derived VLPs, and each group was mixed with 5 ⁇ g of protein adjuvant (ImjectTM Alum adjuvant, Thermo SCIENTIFIC, 40 ⁇ g). Inoculated through. Mice inoculated with PBS and ammonium acetate were used as controls.
  • protein adjuvant ImjectTM Alum adjuvant, Thermo SCIENTIFIC, 40 ⁇ g
  • Enzyme-linked immunosorbent assay for the determination of antigen-antibody cross-reactivity between baculovirus-insect cell VLPs and E. coli VLPs and sera against E. coli VLPs and baculovirus-insect cell VLPs from animal experiments It was.
  • 100 ⁇ l / well was coated in 96-can Nunc plate (Thermo Fisher Scientific) with insect cell-derived VLP and E. coli-derived VLP at a concentration of 2 ⁇ g / ml and stored at 4 ° C. for one day. Plates were washed three times using PBS-T containing 0.05% Tween 20 in PBS and then blocked for 1 hour at room temperature with PBS containing 1% BSA to block coating of other proteins. Next, the plate was washed three times with PBS-T again, and 100 ⁇ l / well of serum obtained by inoculating mouse-derived VLP and E. coli-derived VLP, respectively, was reacted at room temperature for 1 hour.
  • E. coli-derived VLP was coated on the first compartment of a 96-can Nunc plate (Thermo Fisher Scientific), and then diluted in 1/2 of the remaining wells, and coated at room temperature for 5 hours.
  • Each well was washed with a wash buffer [PBS, 0.05% Tween 20 (PBS-T)] and then blocked with PBS containing 1% BSA. Blocking proceeded at 4 ° C. for one day.
  • 100 ⁇ l of biotin attached Type 2 HBGA (Glycotech, USA, Cat.01-034) was added to each well and reacted at room temperature for 1 hour 30 minutes. .
  • each well was washed, and 100 ⁇ l of streptavidin-attached HRP (Horseradish peroxidase; Thermo scientific, Cat. 21124) was added to each well at a concentration of 2 mg / ml. Reacted for hours. And 150 ⁇ l of 3,3 ', 5,5'-tetramethylbenzidinine (TMB) solution (BD Biosciences) was added to each well and developed for 20 minutes at room temperature. After development, the colorimetric reaction was stopped via 50 ⁇ l / well of 2 NH 2 SO 4 (Blue to yellow) and absorbance (OD) at 450 nm was measured by an enzyme-linked immunosorbent assay (ELISA) reader. .
  • HRP horseradish peroxidase
  • BD Biosciences 3,3 ', 5,5'-tetramethylbenzidinine

Abstract

The present invention relates to a recombinant expression vector for producing a water-soluble norovirus vaccine, and more particularly, to a recombinant expression vector for producing a water-soluble norovirus vaccine, and a method for using same to produce a water-soluble norovirus vaccine. According to the present invention, a recombinant expression vector and a method for using same to produce a norovirus vaccine can not only efficiently produce a norovirus VLP vaccine from E. coli, but by enabling the production of a VLP that is structurally delicate, allows for the production of an inexpensive and highly efficient norovirus VLP vaccine.

Description

노로 바이러스 백신을 생산하기 위한 재조합 발현 벡터Recombinant Expression Vector to Produce Norovirus Vaccine
본 발명은 수용성 노로 바이러스 백신을 생산하기 위한 재조합 발현 벡터에 관한 것으로서, 보다 상세하게 본 발명은 노로 바이러스 백신항원을 수용성으로 생산하고 이를 효율적으로 바이러스 유사입자로의 자가조립을 유도하는 재조합 발현 벡터 및 이를 이용한 수용성 노로 바이러스 백신 생산방법에 관한 것이다.The present invention relates to a recombinant expression vector for producing a water-soluble norovirus vaccine, and more particularly, the present invention relates to a recombinant expression vector for producing a water-soluble norovirus vaccine antigen and efficiently inducing self-assembly into virus like particles. It relates to a water-soluble norovirus vaccine production method using the same.
노로 바이러스(Norovirus)는 전 세계적으로 위장염을 유발하는 병원체이며, 매년 20만 명의 5세 미만 개발도상국 어린이들이 노로 바이러스로 인해 사망한다. 칼리시바이러스과(Caliciviridae)에 속하는 노로 바이러스는 막이 없는 바이러스이며 직경은 약 30 ~ 40 nm 정도이다. 7.6 kbp 길이의 단일가닥 (+)RNA로 이루어져 있으며 3개의 ORF(open reading frame)를 가지고 있다. 이 중 ORF2에는 노로 바이러스의 형태를 이루는 주요 구조단백질 VP1이 코딩되어 있고, ORF3에는 VP2 단백질이 코딩되어 있으나 구조형성에 직접적으로 관여하지는 않는다. VP1은 전체 59 kDa 크기이며 이합체(dimer)를 이룬다. 이렇게 90개의 이합체가 자가 조립되어(self-assembly) 총 180개의 VP1이 하나의 바이러스 입자(particle)를 형성한다. VP1 단백질은 2개의 도메인(domain)으로 이루어지는데 S 도메인(S domain)이 구조를 이루는데 작용하고 P 도메인(P domain)은 실제적인 면역반응 유발에 관여한다. Norovirus is a global causative agent of gastroenteritis and kills more than 200,000 children under 5 years of age in developing countries. Noroviruses belonging to the Caliciviridae family are membrane-free viruses and are about 30 to 40 nm in diameter. It consists of 7.6 kbp long single-stranded (+) RNAs and has three open reading frames (ORFs). Among them, ORF2 is encoded by the major structural protein VP1, which forms the norovirus, and ORF3 is encoded by the VP2 protein, but is not directly involved in structure formation. VP1 is a total of 59 kDa in size and forms a dimer. As such, 90 dimers self-assembly so that a total of 180 VP1 forms one viral particle. The VP1 protein consists of two domains, the S domain (S domain) acts to form a structure, the P domain (P domain) is involved in the actual immune response.
현재까지 노로 바이러스에 대한 세포 배양 방법은 알려진 바 없으며 적절한 동물모델 또한 개발되지 않은 상황이다. 따라서 효과적인 노로 바이러스 백신을 개발하기 위해서는 세포배양에 제한 받지 않는 VLP(Virus-Like Particles) 형태의 백신개발이 필수적이다. VLP는 바이러스 구조 단백질을 야생형 바이러스와 겉모습이 유사한 구조를 나타내도록 특이적으로 발현시킨 것으로서 매우 복잡하고 정교한 구조물이다. 야생형 바이러스와 그 구조가 유사하기 때문에 체내에서 높은 면역반응을 유도할 수 있으며 T-cell, B-cell 면역경로를 둘 다 자극할 수 있다는 장점이 있다. 또한 형성된 구조물 안에 유전물질이 없으므로 감염능력이 없어 높은 안전성을 가진다는 점과 뛰어난 구조적 안정성을 보인다는 것이 특징이다. 하지만 그 구조가 복잡하여 완전한 VLP를 만드는 것이 매우 어렵다는 단점이 있다. To date, no cell culture method for norovirus is known and no suitable animal model has been developed. Therefore, in order to develop an effective norovirus vaccine, it is essential to develop a vaccine in the form of VLP (Virus-Like Particles), which is not limited to cell culture. VLPs are highly complex and sophisticated constructs that specifically express viral structural proteins to exhibit a structure similar in appearance to wild-type viruses. Because of its similar structure to wild-type virus, it can induce a high immune response in the body and can stimulate both T-cell and B-cell immune pathways. In addition, since there is no genetic material in the formed structure, it is characterized by high safety because of its lack of infectivity and excellent structural stability. However, the complexity of the structure is that it is very difficult to create a complete VLP.
노로 바이러스 VLP는 주로 배큘로 바이러스-곤충세포에서 생산할 수 있으며, 효모에서도 VLP를 생산할 수 있다고 알려져 있다. 곤충을 이용한 VLP 백신 생산 방법은 VLP의 구조가 정교하다는 장점이 있지만 생산비용이 높고, 생산효율이 낮다는 문제점이 있었다. 또한 효모를 이용한 VLP 생산의 경우 역시 대장균 생산 시스템에 비해 고비용 및 저효율 방법이라는 점이 단점으로 지적되고 있다. 하지만 대장균(E. coli)에서는 구조 단백질(VP1)을 수용성으로 발현했다는 보고만 있을 뿐, VLP를 형성했다는 사실은 지금까지 알려진 바가 없다. 대장균 발현 시스템의 경우 대장균 자체의 세포분열이 너무 빠르고 전사후 수정(post-translation modification) 과정이 일어나지 않는다는 점 때문에 정교하게 폴딩된 단백질을 생산하기 어렵다고 알려져 있었다. 대장균에서 유래하는 노로 바이러스 VLP가 개발될 수 있다면 다른 발현시스템을 이용한 백신에 비해 저가형 백신의 공급이 가능할 것으로 기대된다.Norovirus VLPs are mainly known to be produced in baculovirus-insect cells and are also known to produce VLPs in yeast. VLP vaccine production method using insects has the advantage that the structure of the VLP is sophisticated, but there is a problem that the production cost is high, the production efficiency is low. In addition, it is pointed out that the production of VLP using yeast is also a high cost and low efficiency method compared to the E. coli production system. However, E. coli only reported that the structural protein (VP1) was soluble in water, and it was not known that VLP was formed. E. coli expression systems are known to be difficult to produce elaborately folded proteins because of the rapid cell division of E. coli itself and no post-translation modification. If norovirus VLPs derived from E. coli can be developed, it is expected that low-cost vaccines can be supplied compared to vaccines using other expression systems.
이에 본 발명자들은 대장균에서 생물학적 활성을 띄는 수용성 노로 바이러스 VLP를 다량으로 생산하는 방법을 제공하고자 예의 노력한 결과, 대장균에서 단백질의 수용성 발현을 향상시키는 융합 단백질을 노로 바이러스 VP1 단백질의 N-말단에 결합시킨 재조합 발현 벡터를 완성하고 이를 발현시킴으로써 수용성의 생물학적 활성을 갖는 노로 바이러스 VLP를 생산할 수 있게 되었다.Therefore, the present inventors have intensively tried to provide a method for producing a large amount of water-soluble norovirus VLP having biological activity in Escherichia coli, and thus, a fusion protein that enhances the water-soluble expression of the protein in Escherichia coli was coupled to the N-terminus of the norovirus VP1 protein. By completing and expressing the recombinant expression vector, it is possible to produce norovirus VLPs having water soluble biological activity.
본 발명의 목적은 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자, 1 내지 6개의 히스티딘을 코딩하는 유전자, 단백질 절단효소 인식 부위를 코딩하는 유전자 및 노로 바이러스 유래 VP1 유전자 서열을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터를 제공하는 데 있다.An object of the present invention is a water-soluble noro comprising a gene encoding a protein that promotes water-soluble expression of a target protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus-derived VP1 gene sequence. It is to provide a recombinant expression vector for the production of viral vaccines.
본 발명의 또 다른 목적은 상기 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터로 형질전환된 숙주세포를 제공하는 것이다.Still another object of the present invention is to provide a host cell transformed with the recombinant expression vector for producing the water-soluble norovirus vaccine.
본 발명의 또 다른 목적은 (a) 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자, 1 내지 6개의 히스티딘을 코딩하는 유전자, 단백질 절단효소 인식 부위를 코딩하는 유전자 및 노로 바이러스 유래 VP1 유전자 서열을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터를 생산하는 단계, (b) 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 생산하는 단계 및 (c) 상기 형질전환체를 배양하여 재조합 융합 단백질의 발현을 유도하고, 이를 수득하는 단계를 포함하는 수용성 노로 바이러스 백신 생산방법을 제공하는 것이다.Still another object of the present invention is to (a) a gene encoding a protein that promotes water soluble expression of a target protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus derived VP1 gene sequence Producing a recombinant expression vector for producing a water-soluble norovirus vaccine comprising: (b) introducing the expression vector into a host cell to produce a transformant, and (c) culturing the transformant to produce a recombinant fusion protein. To provide a method for producing a water-soluble norovirus vaccine comprising the step of obtaining and obtaining the expression of.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자, 1 내지 6개의 히스티딘을 코딩하는 유전자, 단백질 절단효소 인식 부위를 코딩하는 유전자 및 노로 바이러스 유래 VP1 유전자 서열을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터를 제공한다.The present invention is to solve the above-described problems, genes encoding proteins that promote the water-soluble expression of the target protein, genes encoding 1 to 6 histidines, genes encoding protein cleavage recognition site and norovirus-derived VP1 A recombinant expression vector for the production of a water soluble norovirus vaccine comprising a gene sequence is provided.
본 명세서에 사용된 용어 "발현 벡터"는 발현 벡터의 전사에 제공되는 추가단편에 작동 가능하게 연결된 타겟 단백질을 암호화하는 단편으로 구성되는 선형 또는 원형의 DNA 분자이다. 그와 같은 추가 단편은 프로모터 및 종료암호 서열을 포함한다. 발현 벡터는 하나 이상의 복제 개시점, 하나 이상의 선택 마커 등을 또한 포함한다. 발현 벡터는 일반적으로 플라스미드 또는 바이러스 DNA로부터 유도되거나 또는 둘 다의 요소를 함유한다.As used herein, the term "expression vector" is a linear or circular DNA molecule consisting of fragments encoding a target protein operably linked to additional fragments provided for transcription of the expression vector. Such additional fragments include promoter and termination code sequences. Expression vectors also include one or more origins of replication, one or more selection markers, and the like. Expression vectors are generally derived from plasmid or viral DNA or contain elements of both.
본 명세서에 사용된 용어 "목적 단백질"은 당업자가 대량으로 생산하고자 하는 단백질로서, 재조합 발현 백터에 상기 단백질을 암호화하는 폴리뉴클레오티드를 삽입하여 숙주세포에서 발현이 가능한 모든 단백질을 의미한다.As used herein, the term "target protein" is a protein that a person of ordinary skill in the art intends to produce in large quantities, and means any protein capable of expression in a host cell by inserting a polynucleotide encoding the protein into a recombinant expression vector.
본 명세서에서 사용된 용어 "목단 단백질의 수용성 발현을 촉진하는 단백질"은 융합 단백질을 수용성 형태로 발현시킬 수 있다고 보고된 펩타이드를 말하고 GST(Glutathione S transferase), 말토오스 결합 단백질, 유비퀴틴, 타오레독신 등이 포함되며, 본 발명에서는 이에 한정하지 않고 일반적으로 알려진 수용성 발현 촉진 단백질이면 제한 없이 사용될 수 있다.As used herein, the term "protein that promotes the water soluble expression of a protein" refers to a peptide that is reported to be able to express the fusion protein in water soluble form and refers to glutathione S transferase (GST), maltose binding protein, ubiquitin, taoredoxin, and the like. This includes, but is not limited to the present invention can be used without limitation as long as it is a generally known water-soluble expression promoting protein.
본 발명에 있어서, 상기 목적 단백질의 수용성 발현을 촉진하는 단백질은hRBD, LysRS 또는 hRBD와 LysRS의 융합 단백질 중에서 선택될 수 있다.In the present invention, the protein for promoting the water-soluble expression of the target protein may be selected from hRBD, LysRS or fusion protein of hRBD and LysRS.
본 명세서에 사용된 용어 "hRBD((human RNA binding domain)" 또는 인간 아미노아실 tRNA 합성효소 N-말단 도메인"은 인간 유래 아미노아실 tRNA 합성효소 도메인 중 RNA가 결합하는 N-말단 도메인을 의미하는 것으로, 대장균이나 효모의 tRNA 합성효소에는 존재하지 않으며, 사이즈는 작지만 RNA와 상호작용하는 기능을 가지고 있는 서열로서, 특히 본 발명의 hRBD는 인간 유래 LysRS의 N-말단 도메인을 의미한다.As used herein, the term "hRBD (human RNA binding domain)" or human aminoacyl tRNA synthetase N-terminal domain "refers to an N-terminal domain to which RNA binds in a human-derived aminoacyl tRNA synthetase domain. , Which is not present in the tRNA synthetase of Escherichia coli or yeast, and is small in size but has a function of interacting with RNA, in particular, the hRBD of the present invention refers to the N-terminal domain of human-derived LysRS.
본 명세서에 사용된 용어 "LysRS(lysyl tRNA synthetase)" 또는 "라이실 tRNA 합성효소"는 아미노아실 tRNA 합성효소의 일 구성원으로서, 몇몇 포유류에서 아미노아실 tRNA 합성효소를 구성하는 단백질의 다양한 기능을 조절하기 위하여 분자 저장소로서 작용하는 거대 분자 복합체를 형성한다.As used herein, the term "lysyl tRNA synthetase" or "lysyl tRNA synthetase" is a member of an aminoacyl tRNA synthetase, which in some mammals modulates the various functions of the proteins that make up the aminoacyl tRNA synthetase. To form macromolecular complexes that act as molecular reservoirs.
본 명세서에 사용된 용어 "융합 단백질"또는 "재조합 단백질"은 원래의 목적 단백질 서열의 N-말단 또는 C-말단에 다른 단백질이 연결되거나 다른 아미노산 서열이 부가된 단백질을 의미한다.As used herein, the term "fusion protein" or "recombinant protein" refers to a protein in which another protein is linked or another amino acid sequence is added to the N-terminus or C-terminus of the original protein sequence of interest.
본 발명의 일실시예에서, 상기 hRBD는 서열번호 1로 표시되는 아미노산 서열인 것일 수 있다.In one embodiment of the present invention, the hRBD may be an amino acid sequence represented by SEQ ID NO: 1.
본 발명의 또 다른 일실시예에서, 상기 LysRS는 서열번호 3으로 표시되는 LysRS 유래 펩타이드 서열인 것일 수 있다.In another embodiment of the present invention, the LysRS may be a LysRS-derived peptide sequence represented by SEQ ID NO: 3.
본 발명의 또 다른 일실시예에서, 상기 hRBD와 LysRS 융합 단백질은 서열번호 5로 표시되는 아미노산 서열인 것일 수 있다.In another embodiment of the present invention, the hRBD and LysRS fusion protein may be an amino acid sequence represented by SEQ ID NO: 5.
본 발명에 있어서, 상기 1 내지 6개의 히스티딘을 코딩하는 유전자는 서열번호 7로 표시되는 것일 수 있다.In the present invention, the gene encoding the 1 to 6 histidine may be represented by SEQ ID NO: 7.
본 발명에 있어서, 상기 단백질 절단효소는 TEV일 수 있으며, 구체적으로 상기 TEV 인식 부위를 코딩하는 서열은 서열번호 8로 표시되는 것일 수 있다.In the present invention, the protein cleavage enzyme may be TEV, and specifically, the sequence encoding the TEV recognition site may be represented by SEQ ID NO: 8.
본 발명은 또한 상기 발현 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a host cell transformed with the expression vector.
본 명세서에서 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것을 의미한다. 본 발명에 따른 발현 벡터를 형질전환시키는 방법은 전기천공법(electrophoration), 인산칼슘(CaPO4)법, 염화칼슘(CaCl2)법, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법 또는 초산 리튬-DMSO법을 포함할 수 있으나, 이에 한정되는 것을 아니다.As used herein, the term “transformation” means that DNA is introduced into a host such that the DNA is replicable as an extrachromosomal factor or by chromosomal integration completion. Method for transforming the expression vector according to the present invention is electroporation (electrophoration), calcium phosphate (CaPO 4 ) method, calcium chloride (CaCl 2 ) method, microinjection (microinjection), polyethylene glycol (PEG) method, DEAE-dex It may include, but is not limited to, the Tran method, the cationic liposome method or the lithium acetate-DMSO method.
본 발명에 따른 숙주세포에 있어서, 상기 숙주세포는 DNA 도입 효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주세포가 바람직하며, 원핵 및 진핵을 포함한 모든 미생물이 사용될 수 있다. 바람직하기는, 상기 숙주세포는 대장균(E. coli)일 수 있다.In the host cell according to the present invention, the host cell is preferably a high DNA introduction efficiency, a host cell having a high expression efficiency of the introduced DNA, and any microorganism including prokaryotic and eukaryotic may be used. Preferably, the host cell may be E. coli .
본 발명은 또한 (a) 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자, 1 내지 6개의 히스티딘을 코딩하는 유전자, 단백질 절단효소 인식 부위를 코딩하는 유전자 및 노로 바이러스 유래 VP1 유전자 서열을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터를 생산하는 단계, (b) 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 생산하는 단계 및 (c) 상기 형질전환체를 배양하여 재조합 융합 단백질의 발현을 유도하고, 이를 수득하는 단계를 포함하는 수용성 노로 바이러스 백신 생산방법을 제공한다.The invention also includes (a) a gene encoding a protein that promotes water soluble expression of a desired protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a norovirus derived VP1 gene sequence Producing a recombinant expression vector for producing a water-soluble norovirus vaccine, (b) introducing the expression vector into a host cell to produce a transformant, and (c) culturing the transformant to express the recombinant fusion protein. It provides a water-soluble norovirus vaccine production method comprising the step of inducing and obtaining it.
본 발명의 재조합 발현 벡터 및 이를 이용한 노로 바이러스 백신 생산 방법은 대장균에서 효과적으로 노로 바이러스 VLP 백신을 생산할 수 있을 뿐만 아니라 구조적으로도 정교한 VLP 생산을 가능하게 함으로써, 저비용 고효율의 노로 바이러스 VLP 백신을 생산할 수 있게 되었다.The recombinant expression vector of the present invention and a method for producing norovirus vaccines using the same can effectively produce norovirus VLP vaccines in E. coli, as well as structurally sophisticated VLPs, thereby producing low-cost and high-efficiency norovirus VLP vaccines. It became.
도 1은 본 발명의 일실시예에 따른 수용성 노로 바이러스 생산용 재조합 발현 벡터의 구조를 나타낸 모식도이다.Figure 1 is a schematic diagram showing the structure of a recombinant expression vector for the production of water-soluble norovirus according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따라 발현된 VP1 단백질의 수용성 여부를 SDS-PAGE로 확인한 결과이다. (A)는 과발현 후37℃에서 3시간 배양한 결과, (B)는 과발현 후 16℃에서 하룻동안 배양한 결과이고, 각각의 경우 왼쪽 패널은 hRBD가 재조합 되어 있는 VP1(69 kDa)의 발현 결과, 오른쪽 패널은 대조군 VP1(59 kDa)의 결과이다.2 is a result of confirming the water solubility of the expressed VP1 protein according to an embodiment of the present invention by SDS-PAGE. (A) was incubated for 3 hours at 37 ° C after overexpression, (B) was incubated for one day at 16 ° C after overexpression, and in each case, the left panel showed the result of the expression of VP1 (69 kDa) in which hRBD was recombined. , Right panel is the result of control VP1 (59 kDa).
도 3은 본 발명의 일실시예에 따라 발현된 VP1 단백질을 니켈 친화성 크로마토그래피를 통해 정제하고 확인한 크로마토그램 결과이다.3 is a chromatogram result of purifying and confirming VP1 protein expressed according to an embodiment of the present invention through nickel affinity chromatography.
도 4는 본 발명의 일실시예에 따라 발현된 VP1 단백질을 정제한 후 SDS-PAGE로 확인하였고, 18 ~ 20레인의 분획을 풀링(pooling)한 결과이다.4 is purified by the VP1 protein expressed according to an embodiment of the present invention and confirmed by SDS-PAGE, the result of pooling a fraction of 18 to 20 lanes.
도 5는 TEV 단백질 절단효소를 이용하여 노로 바이러스 VP1을 절단한 후 SDS-PAGE를 통해 확인한 결과이다.Figure 5 shows the results confirmed by SDS-PAGE after cutting the norovirus VP1 using TEV protein cleavage enzyme.
도 6은 TEV 단백질 절단효소로 절단한 후 형성된 VLP를 정제하기 위하여 크기 배제 크로마토그래피를 수행한 결과를 나타낸 크로마토그램(A) 및 SDS-PAGE(B) 결과이다.Figure 6 is a chromatogram (A) and SDS-PAGE (B) showing the results of the size exclusion chromatography to purify the VLP formed after cleavage with TEV protein cleavage enzyme.
도 7은 노로 바이러스 VLP의 형성 여부를 TEM을 통해 확인한 결과이다(A: 대장균 유래 노로 바이러스 VLP, B: 야생형 노로 바이러스, C: hRBD가 융합되어 있는 VP1).7 is a result of confirming the formation of norovirus VLP through TEM (A: E. coli-derived norovirus VLP, B: wild-type norovirus, C: VP1 fused with hRBD).
도 8은 곤충세포 유래 VLP(A)와 대장균 유래 VLP(B)에 대한 ELISA 실험 결과이다.8 shows the results of ELISA experiments on insect cell-derived VLP (A) and E. coli-derived VLP (B).
도 9는 대장균 유래 VLP가 노로 바이러스 백신으로써 실제 효능을 가질 수 있는지 HBGA 결합 분석을 통해 확인한 결과이다.9 is a result confirmed by HBGA binding analysis whether E. coli-derived VLPs can have real efficacy as a norovirus vaccine.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예Example 1. 재조합 발현 벡터 제작 및 VP1 단백질 발현 1. Recombinant Expression Vector Construction and VP1 Protein Expression
대장균을 통한 노로 바이러스 VLP 생산에는 Norovirus Hu/GII.4/Hiroshima/55/2005/JPN 유래 VP1 유전자가 이용되었으며, 해당 VP1 유전자는 IVI(International Vaccine Institute)로부터 제공받았다. Norovirus VLP production from Norovirus Hu / GII.4 / Hiroshima / 55/2005 / JPN was used to produce VLPs through Escherichia coli, and the VP1 gene was provided by the International Vaccine Institute (IVI).
pGE-RBD3 벡터가 발현 벡터로 이용되었으며 위 벡터는 pGE-LysRS3 벡터에서 LysRS 유전자 대신 LysRS의 RNA 결합 도메인 부분만을 지정하는 유전자로 대체 편집하여 제작하였다. 구체적으로, pGE-RBD3 벡터에 XbaⅠ과 KpnⅠ 제한효소를 처리하여 절단하였으며, 잘려진 발현 벡터 내에 hRBD(서열번호 1)를 코딩하는 폴리뉴클레오티드 서열(서열번호 2), 6개의 히스티딘 태그(Histag)를 코딩하는 폴리뉴클레오티드 서열(서열번호 7), TEV 인식 서열(ENLYFQ)을 코딩하는 폴리뉴클레오티드 서열(서열번호 8) 및 VP1(서열번호 9)을 코딩하는 폴리뉴클레오티드 서열(서열번호 10)이 연속적으로 구성되어 있는 DNA 절편을 삽입하였다(도 1). 이렇게 완성된 재조합 플라스미드를 대장균 숙주 HMS174에 형질전환 하였다. 단백질을 발현하기 위한 최초배양은 50 μg/ml 암피실린이 들어간 3 ml LB 배지에 37℃에서 하룻동안 배양한 후, 같은 농도의 암피실린이 들어간 15 ml의 LB 배지에 전날 배양한 대장균 1 ml을 첨가하여 37℃에서 O.D600nm가 0.5 ~ 0.7에 도달할 때까지 배양하였다. 적정 O.D 값에 도달하였을 때 1 mM IPTG로 과발현을 유도하였으며 IPTG 첨가 후에는 37℃에서 3시간, 16℃에서 하룻동안 배양하여 발현시켰다. hRBD, 6xHis, TEV 서열이 포함되어 있지 않은 대조군 VP1도 동일한 조건에서 발현시켰으며, 발현된 단백질을 채취하여 SDS-PAGE를 통하여 수용성 여부를 확인하였다. The pGE-RBD3 vector was used as an expression vector, and the above vector was prepared by replacing and editing the gene that specifies only the RNA binding domain portion of LysRS instead of the LysRS gene in the pGE-LysRS3 vector. Specifically, pGE-RBD3 vector was digested by treatment with Xba I and Kpn I restriction enzymes, and a polynucleotide sequence (SEQ ID NO: 2) encoding six histidine tags (Histag) encoding hRBD (SEQ ID NO: 1) in the truncated expression vector. The polynucleotide sequence (SEQ ID NO: 7), the polynucleotide sequence encoding the TEV recognition sequence (ENLYFQ) (SEQ ID NO: 8), and the polynucleotide sequence encoding the VP1 (SEQ ID NO: 9) DNA fragments were inserted (FIG. 1). The recombinant plasmid thus completed was transformed into E. coli host HMS174. The initial culture for expressing the protein was incubated at 37 ° C. in 3 ml LB medium containing 50 μg / ml ampicillin for one day, and then, 1 ml of E. coli cultured the previous day in 15 ml LB medium containing the same concentration of ampicillin was added. Incubation was performed at 37 ° C until O.D600nm reached 0.5-0.7. When the appropriate O.D value was reached, overexpression was induced with 1 mM IPTG. After IPTG addition, the cells were incubated at 37 ° C. for 3 hours and at 16 ° C. for one day. The control VP1, which does not contain the hRBD, 6xHis, and TEV sequences, was also expressed under the same conditions. The expressed protein was collected and checked for water solubility through SDS-PAGE.
그 결과, 도 2에 나타낸 바와 같이 37℃에서는 대조군 VP1 과 재조합 VP1 모두 불수용성으로 발현되었으나(도 2A), 16℃에서 발현하였을 때 대조군 VP1는 약 90%이 불수용성 형태로 발현된 반면, 재조합 VP1은 대조군 VP1에 비해 획기적으로 수용성이 향상되어 발현되었으며 발현량 또한 대조군 VP1 보다 현저히 증가한 것을 확인할 수 있었다(도 2B). 이로부터 hRBD가 대장균에서 VP1 단백질 발현의 수용성을 증진시킬 수 있는 적합한 융합 파트너임을 알 수 있었다.As a result, as shown in FIG. 2, both the control VP1 and the recombinant VP1 were expressed insoluble at 37 ° C. (FIG. 2A), but when expressed at 16 ° C., about 90% of the control VP1 was expressed in the insoluble form, whereas VP1 was expressed significantly improved in water solubility compared to the control VP1 and the amount of expression was also significantly increased than the control VP1 (Fig. 2B). From this, hRBD was found to be a suitable fusion partner to enhance the water solubility of VP1 protein expression in E. coli.
실시예Example 2. 단백질 정제 2. Protein Purification
수용성이 확인된 단백질들은 니켈(Ni) 친화성 크로마토그래피를 통하여 정제되었다. 위와 동일한 방식의 배양방법을 이용하여 3 ml, 50 ml를 거쳐 최종적으로 500 ml의 대장균을 발현 및 수확한 뒤 정제를 진행하였다. 구체적으로, A 버퍼 [50 mM Tris-HCl (pH 7.5), 300 mM 염화나트륨, 10% 글리세롤, 2 mM 2-머캅토에탄올, 트리톤X-100 0.05%, 및 10 mM 이미다졸] 로 먼저 이퀼리브리엄 하였고 이퀼리브리엄 한 Ni-NTA 컬럼 레진(GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, UK)을 이용하여 샘플 단백질을 정제하였다. A 버퍼 이후 B 버퍼[50 mM Tris-HCl (pH 7.5), 300 mM 염화나트륨, 10% 글리세롤, 2 mM 2-머캅토에탄올, 트리톤X-100 0.05% 및 300 mM 이미다졸]를 이용해 10 ~ 300 mM 범위의 직선형 그래디언트 이미다졸로 단백질을 용출시켰다. SDS-PAGE를 통해 타겟 단백질을 포함하는 분획을 확인한 후 해당 분획을 모아 C 버퍼(저장버퍼) [50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 0.1 mM EDTA, 및 0.1% Tween 20]를 이용하여 투석하였다. 최종적으로 정제된 단백질의 농도는 BSA(Amresco, Solon, OH, USA)를 이용하여 정량하였으며, 그 결과 5.38 mg/ml 의 VP1 단백질을 얻었다. 정제된 VP1 단백질은 30% 글리세롤(glycerol)을 1:1비율로 섞은 후 -20℃에서 보관하였다. Proteins identified as water soluble were purified by nickel (Ni) affinity chromatography. By using the same method of culture as described above, after passing through 3 ml and 50 ml, 500 ml of E. coli was finally expressed and harvested and purified. Specifically, it was first equilibrium with A buffer [50 mM Tris-HCl (pH 7.5), 300 mM sodium chloride, 10% glycerol, 2 mM 2-mercaptoethanol, Triton X-100 0.05%, and 10 mM imidazole] and equilibrium Sample protein was purified using one Ni-NTA column resin (GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, UK). 10 to 300 mM with A buffer followed by B buffer [50 mM Tris-HCl (pH 7.5), 300 mM sodium chloride, 10% glycerol, 2 mM 2-mercaptoethanol, Triton X-100 0.05% and 300 mM imidazole] The protein was eluted with a range of linear gradient imidazoles. After identifying the fraction containing the target protein through SDS-PAGE, the fractions were collected and C buffer (storage buffer) [50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 0.1 mM EDTA, and 0.1% Tween 20] was collected. Dialysis was used. Finally, the concentration of purified protein was quantified using BSA (Amresco, Solon, OH, USA), and as a result, 5.38 mg / ml of VP1 protein was obtained. The purified VP1 protein was mixed at 30% glycerol in a 1: 1 ratio and stored at -20 ° C.
니켈 친화성 크로마토그래피로 정제된 VP1을 확인한 결과를 도 3에 나타내었고, SDS-PAGE를 통해 정제 여부를 확인한 결과를 도 4에 나타내었다. The result of confirming the purified VP1 by nickel affinity chromatography is shown in FIG. 3, and the result of confirming the purification through SDS-PAGE is shown in FIG. 4.
실시예Example 3.  3. TEV 단백질TEV Protein 절단효소의 세포 내 발현 Intracellular Expression of Cleavage Enzymes
상기에서 발현 및 정제된 단백질이 TEV 단백질 절단효소(AcTEV Protease, Cat. 12575-015, Invitrogen life technology)에 의해 적절하게 절단되는지 확인하였다. 실험은 25℃에서 진행하였으며 0시간, 0.5시간, 1시간, 3시간, 7시간의 간격을 두어 점차적으로 퓨전 파트너 단백질의 절단 여부를 확인하였으며, 그 결과 정제된 VP1 단백질은 0시간, 0.5시간, 1시간, 3시간, 7시간에서 TEV 단백질 절단효소에 의해 순차적으로 절단되는 것을 확인하였다(도 5A).The protein expressed and purified above was confirmed to be appropriately cleaved by TEV protein cleavage enzyme (AcTEV Protease, Cat. 12575-015, Invitrogen life technology). The experiment was conducted at 25 ° C., and the fusion partner protein was gradually cleaved at intervals of 0, 0.5, 1, 3, and 7 hours. As a result, the purified VP1 protein was 0, 0.5, It was confirmed that the cleavage was sequentially performed by TEV protein cleavage enzyme at 1 hour, 3 hours, and 7 hours (FIG. 5A).
다음으로 각 시간 별로 TEV 단백질 절단효소 절단 후 채취한 RBD가 제거된VP1 단백질 샘플은 원심분리를 통해 수용성 영역과 불수용성 영역을 구분하였고, 이를 통해 효소 절단 후 타겟 단백질의 수용성 여부에 변화가 있는지 확인한 결과, 모두 수용성으로 존재하는 것을 확인하였다(도 5B).Next, the RBD-removed VP1 protein sample collected after the TEV protein cleavage enzyme cleavage at each time was distinguished from the water-soluble region and the insoluble region by centrifugation. As a result, it was confirmed that all were present in water solubility (FIG. 5B).
아울러, VP1 단백질은 일반적으로 이합체(dimer)를 이루는 형태로 존재하고 각각의 이합체가 모여 VLP를 이루는 것으로 알려져 있다. 대장균을 이용해 발현한 VP1 단백질 역시 이합체를 이루는지 확인하기 위해 16℃에서 하룻동안 TEV 단백질 절단효소로 절단시킨 VP1과 절단시키지 않은 VP1(hRBD-VP1)를 이용하여 SDS-PAGE를 수행하였다. DTT가 첨가 또는 제거된 SDS 로딩 염료(loading dye)에 VP1을 섞고, 가열(boiling) 여부를 구분하여 샘플을 로딩한 후, SDS-PAGE 겔에 내려 비교하였다. 그 결과, 재조합 VP1 과 TEV 단백질 절단효소에 의해 절단된 VP1 모두 이합체를 형성하는 것을 확인할 수 있었다(도 5C). hRBD가 융합된 VP1에서도 이합체를 형성하는 이유는 이합체를 형성할 때 대칭으로 이루어 지면서 N-말단에 부착된 hRBD가 VP1의 양쪽에 배치되어 구조형성에 큰 영향을 미치지 않기 때문인 것으로 보인다. In addition, VP1 protein is generally present in the form of dimers (dimers), it is known that each dimer gathers to form a VLP. SDS-PAGE was performed using VP1 cleaved with TEV protein cleavage enzyme and non-cleaved VP1 (hRBD-VP1) at 16 ° C. to confirm whether the VP1 protein expressed in E. coli was also dimerized. VP1 was mixed with the SDS loading dye to which DTT was added or removed, and the samples were loaded by boiling or not and then compared to the SDS-PAGE gel. As a result, it was confirmed that both the recombinant VP1 and the VP1 cleaved by the TEV protein cleavage enzyme form dimers (FIG. 5C). The reason why the hRBD is also formed in the fused VP1 is due to symmetry when forming the dimer, and that the hRBD attached to the N-terminus is placed on both sides of the VP1 and does not significantly affect the structure formation.
실시예Example 4. 크기 배제 크로마토그래피(Size exclusion chromatography) 4. Size exclusion chromatography
TEV 단백질 절단효소로 절단시킨 VP1 단백질의 이합체가 VLP를 형성하는지 여부를 확인하기 위한 생화학적 분석을 수행하였다. 구체적으로, 4℃에서 Superdex-200 분석 겔-여과 컬럼(analytical gel-filtration column)을 통하여 크기 배제 크로마토그래피(size exclusion chromatography)로 진행하였다. Biochemical analysis was performed to determine whether the dimers of VP1 protein cleaved with TEV protein cleavage enzymes form VLPs. Specifically, size exclusion chromatography was performed at 4 ° C. through a Superdex-200 analytical gel-filtration column.
전날 AcTEV 단백질 절단효소를 이용하여 4℃에서 하룻동안 융합 단백질을 절단시켰다. 컬럼에는 버퍼[Ammonium acetate 250 mM (pH 6.0)]로 이퀼리브리엄을 진행하였고, 이퀼리브리엄 종료 후에 융합 파트너 단백질이 절단된 VP1 샘플을 로딩하여 정제하였다. 정제 후 페리틴(440 kDa), 알돌레이즈(158 kDa), 콘알부민(75 kDa), 오발부민(44 kDa), 블루 덱스트란 2000(GE Healthcare)을 이용하여 칼리브레이션을 진행함으로써 크로마토그램(chromatogram) 상에서 피크(peak)로 나타난 단백질의 분자량을 결정하였다. The fusion protein was cleaved overnight at 4 ° C. using AcTEV protein cleavage enzyme the day before. The column was subjected to an equilibrium with a buffer [Ammonium acetate 250 mM (pH 6.0)], and after completion of the equilibrium, the VP1 sample from which the fusion partner protein was cleaved was loaded and purified. After purification, calibration was performed using ferritin (440 kDa), aldolase (158 kDa), cornalbumin (75 kDa), ovalbumin (44 kDa), and blue dextran 2000 (GE Healthcare). The molecular weight of the protein indicated by the peak was determined.
종래 연구 결과에 의하면 노로 바이러스 VLP는 10 MDa 의 분자량을 보이고 우리가 사용한 컬럼의 최대 정제 한계가 800 kDa이므로 VLP를 적절하게 형성하였을 때 Void에서 정제될 것이라고 가정하였다. 크로마토그램을 확인한 결과 Void에서 노로 바이러스 VLP로 보이는 높은 피크를 확인할 수 있었으며(도 6A), 정제하여 수확한 분획들을 SDS-PAGE로 확인해본 결과 크로마토그램의 void에서 나타난 피크가 노로 바이러스 VLP에 해당함을 확인할 수 있었다(도 6B). 또한 TEV 단백질 절단효소에 의해 잘려진 hRBD 또한 크로마토그래피를 통하여 정제되었음을 확인할 수 있었다. According to the results of the previous study, it was assumed that the norovirus VLP had a molecular weight of 10 MDa and the maximum purification limit of the column used by us was 800 kDa, so that it would be purified from Void when the VLP was properly formed. As a result of the chromatogram, the high peak of Void norovirus VLP was found (Fig. 6A), and the purified and harvested fractions were confirmed by SDS-PAGE. It could be confirmed (FIG. 6B). In addition, it was confirmed that the hRBD cut by TEV protein cleavage enzyme was also purified by chromatography.
실시예Example 5. 전자 현미경을 통한  5. through electron microscope VLPVLP 형성 확인 Formation confirmation
Void에서 정제된 VP1 단백질이 VLP를 형성했는지 확인하기 위하여 전자 현미경으로 관찰하였다. 정제된 노로 바이러스 VLP를 먼저 구리 그리드에 1분 간 올린 뒤 2% 아세트산 우라닐(uranyl acetate)를 이용하여 15초 간 염색하였다. 전 처리한 샘플을 30분 간 상온에서 건조시킨 뒤 투과 전자 현미경(TEM, Transmission electron microscopy; JEM-1011, JEOL, Japan)을 이용하여 촬영하였다. 위 실험은 연세대학교 의과대학 의생명연구원 연구지원부에서 수행하였다. The VP1 protein purified from Void was observed by electron microscopy to confirm the formation of VLP. Purified norovirus VLPs were first raised on a copper grid for 1 minute and then stained for 15 seconds using 2% uranyl acetate. The pretreated sample was dried at room temperature for 30 minutes and then photographed using a transmission electron microscopy (TEM, Transmission electron microscopy; JEM-1011, JEOL, Japan). The experiment was conducted by the Research Support Department of the Medical Life Research Institute, Yonsei University College of Medicine.
그 결과 도 7에 나타난 바와 같이, 정제된 VP1 단백질이 VLP를 형성하는 것을 확인할 수 있었다(도 7A). 확인된 VLP의 직경은 34 nm 였으며, 배큘로바이러스-곤충세포 발현시스템을 이용하여 생산한 노로바이러스 VLP와 야생형 노로바이러스(도 7B)의 직경과 비슷하였다. 반면, TEV 단백질 절단효소로 단백질 절단하지 않고 hRBD가 융합되어 있는 VP1은 VLP를 형성하지 못하고 응집되는 것을 확인할 수 있었다(도 7C).As a result, as shown in FIG. 7, it was confirmed that the purified VP1 protein forms VLP (FIG. 7A). The diameter of the identified VLP was 34 nm and was similar to that of the norovirus VLP and wild type norovirus (FIG. 7B) produced using the baculovirus-insect cell expression system. On the other hand, VP1 to which hRBD was fused without protein cleavage with TEV protein cleavage enzyme was able to confirm aggregation without forming VLP (FIG. 7C).
실시예Example 6. 항체 획득 및 ELISA를 통한 혈청 항체  6. Antibody Acquisition and Serum Antibodies Through ELISA 역가Titer 측정 Measure
마우스 실험은 6주령 BALB/c(Orient-bio)를 이용하였으며 2회에 걸쳐(1일차, 21일차) 접종하였다. 대장균 유래 VLP와 배큘로바이러스-곤충세포 유래 VLP 에 대하여 각각 그룹(n = 3)을 구분하였으며 각 그룹에는 5 μg의 단백질에 항원보강제(ImjectTM Alum adjuvant, Thermo SCIENTIFIC, 40 μg)를 섞어 주어 근육주사를 통하여 접종하였다. PBS와 아세트산 암모늄(ammonium acetate)을 접종한 쥐는 대조군으로 사용하였다. 4회에 걸쳐(0일차, 21일차, 28일차, 42일차) 전신 마취(Alfaxalone (3-α-hydroxy-5-α-pregnane-11,20-dione) 40 μg/mouse, Xylazine 0.4 mg/mouse) 후 눈 출혈을 통하여 혈액을 채취하였으며 채취한 혈액은 4℃에서 하룻동안 혈구를 가라앉힌 뒤 다음날 30분간 원심분리 하여 혈청표본을 채취 후 -80℃에서 보관하였다. 위 실험계획은 연세 실험동물연구센터(YLARC) (Permit number: IACUC-A-201609-388-03)에서 평가 및 승인되었다. Mouse experiments were performed 6 weeks old BALB / c (Orient-bio) and inoculated twice (day 1, day 21). Groups (n = 3) were divided for E. coli-derived VLPs and baculovirus-insect-derived VLPs, and each group was mixed with 5 μg of protein adjuvant (ImjectTM Alum adjuvant, Thermo SCIENTIFIC, 40 μg). Inoculated through. Mice inoculated with PBS and ammonium acetate were used as controls. 40 μg / mouse, Xylazine 0.4 mg / mouse (Alfaxalone (3-α-hydroxy-5-α-pregnane-11,20-dione)) 4 times ( day 0, 21, 28, 42) Blood was collected through eye bleeding, and the collected blood was allowed to settle for one day at 4 ° C, then centrifuged for 30 minutes the next day, and the serum samples were collected and stored at -80 ° C. The experimental plan was evaluated and approved by the Yonsei Laboratory Animal Research Center (YLARC) (Permit number: IACUC-A-201609-388-03).
배큘로바이러스-곤충세포 VLP 및 대장균 VLP와 동물실험을 통해 얻은 대장균 VLP, 배큘로바이러스-곤충세포 VLP에 대한 혈청 사이에 항원-항체 교차반응성이 있는지 효소결합 면역흡착 분석법(ELISA)을 이용하여 확인하였다.Enzyme-linked immunosorbent assay (ELISA) for the determination of antigen-antibody cross-reactivity between baculovirus-insect cell VLPs and E. coli VLPs and sera against E. coli VLPs and baculovirus-insect cell VLPs from animal experiments It was.
구체적으로, 96-칸 Nunc 플레이트(Thermo Fisher Scientific)에 2 μg/ml 농도의 곤충세포 유래 VLP 및 대장균 유래 VLP로 100 μl/well씩 코팅하였으며 4℃에서 하룻동안 보관하였다. 플레이트를 PBS에 0.05% Tween 20을 포함시킨 PBS-T를 이용하여 3회 세척한 뒤 1% BSA 가 포함되어있는 PBS를 이용하여 상온에서 1시간 블로킹(blocking)함으로써 다른 단백질의 코팅을 차단하였다. 다음으로 PBS-T로 다시 플레이트를 3회 세척하고, 곤충세포 유래 VLP와 대장균 유래 VLP를 각각 마우스에 접종하여 얻은 혈청을 100 μl/well씩 넣은 후 상온에서 1시간 반응시켰다. 첫 번째 웰에 1/100으로 희석된 혈청을 넣고, 두 번째 웰부터는 순차적으로 1/2로 희석한 혈청을 넣어 반응시켰으며, 희석에는 0.05% Tween 20, 0.25% BSA가 포함된 PBS를 이용하였다. 1차 항체 처리 후 PBS-T로 3회 플레이트를 세척한 뒤 HRP가 부착된 2차 항 토끼 IgG 염소항체를 1/10,000로 희석하여 100 μl/well씩 넣은 후 상온에서 1시간 동안 반응시킴으로써 2차 항체 처리를 하였다. PBS-T로 3회 세척한 플레이트에 3,3', 5,5’-테트라메틸벤지디닌(tetramethylbenzidinine, TMB) 용액(BD Biosciences) 100 μl를 각각의 웰에 첨가한 뒤 해당 플레이트를 상온에서 30분 동안 현상하였다. 50 μl/well 의 2 N H2SO4(Blue to yellow)를 통해 비색 반응(colorimetric reaction)을 중단하였고, ELISA 판독기를 통해 450 nm에서의 흡광도(O.D.)를 측정하였다. Specifically, 100 μl / well was coated in 96-can Nunc plate (Thermo Fisher Scientific) with insect cell-derived VLP and E. coli-derived VLP at a concentration of 2 μg / ml and stored at 4 ° C. for one day. Plates were washed three times using PBS-T containing 0.05% Tween 20 in PBS and then blocked for 1 hour at room temperature with PBS containing 1% BSA to block coating of other proteins. Next, the plate was washed three times with PBS-T again, and 100 μl / well of serum obtained by inoculating mouse-derived VLP and E. coli-derived VLP, respectively, was reacted at room temperature for 1 hour. In the first well, 1/100 diluted serum was added, and from the second well, serum diluted 1/2 was sequentially added. The dilution was performed using PBS containing 0.05% Tween 20 and 0.25% BSA. . After washing the plate three times with PBS-T after the first antibody treatment, the secondary anti-rabbit IgG goat antibody with HRP was diluted to 1 / 10,000, added 100 μl / well, and reacted at room temperature for 1 hour. Antibody treatment was performed. In a plate washed three times with PBS-T, 100 μl of 3,3 ', 5,5'-tetramethylbenzidinine (TMB) solution (BD Biosciences) was added to each well, and the plate was allowed to stand at room temperature. Developed for minutes. The colorimetric reaction was stopped via 50 μl / well of 2 NH 2 SO 4 (Blue to yellow) and the absorbance (OD) at 450 nm was measured by an ELISA reader.
그 결과 곤충세포 유래 VLP를 플레이트에 코팅한 뒤 대장균 VLP를 접종하여 얻은 혈청을 반응시켰을 때에 높은 항원-항체 반응성을 보이는 것을 확인할 수 있었고(도 8A), 반대로 대장균 유래 VLP를 플레이트에 코팅한 뒤 곤충세포 유래 VLP를 접종하여 얻은 혈청을 반응시켰을 때에도 항원-항체 반응성이 있음을 확인할 수 있었다(도 8B).As a result, it was confirmed that the antigen-antibody reactivity was exhibited when the serum obtained by inoculating ELP coli VLP was coated on the plate after the insect cell-derived VLP was coated (FIG. 8A). When the serum obtained by inoculation with the cell-derived VLP was reacted, it was confirmed that there was antigen-antibody reactivity (FIG. 8B).
실시예Example 7.  7. HBGAHBGA 결합 및 블로킹 시험  Bonding and blocking test
대장균에서 생산한 VLP가 충분한 마우스 면역원성을 가지는지 확인한 후 대장균에서 생산한 VLP가 노로 바이러스 백신으로써 실질적으로 효능을 가지는지 HBGA 결합 분석(binding assay)을 통해 간접적으로 확인하였다. After confirming that the VLP produced in E. coli has sufficient mouse immunogenicity, it was indirectly confirmed through the HBGA binding assay whether the VLP produced in E. coli is substantially effective as a norovirus vaccine.
구체적으로, 96-칸 Nunc 플레이트(Thermo Fisher Scientific)의 첫 번째 칸에 대장균 유래 VLP 5 μg를 코팅한 후 나머지 웰에 1/2로 연속적으로 희석하였으며 상온에서 5시간 동안 코팅하였다. 세척버퍼 [PBS, 0.05% Tween 20(PBS-T)]로 각각의 웰을 세척한 뒤 1% BSA가 포함되어 있는 PBS로 블로킹하였다. 블로킹은 4℃에서 하룻동안 진행되었다. 세척과정을 거친 후 20 μg/ml 농도의 비오틴(biotin)이 부착된 Type 2 HBGA(Glycotech, USA, Cat.01-034)를 각각의 웰에 100 μl씩 넣고 상온에서 1시간 30분 동안 반응시켰다. 반응 뒤 각각의 웰을 세척한 뒤 스트랍타비딘(streptavidin)이 부착된 HRP(Horseradish peroxidase; Thermo scientific, Cat. 21124)를 2 mg/ml 농도로 각각의 웰에 100 μl씩 넣어주어 상온에서 1시간 동안 반응하였다. 그리고 3,3',5,5’-테트라메틸벤지디닌(tetramethylbenzidinine, TMB) 용액(BD Biosciences) 150 μl를 각각의 웰에 첨가하여 상온에서 20분 동안 현상하였다. 현상 후 50 μl/well의 2 N H2SO4(Blue to yellow)를 통해 비색 반응(colorimetric reaction)을 중단하였고 효소결합 면역흡수 분석법(ELISA) 판독기를 통해 450 nm에서의 흡광도(O.D.)를 측정하였다. Specifically, 5 μg of E. coli-derived VLP was coated on the first compartment of a 96-can Nunc plate (Thermo Fisher Scientific), and then diluted in 1/2 of the remaining wells, and coated at room temperature for 5 hours. Each well was washed with a wash buffer [PBS, 0.05% Tween 20 (PBS-T)] and then blocked with PBS containing 1% BSA. Blocking proceeded at 4 ° C. for one day. After washing, 100 μl of biotin attached Type 2 HBGA (Glycotech, USA, Cat.01-034) was added to each well and reacted at room temperature for 1 hour 30 minutes. . After the reaction, each well was washed, and 100 μl of streptavidin-attached HRP (Horseradish peroxidase; Thermo scientific, Cat. 21124) was added to each well at a concentration of 2 mg / ml. Reacted for hours. And 150 μl of 3,3 ', 5,5'-tetramethylbenzidinine (TMB) solution (BD Biosciences) was added to each well and developed for 20 minutes at room temperature. After development, the colorimetric reaction was stopped via 50 μl / well of 2 NH 2 SO 4 (Blue to yellow) and absorbance (OD) at 450 nm was measured by an enzyme-linked immunosorbent assay (ELISA) reader. .
그 결과, 5 μg 대장균 유래 VLP로 코팅한 웰에서는 흡광도가 1.0로 나타났고, 이로부터 대장균에서 유래한 VLP 또한 HBGA에 결합하는 능력이 있음을 알 수 있었다(도 9).As a result, in the well coated with 5 μg E. coli-derived VLP, the absorbance was 1.0, indicating that the VLP derived from E. coli also had the ability to bind to HBGA (FIG. 9).

Claims (19)

  1. 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자;A gene encoding a protein that promotes water soluble expression of a target protein;
    1 내지 6개의 히스티딘을 코딩하는 유전자;Genes encoding 1 to 6 histidines;
    단백질 절단효소 인식 부위를 코딩하는 유전자; 및A gene encoding a protein cleavage site; And
    노로 바이러스 유래 VP1 유전자 서열Norovirus-derived VP1 gene sequence
    을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.Recombinant expression vector for producing a water-soluble norovirus vaccine comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 목적 단백질의 수용성 발현을 촉진하는 단백질은hRBD, LysRS 또는 hRBD와 LysRS의 융합 단백질인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.The protein for promoting the water-soluble expression of the target protein is hRBD, LysRS or recombinant expression vector for water-soluble norovirus vaccine production, characterized in that the fusion protein of hRBD and LysRS.
  3. 제 2항에 있어서,The method of claim 2,
    상기 hRBD는 서열번호 1로 표시되는 아미노산 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.The hRBD is a recombinant expression vector for producing a water-soluble norovirus vaccine, characterized in that the amino acid sequence represented by SEQ ID NO: 1.
  4. 제 2항에 있어서,The method of claim 2,
    상기 LysRS는 서열번호 3으로 표시되는 LysRS 유래 펩타이드 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.LysRS is a recombinant expression vector for producing a water-soluble norovirus vaccine, characterized in that the LysRS-derived peptide sequence represented by SEQ ID NO: 3.
  5. 제 2항에 있어서,The method of claim 2,
    상기 hRBD와 LysRS 융합 단백질은 서열번호 5로 표시되는 아미노산 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 벡터.The hRBD and LysRS fusion protein is a recombinant vector for producing a water-soluble norovirus vaccine, characterized in that the amino acid sequence represented by SEQ ID NO: 5.
  6. 제 1항에 있어서,The method of claim 1,
    상기 1 내지 6개의 히스티딘을 코딩하는 유전자는 서열번호 7로 표시되는 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.Recombinant expression vector for producing a water-soluble norovirus vaccine, characterized in that the gene encoding the 1 to 6 histidine is represented by SEQ ID NO: 7.
  7. 제 1항에 있어서,The method of claim 1,
    상기 단백질 절단효소는 TEV인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.The protein cleavage enzyme is a recombinant expression vector for producing a water-soluble norovirus vaccine, characterized in that the TEV.
  8. 제 1항에 있어서,The method of claim 1,
    상기 단백질 절단효소 인식 부위를 코딩하는 유전자는 서열번호 8로 표시되는 것을 특징으로 하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터.Gene encoding the protein cleavage recognition site is a recombinant expression vector for producing a water-soluble norovirus vaccine, characterized in that represented by SEQ ID NO: 8.
  9. 제 1항 내지 제 8항 중 어느 한 항에 따른 발현벡터로 형질전환된 숙주세포.A host cell transformed with the expression vector according to any one of claims 1 to 8.
  10. 제 9항에 있어서,The method of claim 9,
    상기 숙주세포는 대장균인 것을 특징으로 하는 형질전환 숙주세포.The host cell is E. coli transformant host cell, characterized in that.
  11. (a) 목적 단백질의 수용성 발현을 촉진하는 단백질을 코딩하는 유전자, 1 내지 6개의 히스티딘을 코딩하는 유전자, 단백질 절단효소 인식 부위를 코딩하는 유전자 및 노로 바이러스 유래 VP1 유전자 서열을 포함하는 수용성 노로 바이러스 백신 생산용 재조합 발현 벡터를 생산하는 단계; (a) A water soluble norovirus vaccine comprising a gene encoding a protein which promotes water soluble expression of a desired protein, a gene encoding 1 to 6 histidines, a gene encoding a protein cleavage site and a VP1 gene sequence derived from norovirus Producing a recombinant expression vector for production;
    (b) 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 생산하는 단계; 및(b) introducing the expression vector into a host cell to produce a transformant; And
    (c) 상기 형질전환체를 배양하여 재조합 융합 단백질의 발현을 유도하고, 이를 수득하는 단계를 포함하는 수용성 노로 바이러스 백신 생산방법.(c) culturing the transformant to induce the expression of a recombinant fusion protein and obtaining the same.
  12. 제 11항에 있어서,The method of claim 11,
    상기 목적 단백질의 수용성 발현을 촉진하는 단백질은 hRBD, LysRS 또는 hRBD와 LysRS의 융합 단백질인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The protein for promoting the water-soluble expression of the target protein is hRBD, LysRS or a method of producing a water-soluble norovirus vaccine, characterized in that the fusion protein of hRBD and LysRS.
  13. 제 12항에 있어서,The method of claim 12,
    상기 hRBD는 서열번호 1로 표시되는 아미노산 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The hRBD is a water-soluble norovirus vaccine production method, characterized in that the amino acid sequence represented by SEQ.
  14. 제 12항에 있어서,The method of claim 12,
    상기 LysRS는 서열번호 3으로 표시되는 LysRS 유래 펩타이드 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The LysRS is a soluble norovirus vaccine production method, characterized in that the LysRS-derived peptide sequence represented by SEQ ID NO: 3.
  15. 제 12항에 있어서,The method of claim 12,
    상기 hRBD와 LysRS 융합 단백질은 서열번호 5로 표시되는 아미노산 서열인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The hRBD and LysRS fusion protein is a water-soluble norovirus vaccine production method, characterized in that the amino acid sequence represented by SEQ.
  16. 제 11항에 있어서,The method of claim 11,
    상기 1 내지 6개의 히스티딘을 코딩하는 유전자는 서열번호 7로 표시되는 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The gene encoding the 1 to 6 histidine is a water-soluble norovirus vaccine production method, characterized in that represented by SEQ ID NO: 7.
  17. 제 11항에 있어서,The method of claim 11,
    상기 단백질 절단효소는 TEV인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The protein cleavage enzyme is a water-soluble norovirus vaccine production method, characterized in that the TEV.
  18. 제 11항에 있어서,The method of claim 11,
    상기 단백질 절단효소 인식 부위를 코딩하는 유전자는 서열번호 8로 표시되는 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The gene encoding the protein cleavage recognition site is a water-soluble norovirus vaccine production method, characterized in that represented by SEQ ID NO: 8.
  19. 제 11항에 있어서,The method of claim 11,
    상기 숙주세포는 대장균인 것을 특징으로 하는 수용성 노로 바이러스 백신 생산방법.The host cell is a water-soluble norovirus vaccine production method, characterized in that E. coli.
PCT/KR2017/002945 2016-03-18 2017-03-17 Recombinant expression vector for producing norovirus vaccine WO2017160124A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160032451 2016-03-18
KR10-2016-0032451 2016-03-18
KR10-2017-0033689 2017-03-17
KR1020170033689A KR101914779B1 (en) 2016-03-18 2017-03-17 Recombinant Expression Vectors for Producing Norovirus Vaccine

Publications (2)

Publication Number Publication Date
WO2017160124A2 true WO2017160124A2 (en) 2017-09-21
WO2017160124A3 WO2017160124A3 (en) 2018-08-02

Family

ID=59851614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002945 WO2017160124A2 (en) 2016-03-18 2017-03-17 Recombinant expression vector for producing norovirus vaccine

Country Status (1)

Country Link
WO (1) WO2017160124A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890579B1 (en) * 2002-08-19 2009-04-27 프로테온 주식회사 Method for preparation of recombinant protein using RNA binding protein as fusion partner
KR100989413B1 (en) * 2007-12-24 2010-10-28 주식회사 벡손 Process for producing recombinant protein using novel fusion partner
CN103154242B (en) * 2010-07-06 2015-09-30 诺华股份有限公司 The immunogenic composition that norovirus is derivative and method
KR101360375B1 (en) * 2011-08-19 2014-02-10 연세대학교 산학협력단 Recombinant E. coli producing soluble BMP-2 and method for producing soluble BMP-2 using the same

Also Published As

Publication number Publication date
WO2017160124A3 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
KR101914779B1 (en) Recombinant Expression Vectors for Producing Norovirus Vaccine
CN116143938B (en) COVID-19 subunit vaccine and preparation method and application thereof
US11273215B2 (en) Synthetic polypeptide epitope based vaccine composition
CA3182052A1 (en) Oral scars-cov-2 vaccine, preparation therefor, and application thereof
CN106518990B (en) Zika virus antigen and application thereof
CN109867727B (en) Flagellin-fiber2 fusion protein, and preparation method and application thereof
WO2021035325A1 (en) Protein receptacle, polynucleotide, vector, expression cassette, cell, method for producing the receptacle, method of identifying pathogens or diagnosing diseases, use of the receptacle and diagnostic kit
WO2020238458A1 (en) Cell strain for expressing e2 protein and application thereof, and e2 protein and application thereof
CN111548395A (en) Bivalent multi-epitope recombinant virus-like particle of foot-and-mouth disease virus and application thereof
CN115160411A (en) Screening, preparation and application of African swine fever virus dominant antigen
KR101347288B1 (en) Screening Kit for Human Papillomavirus antibody using fusion polypeptide HPV antigen
CA2816401C (en) Generation of antigenic virus-like particles through protein-protein linkages
CN110845584B (en) Swine fever virus envelope protein oligomeric protein body and preparation method and application thereof
CN111518174B (en) Optimized African swine fever CD2v protein and high-efficiency expression method and application thereof
WO2017160124A2 (en) Recombinant expression vector for producing norovirus vaccine
CN105219742A (en) A kind of show restructuring cat sensitinogen rFel d 1 albumen immunostimulant virus-like particle, its expression vector and preparation and application thereof
CN114933639B (en) African swine fever virus p72N epitope protein and preparation method and application thereof
ES2237194T3 (en) CELLULAR PERMEABILITY MEDIATOR POLYPEPTIDE.
CN110554187B (en) Expression protein for detecting bovine viral diarrhea virus antibody, ELISA kit, preparation method and application thereof
CN109504667B (en) IRAK-M polyclonal antibody and preparation method thereof
CN102628054A (en) Enterovirus 71 capsid protein 3 recombinant antigen and application thereof
CN115894718B (en) Antigen epitope peptide of African swine fever virus and application thereof
CN109589406A (en) A kind of subunit vaccine and preparation method thereof based on prokaryotic expression norovirus epitope
CN110376385B (en) Preparation method and application of protein antigen for expressing QX type infectious bronchitis virus S1 by genetic engineering
CN111909949B (en) Preparation method and application of recombinant protein HSP70_5 of Sporothrix globosum

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17767025

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17767025

Country of ref document: EP

Kind code of ref document: A2