WO2017159769A1 - 人造黒鉛電極の製造方法 - Google Patents

人造黒鉛電極の製造方法 Download PDF

Info

Publication number
WO2017159769A1
WO2017159769A1 PCT/JP2017/010573 JP2017010573W WO2017159769A1 WO 2017159769 A1 WO2017159769 A1 WO 2017159769A1 JP 2017010573 W JP2017010573 W JP 2017010573W WO 2017159769 A1 WO2017159769 A1 WO 2017159769A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
binder pitch
needle coke
amount
graphite electrode
Prior art date
Application number
PCT/JP2017/010573
Other languages
English (en)
French (fr)
Inventor
川野 陽一
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to ES17766765T priority Critical patent/ES2942770T3/es
Priority to RU2018134190A priority patent/RU2728036C2/ru
Priority to JP2018505993A priority patent/JP6878407B2/ja
Priority to US16/084,515 priority patent/US11286165B2/en
Priority to EP17766765.6A priority patent/EP3431458B1/en
Priority to MYPI2018702764A priority patent/MY191976A/en
Priority to CN201780017581.1A priority patent/CN108883995B/zh
Publication of WO2017159769A1 publication Critical patent/WO2017159769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces

Definitions

  • the present invention relates to a method for producing an artificial graphite electrode, and more particularly to a method for producing an electrode for electric steelmaking used when electric furnace steel is produced by electric steelmaking.
  • An artificial graphite electrode is made of coal-based or petroleum-based needle coke as an aggregate, and is solidified with a binder pitch as a binder, and is widely used as an electrode for electric steelmaking.
  • Such an artificial graphite electrode is usually produced by pulverizing needle coke to a predetermined particle size, then combining (kneading) with a binder pitch, then extruding, and then firing and graphitizing. If necessary, after the firing treatment, the impregnation pitch is impregnated, and after the secondary firing treatment, graphitization is performed.
  • the kneading process of needle coke and binder pitch is important to affect various performances of artificial graphite electrode, such as thermal expansion coefficient (CTE) and irreversible expansion phenomenon (puffing) in graphitization. It is a difficult process.
  • the kneading step the kneader is kneaded at a temperature equal to or higher than the softening point of the binder pitch. Then, in the next extrusion process, in order to maintain the electrode quality and productivity at a predetermined level, the extrusion rate is adjusted by adjusting the amount of binder pitch added during kneading, or by the molding pressure of the extrusion process. adjust.
  • the amount of binder pitch used is related to the pore volume of needle coke, and the larger the pore volume of needle coke, the greater the required amount of binder pitch.
  • the amount of binder pitch used is related to the extrusion molding process after kneading with a kneader, and in order to perform extrusion at a constant extrusion speed, it is necessary to increase the amount of binder pitch when the pore volume of needle coke is large. Therefore, when needle coke with a large pore volume is sufficiently kneaded with the increased binder pitch, it cannot be molded unless the molding pressure is raised, and depending on the capabilities of the extrusion molding machine, it may exceed the limit and cannot be molded. There is also. The volatile matter generated from a large amount of binder pitch during firing increases, and the electrode may crack.
  • Patent Document 1 discloses that finely powdered coal tar pitch (secondary binder) having a softening point of 150 ° C. or higher and fixed carbon of 65 to 75% as a part of a binder component is premixed with needle coke, and the mixture is used as the remainder of the binder component. It is disclosed that it is extruded together with a coal tar pitch (stationary binder) having a softening point of 85 to 105 ° C. and fixed carbon of 55 to 60%, followed by firing and graphitization by a conventional method. In this case, it is essential to mix in advance a secondary binder having a softening point of 150 ° C. or higher, which is different from that of the stationary binder.
  • secondary binder having a softening point of 150 ° C. or higher and fixed carbon of 65 to 75% as a part of a binder component is premixed with needle coke, and the mixture is used as the remainder of the binder component. It is disclosed that it is extrude
  • Patent Document 2 discloses a method for producing a graphite electrode using a coal-based needle coke having a true specific gravity of 2.150 or more obtained by calcination at 1500 to 1700 ° C. in order not to use a large amount of binder pitch. It is disclosed that a binder pitch having a softening point of 100 to 150 ° C. is used as a binder. In this case, a binder pitch of 100 to 150 ° C. having a softening point higher than usual is indispensable as the binder pitch, and needle coke also has a high calcination temperature.
  • JP-A 63-74661 Japanese Patent Laid-Open No. 5-28998
  • the present invention is to provide a method for producing an artificial graphite electrode that enables kneading and subsequent extrusion molding without increasing the amount of binder pitch used even with needle coke having a large pore volume. .
  • the present inventor made the step of kneading the binder pitch into the needle coke having pores into at least two-stage divided kneading, and the binder pitch in the divided kneading
  • the inventors have found that the above-mentioned problems can be solved by setting the addition amount and the kneading time within a predetermined range, and the present invention has been completed.
  • the present invention is a method for producing an artificial graphite electrode by kneading a binder pitch into needle coke, then extruding, then firing and graphitizing, and the binder pitch is formed on the needle coke having pores.
  • the kneading step is divided into at least two stages of kneading, and the addition amount of the binder pitch and kneading time in the divided kneading have a kneading index represented by the following formula (1) in the range of 0.1 to 0.7.
  • A indicates the total amount of binder pitch used in the entire kneading process
  • a1 indicates the amount of binder pitch used in the first stage of kneading
  • T represents the total kneading time in the kneading step
  • t1 represents the first kneading time.
  • the usage-amount (wt%) of binder pitch is the quantity (outside number) with respect to the usage-amount of needle coke 100 wt%.
  • the needle coke preferably has a true specific gravity of 2.00 or more and a pore volume of 0.10 cc / g to 0.30 cc / g at a pore diameter of 0.01 to 120 ⁇ m.
  • the pore physical properties are measured by a mercury intrusion method using a coke particle size of 2 to 5 mm.
  • the measurement conditions are a contact angle of 141.2 ° between mercury and needle coke and a surface tension of mercury of 480 dyn / cm.
  • the binder pitch is preferably a softening point of 70 ° C. to 150 ° C. and an amount of ⁇ resin of 15 to 30 wt%.
  • the amount of ⁇ -resin is measured by a solvent analysis method of JIS K2425, and is indicated by a difference between toluene-insoluble matter and quinoline-soluble matter.
  • the present invention even needle coke having many pores can be kneaded and then extruded without increasing the amount of binder pitch used.
  • the extrusion speed in the extrusion molding process can be maintained constant, and the electrode quality and productivity can be maintained at a predetermined level. Therefore, when the pressure in the extrusion molding process is the same as before, extrusion molding is possible even if the amount of binder pitch used is smaller than usual. On the other hand, since it is not necessary to increase the amount of binder pitch used, it is possible to reduce the pressure in the extrusion molding process, which can contribute to great energy savings.
  • Various performances of the artificial graphite electrode obtained by the production method of the present invention such as bulk density, thermal expansion coefficient and puffing property, are the same or improved as those produced by the conventional method.
  • the binder pitch is divided and added twice or more.
  • the amount of binder pitch that can be extruded is an upper limit of 35 wt% (the outer number when needle coke is 100 wt%, the same applies hereinafter).
  • a binder pitch amount for example, 25 wt%
  • a larger amount for example, 27 wt%
  • the extrusion speed is constant. It cannot be extruded because it does not become.
  • a larger amount of binder pitch than usual is used to keep the molding speed constant, gas is likely to be generated from the binder pitch during firing, leading to the possibility of cracking of the electrode.
  • extrusion molding can be performed at the same extrusion speed as before after kneading at 25 wt%.
  • the amount of binder pitch used is 25 wt% with respect to 100 wt% of needle coke
  • 25 wt% of binder pitch used for example, 10 wt% of binder pitch is added as the first stage kneading.
  • the remaining 15 wt% is added as a second stage kneading and kneading is performed for a certain time.
  • the amount of binder pitch added and the kneading time in the first stage kneading must be determined so that the kneading index represented by the above formula (1) is in the range of 0.1 to 0.7.
  • the first stage of kneading scatters volatile matter from the binder pitch, increases the viscosity of the binder pitch, and forms a solidified layer of the binder pitch on the pore surface (shallow part). . Therefore, the binder pitch added after the second stage is accumulated on the surface of the pores without penetrating into the deep part in the pores by the binder pitch solidified layer formed by the kneading in the first stage.
  • the binder pitch accumulated on the pore surface portion can also act as a lubricant during extrusion molding. Therefore, it is considered that subsequent extrusion molding can be performed without increasing the amount of binder pitch used even in needle coke having a large pore volume.
  • the kneading index is less than 0.1, the amount of binder pitch to be added in the first stage kneading is small and the kneading time is short, so that the kneading state of the needle coke and the binder pitch in the first stage becomes insufficient. If the kneading index exceeds 0.7, the molding pressure will not be different from the case where the entire amount of the binder pitch is added in one kneading, which is a normal method, and the effect is lost.
  • the kneading index is preferably in the range of 0.15 to 0.70, more preferably 0.20 to 0.50.
  • the at least two-stage divided kneading means that the binder pitch is added in two or more stages, and the operation of the kneader such as a kneader may be continued. Also good.
  • the first stage kneading time is preferably 5 minutes or longer, and the second stage kneading time is preferably 3 minutes or longer.
  • the second stage kneading is performed.
  • the amount of binder pitch used may be the remaining amount after subtracting the amount of binder pitch used in the first stage kneading out of the total amount of binder pitch used for needle coke.
  • the remaining time after subtracting the kneading time of the first stage may be used. That is, it is not necessary to greatly change the binder pitch usage and kneading time as a whole.
  • about the 2nd stage and after it can also be set as further multistage kneading
  • the amount of binder pitch used in the second stage and the kneading time can be reduced.
  • the needle coke to be used is not particularly limited, and coal-based needle coke and petroleum-based needle coke can be used.
  • the present invention is effective when the amount of fine pores (volume) of needle coke is larger than usual.
  • Use of needle coke having a large amount of pores (volume) is advantageous in suppressing puffing.
  • the pore volume of needle coke is indicated by an amount measured by a mercury intrusion method using a coke particle size of 2 to 5 mm, and a pore volume with a pore diameter of 0.01 to 120 ⁇ m, preferably 0.10 to 0 .30 cc / g, more preferably 0.10 to 0.25 cc / g, and desirably 0.13 to 0.20 cc / g.
  • the pore diameter was calculated with a contact angle of 141.2 ° between mercury and needle coke and a surface tension of 480 dyn / cm of mercury.
  • the pore volume is less than 0.10 cc / g, the pore volume is small and the expression effect of the present invention is small. If it exceeds 0.30 cc / g, the amount of binder pitch required is too large, so that it is inferior in suitability as needle coke for producing a graphite electrode.
  • the binder pitch as the binder used has a softening point of 70 to 150 ° C. and ⁇ resin of 15 to 30%.
  • the softening point is less than 70 ° C., the viscosity becomes too low and the inner part of the fine hole of the needle coke easily enters, so that the effect of the present invention becomes insufficient.
  • the softening point exceeds 150 ° C., the temperature of the kneader to be kneaded must be raised and the viscosity of the binder pitch must be forcibly lowered, which is disadvantageous in terms of production efficiency.
  • a more preferable softening point is 80 to 130 ° C, particularly 90 to 120 ° C.
  • the binder pitch may be the same kind of binder pitch, for example, the same softening point may be divided and kneaded in at least two stages, or different binder pitches, for example, different softening points, in the first stage kneading and the second stage kneading. May be used.
  • the softening point such as kneading using a binder pitch with a high softening point in the first stage and a binder pitch with a low softening point in the second stage, the pore diameter and binder pitch of the needle coke into which the binder pitch penetrates are changed. The amount to penetrate can be adjusted.
  • Example 1 As the needle coke, a coal-based needle coke having a true specific gravity of 2.15 and a pore volume of 0.136 cc / g measured with a mercury porosimeter was used. This needle coke was pulverized with a jaw crusher, and 8-16 mesh (Me ′) was sieved. Then, the upper and lower sieves were mixed, pulverized with a hammer crusher, and sieved to 48-200Me ′ and 200Me ′ or less. After the particle size distribution of each particle size distribution is 40% (8-16Me '), 35% (48-200Me'), 25% (200Me 'or less) from the larger particle size, this needle coke is mixed with binder pitch.
  • the binder pitch used has a softening point of 97 ° C. and a ⁇ resin of 20%. That is, using a kneader, as a whole kneading step, the total amount of binder pitch used is 25 wt% with respect to needle coke 100 wt%, and kneading is performed at 160 ° C. for 20 minutes. In this kneading step, 12.5 wt% of the binder pitch was blended as the first stage and kneaded for 7.5 minutes, and then the remaining 12.5 wt% was blended as the second stage while maintaining the temperature. Kneaded for 5 minutes.
  • the kneading index was 0.19.
  • the molding pressure was adjusted with an extrusion molding machine so that the extrusion speed was constant at 7 cm / min, and the pressure was set as the extrusion pressure.
  • CTE was extruded to a size of 20 mm ⁇ ⁇ 100 mm, fired at 900 ° C., and then graphitized at 2500 ° C. to obtain a CTE sample.
  • CTE was measured by measuring the average coefficient of thermal expansion from room temperature to 500 ° C. The results are shown in Table 1.
  • Examples 2-5 A graphite electrode was produced in the same manner as in Example 1 except that the kneading conditions and molding conditions shown in Table 1 were changed. The results are also shown in Table 1.
  • Comparative Example 1 In the same manner as in the conventional method, the graphite electrode is kneaded in the same manner as in the Examples, except that the binder pitch is kneaded into needle coke in two steps, and the total amount is 25 wt. Manufactured. The results are also shown in Table 1.
  • FIG. 1 shows the relationship between the kneading index of Examples 1 to 5 and the molding pressure.
  • the molding pressure value (13.5 MPa) of Comparative Example 1 is displayed as a reference line.
  • Example 1 From the kneaded material of Example 1 and Comparative Example 1, kneaded particles having a diameter of 1 to 2 mm are collected, and tomographic imaging is performed at a resolution of 3 ⁇ m using an X-ray CT apparatus (Marstoken Solution TUX-3200N) to reconstruct a 3D image. did.
  • Cross-sectional images were obtained from arbitrary cross-sections of 3D reconstructed images.
  • a typical cross-sectional image of Example 1 is shown in FIG. 2, and a typical cross-sectional image of Comparative Example 1 is shown in FIG.
  • FIG. 2 the thickness of the binder pitch distributed around the needle coke is almost uniform, whereas in FIG. 3, the thickness of the binder pitch is non-uniform.
  • the electrode quality and productivity can be maintained at a predetermined level without increasing the amount of binder pitch used, which can contribute to a great amount of energy saving.
  • the obtained artificial graphite electrode is excellent in various performances such as a coefficient of thermal expansion and puffing, so that it is particularly useful as an electrode for electric steelmaking used when electric furnace steel is produced by electric steelmaking.

Abstract

細孔容積の大きなニードルコークスでも、バインダーピッチの使用量を増加させることなく、混錬、及びその後の押出成型が可能となる人造黒鉛電極の製造方法を提供することにある。 ニードルコークスにバインダーピッチを混練した後、押出成形し、次いで焼成及び黒鉛化処理することにより人造黒鉛電極を製造する方法であって、細孔を有するニードルコークスにバインダーピッチを混練する工程を、少なくとも二段階の分割混練とし、その分割混練におけるバインダーピッチの添加量と混練時間を、下記式(1)で表される混練指数が0.1~0.7の範囲となるようにすることを特徴とする人造黒鉛電極の製造方法。 混練指数 = (a1/A) × (t1/T) (1)

Description

人造黒鉛電極の製造方法
 本発明は、人造黒鉛電極の製造方法、特に電気製鋼により電炉鋼を製造するときに使用する電気製鋼用電極の製造方法に関する。
 人造黒鉛電極は、石炭系又は石油系ニードルコークスを骨材とし、これを粘結材としてのバインダーピッチで固めたものであり、電気製鋼用電極として汎用されている。こうした人造黒鉛電極は、通常、ニードルコークスを粉砕して所定粒度に調製した後、バインダーピッチと捏合(混練)し、次いで押出成型し、その後、焼成及び黒鉛化処理することにより製造される。なお、必要に応じて、焼成処理後、含浸ピッチを含浸させ、二次焼成処理した後、黒鉛化処理される。
 人造黒鉛電極の製造方法において、ニードルコークスとバインダーピッチとの混練工程は、人造黒鉛電極の各種性能、例えば、熱膨張係数(CTE)や黒鉛化における不可逆膨張現象(パフィング)などに影響を及ぼす重要な工程である。この混練工程は、ニーダーでバインダーピッチの軟化点以上の温度で混練される。そして、次工程の押出成型は、電極品質や生産性を所定レベルに維持するために、押出速度が一定になるように、混練時のバインダーピッチ添加量で調整するか、押出工程の成型圧力で調整する。
 バインダーピッチの使用量は、ニードルコークスの細孔容積に関係があり、ニードルコークスの細孔容積が大きいほど、バインダーピッチの必要量が多くなる。バインダーピッチの使用量は、ニーダーで混錬した後の押出成型工程に関わり、押出速度を一定にして押出すには、ニードルコークスの細孔容積が大きい場合はバインダーピッチ量を増やす必要がある。そのため、細孔容積が大きいニードルコークスでは、増加したバインダーピッチと十分に混練するために、成型圧力を上げなければ成型ができなくなり、押出成型装置の能力によっては、限界を超えてしまい成型できない場合もある。焼成時に多量のバインダーピッチから発生する揮発分が多くなり、電極が割れることもある。
 特許文献1は、ニードルコークスに、バインダー成分の一部として軟化点150℃以上、固定炭素65~75%の微粉状コールタールピッチ(副次バインダー)を予め混合し、該混合物をバインダー成分の残部にあたる軟化点85~105℃、固定炭素55~60%のコールタールピッチ(定常バインダー)と共に捏合したのち押出成形し、次いで常法により焼成および黒鉛化処理することを開示する。この場合、定常バインダーとは異なる軟化点150℃以上の高軟化点の副次バインダーを、事前に混合することが不可欠である。
 特許文献2は、多量のバインダーピッチを使用しないために、1500~1700℃でか焼して得られた真比重が2.150以上の石炭系ニードルコークスを用いて黒鉛電極を製造する方法において、粘結剤として軟化点が100~150℃のバインダーピッチを用いることを開示する。この場合、バインダーピッチとして、通常よりも軟化点が高い100~150℃のバインダーピッチが不可欠であり、ニードルコークスもか焼温度が高いものである。
特開昭63-74961号公報 特開平5-28998号公報
 上述のとおり、人造黒鉛電極の製造方法において、細孔が多いニードルコークスを使用する場合は、押出成形で成型速度を一定にするためには、成型圧力を上げるか、バインダーピッチを多く使用しなければ、押出成型ができない。また、バインダーピッチの使用量が多くなると、焼成時にバインダーピッチが炭素化する温度で発生する揮発分が多くなり、電極が割れたり、比重が低下してしまう。
 そこで、本発明は、細孔容積の大きいニードルコークスでも、バインダーピッチの使用量を増加させることなく、混錬、及びその後の押出成型が可能となる人造黒鉛電極の製造方法を提供することにある。
 本発明者は、上述の課題を解決するために鋭意研究を重ねた結果、細孔を有するニードルコークスにバインダーピッチを混練する工程を、少なくとも二段階の分割混練とし、その分割混練におけるバインダーピッチの添加量と混練時間を所定範囲に設定することにより、上述の課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、ニードルコークスにバインダーピッチを混練した後、押出成形し、次いで焼成及び黒鉛化処理することにより人造黒鉛電極を製造する方法であって、細孔を有するニードルコークスにバインダーピッチを混練する工程を、少なくとも二段階の分割混練とし、その分割混練におけるバインダーピッチの添加量と混練時間を、下記式(1)で表される混練指数が0.1~0.7の範囲となるようにすることを特徴とする人造黒鉛電極の製造方法。
 混練指数 = (a1/A) × (t1/T)       (1)
 ここで、Aは混練工程全体におけるバインダーピッチの全使用量を示し、a1は第一段階の混練におけるバインダーピッチの使用量を示す。Tは混練工程における全混練時間を示し、t1は第一段階の混練時間を示す。
 なお、バインダーピッチの使用量(wt%)は、ニードルコークスの使用量100wt%に対する量(外数)である。
 上記製造方法において、ニードルコークスが、真比重2.00以上で、細孔径0.01~120μmにおける細孔容積0.10cc/g~0.30cc/gであることが好ましい。
 この場合、細孔物性は、2~5mmのコークス粒度を用い、水銀圧入法で測定し、その測定条件は、水銀とニードルコークスの接触角141.2°、水銀の表面張力は480dyn/cmとする。
 上記製造方法において、バインダーピッチが、軟化点70℃~150℃で、βレジン量15~30wt%であることが好ましい。
 この場合、βレジン量は、JIS K2425の溶剤分析法によって測定され、トルエン不溶分とキノリン可溶分の差で示す。
 本発明によれば、細孔の多いニードルコークスでも、バインダーピッチの使用量を増加させずに混錬、その後の押出成型が可能となる。押出成型工程における押出速度を一定に維持することができ、電極品質や生産性を所定レベルに維持可能である。そのため、押出成型工程の圧力を従前と同じにした場合、バインダーピッチの使用量を通常よりも少なくしても、押出成形が可能となる。一方、バインダーピッチの使用量を増加する必要がないことから、押出成型工程の圧力を下げることが可能となり、多大な省エネにも貢献できる。
 なお、本発明の製法で得られた人造黒鉛電極の各種性能、例えば、嵩密度、熱膨張係数及びパフィング性は、従来法で製造した場合と同等ないしは改善される。
本発明の実施例における混練指数と成型圧力との関係を示すグラフである。 実施例1の混練粒子のCT断層画像である。 比較例1の混練粒子のCT断層画像である。
 本発明の製造方法は、細孔を有するニードルコークスにバインダーピッチを混練する工程において、ニードルコークスとバインダーピッチを混錬するときに、バインダーピッチを2回以上に分割して添加する。一般的なニードルコークスを使用した場合、押出成型が可能なバインダーピッチ量は、上限値35wt%(ニードルコークスを100wt%とした時の外数、以下同じ)である。
 バインダーピッチ量として、例えば25wt%を基準とすると、細孔容積が多いニードルコークスを使用した場合、通常の方法であれば、それよりも多い、例えば27wt%を使用しなければ、押出速度が一定にならないために押出成型ができない。また、同じ25wt%で押出速度を一定にするには、成型圧力を高める必要がある。成型速度を一定にするために、通常よりも多い量のバインダーピッチを使用すれば、焼成時にバインダーピッチからガスが発生し、電極の割れにつながる可能性が高い。しかしながら、細孔容積が多いニードルコークスを使用した場合でも、本発明を使用すれば、25wt%で混錬したのちに、従来と同じ押出速度で押出成型が可能となる。
 混練工程において、ニードルコークス100wt%に対するバインダーピッチの使用量が25wt%の場合を例にとってみると、バインダーピッチ使用量25wt%のうち、例えば、第一段階の混練として10wt%のバインダーピッチを添加して一定時間混錬した後、第二段階の混練として残りの15wt%を添加して一定時間の混練を行う。この第一段階の混練におけるバインダーピッチ添加量や混練時間は、上記式(1)で表される混練指数が、0.1~0.7の範囲になるように決定する必要がある。
 混練指数をこの範囲にすることによって、細孔容積の大きいニードルコークスでも、バインダーピッチの使用量を増加させることなく、混錬、及びその後の押出成型が可能となる。その機構は明確ではないが、第一段階の混練によって、バインダーピッチから揮発分が飛散するとともに、バインダーピッチの粘度が増加し、細孔表面(浅部)にバインダーピッチの固化層が形成される。そのため、第二段階以降に添加されたバインダーピッチは、第一段階の混練で形成されたバインダーピッチ固化層によって、細孔内の深部に浸透することなく、細孔表面部に蓄積される。また、細孔表面部に蓄積されるバインダーピッチが、押出成型時において潤滑剤としても作用できる。よって、細孔容積の大きいニードルコークスにおいても、バインダーピッチの使用量を増加することなく、その後の押出成型が可能となると考えられる。
 混練指数が0.1を下回る場合は、第一段階の混練において添加するバインダーピッチ量が少なく、混練時間も短いため、第一段階におけるニードルコークスとバインダーピッチの混練状態が不十分となる。混練指数が0.7を超えると、通常方法である1回の混練においてバインダーピッチ全量を添加した場合の成型圧力と変わらなくなり、効果がなくなる。混練指数は、好ましくは0.15~0.70、0.20~0.50の範囲がさらに望ましい。
 ここで、少なくとも二段階の分割混練とは、バインダーピッチの添加を二段階 以上で行うことを意味し、ニーダー等の混練機の運転は継続したままでもよく、一旦混練を止めてから添加してもよい。そして、第一段階の混練時間は5分間以上であることがよく、第二段階の混練時間は3分間以上であることがよい。
 第一段階の混練後、第二段階の混練を行う。第二段階の混練において、バインダーピッチの使用量は、ニードルコークスに対するバインダーピッチの全使用量のうち、第一段階の混練で使用したバインダーピッチ使用量を差し引いた残量で良く、混練時間についても、全混練時間のうち、第一段階の混練時間を差し引いた残りの時間で良い。すなわち、全体としてのバインダーピッチ使用量や混練時間を大きく変更しなくてもよい。なお、第二段階以降については、必要に応じて、第三段階など、更なる多段混練とすることもできる。第三段階以降を設ける場合は、第二段階のバインダーピッチの使用量、混練時間を低減することができる。
 使用するニードルコークスは、特に制限がなく、石炭系のニードルコークスや石油系ニードルコークスを使用することができる。ニードルコークスの細孔量(容積)が通常よりも多い場合に本発明は有効である。細孔量(容積)が多いニードルコークスを使用することは、パフィングの抑制に有利である。
 ニードルコークスの細孔容積は、2~5mmのコークス粒度を用い、水銀圧入法で測定した量で示すが、細孔径が0.01~120μmまでの細孔容積が、好ましくは0.10~0.30cc/g、より好ましくは0.10~0.25cc/g、望ましくは0.13~0.20cc/gである。この場合、細孔径は、水銀とニードルコークスの接触角141.2°、水銀の表面張力480dyn/cmとして計算したものである。細孔容積が0.10cc/gを下回る場合は、細孔容積が少なく本発明の発現効果が少ない。0.30cc/gを超える場合は、必要なバインダーピッチ量が多くなり過ぎるため、黒鉛電極を製造するためのニードルコークスとして適格性に劣る。
 使用する粘結材としてのバインダーピッチは、軟化点が70~150℃であり、βレジンが15~30%であることが望ましい。軟化点が70℃を下回ると、粘度が低くなりすぎ、ニードルコークスの細孔の奥部まで入り込みやすくなるため、本発明の発現効果が不十分となる。軟化点が150℃を超えると、混練するニーダーの温度を上げ、バインダーピッチの粘度を強制的に下げなければならないので、生産効率上不利となる。より好ましい軟化点は、80~130℃、特に90~120℃である。
 バインダーピッチは、同種のバインダーピッチ、例えば軟化点の同じものを少なくとも二段階の分割混練としても良いし、第一段階混練と第二段階混練とで、異種のバインダーピッチ、例えば軟化点の異なるものを使用しても良い。第一段階は高い軟化点のバインダーピッチ、第二段階は低い軟化点のバインダーピッチを使用して混練するなど、軟化点を変えることで、バインダーピッチが浸入するニードルコークスの細孔径やバインダーピッチが浸入する量を調製することができる。
 以下、本発明を実施例及び比較例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 ニードルコークスとして、真比重2.15、水銀ポロシメーターで測定した細孔容積0.136cc/gの石炭系ニードルコークスを用いた。このニードルコークスをジョークラッシャーで粉砕し、8-16メッシュ(Me')を篩とった後、篩上と下を混合し、ハンマークラッシャーで粉砕し、48-200Me'と200Me'以下に篩分けした。それぞれの粒度分布が、粒子径の大きい方から、40%(8-16Me')、35%(48-200Me')、25%(200Me'以下)で粒度配合した後、このニードルコークスをバインダーピッチ(BP)と二段階で混練した。使用したバインダーピッチは、軟化点97℃、βレジン20%である。すなわち、ニーダーを使用して、全混練工程として、ニードルコークス100wt%に対してバインダーピッチの全使用量25wt%を配合し、160℃で20分の混練を行う。この混練工程において、バインダーピッチ量を、第一段階として12.5wt%配合して7.5分混練をした後、温度を維持したまま第二段階として残りの12.5wt%を配合し更に12.5分混練した。この場合の混練指数は0.19であった。
 混練後、押出成型機で、押出速度が7cm/分一定になるように、成形圧力を調整し、その圧力を押出圧力とした。また、CTEについては、20mmφ×100mmの大きさに押出成型後、900℃で焼成し、その後2500℃で黒鉛化してCTEサンプルとした。CTEの測定は、室温~500℃の平均熱膨張係数を測定した。
 それらの結果を表1に示す。
実施例2~5
 表1に示す混練条件及び成型条件に変更すること以外、実施例1と同様にして、黒鉛電極を製造した。その結果も同様に表1に示す。
比較例1
 従来法と同様に、ニードルコークスへのバインダーピッチの混練を、二回に分けることなく、一回で全量25wt%配合して混練した後、成型すること以外、実施例と同様にして、黒鉛電極を製造した。その結果も同様に表1に示す。
 併せて、実施例1~5の混練指数と成型圧力との関係を、図1に示す。なお、比較例1の成型圧力値(13.5MPa)を基準線として表示する。
 実施例1及び比較例1の混練物から直径1~2mmの混練粒子を採取し、X線CT装置(マーストーケンソリューション社TUX-3200N)によって分解能3μmにて断層撮像を行い、3D像に再構築した。断面画像は3D再構築像の任意の断面から得た。実施例1の代表的な断面画像を図2、比較例1の代表的な断面画像を図3に示す。図2ではニードルコークスの周りに分布しているバインダーピッチの厚みがほぼ均一であるのに対し、図3ではバインダーピッチの厚みが不均一であった。 
Figure JPOXMLDOC01-appb-T000001
 本発明の製法によれば、細孔の多いニードルコークスでも、バインダーピッチの使用量を増加させずに、電極品質や生産性を所定レベルに維持可能であり、多大な省エネにも貢献でき、得られた人造黒鉛電極は、熱膨張係数やパフィング等の各種性能も優れることから、特に電気製鋼により電炉鋼を製造するときに使用する電気製鋼用電極として有用である。

Claims (4)

  1.  ニードルコークスにバインダーピッチを混練した後、押出成型し、次いで焼成及び黒鉛化処理することにより人造黒鉛電極を製造する方法であって、細孔を有するニードルコークスにバインダーピッチを混練する工程を、少なくとも二段階の分割混練とし、その分割混練におけるバインダーピッチの添加量と混練時間を、下記式(1)で表される混練指数が0.1~0.7の範囲となるようにすることを特徴とする人造黒鉛電極の製造方法。
     混練指数 = (a1/A) × (t1/T)   (1)
     ここで、Aは混練工程全体におけるバインダーピッチの全使用量を示し、a1は第一段階の混練におけるバインダーピッチの使用量を示す。Tは混練工程における全混練時間を示し、t1は第一段階の混練時間を示す。
  2.  ニードルコークスが、真比重2.00以上で、細孔径0.01~120μmにおける細孔容積0.10~0.30cc/gである請求項1記載の人造黒鉛電極の製造方法。
  3.  バインダーピッチが、軟化点70~150℃で、βレジン量15~30wt%である請求項1又は2記載の人造黒鉛電極の製造方法。
  4.  混練指数が0.15~0.70の範囲である請求項1~3のいずれかに記載の人造黒鉛電極の製造方法。
     
PCT/JP2017/010573 2016-03-17 2017-03-16 人造黒鉛電極の製造方法 WO2017159769A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES17766765T ES2942770T3 (es) 2016-03-17 2017-03-16 Método de fabricación de electrodo de grafito artificial
RU2018134190A RU2728036C2 (ru) 2016-03-17 2017-03-16 Способ для производства искусственного графитового электрода
JP2018505993A JP6878407B2 (ja) 2016-03-17 2017-03-16 人造黒鉛電極の製造方法
US16/084,515 US11286165B2 (en) 2016-03-17 2017-03-16 Method for manufacturing artificial graphite electrode
EP17766765.6A EP3431458B1 (en) 2016-03-17 2017-03-16 Method for manufacturing artificial graphite electrode
MYPI2018702764A MY191976A (en) 2016-03-17 2017-03-16 Method for manufacturing artificial graphite electrode
CN201780017581.1A CN108883995B (zh) 2016-03-17 2017-03-16 人造石墨电极的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016053501 2016-03-17
JP2016-053501 2016-03-17
JP2016-174571 2016-09-07
JP2016174571 2016-09-07

Publications (1)

Publication Number Publication Date
WO2017159769A1 true WO2017159769A1 (ja) 2017-09-21

Family

ID=59850431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010573 WO2017159769A1 (ja) 2016-03-17 2017-03-16 人造黒鉛電極の製造方法

Country Status (8)

Country Link
US (1) US11286165B2 (ja)
EP (1) EP3431458B1 (ja)
JP (1) JP6878407B2 (ja)
CN (1) CN108883995B (ja)
ES (1) ES2942770T3 (ja)
MY (1) MY191976A (ja)
RU (1) RU2728036C2 (ja)
WO (1) WO2017159769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046243A (zh) * 2018-01-04 2018-05-18 王世聪 一种无定形碳工业化量产石墨烯的方法
CN110980722A (zh) * 2020-01-02 2020-04-10 中国石油大学(华东) 一种利用针状焦制备得到的高品质电极材料及其方法
WO2020203825A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 高密度人造黒鉛電極の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111056843A (zh) * 2019-12-26 2020-04-24 河北联冠智能环保设备股份有限公司 一种中频炉真空冶炼用石墨坩埚及其制备方法
CN112072075A (zh) * 2020-09-02 2020-12-11 昆山宝创新能源科技有限公司 负极膜及其制备方法和应用
CN112457014A (zh) * 2020-10-21 2021-03-09 大同宇林德石墨新材料股份有限公司 一种超高功率石墨电极接头及其制备工艺
CN112542578B (zh) * 2020-12-24 2023-09-22 大连宏光锂业有限责任公司 锂离子电池复合石墨负极材料及其制备方法
JP2022178233A (ja) * 2021-05-19 2022-12-02 イビデン株式会社 多孔質炭素系材料および多孔質炭素系材料の製造方法
CN113923813B (zh) * 2021-10-08 2024-03-29 吉林炭素有限公司 一种应用能量堆积高度制定石墨电极配方的方法
CN115368145A (zh) * 2022-08-24 2022-11-22 中钢集团南京新材料研究院有限公司 制备石墨制品的混捏方法、石墨制品制备方法及石墨制品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374961A (ja) 1986-09-19 1988-04-05 東海カ−ボン株式会社 人造黒鉛電極の製造方法
JPH0528998A (ja) 1991-07-24 1993-02-05 Mitsubishi Kasei Corp 人造黒鉛電極の製造方法
JPH05139833A (ja) * 1990-12-27 1993-06-08 Nippon Steel Chem Co Ltd 高密度炭素材の製造法
JPH05238716A (ja) * 1992-02-25 1993-09-17 Nippon Steel Chem Co Ltd 特殊炭素材の混練方法
JP2009542842A (ja) * 2006-06-29 2009-12-03 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド 低cte黒鉛電極の原料となる針状コークスの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856926A (en) 1968-11-06 1974-12-24 Showa Denko Kk Process for preparing carbon paste
JPS6110017A (ja) * 1984-06-23 1986-01-17 Nippon Steel Chem Co Ltd 黒鉛電極の製造方法
US5413738A (en) * 1985-10-22 1995-05-09 Ucar Carbon Technology Corporation Graphite electrodes and their production
SU1790136A1 (ru) * 1990-09-25 1995-06-27 Государственный научно-исследовательский, проектный и конструкторский институт электродной промышленности Углеродсодержащая шихта для крупногабаритных графитированных заготовок
JPH04285189A (ja) * 1991-03-12 1992-10-09 Nippon Steel Chem Co Ltd 人造黒鉛電極の製造方法
WO1995027766A1 (fr) * 1994-04-07 1995-10-19 Nippon Steel Chemical Co., Ltd. Coke en aiguille pour la production d'electrodes et procede correspondant
EP1065189A4 (en) * 1998-01-26 2001-06-06 Nippon Steel Chemical Co METHOD FOR PRODUCING NEEDLE COCKS FOR GRAPHITE ELECTRODES
US20050254545A1 (en) * 2004-05-12 2005-11-17 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
EP2954876B1 (en) * 2006-12-19 2018-12-19 St. Jude Medical, Inc. Method of making a prosthetic heart valve including stent structure and tissue leaflets
JP5028998B2 (ja) * 2006-12-22 2012-09-19 富士通株式会社 情報記憶装置の制御方法、情報記憶装置、制御プログラム及び記録媒体
CN101294089A (zh) * 2007-04-25 2008-10-29 淄博矿业集团有限责任公司 一种制备煤沥青的方法
CN101445233B (zh) * 2008-12-17 2011-04-20 四川广汉士达炭素股份有限公司 Φ550mm及以上超高功率石墨电极的制造方法
CN101553060B (zh) * 2009-05-07 2011-01-19 平煤集团开封炭素有限责任公司 直径600mm超高功率石墨电极及其生产方法
CN101696116B (zh) * 2009-10-27 2012-08-29 介休市巨源炭素有限公司 大规格石墨电极的生产方法
DE102010001787A1 (de) * 2010-02-10 2011-08-11 Sgl Carbon Se, 65203 Verfahren zur Herstellung eines Formteils aus einem Kohlenstoffwerkstoff unter Verwendung von wiederverwerteten Carbonfasern
CN101787299B (zh) * 2010-03-01 2013-07-03 上海尚元化工工程技术有限公司 一种用混合溶剂萃取生产净化沥青的方法
CN101871897B (zh) * 2010-06-13 2012-04-18 中钢集团吉林炭素股份有限公司 石墨电极炭素糊料混捏温度的确定方法
CN103030404A (zh) 2012-12-23 2013-04-10 中钢集团吉林炭素股份有限公司 一种降低石墨电极生坯挤压成型压强的方法
CN103113910B (zh) * 2013-01-30 2014-07-02 陕西煤业化工技术研究院有限责任公司 一种煤系针状焦的原料预处理方法
JP2014181169A (ja) 2013-03-21 2014-09-29 Ibiden Co Ltd 黒鉛材料の製造方法
JP2014181168A (ja) 2013-03-21 2014-09-29 Ibiden Co Ltd 黒鉛材料の製造方法
JP6375711B2 (ja) * 2014-06-13 2018-08-22 株式会社ジェイテクト 蓄電材料の製造装置及び製造方法
CN105272254B (zh) 2015-10-10 2018-02-23 大同新成新材料股份有限公司 一种受电弓碳滑板材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374961A (ja) 1986-09-19 1988-04-05 東海カ−ボン株式会社 人造黒鉛電極の製造方法
JPH05139833A (ja) * 1990-12-27 1993-06-08 Nippon Steel Chem Co Ltd 高密度炭素材の製造法
JPH0528998A (ja) 1991-07-24 1993-02-05 Mitsubishi Kasei Corp 人造黒鉛電極の製造方法
JPH05238716A (ja) * 1992-02-25 1993-09-17 Nippon Steel Chem Co Ltd 特殊炭素材の混練方法
JP2009542842A (ja) * 2006-06-29 2009-12-03 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド 低cte黒鉛電極の原料となる針状コークスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431458A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046243A (zh) * 2018-01-04 2018-05-18 王世聪 一种无定形碳工业化量产石墨烯的方法
WO2020203825A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 高密度人造黒鉛電極の製造方法
JP7457002B2 (ja) 2019-03-29 2024-03-27 日鉄ケミカル&マテリアル株式会社 高密度人造黒鉛電極の製造方法
CN110980722A (zh) * 2020-01-02 2020-04-10 中国石油大学(华东) 一种利用针状焦制备得到的高品质电极材料及其方法

Also Published As

Publication number Publication date
RU2728036C2 (ru) 2020-07-28
JP6878407B2 (ja) 2021-05-26
JPWO2017159769A1 (ja) 2019-01-24
US20190039909A1 (en) 2019-02-07
EP3431458A1 (en) 2019-01-23
EP3431458A4 (en) 2019-12-04
RU2018134190A (ru) 2020-04-17
CN108883995A (zh) 2018-11-23
CN108883995B (zh) 2021-11-02
US11286165B2 (en) 2022-03-29
MY191976A (en) 2022-07-21
ES2942770T3 (es) 2023-06-06
RU2018134190A3 (ja) 2020-06-01
EP3431458B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2017159769A1 (ja) 人造黒鉛電極の製造方法
JP2010503605A (ja) 低cte高等方性黒鉛
CN111172560A (zh) 一种制氟电解槽阳极用炭板的制造工艺
JP5072802B2 (ja) 高熱伝導黒鉛材料の製造方法
JP5972362B2 (ja) 炭素とケイ素とを含む混合物のセミグラファイト化によって得られる、溶鉱炉の内部ライニングのための耐火材
JP7457002B2 (ja) 高密度人造黒鉛電極の製造方法
JP4714518B2 (ja) 成型炭の製造方法
JP4430448B2 (ja) 等方性黒鉛材の製造方法
JP2008001571A (ja) 高熱伝導性の炭素材料及びその製造方法
JP2910002B2 (ja) 特殊炭素材の混練方法
JP5386840B2 (ja) 冶金用フェロコークスの製造方法
JP2005179140A (ja) 高熱伝導黒鉛材料
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
KR102634867B1 (ko) 코크스 조성물 및 전극봉
JP2005200239A (ja) 高熱伝導黒鉛材料及びその製造方法
JP2005035846A (ja) ジルコニア粉末、ジルコニア焼結体及びその製造方法
JP4539147B2 (ja) 放電加工用黒鉛電極の製造方法
JP5011521B2 (ja) 多孔質体の製造方法
JP2021130580A (ja) 高熱膨張係数を有する黒鉛材料の製造方法及びその黒鉛材料
JPS6374961A (ja) 人造黒鉛電極の製造方法
JPS63218583A (ja) 炭素質成形体の製造方法
JP2007186386A (ja) 高密度、高硬度な炭素材料用メソカーボン小球体
JP2007153657A (ja) 金属複合材料

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018505993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766765

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766765

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766765

Country of ref document: EP

Kind code of ref document: A1