WO2017159429A1 - Gyroscopic apparatus and method for controlling gyroscopic apparatus - Google Patents

Gyroscopic apparatus and method for controlling gyroscopic apparatus Download PDF

Info

Publication number
WO2017159429A1
WO2017159429A1 PCT/JP2017/008788 JP2017008788W WO2017159429A1 WO 2017159429 A1 WO2017159429 A1 WO 2017159429A1 JP 2017008788 W JP2017008788 W JP 2017008788W WO 2017159429 A1 WO2017159429 A1 WO 2017159429A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
amplitude
signal
mode
output
Prior art date
Application number
PCT/JP2017/008788
Other languages
French (fr)
Japanese (ja)
Inventor
貴城 塚本
田中 秀治
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2018505821A priority Critical patent/JP6559327B2/en
Publication of WO2017159429A1 publication Critical patent/WO2017159429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators

Definitions

  • the present invention relates to a gyro device and a method for controlling the gyro device.
  • the gyro device and the gyro device using a two-dimensional vibrator having a single (one) mode match (matching resonance frequencies of two orthogonal axes). It relates to a control method.
  • Non-Patent Document 1 uses two resonators, each of which is clockwise (CW (ClockwiseCrotation)) and counterclockwise (CCW (Counter-Clockwise rotation)).
  • the gyro device is described in which the input angular velocity is obtained from the frequency difference between the resonators.
  • Patent Document 1 describes a device for exciting a ring-shaped vibrating gyroscope with clockwise and counterclockwise rotational vibrations.
  • Non-Patent Document 1 has a problem that the characteristics of the two vibrators to be used must be completely the same. Further, since two vibrators are used, there is a problem that it is difficult to reduce the size of the apparatus. Furthermore, since the characteristics of the resonator, such as the resonance frequency and Q value, change as the temperature changes, it is necessary to match the usage conditions such as the ambient temperature of the two resonators in order to make the characteristics of the two resonators the same. There is a problem that there is. Further, Patent Document 1 does not disclose a specific configuration for detecting a CW or CCW mode component from the output of a vibrating gyroscope.
  • One of the objects of the present invention is to provide a novel and useful gyro apparatus and a control method for the gyro apparatus for solving these problems.
  • the present invention provides a driving signal corresponding to a first rotational vibration mode (for example, clockwise (CW) vibration mode) and a second rotational vibration mode (for example, counterclockwise (CCW) vibration).
  • a first rotational vibration mode for example, clockwise (CW) vibration mode
  • a second rotational vibration mode for example, counterclockwise (CCW) vibration.
  • First detection for detecting the amplitude and phase of the component corresponding to the first rotational vibration mode from the single two-dimensional vibrator driven by the drive signal corresponding to the mode) and the signal output from the two-dimensional vibrator.
  • a second detector for detecting the amplitude and phase of the component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator.
  • a single two-dimensional vibrator is driven by a drive signal corresponding to the first rotational vibration mode and a drive signal corresponding to the second rotational vibration mode, and a signal output from the two-dimensional vibrator.
  • the gyro apparatus controls the amplitude and phase of the component corresponding to the first rotational vibration mode and detects the amplitude and phase of the component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator. Is the method.
  • the apparatus can be miniaturized.
  • the apparatus since it is not necessary to use a plurality of vibrators, there is no variation in performance among vibrators, and the performance of the gyro device can be improved. It should be noted that the contents of the present invention are not construed as being limited by the effects exemplified in this specification.
  • FIG. 1 is a diagram for explaining an example of vibration in a ring-type resonator.
  • FIG. 2 is a diagram for explaining an example of vibration in the ring-type resonator.
  • FIG. 3 is a diagram for explaining a general synchronous detection method.
  • FIG. 4 is a diagram for explaining a configuration and a method for detecting a CW mode component and a CCW mode component from an input signal.
  • FIG. 5 is a diagram for explaining in detail a configuration and method for detecting a CW mode component and a CCW mode component from an input signal.
  • FIG. 6 is a diagram for explaining an example of an output when detection is performed with a predetermined reference signal.
  • FIG. 7 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal.
  • FIG. 8 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal.
  • FIG. 9 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal.
  • FIG. 10 is a diagram illustrating a configuration example of the gyro apparatus according to the embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of the first detection unit according to the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration example of the second detection unit according to the embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing a signal flow in the gyro apparatus according to the embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of the gyro apparatus according to the embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of the first detection unit according to the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration example of the second
  • FIG. 14 is a diagram illustrating a configuration example of the angular velocity detection unit according to the first embodiment of the present invention.
  • FIG. 15A and FIG. 15B are diagrams for explaining the hole angle mode.
  • 16A and 16B are diagrams illustrating a configuration example of an angle detection unit according to the second embodiment of the present invention.
  • 17A and 17B are diagrams for explaining ideal vibration with respect to the drive signal.
  • 18A and 18B are diagrams for explaining that, in an ideal vibration, the amplitude in the X direction and the amplitude in the Y direction coincide with each other at the resonance frequency, and the phase difference is 90 °.
  • FIG. 19A and FIG. 19B are diagrams for explaining a problem caused by incompleteness of the vibrator.
  • FIG. 20A and 20B are diagrams for explaining a problem caused by imperfection of a vibrator.
  • FIG. 21 is a diagram for explaining a problem caused by imperfection of the vibrator.
  • 22A and 22B are diagrams for explaining a method for solving a problem caused by imperfection of a vibrator.
  • FIG. 23 is a diagram for explaining a problem caused by incompleteness of the vibrator.
  • FIG. 24A and FIG. 24B are diagrams for explaining a problem caused by imperfections of the vibrator.
  • FIG. 25A and FIG. 25B are diagrams for explaining a method for solving the problem caused by the imperfection of the vibrator.
  • FIG. 26 is a block diagram illustrating a configuration example of the gyro device according to the third embodiment.
  • FIG. 27A and FIG. 27B are diagrams for explaining the effects obtained by the third embodiment.
  • FIG. 28A and FIG. 28B are diagrams for explaining the effects obtained by the third embodiment.
  • AM Amplitude Modulation
  • the angular velocity is obtained by measuring the amplitude (displacement) in the sense axis (eg, Y axis) direction that changes due to the Coriolis force when vibration is applied in the drive axis (eg, X axis) direction. Since the amplitude of the sense axis direction is proportional to the rotational angular velocity Omega z, it is possible to detect the rotational angular velocity Omega z by detecting the amplitude.
  • the resonance frequencies in the drive axis and sense axis directions are set to be different (mode mismatch).
  • the AM mode since measurement is performed at a frequency away from the resonance frequency, there is a problem that sensitivity is lowered.
  • the second method is a method called force rebalance, in which feedback control is performed so that the amplitude in the sense axis direction of the AM mode is always 0, and the rotational angular velocity is obtained from the magnitude of the feedback signal.
  • a vibrator in which the resonance frequencies of the drive axis and the sense axis are matched (mode matched) can be used.
  • the scale factor the magnitude of the output with respect to the rotational angular velocity
  • the embodiment of the present invention employs driving of the gyro device in the FM (Frequency Modulation) mode.
  • the characteristics of the FM mode are that the sensitivity (scale factor) is more accurate and stable than the other methods, in principle, it has excellent temperature characteristics, and there is no limit on the dynamic range. Can be mentioned.
  • An FM mode gyro is composed of a vibrator (also called a resonator or a resonator) that vibrates in two orthogonal (independent) directions.
  • a vibrator mode match
  • Equation 1 it is known that the following Equation 1 is derived when a rotational angular velocity is given to the vibrator.
  • is a resonance frequency
  • is a resonance frequency when no rotation is given (the mode is matched, so both axes have the same resonance frequency)
  • ⁇ z is a rotation angular velocity given to the vibrator.
  • the vibration mentioned below is not limited to the linear direction (for example, the X direction and the Y direction), and any vibration can be used as long as it is a mode-matched orthogonal vibration mode in a plane.
  • two orthogonal vibrations are not necessarily simple linear vibrations, but the displacement state in each vibration mode is represented by mode coordinates (generalized). It can be handled in exactly the same way as linear vibration.
  • mode coordinates generalized coordinates
  • one mode is called "X axis (or X direction)”
  • Y axis (or Y direction) a mode orthogonal to this is called “Y axis (or Y direction)" (note that Modes 1 and 2 in FIGS. 1 and 2 show a state where they are orthogonally mathematically or vibrationally).
  • Equation 2 when the rotation is not given, the resonance frequencies in the X-axis and Y-axis directions match, that is, the mode matches, the resonance frequency ⁇ becomes ⁇ + ⁇ by giving the rotation. divided into a z and ⁇ - ⁇ z. If these two resonance frequencies are ⁇ 1 and ⁇ 2 , the difference (deviation) between the resonance frequencies ⁇ 1 and ⁇ 2 is proportional to the rotational angular velocity ⁇ z , so that the two resonance frequencies ⁇ 1 and ⁇ 2 can be detected.
  • the rotational angular velocity ⁇ z can be obtained by the following mathematical formula 3.
  • the motion corresponding to ⁇ 1 ( ⁇ + ⁇ z ) corresponds to clockwise (CW)
  • the motion corresponding to ⁇ 2 ( ⁇ z ) corresponds to counterclockwise (CCW). That is, when rotation is applied to a mode-matching transducer, the natural vibration mode is not a straight line (vibration in the X direction or Y direction alone), but rotational vibration (the phase of vibration in the X and Y directions is ⁇ 90 degrees (°) shifted two-dimensional vibration). Note that the actual rotation of the vibrator is a superposition of these CW mode and CCW mode.
  • FIG. 3 is a diagram for explaining a general synchronous detection method.
  • a signal having a predetermined amplitude (Amplitude) and phase (Phase) in the input signal (Signal) SI is input.
  • the input signal SI is branched and input to each of the multipliers (mixers) 1 and 3.
  • the reference signals are multiplied by separate multipliers 1 and 3, and then subjected to filter processing to obtain a demodulated output. For example, a cos wave and a sin wave are used as reference signals, a process for multiplying the input signal SI by the cos wave is performed by the multiplier 1, and a process for multiplying the input signal SI by the sin wave is performed by the multiplier 3.
  • the signal output from the multiplier 1 is input to the LPF (Low Pass Filter) 2 and filtered.
  • LPF2 Low Pass Filter
  • the LPF2 outputs only components having the same frequency and the same phase as the reference signal (cos wave in this example).
  • the signal output from the multiplier 3 is input to the LPF 4 and subjected to filter processing. Due to the filtering process by the LPF 4, only components having the same frequency and the same phase as the reference signal (sin wave in this example) in the multiplier 3 are output from the LPF 4.
  • the input signal SI is demodulated by the outputs from the LPFs 2 and 4, and the amplitude r and phase ⁇ of the input signal SI are detected based on the demodulated output.
  • processing for detecting CW mode components and CCW mode components is performed by developing and applying this synchronous detection method.
  • this synchronous detection method an example in which only the component of the CW mode is detected from the signal obtained by combining the CW mode and the CCW mode generated in the two-dimensional vibrator will be described. The component can be detected.
  • FIG. 4 is a diagram for explaining a method of detecting a CW mode component from the input signal SI.
  • a signal output from the two-dimensional transducer is input as the input signal SI.
  • the input signal SI can be indicated by a vector notation including components in the X and Y directions.
  • the input signal SI is branched and input to each of the multipliers 1 and 3.
  • Signals CW-I (In phase) and CW-Q (Quadrature Phase) are used as reference signals, the input signal SI is multiplied by the signal CW-I by the multiplier 1, and the input signal SI is signal CCW- A process of multiplying I is performed by the multiplier 3.
  • the signal CW-I and the signal CW-Q are signals having the same amplitude, frequency, and rotation direction and having a phase shifted by 90 degrees, as symbolically shown in FIG.
  • the signal CW-I is multiplied by the multiplier 1 by the input signal SI, and the output is supplied to the LPF 2.
  • the input signal SI is multiplied by the signal CW-Q by the multiplier 3 and the output is supplied to the LPF 4.
  • the input signal SI is demodulated, and the amplitude r and phase ⁇ of the CW mode component included in the input signal SI can be detected based on the demodulated output.
  • FIG. 5 is a diagram for explaining a detailed configuration example of the multipliers 1 and 3 described above.
  • the multiplier 1 includes, for example, a multiplier 1a, a multiplier 1b, and an adder 1c.
  • the multiplier 3 includes, for example, a multiplier 3a, a multiplier 3b, and an adder 3c.
  • signals (amplitudes) in the X-axis and Y-axis directions are input to the multiplier 1 as the input signal SI.
  • Multiplier 1a multiplies signal SIX by a component in the X-axis direction of signal CW-I
  • multiplier 1b multiplies signal SIY by a component in the Y-axis direction of signal CW-I.
  • the adder 1c adds the outputs of the multipliers 1a and 1b and outputs the result to the LPF 2.
  • the multiplier 3a multiplies the signal SIX by the component in the X-axis direction of the signal CW-Q, and the multiplier 3b multiplies the signal SIY by the component in the Y-axis direction of the signal CW-Q.
  • the adder 3c adds the outputs of the multipliers 3a and 3b and outputs the result to the LPF 4.
  • the point that the component of the CW mode included in the output of the two-dimensional vibrator can be detected by the method described above will be described in more detail with reference to FIGS.
  • the example shown in FIG. 6 is an example of detection using the signal CW-I as a reference signal.
  • the signal in the X-axis direction of CW-I is a sin wave
  • the signal in the Y-axis direction is a cos wave.
  • the output waveform of the multiplier 1a is the waveform WA1a
  • the output waveform of the multiplier 1b is the waveform WA2a.
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3a.
  • this signal waveform is passed through LPF2
  • the filtering process by LPF2 is equivalent to the process of obtaining an average, so that the waveform of the obtained signal becomes a waveform WA4a (DC component) similar to waveform WA3a. That is, when the input signal SI includes a component of the signal CW-I, the component can be detected by detection using the signal CW-I.
  • the example shown in FIG. 7 is an example of detection using the signal CW-I as a reference signal, but it is assumed that the input signal SI is only the component of the signal CW-Q that is 90 degrees out of phase with the signal CW-I. It is an example.
  • the output waveform of the multiplier 1a is a waveform WA1b
  • the output waveform of the multiplier 1b is a waveform WA2b.
  • the signal obtained by adding the outputs of these waveforms by the adder 1c is 0 as shown in the figure, and therefore the output of the LPF 2 is also 0 as shown.
  • the example shown in FIG. 8 is an example of detection using the signal CW-I as a reference signal, but only the component of the counterclockwise signal CCW-I whose input signal SI is different from the signal CW-I in the rotation direction.
  • the output waveform of the multiplier 1a is a waveform WA1c
  • the output waveform of the multiplier 1b is a waveform WA2c.
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3c that is symmetric about 0.
  • the example shown in FIG. 9 is an example in which detection is performed using the signal CW-I as a reference signal, but the input signal SI is a counterclockwise signal having a rotation direction different from that of the signal CW-I, and the signal CCW ⁇
  • the output waveform of the multiplier 1a is a waveform WA1d
  • the output waveform of the multiplier 1b is a waveform WA2d
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3d that is symmetric about 0.
  • the signal of the waveform WA3d is passed through the LPF 2, its output becomes 0 as shown.
  • any two-dimensional vibration (represented by a linear combination of CW-I, CW-Q, CCW-I, and CCW-Q) generated in the two-dimensional vibrator is used with the signal CW-I as a reference signal.
  • the signal CW-I is used with the signal CW-I as a reference signal.
  • synchronous detection only the component of the signal CW-I included in the output signal of the two-dimensional transducer is obtained. This is also true for detected components when other signals are used as reference signals.
  • Table 1 is obtained.
  • the reference signal when the output of the two-dimensional transducer includes the signal CW-Q component, the reference signal can be detected as the signal CW-Q, while the other signal components are output. 0.
  • the reference signal when the component of the signal CCW-I is included in the output of the two-dimensional vibrator, the reference signal can be detected as the signal CCW-I, while the output of other signal components is zero.
  • the output of the signal CCW-Q is included in the output of the two-dimensional transducer, the reference signal can be detected as the signal CCW-Q, while the output of other signal components is 0.
  • the CW mode component and CCW mode component can be detected independently from the output of the child.
  • FIG. 10 is a diagram illustrating a configuration example of the gyro apparatus (gyro apparatus 10) according to the first embodiment of the present invention.
  • the gyro apparatus 10 includes, for example, a single two-dimensional vibrator 15, a drive signal generation unit 20, a first detection unit 30a, a first PLL (Phase Locked Loop) circuit 40a as an example of a first oscillation circuit, A first AGC (Automatic Gain Control) unit 50a as an example of a first gain control unit, a second detection unit 30b, a second PLL circuit 40b as an example of a second oscillation circuit, and an example of a second gain control unit
  • the second AGC unit 50 b includes amplifiers 61 a and 61 b provided on the input side of the two-dimensional vibrator 15, and amplifiers 62 a and 62 b provided on the output side of the two-dimensional vibrator 15.
  • the gyro apparatus 10 may include a DA (Digital-to-Analog) converter and an AD (Analog-to-Digital) converter, and may be realized by digital signal processing.
  • the DA converter is provided, for example, before the amplifiers 61a and 61b, and is configured to convert the digital drive signal output from the drive signal generation unit 20 into an analog format.
  • the AD converter is provided, for example, at the subsequent stage of the amplifiers 62a and 62b, and is configured to convert an analog signal output from the two-dimensional transducer 15 into a digital format.
  • the two-dimensional vibrator 15 is, for example, a vibrating member that has a ring shape and can be excited by a drive signal corresponding to each of the CW mode and the CCW mode.
  • the shape of the two-dimensional vibrator 15 is not limited to the ring shape, and may be any shape such as a regular square plate, a cylinder, a regular square column, a quadruple mass type using four masses, or the like. It is.
  • the drive signal generation unit 20 generates a drive signal corresponding to the CW mode and a drive signal corresponding to the CCW mode, and supplies the multiplexed drive signal to the two-dimensional vibrator 15.
  • the two-dimensional vibrator 15 is excited by the drive signal supplied from the drive signal generator 20.
  • a cosine wave hereinafter referred to as “cos cw signal”
  • ⁇ sin cw signal a ⁇ sin wave
  • the drive signal does not necessarily have to be a cos wave or a ⁇ sin wave as long as the Y direction signal has a phase advanced by 90 degrees compared to the X direction signal.
  • a -cos wave hereinafter referred to as -cos CCW signal
  • a -sin wave hereinafter referred to as -sin CCW signal
  • the drive signal is not necessarily a -cos wave or a -sin wave as long as the Y direction signal is 90 degrees behind the X direction signal.
  • the drive signal generation unit 20 includes, for example, a multiplier 201, a multiplier 202, a multiplier 203, a multiplier 204, an adder 205, and an adder 206.
  • the first detection unit 30 a detects the amplitude r cw and the phase ⁇ cw of the CW component included in the output of the two-dimensional transducer 15. Details of the first detection unit 30a will be described later.
  • the first PLL circuit 40a includes a phase comparator 41a, a PID (Proportional Integral Differential) control unit 42a, and an oscillator 43a that can change an oscillation frequency such as a VCO (Voltage Controlled Oscillator) or an NCO (Numerical Controlled Oscillator). I have. Although detailed illustration is omitted in order to prevent the illustration from being complicated, the output of the first PLL circuit 40a (may be all or part of the output) may be the drive signal generator 20, It is configured to be fed back to each of the detection units 30a.
  • the first AGC unit 50a includes an amplitude comparator 51a and a PID control unit 52a.
  • the output of the first AGC unit 50 a is configured to be fed back to the drive signal generation unit 20.
  • the second detection unit 30 b detects the amplitude r CCW and the phase ⁇ CCW of the CCW component included in the output of the two-dimensional transducer 15. Details of the second detection unit 30b will be described later.
  • the second PLL circuit 40b includes a phase comparator 41b, a PID control unit 42b, and an oscillator 43b that can change an oscillation frequency such as a VCO or an NCO. Although detailed illustration is omitted in order to prevent the illustration from being complicated, the output of the second PLL circuit 40b (may be all or part of the output) may be the drive signal generator 20, It is configured to be fed back to each of the detection units 30b.
  • the second AGC unit 50b includes an amplitude comparator 51b and a PID control unit 52b.
  • the output of the second AGC unit 50 b is configured to be fed back to the drive signal generation unit 20.
  • FIG. 11 is a diagram for explaining a configuration example of the first detection unit 30a.
  • the first detector 30a includes detectors 31a and 32a to which signals output from the two-dimensional transducer 15 are branched and input, an LPF 33a that performs filtering on the output of the detector 31a, and an output of the detector 32a.
  • An LPF 34a that performs filter processing, and an amplitude phase detector 35a that detects the amplitude r cw and the phase ⁇ cw of the CW component contained in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33a and LPF 34a. .
  • the detector 31a is a multiplier 310a that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 311a and an adder 312a for adding the outputs of the multipliers 310a and 311a.
  • the detector 32 a is a multiplier 320 a that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 321a and an adder 322a for adding the outputs of the multipliers 320a and 321a.
  • the CW-I component in the X-axis direction is a sin signal
  • the CW-I component in the Y-axis direction is a cos signal
  • the CW-Q component in the X-axis direction is a cos signal
  • the CW in the Y-axis direction -Q component is -sin signal.
  • FIG. 12 is a diagram for describing a configuration example of the second detection unit 30b.
  • the second detector 30b includes detectors 31b and 32b into which signals from the two-dimensional transducer 15 are branched and input, an LPF 33b that performs filtering on the output of the detector 31b, and a filtering process on the output of the detector 32b.
  • an amplitude phase detector 35b for detecting the amplitude r CCW and the phase ⁇ CCW of the CCW component contained in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33b and the LPF 34b.
  • the detector 31b is a multiplier 310b that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 311b and an adder 312b for adding outputs from the multipliers 310b and 311b.
  • the detector 32b is a multiplier 320b that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 321b and an adder 322b that adds the outputs of the multipliers 320b and 321b.
  • the CCW-I component in the X-axis direction is the -sin signal
  • the CCW-I component in the Y-axis direction is the cos signal
  • the CCW-Q component in the X-axis direction is the -cos signal
  • the Y-axis direction The CCW-Q component of the -sin signal.
  • the drive signal generation unit 20 generates a drive signal for the two-dimensional vibrator 15. For each of the cos cw signal and the ⁇ sin cw signal, the signal fed back from the PID control unit 52 a is multiplied by the multipliers 201 and 202, and then the output signal from the multiplier 201 is supplied to the adder 205. An output signal from the multiplier 202 is supplied to the adder 206.
  • Each of the ⁇ cos CCW signal and the ⁇ sin CCW signal is multiplied by a signal fed back from the PID control unit 52 b by the multipliers 203 and 204, and then an output signal from the multiplier 203 is supplied to the adder 205.
  • the output signal from the multiplier 204 is supplied to the adder 206.
  • the adder 205 adds the output signal from the multiplier 201 and the output signal from the multiplier 203 and outputs the result.
  • the output signal from the adder 205 is amplified with an appropriate amplification factor by the amplifier 61a, and then input to the two-dimensional vibrator 15 as an input Xd .
  • the adder 206 adds the output signal from the multiplier 202 and the output signal from the multiplier 204 and outputs the result. After the output signal from the adder 206 is amplified with an appropriate amplification factor by the amplifier 61b, as an input Y d to the two-dimensional vibrator 15.
  • the two-dimensional vibrator 15 is excited by the inputs X d and Y d , and outputs X s and Y s from the two-dimensional vibrator 15 are obtained.
  • the outputs X s and Y s from the two-dimensional vibrator 15 are amplified with an appropriate amplification factor by the amplifiers 62a and 62b, the output X s is branched and supplied to the first and second detection units 30a and 30b, respectively.
  • the output Y s is branched and input to each of the first and second detection units 30a and 30b.
  • the first detection unit 30 a detects a CW component included in the output of the two-dimensional transducer 15. Specifically, the detector 31a in the first detection unit 30a detects using the signal CW-I, and the result is subjected to filter processing by the LPF 33a, whereby CW-I included in the output of the two-dimensional transducer 15 is detected. The component is detected, and the detection result is supplied to the amplitude / phase detector 35a. In addition, the detector 32a in the first detection unit 30a detects using the signal CW-Q, and the result is filtered by the LPF 34a to detect the CW-Q component included in the output of the two-dimensional transducer 15. Then, the detection result is supplied to the amplitude / phase detector 35a.
  • the amplitude phase detector 35a detects the amplitude r cw and the phase ⁇ cw of the CW component included in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33a and the LPF 34a. That is, as described above, only the CW component included in the output of the two-dimensional transducer 15 can be detected by performing synchronous detection using the signals CW-I and CW-Q as reference signals.
  • the phase ⁇ cw detected by the first detection unit 30a is supplied to the first PLL circuit 40a.
  • the control 42a executes control so that the phase ⁇ cw becomes 0, that is, the resonance frequency f cw .
  • the oscillator 43a is controlled by the output from the PID control unit 42a, whereby the oscillator 43a outputs the signal sin cw and the signal cos cw having the resonance frequency f cw in phase.
  • the amplitude r cw obtained by the first detection unit 30a is supplied to the first AGC unit 50a.
  • the amplitude comparator 51a in the first AGC unit 50a compares the amplitude r cw with a predetermined first set value R set, cw, and based on the comparison result, the PID control unit 52a determines that the amplitude r cw is a predetermined first setting. Executes control with value R set, cw .
  • the output from the PID control unit 52a is fed back to the drive signal generation unit 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CW mode is maintained at the first set value R set, cw .
  • Similar processing is executed for a system that detects a CCW component included in the output of the two-dimensional transducer 15.
  • the detector 31b in the second detection unit 30b detects using the signal CCW-I, and the result is subjected to filter processing by the LPF 33b, so that the CCW-I included in the output of the two-dimensional transducer 15 is obtained.
  • the component is detected, and the detection result is supplied to the amplitude / phase detector 35b.
  • the detector 32b in the second detection unit 30b detects using the signal CCW-Q, and the CCW-Q component included in the output of the two-dimensional transducer 15 is detected by performing filter processing on the result using the LPF 34b.
  • the amplitude phase detector 35b detects the amplitude r CCW and the phase ⁇ CCW of the CCW component included in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33b and the LPF 34b. That is, as described above, only the CCW component included in the output of the two-dimensional transducer 15 can be detected by performing synchronous detection using the signals CCW-I and CCW-Q as reference signals.
  • the phase ⁇ CCW obtained by the second detection unit 30b is supplied to the second PLL circuit 40b.
  • the phase comparator 41b in the second PLL circuit 40b compares the phase ⁇ CCW with 0, and based on the comparison result, the PID control unit 42b executes control for setting the phase ⁇ CCW to 0, that is, the resonance frequency f cw .
  • the oscillator 43b is controlled by the output from the PID control unit 42b, whereby the oscillator 43b outputs a signal sin CCW and a signal cos CCW having the resonance frequency f CCW that are in phase.
  • the resonance frequency f CCW is fed back to the input side, and control is performed to maintain the resonance frequency of the drive signal corresponding to the CCW mode at the resonance frequency f CCW .
  • the signal sin CCW and the signal cos CCW are fed back to the second detection unit 30b, and based on this, the signals CCW-I and CCW-Q as reference signals are generated.
  • -sin sin ccw
  • cos cos ccw
  • -cos -1 * cos ccw
  • the amplitude r CCW obtained by the second detection unit 30b is supplied to the second AGC unit 50b.
  • the amplitude comparator 51b in the second AGC unit 50b compares the amplitude r CCW with the second set value R set, CCW, and based on the comparison result, the PID control unit 52b sets the amplitude r CCW to the second set value R set, Executes CCW control.
  • the output from the PID control unit 52b is fed back to the drive signal generation unit 20, and control is performed to control the gain so that the amplitude of the drive signal corresponding to the CCW mode is maintained at the second set value R set, CCW .
  • FIG. 13 is a diagram schematically showing a signal flow in the gyro apparatus 10. As shown in FIG. A thick line in FIG. 13 indicates a signal flow.
  • the CCW component included in the output of the two-dimensional transducer 15 is cut by the first detection unit 30a, and only the CW component loops through one system (the upper system in FIG. 13).
  • the CW component included in the output of the two-dimensional transducer 15 is cut by the second detection unit 30b, and only the CCW component loops through the other system (the lower system in FIG. 13).
  • angular velocity detection unit 70 angular velocity detection unit 70
  • the angular velocity detection unit 70 is described as being incorporated in the gyro device 10, it may be incorporated in another device.
  • FIG. 14 is a diagram illustrating a configuration example of the angular velocity detection unit 70.
  • the angular velocity detection unit 70 includes, for example, a subtracter 71 and a multiplier 72.
  • the angular velocity detection unit 70 obtains the resonance frequency f cw output from the first PLL circuit 40a and the resonance frequency f CCW output from the second PLL circuit 40b, subtracts both resonance frequencies by the subtractor 71, and multiplies the result. 72 is multiplied by a constant (in the case of an ideal vibrator, 1/2 times).
  • the angular velocity detection unit 70 detects the rotational angular velocity ⁇ z by performing the same calculation as in the above-described Expression 3. By integrating this rotational angular velocity ⁇ z , the gyro apparatus 10 can detect the rotated angle.
  • the apparatus is composed of a single two-dimensional vibrator, it is possible to reduce the size of the apparatus, and it is not necessary to match the characteristics and use environment of the vibrator as in the case of using a plurality of vibrators. .
  • a single two-dimensional vibrator is driven by mode matching, a high Q value can be realized, and a high-performance gyro apparatus can be realized.
  • components corresponding to the CW and CCW modes can be detected independently from the output of the two-dimensional transducer, and the rotational angular velocity can be detected from those detection results, and finally the rotated angle can be detected. it can.
  • the second embodiment is an embodiment configured as a gyro device in a Whole Angle Mode (also referred to as an integral gyro or the like, a typical example is a Foucault pendulum).
  • the gyro apparatus in the hall angle mode can detect the rotated angle itself.
  • the hall angle mode will be schematically described with reference to FIG.
  • a phase difference ⁇ is generated, and the direction of vibration is rotated by the phase difference ⁇ as shown in FIG. 15B.
  • the rotation angle in the vibration direction is 1 ⁇ 2 of the phase difference ⁇ .
  • phase difference ⁇ is 60 degrees, and the direction of vibration rotates by 1/2 (30 degrees) of the phase difference ⁇ .
  • the hall angle mode gyro apparatus can detect the phase difference ⁇ and multiply the phase difference ⁇ by 1/2 to detect the rotated angle itself.
  • FIG. 16A is a diagram illustrating a configuration example of an angle detection unit (angle detection unit 80a) that detects a rotation angle.
  • the angle detection unit 80a includes a subtractor 81a and a multiplier 82a.
  • phase of each CW, CCW mode ( ⁇ cw , ⁇ CCW (which is different from the actual vibration phase with respect to the excitation signal of each mode) is ⁇ ′ cw , ⁇ ′ CCW , these are It can be obtained by reading internal variables of NCO.
  • the subtractor 81a receives this phase ⁇ ′ cw and ⁇ ′ CCW .
  • the subtractor 81a subtracts the phase ⁇ ′ cw and the phase ⁇ ′ CCW to obtain the phase difference ⁇ , and the result is multiplied by a constant (1/2 times for an ideal XY vibrator) by the multiplier 82a, thereby rotating the rotation angle. (Angle) can be detected.
  • FIG. 16B is a diagram illustrating another configuration example of the angle detection unit.
  • the angle detection unit 80b illustrated in FIG. 16B includes, for example, a demodulation unit 81b, a phase difference detection unit 82b that detects at least a phase difference, and a multiplier 83b.
  • the demodulator 81b demodulates (synchronous detection) the cos CCW signal supplied from the second PLL circuit 40b using the cos cw signal and the sin cw signal. Based on the result, the phase difference detector 82b detects the phase difference ⁇ , and the multiplier 83b multiplies the detected phase difference ⁇ by a constant (1/2 times for an ideal XY vibrator) to thereby adjust the rotation angle. Can be detected.
  • the angle detectors 80a and 80b may be incorporated in another device different from the gyro device 10, and processing for detecting the rotation angle may be performed by the other device.
  • the gyro apparatus 10 may include an angular velocity detection unit 70 (see FIG. 14) and an angle detection unit 80a (may be the angle detection unit 80b). With this configuration, it is possible to provide a gyro apparatus that supports both the FM mode and the hall angle mode. Furthermore, since the rotation angle can be detected without numerical integration, it is possible to avoid inconveniences such as generation of errors due to numerical calculation, increase in power consumption due to calculation load, and bandwidth limitation due to calculation speed.
  • the second embodiment can be modified as follows, for example.
  • the driving of the gyro apparatus 10 in the hall angle mode can continue the mechanical integration operation even when there is no power on the same principle as the Foucault pendulum. Using this characteristic, intermittent control can be performed to reduce power consumption in the gyro apparatus 10.
  • the power to the gyro device 10 is intermittently supplied.
  • the configuration is made. Even when the supply of power is stopped, the mechanical integration operation continues while the vibration of the two-dimensional vibrator 15 continues. Of course, since the vibration of the two-dimensional vibrator 15 is attenuated while the supply of power is stopped, the supply of power is resumed after a certain period.
  • This control may be set by the user as a mode (power saving mode) different from the mode for executing the normal operation.
  • a timer may be provided in the gyro apparatus 10 so that the supply of power is automatically stopped after a certain period of time has elapsed after the start of power supply.
  • the configuration may be such that the supply of power is stopped when the amplitude r cw and the amplitude r CCW output from the first detection unit 30a and the second detection unit 30b reach a certain value.
  • Such a configuration includes, for example, a configuration in which the gyro device 10 is supplied with a power supply unit (any primary battery, secondary battery, solar power generation device, etc.) and a power supply unit and electric power (all or one of the gyro device 10). And a control unit that turns on / off a switch provided between the first and second components).
  • the third embodiment is an embodiment for avoiding performance deterioration due to incompleteness (X-Y asymmetry) of the vibrator.
  • the incompleteness of the vibrator means a difference in resonance frequency and attenuation coefficient in the X and Y directions, which is mainly caused by the asymmetry of the structure due to a manufacturing error of the vibrator.
  • FIG. 17A The upper part of FIG. 17A is a graph showing an example of the drive signal in the X direction, and the lower part of FIG. 17A is a graph showing an example of the drive signal in the Y direction.
  • the vertical axis in each graph indicates the level of the drive signal, and the horizontal axis indicates time (t).
  • the phase difference ( ⁇ ) of the drive signals in the X direction and the Y direction is 90 °.
  • FIG. 17B shows the vibration when the vibrator is excited by the drive vibration shown in FIG. 17A.
  • the upper part of FIG. 17B shows the vibration in the X direction of the output of the vibrator, and the lower part of FIG. Of the output, the vibration in the Y direction is shown.
  • the vibration in each direction is such that the phase of the drive signal in the corresponding direction is delayed by 90 °, and the phase difference between the vibration in the X direction and the vibration in the Y direction is maintained at 90 °. That is, when the vibrator is excited with a drive signal having a phase difference of 90 ° in the X direction and the Y direction, ideally, as shown in FIGS. 18A and 18B, the X direction is at the resonance point (resonance frequency f 0 ). And the amplitude of vibration in the Y direction are the same, and the phase difference of vibration in the X direction and the Y direction is 90 °.
  • the phase delay of the vibration in the X direction is smaller than (or larger than) 90 ° with respect to the phase of the driving signal in the X direction
  • the phase lag of the vibration of the motor is larger (or smaller) than 90 ° with respect to the phase of the drive signal in the Y direction.
  • the phase difference between the excited vibrations in the X and Y directions is not 90 °.
  • FIG. 21 is a block diagram showing the gyro apparatus 10 in a simplified manner.
  • the first detection unit 30a detects a CW component included in the vibration of the two-dimensional vibrator 15, and is therefore referred to as a CW detector in FIG. .
  • the second detection unit 30b detects a CCW component included in the vibration of the two-dimensional vibrator 15, it is represented as a CCW detector in FIG.
  • the system in which the CW mode component loops and the system in which the CCW mode component loops should originally be independent.
  • Unnecessary CCW mode components included in this component pass through the CCW detector. That is, a signal having CW mode information leaks to the CCW mode loop system, and the CW mode information enters the PLL (second PLL circuit 40b) in the CCW mode loop.
  • the operation of the second PLL circuit 40b is disturbed by an unnecessary CCW mode component included in the CW mode, and the frequency at which the second PLL circuit 40b is locked is disturbed.
  • an unnecessary CCW mode component is included in the CW mode component
  • the phase of the drive signal is shifted in advance in order to cancel an unnecessary phase difference caused by imperfection of the two-dimensional vibrator 15 (phase adjustment processing).
  • 22A and 22B for example, when the phase difference between the drive vibration phase and the vibration phase in the X direction is smaller than 90 °, the phase difference and the drive signal phase are delayed in advance. Keep it. 22A and 22B, for example, if the phase difference between the drive vibration phase and the vibration phase in the Y direction is greater than 90 °, the phase difference and the drive signal phase are Advance in advance. Thereby, the phase difference between the vibration in the X direction and the vibration in the Y direction can be 90 °, and a pure eigenmode can be excited.
  • the phase difference to be compensated can be obtained from the difference in resonance frequency, for example.
  • the phase difference in which the vibration in the X direction and the vibration in the Y direction are most orthogonal may be obtained in advance by experiments or the like, and the phase of the drive signal may be delayed or advanced by the amount corresponding to the phase difference.
  • the incompleteness of the vibrator causes not only the above-described frequency shift but also a shift between the Q value (dumping) in the X direction and the Q value in the Y direction.
  • the vibration amplitude in the X direction and the vibration amplitude in the Y direction are different at the resonance point. If the amplitude of the vibration in the X direction is different from the amplitude of the vibration in the Y direction, it is no longer a natural vibration (circular vibration), and the CCW mode component is included in the CW mode vibration (CCW mode) as in the event described above. This causes a problem that the CW mode component is included in the vibration.
  • the deviation (mismatch) of the Q value is compensated by previously shifting the amplitude of the drive signal (amplitude adjustment processing).
  • the amplitude of the vibration amplitude and the Y-direction of the vibration in the X-direction should match the resonance point and the amplitude A C.
  • the amplitude A C for by the amount of deviation, advance shifting the amplitude of the amplitude and the Y-direction driving signal for the X direction of the driving signal.
  • the amplitude of the drive signal is increased by the amount of vibration attenuation ( ⁇ A x ) generated between the amplitude of the drive signal in the X direction and the amplitude of the vibration in the X direction.
  • the amplitude of the drive signal is reduced by an increase in vibration ( ⁇ A y ) that occurs between the amplitude of the drive signal in the Y direction and the amplitude of the vibration in the Y direction.
  • ⁇ A y increase in vibration
  • the amount of compensation for the amplitude is obtained from the difference in Q value, for example.
  • the compensation amount of the amplitude in which the vibration in the X direction and the vibration in the Y direction are most orthogonal may be obtained in advance by experiments or the like, and the amplitude of the drive signal may be increased or decreased by the compensation amount of the amplitude.
  • FIG. 26 is a block diagram illustrating a configuration example of the gyro apparatus (gyro apparatus 10A) according to the third embodiment to which the above-described function of adjusting the phase and amplitude is applied.
  • the same components as those of the gyro device 10 are denoted by the same reference numerals.
  • the drive signal generation unit 20A of the gyro apparatus 10A includes phase adjustment units 91, 92, 93, and 94 and amplitude adjustment units 95, 96, 97, and 98 in addition to the configuration of the drive signal generation unit 20 in the first embodiment. ing.
  • phase adjustment units 91 and 92 and the amplitude adjustment units 95 and 96 constitute a first phase / amplitude adjustment unit
  • phase adjustment units 93 and 94 and the amplitude adjustment units 97 and 98 constitute a second phase / amplitude adjustment unit.
  • the phase adjustment unit 91 is connected to the input stage of the multiplier 201, and the amplitude adjustment unit 95 is connected to the output stage of the multiplier 201.
  • the phase adjustment unit 91 and the amplitude adjustment unit 95 perform the above operation on the drive signal in the X direction in the CW mode in order to eliminate unnecessary phase difference and Q value shift caused by imperfection of the two-dimensional vibrator 15.
  • the phase adjustment process and the amplitude adjustment process performed are executed.
  • the phase adjustment unit 92 is connected to the input stage of the multiplier 202, and the amplitude adjustment unit 96 is connected to the output stage of the multiplier 202.
  • the phase adjustment unit 92 and the amplitude adjustment unit 96 are described above with respect to the drive signal in the Y direction in the CW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional vibrator 15.
  • the phase adjustment process and the amplitude adjustment process performed are executed.
  • the phase adjustment unit 93 is connected to the input stage of the multiplier 203, and the amplitude adjustment unit 97 is connected to the output stage of the multiplier 203.
  • the phase adjustment unit 93 and the amplitude adjustment unit 97 perform the above operation on the X-direction drive signal in the CCW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional transducer 15.
  • the phase adjustment process and the amplitude adjustment process performed are executed.
  • the phase adjustment unit 94 is connected to the input stage of the multiplier 204, and the amplitude adjustment unit 98 is connected to the output stage of the multiplier 204.
  • the phase adjustment unit 94 and the amplitude adjustment unit 98 perform the above operation on the drive signal in the Y direction in the CCW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional vibrator 15.
  • the phase adjustment process and the amplitude adjustment process performed are executed.
  • Each phase adjustment unit may be provided at the output stage of each multiplier, but the circuit configuration can be simplified by adjusting the phase of the drive signal before the arithmetic processing (multiplication) by the multiplier.
  • the amplitude adjustment can also be realized by individually adjusting the magnifications of the multipliers 201 to 204.
  • the outputs of the amplitude adjustment units 95 and 97 are added by the adder 205, then amplified by the amplifier 61a, and supplied to the two-dimensional vibrator 15 as a drive signal in the X direction.
  • the outputs of the amplitude adjusters 96 and 98 are added by the adder 206, then amplified by the amplifier 61b, and supplied to the two-dimensional vibrator 15 as a drive signal in the Y direction.
  • the two-dimensional vibrator 15 is excited by drive vibration corresponding to each direction.
  • the CW mode drive signal excites only pure CW mode vibration (CCW mode drive signal only pure CCW mode vibration). be able to.
  • the horizontal axis of the graph shown in FIG. 27A and FIG. 27B shows the time (t) (s), the vertical axis represents the difference between the frequency f ccw frequency f cw and oscillator 43b of the oscillator 43a ⁇ f (Hz).
  • the graph in FIG. 27A shows the result when the processing in the present embodiment is not applied, and the graph in FIG. 27B shows the result when the processing in the present embodiment is applied. As shown in FIG.
  • the processing described in the third embodiment can also be applied to the second embodiment (hole angle mode gyro device). In this case, the same effect can be obtained.
  • This effect will be described.
  • the horizontal axis indicates time (t) (s), and the vertical axis indicates the rotation angle ⁇ detected by the gyro device according to the second embodiment.
  • the graph in FIG. 28A shows the result when the processing in the present embodiment is not applied, and the graph in FIG. 28B shows the result when the processing in the present embodiment is applied.
  • the angle detected from rotating the two-dimensional vibrator 15 at a constant angular velocity should be a straight line. However, as shown in FIG. A periodic error appears in the angle.
  • the processing in this embodiment is applied and the phase and amplitude of the drive signal are adjusted, the orthogonality between the modes is improved, and the periodic error as shown in FIG. 28A is not seen. Therefore, the angle can be detected accurately.
  • the present invention is not limited to a specific method or the like as long as it is a vibrator that mode-matches two-dimensionally, and the shape and excitation method (electrostatic, electromagnetic, piezoelectric, etc.).
  • the circuit that processes the output of the two-dimensional vibrator 15 can also be configured by an integrated circuit such as an ASIC (Application Specific integrated Circuit).
  • ASIC Application Specific integrated Circuit
  • a configuration in which the gyro apparatus 10 includes other circuit elements or the like may be used as long as the effects of the present invention are achieved.
  • the gyro device of the present invention is a device other than the above (for example, various electronic devices such as game devices, imaging devices, smartphones, mobile phones, personal computers, automobiles, trains, airplanes, helicopters, small flying vehicles, space devices, etc. And may be used by being incorporated in a mobile body, a robot, or the like.
  • the configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like may be used as necessary.
  • the present invention can be realized by an apparatus, a method, and a system (cloud system or the like) composed of a plurality of apparatuses, and the items described in the plurality of embodiments and the modifications are mutually compatible unless technical contradiction occurs. Can be combined.

Abstract

A gyroscopic apparatus provided with: a single two-dimensional oscillator driven by a drive signal corresponding to a first rotary oscillation mode and a drive signal corresponding to a second rotary oscillation mode; a first detector for detecting, from a signal outputted from the two-dimensional oscillator, the amplitude and phase of a component that corresponds to the first rotary oscillation mode; and a second detector for detecting, from a signal outputted from the two-dimensional oscillator, the amplitude and phase of a component that corresponds to the second rotary oscillation mode.

Description

ジャイロ装置およびジャイロ装置の制御方法Gyro apparatus and control method of gyro apparatus
 本発明は、ジャイロ装置およびジャイロ装置の制御方法に関し、例えば、単一(1個)のモードマッチ(直交する2軸の共振周波数が一致)した2次元振動子を用いたジャイロ装置およびジャイロ装置の制御方法に関する。 The present invention relates to a gyro device and a method for controlling the gyro device. For example, the gyro device and the gyro device using a two-dimensional vibrator having a single (one) mode match (matching resonance frequencies of two orthogonal axes). It relates to a control method.
 従来から、回転の角速度を検出するためのジャイロ装置が提案されている。例えば、下記の文献(非特許文献1)には、2個の共振子を使用し、それぞれの共振子を時計方向(CW(Clockwise rotation))、反時計方向(CCW(Counter-Clockwise rotation))に励振させて、各共振子の周波数差から入力角速度を求めるようにしたジャイロ装置が記載されている。また、下記の特許文献1には、リング状の振動式ジャイロスコープを時計回りおよび反時計回りの回転振動でもって励振する装置が記載されている。 Conventionally, a gyro device for detecting the angular velocity of rotation has been proposed. For example, the following document (Non-Patent Document 1) uses two resonators, each of which is clockwise (CW (ClockwiseCrotation)) and counterclockwise (CCW (Counter-Clockwise rotation)). The gyro device is described in which the input angular velocity is obtained from the frequency difference between the resonators. Patent Document 1 below describes a device for exciting a ring-shaped vibrating gyroscope with clockwise and counterclockwise rotational vibrations.
特開平6-241810号公報JP-A-6-241810
 しかしながら、非特許文献1に記載のジャイロ装置は、使用する2個の振動子の特性を完全に同一にしなければならないという問題がある。また、2個の振動子を使用するため、装置の小型化が困難になるという問題がある。さらに、温度の変化に伴い共振子の共振周波数、Q値等の特性が変化するため、2個の共振子の特性を同一とするために、両者の雰囲気温度等の使用条件を一致させる必要があるという問題がある。また、特許文献1には、振動式ジャイロスコープの出力からCW、CCWモードの成分を検出する具体的な構成が明らかにされていない。 However, the gyro device described in Non-Patent Document 1 has a problem that the characteristics of the two vibrators to be used must be completely the same. Further, since two vibrators are used, there is a problem that it is difficult to reduce the size of the apparatus. Furthermore, since the characteristics of the resonator, such as the resonance frequency and Q value, change as the temperature changes, it is necessary to match the usage conditions such as the ambient temperature of the two resonators in order to make the characteristics of the two resonators the same. There is a problem that there is. Further, Patent Document 1 does not disclose a specific configuration for detecting a CW or CCW mode component from the output of a vibrating gyroscope.
 本発明の目的の一つは、これらの問題を解決するための新規かつ有用なジャイロ装置およびジャイロ装置の制御方法を提供することにある。 One of the objects of the present invention is to provide a novel and useful gyro apparatus and a control method for the gyro apparatus for solving these problems.
 上述した課題を解決するために、本発明は、第1回転振動モード(例えば、時計回転(CW)振動モード)に対応する駆動信号および第2回転振動モード(例えば、反時計回転(CCW)振動モード)に対応する駆動信号によって駆動される単一の2次元振動子と、2次元振動子から出力される信号から、第1回転振動モードに対応した成分の振幅および位相を検出する第1検出部と、2次元振動子から出力される信号から、第2回転振動モードに対応した成分の振幅および位相を検出する第2検出部とを備えるジャイロ装置である。 In order to solve the above-described problems, the present invention provides a driving signal corresponding to a first rotational vibration mode (for example, clockwise (CW) vibration mode) and a second rotational vibration mode (for example, counterclockwise (CCW) vibration). First detection for detecting the amplitude and phase of the component corresponding to the first rotational vibration mode from the single two-dimensional vibrator driven by the drive signal corresponding to the mode) and the signal output from the two-dimensional vibrator. And a second detector for detecting the amplitude and phase of the component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator.
 本発明の他の態様は、第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号によって単一の2次元振動子を駆動し、2次元振動子から出力される信号から、第1回転振動モードに対応した成分の振幅および位相を検出し、2次元振動子から出力される信号から、第2回転振動モードに対応した成分の振幅および位相を検出するジャイロ装置の制御方法である。 In another aspect of the present invention, a single two-dimensional vibrator is driven by a drive signal corresponding to the first rotational vibration mode and a drive signal corresponding to the second rotational vibration mode, and a signal output from the two-dimensional vibrator. The gyro apparatus controls the amplitude and phase of the component corresponding to the first rotational vibration mode and detects the amplitude and phase of the component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator. Is the method.
 本発明によれば、単一の振動子を使用する構成を採用するので、装置を小型化することが可能となる。また、複数の振動子を用いる必要がないため、振動子間の性能のばらつきがなく、ジャイロ装置の高性能化が可能となる。なお、本明細書により例示された効果により、本発明の内容が限定して解釈されるものではない。 According to the present invention, since a configuration using a single vibrator is employed, the apparatus can be miniaturized. In addition, since it is not necessary to use a plurality of vibrators, there is no variation in performance among vibrators, and the performance of the gyro device can be improved. It should be noted that the contents of the present invention are not construed as being limited by the effects exemplified in this specification.
図1は、リング型の共振器における振動の一例を説明するための図である。FIG. 1 is a diagram for explaining an example of vibration in a ring-type resonator. 図2は、リング型の共振器における振動の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of vibration in the ring-type resonator. 図3は、一般的な同期検波方式を説明するための図である。FIG. 3 is a diagram for explaining a general synchronous detection method. 図4は、入力信号からCWモードの成分およびCCWモードの成分を検出する構成、方法を説明するための図である。FIG. 4 is a diagram for explaining a configuration and a method for detecting a CW mode component and a CCW mode component from an input signal. 図5は、入力信号からCWモードの成分およびCCWモードの成分を検出する構成、方法を詳細に説明するための図である。FIG. 5 is a diagram for explaining in detail a configuration and method for detecting a CW mode component and a CCW mode component from an input signal. 図6は、所定の参照信号で検波した場合の出力の一例を説明するための図である。FIG. 6 is a diagram for explaining an example of an output when detection is performed with a predetermined reference signal. 図7は、所定の参照信号で検波した場合の出力の他の例を説明するための図である。FIG. 7 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal. 図8は、所定の参照信号で検波した場合の出力の他の例を説明するための図である。FIG. 8 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal. 図9は、所定の参照信号で検波した場合の出力の他の例を説明するための図である。FIG. 9 is a diagram for explaining another example of output when detection is performed with a predetermined reference signal. 図10は、本発明の実施形態に係るジャイロ装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of the gyro apparatus according to the embodiment of the present invention. 図11は、本発明の実施形態に係る第1検出部の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of the first detection unit according to the embodiment of the present invention. 図12は、本発明の実施形態に係る第2検出部の構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of the second detection unit according to the embodiment of the present invention. 図13は、本発明の実施形態に係るジャイロ装置における信号の流れを模式的に示した図である。FIG. 13 is a diagram schematically showing a signal flow in the gyro apparatus according to the embodiment of the present invention. 図14は、本発明の第1実施形態に係る角速度検出部の構成例を示す図である。FIG. 14 is a diagram illustrating a configuration example of the angular velocity detection unit according to the first embodiment of the present invention. 図15Aおよび図15Bは、ホールアングルモードについて説明するための図である。FIG. 15A and FIG. 15B are diagrams for explaining the hole angle mode. 図16Aおよび図16Bは、本発明の第2実施形態に係る角度検出部の構成例を示す図である。16A and 16B are diagrams illustrating a configuration example of an angle detection unit according to the second embodiment of the present invention. 図17Aおよび図17Bは、駆動信号に対する理想的な振動を説明するための図である。17A and 17B are diagrams for explaining ideal vibration with respect to the drive signal. 図18Aおよび図18Bは、理想的な振動では、共振周波数においてX方向の振幅とY方向の振幅とが一致し、位相差が90°となることを説明するための図である。18A and 18B are diagrams for explaining that, in an ideal vibration, the amplitude in the X direction and the amplitude in the Y direction coincide with each other at the resonance frequency, and the phase difference is 90 °. 図19Aおよび図19Bは、振動子の不完全性により生じる問題点を説明するための図である。FIG. 19A and FIG. 19B are diagrams for explaining a problem caused by incompleteness of the vibrator. 図20Aおよび図20Bは、振動子の不完全性により生じる問題点を説明するための図である。20A and 20B are diagrams for explaining a problem caused by imperfection of a vibrator. 図21は、振動子の不完全性により生じる問題点を説明するための図である。FIG. 21 is a diagram for explaining a problem caused by imperfection of the vibrator. 図22Aおよび図22Bは、振動子の不完全性により生じる問題点を解決するための方法を説明するための図である。22A and 22B are diagrams for explaining a method for solving a problem caused by imperfection of a vibrator. 図23は、振動子の不完全性により生じる問題点を説明するための図である。FIG. 23 is a diagram for explaining a problem caused by incompleteness of the vibrator. 図24Aおよび図24Bは、振動子の不完全性により生じる問題点を説明するための図である。FIG. 24A and FIG. 24B are diagrams for explaining a problem caused by imperfections of the vibrator. 図25Aおよび図25Bは、振動子の不完全性により生じる問題点を解決するための方法を説明するための図である。FIG. 25A and FIG. 25B are diagrams for explaining a method for solving the problem caused by the imperfection of the vibrator. 図26は、第3実施形態に係るジャイロ装置の構成例を示すブロック図である。FIG. 26 is a block diagram illustrating a configuration example of the gyro device according to the third embodiment. 図27Aおよび図27Bは、第3実施形態により得られる効果を説明するための図である。FIG. 27A and FIG. 27B are diagrams for explaining the effects obtained by the third embodiment. 図28Aおよび図28Bは、第3実施形態により得られる効果を説明するための図である。FIG. 28A and FIG. 28B are diagrams for explaining the effects obtained by the third embodiment.
 以下、本発明の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.第1実施形態>
<2.第2実施形態>
<3.第3実施形態>
<4.変形例>
 以下に説明する実施形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。
Hereinafter, embodiments and the like of the present invention will be described with reference to the drawings. The description will be given in the following order.
<1. First Embodiment>
<2. Second Embodiment>
<3. Third Embodiment>
<4. Modification>
The embodiments described below are suitable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments.
<1.第1実施形態>
「一般的なジャイロ装置について」
 本発明の理解を容易とするために、一般的なジャイロ装置(ジャイロスコープ)について説明する。なお、以下の説明では、MEMS(Micro Electro Mechanical Systems)を使用した小型の振動型ジャイロ装置を例にして説明する。ジャイロ装置では、回転の角速度(以下、回転角速度と適宜、称する)を検出し、回転角速度を積分して回転の角度(以下、回転角度と適宜、称する)を得る処理が行われる。回転角速度Ωzを検出する方法として、複数の方法が知られている。第1の方法として、AM(Amplitude Modulation)モードと称される方法が知られている。AMモードでは、ドライブ軸(例えばX軸)方向に振動を与えたときに、コリオリ力によって変化するセンス軸(例えばY軸)方向の振幅(変位)を計測することで角速度を得る。センス軸方向の振幅が回転角速度Ωzに比例することから、当該振幅を検出することにより回転角速度Ωzを検出することができる。AMモードでは、ドライブ軸方向に与えられる振動がセンス軸方向を直接励振してしまう点を考慮して、ドライブ軸、センス軸方向における共振周波数が異なるように設定される(モードミスマッチ)。しかしながら、AMモードでは、共振周波数から離れた周波数で計測を行うため,感度が低下する等の問題がある。
<1. First Embodiment>
"General gyro equipment"
In order to facilitate understanding of the present invention, a general gyro apparatus (gyroscope) will be described. In the following description, a small vibration gyro apparatus using MEMS (Micro Electro Mechanical Systems) will be described as an example. In the gyro device, a process of detecting an angular velocity of rotation (hereinafter appropriately referred to as a rotational angular velocity) and integrating the rotational angular velocity to obtain a rotation angle (hereinafter appropriately referred to as a rotational angle) is performed. As a method of detecting the rotational angular velocity Omega z, it is known several methods. As a first method, a method called AM (Amplitude Modulation) mode is known. In the AM mode, the angular velocity is obtained by measuring the amplitude (displacement) in the sense axis (eg, Y axis) direction that changes due to the Coriolis force when vibration is applied in the drive axis (eg, X axis) direction. Since the amplitude of the sense axis direction is proportional to the rotational angular velocity Omega z, it is possible to detect the rotational angular velocity Omega z by detecting the amplitude. In the AM mode, considering that the vibration applied in the drive axis direction directly excites the sense axis direction, the resonance frequencies in the drive axis and sense axis directions are set to be different (mode mismatch). However, in the AM mode, since measurement is performed at a frequency away from the resonance frequency, there is a problem that sensitivity is lowered.
 第2の方法は、フォースリバランスと呼ばれる方法であり、AMモードのセンス軸方向の振幅が常に0になるようにフィードバック制御をかけ、そのフィードバック信号の大きさから回転角速度を得る方法である。この場合は、ドライブ軸とセンス軸の共振周波数を合わせた(モードマッチさせた)振動子を用いることができる。しかしながら、スケールファクタ(回転角速度に対する出力の大きさ)が、温度等により変動してしまう等の問題がある。 The second method is a method called force rebalance, in which feedback control is performed so that the amplitude in the sense axis direction of the AM mode is always 0, and the rotational angular velocity is obtained from the magnitude of the feedback signal. In this case, a vibrator in which the resonance frequencies of the drive axis and the sense axis are matched (mode matched) can be used. However, there is a problem that the scale factor (the magnitude of the output with respect to the rotational angular velocity) varies depending on the temperature or the like.
 以上のような第1、第2の方法の問題に鑑み、本発明における実施形態では、FM(Frequency Modulation)モードによるジャイロ装置の駆動を採用している。FMモードの特徴としては、他の方法に比べ、感度(スケールファクタ)が正確で安定する、原理的に温度特性に優れている、ダイナミックレンジに制限がない等の利点を有している点が挙げられる。 In view of the above-described problems of the first and second methods, the embodiment of the present invention employs driving of the gyro device in the FM (Frequency Modulation) mode. The characteristics of the FM mode are that the sensitivity (scale factor) is more accurate and stable than the other methods, in principle, it has excellent temperature characteristics, and there is no limit on the dynamic range. Can be mentioned.
 ここでFMモードの基本的な原理について説明する。なお、FMモードの原理そのものは公知であるのでここでは概略的な説明に留める。FMモードのジャイロは、直交(独立)する2軸方向に振動する振動子(共振子、共振器とも称される)で構成される。FMモードでは、各軸における共振周波数を一致させた振動子(モードマッチ)を用いる。この状態において、振動子に対して回転角速度を与えると、下記の数式1が導出されることが知られている。なお、数式1におけるλは共振周波数、ωは回転を与えていない場合の共振周波数(モードマッチしてあるので、2軸ともに同じ共振周波数)、Ωzは振動子に与えられる回転角速度を表している。 Here, the basic principle of the FM mode will be described. Since the principle of the FM mode itself is known, only a brief explanation is given here. An FM mode gyro is composed of a vibrator (also called a resonator or a resonator) that vibrates in two orthogonal (independent) directions. In the FM mode, a vibrator (mode match) in which the resonance frequencies in each axis are matched is used. In this state, it is known that the following Equation 1 is derived when a rotational angular velocity is given to the vibrator. In Equation 1, λ is a resonance frequency, ω is a resonance frequency when no rotation is given (the mode is matched, so both axes have the same resonance frequency), and Ω z is a rotation angular velocity given to the vibrator. Yes.
 なお、以下で言及する振動は直線方向(例えばX方向、Y方向)に限らず、平面内のモードマッチした直交振動モードであれば、どのような振動でも利用できる。例えば、リング型の共振器の場合は、図1、2に示すように、直交する2つの振動は必ずしも単純な直線振動にはならないが、それぞれの振動モードにおける変位の状態をモード座標(一般化座標)で表すと、直線振動と全く同じように扱うことができる。以下では、これらのモード座標(一般化座標)も含めて、一つのモードを"X軸(もしくはX方向)"、これと直交するモードを"Y軸(もしくはY方向)"と呼ぶ(なお、図1、2におけるモード1、2は数学的、もしくは振動学的に直交している状態を示している)。 Note that the vibration mentioned below is not limited to the linear direction (for example, the X direction and the Y direction), and any vibration can be used as long as it is a mode-matched orthogonal vibration mode in a plane. For example, in the case of a ring type resonator, as shown in FIGS. 1 and 2, two orthogonal vibrations are not necessarily simple linear vibrations, but the displacement state in each vibration mode is represented by mode coordinates (generalized). It can be handled in exactly the same way as linear vibration. In the following, including these mode coordinates (generalized coordinates), one mode is called "X axis (or X direction)", and a mode orthogonal to this is called "Y axis (or Y direction)" (note that Modes 1 and 2 in FIGS. 1 and 2 show a state where they are orthogonally mathematically or vibrationally).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1から下記の数式2が導出される。 The following formula 2 is derived from the formula 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、数式2により示されるように、回転が与えられない時にはX軸、Y軸方向の共振周波数が一致していた、すなわちモードマッチしていたものが、回転を与えることにより共振周波数λがω+Ωzとω-Ωzとに分かれる。この2つの共振周波数をλ1、λ2とすると、共振周波数λ1、λ2の差(ずれ)が回転角速度Ωzに比例することから、2つの共振周波数をλ1、λ2を検出すれば、下記の数式3により回転角速度Ωzを得ることができる。 That is, as shown by Equation 2, when the rotation is not given, the resonance frequencies in the X-axis and Y-axis directions match, that is, the mode matches, the resonance frequency λ becomes ω + Ω by giving the rotation. divided into a z and ω-Ω z. If these two resonance frequencies are λ 1 and λ 2 , the difference (deviation) between the resonance frequencies λ 1 and λ 2 is proportional to the rotational angular velocity Ω z , so that the two resonance frequencies λ 1 and λ 2 can be detected. For example, the rotational angular velocity Ω z can be obtained by the following mathematical formula 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、λ1(ω+Ωz)に対応する運動は時計回り(CW)に対応しており、λ2(ω-Ωz)に対応する運動は反時計回り(CCW)に対応している。すなわち、モードマッチしている振動子に回転が与えられた場合には、固有振動モードは直線(X方向もしくはY方向単独の振動)ではなく、回転振動(X方向とY方向の振動の位相が±90度(°)ずれている2次元振動)になる。なお、実際の振動子の回転は、これらCWモードおよびCCWモードの重ねあわせとなる。 Here, the motion corresponding to λ 1 (ω + Ω z ) corresponds to clockwise (CW), and the motion corresponding to λ 2 (ω−Ω z ) corresponds to counterclockwise (CCW). That is, when rotation is applied to a mode-matching transducer, the natural vibration mode is not a straight line (vibration in the X direction or Y direction alone), but rotational vibration (the phase of vibration in the X and Y directions is ± 90 degrees (°) shifted two-dimensional vibration). Note that the actual rotation of the vibrator is a superposition of these CW mode and CCW mode.
「各モードの成分の検出方法について」
 以上、FMモードについて説明した。本発明の実施形態では、上述したFMモードで2次元にモードマッチした1個の振動子(以下、2次元振動子と適宜、称する)を励振させる。したがって、回転角速度Ωzを得るためには、2次元振動子の回転振動(出力)に含まれるCWモード(第1の回転振動モード)の成分とCCWモード(第2の回転振動モード)の成分を独立して検出する必要がある。そこで、次に、2次元振動子の出力からCWモードの成分とCCWモードの成分を分離して検出する方法について説明する。
“Methods for detecting components in each mode”
The FM mode has been described above. In the embodiment of the present invention, one vibrator (hereinafter, appropriately referred to as a two-dimensional vibrator) that is two-dimensionally matched in the above-described FM mode is excited. Therefore, in order to obtain the rotational angular speed Omega z the components of component and CCW mode 2D CW mode included in the rotation vibration of the vibrator (output) (first rotational vibration mode) (second rotational vibration mode) Must be detected independently. Therefore, a method for separately detecting the CW mode component and the CCW mode component from the output of the two-dimensional vibrator will be described.
 図3は、一般的な同期検波方式を説明するための図である。入力信号(Signal)SIにある所定の振幅(Amplitude)および位相(Phase)を有する信号が入力される。入力信号SIが分岐され、乗算器(ミキサ)1、3のそれぞれに入力される。同期検波方式では、位相を90度ずらした2つの信号を参照信号として使用し、この参照信号を別々の乗算器1、3で乗算した後、フィルタ処理を行うことで復調出力を得る。例えば、参照信号としてcos波およびsin波が使用され、入力信号SIにcos波を乗算する処理が乗算器1により行われ、入力信号SIにsin波を乗算する処理が乗算器3により行われる。 FIG. 3 is a diagram for explaining a general synchronous detection method. A signal having a predetermined amplitude (Amplitude) and phase (Phase) in the input signal (Signal) SI is input. The input signal SI is branched and input to each of the multipliers (mixers) 1 and 3. In the synchronous detection method, two signals whose phases are shifted by 90 degrees are used as reference signals, the reference signals are multiplied by separate multipliers 1 and 3, and then subjected to filter processing to obtain a demodulated output. For example, a cos wave and a sin wave are used as reference signals, a process for multiplying the input signal SI by the cos wave is performed by the multiplier 1, and a process for multiplying the input signal SI by the sin wave is performed by the multiplier 3.
 乗算器1から出力される信号がLPF(Low Pass Filter)2に入力されフィルタ処理がなされる。LPF2によるフィルタ処理により、LPF2からは、参照信号(本例ではcos波)と同じ周波数であり、且つ、同じ位相を持つ成分のみが出力される。 The signal output from the multiplier 1 is input to the LPF (Low Pass Filter) 2 and filtered. By LPF2, the LPF2 outputs only components having the same frequency and the same phase as the reference signal (cos wave in this example).
 一方、乗算器3から出力される信号がLPF4に入力され、フィルタ処理がなされる。LPF4によるフィルタ処理により、LPF4からは、乗算器3における参照信号(本例ではsin波)と同じ周波数であり、且つ、同じ位相を持つ成分のみが出力される。 On the other hand, the signal output from the multiplier 3 is input to the LPF 4 and subjected to filter processing. Due to the filtering process by the LPF 4, only components having the same frequency and the same phase as the reference signal (sin wave in this example) in the multiplier 3 are output from the LPF 4.
 LPF2、4からの出力により入力信号SIが復調され、復調出力に基づいて入力信号SIの振幅rと位相θとが検出される。 The input signal SI is demodulated by the outputs from the LPFs 2 and 4, and the amplitude r and phase θ of the input signal SI are detected based on the demodulated output.
 本発明の実施形態では、この同期検波方式を発展、応用してCWモードの成分とCCWモードの成分とを検出する処理が行われる。なお、以下の説明では、2次元振動子内に生じているCWモードとCCWモードとが組み合わさった信号から、CWモードの成分のみを検出する例について説明するが、同様の処理によりCCWモードの成分を検出することができる。 In the embodiment of the present invention, processing for detecting CW mode components and CCW mode components is performed by developing and applying this synchronous detection method. In the following description, an example in which only the component of the CW mode is detected from the signal obtained by combining the CW mode and the CCW mode generated in the two-dimensional vibrator will be described. The component can be detected.
 図4は、入力信号SIからCWモードの成分を検出する方法を説明するための図である。入力信号SIとして、2次元振動子から出力される信号が入力される。2次元振動子を使用した場合には、図示するように、X、Y方向の成分を含むベクトル的な表記で入力信号SIを示すことができる。 FIG. 4 is a diagram for explaining a method of detecting a CW mode component from the input signal SI. A signal output from the two-dimensional transducer is input as the input signal SI. When a two-dimensional vibrator is used, as shown in the figure, the input signal SI can be indicated by a vector notation including components in the X and Y directions.
 入力信号SIが分岐され、乗算器1、3のそれぞれに入力される。参照信号として信号CW-I(In phase)、CW-Q(Quadrature Phase)が使用され、入力信号SIに信号CW-Iを乗算する処理が乗算器1により行われ、入力信号SIに信号CCW-Iを乗算する処理が乗算器3により行われる。信号CW-I、信号CW-Qは、図4にシンボル的に示されているように、振幅、周波数、回転方向は同じで位相が90度ずれている信号である。 The input signal SI is branched and input to each of the multipliers 1 and 3. Signals CW-I (In phase) and CW-Q (Quadrature Phase) are used as reference signals, the input signal SI is multiplied by the signal CW-I by the multiplier 1, and the input signal SI is signal CCW- A process of multiplying I is performed by the multiplier 3. The signal CW-I and the signal CW-Q are signals having the same amplitude, frequency, and rotation direction and having a phase shifted by 90 degrees, as symbolically shown in FIG.
 入力信号SIに対して信号CW-Iが乗算器1により乗算され、その出力がLPF2に供給される。入力信号SIに対して信号CW-Qが乗算器3により乗算され、その出力がLPF4に供給される。LPF2、4のそれぞれによるフィルタ処理の結果、入力信号SIが復調され、復調出力に基づいて入力信号SIに含まれるCWモードの成分の振幅rおよび位相θを検出することができる。 The signal CW-I is multiplied by the multiplier 1 by the input signal SI, and the output is supplied to the LPF 2. The input signal SI is multiplied by the signal CW-Q by the multiplier 3 and the output is supplied to the LPF 4. As a result of the filtering process by the LPFs 2 and 4, the input signal SI is demodulated, and the amplitude r and phase θ of the CW mode component included in the input signal SI can be detected based on the demodulated output.
 図5は、上述した乗算器1、3の詳細な構成例を説明するための図である。乗算器1は、例えば、乗算器1aと、乗算器1bと、加算器1cとを備えている。乗算器3は、例えば、乗算器3aと、乗算器3bと、加算器3cとを備えている。 FIG. 5 is a diagram for explaining a detailed configuration example of the multipliers 1 and 3 described above. The multiplier 1 includes, for example, a multiplier 1a, a multiplier 1b, and an adder 1c. The multiplier 3 includes, for example, a multiplier 3a, a multiplier 3b, and an adder 3c.
 上述したように、2次元振動子の場合は入力信号SIとしてX軸、Y軸方向の信号(振幅)(以下、信号SIX、SIYと適宜、称する)が乗算器1に入力される。乗算器1aは、信号SIXに対して信号CW-IのX軸方向の成分を乗算し、乗算器1bは、信号SIYに対して信号CW-IのY軸方向の成分を乗算する。加算器1cは、乗算器1a、1bの出力を加算してLPF2に出力する。 As described above, in the case of a two-dimensional vibrator, signals (amplitudes) in the X-axis and Y-axis directions (hereinafter, appropriately referred to as signals SIX and SIY) are input to the multiplier 1 as the input signal SI. Multiplier 1a multiplies signal SIX by a component in the X-axis direction of signal CW-I, and multiplier 1b multiplies signal SIY by a component in the Y-axis direction of signal CW-I. The adder 1c adds the outputs of the multipliers 1a and 1b and outputs the result to the LPF 2.
 乗算器3aは、信号SIXに対して信号CW-QのX軸方向の成分を乗算し、乗算器3bは、信号SIYに対して信号CW-QのY軸方向の成分を乗算する。加算器3cは、乗算器3a、3bの出力を加算してLPF4に出力する。 The multiplier 3a multiplies the signal SIX by the component in the X-axis direction of the signal CW-Q, and the multiplier 3b multiplies the signal SIY by the component in the Y-axis direction of the signal CW-Q. The adder 3c adds the outputs of the multipliers 3a and 3b and outputs the result to the LPF 4.
 上述した方法により、2次元振動子の出力に含まれるCWモードの成分を検出できる点について、図6乃至図9を参照して更に詳細に説明する。図6に示される例は、参照信号として信号CW-Iを使用して検波する例である。なお、本例では、CW-IのX軸方向の信号をsin波とし、Y軸方向の信号をcos波としている。入力信号SIが信号CW-Iの成分のみと仮定した場合には、乗算器1aの出力波形は波形WA1aとなり、乗算器1bの出力波形は波形WA2aとなる。各乗算器の出力を加算器1cで加算した信号の波形は、波形WA3aとなる。この信号波形をLPF2に通すと、LPF2によるフィルタ処理は平均を得る処理と等価の処理であることから、得られる信号の波形は波形WA3aと同様の波形WA4a(直流成分)となる。すなわち、入力信号SIに信号CW-Iの成分が含まれる場合は、信号CW-Iを使用した検波によりその成分を検出することができる。 The point that the component of the CW mode included in the output of the two-dimensional vibrator can be detected by the method described above will be described in more detail with reference to FIGS. The example shown in FIG. 6 is an example of detection using the signal CW-I as a reference signal. In this example, the signal in the X-axis direction of CW-I is a sin wave, and the signal in the Y-axis direction is a cos wave. Assuming that the input signal SI is only the component of the signal CW-I, the output waveform of the multiplier 1a is the waveform WA1a, and the output waveform of the multiplier 1b is the waveform WA2a. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3a. When this signal waveform is passed through LPF2, the filtering process by LPF2 is equivalent to the process of obtaining an average, so that the waveform of the obtained signal becomes a waveform WA4a (DC component) similar to waveform WA3a. That is, when the input signal SI includes a component of the signal CW-I, the component can be detected by detection using the signal CW-I.
 図7に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと位相が90度異なる信号CW-Qの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1bとなり、乗算器1bの出力波形は波形WA2bとなる。これらの波形の出力を加算器1cで加算した信号は図示する通り0となり、したがって、LPF2の出力も図示する通り0となる。 The example shown in FIG. 7 is an example of detection using the signal CW-I as a reference signal, but it is assumed that the input signal SI is only the component of the signal CW-Q that is 90 degrees out of phase with the signal CW-I. It is an example. In this case, the output waveform of the multiplier 1a is a waveform WA1b, and the output waveform of the multiplier 1b is a waveform WA2b. The signal obtained by adding the outputs of these waveforms by the adder 1c is 0 as shown in the figure, and therefore the output of the LPF 2 is also 0 as shown.
 図8に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと回転方向が異なる反時計回りの信号CCW-Iの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1cとなり、乗算器1bの出力波形は波形WA2cとなる。各乗算器の出力を加算器1cで加算した信号の波形は、0を中心として対称となる波形WA3cとなる。この波形WA3aの信号をLPF2に通すとその出力は図示する通り0となる。 The example shown in FIG. 8 is an example of detection using the signal CW-I as a reference signal, but only the component of the counterclockwise signal CCW-I whose input signal SI is different from the signal CW-I in the rotation direction. This is an example. In this case, the output waveform of the multiplier 1a is a waveform WA1c, and the output waveform of the multiplier 1b is a waveform WA2c. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3c that is symmetric about 0. When the signal of the waveform WA3a is passed through the LPF 2, the output becomes 0 as shown in the figure.
 図9に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと回転方向が異なる反時計回りの信号であり、信号CCW-Iと位相が90度異なる信号CCW-Qの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1dとなり、乗算器1bの出力波形は波形WA2dとなる。各乗算器の出力を加算器1cで加算した信号の波形は、0を中心として対称となる波形WA3dとなる。この波形WA3dの信号をLPF2に通すとその出力は図示の通り0となる。 The example shown in FIG. 9 is an example in which detection is performed using the signal CW-I as a reference signal, but the input signal SI is a counterclockwise signal having a rotation direction different from that of the signal CW-I, and the signal CCW− This is an example in which only the component of the signal CCW-Q whose phase is 90 degrees different from I is assumed. In this case, the output waveform of the multiplier 1a is a waveform WA1d, and the output waveform of the multiplier 1b is a waveform WA2d. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c is a waveform WA3d that is symmetric about 0. When the signal of the waveform WA3d is passed through the LPF 2, its output becomes 0 as shown.
 すなわち、2次元振動子内に生じている任意の2次元振動(CW-I,CW-Q,CCW-I,CCW-Qの線型結合で表される)を、信号CW-Iを参照信号として同期検波ですると、2次元振動子の出力信号に含まれる信号CW-Iの成分のみが得られる。このことは参照信号として他の信号を使用した場合の検出される成分についても当てはまる。以上をまとめると下記の表1が得られる。 That is, any two-dimensional vibration (represented by a linear combination of CW-I, CW-Q, CCW-I, and CCW-Q) generated in the two-dimensional vibrator is used with the signal CW-I as a reference signal. With synchronous detection, only the component of the signal CW-I included in the output signal of the two-dimensional transducer is obtained. This is also true for detected components when other signals are used as reference signals. In summary, the following Table 1 is obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、2次元振動子の出力に信号CW-Qの成分が含まれている場合には、参照信号を信号CW-Qとして検波できる一方、他の信号の成分については出力が0となる。2次元振動子の出力に信号CCW-Iの成分が含まれている場合には、参照信号を信号CCW-Iとして検波できる一方、他の信号の成分については出力が0となる。2次元振動子の出力に信号CCW-Qの成分が含まれている場合には、参照信号を信号CCW-Qとして検波できる一方、他の信号の成分については出力が0となる。つまり、例えば2個の検出器を設け、各検出器における参照信号を信号CW-Iおよび信号CW-Qの組合せ、信号CCW-Iおよび信号CCW-Qの組合せにそれぞれ設定すれば、2次元振動子の出力からCWモードの成分およびCCWモードの成分を独立して検出できることになる。 As shown in Table 1, when the output of the two-dimensional transducer includes the signal CW-Q component, the reference signal can be detected as the signal CW-Q, while the other signal components are output. 0. When the component of the signal CCW-I is included in the output of the two-dimensional vibrator, the reference signal can be detected as the signal CCW-I, while the output of other signal components is zero. When the output of the signal CCW-Q is included in the output of the two-dimensional transducer, the reference signal can be detected as the signal CCW-Q, while the output of other signal components is 0. That is, for example, if two detectors are provided and the reference signal in each detector is set to a combination of signal CW-I and signal CW-Q, and a combination of signal CCW-I and signal CCW-Q, respectively, two-dimensional vibration The CW mode component and CCW mode component can be detected independently from the output of the child.
「ジャイロ装置の構成例」
 以上の説明を踏まえて、本発明の第1実施形態に係るジャイロ装置について説明する。図10は、本発明の第1実施形態に係るジャイロ装置(ジャイロ装置10)の構成例を示す図である。ジャイロ装置10は、例えば、単一の2次元振動子15と、駆動信号生成部20と、第1検出部30aと、第1発振回路の一例としての第1PLL(Phase Locked Loop)回路40aと、第1ゲインコントロール部の一例としての第1AGC(Automatic Gain Control)部50aと、第2検出部30bと、第2発振回路の一例としての第2PLL回路40bと、第2ゲインコントロール部の一例としての第2AGC部50bと、2次元振動子15の入力側に設けられた増幅器61a、61bと、2次元振動子15の出力側に設けられた増幅器62a、62bとを備えている。
"Example configuration of gyroscope"
Based on the above description, the gyro apparatus according to the first embodiment of the present invention will be described. FIG. 10 is a diagram illustrating a configuration example of the gyro apparatus (gyro apparatus 10) according to the first embodiment of the present invention. The gyro apparatus 10 includes, for example, a single two-dimensional vibrator 15, a drive signal generation unit 20, a first detection unit 30a, a first PLL (Phase Locked Loop) circuit 40a as an example of a first oscillation circuit, A first AGC (Automatic Gain Control) unit 50a as an example of a first gain control unit, a second detection unit 30b, a second PLL circuit 40b as an example of a second oscillation circuit, and an example of a second gain control unit The second AGC unit 50 b includes amplifiers 61 a and 61 b provided on the input side of the two-dimensional vibrator 15, and amplifiers 62 a and 62 b provided on the output side of the two-dimensional vibrator 15.
 なお、図示は省略しているが、ジャイロ装置10は、DA(Digital to Analog)変換器およびAD(Analog to Digital)変換器を備え、デジタル信号処理により実現しても良い。この場合、DA変換器は、例えば、増幅器61a、61bの前段に設けられ、駆動信号生成部20から出力されるデジタル形式の駆動信号をアナログ形式に変換するように構成される。また、AD変換器は、例えば、増幅器62a、62bの後段に設けられ、2次元振動子15から出力されるアナログ形式の信号をデジタル形式に変換するように構成される。 Although not shown, the gyro apparatus 10 may include a DA (Digital-to-Analog) converter and an AD (Analog-to-Digital) converter, and may be realized by digital signal processing. In this case, the DA converter is provided, for example, before the amplifiers 61a and 61b, and is configured to convert the digital drive signal output from the drive signal generation unit 20 into an analog format. Further, the AD converter is provided, for example, at the subsequent stage of the amplifiers 62a and 62b, and is configured to convert an analog signal output from the two-dimensional transducer 15 into a digital format.
 2次元振動子15は、例えば、リング形状を成しCWモードおよびCCWモードのそれぞれに対応した駆動信号により励振可能な振動部材である。なお、2次元振動子15の形状はリング形状に限定されるものではなく、正四角板、円柱、正四角柱、4個のマスを使用した4重マス型等、任意の形状とすることが可能である。 The two-dimensional vibrator 15 is, for example, a vibrating member that has a ring shape and can be excited by a drive signal corresponding to each of the CW mode and the CCW mode. Note that the shape of the two-dimensional vibrator 15 is not limited to the ring shape, and may be any shape such as a regular square plate, a cylinder, a regular square column, a quadruple mass type using four masses, or the like. It is.
 駆動信号生成部20は、CWモードに対応する駆動信号およびCCWモードに対応する駆動信号を生成し、これらを多重化した駆動信号を2次元振動子15に供給する。駆動信号生成部20から供給される駆動信号により2次元振動子15が励振させられる。本例では、CWモードに対応するX軸方向の駆動信号としてcos波(以下、coscw信号と表記する)、Y軸方向の駆動信号として-sin波(以下、-sincw信号と表記する)を用いている。なお、駆動信号は、Y方向信号がX方向信号に比べて90度位相が進んでいれば、必ずしもcos波、-sin波である必要はない。また、CCWモードに対応するX軸方向の駆動信号として-cos波(以下、-cosCCW信号と表記する)、Y軸方向の駆動信号として-sin波(以下、-sinCCW信号と表記する)を用いている。なお、駆動信号は、Y方向信号がX方向信号に比べて90度位相が遅れていれば、必ずしも-cos波、-sin波である必要はない。より具体的には、駆動信号生成部20は、例えば、乗算器201と、乗算器202と、乗算器203と、乗算器204と、加算器205と、加算器206とを備えている。 The drive signal generation unit 20 generates a drive signal corresponding to the CW mode and a drive signal corresponding to the CCW mode, and supplies the multiplexed drive signal to the two-dimensional vibrator 15. The two-dimensional vibrator 15 is excited by the drive signal supplied from the drive signal generator 20. In this example, a cosine wave (hereinafter referred to as “cos cw signal”) as a drive signal in the X axis direction corresponding to the CW mode, and a −sin wave (hereinafter referred to as “−sin cw signal”) as a drive signal in the Y axis direction. Is used. Note that the drive signal does not necessarily have to be a cos wave or a −sin wave as long as the Y direction signal has a phase advanced by 90 degrees compared to the X direction signal. Also, a -cos wave (hereinafter referred to as -cos CCW signal) as a drive signal in the X-axis direction corresponding to the CCW mode, and a -sin wave (hereinafter referred to as -sin CCW signal) as a drive signal in the Y-axis direction. Is used. Note that the drive signal is not necessarily a -cos wave or a -sin wave as long as the Y direction signal is 90 degrees behind the X direction signal. More specifically, the drive signal generation unit 20 includes, for example, a multiplier 201, a multiplier 202, a multiplier 203, a multiplier 204, an adder 205, and an adder 206.
 第1検出部30aは、2次元振動子15の出力に含まれるCW成分の振幅rcwおよび位相θcwを検出する。なお、第1検出部30aの詳細については後述する。 The first detection unit 30 a detects the amplitude r cw and the phase θ cw of the CW component included in the output of the two-dimensional transducer 15. Details of the first detection unit 30a will be described later.
 第1PLL回路40aは、位相比較器41aと、PID(Proportional Integral Differential)制御部42aと、VCO(Voltage Controlled Oscillator)やNCO(Numerical Controlled Oscillator)等の発振周波数を変化することができる発振器43aとを備えている。図示が煩雑となることを防止するために詳細な図示を省略しているが、第1PLL回路40aの出力(全ての出力でもよいし一部の出力でもよい)が駆動信号生成部20、第1検出部30aのそれぞれにフィードバックされるように構成されている。 The first PLL circuit 40a includes a phase comparator 41a, a PID (Proportional Integral Differential) control unit 42a, and an oscillator 43a that can change an oscillation frequency such as a VCO (Voltage Controlled Oscillator) or an NCO (Numerical Controlled Oscillator). I have. Although detailed illustration is omitted in order to prevent the illustration from being complicated, the output of the first PLL circuit 40a (may be all or part of the output) may be the drive signal generator 20, It is configured to be fed back to each of the detection units 30a.
 第1AGC部50aは、振幅比較器51aと、PID制御部52aとを備えている。第1AGC部50aの出力が駆動信号生成部20にフィードバックされるように構成されている。 The first AGC unit 50a includes an amplitude comparator 51a and a PID control unit 52a. The output of the first AGC unit 50 a is configured to be fed back to the drive signal generation unit 20.
 第2検出部30bは、2次元振動子15の出力に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する。なお、第2検出部30bの詳細については後述する。 The second detection unit 30 b detects the amplitude r CCW and the phase θ CCW of the CCW component included in the output of the two-dimensional transducer 15. Details of the second detection unit 30b will be described later.
 第2PLL回路40bは、位相比較器41bと、PID制御部42bと、VCOやNCO等の発振周波数を変化することができる発振器43bとを備えている。図示が煩雑となることを防止するために詳細な図示を省略しているが、第2PLL回路40bの出力(全ての出力でもよいし一部の出力でもよい)が駆動信号生成部20、第2検出部30bのそれぞれにフィードバックされるように構成されている。 The second PLL circuit 40b includes a phase comparator 41b, a PID control unit 42b, and an oscillator 43b that can change an oscillation frequency such as a VCO or an NCO. Although detailed illustration is omitted in order to prevent the illustration from being complicated, the output of the second PLL circuit 40b (may be all or part of the output) may be the drive signal generator 20, It is configured to be fed back to each of the detection units 30b.
 第2AGC部50bは、振幅比較器51bと、PID制御部52bとを備えている。第2AGC部50bの出力が駆動信号生成部20にフィードバックされるように構成されている。 The second AGC unit 50b includes an amplitude comparator 51b and a PID control unit 52b. The output of the second AGC unit 50 b is configured to be fed back to the drive signal generation unit 20.
「第1、第2検出部の構成例」
 図11は、第1検出部30aの構成例を説明するための図である。第1検出部30aは、2次元振動子15から出力される信号が分岐されて入力される検出器31a、32aと、検出器31aの出力にフィルタ処理を行うLPF33aと、検出器32aの出力にフィルタ処理を行うLPF34aと、LPF33aおよびLPF34aからの出力に基づいて2次元振動子15の出力信号に含まれるCW成分の振幅rcwおよび位相θcwを検出する振幅位相検出部35aとを備えている。
“Configuration example of first and second detectors”
FIG. 11 is a diagram for explaining a configuration example of the first detection unit 30a. The first detector 30a includes detectors 31a and 32a to which signals output from the two-dimensional transducer 15 are branched and input, an LPF 33a that performs filtering on the output of the detector 31a, and an output of the detector 32a. An LPF 34a that performs filter processing, and an amplitude phase detector 35a that detects the amplitude r cw and the phase θ cw of the CW component contained in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33a and LPF 34a. .
 検出器31aは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器310aと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器311aと、乗算器310a、311aのそれぞれの出力を加算する加算器312aとを備えている。検出器32aは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器320aと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器321aと、乗算器320a、321aのそれぞれの出力を加算する加算器322aとを備えている。 The detector 31a is a multiplier 310a that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 311a and an adder 312a for adding the outputs of the multipliers 310a and 311a. The detector 32 a is a multiplier 320 a that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 321a and an adder 322a for adding the outputs of the multipliers 320a and 321a.
 なお、本例では、X軸方向のCW-I成分をsin信号とし、Y軸方向のCW-I成分をcos信号とし、X軸方向のCW-Q成分をcos信号とし、Y軸方向のCW-Q成分を-sin信号としている。 In this example, the CW-I component in the X-axis direction is a sin signal, the CW-I component in the Y-axis direction is a cos signal, the CW-Q component in the X-axis direction is a cos signal, and the CW in the Y-axis direction -Q component is -sin signal.
 図12は、第2検出部30bの構成例を説明するための図である。第2検出部30bは、2次元振動子15からの信号が分岐されて入力される検出器31b、32bと、検出器31bの出力にフィルタ処理を行うLPF33bと、検出器32bの出力にフィルタ処理を行うLPF34bと、LPF33bおよびLPF34bからの出力に基づいて2次元振動子15の出力信号に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する振幅位相検出部35bとを備えている。 FIG. 12 is a diagram for describing a configuration example of the second detection unit 30b. The second detector 30b includes detectors 31b and 32b into which signals from the two-dimensional transducer 15 are branched and input, an LPF 33b that performs filtering on the output of the detector 31b, and a filtering process on the output of the detector 32b. And an amplitude phase detector 35b for detecting the amplitude r CCW and the phase θ CCW of the CCW component contained in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33b and the LPF 34b.
 検出器31bは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器310bと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器311bと、乗算器310b、311bのそれぞれからの出力を加算する加算器312bとを備えている。検出器32bは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器320bと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器321bと、乗算器320b、321bのそれぞれの出力を加算する加算器322bとを備えている。 The detector 31b is a multiplier 310b that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 311b and an adder 312b for adding outputs from the multipliers 310b and 311b. The detector 32b is a multiplier 320b that receives an X-axis direction component of the output from the two-dimensional transducer 15, and a multiplier that receives an Y-axis component of the output from the two-dimensional transducer 15. 321b and an adder 322b that adds the outputs of the multipliers 320b and 321b.
 なお、本例では、X軸方向のCCW-I成分を-sin信号とし、Y軸方向のCCW-I成分をcos信号とし、X軸方向のCCW-Q成分を-cos信号とし、Y軸方向のCCW-Q成分を-sin信号としている。 In this example, the CCW-I component in the X-axis direction is the -sin signal, the CCW-I component in the Y-axis direction is the cos signal, the CCW-Q component in the X-axis direction is the -cos signal, and the Y-axis direction The CCW-Q component of the -sin signal.
「ジャイロ装置の動作例」
 次に、ジャイロ装置10の動作例について図10~図12を参照しながら説明する。駆動信号生成部20は、2次元振動子15に対する駆動信号を生成する。coscw信号および-sincw信号のそれぞれに対して、PID制御部52aからフィードバックされた信号が乗算器201、202で乗算された後、乗算器201からの出力信号が加算器205に供給され、乗算器202からの出力信号が加算器206に供給される。-cosCCW信号および-sinCCW信号のそれぞれに対して、PID制御部52bからフィードバックされた信号が乗算器203、204で乗算された後、乗算器203からの出力信号が加算器205に供給され、乗算器204からの出力信号が加算器206に供給される。加算器205は、乗算器201からの出力信号と乗算器203からの出力信号とを加算して出力する。加算器205からの出力信号が増幅器61aにより適宜な増幅率でもって増幅された後、2次元振動子15に入力Xdとして入力される。一方、加算器206は、乗算器202からの出力信号と乗算器204からの出力信号とを加算して出力する。加算器206からの出力信号が増幅器61bにより適宜な増幅率でもって増幅された後、2次元振動子15に入力Ydとして入力される。
"Operation example of gyroscope"
Next, an operation example of the gyro apparatus 10 will be described with reference to FIGS. The drive signal generation unit 20 generates a drive signal for the two-dimensional vibrator 15. For each of the cos cw signal and the −sin cw signal, the signal fed back from the PID control unit 52 a is multiplied by the multipliers 201 and 202, and then the output signal from the multiplier 201 is supplied to the adder 205. An output signal from the multiplier 202 is supplied to the adder 206. Each of the −cos CCW signal and the −sin CCW signal is multiplied by a signal fed back from the PID control unit 52 b by the multipliers 203 and 204, and then an output signal from the multiplier 203 is supplied to the adder 205. The output signal from the multiplier 204 is supplied to the adder 206. The adder 205 adds the output signal from the multiplier 201 and the output signal from the multiplier 203 and outputs the result. The output signal from the adder 205 is amplified with an appropriate amplification factor by the amplifier 61a, and then input to the two-dimensional vibrator 15 as an input Xd . On the other hand, the adder 206 adds the output signal from the multiplier 202 and the output signal from the multiplier 204 and outputs the result. After the output signal from the adder 206 is amplified with an appropriate amplification factor by the amplifier 61b, as an input Y d to the two-dimensional vibrator 15.
 入力Xd、Ydによって2次元振動子15が励振され、2次元振動子15からの出力Xs、Ysが得られる。2次元振動子15からの出力Xs、Ysが増幅器62a、62bによって適宜な増幅率でもって増幅された後、出力Xsが分岐されて第1、第2検出部30a、30bのそれぞれに入力され、出力Ysが分岐されて第1、第2検出部30a、30bのそれぞれに入力される。 The two-dimensional vibrator 15 is excited by the inputs X d and Y d , and outputs X s and Y s from the two-dimensional vibrator 15 are obtained. After the outputs X s and Y s from the two-dimensional vibrator 15 are amplified with an appropriate amplification factor by the amplifiers 62a and 62b, the output X s is branched and supplied to the first and second detection units 30a and 30b, respectively. The output Y s is branched and input to each of the first and second detection units 30a and 30b.
 第1検出部30aは、2次元振動子15の出力に含まれるCW成分を検出する。具体的には、第1検出部30aにおける検出器31aが信号CW-Iを使用して検波し、その結果にLPF33aによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCW-I成分を検出し、検出結果を振幅位相検出部35aに供給する。また、第1検出部30aにおける検出器32aが信号CW-Qを使用して検波し、その結果にLPF34aによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCW-Q成分を検出し、検出結果を振幅位相検出部35aに供給する。振幅位相検出部35aは、LPF33aおよびLPF34aからの出力に基づいて2次元振動子15の出力信号に含まれるCW成分の振幅rcwおよび位相θcwを検出する。すなわち、既述したように、信号CW-I、信号CW-Qのそれぞれを参照信号として同期検波することで、2次元振動子15の出力に含まれるCW成分のみを検出することができる。 The first detection unit 30 a detects a CW component included in the output of the two-dimensional transducer 15. Specifically, the detector 31a in the first detection unit 30a detects using the signal CW-I, and the result is subjected to filter processing by the LPF 33a, whereby CW-I included in the output of the two-dimensional transducer 15 is detected. The component is detected, and the detection result is supplied to the amplitude / phase detector 35a. In addition, the detector 32a in the first detection unit 30a detects using the signal CW-Q, and the result is filtered by the LPF 34a to detect the CW-Q component included in the output of the two-dimensional transducer 15. Then, the detection result is supplied to the amplitude / phase detector 35a. The amplitude phase detector 35a detects the amplitude r cw and the phase θ cw of the CW component included in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33a and the LPF 34a. That is, as described above, only the CW component included in the output of the two-dimensional transducer 15 can be detected by performing synchronous detection using the signals CW-I and CW-Q as reference signals.
 第1検出部30aにより検出された位相θcwが第1PLL回路40aに供給される。第1PLL回路40aにおける位相比較器41aは、位相θcwと設定位相θcw,set(以下の説明ではθcw,set =0として話を進める)とを比較し、比較結果に基づいてPID制御部42aが位相θcwを0すなわち共振周波数fcwとなる制御を実行する。PID制御部42aからの出力で発振器43aを制御し、これにより発振器43aからは位相が一致した換言すれば共振周波数fcwの信号sincwおよび信号coscwが出力される。これらの信号が入力側にフィードバックされ、CWモードに対応する駆動信号の共振周波数が共振周波数fcwで維持される制御がなされる。また、信号sincwおよび信号coscwが第1検出部30aにフィードバックされ、これに基づいて参照信号としての信号CW-I、信号CW-Qが生成される。本例では、フィードバックされる信号と参照信号との間に、sin=sincw、cos=coscw、-sin=-1*sincwの関係が成り立っている。 The phase θ cw detected by the first detection unit 30a is supplied to the first PLL circuit 40a. The phase comparator 41a in the first PLL circuit 40a compares the phase θ cw and the set phase θ cw, set (in the following description, the explanation proceeds with θ cw, set = 0), and based on the comparison result, the PID control unit The control 42a executes control so that the phase θ cw becomes 0, that is, the resonance frequency f cw . The oscillator 43a is controlled by the output from the PID control unit 42a, whereby the oscillator 43a outputs the signal sin cw and the signal cos cw having the resonance frequency f cw in phase. These signals are fed back to the input side, and control is performed so that the resonance frequency of the drive signal corresponding to the CW mode is maintained at the resonance frequency fcw . Further, the signal sin cw and the signal cos cw are fed back to the first detection unit 30a, and based on this, the signals CW-I and CW-Q as reference signals are generated. In this example, a relationship of sin = sin cw , cos = cos cw , and −sin = −1 * sin cw is established between the fed back signal and the reference signal.
 第1検出部30aにより得られた振幅rcwが第1AGC部50aに供給される。第1AGC部50aにおける振幅比較器51aは、振幅rcwと所定の第1設定値Rset,cwとを比較し、比較結果に基づいてPID制御部52aが、振幅rcwが所定の第1設定値Rset,cwとなる制御を実行する。PID制御部52aからの出力が駆動信号生成部20にフィードバックされ、CWモードに対応する駆動信号の振幅が第1設定値Rset,cwで維持されるようにゲインをコントロールする制御がなされる。 The amplitude r cw obtained by the first detection unit 30a is supplied to the first AGC unit 50a. The amplitude comparator 51a in the first AGC unit 50a compares the amplitude r cw with a predetermined first set value R set, cw, and based on the comparison result, the PID control unit 52a determines that the amplitude r cw is a predetermined first setting. Executes control with value R set, cw . The output from the PID control unit 52a is fed back to the drive signal generation unit 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CW mode is maintained at the first set value R set, cw .
 2次元振動子15の出力に含まれるCCW成分を検出する系についても同様の処理が実行される。具体的には、第2検出部30bにおける検出器31bが信号CCW-Iを使用して検波し、その結果にLPF33bよるフィルタ処理を行うことで2次元振動子15の出力に含まれるCCW-I成分を検出し、検出結果を振幅位相検出部35bに供給する。また、第2検出部30bにおける検出器32bが信号CCW-Qを使用して検波し、その結果にLPF34bによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCCW-Q成分を検出し、検出結果を振幅位相検出部35bに供給する。振幅位相検出部35bは、LPF33bおよびLPF34bからの出力に基づいて2次元振動子15の出力信号に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する。すなわち、上述したように、信号CCW-I、信号CCW-Qのそれぞれを参照信号として同期検波することで、2次元振動子15の出力に含まれるCCW成分のみを検出することができる。 Similar processing is executed for a system that detects a CCW component included in the output of the two-dimensional transducer 15. Specifically, the detector 31b in the second detection unit 30b detects using the signal CCW-I, and the result is subjected to filter processing by the LPF 33b, so that the CCW-I included in the output of the two-dimensional transducer 15 is obtained. The component is detected, and the detection result is supplied to the amplitude / phase detector 35b. In addition, the detector 32b in the second detection unit 30b detects using the signal CCW-Q, and the CCW-Q component included in the output of the two-dimensional transducer 15 is detected by performing filter processing on the result using the LPF 34b. Then, the detection result is supplied to the amplitude / phase detector 35b. The amplitude phase detector 35b detects the amplitude r CCW and the phase θ CCW of the CCW component included in the output signal of the two-dimensional transducer 15 based on the outputs from the LPF 33b and the LPF 34b. That is, as described above, only the CCW component included in the output of the two-dimensional transducer 15 can be detected by performing synchronous detection using the signals CCW-I and CCW-Q as reference signals.
 第2検出部30bにより得られた位相θCCWが第2PLL回路40bに供給される。第2PLL回路40bにおける位相比較器41bは、位相θCCWと0とを比較し、比較結果に基づいてPID制御部42bが位相θCCWを0すなわち共振周波数fcwとなる制御を実行する。PID制御部42bからの出力で発振器43bを制御し、これにより発振器43bからは位相が一致した換言すれば共振周波数fCCWの信号sinCCWおよび信号cosCCWが出力される。共振周波数fCCWが入力側にフィードバックされ、CCWモードに対応する駆動信号の共振周波数が共振周波数fCCWとなるように維持する制御がなされる。また、信号sinCCWおよび信号cosCCWが第2検出部30bにフィードバックされ、これに基づいて参照信号としての信号CCW-I、信号CCW-Qが生成される。本例では、フィードバックされる信号と参照信号との間に、-sin=sinccw、cos=cosccw、-cos=-1*cosccw、の関係が成り立っている。 The phase θ CCW obtained by the second detection unit 30b is supplied to the second PLL circuit 40b. The phase comparator 41b in the second PLL circuit 40b compares the phase θ CCW with 0, and based on the comparison result, the PID control unit 42b executes control for setting the phase θ CCW to 0, that is, the resonance frequency f cw . The oscillator 43b is controlled by the output from the PID control unit 42b, whereby the oscillator 43b outputs a signal sin CCW and a signal cos CCW having the resonance frequency f CCW that are in phase. The resonance frequency f CCW is fed back to the input side, and control is performed to maintain the resonance frequency of the drive signal corresponding to the CCW mode at the resonance frequency f CCW . The signal sin CCW and the signal cos CCW are fed back to the second detection unit 30b, and based on this, the signals CCW-I and CCW-Q as reference signals are generated. In this example, between the signal and the reference signal fed back, -sin = sin ccw, cos = cos ccw, -cos = -1 * cos ccw, the relationships are established.
 第2検出部30bにより得られた振幅rCCWが第2AGC部50bに供給される。第2AGC部50bにおける振幅比較器51bは、振幅rCCWと第2設定値Rset,CCWとを比較し、比較結果に基づいてPID制御部52bが、振幅rCCWが第2設定値Rset,CCWとなる制御を実行する。PID制御部52bからの出力が駆動信号生成部20にフィードバックされ、CCWモードに対応する駆動信号の振幅が第2設定値Rset,CCWで維持されるようにゲインをコントロールする制御がなされる。 The amplitude r CCW obtained by the second detection unit 30b is supplied to the second AGC unit 50b. The amplitude comparator 51b in the second AGC unit 50b compares the amplitude r CCW with the second set value R set, CCW, and based on the comparison result, the PID control unit 52b sets the amplitude r CCW to the second set value R set, Executes CCW control. The output from the PID control unit 52b is fed back to the drive signal generation unit 20, and control is performed to control the gain so that the amplitude of the drive signal corresponding to the CCW mode is maintained at the second set value R set, CCW .
 図13は、ジャイロ装置10における信号の流れを模式的に示した図である。図13における太線が信号の流れを示している。2次元振動子15の出力に含まれるCCW成分は第1検出部30aによりカットされ、CW成分のみが一方の系(図13における上側の系)をループすることになる。2次元振動子15の出力に含まれるCW成分は第2検出部30bによりカットされ、CCW成分のみが他方の系(図13における下側の系)をループすることになる。 FIG. 13 is a diagram schematically showing a signal flow in the gyro apparatus 10. As shown in FIG. A thick line in FIG. 13 indicates a signal flow. The CCW component included in the output of the two-dimensional transducer 15 is cut by the first detection unit 30a, and only the CW component loops through one system (the upper system in FIG. 13). The CW component included in the output of the two-dimensional transducer 15 is cut by the second detection unit 30b, and only the CCW component loops through the other system (the lower system in FIG. 13).
「角速度検出部の構成例」
 次に、本発明の第1実施形態に係る角速度検出部(角速度検出部70)の構成例について説明する。なお、角速度検出部70は、ジャイロ装置10に組み込まれているものとして説明するが、他の装置に組み込まれていてもよい。
"Configuration example of angular velocity detector"
Next, a configuration example of the angular velocity detection unit (angular velocity detection unit 70) according to the first embodiment of the present invention will be described. Although the angular velocity detection unit 70 is described as being incorporated in the gyro device 10, it may be incorporated in another device.
 図14は、角速度検出部70の構成例を示す図である。角速度検出部70は、例えば、減算器71と、乗算器72とを備えている。角速度検出部70は、第1PLL回路40aから出力される共振周波数fcwおよび第2PLL回路40bから出力される共振周波数fCCWを得、両共振周波数を減算器71で減算し、その結果を乗算器72で定数倍(理想的な振動子の場合は1/2倍)する。すなわち、角速度検出部70は、上述した数式3と同様の演算を行うことで回転角速度Ωzを検出する。この回転角速度Ωzを積分することでジャイロ装置10は、回転した角度を検出することができる。 FIG. 14 is a diagram illustrating a configuration example of the angular velocity detection unit 70. The angular velocity detection unit 70 includes, for example, a subtracter 71 and a multiplier 72. The angular velocity detection unit 70 obtains the resonance frequency f cw output from the first PLL circuit 40a and the resonance frequency f CCW output from the second PLL circuit 40b, subtracts both resonance frequencies by the subtractor 71, and multiplies the result. 72 is multiplied by a constant (in the case of an ideal vibrator, 1/2 times). In other words, the angular velocity detection unit 70 detects the rotational angular velocity Ω z by performing the same calculation as in the above-described Expression 3. By integrating this rotational angular velocity Ω z , the gyro apparatus 10 can detect the rotated angle.
「効果」
 本発明の第1実施形態によれば、以下の効果を得ることができる。単一の2次元振動子により構成しているので、装置を小型化することが可能となるとともに、複数の振動子を使用した場合のように振動子の特性や使用環境を一致させる必要がなくなる。また、単一の2次元振動子をモードマッチで駆動しているので高いQ値を実現することができ、高性能なジャイロ装置を実現することができる。さらに、2次元振動子の出力からCW、CCWモードに対応する成分を独立して検出することができ、それらの検出結果から回転角速度を検出し、最終的には回転した角度を検出することができる。
"effect"
According to the first embodiment of the present invention, the following effects can be obtained. Since the apparatus is composed of a single two-dimensional vibrator, it is possible to reduce the size of the apparatus, and it is not necessary to match the characteristics and use environment of the vibrator as in the case of using a plurality of vibrators. . In addition, since a single two-dimensional vibrator is driven by mode matching, a high Q value can be realized, and a high-performance gyro apparatus can be realized. Furthermore, components corresponding to the CW and CCW modes can be detected independently from the output of the two-dimensional transducer, and the rotational angular velocity can be detected from those detection results, and finally the rotated angle can be detected. it can.
<2.第2実施形態>
 次に、第2実施形態について説明する。なお、以下の説明において同一の名称、符号については、特に断らない限り同一もしくは同質の部材を示しており、重複する説明を適宜省略する。第2実施形態は、ホールアングルモード(Whole Angle Mode)(積分ジャイロ等とも称される、代表例にはフーコーの振り子がある)のジャイロ装置として構成した実施形態である。ホールアングルモードのジャイロ装置は、回転した角度そのものを検出することができる。
<2. Second Embodiment>
Next, a second embodiment will be described. In the following description, the same name and reference sign indicate the same or the same members unless otherwise specified, and a duplicate description will be omitted as appropriate. The second embodiment is an embodiment configured as a gyro device in a Whole Angle Mode (also referred to as an integral gyro or the like, a typical example is a Foucault pendulum). The gyro apparatus in the hall angle mode can detect the rotated angle itself.
 ホールアングルモードについて図15を参照して概略的に説明する。振動子にCWモード(共振周波数ω+Ωz)およびCCWモード(共振周波数ω-Ωz)の回転を与えると、両回転の振幅が同じで位相差φがない(φ=0)の場合には、図15Aに示すように直線振動となる。ここで、振動子に回転が加わると位相差φが生じ、この位相差φにより図15Bに示すように振動の方向が回転する。振動の方向の回転角度は、位相差φの1/2となることが知られている。例えば、図15Bは位相差φが60度の例であり、この位相差φの1/2(30度)だけ振動の方向が回転する。すなわち、ホールアングルモードのジャイロ装置ではこの位相差φを検出し、位相差φに1/2を乗算することで回転した角度そのものを検出することができる。 The hall angle mode will be schematically described with reference to FIG. When the resonator is rotated in the CW mode (resonance frequency ω + Ω z ) and CCW mode (resonance frequency ω-Ω z ), when both rotations have the same amplitude and no phase difference φ (φ = 0), As shown in FIG. 15A, the vibration is linear. Here, when rotation is applied to the vibrator, a phase difference φ is generated, and the direction of vibration is rotated by the phase difference φ as shown in FIG. 15B. It is known that the rotation angle in the vibration direction is ½ of the phase difference φ. For example, FIG. 15B shows an example in which the phase difference φ is 60 degrees, and the direction of vibration rotates by 1/2 (30 degrees) of the phase difference φ. In other words, the hall angle mode gyro apparatus can detect the phase difference φ and multiply the phase difference φ by 1/2 to detect the rotated angle itself.
 第2実施形態に係るジャイロ装置は、上述した第1実施形態に係るジャイロ装置10と同一の構成とすることができる。ジャイロ装置10の構成に回転角度を検出する構成を設ければよい。図16Aは、回転角度を検出する角度検出部(角度検出部80a)の構成例を示す図である。角度検出部80aは、減算器81aと、乗算器82aとを備えている。CW、CCW各モードの位相(θcwCCW(これらは、各モードの励振信号に対する実際の振動の位相を表す)とは異なる)をθ'cw、θ'CCWとすると、これらは、例えばNCOの内部変数等を読み取ることで得ることができる。減算器81aには、この位相θ'cwをθ'CCWが入力される。減算器81aが位相θ'cw、位相θ'CCWを減算して位相差φを得、その結果を乗算器82aで定数倍(理想的なX-Y振動子では1/2倍)することにより回転角度(Angle)を検出することができる。 The gyro device according to the second embodiment can have the same configuration as the gyro device 10 according to the first embodiment described above. What is necessary is just to provide the structure which detects a rotation angle in the structure of the gyro apparatus 10. FIG. FIG. 16A is a diagram illustrating a configuration example of an angle detection unit (angle detection unit 80a) that detects a rotation angle. The angle detection unit 80a includes a subtractor 81a and a multiplier 82a. If the phase of each CW, CCW mode (θ cw , θ CCW (which is different from the actual vibration phase with respect to the excitation signal of each mode) is θ ′ cw , θ ′ CCW , these are It can be obtained by reading internal variables of NCO. The subtractor 81a receives this phase θ ′ cw and θ ′ CCW . The subtractor 81a subtracts the phase θ ′ cw and the phase θ ′ CCW to obtain the phase difference φ, and the result is multiplied by a constant (1/2 times for an ideal XY vibrator) by the multiplier 82a, thereby rotating the rotation angle. (Angle) can be detected.
 図16Bは、角度検出部の他の構成例を示す図である。図16Bに示す角度検出部80bは、例えば、復調部81bと、少なくとも位相差を検出する位相差検出部82bと、乗算器83bとを備えている。復調部81bは、第2PLL回路40bから供給されるcosCCW信号をcoscw信号およびsincw信号を使用して復調(同期検波)する。その結果に基づいて位相差検出部82bが位相差φを検出し、乗算器83bが検出された位相差φを定数倍(理想的なX-Y振動子では1/2倍)することにより回転角度を検出することができる。 FIG. 16B is a diagram illustrating another configuration example of the angle detection unit. The angle detection unit 80b illustrated in FIG. 16B includes, for example, a demodulation unit 81b, a phase difference detection unit 82b that detects at least a phase difference, and a multiplier 83b. The demodulator 81b demodulates (synchronous detection) the cos CCW signal supplied from the second PLL circuit 40b using the cos cw signal and the sin cw signal. Based on the result, the phase difference detector 82b detects the phase difference φ, and the multiplier 83b multiplies the detected phase difference φ by a constant (1/2 times for an ideal XY vibrator) to thereby adjust the rotation angle. Can be detected.
 なお、角度検出部80a、80bは、ジャイロ装置10とは異なる他の装置に組み込まれていてもよく、当該他の装置によって回転角度を検出する処理が行われてもよい。また、ジャイロ装置10が、角速度検出部70(図14参照)および角度検出部80a(角度検出部80bでもよい)を備える構成でもよい。この構成により、FMモードおよびホールアングルモードの両方に対応したジャイロ装置とすることができる。さらに、数値的に積分することなく回転角度を検出できるので、数値計算による誤差の発生、計算負荷による消費電力の増大、演算速度による帯域幅の制限等の不都合を回避することができる。 The angle detectors 80a and 80b may be incorporated in another device different from the gyro device 10, and processing for detecting the rotation angle may be performed by the other device. Further, the gyro apparatus 10 may include an angular velocity detection unit 70 (see FIG. 14) and an angle detection unit 80a (may be the angle detection unit 80b). With this configuration, it is possible to provide a gyro apparatus that supports both the FM mode and the hall angle mode. Furthermore, since the rotation angle can be detected without numerical integration, it is possible to avoid inconveniences such as generation of errors due to numerical calculation, increase in power consumption due to calculation load, and bandwidth limitation due to calculation speed.
 なお、第2実施形態は、例えば、以下のような変形が可能である。第2実施形態のように、ホールアングルモードでのジャイロ装置10の駆動は、フーコーの振り子と同様の原理にて電力がない状態でも機械的に積分動作を継続することが可能となる。この特性を使用して、間欠的な制御を行いジャイロ装置10における消費電力を低減することができる。 It should be noted that the second embodiment can be modified as follows, for example. As in the second embodiment, the driving of the gyro apparatus 10 in the hall angle mode can continue the mechanical integration operation even when there is no power on the same principle as the Foucault pendulum. Using this characteristic, intermittent control can be performed to reduce power consumption in the gyro apparatus 10.
 例えば、一定期間、図示しない電源から電力を供給してジャイロ装置10を動作させて2次元振動子15を励振させ、その後、電力の供給を停止することで、ジャイロ装置10に対する電力が間欠的になされる構成とする。電力の供給を停止した場合でも2次元振動子15の振動が継続している間は機械的な積分動作が継続していることになる。もちろん、電力の供給が停止したままでは2次元振動子15の振動が減衰してしまうので、一定期間後は電力の供給を再開する。この制御を、通常動作を実行するモードとは異なるモード(節電モード)としてユーザが設定可能としてもよい。また、ジャイロ装置10にタイマを設けて、電力供給開始後、一定期間経過後に電力の供給を自動的に停止する構成としてもよい。第1検出部30aおよび第2検出部30bから出力される振幅rcwおよび振幅rCCWが一定値に達した段階で電力の供給を停止する構成でもよい。このような構成は、例えば、ジャイロ装置10が、電源部(一次電池、二次電池、太陽光発電装置等何でもよい)と、電源部と電力が供給される構成(ジャイロ装置10の全てまたは一部の構成)との間に設けられたスイッチをオン/オフする制御部とを備える構成を例示することができる。 For example, by supplying power from a power source (not shown) for a certain period of time to operate the gyro device 10 to excite the two-dimensional vibrator 15 and then stopping the supply of power, the power to the gyro device 10 is intermittently supplied. The configuration is made. Even when the supply of power is stopped, the mechanical integration operation continues while the vibration of the two-dimensional vibrator 15 continues. Of course, since the vibration of the two-dimensional vibrator 15 is attenuated while the supply of power is stopped, the supply of power is resumed after a certain period. This control may be set by the user as a mode (power saving mode) different from the mode for executing the normal operation. In addition, a timer may be provided in the gyro apparatus 10 so that the supply of power is automatically stopped after a certain period of time has elapsed after the start of power supply. The configuration may be such that the supply of power is stopped when the amplitude r cw and the amplitude r CCW output from the first detection unit 30a and the second detection unit 30b reach a certain value. Such a configuration includes, for example, a configuration in which the gyro device 10 is supplied with a power supply unit (any primary battery, secondary battery, solar power generation device, etc.) and a power supply unit and electric power (all or one of the gyro device 10). And a control unit that turns on / off a switch provided between the first and second components).
<3.第3実施形態>
 次に、第3実施形態について説明する。特に断らない限り、上述した第1および第2実施形態で説明した事項は、第3実施形態に適用することができる。なお、同一の構成については同一の参照符号を付し、重複した説明を適宜、省略する。
<3. Third Embodiment>
Next, a third embodiment will be described. Unless otherwise specified, the matters described in the first and second embodiments described above can be applied to the third embodiment. Note that the same reference numerals are assigned to the same components, and redundant descriptions are omitted as appropriate.
 第3実施形態は、振動子の不完全性(X-Y非対称性)による性能劣化を回避するための実施形態である。振動子の不完全性とは、主に振動子の作製誤差による構造の非対称性によって生じる、X、Y方向の共振周波数、減衰係数の差を意味する。 The third embodiment is an embodiment for avoiding performance deterioration due to incompleteness (X-Y asymmetry) of the vibrator. The incompleteness of the vibrator means a difference in resonance frequency and attenuation coefficient in the X and Y directions, which is mainly caused by the asymmetry of the structure due to a manufacturing error of the vibrator.
 ここで、理想振動子(モードマッチで駆動される振動子)について図17および図18を参照して説明する。図17Aの上段はX方向の駆動信号の例を示したグラフであり、図17Aの下段はY方向の駆動信号の例を示したグラフである。それぞれのグラフにおける縦軸は駆動信号のレベルを示し、横軸は時間(t)を示している。図示の通り、X方向およびY方向の駆動信号の位相差(Δθ)は90°である。 Here, an ideal vibrator (vibrator driven by mode matching) will be described with reference to FIGS. The upper part of FIG. 17A is a graph showing an example of the drive signal in the X direction, and the lower part of FIG. 17A is a graph showing an example of the drive signal in the Y direction. The vertical axis in each graph indicates the level of the drive signal, and the horizontal axis indicates time (t). As shown in the figure, the phase difference (Δθ) of the drive signals in the X direction and the Y direction is 90 °.
 図17Bは、図17Aに示した駆動振動でもって振動子を励振した場合の振動を示し、図17Bの上段は振動子の出力のうちX方向の振動を示し、図17Bの下段は振動子の出力のうちY方向の振動を示している。各方向の振動は、対応する方向における駆動信号の位相が90°遅れたものになっており、X方向の振動とY方向の振動との位相差が90°に維持されている。すなわち、X方向およびY方向における位相差が90°の駆動信号で振動子を励振した場合、理想的には、図18Aおよび図18Bに示すように、共振点(共振周波数f0)においてX方向およびY方向の振動の振幅が同一となり、X方向およびY方向における振動の位相差が90°となる。 FIG. 17B shows the vibration when the vibrator is excited by the drive vibration shown in FIG. 17A. The upper part of FIG. 17B shows the vibration in the X direction of the output of the vibrator, and the lower part of FIG. Of the output, the vibration in the Y direction is shown. The vibration in each direction is such that the phase of the drive signal in the corresponding direction is delayed by 90 °, and the phase difference between the vibration in the X direction and the vibration in the Y direction is maintained at 90 °. That is, when the vibrator is excited with a drive signal having a phase difference of 90 ° in the X direction and the Y direction, ideally, as shown in FIGS. 18A and 18B, the X direction is at the resonance point (resonance frequency f 0 ). And the amplitude of vibration in the Y direction are the same, and the phase difference of vibration in the X direction and the Y direction is 90 °.
 しかしながら、上述した振動子の不完全性(モードミスマッチ)により、振動子の振動が非理想的な振動となる場合がある。例えば、図19Aに示すように、X方向とY方向の共振周波数がずれていると、図19Bに示すように駆動信号(周波数f0)に対する振動の位相遅れ量が、X方向およびY方向のそれぞれにおいて異なってしまう。そのため、図19Bに示すように、駆動周数数f0におけるX、Y方向の位相遅れ量が90°にはならず、位相差Δφが生じてしまう。 However, there is a case where the vibration of the vibrator becomes non-ideal vibration due to the incompleteness (mode mismatch) of the vibrator described above. For example, as shown in FIG. 19A, when the resonance frequencies in the X direction and the Y direction are shifted, the phase delay amount of the vibration with respect to the drive signal (frequency f 0 ) is changed in the X direction and the Y direction as shown in FIG. 19B. Each will be different. For this reason, as shown in FIG. 19B, the amount of phase delay in the X and Y directions at the driving frequency f 0 does not become 90 °, and a phase difference Δφ occurs.
 その結果、図20Aおよび図20Bに示すように、振動子の不完全性により、X方向の振動の位相遅れがX方向の駆動信号の位相に対して90°より小さく(若しくは大きく)、Y方向の振動の位相遅れがY方向の駆動信号の位相に対して90°より大きく(若しくは小さく)なる場合がある。このような場合には、励振された振動のX方向およびY方向の振動の位相差は90°にはならない。 As a result, as shown in FIGS. 20A and 20B, due to the imperfection of the vibrator, the phase delay of the vibration in the X direction is smaller than (or larger than) 90 ° with respect to the phase of the driving signal in the X direction, In some cases, the phase lag of the vibration of the motor is larger (or smaller) than 90 ° with respect to the phase of the drive signal in the Y direction. In such a case, the phase difference between the excited vibrations in the X and Y directions is not 90 °.
 上述したミスマッチが第1実施形態で説明したジャイロ装置10の処理系統に与える影響について説明する。図21は、ジャイロ装置10を簡略化して示したブロック図である。なお、第1実施形態で説明したように、第1検出部30aは、2次元振動子15の振動に含まれるCW成分を検出するものであることから、図21ではCWディテクタと表記している。同様に、第2検出部30bは、2次元振動子15の振動に含まれるCCW成分を検出するものであることから、図21ではCCWディテクタと表記している。 The effect of the mismatch described above on the processing system of the gyro apparatus 10 described in the first embodiment will be described. FIG. 21 is a block diagram showing the gyro apparatus 10 in a simplified manner. As described in the first embodiment, the first detection unit 30a detects a CW component included in the vibration of the two-dimensional vibrator 15, and is therefore referred to as a CW detector in FIG. . Similarly, since the second detection unit 30b detects a CCW component included in the vibration of the two-dimensional vibrator 15, it is represented as a CCW detector in FIG.
 上述した駆動周波数において位相差が生じると言うことは、CW(CCW)で駆動したつもりでも純粋なCW(CCW)振動(X、Y方向のそれぞれの振動の位相差が90°(-90°)の振動)が励振できなくなりCCW(CW)成分が同時に生じてしまっていることを意味する。 The fact that a phase difference occurs at the drive frequency mentioned above means that even if you intend to drive with CW (CCW), pure CW (CCW) vibration (the phase difference of each vibration in the X and Y directions is 90 ° (-90 °)) This means that the CCW (CW) component is generated at the same time.
 第1実施形態で説明したように(図13等参照)、ジャイロ装置10では、CWモードの成分がループする系とCCWモードの成分がループする系は、本来は独立であるべきところ、CWモードの成分に含まれる不要なCCWモードの成分は、CCWディテクタを通り抜けてしまう。つまり、CCWモードのループの系にCWモードの情報を持った信号が漏れ、CCWモードのループにおけるPLL(第2PLL回路40b)にCWモードの情報が入ってしまう。これにより、第2PLL回路40bの動作がCWモードに含まれる不要なCCWモードの成分によって乱され、第2PLL回路40bがロックする周波数が乱れてしまう。 As described in the first embodiment (see FIG. 13 and the like), in the gyro apparatus 10, the system in which the CW mode component loops and the system in which the CCW mode component loops should originally be independent. Unnecessary CCW mode components included in this component pass through the CCW detector. That is, a signal having CW mode information leaks to the CCW mode loop system, and the CW mode information enters the PLL (second PLL circuit 40b) in the CCW mode loop. As a result, the operation of the second PLL circuit 40b is disturbed by an unnecessary CCW mode component included in the CW mode, and the frequency at which the second PLL circuit 40b is locked is disturbed.
 なお、上述した例では、CWモードの成分に不要なCCWモードの成分が含まれる例について説明したが、CCWモードの成分に不要なCWモードの成分が含まれる場合も同様である。すなわち、CCWモードの成分に含まれる不要なCWモードの成分により、第1PLL回路40aがロックする周波数が乱れてしまう。 In the example described above, an example in which an unnecessary CCW mode component is included in the CW mode component has been described, but the same applies to the case in which the CCW mode component includes an unnecessary CW mode component. That is, an unnecessary CW mode component included in the CCW mode component disturbs the frequency at which the first PLL circuit 40a is locked.
 そこで、この問題に対応するために、2次元振動子15の不完全性により生じる不要な位相差をキャンセルするために、駆動信号の位相を予めずらしておく(位相調整処理)。図22Aおよび図22Bの上段にそれぞれ示すように、例えば、X方向における駆動振動の位相と振動の位相との位相差が90°より小さい場合には、その位相差分、駆動信号の位相を予め遅らせておく。また、図22Aおよび図22Bの下段にそれぞれ示すように、例えば、Y方向における駆動振動の位相と振動の位相との位相差が90°より大きい場合には、その位相差分、駆動信号の位相を予め進めておく。これにより、X方向の振動とY方向の振動との位相差を90°とすることができ、純粋な固有モードが励振できる。 Therefore, in order to cope with this problem, the phase of the drive signal is shifted in advance in order to cancel an unnecessary phase difference caused by imperfection of the two-dimensional vibrator 15 (phase adjustment processing). 22A and 22B, for example, when the phase difference between the drive vibration phase and the vibration phase in the X direction is smaller than 90 °, the phase difference and the drive signal phase are delayed in advance. Keep it. 22A and 22B, for example, if the phase difference between the drive vibration phase and the vibration phase in the Y direction is greater than 90 °, the phase difference and the drive signal phase are Advance in advance. Thereby, the phase difference between the vibration in the X direction and the vibration in the Y direction can be 90 °, and a pure eigenmode can be excited.
 補償すべき位相差は、例えば、共振周波数の差より求めることができる。なお、X方向の振動とY方向の振動とが最も直交する位相差を予め実験等により求めておき、当該位相差の分だけ駆動信号の位相を遅らせまたは進めて補償してもよい。 The phase difference to be compensated can be obtained from the difference in resonance frequency, for example. Note that the phase difference in which the vibration in the X direction and the vibration in the Y direction are most orthogonal may be obtained in advance by experiments or the like, and the phase of the drive signal may be delayed or advanced by the amount corresponding to the phase difference.
 振動子の不完全性は、上述の周波数のずれだけでなく、X方向におけるQ値(ダンピング)とY方向におけるQ値との間のずれも招く。X方向およびY方向におけるQ値にずれが生じると、図23および図24に示すように、共振点において、X方向の振動の振幅とY方向の振動の振幅とが異なってしまう。X方向の振動の振幅とY方向の振動の振幅とが異なると、固有振動(円振動)ではなくなり、上述した事象と同様に、CWモードの振動にCCWモードの成分が含まれて(CCWモードの振動にCWモードの成分が含まれて)しまう問題を生じる。 The incompleteness of the vibrator causes not only the above-described frequency shift but also a shift between the Q value (dumping) in the X direction and the Q value in the Y direction. When the Q values in the X direction and the Y direction are deviated, as shown in FIGS. 23 and 24, the vibration amplitude in the X direction and the vibration amplitude in the Y direction are different at the resonance point. If the amplitude of the vibration in the X direction is different from the amplitude of the vibration in the Y direction, it is no longer a natural vibration (circular vibration), and the CCW mode component is included in the CW mode vibration (CCW mode) as in the event described above. This causes a problem that the CW mode component is included in the vibration.
 そこで、図25に示すように、駆動信号の振幅を予めずらしておくことによりQ値のずれ(ミスマッチ)を補償する(振幅調整処理)。例えば、図25Bに示すように、共振点において一致すべきX方向の振動の振幅およびY方向の振動の振幅を振幅ACとする。この振幅ACに対するずれの分だけ、X方向の駆動信号の振幅およびY方向の駆動信号の振幅を予めずらしておく。図25Aの上段に示す例では、X方向の駆動信号の振幅とX方向の振動の振幅との間に生じる振動の減衰分(ΔAx分)だけ駆動信号の振幅を大きくしている。図25Aの下段に示す例では、Y方向の駆動信号の振幅とY方向の振動の振幅との間に生じる振動の増加分(ΔAy分)だけ駆動信号の振幅を小さくしている。もちろん、X方向の駆動信号の振幅を小さくしたり、Y方向の駆動信号の振幅を大きくしたりする補償の場合もある。 Therefore, as shown in FIG. 25, the deviation (mismatch) of the Q value is compensated by previously shifting the amplitude of the drive signal (amplitude adjustment processing). For example, as shown in FIG. 25B, the amplitude of the vibration amplitude and the Y-direction of the vibration in the X-direction should match the resonance point and the amplitude A C. The amplitude A C for by the amount of deviation, advance shifting the amplitude of the amplitude and the Y-direction driving signal for the X direction of the driving signal. In the example shown in the upper part of FIG. 25A, the amplitude of the drive signal is increased by the amount of vibration attenuation (ΔA x ) generated between the amplitude of the drive signal in the X direction and the amplitude of the vibration in the X direction. In the example shown in the lower part of FIG. 25A, the amplitude of the drive signal is reduced by an increase in vibration (ΔA y ) that occurs between the amplitude of the drive signal in the Y direction and the amplitude of the vibration in the Y direction. Of course, there are cases where the amplitude of the drive signal in the X direction is reduced or the amplitude of the drive signal in the Y direction is increased.
 振幅の補償分は、例えば、Q値の差から求められる。なお、X方向の振動とY方向の振動とが最も直交する振幅の補償分を予め実験等により求めておき、当該振幅の補償分だけ駆動信号の振幅を大きくまたは小さくしてもよい。 The amount of compensation for the amplitude is obtained from the difference in Q value, for example. Note that the compensation amount of the amplitude in which the vibration in the X direction and the vibration in the Y direction are most orthogonal may be obtained in advance by experiments or the like, and the amplitude of the drive signal may be increased or decreased by the compensation amount of the amplitude.
 図26は、上述した位相や振幅を調整する機能を適用した第3実施形態におけるジャイロ装置(ジャイロ装置10A)の構成例を示すブロック図である。ジャイロ装置10と同一の構成については同一の符号を付している。ジャイロ装置10Aの駆動信号生成部20Aは、第1実施形態における駆動信号生成部20の構成に加え、位相調整部91、92、93、94および振幅調整部95、96、97、98を有している。位相調整部91、92および振幅調整部95、96により第1位相・振幅調整部が構成され、位相調整部93、94および振幅調整部97、98により第2位相・振幅調整部が構成される。 FIG. 26 is a block diagram illustrating a configuration example of the gyro apparatus (gyro apparatus 10A) according to the third embodiment to which the above-described function of adjusting the phase and amplitude is applied. The same components as those of the gyro device 10 are denoted by the same reference numerals. The drive signal generation unit 20A of the gyro apparatus 10A includes phase adjustment units 91, 92, 93, and 94 and amplitude adjustment units 95, 96, 97, and 98 in addition to the configuration of the drive signal generation unit 20 in the first embodiment. ing. The phase adjustment units 91 and 92 and the amplitude adjustment units 95 and 96 constitute a first phase / amplitude adjustment unit, and the phase adjustment units 93 and 94 and the amplitude adjustment units 97 and 98 constitute a second phase / amplitude adjustment unit. .
 位相調整部91は、乗算器201の入力段に接続されており、振幅調整部95は、乗算器201の出力段に接続されている。位相調整部91および振幅調整部95は、2次元振動子15の不完全性により生じる不要な位相差やQ値のずれを解消するために、CWモードのX方向の駆動信号に対して、上述した位相調整処理および振幅調整処理を実行する。 The phase adjustment unit 91 is connected to the input stage of the multiplier 201, and the amplitude adjustment unit 95 is connected to the output stage of the multiplier 201. The phase adjustment unit 91 and the amplitude adjustment unit 95 perform the above operation on the drive signal in the X direction in the CW mode in order to eliminate unnecessary phase difference and Q value shift caused by imperfection of the two-dimensional vibrator 15. The phase adjustment process and the amplitude adjustment process performed are executed.
 位相調整部92は、乗算器202の入力段に接続されており、振幅調整部96は、乗算器202の出力段に接続されている。位相調整部92および振幅調整部96は、2次元振動子15の不完全性により生じる不要な位相差やQ値のずれを解消するために、CWモードのY方向の駆動信号に対して、上述した位相調整処理および振幅調整処理を実行する。 The phase adjustment unit 92 is connected to the input stage of the multiplier 202, and the amplitude adjustment unit 96 is connected to the output stage of the multiplier 202. The phase adjustment unit 92 and the amplitude adjustment unit 96 are described above with respect to the drive signal in the Y direction in the CW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional vibrator 15. The phase adjustment process and the amplitude adjustment process performed are executed.
 位相調整部93は、乗算器203の入力段に接続されており、振幅調整部97は、乗算器203の出力段に接続されている。位相調整部93および振幅調整部97は、2次元振動子15の不完全性により生じる不要な位相差やQ値のずれを解消するために、CCWモードのX方向の駆動信号に対して、上述した位相調整処理および振幅調整処理を実行する。 The phase adjustment unit 93 is connected to the input stage of the multiplier 203, and the amplitude adjustment unit 97 is connected to the output stage of the multiplier 203. The phase adjustment unit 93 and the amplitude adjustment unit 97 perform the above operation on the X-direction drive signal in the CCW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional transducer 15. The phase adjustment process and the amplitude adjustment process performed are executed.
 位相調整部94は、乗算器204の入力段に接続されており、振幅調整部98は、乗算器204の出力段に接続されている。位相調整部94および振幅調整部98は、2次元振動子15の不完全性により生じる不要な位相差やQ値のずれを解消するために、CCWモードのY方向の駆動信号に対して、上述した位相調整処理および振幅調整処理を実行する。なお、各位相調整部を各乗算器の出力段に設けても良いが、乗算器による演算処理(掛算)の前に駆動信号の位相を調整する方が回路構成を簡略化できる。また、振幅調整は乗算器201~204の倍率を個々に調整することでも実現できる。 The phase adjustment unit 94 is connected to the input stage of the multiplier 204, and the amplitude adjustment unit 98 is connected to the output stage of the multiplier 204. The phase adjustment unit 94 and the amplitude adjustment unit 98 perform the above operation on the drive signal in the Y direction in the CCW mode in order to eliminate unnecessary phase difference and Q value deviation caused by imperfection of the two-dimensional vibrator 15. The phase adjustment process and the amplitude adjustment process performed are executed. Each phase adjustment unit may be provided at the output stage of each multiplier, but the circuit configuration can be simplified by adjusting the phase of the drive signal before the arithmetic processing (multiplication) by the multiplier. The amplitude adjustment can also be realized by individually adjusting the magnifications of the multipliers 201 to 204.
 振幅調整部95、97の出力が加算器205により加算された後、増幅器61aにより増幅され、X方向の駆動信号として2次元振動子15に供給される。振幅調整部96、98の出力が加算器206により加算された後、増幅器61bにより増幅され、Y方向の駆動信号として2次元振動子15に供給される。2次元振動子15は、それぞれの方向に対応する駆動振動により励振される。上述したように、駆動信号の位相および振幅が予め調整されているので、CWモードの駆動信号は純粋なCWモードの振動のみ(CCWモードの駆動信号は純粋なCCWモードの振動のみ)を励振することができる。 The outputs of the amplitude adjustment units 95 and 97 are added by the adder 205, then amplified by the amplifier 61a, and supplied to the two-dimensional vibrator 15 as a drive signal in the X direction. The outputs of the amplitude adjusters 96 and 98 are added by the adder 206, then amplified by the amplifier 61b, and supplied to the two-dimensional vibrator 15 as a drive signal in the Y direction. The two-dimensional vibrator 15 is excited by drive vibration corresponding to each direction. As described above, since the phase and amplitude of the drive signal are adjusted in advance, the CW mode drive signal excites only pure CW mode vibration (CCW mode drive signal only pure CCW mode vibration). be able to.
 本実施形態における処理を適用したことによる効果について説明する。図27Aおよび図27Bに示すグラフの横軸は時間(t)(s)を示し、縦軸は発振器43aの周波数fcwと発振器43bの周波数fccwとの差Δf(Hz)を示している。図27Aのグラフは本実施形態における処理を適用しない場合の結果を示し、図27Bのグラフは本実施形態における処理を適用した場合の結果を示す。図27Aに示すように、位相遅れ量およびQ値のミスマッチによりCWモードとCCWモードとが直交しないので、一定速度で回しているのにも関わらず、干渉による周波数の周期的変動が見られる。一方で、本実施形態における処理を適用し、駆動信号の位相および振幅を調整した場合には、モード間の直交性が良くなり、図27Aに示したような周波数の周期的変動が見られない。したがって、正確に角速度を検出できる。 The effect by applying the processing in the present embodiment will be described. The horizontal axis of the graph shown in FIG. 27A and FIG. 27B shows the time (t) (s), the vertical axis represents the difference between the frequency f ccw frequency f cw and oscillator 43b of the oscillator 43a Δf (Hz). The graph in FIG. 27A shows the result when the processing in the present embodiment is not applied, and the graph in FIG. 27B shows the result when the processing in the present embodiment is applied. As shown in FIG. 27A, since the CW mode and the CCW mode are not orthogonal due to a mismatch between the phase delay amount and the Q value, periodic fluctuations in frequency due to interference can be seen even though the CW mode and the CCW mode are rotating at a constant speed. On the other hand, when the processing in this embodiment is applied and the phase and amplitude of the drive signal are adjusted, the orthogonality between the modes is improved, and the periodic fluctuation of the frequency as shown in FIG. 27A is not seen. . Therefore, the angular velocity can be detected accurately.
 第3実施形態で説明した処理は、第2実施形態(ホールアングルモードのジャイロ装置)にも適用することができる。この場合にも同様の効果が得られる。この効果について説明する。図28Aおよび図28Bに示すグラフの横軸は時間(t)(s)を示し、縦軸は第2実施形態に係るジャイロ装置により検出される回転角度θを示している。図28Aのグラフは本実施形態における処理を適用しない場合の結果を示し、図28Bのグラフは本実施形態における処理を適用した場合の結果を示す。2次元振動子15を一定の角速度で回していることから検出される角度は直線になるべきところ、図28Aに示すように、方向による位相遅れ量の違いおよびQ値のミスマッチにより、検出される角度に周期的誤差が現れる。一方で、本実施形態における処理を適用し、駆動信号の位相および振幅を調整した場合には、モード間の直交性が良くなり、図28Aに示したような周期的誤差が見られない。したがって、正確に角度を検出できる。 The processing described in the third embodiment can also be applied to the second embodiment (hole angle mode gyro device). In this case, the same effect can be obtained. This effect will be described. 28A and 28B, the horizontal axis indicates time (t) (s), and the vertical axis indicates the rotation angle θ detected by the gyro device according to the second embodiment. The graph in FIG. 28A shows the result when the processing in the present embodiment is not applied, and the graph in FIG. 28B shows the result when the processing in the present embodiment is applied. The angle detected from rotating the two-dimensional vibrator 15 at a constant angular velocity should be a straight line. However, as shown in FIG. A periodic error appears in the angle. On the other hand, when the processing in this embodiment is applied and the phase and amplitude of the drive signal are adjusted, the orthogonality between the modes is improved, and the periodic error as shown in FIG. 28A is not seen. Therefore, the angle can be detected accurately.
<4.変形例>
 以上、本発明の複数の実施形態について具体的に説明したが、本発明は、上述した実施形態に限定されるものではなく各種の変形が可能である。
<4. Modification>
As mentioned above, although several embodiment of this invention was described concretely, this invention is not limited to embodiment mentioned above, Various deformation | transformation are possible.
 本発明は、2次元にモードマッチする振動子であれば、形状、励振方法(静電、電磁、圧電など)等は特定の方法等に限定されることはない。 The present invention is not limited to a specific method or the like as long as it is a vibrator that mode-matches two-dimensionally, and the shape and excitation method (electrostatic, electromagnetic, piezoelectric, etc.).
 2次元振動子15の出力を処理する回路は、ASIC(Application Specific integrated Circuit)等の集積回路で構成することも可能である。 The circuit that processes the output of the two-dimensional vibrator 15 can also be configured by an integrated circuit such as an ASIC (Application Specific integrated Circuit).
 本発明の作用効果を奏する範囲で、ジャイロ装置10が他の回路素子等を備える構成でもよい。 A configuration in which the gyro apparatus 10 includes other circuit elements or the like may be used as long as the effects of the present invention are achieved.
 本発明のジャイロ装置は、他の装置(例えば、ゲーム機器、撮像装置、スマートフォン、携帯電話、パーソナルコンピュータ等の各種の電子機器や、自動車、電車、飛行機、ヘリコプター、小型飛行体、宇宙用機器等の移動体、ロボット等)に組み込まれて使用されてもよい。 The gyro device of the present invention is a device other than the above (for example, various electronic devices such as game devices, imaging devices, smartphones, mobile phones, personal computers, automobiles, trains, airplanes, helicopters, small flying vehicles, space devices, etc. And may be used by being incorporated in a mobile body, a robot, or the like.
 上述した実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。また、本発明は、装置、方法、複数の装置からなるシステム(クラウドシステム等)により実現することができ、複数の実施形態および変形例で説明した事項は、技術的な矛盾が生じない限り相互に組み合わせることができる。 The configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like may be used as necessary. . In addition, the present invention can be realized by an apparatus, a method, and a system (cloud system or the like) composed of a plurality of apparatuses, and the items described in the plurality of embodiments and the modifications are mutually compatible unless technical contradiction occurs. Can be combined.
10・・・ジャイロ装置
15・・・2次元振動子
20・・・駆動信号生成部
30a・・・第1検出部
30b・・・第2検出部
40a・・・第1PLL回路
40b・・・第2PLL回路
50a・・・第1ゲインコントロール部
50b・・・第2ゲインコントロール部
70・・・角速度検出部
80a、80b・・・角度検出部
91~94・・・位相調整部
95~98・・・振幅調整部
CW・・・第1モード
CCW・・・第2モード
DESCRIPTION OF SYMBOLS 10 ... Gyro apparatus 15 ... Two-dimensional vibrator 20 ... Drive signal generation part 30a ... 1st detection part 30b ... 2nd detection part 40a ... 1st PLL circuit 40b ... 1st 2PLL circuit 50a ... first gain control unit 50b ... second gain control unit 70 ... angular velocity detection unit 80a, 80b ... angle detection unit 91-94 ... phase adjustment unit 95-98 ...・ Amplitude adjuster
CW ... 1st mode
CCW ・ ・ ・ Second mode

Claims (10)

  1.  第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号によって駆動される単一の2次元振動子と、
     前記2次元振動子から出力される信号から、前記第1回転振動モードに対応した成分の振幅および位相を検出する第1検出部と、
     前記2次元振動子から出力される信号から、前記第2回転振動モードに対応した成分の振幅および位相を検出する第2検出部と
     を備えるジャイロ装置。
    A single two-dimensional vibrator driven by a drive signal corresponding to the first rotational vibration mode and a drive signal corresponding to the second rotational vibration mode;
    A first detector for detecting an amplitude and a phase of a component corresponding to the first rotational vibration mode from a signal output from the two-dimensional vibrator;
    A gyro apparatus comprising: a second detection unit that detects an amplitude and a phase of a component corresponding to the second rotational vibration mode from a signal output from the two-dimensional vibrator.
  2.  前記第1検出部によって検出された位相に基づいて、前記第1回転振動モードに対応する第1共振周波数と、位相が前記第1検出部により検出された位相と一致する信号とを出力する第1発振回路と、
     前記第1検出部によって検出された振幅が第1設定値となるようにゲインをコントロールする第1ゲインコントロール部と、
     前記第2検出部によって検出された位相に基づいて、前記第2回転振動モードに対応する第2共振周波数と、位相が前記第2検出部により検出された位相と一致する信号とを出力する第2発振回路と、
     前記第2検出部によって検出された振幅が第2設定値となるようにゲインをコントロールする第2ゲインコントロール部とを備える
     請求項1に記載のジャイロ装置。
    Based on the phase detected by the first detector, a first resonance frequency corresponding to the first rotational vibration mode and a signal whose phase matches the phase detected by the first detector are output. One oscillator circuit,
    A first gain control unit that controls the gain so that the amplitude detected by the first detection unit becomes a first set value;
    Based on the phase detected by the second detector, a second resonance frequency corresponding to the second rotational vibration mode and a signal whose phase matches the phase detected by the second detector are output. Two oscillation circuits;
    The gyro apparatus according to claim 1, further comprising: a second gain control unit that controls a gain so that an amplitude detected by the second detection unit becomes a second set value.
  3.  前記第1回転振動モードに対応する駆動信号の周波数および振幅が前記第1共振周波数および前記第1設定値となるようにフィードバックされ、
     前記第2回転振動モードに対応する駆動信号の周波数および振幅が前記第2共振周波数および前記第2設定値となるようにフィードバックされ、
     前記第1発振回路から出力される信号が前記第1検出部にフィードバックされ、
     前記第2発振回路から出力される信号が前記第2検出部にフィードバックされるように構成された
     請求項2に記載のジャイロ装置。
    The frequency and amplitude of the drive signal corresponding to the first rotational vibration mode are fed back so as to be the first resonance frequency and the first set value,
    The frequency and amplitude of the drive signal corresponding to the second rotational vibration mode are fed back so as to be the second resonance frequency and the second set value,
    A signal output from the first oscillation circuit is fed back to the first detection unit;
    The gyro apparatus according to claim 2, wherein a signal output from the second oscillation circuit is fed back to the second detection unit.
  4.  前記第1検出部は、前記第1発振回路からフィードバックされる信号を使用して同期検波を行うことにより前記第1回転振動モードに対応した成分の振幅および位相を検出し、
     前記第2検出部は、前記第2発振回路からフィードバックされる信号を使用して同期検波を行うことにより前記第2回転振動モードに対応した成分の振幅および位相を検出する
     請求項3に記載のジャイロ装置。
    The first detection unit detects the amplitude and phase of the component corresponding to the first rotational vibration mode by performing synchronous detection using a signal fed back from the first oscillation circuit,
    The said 2nd detection part detects the amplitude and phase of a component corresponding to a said 2nd rotational vibration mode by performing synchronous detection using the signal fed back from the said 2nd oscillation circuit. Gyro device.
  5.  前記第1共振周波数と前記第2共振周波数とに基づいて回転の角速度を検出する角速度検出部を備える
     請求項1乃至4のいずれか1項に記載のジャイロ装置。
    The gyro apparatus of any one of Claims 1 thru | or 4 provided with the angular velocity detection part which detects the angular velocity of rotation based on the said 1st resonance frequency and the said 2nd resonance frequency.
  6.  前記第1回転振動モードに対応した成分と前記第2回転振動モードに対応した成分との位相差に基づいて、回転の角度を検出する角度検出部を備える
     請求項1乃至5のいずれか1項に記載のジャイロ装置。
    The angle detection part which detects the angle of rotation based on the phase difference of the component corresponding to the said 1st rotational vibration mode, and the component corresponding to the said 2nd rotational vibration mode is provided. A gyro device as described in 1.
  7.  電力が間欠的に供給されるように構成されて成る
     請求項1乃至6のいずれか1項に記載のジャイロ装置。
    The gyro apparatus according to any one of claims 1 to 6, wherein power is intermittently supplied.
  8.  前記第1回転振動モードに対応する駆動信号の位相および振幅を調整する第1位相・振幅調整部と、
     前記第2回転振動モードに対応する駆動信号の位相および振幅を調整する第2位相・振幅調整部とを備える
     請求項1乃至7のいずれか1項に記載のジャイロ装置。
    A first phase / amplitude adjustment unit for adjusting the phase and amplitude of the drive signal corresponding to the first rotational vibration mode;
    The gyro apparatus according to claim 1, further comprising: a second phase / amplitude adjustment unit that adjusts a phase and an amplitude of a drive signal corresponding to the second rotational vibration mode.
  9.  第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号によって単一の2次元振動子を駆動し、
     前記2次元振動子から出力される信号から、前記第1回転振動モードに対応した成分の振幅および位相を検出し、
     前記2次元振動子から出力される信号から、前記第2回転振動モードに対応した成分の振幅および位相を検出する
     ジャイロ装置の制御方法。
    Driving a single two-dimensional vibrator by a drive signal corresponding to the first rotational vibration mode and a drive signal corresponding to the second rotational vibration mode;
    Detecting the amplitude and phase of the component corresponding to the first rotational vibration mode from the signal output from the two-dimensional vibrator;
    A gyro apparatus control method for detecting an amplitude and a phase of a component corresponding to the second rotational vibration mode from a signal output from the two-dimensional vibrator.
  10.  前記2次元振動子を間欠駆動する
     請求項9に記載のジャイロ装置の制御方法。
    The control method of the gyro apparatus according to claim 9, wherein the two-dimensional vibrator is intermittently driven.
PCT/JP2017/008788 2016-03-16 2017-03-06 Gyroscopic apparatus and method for controlling gyroscopic apparatus WO2017159429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505821A JP6559327B2 (en) 2016-03-16 2017-03-06 Gyro apparatus and control method of gyro apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051877 2016-03-16
JP2016-051877 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159429A1 true WO2017159429A1 (en) 2017-09-21

Family

ID=59851846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008788 WO2017159429A1 (en) 2016-03-16 2017-03-06 Gyroscopic apparatus and method for controlling gyroscopic apparatus

Country Status (3)

Country Link
JP (1) JP6559327B2 (en)
TW (1) TWI724127B (en)
WO (1) WO2017159429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168244A (en) * 2018-03-22 2019-10-03 国立大学法人東北大学 Integrating gyroscopic device and control method of integrating gyroscopic device
JP2020169819A (en) * 2019-04-01 2020-10-15 国立大学法人東北大学 Gyro device and control method of gyro device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241810A (en) * 1993-02-01 1994-09-02 General Motors Corp <Gm> Control circuit of oscillating type gyroscope
US20150354959A1 (en) * 2014-06-09 2015-12-10 The Regents Of The University Of California Axi-Symmetric Small-Footprint Gyroscope with Interchangeable Whole-Angle and Rate Operation
WO2016021305A1 (en) * 2014-08-07 2016-02-11 株式会社村田製作所 Angular velocity sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019134A1 (en) * 1996-10-29 1998-05-07 Mitsui Chemicals, Inc. Vibration gyroscope
DE102010028005A1 (en) * 2010-04-20 2011-10-20 Sensordynamics Ag Micro gyroscope for detecting movements
JP5716827B2 (en) * 2011-07-04 2015-05-13 株式会社村田製作所 Vibrator and vibratory gyro
TWI483144B (en) * 2012-08-06 2015-05-01 Nat Applied Res Laboratories 3d pointing device
CN104501793A (en) * 2014-12-01 2015-04-08 北京信息科技大学 Method for controlling orthogonal error of high-dynamic angular rate gyroscope
CN105278331A (en) * 2015-05-26 2016-01-27 河海大学常州校区 Robust-adaptive neural network H-infinity control method of MEMS gyroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241810A (en) * 1993-02-01 1994-09-02 General Motors Corp <Gm> Control circuit of oscillating type gyroscope
US20150354959A1 (en) * 2014-06-09 2015-12-10 The Regents Of The University Of California Axi-Symmetric Small-Footprint Gyroscope with Interchangeable Whole-Angle and Rate Operation
WO2016021305A1 (en) * 2014-08-07 2016-02-11 株式会社村田製作所 Angular velocity sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168244A (en) * 2018-03-22 2019-10-03 国立大学法人東北大学 Integrating gyroscopic device and control method of integrating gyroscopic device
JP7115733B2 (en) 2018-03-22 2022-08-09 国立大学法人東北大学 Integral gyro device and method of controlling integral gyro device
JP2020169819A (en) * 2019-04-01 2020-10-15 国立大学法人東北大学 Gyro device and control method of gyro device
JP7302129B2 (en) 2019-04-01 2023-07-04 国立大学法人東北大学 Gyro device and control method for gyro device

Also Published As

Publication number Publication date
TW201741624A (en) 2017-12-01
TWI724127B (en) 2021-04-11
JP6559327B2 (en) 2019-08-14
JPWO2017159429A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US9869553B2 (en) Frequency readout gyroscope
US7240533B2 (en) Method for reducing bias error in a vibrating structure gyroscope
US9846055B2 (en) Continuous mode reversal for rejecting drift in gyroscopes
US9869552B2 (en) Gyroscope that compensates for fluctuations in sensitivity
JP6143430B2 (en) Vibration gyro with bias correction function
JP6180551B2 (en) Hemispherical resonance gyro
US9574902B2 (en) Calibration method for the scale factor of an axisymmetric vibratory gyroscope or gyrometer
JP2008122371A (en) Force rebalancing and parametric amplification for mems inertial sensor
JP2008233095A (en) Inertia measurement system capable of canceling sensor bias, and method therefor
US10571267B1 (en) High stability angular sensor
Tsukamoto et al. Virtually rotated MEMS whole angle gyroscope using independently controlled CW/CCW oscillations
JP6559327B2 (en) Gyro apparatus and control method of gyro apparatus
Xu et al. Comparison of three automatic mode-matching methods for silicon micro-gyroscopes based on phase characteristic
JP7302129B2 (en) Gyro device and control method for gyro device
JP2015203604A (en) Oscillation type gyro having high performance attained
Chikovani et al. Digital rate MEMS vibratory gyroscope modeling, tuning and simulation results
JPH02129514A (en) Angular velocity sensor
JP7115733B2 (en) Integral gyro device and method of controlling integral gyro device
JP2023127142A (en) Gyro device and control method for gyro device
Song et al. Parametric drive of a micro rate integrating gyroscope using discrete electrodes
Yang et al. Research of a symmetrical decoupled dual-mass micro-gyroscope with an improved lever support system
WO2023026470A1 (en) Magnetic field sensor and magnetic field detection method
Amal et al. Design and development of control electronics for coriolis vibratory gyroscopes
US11835339B1 (en) Continuous online self-calibration for gyroscopes through modulation of damping axes
JP2023127143A (en) Pressure sensor and pressure detection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505821

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766431

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766431

Country of ref document: EP

Kind code of ref document: A1