WO2017158848A1 - Semiconductor device production method, substrate processing device, and recording medium - Google Patents

Semiconductor device production method, substrate processing device, and recording medium Download PDF

Info

Publication number
WO2017158848A1
WO2017158848A1 PCT/JP2016/058853 JP2016058853W WO2017158848A1 WO 2017158848 A1 WO2017158848 A1 WO 2017158848A1 JP 2016058853 W JP2016058853 W JP 2016058853W WO 2017158848 A1 WO2017158848 A1 WO 2017158848A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nitrogen
predetermined element
film
raw material
Prior art date
Application number
PCT/JP2016/058853
Other languages
French (fr)
Japanese (ja)
Inventor
勝吉 原田
義朗 ▲ひろせ▼
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2016/058853 priority Critical patent/WO2017158848A1/en
Priority to JP2018505215A priority patent/JP6470468B2/en
Publication of WO2017158848A1 publication Critical patent/WO2017158848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
  • a cycle in which a step of supplying a raw material to a substrate and a step of supplying an oxidant to the substrate are performed at the same time is performed a predetermined number of times.
  • a film forming process is performed (see, for example, Patent Document 1).
  • An object of the present invention is to improve the controllability of the composition of a film formed on a substrate.
  • A supplying a raw material containing at least two chemical bonds of a predetermined element and nitrogen in one molecule to a substrate;
  • B supplying an oxidizing agent to the substrate;
  • a non-simultaneous cycle is performed a predetermined number of times under a condition in which at least a part of the chemical bond between the predetermined element and nitrogen contained in the raw material is not broken, on the substrate,
  • a technique for forming a film containing the predetermined element, nitrogen and oxygen is provided.
  • the controllability of the composition of the film formed on the substrate can be improved.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in an embodiment of the present invention, and is a diagram showing a processing furnace part in a cross-sectional view taken along line AA of FIG.
  • the controller of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram.
  • (A) is a figure which shows the film-forming sequence of one Embodiment of this invention
  • (b) is a figure which respectively shows the modification of the film-forming sequence of one Embodiment of this invention.
  • (A)-(d) is a figure which shows the chemical structural formula of HMDSN, TMDSN, HCDSN, TSA in order. It is a figure which shows the evaluation result of the nitrogen concentration of the film
  • the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjustment unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • the reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel).
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container.
  • the processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates.
  • nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream side.
  • MFC mass flow controllers
  • Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively.
  • the gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in order from the upstream side.
  • the nozzles 249 a and 249 b are arranged in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper portion from the lower portion of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the stacking direction. That is, the nozzles 249a and 249b are respectively provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged. Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively.
  • the gas supply holes 250 a and 250 b are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250a and 250b are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • annular shape in a plan view defined by the inner wall of the side wall of the reaction tube 203 and the ends (peripheral portions) of the plurality of wafers 200 arranged in the reaction tube 203 is provided.
  • Gas is conveyed through nozzles 249a and 249b arranged in a vertically long space, that is, in a cylindrical space.
  • gas is first ejected into the reaction tube 203 from the gas supply holes 250a and 250b opened in the nozzles 249a and 249b, respectively, in the vicinity of the wafer 200.
  • the main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction.
  • the gas that flows on the surface of the wafer 200 flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later.
  • the direction of the gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
  • the raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure.
  • the silazane compound is a compound having Si and N as a skeleton.
  • the silazane-based source gas is a gas that acts not only as an Si source but also as an N source, or an N source and a C source.
  • As the silazane-based source gas for example, hexamethyldisilazane ([(CH 3 ) 3 Si] 2 NH), abbreviation: HMDSN) gas can be used.
  • HMDSN gas contains two Si—N bonds and six Si—C bonds in one molecule. Two Si bonds to one N (central element) in HMDSN. Three Cs are bonded to one Si included in the HMDSN.
  • an oxygen (O) -containing gas is supplied as a reactant (reaction gas) into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • the O-containing gas acts as an oxidizing agent (oxidizing gas), that is, an O source.
  • oxygen (O 2 ) gas can be used as the O-containing gas.
  • a hydrogen (H) -containing gas is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a reactant (reaction gas).
  • the H-containing gas itself cannot oxidize, but reacts with the O-containing gas under specific conditions to generate oxidizing species such as atomic oxygen (O), thereby improving the efficiency of the oxidation treatment. It works to improve. Therefore, the H-containing gas can be considered to be included in the oxidizing agent (oxidizing gas) in the same manner as the O-containing gas.
  • the H-containing gas for example, hydrogen (H 2 ) gas can be used.
  • oxidant may include only an O-containing gas or may include both an O-containing gas and an H-containing gas.
  • nitrogen (N 2 ) gas as an inert gas passes through the MFC 241c and 241d, the valves 243c and 243d, the gas supply pipes 232a and 232b, and the nozzles 249a and 249b, respectively. Supplied into 201.
  • the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a raw material (raw material gas) supply system.
  • a reactant (O-containing gas) supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • a reactant (H-containing gas) supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the O-containing gas supply system functions as an oxidant supply system in a film forming process to be described later.
  • the H-containing gas supply system may be included in the oxidant supply system.
  • an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243d, MFCs 241a to 241d, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232d, and supplies various gases into the gas supply pipes 232a to 232d, that is, opens and closes the valves 243a to 243d and MFCs 241a to 241d.
  • the flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or split-type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232d in units of integrated units. Replacement, expansion, and the like can be performed in units of integrated units.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed below the seal cap 219.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
  • a shutter 219s is provided below the manifold 209 as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter 219s is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided.
  • the opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape similarly to the nozzles 249a and 249b, and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes a film forming process procedure and conditions that will be described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a film forming process to be described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241d, the opening / closing operation of the valves 243a to 243d, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 installs the above-mentioned program stored in an external storage device 123 (for example, a magnetic disk such as a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 on a computer.
  • an external storage device 123 for example, a magnetic disk such as a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a
  • Step 1 of supplying an HMDSN gas as a raw material to a wafer 200 as a substrate, and (b) O 2 gas and H as oxidizing agents for the wafer 200.
  • Step 2 in which two gases are simultaneously supplied (hereinafter, these gases to be supplied at the same time are also referred to as O 2 + H 2 gas), and a cycle in which the gases are supplied simultaneously, at least part of the Si—N bonds contained in the HMDSN gas
  • a silicon oxynitride film as a film containing Si, N, and O is formed on the wafer 200 by performing a predetermined number of times (n 1 (n 1 is an integer equal to or greater than 1 )) under a condition of being held without being cut. (SiON film) is formed.
  • the first layer including the Si—N bond is formed by supplying HMDSN under a condition in which at least a part of the Si—N bond included in the HMDSN is maintained without being broken.
  • the first layer is unsaturated by supplying O 2 + H 2 gas under a condition that at least part of the Si—N bond contained in the first layer is maintained without being broken. Oxidized to form a second layer containing Si—N bonds and Si—O bonds.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface.
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface of the wafer itself” or “on the wafer. It may mean that a predetermined gas is supplied to the layer or film formed on the substrate, that is, the outermost surface of the wafer as a laminate. Further, in the present specification, the phrase “form a predetermined layer (or film) on the wafer” means “form a predetermined layer (or film) directly on the surface of the wafer itself”. In other cases, it may mean “to form a predetermined layer (or film) on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate”.
  • substrate is also synonymous with the term “wafer”.
  • Vacuum exhaust (reduced pressure) is performed by the vacuum pump 246 so that the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the vacuum pump 246 maintains a state in which it is always operated until at least the processing on the wafer 200 is completed. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired film formation temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Further, the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • Step 1 HMDSN gas is supplied to the wafer 200 in the processing chamber 201.
  • valve 243a is opened and the HMDSN gas is allowed to flow into the gas supply pipe 232a.
  • the flow rate of the HMDSN gas is adjusted by the MFC 241a, supplied into the processing chamber 201 via the nozzle 249a, and exhausted from the exhaust pipe 231.
  • the HMDSN gas is supplied to the wafer 200.
  • the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c.
  • the flow rate of the N 2 gas is adjusted by the MFC 241c, supplied into the processing chamber 201 through the gas supply pipe 232a and the nozzle 249a, and exhausted from the exhaust pipe 231.
  • the valve 243d is opened and N 2 gas is allowed to flow into the gas supply pipe 232d.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
  • the pressure (film formation pressure) in the processing chamber 201 is set to a predetermined pressure within a range of, for example, 0.1 to 20 Torr (13.3 to 2666 Pa), preferably 1 to 10 Torr (133 to 1333 Pa).
  • the temperature (film formation temperature) of the wafer 200 is set to a predetermined temperature in the range of 450 to 1000 ° C., preferably 750 to 900 ° C., for example.
  • the supply flow rate of the HMDSN gas is set to a predetermined flow rate in the range of, for example, 1 to 2000 sccm, preferably 10 to 1000 sccm.
  • the supply time of the HMDSN gas is set to, for example, a predetermined time within a range of 1 to 100 seconds, preferably 1 to 50 seconds.
  • the supply flow rate of N 2 gas supplied from each gas supply pipe is set to a predetermined flow rate in the range of, for example, 100 to 10,000 sccm. Note that the N 2 gas may not be supplied during the supply period of the HMDSN gas.
  • the film forming pressure is less than 0.1 Torr (or the film forming temperature is less than 450 ° C.), it is difficult to form the SiON film on the wafer 200, and a practical film forming rate may not be obtained.
  • the deposition pressure is set to 0.1 Torr or higher (or the deposition temperature to 450 ° C. or higher), it becomes possible to increase the deposition rate of the SiON film to a practical level.
  • the pressure in the processing chamber 201 to 1 Torr or more (or the film formation temperature to 750 ° C. or more), the film formation rate of the SiON film can be further increased.
  • the film forming pressure exceeds 20 Torr (or the film forming temperature exceeds 1000 ° C.)
  • an excessive gas phase reaction occurs, so that the film thickness uniformity of the SiON film formed on the wafer 200 tends to deteriorate.
  • a large amount of particles may be generated in the processing chamber 201, which may deteriorate the quality of the film forming process.
  • the flatness of the surface of the SiON film that is, the surface roughness may be deteriorated.
  • the Si—N bond included in the HMDSN is cut, and it may be difficult to properly include the Si—N bond in the SiON film.
  • the hydrogen fluoride (HF) of the SiON film may be obtained. Etching resistance to the above may decrease.
  • the film formation pressure By setting the film formation pressure to 20 Torr or less (or the film formation temperature to 1000 ° C. or less), an appropriate gas phase reaction can be generated, thereby improving the film thickness uniformity and surface roughness of the SiON film, It is possible to suppress the generation of particles. In addition, it becomes possible to retain at least a part of the Si—N bond contained in the HMDSN without breaking, and it is possible to improve the etching resistance of the SiON film by adding the Si—N bond in the film. . By setting the film forming pressure to 10 Torr or lower (or the film forming temperature to 900 ° C. or lower), the film thickness uniformity and surface roughness of the SiON film are reliably improved, and the generation of particles in the processing chamber 201 is ensured. Can be suppressed.
  • surface roughness means a difference in film height in the wafer plane, and is synonymous with surface roughness.
  • An improvement in surface roughness means that this height difference is reduced and the surface becomes smooth.
  • the deterioration of the surface roughness means that the height difference becomes large and the surface becomes rough.
  • the film formation pressure is set to a predetermined pressure in the range of 0.1 to 20 Torr, preferably 1 to 10 Torr, and the film formation temperature is 450 to 1000 ° C., preferably 750 to 900. It is good to set it as the predetermined temperature within the range of ° C.
  • the processing conditions (pressure conditions and temperature conditions) described here are such that when the HMDSN gas is present alone in the processing chamber 201, the HMDSN is thermally decomposed (self-decomposing) and the Si—N bonds contained in the HMDSN. It includes a condition that at least a part and at least a part of the Si—C bond are maintained without being broken.
  • the first layer is formed on the outermost surface of the wafer 200, for example, from less than one atomic layer to several atomic layers (from less than one molecular layer).
  • a Si-containing layer containing N and C having a thickness of several molecular layers is formed.
  • the Si-containing layer containing N and C may be an Si layer containing N and C, an adsorption layer of HMDSN, or both of them.
  • the Si-containing layer containing N and C is also a layer containing Si—N bonds and Si—C bonds, respectively.
  • the Si layer containing N and C is a generic name including a continuous layer composed of Si and containing N and C, a discontinuous layer, and an Si thin film containing N and C formed by overlapping these layers. .
  • Si constituting the Si layer containing N and C includes not only completely broken bonds with N and C, but also those completely broken with N and C.
  • the adsorption layer of HMDSN includes a discontinuous adsorption layer as well as a continuous adsorption layer composed of HMDSN molecules.
  • HMDSN molecules constituting the HMDSN adsorption layer include those in which the bond between Si and N is partially broken and those in which the bond between Si and C is partially broken. That is, the HMDSN adsorption layer may be a HMDSN physical adsorption layer, a HMDSN chemical adsorption layer, or may include both of them.
  • the layer having a thickness less than one atomic layer means a discontinuously formed atomic layer (molecular layer), and a layer having a thickness of one atomic layer (molecular layer).
  • the Si-containing layer containing N and C can include both an Si layer containing N and C and an adsorption layer of HMDSN.
  • the Si-containing layer containing N and C is expressed using expressions such as “one atomic layer” and “several atomic layer”, and “atomic layer” may be used synonymously with “molecular layer”. is there.
  • Si is deposited on the wafer 200 to form a Si layer containing N and C.
  • the HMDSN adsorbing layer is formed by adsorbing the HMDSN on the wafer 200. It is preferable to form a Si layer containing N and C on the wafer 200 in that the deposition rate can be increased, rather than forming an HMDSN adsorption layer on the wafer 200.
  • the Si-containing layer containing N and C is also simply referred to as a Si-containing layer for convenience.
  • the thickness of the first layer exceeds several atomic layers, the modification effect in Step 2 described later does not reach the entire first layer.
  • the minimum thickness of the first layer is less than one atomic layer. Therefore, it is preferable that the thickness of the first layer be less than one atomic layer to several atomic layers.
  • the action of the reforming reaction in Step 2 described later can be relatively enhanced.
  • the time required for the reforming reaction can be shortened.
  • the time required for forming the first layer in step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased.
  • the controllability of the film thickness uniformity can be improved by setting the thickness of the first layer to 1 atomic layer or less.
  • the valve 243a is closed and the supply of the HMDSN gas is stopped.
  • the APC valve 244 is kept open, the processing chamber 201 is evacuated by the vacuum pump 246, and the HMDSN gas or reaction by-product remaining in the processing chamber 201 is contributed to the formation of the unreacted or first layer.
  • Objects are removed from the processing chamber 201.
  • the valves 243c and 243d remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. N 2 gas acts as a purge gas.
  • tetramethyldisilazane [H (CH 3 ) 2 Si] 2 NH), abbreviation: TMDSN
  • hexachlorodisilazane (Cl 3 Si) 2 NH, abbreviation: HCDSN) gas
  • Silazane compounds such as trisilylamine (N (SiH 3 ) 3 , abbreviation: TSA) gas can be used.
  • the TMDSN gas contains two Si—N bonds and four Si—C bonds in one molecule, and like the HMDSN gas, the Si source, It is a gas that acts as an N source and a C source.
  • One N (central element) in TMDSN is bonded with two Si similarly to that in HMDSN, and this allows Si—N bonds to be included in the first layer under the above-described processing conditions. It becomes easy.
  • Two Cs are bonded to one Si included in TMDSN. Since the number of Si—C bonds contained in TMDSN (four) is less than the number of Si—C bonds contained in HMDSN (six), the action as a C source in TMDSN gas is that of HMDSN gas. Tend to be weaker.
  • the HCDSN gas contains two Si—N bonds in one molecule and does not contain an Si—C bond, and thus acts as an Si source and an N source. It is a gas that does not act as a C source.
  • One N (central element) in HCDSN is bonded with two Si similarly to that in HMDSN. This allows Si—N bonds to be included in the first layer under the processing conditions described above. It becomes easy.
  • the TSA gas contains three Si—N bonds in one molecule and does not contain Si—C bonds. It is a gas that does not act as a C source. Three Si bonds to one N (central element) in TSA.
  • TSA gas is used as the source gas, a larger amount of Si—N bonds are formed in the first layer under the above-described processing conditions than when HMDSN gas, TMDSN gas, and HCDSN gas are used as the source gas. It becomes easy to include.
  • silazane compounds are silane compounds such as dichlorosilane (SiH 2 Cl 2 ) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, tetrachlorosilane (SiCl 4 ) gas, tetrafluorosilane (SiF 4 ).
  • a halosilane compound such as tetrabromosilane (SiBr 4 ) gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, bistertiary butylaminosilane (SiH 2 [NH (C 4 H 9)] 2, abbreviated: BTBAS) gas, diisopropylaminosilane (SiH 3 N [CH (CH 3) 2] 2, abbreviated: DIPAS) and aminosilane compound such as a gas, monosilane (SiH 4) gas, disilane ( Si 2 H 6) gas, trisilane (S 3 H 8) as compared to the silicon hydride compounds, such as gas, thermal decomposition temperature is high (hardly self-decomposition) tend.
  • thermal decomposition temperature is high (hardly self-decomposition) tend.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • Step 2 After step 1 is completed, O 2 gas and H 2 gas are separately supplied into the processing chamber 201, and these gases are mixed and reacted in the processing chamber 201. Step 2 includes a period in which O 2 gas and H 2 gas are supplied simultaneously.
  • valves 243b and 243a are opened, and O 2 gas and H 2 gas are allowed to flow through the gas supply pipes 232b and 232a, respectively.
  • the opening / closing control of the valves 243c, 243d is performed in the same procedure as the opening / closing control of the 243c, 243d in Step 1.
  • the flow rates of the O 2 gas and H 2 gas flowing through the gas supply pipes 232b and 232a are adjusted by the MFCs 241b and 241a, respectively, and are supplied into the processing chamber 201 through the nozzles 249b and 249a. O 2 gas and H 2 gas are mixed and reacted for the first time in the processing chamber 201, and then exhausted from the exhaust pipe 231.
  • the pressure (deposition pressure) in the processing chamber 201 is set to a predetermined value within a range of, for example, 0.1 to 10 Torr (13.3 to 1333 Pa), preferably 0.1 to 3 Torr (13.3 to 399 Pa). Pressure.
  • the supply flow rates of the O 2 gas and the H 2 gas are set to predetermined flow rates in the range of, for example, 100 to 10,000 sccm.
  • the supply time of O 2 gas and H 2 gas is, for example, a predetermined time in the range of 1 to 100 seconds, preferably 1 to 50 seconds.
  • Other processing conditions are the same as the processing conditions in step 1. Note that as in step 1, the N 2 gas may not be supplied during the supply period of the O 2 + H 2 gas.
  • the O 2 gas and H 2 gas is thermally activated in a non-plasma in the heated reduced pressure atmosphere (excitation) And reacts to produce moisture (H 2 O) -free oxidizing species containing oxygen, such as atomic oxygen (O).
  • an oxidation treatment is performed on the first layer formed on the wafer 200 in Step 1 mainly by this oxidation species.
  • the oxidizing power can be greatly improved as compared with the case of supplying O 2 gas alone or the case of supplying water vapor (H 2 O gas). That is, by adding H 2 gas to O 2 gas in a reduced pressure atmosphere, a significant effect of improving the oxidizing power can be obtained as compared with the case of supplying O 2 gas alone or the case of supplying H 2 O gas.
  • the energy of the oxidized species generated by the above method is higher than the bond energy of Si—C bond, Si—H bond, etc. contained in the first layer, the energy of this oxidized species is given to the first layer.
  • most of the Si—C bonds and Si—H bonds contained in the first layer can be cut.
  • C, H, etc., from which the bond with Si is cut off will be removed from the first layer.
  • most of C and H contained in the first layer can be desorbed, and C and H in the first layer can be reduced to the impurity level.
  • the remaining Si bonds due to the disconnection with C, H, etc. are linked to O contained in the oxidized species, thereby forming a Si—O bond. That is, O is taken into the first layer in the form of Si—O bonds.
  • the energy possessed by the above-mentioned oxidized species is higher than the bond energy such as Si—N bonds contained in the first layer, but at least under the above-mentioned conditions, at least the Si—N bonds contained in the first layer. A part can be held without cutting. That is, under the above-described conditions, the oxidation treatment of the first layer with the oxidizing species can be made unsaturated (unsaturated oxidation) with respect to at least the Si—N bond contained in the first layer.
  • the above-described processing conditions can be said to be conditions for cutting the Si—C bonds contained in the first layer and holding at least a part of the Si—N bonds contained in the first layer without breaking.
  • the treatment conditions for example, the supply flow rate of the oxidant, the partial pressure of the oxidant, the supply time of the oxidant, the kind of the oxidant, etc. are appropriately adjusted, It is effective to make a selection. That is, the supply flow rate and partial pressure of the oxidant are set to be small within the above range, the supply time of the oxidant is set to be short within the above range, or a substance having a relatively weak oxidizing power is used as the oxidant. By doing so, the above-described oxidation treatment can be surely unsaturated. According to the earnest studies by the inventors, among the above four treatment conditions, two of the oxidizing agent partial pressure and the oxidizing agent supply time are particularly effective for making the oxidation treatment unsaturated. I know that there is.
  • the oxidation treatment in Step 2 unsaturated it is also effective to increase the state of the first layer to be treated, for example, the amount of Si—N bonds contained in the first layer.
  • the amount of Si—N bonds contained in the first layer can be increased, thereby ensuring that the oxidation treatment is unsaturated. It becomes possible.
  • the amount of Si—N bonds contained in the first layer can be increased.
  • the oxidation treatment can be surely unsaturated.
  • the above-described oxidation treatment can be surely unsaturated, and at least a part of the Si—N bonds contained in the first layer can be reliably left.
  • the state of the first layer may be changed by adjusting the processing conditions in Step 1 while keeping the processing conditions of the oxidation processing in Step 2 constant. Further, the processing conditions of the oxidation treatment in step 2 may be changed while the processing conditions in step 1 are kept constant and the state of the first layer is maintained. Further, both of the processing conditions in steps 1 and 2 may be adjusted.
  • the first layer is changed (modified) into a second layer containing Si, O, and N, that is, a C-free SiON layer.
  • the second layer is a layer containing Si—N bonds, that is, a layer containing N in the form of Si—N bonds.
  • valves 243b and 243a are closed, and the supply of O 2 gas and H 2 gas is stopped. Then, the unreacted or remaining O 2 gas, H 2 gas, and reaction by-products remaining in the processing chamber 201 are excluded from the processing chamber 201 by the same processing procedure and processing conditions as in Step 1. To do.
  • oxygen (O 2 ) gas in addition to O 2 + H 2 gas, oxygen (O 2 ) gas, water vapor (H 2 O), ozone (O 3 ) gas, plasma-excited O 2 (O 2 * ) gas, atomic oxygen (O), oxygen radicals (O * ), hydroxyl radicals (OH * ), and the like can be used.
  • deuterium (D 2) in place of the H 2 gas may be a gas or the like.
  • the inert gas in addition to N 2 gas, the above-mentioned various rare gases can be used.
  • a SiON film having a predetermined thickness can be formed on the wafer 200.
  • the above cycle is preferably repeated multiple times. That is, the thickness of the second layer formed when the above cycle is performed once is made smaller than the desired thickness, and the thickness of the SiON film formed by stacking the second layers is the desired thickness.
  • the above cycle is preferably repeated a plurality of times until the thickness is reached.
  • N 2 gas is supplied from the gas supply pipes 232c and 232d into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • N 2 gas acts as a purge gas.
  • the inside of the processing chamber 201 is purged, and the gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the film formed on the wafer 200 can be a film having high oxidation resistance (ashing resistance).
  • ashing resistance oxidation resistance
  • N that is incorporated into the film in the form of Si—N bonds acts as a protective element that suppresses oxidation of the film
  • N that is incorporated into the film in the form of N—H bonds. May induce membrane oxidation.
  • the film formed according to the present embodiment includes N in the form of Si—N bonds, a film formed using NH 3 gas as the N source (a film including N in the form of N—H bonds) In comparison, even if the N concentration of the film is similar, high ashing resistance is exhibited.
  • the film formation temperature is less than 450 ° C., for example, within the range of 250 to 400 ° C. It becomes possible to improve the etching resistance and insulation performance of the SiON film, extend the service life, and reduce the interface electron trap density that affects the response speed of the transistor. In particular, by setting the film forming temperature within the range of 700 to 1000 ° C., it is possible to further improve the film characteristics of the above-described SiON film.
  • a nitrogen oxide-based gas having a relatively weak oxidizing power such as nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, for example, N 2 O gas may be used to further increase the degree of unsaturation in the oxidation treatment of the first layer. That is, when the cycle is performed a predetermined number of times (n 2 times (n 2 is an integer of 1 or more)), in step 2, at least part of the Si—N bonds and at least part of the Si—C bonds contained in the first layer The oxidant may be supplied under the condition that the first layer is maintained without being cut, and the degree of unsaturation of the oxidation treatment on the first layer may be further increased.
  • N 2 O nitrous oxide
  • NO nitrogen monoxide
  • NO 2 nitrogen dioxide
  • the first layer is changed (modified) into a second layer containing Si, O, C, and N, that is, a silicon oxycarbonitride layer (SiOCN layer), on the wafer 200.
  • a silicon oxycarbonitride film SiOCN film
  • This film is a film including a Si—N bond, a Si—C bond, and a Si—O bond.
  • the film forming sequence of this modification is shown below using the symbol [b].
  • the processing conditions at this time can be the same processing conditions as the film forming sequence shown in FIG.
  • the oxidation treatment of the first layer with the oxidizing species can be made unsaturated (unsaturated oxidation) with respect to at least the Si—N bond and the Si—C bond contained in the first layer.
  • the same effect as the film forming sequence shown in 4 (a) can be obtained.
  • by including C in the film it is possible to form a film having higher etching resistance than a C-free SiO film or a C-free SiON film.
  • a quaternary film can be formed without separately supplying four sources of Si source, O source, C source, and N source, as shown in FIG. Similar to the film forming sequence, the productivity of the film forming process can be improved and the cost of the apparatus can be reduced.
  • the oxidizing power of the oxidizing agent supplied in step 2 needs to be lower than that in the film forming sequence shown in FIG.
  • a substance containing O and N for example, a nitrogen oxide gas having a relatively weak oxidizing power such as N 2 O gas, NO gas, NO 2 gas, etc.
  • the degree of unsaturation in the oxidation process in step 2 And the Si—N bonds and Si—C bonds contained in the first layer can be maintained as described above.
  • the supply flow rate or partial pressure of the oxidant is set smaller than that in the film forming sequence shown in FIG.
  • the degree of unsaturation in the oxidation process in step 2 is increased, and Si—N bonds and Si contained in the first layer are increased. It becomes possible to hold the -C bond as described above.
  • the oxidation treatment of the first layer may be saturated by setting a large supply flow rate and partial pressure of the oxidizer or setting a long supply time of the oxidizer. That is, when the cycle is performed a predetermined number of times (n 3 times (n 3 is an integer of 1 or more)), in step 2, the Si—N bond and the Si—C bond contained in the first layer are respectively cut under the conditions.
  • An oxidizing agent may be supplied to saturate and oxidize the first layer.
  • the first layer is changed (modified) into a second layer containing Si and O, that is, a silicon oxide layer (SiO layer), and a silicon oxide film (on the wafer 200) SiO film) is formed.
  • This film includes a Si—O bond and does not include a Si—N bond and a Si—C bond.
  • the film forming sequence of this modification is shown below using the symbol [c].
  • the SiO film is formed (deposited) on the wafer 200 instead of oxidizing the surface of the wafer 200, the diffusion of O to the surface of the wafer 200 can be suppressed.
  • the step coverage of the film, the film thickness controllability, and the in-plane film thickness are uniform. It becomes possible to improve property.
  • the film forming temperature is set to a predetermined temperature within the range of 450 to 1000 ° C., so that the etching resistance and insulating performance of the film are improved. It is possible to improve, extend the service life, and reduce the interface electron trap density.
  • an oxidizing agent such as O 2 + H 2 gas, O * , OH * , O 3 gas, H 2 O gas, or O 2 gas is used as an oxidizing agent. It is preferable to use a relatively strong O-containing gas, that is, an N-free O-containing gas.
  • Modification 3 For example, by selecting at least any two of the film forming sequences indicated by the symbols [a] to [c] and alternately performing them a predetermined number of times (n 4 times (n 4 is an integer of 1 or more)), You may make it form the laminated film by which the film from which at least any one of C density
  • the outermost surface of the laminated film may be formed as a SiON film by performing a film forming sequence indicated by symbol [a] at the end.
  • the outermost surface of the stacked film may be formed as a SiOCN film by performing a film forming sequence indicated by a symbol [b] at the end.
  • the outermost surface of the laminated film may be formed as a SiO film by performing a film forming sequence indicated by a symbol [c] at the end. ([A] ⁇ [c]) ⁇ n 4 ([B] ⁇ [c]) ⁇ n 4 ([A] ⁇ [b] ⁇ [c]) ⁇ n 4 ([B] ⁇ [a] ⁇ [c]) ⁇ n 4
  • the lowermost surface of the laminated film may be formed as a SiON film by first performing the film forming sequence indicated by symbol [a], or the lowermost surface of the laminated film by performing the film forming sequence indicated by symbol [b] first.
  • the finally formed laminated film can be a film having a uniform characteristic in the thickness direction, that is, a nanolaminate film having an integral inseparable characteristic as a whole.
  • a nanolaminate film for example, a film having the characteristics of each film in a well-balanced manner can be formed.
  • the film thickness of each film constituting the laminated film can be set as described above.
  • the thickness can be within the range of.
  • the thickness of the laminated film is adjusted by adjusting at least one of the number of cycles (n 1 to n 3 ) in the film forming sequence indicated by symbols [a] to [c].
  • a gradient (gradation) of at least one of C density and N density may be provided in the vertical direction. In this case, for example, a gradation in which the N concentration or the C concentration gradually increases from the bottom surface to the top surface in the thickness direction of the laminated film, or a gradation in which the N concentration or the C concentration gradually decreases is added. Is possible.
  • step 1 As shown in FIG. 4B and the film forming sequence shown below, in step 1, an HMDSN gas as a raw material and, for example, an O 2 gas as an O-containing gas are supplied to the wafer 200 simultaneously. May be.
  • the supply of O 2 gas in step 1 is performed from the gas supply pipe 232b.
  • the supply amount of O 2 gas in Step 1 per cycle (Q 1), the supply amount of O 2 gas in Step 2 per cycle (Q 2) is from less (Q 1 ⁇ Q 2).
  • O 2 gas supply flow rate (F 1) in step 1 is smaller than the supply flow rate of O 2 gas (F 2) in step 2 (F 1 ⁇ F 2 ), for example, 1/20 to 1/2 of the F 2, preferably 1/10 or more than 1/5.
  • F 1 can be, for example, in the range of 1 to 1000 sccm, preferably 2 to 400 sccm.
  • F 1 When F 1 is less than 1/20 of F 2 (or less than 1 sccm), may O 2 Si migration that will be described later by gas (mobile) inhibiting effect can not be obtained in step 1, it is formed on the wafer 200
  • the surface roughness of the SiON film tends to deteriorate.
  • F 1 By setting F 1 to be 1/20 or more (or 1 sccm or more) of F 2 , a migration suppressing effect can be obtained, and the surface roughness of the SiON film can be improved.
  • F 1 By setting F 1 to be 1/10 or more of F 2 (or 2 sccm or more), a migration suppressing effect can be obtained with certainty, and the surface roughness of the SiON film can be improved with certainty.
  • Step 1 If F 1 exceeds 1/2 of F 2 (or exceeds 1000 sccm), an excessive gas phase reaction occurs in Step 1, so that the film thickness uniformity of the SiON film formed on the wafer 200 is likely to deteriorate. There is a case.
  • F 1 By setting F 1 to be 1 ⁇ 2 or less (or 1000 sccm or less) of F 2 , an appropriate gas phase reaction can be generated in Step 1, thereby making it possible to improve the film thickness uniformity of the SiON film.
  • F 1 to 1/5 or less of F 2 (or 400 sccm or less) the gas phase reaction can be appropriately suppressed in Step 1, and the film thickness uniformity of the SiON film can be reliably improved. It becomes.
  • Step 1 by simultaneously supplying the raw material and the O-containing gas to the wafer 200, at least a part of this Si is simultaneously or simultaneously with the adsorption of Si onto the wafer 200. It can be oxidized to change to oxide (SiO x ). Si adsorbed on the wafer 200 becomes difficult to migrate due to oxidation. That is, migration of Si atoms adsorbed on the wafer 200 is hindered by O atoms bonded to Si atoms. More specifically, migration of Si atoms is blocked by O atoms adjacent to Si atoms adsorbed on wafer 200. Thereby, aggregation of Si adsorbed on the wafer 200 can be suppressed.
  • oxide Si adsorbed on the wafer 200
  • the interface roughness between the base and the SiON film and the surface roughness of the SiON film can be improved.
  • the relationship of Q 1 ⁇ Q 2 is maintained as in this modification, even if the O-containing gas is supplied simultaneously with the raw material in Step 1, the oxidizing power can be appropriately suppressed, It is possible to include Si—N bonds and Si—C bonds in one layer. As a result, also in this modification, it is possible to obtain the same effect as the film forming sequence shown in FIG.
  • the supply time (T 1 ) of the O-containing gas (O 2 gas) per cycle is changed to F 1 ⁇ F 2 without oxidizing F 1 ⁇ F 2.
  • agent (O 2) supply time (T 2) may be shorter than (T 1 ⁇ T 2).
  • F 1 ⁇ F 2 may be set, and T 1 ⁇ T 2 may be set.
  • the oxidizing power in step 1 can be appropriately suppressed, and the Si—N bond or Si—C bond can be included in the first layer, as shown in FIG. The same effect as the film forming sequence can be obtained.
  • the oxidizing agent supplied in step 2 and the O-containing gas supplied in step 1 may have the same molecular structure (chemical structure) as shown in FIG. May have different molecular structures. That is, the oxidizing material supplied in step 2 and the O-containing gas supplied in step 1 may be the same material or different materials. However, if the O-containing gas supplied in Step 1 is a substance having a lower oxidizing power than the oxidant supplied in Step 2, Si—N bonds or Si—C bonds may be included in the first layer. It is preferable in terms of ease. Examples of the substance having an oxidizing power smaller than that of O 2 + H 2 gas include O 2 * gas, O 3 gas, H 2 O gas, O 2 gas, N 2 O gas, NO gas, and NO 2 gas. .
  • the Si—N bond or the Si—C bond is surely included in the first layer. It is preferable at the point which becomes possible.
  • a nitrogen oxide-based gas is used as the O-containing gas used in Step 1, it is possible to include Si—N bonds or Si—C bonds in the first layer even if Q 1 ⁇ Q 2 .
  • the effect of improving the surface roughness by simultaneously supplying the raw material and the O-containing gas in Step 1 is not limited to the case where the film forming temperature is within the range of 450 to 1000 ° C., but is less than 450 ° C., for example, 250 to 400 Even when the temperature is within the range of ° C., it can be obtained in the same manner.
  • the migration of Si tends to become more active as the film formation temperature becomes higher, and becomes prominent when the film formation temperature falls within a range of 700 to 1000 ° C., for example. Therefore, the technical significance of simultaneously supplying the raw material and the O-containing gas in Step 1 is that the migration of Si contained in the HMDSN gas is remarkable when the film formation temperature is supplied to the wafer 200 alone. It becomes particularly large when the above-mentioned temperature is generated (temperature in the range of 700 to 1000 ° C.).
  • the present invention is not limited to such an embodiment, and the supply order of the raw material and the oxidizing agent may be reversed. That is, the raw material may be supplied after the oxidizing agent is supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
  • the present invention is not limited to such an embodiment. That is, the present invention can be suitably applied to the case where a film containing a metal element such as germanium (Ge) or boron (B) as a main element in addition to Si is formed on a substrate.
  • the present invention also provides titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), yttrium (Y), and lanthanum (La).
  • the present invention can also be suitably applied to the case where a film containing a metal element such as strontium (Sr) or aluminum (Al) as a main element is formed on a substrate.
  • the recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a board
  • the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe already installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • a film is formed using a substrate processing apparatus having a hot wall type processing furnace.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • the present invention can be suitably applied also when a film is formed using a substrate processing apparatus including the processing furnace 302 shown in FIG.
  • the processing furnace 302 includes a processing container 303 that forms the processing chamber 301, a shower head 303s as a gas supply unit that supplies gas into the processing chamber 301 in a shower shape, and one or several wafers 200 in a horizontal posture.
  • a support base 317 for supporting, a rotating shaft 355 for supporting the support base 317 from below, and a heater 307 provided on the support base 317 are provided.
  • Gas supply ports 332a and 332b are connected to the inlet of the shower head 303s.
  • the gas supply port 332a is connected to a supply system similar to the raw material supply system and the H-containing gas supply system of the above-described embodiment.
  • a supply system similar to the O-containing gas supply system of the above-described embodiment is connected to the gas supply port 332b.
  • a gas dispersion plate is provided at the outlet of the shower head 303s.
  • the shower head 303 s is provided at a position facing (facing) the surface of the wafer 200 carried into the processing chamber 301.
  • the processing vessel 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
  • the processing furnace 402 includes a processing container 403 that forms a processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container.
  • a lamp heater 407 that irradiates light toward the wafer 200 in the 403 and a quartz window 403w that transmits light from the lamp heater 407 are provided.
  • Gas supply ports 432 a and 432 b are connected to the processing container 403.
  • the gas supply port 432a is connected to a supply system similar to the raw material supply system and the H-containing gas supply system of the above-described embodiment.
  • a supply system similar to the O-containing gas supply system of the above-described embodiment is connected to the gas supply port 432b.
  • the gas supply ports 432a and 432b are provided on the sides of the end of the wafer 200 loaded into the processing chamber 401, respectively.
  • the processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
  • the film forming process can be performed with the same processing procedure and processing conditions as in the above-described embodiment and modification, and the same effect as in the above-described embodiment and modification can be obtained. It is done.
  • processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
  • the oxidant supply time in step 2 is a predetermined time within a range of 5 to 10 seconds when the sample 1 is manufactured, and a predetermined time within a range of 12 to 20 seconds when the sample 2 is manufactured.
  • each was set to a predetermined time within the range of 50 to 80 seconds.
  • the other processing conditions are those within the processing condition range described in the above embodiment, and are set so as to be common conditions for the samples 1 to 3.
  • the N concentration of each film in samples 1 to 3 was measured.
  • the result is shown in FIG.
  • the film of Sample 1 contains N at a high concentration in the film.
  • membrane of sample 2 contains N in a film
  • the film of Sample 3 contains almost no N in the film.
  • the N concentration of the film formed on the wafer can be controlled over a wide range by adjusting the supply time of the oxidizing agent in Step 2. That is, it can be seen that if the supply time of the oxidizing agent is lengthened, the N concentration of the film can be lowered and the composition of the film can be made closer to the SiO film. It can also be seen that when the supply time of the oxidizing agent is shortened, the composition of the film can be made closer to that of the SiON film without reducing the N concentration of the film. Note that the inventors can control the N concentration of the film over a wide range not only by supplying the oxidizing agent but also by appropriately adjusting and selecting the supply flow rate, partial pressure, and type of the oxidizing agent. It is also confirmed. The inventors have also confirmed that, among these factors, two of the partial pressure of the oxidant and the supply time are particularly effective for controlling the N concentration.
  • Controller 200 wafer (substrate) 201 processing chamber 202 processing furnace 203 reaction pipe 207 heater 231 exhaust pipe 232a to 232d gas supply pipe

Abstract

According to the present invention, a cycle of non-simultaneously performing a step (a) for supplying, to a substrate, a raw material including at least two chemical bonds, per molecule, between a prescribed element and nitrogen, and a step (b) for supplying an oxidizing agent to the substrate, is performed a prescribed number of times under a condition in which at least some chemical bonds between the prescribed element and nitrogen included in the raw material are maintained without being cleaved, whereby a film including the prescribed element, nitrogen, and oxygen is formed on the substrate.

Description

半導体装置の製造方法、基板処理装置、および記録媒体Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
 本発明は、半導体装置の製造方法、基板処理装置、および記録媒体に関する。 The present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
 半導体装置(デバイス)の製造工程の一工程として、基板に対して原料を供給する工程と、基板に対して酸化剤を供給する工程と、を非同時に行うサイクルを所定回数行うことで、基板上に膜を形成する処理が行われることがある(例えば特許文献1参照)。 As a process of manufacturing a semiconductor device (device), a cycle in which a step of supplying a raw material to a substrate and a step of supplying an oxidant to the substrate are performed at the same time is performed a predetermined number of times. In some cases, a film forming process is performed (see, for example, Patent Document 1).
特開2010-153776号公報JP 2010-153776 A
 本発明は、基板上に形成される膜の組成の制御性を向上させることを目的とする。 An object of the present invention is to improve the controllability of the composition of a film formed on a substrate.
 本発明の一態様によれば、
 (a)基板に対して1分子中に所定元素と窒素との化学結合を少なくとも2つ含む原料を供給する工程と、
 (b)前記基板に対して酸化剤を供給する工程と、
 を非同時に行うサイクルを、前記原料に含まれる前記所定元素と窒素との化学結合のうち少なくとも一部が切断されることなく保持される条件下で、所定回数行うことで、前記基板上に、前記所定元素、窒素および酸素を含む膜を形成する技術が提供される。
According to one aspect of the invention,
(A) supplying a raw material containing at least two chemical bonds of a predetermined element and nitrogen in one molecule to a substrate;
(B) supplying an oxidizing agent to the substrate;
A non-simultaneous cycle is performed a predetermined number of times under a condition in which at least a part of the chemical bond between the predetermined element and nitrogen contained in the raw material is not broken, on the substrate, A technique for forming a film containing the predetermined element, nitrogen and oxygen is provided.
 本発明によれば、基板上に形成される膜の組成の制御性を向上させることが可能となる。 According to the present invention, the controllability of the composition of the film formed on the substrate can be improved.
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in an embodiment of the present invention, and is a diagram showing a processing furnace part in a cross-sectional view taken along line AA of FIG. 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. (a)は本発明の一実施形態の成膜シーケンスを、(b)は本発明の一実施形態の成膜シーケンスの変形例をそれぞれ示す図である。(A) is a figure which shows the film-forming sequence of one Embodiment of this invention, (b) is a figure which respectively shows the modification of the film-forming sequence of one Embodiment of this invention. (a)~(d)は、順に、HMDSN,TMDSN,HCDSN,TSAの化学構造式を示す図である。(A)-(d) is a figure which shows the chemical structural formula of HMDSN, TMDSN, HCDSN, TSA in order. 基板上に形成された膜の窒素濃度の評価結果を示す図である。It is a figure which shows the evaluation result of the nitrogen concentration of the film | membrane formed on the board | substrate. 本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view.
<一実施形態>
 以下、本発明の一実施形態について、図1~図3を用いて説明する。
<One Embodiment>
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjustment unit). The heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203は、ヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。 A reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203. The reaction tube 203 is installed vertically like the heater 207. The reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel). A processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates.
 処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。 In the processing chamber 201, nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
 ガス供給管232a,232bには、上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流側から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。 The gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream side. Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively. The gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in order from the upstream side.
 ノズル249a,249bは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、反応管203の中心を向くようにそれぞれ開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 As shown in FIG. 2, the nozzles 249 a and 249 b are arranged in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper portion from the lower portion of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the stacking direction. That is, the nozzles 249a and 249b are respectively provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged. Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively. The gas supply holes 250 a and 250 b are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250a and 250b are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
 このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bを経由してガスを搬送している。そして、ノズル249a,249bにそれぞれ開口されたガス供給孔250a,250bから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給することが可能となる。ウエハ200の表面上を流れたガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、このガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 Thus, in the present embodiment, an annular shape in a plan view defined by the inner wall of the side wall of the reaction tube 203 and the ends (peripheral portions) of the plurality of wafers 200 arranged in the reaction tube 203 is provided. Gas is conveyed through nozzles 249a and 249b arranged in a vertically long space, that is, in a cylindrical space. Then, gas is first ejected into the reaction tube 203 from the gas supply holes 250a and 250b opened in the nozzles 249a and 249b, respectively, in the vicinity of the wafer 200. The main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction. With such a configuration, it becomes possible to supply gas uniformly to each wafer 200. The gas that flows on the surface of the wafer 200 flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later. However, the direction of the gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
 ガス供給管232aからは、1分子中に所定元素としてのシリコン(Si)と窒素(N)との化学結合(Si-N結合)を少なくとも2つ含む原料(原料ガス)として、例えば、シラザン系原料ガス(シラザン化合物)が、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。ここで、原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。また、シラザン化合物とは、SiとNとを骨格とする化合物のことである。シラザン系原料ガスは、Siソースとしてだけでなく、Nソース、或いは、NソースおよびCソースとしても作用するガスである。シラザン系原料ガスとしては、例えば、ヘキサメチルジシラザン([(CHSi]NH)、略称:HMDSN)ガスを用いることができる。図5(a)に化学構造式を示すように、HMDSNガスは、1分子中に2つのSi-N結合と、6つのSi-C結合を含んでいる。HMDSNにおける1つのN(中心元素)には、2つのSiが結合している。HMDSNに含まれる1つのSiには、3つのCが結合している。 From the gas supply pipe 232a, as a raw material (raw material gas) containing at least two chemical bonds (Si—N bonds) of silicon (Si) and nitrogen (N) as a predetermined element in one molecule, for example, silazane series A source gas (silazane compound) is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a. Here, the raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure. The silazane compound is a compound having Si and N as a skeleton. The silazane-based source gas is a gas that acts not only as an Si source but also as an N source, or an N source and a C source. As the silazane-based source gas, for example, hexamethyldisilazane ([(CH 3 ) 3 Si] 2 NH), abbreviation: HMDSN) gas can be used. As shown in the chemical structural formula in FIG. 5A, the HMDSN gas contains two Si—N bonds and six Si—C bonds in one molecule. Two Si bonds to one N (central element) in HMDSN. Three Cs are bonded to one Si included in the HMDSN.
 ガス供給管232bからは、反応体(反応ガス)として、例えば、酸素(O)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。O含有ガスは、酸化剤(酸化ガス)、すなわち、Oソースとして作用する。O含有ガスとしては、例えば、酸素(O)ガスを用いることができる。 From the gas supply pipe 232b, for example, an oxygen (O) -containing gas is supplied as a reactant (reaction gas) into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b. The O-containing gas acts as an oxidizing agent (oxidizing gas), that is, an O source. As the O-containing gas, for example, oxygen (O 2 ) gas can be used.
 ガス供給管232aからは、反応体(反応ガス)として、例えば、水素(H)含有ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。H含有ガスは、それ単体では酸化作用は得られないが、特定の条件下でO含有ガスと反応することで原子状酸素(atomic oxygen、O)等の酸化種を生成し、酸化処理の効率を向上させるように作用する。そのため、H含有ガスは、O含有ガスと同様に酸化剤(酸化ガス)に含めて考えることができる。H含有ガスとしては、例えば、水素(H)ガスを用いることができる。本明細書において酸化剤という言葉を用いた場合は、O含有ガスのみを含む場合、または、O含有ガスとH含有ガスの両方を含む場合がある。 From the gas supply pipe 232a, for example, a hydrogen (H) -containing gas is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a reactant (reaction gas). The H-containing gas itself cannot oxidize, but reacts with the O-containing gas under specific conditions to generate oxidizing species such as atomic oxygen (O), thereby improving the efficiency of the oxidation treatment. It works to improve. Therefore, the H-containing gas can be considered to be included in the oxidizing agent (oxidizing gas) in the same manner as the O-containing gas. As the H-containing gas, for example, hydrogen (H 2 ) gas can be used. When the term oxidant is used in the present specification, it may include only an O-containing gas or may include both an O-containing gas and an H-containing gas.
 ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。 From the gas supply pipes 232c and 232d, for example, nitrogen (N 2 ) gas as an inert gas passes through the MFC 241c and 241d, the valves 243c and 243d, the gas supply pipes 232a and 232b, and the nozzles 249a and 249b, respectively. Supplied into 201.
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料(原料ガス)供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、反応体(O含有ガス)供給系が構成される。主に、ガス供給管232a、MFC241a、バルブ243aにより、反応体(H含有ガス)供給系が構成される。O含有ガス供給系は、後述する成膜処理において、酸化剤供給系として機能する。H含有ガス供給系を酸化剤供給系に含めて考えてもよい。また、主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。 Mainly, the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a raw material (raw material gas) supply system. A reactant (O-containing gas) supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. A reactant (H-containing gas) supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a. The O-containing gas supply system functions as an oxidant supply system in a film forming process to be described later. The H-containing gas supply system may be included in the oxidant supply system. Further, an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243dやMFC241a~241d等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232dのそれぞれに対して接続され、ガス供給管232a~232d内への各種ガスの供給動作、すなわち、バルブ243a~243dの開閉動作やMFC241a~241dによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232d等に対して集積ユニット単位で着脱を行うことができ、ガス供給システムのメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。 Any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243d, MFCs 241a to 241d, and the like are integrated. The integrated supply system 248 is connected to each of the gas supply pipes 232a to 232d, and supplies various gases into the gas supply pipes 232a to 232d, that is, opens and closes the valves 243a to 243d and MFCs 241a to 241d. The flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later. The integrated supply system 248 is configured as an integrated or split-type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232d in units of integrated units. Replacement, expansion, and the like can be performed in units of integrated units.
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。 The reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属からなり、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。 Below the manifold 209, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209. Below the seal cap 219, a rotation mechanism 267 for rotating a boat 217 described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201. A shutter 219s is provided below the manifold 209 as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. The shutter 219s is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided. The opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。 The boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages.
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。 In the reaction tube 203, a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is configured in an L shape similarly to the nozzles 249a and 249b, and is provided along the inner wall of the reaction tube 203.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する成膜処理における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes a film forming process procedure and conditions that will be described later, and the like are stored in a readable manner. The process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a film forming process to be described later, and functions as a program. Hereinafter, process recipes, control programs, and the like are collectively referred to simply as programs. The process recipe is also simply called a recipe. When the term “program” is used in this specification, it may include only a recipe, only a control program, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。 The I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241d, the opening / closing operation of the valves 243a to 243d, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe. Operation, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, raising / lowering operation of the boat 217 by the boat elevator 115, shutter opening / closing mechanism 115s Is configured to control the opening / closing operation and the like of the shutter 219s.
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above-mentioned program stored in an external storage device 123 (for example, a magnetic disk such as a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 on a computer. This can be configured. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)成膜処理
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図4(a)を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Film Forming Process A sequence example for forming a film on a substrate as one step of the semiconductor device manufacturing process using the above-described substrate processing apparatus will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 図4(a)に示す成膜シーケンスでは、(a)基板としてのウエハ200に対して原料としてHMDSNガスを供給するステップ1と、(b)ウエハ200に対して酸化剤としてOガスとHガスとを同時に供給するステップ2(以下、同時に供給するこれらのガスをO+Hガスとも称する)と、を非同時に行うサイクルを、HMDSNガスに含まれるSi-N結合の少なくとも一部が切断されることなく保持される条件下で、所定回数(n回(nは1以上の整数))行うことで、ウエハ200上に、Si、NおよびOを含む膜としてシリコン酸窒化膜(SiON膜)を形成する。 4A, (a) Step 1 of supplying an HMDSN gas as a raw material to a wafer 200 as a substrate, and (b) O 2 gas and H as oxidizing agents for the wafer 200. Step 2 in which two gases are simultaneously supplied (hereinafter, these gases to be supplied at the same time are also referred to as O 2 + H 2 gas), and a cycle in which the gases are supplied simultaneously, at least part of the Si—N bonds contained in the HMDSN gas A silicon oxynitride film as a film containing Si, N, and O is formed on the wafer 200 by performing a predetermined number of times (n 1 (n 1 is an integer equal to or greater than 1 )) under a condition of being held without being cut. (SiON film) is formed.
 なお、ステップ1では、HMDSNに含まれるSi-N結合の少なくとも一部が切断されることなく保持される条件下で、HMDSNを供給することで、Si-N結合を含む第1層を形成する。また、ステップ2では、第1層に含まれるSi-N結合の少なくとも一部が切断されることなく保持される条件下で、O+Hガスを供給することで、第1層を不飽和酸化させ、Si-N結合と、Si-O結合と、を含む第2層を形成する。 In Step 1, the first layer including the Si—N bond is formed by supplying HMDSN under a condition in which at least a part of the Si—N bond included in the HMDSN is maintained without being broken. . In Step 2, the first layer is unsaturated by supplying O 2 + H 2 gas under a condition that at least part of the Si—N bond contained in the first layer is maintained without being broken. Oxidized to form a second layer containing Si—N bonds and Si—O bonds.
 本明細書では、図4(a)に示す成膜シーケンスを、便宜上、以下のように示すこともあり、記号[a]を用いて示すこともある。以下の変形例の説明においても同様の表記を用いることとする。 In this specification, for convenience, the film forming sequence shown in FIG. 4A may be indicated as follows, or may be indicated using the symbol [a]. The same notation will be used in the description of the following modifications.
 (HMDSN→O+H)×n ⇒ SiON ・・・[a] (HMDSN → O 2 + H 2 ) × n 1 ⇒ SiON (a)
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。 In this specification, when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface. In addition, when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面上に所定の層(または膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。 Therefore, in the present specification, the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface of the wafer itself” or “on the wafer. It may mean that a predetermined gas is supplied to the layer or film formed on the substrate, that is, the outermost surface of the wafer as a laminate. Further, in the present specification, the phrase “form a predetermined layer (or film) on the wafer” means “form a predetermined layer (or film) directly on the surface of the wafer itself”. In other cases, it may mean “to form a predetermined layer (or film) on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate”.
 本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 In this specification, the term “substrate” is also synonymous with the term “wafer”.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Wafer charge and boat load)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
(圧力・温度調整ステップ)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内のウエハ200が所望の成膜温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(Pressure / temperature adjustment step)
Vacuum exhaust (reduced pressure) is performed by the vacuum pump 246 so that the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. The vacuum pump 246 maintains a state in which it is always operated until at least the processing on the wafer 200 is completed. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired film formation temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Further, the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
(成膜ステップ)
 その後、以下のステップ1,2を以下に示すタイミングでそれぞれ実行する。
(Deposition step)
Thereafter, the following steps 1 and 2 are executed at the timing shown below.
 [ステップ1]
 このステップでは、処理室201内のウエハ200に対してHMDSNガスを供給する。
[Step 1]
In this step, HMDSN gas is supplied to the wafer 200 in the processing chamber 201.
 具体的には、バルブ243aを開き、ガス供給管232a内にHMDSNガスを流す。HMDSNガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してHMDSNガスが供給されることとなる。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC241cにより流量調整され、ガス供給管232a、ノズル249aを介して処理室201内へ供給され、排気管231から排気される。また、ノズル249b内へのHMDSNガスの侵入を防止するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。 Specifically, the valve 243a is opened and the HMDSN gas is allowed to flow into the gas supply pipe 232a. The flow rate of the HMDSN gas is adjusted by the MFC 241a, supplied into the processing chamber 201 via the nozzle 249a, and exhausted from the exhaust pipe 231. At this time, the HMDSN gas is supplied to the wafer 200. At the same time, the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c. The flow rate of the N 2 gas is adjusted by the MFC 241c, supplied into the processing chamber 201 through the gas supply pipe 232a and the nozzle 249a, and exhausted from the exhaust pipe 231. Further, in order to prevent the intrusion of the HMDSN gas into the nozzle 249b, the valve 243d is opened and N 2 gas is allowed to flow into the gas supply pipe 232d. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
 このとき、処理室201内の圧力(成膜圧力)を、例えば0.1~20Torr(13.3~2666Pa)、好ましくは1~10Torr(133~1333Pa)の範囲内の所定の圧力とする。ウエハ200の温度(成膜温度)は、例えば450~1000℃、好ましくは750~900℃の範囲内の所定の温度とする。HMDSNガスの供給流量は、例えば1~2000sccm、好ましくは10~1000sccmの範囲内の所定の流量とする。HMDSNガスの供給時間は、例えば1~100秒、好ましくは1~50秒の範囲内の所定の時間とする。各ガス供給管より供給するNガスの供給流量は、それぞれ例えば100~10000sccmの範囲内の所定の流量とする。なお、HMDSNガスの供給期間中、Nガスは非供給としてもよい。 At this time, the pressure (film formation pressure) in the processing chamber 201 is set to a predetermined pressure within a range of, for example, 0.1 to 20 Torr (13.3 to 2666 Pa), preferably 1 to 10 Torr (133 to 1333 Pa). The temperature (film formation temperature) of the wafer 200 is set to a predetermined temperature in the range of 450 to 1000 ° C., preferably 750 to 900 ° C., for example. The supply flow rate of the HMDSN gas is set to a predetermined flow rate in the range of, for example, 1 to 2000 sccm, preferably 10 to 1000 sccm. The supply time of the HMDSN gas is set to, for example, a predetermined time within a range of 1 to 100 seconds, preferably 1 to 50 seconds. The supply flow rate of N 2 gas supplied from each gas supply pipe is set to a predetermined flow rate in the range of, for example, 100 to 10,000 sccm. Note that the N 2 gas may not be supplied during the supply period of the HMDSN gas.
 成膜圧力が0.1Torr未満(或いは、成膜温度が450℃未満)となると、ウエハ200上にSiON膜が形成されにくくなり、実用的な成膜レートが得られなくなることがある。成膜圧力を0.1Torr以上(或いは、成膜温度を450℃以上)とすることで、SiON膜の成膜レートを実用的なレベルにまで高めることが可能となる。処理室201内の圧力を1Torr以上(或いは、成膜温度を750℃以上)とすることで、SiON膜の成膜レートをより高めることができる。 When the film forming pressure is less than 0.1 Torr (or the film forming temperature is less than 450 ° C.), it is difficult to form the SiON film on the wafer 200, and a practical film forming rate may not be obtained. By setting the deposition pressure to 0.1 Torr or higher (or the deposition temperature to 450 ° C. or higher), it becomes possible to increase the deposition rate of the SiON film to a practical level. By setting the pressure in the processing chamber 201 to 1 Torr or more (or the film formation temperature to 750 ° C. or more), the film formation rate of the SiON film can be further increased.
 成膜圧力が20Torrを超える(或いは、成膜温度が1000℃を超える)と、過剰な気相反応が生じることで、ウエハ200上に形成されるSiON膜の膜厚均一性が悪化しやすくなる場合がある。また、処理室201内にパーティクルが大量に発生し、成膜処理の品質を低下させてしまう場合もある。また、SiON膜の表面の平坦性、すなわち、表面ラフネスが悪化する場合もある。また、HMDSNに含まれるSi-N結合が切断されてしまい、SiON膜中にSi-N結合を適正に含ませることが困難となることがあり、結果として、SiON膜のフッ化水素(HF)等に対するエッチング耐性が低下してしまう場合がある。成膜圧力を20Torr以下(或いは、成膜温度を1000℃以下)とすることで、適正な気相反応を生じさせることができることにより、SiON膜の膜厚均一性や表面ラフネスを向上させ、また、パーティクルの発生を抑制することが可能となる。また、HMDSNに含まれるSi-N結合の少なくとも一部を切断することなく保持することが可能となり、膜中にSi-N結合を添加し、SiON膜のエッチング耐性を向上させることが可能となる。成膜圧力を10Torr以下(或いは、成膜温度を900℃以下)とすることで、SiON膜の膜厚均一性や表面ラフネスを確実に向上させ、また、処理室201内におけるパーティクルの発生を確実に抑制することが可能となる。また、HMDSNに含まれるSi-N結合の切断をより確実に抑制することができ、膜中にSi-N結合をより確実に添加し、SiON膜のエッチング耐性をより確実に向上させることが可能となる。なお、上述の「表面ラフネス」とは、ウエハ面内における膜の高低差を意味しており、表面粗さと同義である。表面ラフネスが向上するとは、この高低差が小さくなり、表面が平滑になることを意味している。表面ラフネスが悪化するとは、この高低差が大きくなり、表面が粗くなることを意味している。 When the film forming pressure exceeds 20 Torr (or the film forming temperature exceeds 1000 ° C.), an excessive gas phase reaction occurs, so that the film thickness uniformity of the SiON film formed on the wafer 200 tends to deteriorate. There is a case. In addition, a large amount of particles may be generated in the processing chamber 201, which may deteriorate the quality of the film forming process. Further, the flatness of the surface of the SiON film, that is, the surface roughness may be deteriorated. In addition, the Si—N bond included in the HMDSN is cut, and it may be difficult to properly include the Si—N bond in the SiON film. As a result, the hydrogen fluoride (HF) of the SiON film may be obtained. Etching resistance to the above may decrease. By setting the film formation pressure to 20 Torr or less (or the film formation temperature to 1000 ° C. or less), an appropriate gas phase reaction can be generated, thereby improving the film thickness uniformity and surface roughness of the SiON film, It is possible to suppress the generation of particles. In addition, it becomes possible to retain at least a part of the Si—N bond contained in the HMDSN without breaking, and it is possible to improve the etching resistance of the SiON film by adding the Si—N bond in the film. . By setting the film forming pressure to 10 Torr or lower (or the film forming temperature to 900 ° C. or lower), the film thickness uniformity and surface roughness of the SiON film are reliably improved, and the generation of particles in the processing chamber 201 is ensured. Can be suppressed. In addition, it is possible to more reliably suppress the breakage of the Si—N bonds contained in the HMDSN, and more reliably add Si—N bonds to the film, thereby improving the etching resistance of the SiON film more reliably. It becomes. The above-mentioned “surface roughness” means a difference in film height in the wafer plane, and is synonymous with surface roughness. An improvement in surface roughness means that this height difference is reduced and the surface becomes smooth. The deterioration of the surface roughness means that the height difference becomes large and the surface becomes rough.
 以上述べたように、成膜圧力は0.1~20Torr、好ましくは1~10Torrの範囲内の所定の圧力とするのがよく、また、成膜温度は450~1000℃、好ましくは750~900℃の範囲内の所定の温度とするのがよい。ここで述べた処理条件(圧力条件、温度条件)は、処理室201内にHMDSNガスが単独で存在した場合に、HMDSNが熱分解(自己分解)するとともに、HMDSNに含まれるSi-N結合の少なくとも一部およびSi-C結合の少なくとも一部が切断されることなく保持される条件を含んでいる。 As described above, the film formation pressure is set to a predetermined pressure in the range of 0.1 to 20 Torr, preferably 1 to 10 Torr, and the film formation temperature is 450 to 1000 ° C., preferably 750 to 900. It is good to set it as the predetermined temperature within the range of ° C. The processing conditions (pressure conditions and temperature conditions) described here are such that when the HMDSN gas is present alone in the processing chamber 201, the HMDSN is thermally decomposed (self-decomposing) and the Si—N bonds contained in the HMDSN. It includes a condition that at least a part and at least a part of the Si—C bond are maintained without being broken.
 上述の条件下でウエハ200に対してHMDSNガスを供給することにより、ウエハ200の最表面上に、第1層(初期層)として、例えば1原子層未満から数原子層(1分子層未満から数分子層)程度の厚さのNおよびCを含むSi含有層が形成される。NおよびCを含むSi含有層は、NおよびCを含むSi層であってもよいし、HMDSNの吸着層であってもよいし、それらの両方を含んでいてもよい。NおよびCを含むSi含有層は、Si-N結合およびSi-C結合をそれぞれ含む層でもある。 By supplying the HMDSN gas to the wafer 200 under the above-described conditions, the first layer (initial layer) is formed on the outermost surface of the wafer 200, for example, from less than one atomic layer to several atomic layers (from less than one molecular layer). A Si-containing layer containing N and C having a thickness of several molecular layers is formed. The Si-containing layer containing N and C may be an Si layer containing N and C, an adsorption layer of HMDSN, or both of them. The Si-containing layer containing N and C is also a layer containing Si—N bonds and Si—C bonds, respectively.
 NおよびCを含むSi層とは、Siにより構成されNおよびCを含む連続的な層の他、不連続な層や、これらが重なってできるNおよびCを含むSi薄膜をも含む総称である。NおよびCを含むSi層を構成するSiは、NやCとの結合が完全に切れていないものの他、NやCとの結合が完全に切れているものも含む。 The Si layer containing N and C is a generic name including a continuous layer composed of Si and containing N and C, a discontinuous layer, and an Si thin film containing N and C formed by overlapping these layers. . Si constituting the Si layer containing N and C includes not only completely broken bonds with N and C, but also those completely broken with N and C.
 HMDSNの吸着層は、HMDSN分子で構成される連続的な吸着層の他、不連続な吸着層をも含む。HMDSNの吸着層を構成するHMDSN分子は、SiとNとの結合が一部切れたものや、SiとCとの結合が一部切れたものも含む。すなわち、HMDSNの吸着層は、HMDSNの物理吸着層であってもよいし、HMDSNの化学吸着層であってもよいし、それらの両方を含んでいてもよい。 The adsorption layer of HMDSN includes a discontinuous adsorption layer as well as a continuous adsorption layer composed of HMDSN molecules. HMDSN molecules constituting the HMDSN adsorption layer include those in which the bond between Si and N is partially broken and those in which the bond between Si and C is partially broken. That is, the HMDSN adsorption layer may be a HMDSN physical adsorption layer, a HMDSN chemical adsorption layer, or may include both of them.
 ここで、1原子層(分子層)未満の厚さの層とは不連続に形成される原子層(分子層)のことを意味しており、1原子層(分子層)の厚さの層とは連続的に形成される原子層(分子層)のことを意味している。NおよびCを含むSi含有層は、NおよびCを含むSi層とHMDSNの吸着層との両方を含み得る。但し、便宜上、NおよびCを含むSi含有層については「1原子層」、「数原子層」等の表現を用いて表すこととし、「原子層」を「分子層」と同義で用いる場合もある。 Here, the layer having a thickness less than one atomic layer (molecular layer) means a discontinuously formed atomic layer (molecular layer), and a layer having a thickness of one atomic layer (molecular layer). Means an atomic layer (molecular layer) formed continuously. The Si-containing layer containing N and C can include both an Si layer containing N and C and an adsorption layer of HMDSN. However, for convenience, the Si-containing layer containing N and C is expressed using expressions such as “one atomic layer” and “several atomic layer”, and “atomic layer” may be used synonymously with “molecular layer”. is there.
 HMDSNガスが自己分解する条件下では、ウエハ200上にSiが堆積することでNおよびCを含むSi層が形成される。HMDSNガスが自己分解しない条件下では、ウエハ200上にHMDSNが吸着することでHMDSNの吸着層が形成される。ウエハ200上にHMDSNの吸着層を形成するよりも、ウエハ200上にNおよびCを含むSi層を形成する方が、成膜レートを高くすることができる点では、好ましい。以下、NおよびCを含むSi含有層を、便宜上、単に、Si含有層とも称する。 Under the condition that the HMDSN gas self-decomposes, Si is deposited on the wafer 200 to form a Si layer containing N and C. Under the condition that the HMDSN gas does not self-decompose, the HMDSN adsorbing layer is formed by adsorbing the HMDSN on the wafer 200. It is preferable to form a Si layer containing N and C on the wafer 200 in that the deposition rate can be increased, rather than forming an HMDSN adsorption layer on the wafer 200. Hereinafter, the Si-containing layer containing N and C is also simply referred to as a Si-containing layer for convenience.
 第1層の厚さが数原子層を超えると、後述するステップ2での改質の作用が第1層の全体に届かなくなる。また、第1層の厚さの最小値は1原子層未満である。よって、第1層の厚さは1原子層未満から数原子層程度とするのが好ましい。第1層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述するステップ2での改質反応の作用を相対的に高めることができ、ステップ2での改質反応に要する時間を短縮することができる。ステップ1での第1層の形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、第1層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。 When the thickness of the first layer exceeds several atomic layers, the modification effect in Step 2 described later does not reach the entire first layer. The minimum thickness of the first layer is less than one atomic layer. Therefore, it is preferable that the thickness of the first layer be less than one atomic layer to several atomic layers. By setting the thickness of the first layer to 1 atomic layer or less, that is, 1 atomic layer or less than 1 atomic layer, the action of the reforming reaction in Step 2 described later can be relatively enhanced. The time required for the reforming reaction can be shortened. The time required for forming the first layer in step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased. Moreover, the controllability of the film thickness uniformity can be improved by setting the thickness of the first layer to 1 atomic layer or less.
 第1層が形成された後、バルブ243aを閉じ、HMDSNガスの供給を停止する。このとき、APCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1層形成に寄与した後のHMDSNガスや反応副生成物を処理室201内から排除する。このとき、バルブ243c,243dは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用する。 After the first layer is formed, the valve 243a is closed and the supply of the HMDSN gas is stopped. At this time, the APC valve 244 is kept open, the processing chamber 201 is evacuated by the vacuum pump 246, and the HMDSN gas or reaction by-product remaining in the processing chamber 201 is contributed to the formation of the unreacted or first layer. Objects are removed from the processing chamber 201. At this time, the valves 243c and 243d remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. N 2 gas acts as a purge gas.
 原料としては、HMDSNガスの他、テトラメチルジシラザン([H(CHSi]NH)、略称:TMDSN)ガス、ヘキサクロロジシラザン((ClSi)NH、略称:HCDSN)ガス、トリシリルアミン(N(SiH、略称:TSA)ガス等のシラザン化合物を用いることができる。 As a raw material, tetramethyldisilazane ([H (CH 3 ) 2 Si] 2 NH), abbreviation: TMDSN) gas, hexachlorodisilazane ((Cl 3 Si) 2 NH, abbreviation: HCDSN) gas in addition to HMDSN gas Silazane compounds such as trisilylamine (N (SiH 3 ) 3 , abbreviation: TSA) gas can be used.
 図5(b)に化学構造式を示すように、TMDSNガスは、1分子中に2つのSi-N結合と、4つのSi-C結合とを含んでおり、HMDSNガスと同様、Siソース、Nソース、Cソースとして作用するガスである。TMDSNにおける1つのN(中心元素)には、HMDSNにおけるそれと同様に2つのSiが結合しており、これにより、上述の処理条件下において、第1層中にSi-N結合を含ませることが容易となる。TMDSNに含まれる1つのSiには、2つのCが結合している。TMDSNに含まれるSi-C結合の数(4つ)は、HMDSNに含まれるSi-C結合の数(6つ)よりも少ないことから、TMDSNガスにおけるCソースとしての作用は、HMDSNガスにおけるそれよりも弱くなる傾向がある。 As shown in the chemical structural formula in FIG. 5 (b), the TMDSN gas contains two Si—N bonds and four Si—C bonds in one molecule, and like the HMDSN gas, the Si source, It is a gas that acts as an N source and a C source. One N (central element) in TMDSN is bonded with two Si similarly to that in HMDSN, and this allows Si—N bonds to be included in the first layer under the above-described processing conditions. It becomes easy. Two Cs are bonded to one Si included in TMDSN. Since the number of Si—C bonds contained in TMDSN (four) is less than the number of Si—C bonds contained in HMDSN (six), the action as a C source in TMDSN gas is that of HMDSN gas. Tend to be weaker.
 図5(c)に化学構造式を示すように、HCDSNガスは、1分子中に2つのSi-N結合を含み、Si-C結合を含まないことから、Siソース、Nソースとして作用し、Cソースとしては作用しないガスである。HCDSNにおける1つのN(中心元素)には、HMDSNにおけるそれと同様に2つのSiが結合しており、これにより、上述の処理条件下において、第1層中にSi-N結合を含ませることが容易となる。 As shown in the chemical structural formula in FIG. 5 (c), the HCDSN gas contains two Si—N bonds in one molecule and does not contain an Si—C bond, and thus acts as an Si source and an N source. It is a gas that does not act as a C source. One N (central element) in HCDSN is bonded with two Si similarly to that in HMDSN. This allows Si—N bonds to be included in the first layer under the processing conditions described above. It becomes easy.
 図5(d)に化学構造式を示すように、TSAガスは、1分子中に3つのSi-N結合を含み、Si-C結合を含まないことから、Siソース、Nソースとして作用し、Cソースとしては作用しないガスである。TSAにおける1つのN(中心元素)には3つのSiが結合している。これにより、原料ガスとしてTSAガスを用いる場合には、原料ガスとしてHMDSNガス、TMDSNガス、HCDSNガスを用いる場合よりも、上述の処理条件下において、第1層中にSi-N結合を多量に含ませることが容易となる。 As shown in the chemical structural formula in FIG. 5D, the TSA gas contains three Si—N bonds in one molecule and does not contain Si—C bonds. It is a gas that does not act as a C source. Three Si bonds to one N (central element) in TSA. Thus, when TSA gas is used as the source gas, a larger amount of Si—N bonds are formed in the first layer under the above-described processing conditions than when HMDSN gas, TMDSN gas, and HCDSN gas are used as the source gas. It becomes easy to include.
 これらのシラザン化合物は、シラン化合物、例えば、ジクロロシラン(SiHCl)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、テトラクロロシラン(SiCl)ガス、テトラフルオロシラン(SiF)ガス、テトラブロモシラン(SiBr)ガスのようなハロシラン化合物や、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスターシャリブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、ジイソプロピルアミノシラン(SiHN[CH(CH、略称:DIPAS)ガスのようなアミノシラン化合物や、モノシラン(SiH)ガス、ジシラン(Si)ガス、トリシラン(Si)ガスのような水素化ケイ素化合物に比べ、熱分解温度が高い(自己分解しにくい)傾向がある。本実施形態のように成膜温度を高温側とする場合には、原料としてシラザン化合物を用いることで、過剰な熱分解を抑制し、成膜処理の制御性を高めることが可能となる。 These silazane compounds are silane compounds such as dichlorosilane (SiH 2 Cl 2 ) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, tetrachlorosilane (SiCl 4 ) gas, tetrafluorosilane (SiF 4 ). Gas, a halosilane compound such as tetrabromosilane (SiBr 4 ) gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, bistertiary butylaminosilane (SiH 2 [NH (C 4 H 9)] 2, abbreviated: BTBAS) gas, diisopropylaminosilane (SiH 3 N [CH (CH 3) 2] 2, abbreviated: DIPAS) and aminosilane compound such as a gas, monosilane (SiH 4) gas, disilane ( Si 2 H 6) gas, trisilane (S 3 H 8) as compared to the silicon hydride compounds, such as gas, thermal decomposition temperature is high (hardly self-decomposition) tend. When the film formation temperature is set to the high temperature side as in this embodiment, by using a silazane compound as a raw material, excessive thermal decomposition can be suppressed and the controllability of the film formation process can be improved.
 不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As the inert gas, for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
 [ステップ2]
 ステップ1が終了した後、処理室201内へOガスとHガスとを別々に供給し、これらのガスを処理室201内で混合させて反応させる。ステップ2は、OガスとHガスとを同時に供給する期間を含むことになる。
[Step 2]
After step 1 is completed, O 2 gas and H 2 gas are separately supplied into the processing chamber 201, and these gases are mixed and reacted in the processing chamber 201. Step 2 includes a period in which O 2 gas and H 2 gas are supplied simultaneously.
 このステップでは、バルブ243b,243aを開き、ガス供給管232b,232a内にOガスとHガスとをそれぞれ流す。バルブ243c,243dの開閉制御は、ステップ1における243c,243dの開閉制御と同様の手順で行う。ガス供給管232b,232a内を流れたOガス、Hガスは、それぞれ、MFC241b,241aにより流量調整され、ノズル249b,249aを介して処理室201内へ供給される。OガスとHガスとは、処理室201内で初めて混合して反応し、その後、排気管231から排気される。 In this step, the valves 243b and 243a are opened, and O 2 gas and H 2 gas are allowed to flow through the gas supply pipes 232b and 232a, respectively. The opening / closing control of the valves 243c, 243d is performed in the same procedure as the opening / closing control of the 243c, 243d in Step 1. The flow rates of the O 2 gas and H 2 gas flowing through the gas supply pipes 232b and 232a are adjusted by the MFCs 241b and 241a, respectively, and are supplied into the processing chamber 201 through the nozzles 249b and 249a. O 2 gas and H 2 gas are mixed and reacted for the first time in the processing chamber 201, and then exhausted from the exhaust pipe 231.
 このとき、処理室201内の圧力(成膜圧力)を、例えば0.1~10Torr(13.3~1333Pa)、好ましくは0.1~3Torr(13.3~399Pa)の範囲内の所定の圧力とする。OガスおよびHガスの供給流量は、それぞれ、例えば100~10000sccmの範囲内の所定の流量とする。OガスおよびHガスの供給時間は、例えば1~100秒、好ましくは1~50秒の範囲内の所定の時間とする。他の処理条件は、ステップ1における処理条件と同様とする。なお、ステップ1と同様、O+Hガスの供給期間中、Nガスは非供給としてもよい。 At this time, the pressure (deposition pressure) in the processing chamber 201 is set to a predetermined value within a range of, for example, 0.1 to 10 Torr (13.3 to 1333 Pa), preferably 0.1 to 3 Torr (13.3 to 399 Pa). Pressure. The supply flow rates of the O 2 gas and the H 2 gas are set to predetermined flow rates in the range of, for example, 100 to 10,000 sccm. The supply time of O 2 gas and H 2 gas is, for example, a predetermined time in the range of 1 to 100 seconds, preferably 1 to 50 seconds. Other processing conditions are the same as the processing conditions in step 1. Note that as in step 1, the N 2 gas may not be supplied during the supply period of the O 2 + H 2 gas.
 上述の条件下でOガスおよびHガスを処理室201内へ供給することで、OガスおよびHガスは、加熱された減圧雰囲気下においてノンプラズマで熱的に活性化(励起)されて反応し、それにより、原子状酸素(O)等の酸素を含む水分(HO)非含有の酸化種が生成される。そして、主にこの酸化種により、ステップ1でウエハ200上に形成された第1層に対して酸化処理が行われる。この酸化処理によれば、Oガスを単独で供給する場合や水蒸気(HOガス)を供給する場合に比べ、酸化力を大幅に向上させることができる。すなわち、減圧雰囲気下においてOガスにHガスを添加することで、Oガス単独供給の場合やHOガスを供給する場合に比べ大幅な酸化力向上効果が得られるようになる。 By supplying O 2 gas and H 2 gas into the process chamber 201 under the conditions described above, the O 2 gas and H 2 gas is thermally activated in a non-plasma in the heated reduced pressure atmosphere (excitation) And reacts to produce moisture (H 2 O) -free oxidizing species containing oxygen, such as atomic oxygen (O). Then, an oxidation treatment is performed on the first layer formed on the wafer 200 in Step 1 mainly by this oxidation species. According to this oxidation treatment, the oxidizing power can be greatly improved as compared with the case of supplying O 2 gas alone or the case of supplying water vapor (H 2 O gas). That is, by adding H 2 gas to O 2 gas in a reduced pressure atmosphere, a significant effect of improving the oxidizing power can be obtained as compared with the case of supplying O 2 gas alone or the case of supplying H 2 O gas.
 上述の手法で発生させた酸化種が持つエネルギーは、第1層中に含まれるSi-C結合、Si-H結合等の結合エネルギーよりも高いため、この酸化種のエネルギーを第1層に与えることで、第1層中に含まれるSi-C結合、Si-H結合の大部分を切断することができる。Siとの結合が切り離されたC,H等は、第1層中から除去されることとなる。この過程を経ることで、第1層に含まれていたC,Hの大部分を脱離させ、第1層中のC,Hを、不純物レベルにまで減少させることが可能となる。C,H等との結合が切られることで余ったSiの結合手は、酸化種に含まれるOと結びつき、これにより、Si-O結合が形成される。すなわち、第1層中に、Oが、Si-O結合の形態で取り込まれることとなる。 Since the energy of the oxidized species generated by the above method is higher than the bond energy of Si—C bond, Si—H bond, etc. contained in the first layer, the energy of this oxidized species is given to the first layer. Thus, most of the Si—C bonds and Si—H bonds contained in the first layer can be cut. C, H, etc., from which the bond with Si is cut off will be removed from the first layer. Through this process, most of C and H contained in the first layer can be desorbed, and C and H in the first layer can be reduced to the impurity level. The remaining Si bonds due to the disconnection with C, H, etc. are linked to O contained in the oxidized species, thereby forming a Si—O bond. That is, O is taken into the first layer in the form of Si—O bonds.
 なお、上述の酸化種が持つエネルギーは、第1層中に含まれるSi-N結合等の結合エネルギーよりも高いものの、少なくとも上述の条件下では、第1層に含まれるSi-N結合の少なくとも一部を切断することなく保持することができる。すなわち、上述の条件下において、酸化種による第1層の酸化処理を、第1層に含まれる少なくともSi-N結合に対して不飽和(不飽和酸化)とすることができる。上述の処理条件は、第1層に含まれるSi-C結合を切断し、第1層に含まれるSi-N結合の少なくとも一部を切断することなく保持する条件ともいえる。 Note that the energy possessed by the above-mentioned oxidized species is higher than the bond energy such as Si—N bonds contained in the first layer, but at least under the above-mentioned conditions, at least the Si—N bonds contained in the first layer. A part can be held without cutting. That is, under the above-described conditions, the oxidation treatment of the first layer with the oxidizing species can be made unsaturated (unsaturated oxidation) with respect to at least the Si—N bond contained in the first layer. The above-described processing conditions can be said to be conditions for cutting the Si—C bonds contained in the first layer and holding at least a part of the Si—N bonds contained in the first layer without breaking.
 ステップ2における酸化処理を不飽和とするには、その処理条件、例えば、酸化剤の供給流量、酸化剤の分圧、酸化剤の供給時間、酸化剤の種類等をそれぞれ適正に調整したり、選択したりすることが有効である。すなわち、酸化剤の供給流量や分圧を上述の範囲内で小さく設定したり、酸化剤の供給時間を上述の範囲内で短く設定したり、酸化剤として比較的酸化力の弱い物質を用いたりすることで、上述の酸化処理を確実に不飽和とさせることが可能となる。なお、発明者等の鋭意研究によれば、上述の4つの処理条件のうち、特に、酸化剤の分圧、酸化剤の供給時間の2つが、酸化処理を不飽和とするのに特に有効であることが分かっている。 In order to make the oxidation treatment in Step 2 unsaturated, the treatment conditions, for example, the supply flow rate of the oxidant, the partial pressure of the oxidant, the supply time of the oxidant, the kind of the oxidant, etc. are appropriately adjusted, It is effective to make a selection. That is, the supply flow rate and partial pressure of the oxidant are set to be small within the above range, the supply time of the oxidant is set to be short within the above range, or a substance having a relatively weak oxidizing power is used as the oxidant. By doing so, the above-described oxidation treatment can be surely unsaturated. According to the earnest studies by the inventors, among the above four treatment conditions, two of the oxidizing agent partial pressure and the oxidizing agent supply time are particularly effective for making the oxidation treatment unsaturated. I know that there is.
 また、ステップ2における酸化処理を不飽和とするには、処理対象である第1層の状態、例えば、第1層中に含まれるSi-N結合の量を増やすことも有効である。例えば、ステップ1で形成する第1層の厚さを厚くすることで、第1層中に含まれるSi-N結合の量を増やすことができ、これにより、酸化処理を確実に不飽和とすることが可能となる。また、例えば、原料として、1分子中に含まれるSi-N結合の数が比較的多い物質を用いることで、第1層中に含まれるSi-N結合の量を増やすことができ、これにより、酸化処理を確実に不飽和とすることも可能となる。 In order to make the oxidation treatment in Step 2 unsaturated, it is also effective to increase the state of the first layer to be treated, for example, the amount of Si—N bonds contained in the first layer. For example, by increasing the thickness of the first layer formed in step 1, the amount of Si—N bonds contained in the first layer can be increased, thereby ensuring that the oxidation treatment is unsaturated. It becomes possible. In addition, for example, by using a material having a relatively large number of Si—N bonds contained in one molecule as a raw material, the amount of Si—N bonds contained in the first layer can be increased. In addition, the oxidation treatment can be surely unsaturated.
 これらの手法を任意に組み合わせることにより、上述の酸化処理を確実に不飽和とすることができ、第1層中に含まれるSi-N結合の少なくとも一部を確実に残すことが可能となる。なお、ステップ2における酸化処理の処理条件を一定に保持したまま、ステップ1における処理条件を調整して第1層の状態を変化させてもよい。また、ステップ1における処理条件を一定として第1層の状態を保持したまま、ステップ2における酸化処理の処理条件を変化させてもよい。また、ステップ1,2の処理条件の両方を調整してもよい。この不飽和酸化処理を経ることで、第1層は、Si、O、Nを含む第2層、すなわち、C非含有のSiON層へと変化させられる(改質される)。第2層は、Si-N結合を含む層、すなわち、Nを、Si-N結合の形態で含む層となる。 By arbitrarily combining these methods, the above-described oxidation treatment can be surely unsaturated, and at least a part of the Si—N bonds contained in the first layer can be reliably left. Note that the state of the first layer may be changed by adjusting the processing conditions in Step 1 while keeping the processing conditions of the oxidation processing in Step 2 constant. Further, the processing conditions of the oxidation treatment in step 2 may be changed while the processing conditions in step 1 are kept constant and the state of the first layer is maintained. Further, both of the processing conditions in steps 1 and 2 may be adjusted. Through this unsaturated oxidation treatment, the first layer is changed (modified) into a second layer containing Si, O, and N, that is, a C-free SiON layer. The second layer is a layer containing Si—N bonds, that is, a layer containing N in the form of Si—N bonds.
 第1層を第2層へと変化させた後、バルブ243b,243aを閉じ、OガスおよびHガスの供給をそれぞれ停止する。そして、ステップ1と同様の処理手順、処理条件により、処理室201内に残留する未反応もしくは酸化処理に寄与した後のOガスやHガスや反応副生成物を処理室201内から排除する。 After changing the first layer to the second layer, the valves 243b and 243a are closed, and the supply of O 2 gas and H 2 gas is stopped. Then, the unreacted or remaining O 2 gas, H 2 gas, and reaction by-products remaining in the processing chamber 201 are excluded from the processing chamber 201 by the same processing procedure and processing conditions as in Step 1. To do.
 酸化剤としては、O+Hガスの他、酸素(O)ガス、水蒸気(HO)、オゾン(O)ガス、プラズマ励起させたO(O )ガス、原子状酸素(O)、酸素ラジカル(O)、および水酸基ラジカル(OH)等を用いることができる。なお、酸化剤としてO+Hガスを用いる場合、Hガスの代わりに重水素(D)ガス等を用いることができる。 As the oxidizing agent, in addition to O 2 + H 2 gas, oxygen (O 2 ) gas, water vapor (H 2 O), ozone (O 3 ) gas, plasma-excited O 2 (O 2 * ) gas, atomic oxygen (O), oxygen radicals (O * ), hydroxyl radicals (OH * ), and the like can be used. In the case of using the O 2 + H 2 gas as an oxidizing agent, deuterium (D 2) in place of the H 2 gas may be a gas or the like.
 不活性ガスとしては、Nガスの他、上述の各種希ガスを用いることができる。 As the inert gas, in addition to N 2 gas, the above-mentioned various rare gases can be used.
(所定回数実施)
 上述したステップ1,2を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことにより、ウエハ200上に、所定膜厚のSiON膜を形成することができる。上述のサイクルは複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成される第2層の厚さを所望の膜厚よりも小さくし、第2層を積層することで形成されるSiON膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(Performed times)
By performing the above-described steps 1 and 2 non-simultaneously, that is, without performing synchronization, a predetermined number of times (n 1 times), a SiON film having a predetermined thickness can be formed on the wafer 200. The above cycle is preferably repeated multiple times. That is, the thickness of the second layer formed when the above cycle is performed once is made smaller than the desired thickness, and the thickness of the SiON film formed by stacking the second layers is the desired thickness. The above cycle is preferably repeated a plurality of times until the thickness is reached.
(アフターパージステップ・大気圧復帰ステップ)
 SiON膜の形成が完了した後、ガス供給管232c,232dのそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(After purge step and atmospheric pressure recovery step)
After the formation of the SiON film is completed, N 2 gas is supplied from the gas supply pipes 232c and 232d into the processing chamber 201 and exhausted from the exhaust pipe 231. N 2 gas acts as a purge gas. As a result, the inside of the processing chamber 201 is purged, and the gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロードおよびウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、マニホールド209の下端から反応管203の外部に搬出される(ボートアンロード)。処理済のウエハ200は、ボート217より取出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
The seal cap 219 is lowered by the boat elevator 115 and the lower end of the manifold 209 is opened. Then, the processed wafers 200 are unloaded from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 (boat unloading). The processed wafer 200 is taken out from the boat 217 (wafer discharge).
(3)本実施形態による効果
 本実施形態によれば、以下に示す一つ又は複数の効果が得られる。
(3) Effects according to this embodiment According to this embodiment, one or a plurality of effects described below can be obtained.
(a)原料として1分子中にSi-N結合を少なくとも2つ含むHMDSNガスを用い、ステップ1,2を非同時に行うサイクルを、HMDSNガスに含まれるSi-N結合の少なくとも一部が切断されることなく保持される条件下で所定回数行うことにより、ウエハ200上に形成される膜中にSi-N結合を含ませ、この膜を、SiON膜とすることが可能となる。なお、本実施形態のように、1分子中にSi-N結合を少なくとも2つ含む物質を原料として用いる場合、2つのSi-N結合が両方とも切れる確率は極めて少なく、一方のSi-N結合が切断されたとしても、他方のSi-N結合は切断されることなく保持される。結果として、ウエハ200上に形成される膜中にSi-N結合を含ませやすくなる。 (A) Using a HMDSN gas containing at least two Si—N bonds in one molecule as a raw material and performing steps 1 and 2 non-simultaneously, at least a part of the Si—N bonds contained in the HMDSN gas is cleaved. By performing the process a predetermined number of times without being held, Si—N bonds are included in the film formed on the wafer 200, and this film can be made into a SiON film. Note that when a material containing at least two Si—N bonds in one molecule is used as a raw material as in this embodiment, the probability that both of the two Si—N bonds are broken is extremely low, and one of the Si—N bonds is Even if is broken, the other Si—N bond is retained without being broken. As a result, the Si—N bond is easily included in the film formed on the wafer 200.
(b)原料として、HMDSNのようなSi-N結合を含む物質を用いることにより、ウエハ200上に形成される膜中へのNの添加を、N-H結合の形態ではなく、Si-N結合の形態で行うことが可能となる。また、成膜ステップでは、アンモニア(NH)ガス等のN-H結合を含む物質のウエハ200に対する供給を不実施としていることから、ウエハ200上に形成される膜中へのN-H結合の添加を、より確実に抑制することも可能となる。 (B) By using a substance containing Si—N bonds, such as HMDSN, as a raw material, the addition of N into the film formed on the wafer 200 is not performed in the form of N—H bonds. This can be done in the form of a bond. In addition, in the film forming step, supply of a substance containing an N—H bond such as ammonia (NH 3 ) gas to the wafer 200 is not performed, so that the N—H bond into the film formed on the wafer 200 is not performed. It is also possible to more reliably suppress the addition of.
 これらにより、ウエハ200上に形成される膜を、酸化耐性(アッシング耐性)の高い膜とすることが可能となる。というのも、Si-N結合の形態で膜中に取り込まれたNは、膜の酸化を抑制する保護要素として作用するのに対し、N-H結合の形態で膜中に取り込まれたNは、膜の酸化を誘発する場合がある。本実施形態により形成される膜は、NをSi-N結合の形態で含むことから、NソースとしてNHガスを用いて形成された膜(NをN-H結合の形態で含む膜)と比較して、たとえ膜のN濃度が同程度であったとしても、高いアッシング耐性を示すことになる。 Accordingly, the film formed on the wafer 200 can be a film having high oxidation resistance (ashing resistance). This is because N that is incorporated into the film in the form of Si—N bonds acts as a protective element that suppresses oxidation of the film, whereas N that is incorporated into the film in the form of N—H bonds. , May induce membrane oxidation. Since the film formed according to the present embodiment includes N in the form of Si—N bonds, a film formed using NH 3 gas as the N source (a film including N in the form of N—H bonds) In comparison, even if the N concentration of the film is similar, high ashing resistance is exhibited.
(c)原料(HMDSNガス)と、酸化剤(O+Hガス)と、の2つを用いることにより、Si、O、Nを含む多元系の膜を形成することが可能となる。すなわち、成膜の際に、Siソース、Oソース、Nソースの3つのソースを別々に供給する必要がない。そのため、1サイクルあたりの所要時間を短縮させることができ、成膜処理の生産性をさらに向上させることができる。また、成膜に必要なガスの種類を少なくすることで、ガス供給系の構成を簡素化させることができ、装置コスト等を低減させることが可能となる。 (C) By using two of a raw material (HMDSN gas) and an oxidizing agent (O 2 + H 2 gas), it is possible to form a multi-element film containing Si, O, and N. That is, it is not necessary to supply three sources of Si source, O source, and N source separately during film formation. Therefore, the required time per cycle can be shortened, and the productivity of the film forming process can be further improved. Further, by reducing the types of gas necessary for film formation, the configuration of the gas supply system can be simplified, and the apparatus cost and the like can be reduced.
(d)ウエハ200の表面を酸窒化させるのではなく、ウエハ200上にSiON膜を形成する(堆積させる)ことから、ウエハ200の表面へのO等の拡散を抑制することが可能となる。これにより、半導体デバイスを作製する際の要求仕様を満足させつつ、所望の絶縁特性を有するSiON膜を形成することが可能となる。例えば、3D構造のメモリデバイスを作製する際、下地へのOの拡散深さを許容範囲内に収めつつ、所望の絶縁性能を有するSiON膜を形成することが可能となる。 (D) Since the SiON film is formed (deposited) on the wafer 200 instead of oxynitriding the surface of the wafer 200, it is possible to suppress the diffusion of O or the like on the surface of the wafer 200. As a result, it is possible to form a SiON film having desired insulation characteristics while satisfying the required specifications for manufacturing a semiconductor device. For example, when manufacturing a memory device having a 3D structure, it is possible to form a SiON film having a desired insulation performance while keeping the diffusion depth of O into the base within an allowable range.
(e)ステップ1,2を非同時に行う交互供給法によりSiON膜を形成することで、ステップ1,2を同時に行う同時供給法によりSiON膜を形成する場合に比べ、SiON膜の段差被覆性、膜厚制御性、面内膜厚均一性等を向上させることが可能となる。このような成膜手法は、成膜処理の下地面が、ラインアンドスペース形状、ホール形状、フィン形状等の3D構造を有する場合に特に有効である。 (E) By forming the SiON film by an alternating supply method in which steps 1 and 2 are performed non-simultaneously, compared to the case of forming the SiON film by a simultaneous supply method in which steps 1 and 2 are performed simultaneously, It becomes possible to improve film thickness controllability, in-plane film thickness uniformity, and the like. Such a film forming method is particularly effective when the ground of the film forming process has a 3D structure such as a line and space shape, a hole shape, a fin shape, or the like.
(f)成膜処理を行う際、成膜温度を450~1000℃の範囲内とすることにより、成膜温度を450℃未満の温度、例えば250~400℃の範囲内とする場合よりも、SiON膜のエッチング耐性や絶縁性能を向上させたり、耐用年数を伸ばしたり、トランジスタの応答速度に影響を及ぼす界面電子トラップ密度を低減させたりすることが可能となる。特に、成膜温度を700~1000℃の範囲内とすることで、上述したSiON膜の膜特性をさらに向上させることが可能となる。 (F) When the film formation process is performed, by setting the film formation temperature within the range of 450 to 1000 ° C., the film formation temperature is less than 450 ° C., for example, within the range of 250 to 400 ° C. It becomes possible to improve the etching resistance and insulation performance of the SiON film, extend the service life, and reduce the interface electron trap density that affects the response speed of the transistor. In particular, by setting the film forming temperature within the range of 700 to 1000 ° C., it is possible to further improve the film characteristics of the above-described SiON film.
(g)上述の効果は、HMDSNガス以外の1分子中にSi-N結合を少なくとも2つ含む原料を用いる場合や、O+Hガス以外の酸化剤を用いる場合にも、同様に得ることができる。 (G) The above-mentioned effect can be obtained similarly when using a raw material containing at least two Si—N bonds in one molecule other than the HMDSN gas, or when using an oxidizing agent other than O 2 + H 2 gas. Can do.
(4)変形例
 本実施形態における成膜処理のシーケンスは、図4(a)に示す態様に限定されず、以下に示す変形例のように変更することができる。
(4) Modification The sequence of the film forming process in the present embodiment is not limited to the mode shown in FIG. 4A, and can be changed as in the following modification.
(変形例1)
 ステップ2において、酸化剤として、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス等の比較的酸化力が弱い酸化窒素系ガス、例えば、NOガスを用い、第1層の酸化処理の不飽和度をさらに高めるようにしてもよい。すなわち、サイクルを所定回数(n回(nは1以上の整数))行う際、ステップ2では、第1層に含まれるSi-N結合の少なくとも一部およびSi-C結合の少なくとも一部がそれぞれ切断されることなく保持される条件下で、酸化剤を供給し、第1層に対する酸化処理の不飽和度をさらに高めるようにしてもよい。本変形例のように、酸化剤として酸化窒素系ガスを用いた場合、第1層中に含まれるSi-N結合およびSi-C結合を充分に切断することは困難となる。本変形例によれば、第1層は、Si、O、C、Nを含む第2層、すなわち、シリコン酸炭窒化層(SiOCN層)へと変化させられ(改質され)、ウエハ200上に、シリコン酸炭窒化膜(SiOCN膜)が形成されることとなる。この膜は、Si-N結合、Si-C結合、およびSi-O結合を含む膜となる。本変形例の成膜シーケンスを、以下に記号[b]を用いて示す。このときの処理条件は、図4(a)に示す成膜シーケンスと同様の処理条件とすることができる。
(Modification 1)
In step 2, as an oxidizing agent, a nitrogen oxide-based gas having a relatively weak oxidizing power such as nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, for example, N 2 O gas may be used to further increase the degree of unsaturation in the oxidation treatment of the first layer. That is, when the cycle is performed a predetermined number of times (n 2 times (n 2 is an integer of 1 or more)), in step 2, at least part of the Si—N bonds and at least part of the Si—C bonds contained in the first layer The oxidant may be supplied under the condition that the first layer is maintained without being cut, and the degree of unsaturation of the oxidation treatment on the first layer may be further increased. When a nitrogen oxide-based gas is used as the oxidant as in this modification, it is difficult to sufficiently break the Si—N bond and Si—C bond contained in the first layer. According to this modification, the first layer is changed (modified) into a second layer containing Si, O, C, and N, that is, a silicon oxycarbonitride layer (SiOCN layer), on the wafer 200. In addition, a silicon oxycarbonitride film (SiOCN film) is formed. This film is a film including a Si—N bond, a Si—C bond, and a Si—O bond. The film forming sequence of this modification is shown below using the symbol [b]. The processing conditions at this time can be the same processing conditions as the film forming sequence shown in FIG.
 (HMDSN→NO)×n ⇒ SiOCN ・・・[b] (HMDSN → N 2 O) × n 2 ⇒ SiOCN (b)
 本変形例においては、酸化種による第1層の酸化処理を、第1層に含まれる少なくともSi-N結合およびSi-C結合に対して不飽和(不飽和酸化)とすることができ、図4(a)に示す成膜シーケンスと同様の効果が得られる。また、本変形例によれば、膜中にCを含ませることにより、C非含有のSiO膜やC非含有のSiON膜に比べ、エッチング耐性が高い膜を形成することが可能となる。また、本変形例によれば、Siソース、Oソース、Cソース、Nソースの4つのソースを別々に供給することなく4元系の膜を形成することができ、図4(a)に示す成膜シーケンスと同様に、成膜処理の生産性を向上させたり、装置コストを低減させたりすることが可能となる。 In this modification, the oxidation treatment of the first layer with the oxidizing species can be made unsaturated (unsaturated oxidation) with respect to at least the Si—N bond and the Si—C bond contained in the first layer. The same effect as the film forming sequence shown in 4 (a) can be obtained. In addition, according to the present modification, by including C in the film, it is possible to form a film having higher etching resistance than a C-free SiO film or a C-free SiON film. In addition, according to the present modification, a quaternary film can be formed without separately supplying four sources of Si source, O source, C source, and N source, as shown in FIG. Similar to the film forming sequence, the productivity of the film forming process can be improved and the cost of the apparatus can be reduced.
 なお、本変形例においては、ステップ1を行う際、第1層中にSi-C結合を含ませる必要があるため、原料として、Si-C結合を含む物質を用いる必要がある。図4(a)に示す成膜シーケンスや本変形例のように、原料として、その1分子中に含まれる1つのSiに少なくとも2つのCが結合している物質、例えば、HMDSNガスやTMDSNガス等の物質を用いることにより、第1層中にSi-C結合を含ませることが容易となる。特に、HMDSNガスは、TMDSNガスよりもSi-C結合を多く含むことから、原料としてHMDSNガスを用いることで、第1層中にSi-C結合をより多く添加することが可能となる。 In this modification, when performing Step 1, since it is necessary to include Si—C bonds in the first layer, it is necessary to use a substance containing Si—C bonds as a raw material. As in the film forming sequence shown in FIG. 4A and this modification, as a raw material, a substance in which at least two C atoms are bonded to one Si contained in one molecule, for example, HMDSN gas or TMDSN gas. By using such a substance, it becomes easy to include Si—C bonds in the first layer. In particular, since the HMDSN gas contains more Si—C bonds than the TMDSN gas, it is possible to add more Si—C bonds in the first layer by using the HMDSN gas as a raw material.
 また、本変形例においては、ステップ2を行う際、第1層中に含まれるSi-N結合の少なくとも一部およびSi-C結合の少なくとも一部をそれぞれ保持する必要がある。そのため、本変形例においては、ステップ2で供給する酸化剤の酸化力を、図4(a)に示す成膜シーケンスにおけるそれよりも低くする必要がある。酸化剤として、OおよびNを含む物質、例えば、NOガス、NOガス、NOガス等の酸化力の比較的弱い酸化窒素系ガスを用いることにより、ステップ2における酸化処理の不飽和度を高め、第1層に含まれるSi-N結合やSi-C結合を上述のように保持することが可能となる。また、酸化窒素系ガス以外の酸化剤を用いる場合であっても、酸化剤の供給流量や分圧を、図4(a)に示す成膜シーケンスにおけるそれよりも小さく設定したり、酸化剤の供給時間を、図4(a)に示す成膜シーケンスにおけるそれよりも短く設定したりすることで、ステップ2における酸化処理の不飽和度を高め、第1層に含まれるSi-N結合やSi-C結合を上述のように保持することが可能となる。 Further, in this modification, when performing step 2, it is necessary to retain at least part of the Si—N bonds and at least part of the Si—C bonds contained in the first layer. Therefore, in this modification, the oxidizing power of the oxidizing agent supplied in step 2 needs to be lower than that in the film forming sequence shown in FIG. By using a substance containing O and N as the oxidant, for example, a nitrogen oxide gas having a relatively weak oxidizing power such as N 2 O gas, NO gas, NO 2 gas, etc., the degree of unsaturation in the oxidation process in step 2 And the Si—N bonds and Si—C bonds contained in the first layer can be maintained as described above. Even when an oxidant other than the nitrogen oxide-based gas is used, the supply flow rate or partial pressure of the oxidant is set smaller than that in the film forming sequence shown in FIG. By setting the supply time shorter than that in the film forming sequence shown in FIG. 4A, the degree of unsaturation in the oxidation process in step 2 is increased, and Si—N bonds and Si contained in the first layer are increased. It becomes possible to hold the -C bond as described above.
(変形例2)
 ステップ2において、酸化剤の供給流量、分圧を大きく設定したり、酸化剤の供給時間を長く設定したりすることによって、第1層の酸化処理を飽和させるようにしてもよい。すなわち、サイクルを所定回数(n回(nは1以上の整数))行う際、ステップ2では、第1層に含まれるSi-N結合およびSi-C結合をそれぞれ切断する条件下で、酸化剤を供給し、第1層を飽和酸化させるようにしてもよい。本変形例によれば、第1層は、Si、Oを含む第2層、すなわち、シリコン酸化層(SiO層)へと変化させられ(改質され)、ウエハ200上に、シリコン酸化膜(SiO膜)が形成されることとなる。この膜は、Si-O結合を含み、Si-N結合およびSi-C結合をそれぞれ含まない膜となる。本変形例の成膜シーケンスを、以下に記号[c]を用いて示す。
(Modification 2)
In step 2, the oxidation treatment of the first layer may be saturated by setting a large supply flow rate and partial pressure of the oxidizer or setting a long supply time of the oxidizer. That is, when the cycle is performed a predetermined number of times (n 3 times (n 3 is an integer of 1 or more)), in step 2, the Si—N bond and the Si—C bond contained in the first layer are respectively cut under the conditions. An oxidizing agent may be supplied to saturate and oxidize the first layer. According to this modification, the first layer is changed (modified) into a second layer containing Si and O, that is, a silicon oxide layer (SiO layer), and a silicon oxide film (on the wafer 200) SiO film) is formed. This film includes a Si—O bond and does not include a Si—N bond and a Si—C bond. The film forming sequence of this modification is shown below using the symbol [c].
 (HMDSN→O+H)×n ⇒ SiO ・・・[c] (HMDSN → O 2 + H 2 ) × n 3 ⇒ SiO... [C]
 本変形例においても、ウエハ200の表面を酸化させるのではなく、ウエハ200上にSiO膜を形成する(堆積させる)ことから、ウエハ200の表面へのOの拡散を抑制することが可能となる。また、本変形例においても、図4(a)に示す成膜シーケンスと同様に、交互供給法によりSiO膜を形成することで、膜の段差被覆性、膜厚制御性、面内膜厚均一性等を向上させることが可能となる。また、本変形例においても、図4(a)に示す成膜シーケンスと同様に、成膜温度を450~1000℃の範囲内の所定の温度とすることで、膜のエッチング耐性や絶縁性能を向上させたり、耐用年数を伸ばしたり、界面電子トラップ密度を低減させたりすることも可能となる。 Also in this modification, since the SiO film is formed (deposited) on the wafer 200 instead of oxidizing the surface of the wafer 200, the diffusion of O to the surface of the wafer 200 can be suppressed. . Also in this modification, similarly to the film forming sequence shown in FIG. 4A, by forming the SiO film by the alternate supply method, the step coverage of the film, the film thickness controllability, and the in-plane film thickness are uniform. It becomes possible to improve property. Also in this modification, as in the film forming sequence shown in FIG. 4A, the film forming temperature is set to a predetermined temperature within the range of 450 to 1000 ° C., so that the etching resistance and insulating performance of the film are improved. It is possible to improve, extend the service life, and reduce the interface electron trap density.
 本変形例のように、第1層を飽和酸化させるには、酸化剤として、O+Hガス、O、OH、Oガス、HOガス、Oガス等の酸化力の比較的強いO含有ガス、すなわち、N非含有のO含有ガスを用いるのが好ましい。 In order to saturate and oxidize the first layer as in this modification, an oxidizing agent such as O 2 + H 2 gas, O * , OH * , O 3 gas, H 2 O gas, or O 2 gas is used as an oxidizing agent. It is preferable to use a relatively strong O-containing gas, that is, an N-free O-containing gas.
(変形例3)
 例えば、記号[a]~[c]で示す成膜シーケンスのうち少なくともいずれか2つを選択し、それらを交互に所定回数(n回(nは1以上の整数))行うことで、C濃度およびN濃度のうち少なくともいずれかが異なる膜が交互に積層されてなる積層膜を形成するようにしてもよい。
(Modification 3)
For example, by selecting at least any two of the film forming sequences indicated by the symbols [a] to [c] and alternately performing them a predetermined number of times (n 4 times (n 4 is an integer of 1 or more)), You may make it form the laminated film by which the film from which at least any one of C density | concentration and N density | concentration differs is laminated | stacked alternately.
 この場合、以下に例示するように、最後に記号[a]で示す成膜シーケンスを行うことで、積層膜の最表面をSiON膜としてもよい。
([b]→[a])×n
([c]→[a])×n
([b]→[c]→[a])×n
([c]→[b]→[a])×n
In this case, as exemplified below, the outermost surface of the laminated film may be formed as a SiON film by performing a film forming sequence indicated by symbol [a] at the end.
([B] → [a]) × n 4
([C] → [a]) × n 4
([B] → [c] → [a]) × n 4
([C] → [b] → [a]) × n 4
 また、この場合、以下に例示するように、最後に記号[b]で示す成膜シーケンスを行うことで、積層膜の最表面をSiOCN膜としてもよい。
([a]→[b])×n
([c]→[b])×n
([a]→[c]→[b])×n
([c]→[a]→[b])×n
In this case, as exemplified below, the outermost surface of the stacked film may be formed as a SiOCN film by performing a film forming sequence indicated by a symbol [b] at the end.
([A] → [b]) × n 4
([C] → [b]) × n 4
([A] → [c] → [b]) × n 4
([C] → [a] → [b]) × n 4
 また、この場合、以下に例示するように、最後に記号[c]で示す成膜シーケンスを行うことで、積層膜の最表面をSiO膜としてもよい。
([a]→[c])×n
([b]→[c])×n
([a]→[b]→[c])×n
([b]→[a]→[c])×n
In this case, as exemplified below, the outermost surface of the laminated film may be formed as a SiO film by performing a film forming sequence indicated by a symbol [c] at the end.
([A] → [c]) × n 4
([B] → [c]) × n 4
([A] → [b] → [c]) × n 4
([B] → [a] → [c]) × n 4
 また、最初に記号[a]で示す成膜シーケンスを行うことで積層膜の最下面をSiON膜としてもよいし、最初に記号[b]で示す成膜シーケンスを行うことで積層膜の最下面をSiOCN膜としてもよいし、最初に記号[c]で示す成膜シーケンスを行うことで積層膜の最下面をSiO膜としてもよい。 Alternatively, the lowermost surface of the laminated film may be formed as a SiON film by first performing the film forming sequence indicated by symbol [a], or the lowermost surface of the laminated film by performing the film forming sequence indicated by symbol [b] first. May be an SiOCN film, or the lowermost surface of the laminated film may be an SiO film by first performing a film forming sequence indicated by symbol [c].
 これらの場合、記号[a]~[c]で示す成膜シーケンスで形成される各膜(積層膜を構成する各膜)の膜厚を、例えば5nm以下、好ましくは1nm以下とすることで、最終的に形成される積層膜を、厚さ方向において統一された特性を有する膜、すなわち、膜全体として一体不可分の特性を有するナノラミネート膜とすることができる。また、ナノラミネート膜とすることにより、例えば、各膜の特性をバランスよく併せ持つ膜を形成することができる。記号[a]~[c]で示す成膜シーケンスにおけるサイクルの実施回数(n~n)をそれぞれ1~10回程度とすることで、積層膜を構成する各膜の膜厚を、上述の範囲内の厚さとすることができる。 In these cases, by setting the film thickness of each film (each film constituting the laminated film) formed by the film forming sequence indicated by the symbols [a] to [c] to, for example, 5 nm or less, preferably 1 nm or less, The finally formed laminated film can be a film having a uniform characteristic in the thickness direction, that is, a nanolaminate film having an integral inseparable characteristic as a whole. In addition, by using a nanolaminate film, for example, a film having the characteristics of each film in a well-balanced manner can be formed. By setting the number of executions (n 1 to n 3 ) of the cycles in the film forming sequence indicated by symbols [a] to [c] to about 1 to 10 respectively, the film thickness of each film constituting the laminated film can be set as described above. The thickness can be within the range of.
 なお、本変形例においては、記号[a]~[c]で示す成膜シーケンスにおけるサイクルの実施回数(n~n)のうち少なくともいずれかの回数を調整することで、積層膜の厚さ方向に、C濃度およびN濃度のうち少なくともいずれかの勾配(グラデーション)をつけるようにしてもよい。この場合、例えば、積層膜の厚さ方向に、最下面から最表面に向かうにつれてN濃度やC濃度が徐々に大きくなるグラデーションをつけたり、N濃度やC濃度が徐々に小さくなるグラデーションをつけたりすることが可能となる。 In this modification, the thickness of the laminated film is adjusted by adjusting at least one of the number of cycles (n 1 to n 3 ) in the film forming sequence indicated by symbols [a] to [c]. A gradient (gradation) of at least one of C density and N density may be provided in the vertical direction. In this case, for example, a gradation in which the N concentration or the C concentration gradually increases from the bottom surface to the top surface in the thickness direction of the laminated film, or a gradation in which the N concentration or the C concentration gradually decreases is added. Is possible.
(変形例4)
 図4(b)や以下に示す成膜シーケンスのように、ステップ1において、ウエハ200に対して、原料としてのHMDSNガスと、O含有ガスとしての例えばOガスと、を同時に供給するようにしてもよい。
(Modification 4)
As shown in FIG. 4B and the film forming sequence shown below, in step 1, an HMDSN gas as a raw material and, for example, an O 2 gas as an O-containing gas are supplied to the wafer 200 simultaneously. May be.
 (HMDSN+O→O+H)×n ⇒ SiON (HMDSN + O 2 → O 2 + H 2 ) × n 1 ⇒ SiON
 ステップ1におけるOガスの供給は、ガス供給管232bから行うようにする。1サイクルあたりのステップ1におけるOガスの供給量(Q)は、1サイクルあたりのステップ2におけるOガスの供給量(Q)より少なくする(Q<Q)。Q<Qの関係を実現するため、ステップ1におけるOガスの供給流量(F)は、ステップ2におけるOガスの供給流量(F)よりも小さくし(F<F)、例えば、Fの1/20以上1/2以下、好ましくは1/10以上1/5以下とする。Fは、例えば1~1000sccm、好ましくは2~400sccmの範囲内とすることができる。 The supply of O 2 gas in step 1 is performed from the gas supply pipe 232b. The supply amount of O 2 gas in Step 1 per cycle (Q 1), the supply amount of O 2 gas in Step 2 per cycle (Q 2) is from less (Q 1 <Q 2). To achieve the relationship of Q 1 <Q 2, O 2 gas supply flow rate (F 1) in step 1 is smaller than the supply flow rate of O 2 gas (F 2) in step 2 (F 1 <F 2 ), for example, 1/20 to 1/2 of the F 2, preferably 1/10 or more than 1/5. F 1 can be, for example, in the range of 1 to 1000 sccm, preferably 2 to 400 sccm.
 FがFの1/20未満(或いは1sccm未満)となると、ステップ1においてOガスによる後述するSiのマイグレーション(移動)抑制効果が得られなくなる場合があり、ウエハ200上に形成されるSiON膜の表面ラフネスが悪化しやすくなる。FをFの1/20以上(或いは1sccm以上)とすることで、マイグレーション抑制効果が得られるようになり、SiON膜の表面ラフネスを向上させることが可能となる。FをFの1/10以上(或いは2sccm以上)とすることで、マイグレーション抑制効果が確実に得られるようになり、SiON膜の表面ラフネスを確実に向上させることが可能となる。 When F 1 is less than 1/20 of F 2 (or less than 1 sccm), may O 2 Si migration that will be described later by gas (mobile) inhibiting effect can not be obtained in step 1, it is formed on the wafer 200 The surface roughness of the SiON film tends to deteriorate. By setting F 1 to be 1/20 or more (or 1 sccm or more) of F 2 , a migration suppressing effect can be obtained, and the surface roughness of the SiON film can be improved. By setting F 1 to be 1/10 or more of F 2 (or 2 sccm or more), a migration suppressing effect can be obtained with certainty, and the surface roughness of the SiON film can be improved with certainty.
 FがFの1/2を超える(或いは1000sccmを超える)と、ステップ1において過剰な気相反応が生じることで、ウエハ200上に形成されるSiON膜の膜厚均一性が悪化しやすくなる場合がある。FをFの1/2以下(或いは1000sccm以下)とすることで、ステップ1において適正な気相反応を生じさせることができることにより、SiON膜の膜厚均一性を向上させることが可能となる。FをFの1/5以下(或いは400sccm以下)とすることで、ステップ1において気相反応を適正に抑制することができ、SiON膜の膜厚均一性を確実に向上させることが可能となる。 If F 1 exceeds 1/2 of F 2 (or exceeds 1000 sccm), an excessive gas phase reaction occurs in Step 1, so that the film thickness uniformity of the SiON film formed on the wafer 200 is likely to deteriorate. There is a case. By setting F 1 to be ½ or less (or 1000 sccm or less) of F 2 , an appropriate gas phase reaction can be generated in Step 1, thereby making it possible to improve the film thickness uniformity of the SiON film. Become. By setting F 1 to 1/5 or less of F 2 (or 400 sccm or less), the gas phase reaction can be appropriately suppressed in Step 1, and the film thickness uniformity of the SiON film can be reliably improved. It becomes.
 他の条件は、図4(a)に示す成膜シーケンスの処理条件と同様とする。 Other conditions are the same as the processing conditions of the film forming sequence shown in FIG.
 上述の条件下で、ステップ1において、ウエハ200に対して原料とO含有ガスとを同時に供給することにより、ウエハ200上へのSiの吸着と同時或いはその前後に、このSiの少なくとも一部を酸化させて酸化物(SiO)に変化させることが可能となる。ウエハ200上に吸着したSiは、酸化することによりマイグレーションしにくくなる。すなわち、ウエハ200上に吸着したSi原子は、Si原子と結合したO原子によりマイグレーションが妨げられることとなる。より具体的には、ウエハ200上に吸着したSi原子に隣接するO原子によりSi原子のマイグレーションがブロックされることとなる。これにより、ウエハ200上に吸着したSiの凝集を抑制することができる。結果として、下地とSiON膜との間の界面ラフネスや、SiON膜の表面ラフネスを、それぞれ向上させることが可能となる。なお、本変形例のようにQ<Qの関係を保つようにした場合、ステップ1において原料と同時にO含有ガスを供給したとしても、その酸化力を適正に抑制することができ、第1層中にSi-N結合やSi-C結合を含ませることが可能となる。結果として、本変形例においても、図4(a)に示す成膜シーケンスと同様の効果を得ることが可能となる。 Under the above-mentioned conditions, in Step 1, by simultaneously supplying the raw material and the O-containing gas to the wafer 200, at least a part of this Si is simultaneously or simultaneously with the adsorption of Si onto the wafer 200. It can be oxidized to change to oxide (SiO x ). Si adsorbed on the wafer 200 becomes difficult to migrate due to oxidation. That is, migration of Si atoms adsorbed on the wafer 200 is hindered by O atoms bonded to Si atoms. More specifically, migration of Si atoms is blocked by O atoms adjacent to Si atoms adsorbed on wafer 200. Thereby, aggregation of Si adsorbed on the wafer 200 can be suppressed. As a result, the interface roughness between the base and the SiON film and the surface roughness of the SiON film can be improved. When the relationship of Q 1 <Q 2 is maintained as in this modification, even if the O-containing gas is supplied simultaneously with the raw material in Step 1, the oxidizing power can be appropriately suppressed, It is possible to include Si—N bonds and Si—C bonds in one layer. As a result, also in this modification, it is possible to obtain the same effect as the film forming sequence shown in FIG.
 なお、Q<Qの関係を実現するには、F<Fとせずに、1サイクルあたりのO含有ガス(Oガス)の供給時間(T)を、1サイクルあたりの酸化剤(O)の供給時間(T)よりも短くしてもよい(T<T)。また、F<Fとし、さらにT<Tとしてもよい。なお、F<Fとする場合は、T≦Tとしてもよい。これらの場合であっても、ステップ1における酸化力を適正に抑制することができ、第1層中にSi-N結合やSi-C結合を含ませることができ、図4(a)に示す成膜シーケンスと同様の効果を得ることが可能となる。 In order to realize the relationship of Q 1 <Q 2 , the supply time (T 1 ) of the O-containing gas (O 2 gas) per cycle is changed to F 1 <F 2 without oxidizing F 1 <F 2. agent (O 2) supply time (T 2) may be shorter than (T 1 <T 2). Further, F 1 <F 2 may be set, and T 1 <T 2 may be set. In the case of the F 1 <F 2 may be a T 1T 2. Even in these cases, the oxidizing power in step 1 can be appropriately suppressed, and the Si—N bond or Si—C bond can be included in the first layer, as shown in FIG. The same effect as the film forming sequence can be obtained.
 ステップ2で供給する酸化剤と、ステップ1で供給するO含有ガスとは、図4(b)や上述の成膜シーケンスのように同一の分子構造(化学構造)を有していてもよいし、異なる分子構造を有していてもよい。すなわち、ステップ2で供給する酸化剤と、ステップ1で供給するO含有ガスとは、同一のマテリアルであってもよいし、異なるマテリアルであってもよい。但し、ステップ1で供給するO含有ガスとして、ステップ2で供給する酸化剤よりも酸化力が小さい物質を用いる方が、第1層中にSi-N結合やSi-C結合を含ませることが容易となる点で、好ましい。O+Hガスよりも酸化力が小さい物質としては、例えば、O ガス、Oガス、HOガス、Oガス、NOガス、NOガス、NOガス等が挙げられる。特に、ステップ1で用いるO含有ガスとしてNOガス、NOガス、NOガス等の酸化窒素系ガスを用いる場合、第1層中にSi-N結合やSi-C結合を確実に含ませることが可能となる点で、好ましい。ステップ1で用いるO含有ガスとして酸化窒素系ガスを用いる場合、Q≧Qとしても、第1層中にSi-N結合やSi-C結合を含ませることが可能となる。 The oxidizing agent supplied in step 2 and the O-containing gas supplied in step 1 may have the same molecular structure (chemical structure) as shown in FIG. May have different molecular structures. That is, the oxidizing material supplied in step 2 and the O-containing gas supplied in step 1 may be the same material or different materials. However, if the O-containing gas supplied in Step 1 is a substance having a lower oxidizing power than the oxidant supplied in Step 2, Si—N bonds or Si—C bonds may be included in the first layer. It is preferable in terms of ease. Examples of the substance having an oxidizing power smaller than that of O 2 + H 2 gas include O 2 * gas, O 3 gas, H 2 O gas, O 2 gas, N 2 O gas, NO gas, and NO 2 gas. . In particular, when a nitrogen oxide gas such as N 2 O gas, NO gas, or NO 2 gas is used as the O-containing gas used in step 1, the Si—N bond or the Si—C bond is surely included in the first layer. It is preferable at the point which becomes possible. When a nitrogen oxide-based gas is used as the O-containing gas used in Step 1, it is possible to include Si—N bonds or Si—C bonds in the first layer even if Q 1 ≧ Q 2 .
 なお、ステップ1において原料とO含有ガスとを同時に供給することによる表面ラフネスの向上効果は、成膜温度を450~1000℃の範囲内とする場合に限らず、450℃未満、例えば250~400℃の範囲内とする場合であっても同様に得られる。但し、Siのマイグレーションは成膜温度が高くなるほど活発になる傾向があり、成膜温度が例えば700~1000℃の範囲内となると顕著となる。従って、ステップ1において原料とO含有ガスとを同時に供給する技術的意義は、成膜温度を、ウエハ200に対してHMDSNガスを単独で供給した際にHMDSNガスに含まれるSiのマイグレーションが顕著に生じる上述の温度(700~1000℃の範囲内の温度)とする場合に、特に大きくなる。 Note that the effect of improving the surface roughness by simultaneously supplying the raw material and the O-containing gas in Step 1 is not limited to the case where the film forming temperature is within the range of 450 to 1000 ° C., but is less than 450 ° C., for example, 250 to 400 Even when the temperature is within the range of ° C., it can be obtained in the same manner. However, the migration of Si tends to become more active as the film formation temperature becomes higher, and becomes prominent when the film formation temperature falls within a range of 700 to 1000 ° C., for example. Therefore, the technical significance of simultaneously supplying the raw material and the O-containing gas in Step 1 is that the migration of Si contained in the HMDSN gas is remarkable when the film formation temperature is supplied to the wafer 200 alone. It becomes particularly large when the above-mentioned temperature is generated (temperature in the range of 700 to 1000 ° C.).
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 例えば、上述の実施形態や変形例では、原料を供給した後に酸化剤を供給する例について説明した。しかしながら、本発明はこのような態様に限定されず、原料、酸化剤の供給順序は逆でもよい。すなわち、酸化剤を供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。 For example, in the above-described embodiment and modification, the example in which the oxidizing agent is supplied after the raw material is supplied has been described. However, the present invention is not limited to such an embodiment, and the supply order of the raw material and the oxidizing agent may be reversed. That is, the raw material may be supplied after the oxidizing agent is supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
 また例えば、上述の実施形態や変形例では、基板上に主元素としてSiを含む膜を形成する例について説明したが、本発明はこのような態様に限定されない。すなわち、本発明は、Siの他、ゲルマニウム(Ge)、ボロン(B)等の半金属元素を主元素として含む膜を基板上に形成する場合にも、好適に適用することができる。また、本発明は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)、アルミニウム(Al)等の金属元素を主元素として含む膜を基板上に形成する場合にも、好適に適用することができる。 For example, in the above-described embodiments and modifications, the example in which the film containing Si as the main element is formed on the substrate has been described, but the present invention is not limited to such an embodiment. That is, the present invention can be suitably applied to the case where a film containing a metal element such as germanium (Ge) or boron (B) as a main element in addition to Si is formed on a substrate. The present invention also provides titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), yttrium (Y), and lanthanum (La). The present invention can also be suitably applied to the case where a film containing a metal element such as strontium (Sr) or aluminum (Al) as a main element is formed on a substrate.
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、基板処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。 The recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a board | substrate process, it is preferable that CPU121a selects an appropriate recipe suitably from the some recipe stored in the memory | storage device 121c according to the content of a process. Accordingly, it is possible to form films having various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing apparatus with good reproducibility. In addition, the burden on the operator can be reduced, and the substrate processing can be started quickly while avoiding an operation error.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。 The above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. In addition, an existing recipe already installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
 上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。 In the above-described embodiment, an example in which a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time. In the above-described embodiment, an example in which a film is formed using a substrate processing apparatus having a hot wall type processing furnace has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
 例えば、図7に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内へガスをシャワー状に供給するガス供給部としてのシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレットには、ガス供給ポート332a,332bが接続されている。ガス供給ポート332aには、上述の実施形態の原料供給系、H含有ガス供給系と同様の供給系が接続されている。ガス供給ポート332bには、上述の実施形態のO含有ガス供給系と同様の供給系が接続されている。シャワーヘッド303sのアウトレットには、ガス分散板が設けられている。シャワーヘッド303sは、処理室301内へ搬入されたウエハ200の表面と対向(対面)する位置に設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。 For example, the present invention can be suitably applied also when a film is formed using a substrate processing apparatus including the processing furnace 302 shown in FIG. The processing furnace 302 includes a processing container 303 that forms the processing chamber 301, a shower head 303s as a gas supply unit that supplies gas into the processing chamber 301 in a shower shape, and one or several wafers 200 in a horizontal posture. A support base 317 for supporting, a rotating shaft 355 for supporting the support base 317 from below, and a heater 307 provided on the support base 317 are provided. Gas supply ports 332a and 332b are connected to the inlet of the shower head 303s. The gas supply port 332a is connected to a supply system similar to the raw material supply system and the H-containing gas supply system of the above-described embodiment. A supply system similar to the O-containing gas supply system of the above-described embodiment is connected to the gas supply port 332b. A gas dispersion plate is provided at the outlet of the shower head 303s. The shower head 303 s is provided at a position facing (facing) the surface of the wafer 200 carried into the processing chamber 301. The processing vessel 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
 また例えば、図8に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持台417と、支持台417を下方から支持する回転軸455と、処理容器403内のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、ガス供給ポート432a,432bが接続されている。ガス供給ポート432aには、上述の実施形態の原料供給系、H含有ガス供給系と同様の供給系が接続されている。ガス供給ポート432bには、上述の実施形態のO含有ガス供給系と同様の供給系が接続されている。ガス供給ポート432a,432bは、処理室401内へ搬入されたウエハ200の端部の側方にそれぞれ設けられている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。 Also, for example, the present invention can be suitably applied when a film is formed using a substrate processing apparatus including the processing furnace 402 shown in FIG. The processing furnace 402 includes a processing container 403 that forms a processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container. A lamp heater 407 that irradiates light toward the wafer 200 in the 403 and a quartz window 403w that transmits light from the lamp heater 407 are provided. Gas supply ports 432 a and 432 b are connected to the processing container 403. The gas supply port 432a is connected to a supply system similar to the raw material supply system and the H-containing gas supply system of the above-described embodiment. A supply system similar to the O-containing gas supply system of the above-described embodiment is connected to the gas supply port 432b. The gas supply ports 432a and 432b are provided on the sides of the end of the wafer 200 loaded into the processing chamber 401, respectively. The processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
 これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様な処理手順、処理条件にて成膜処理を行うことができ、上述の実施形態や変形例と同様の効果が得られる。 Even when these substrate processing apparatuses are used, the film forming process can be performed with the same processing procedure and processing conditions as in the above-described embodiment and modification, and the same effect as in the above-described embodiment and modification can be obtained. It is done.
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。 Also, the above-described embodiments and modifications can be used in appropriate combination. The processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
 以下、本発明の実施形態で得られる効果を裏付ける実験結果について説明する。 Hereinafter, experimental results supporting the effects obtained in the embodiment of the present invention will be described.
 サンプル1~3として、図4(a)に示す成膜シーケンスにより、ウエハ上に膜をそれぞれ形成した。ステップ2における酸化剤の供給時間は、サンプル1を作製する際には5~10秒の範囲内の所定の時間、サンプル2を作製する際には12~20秒の範囲内の所定の時間、サンプル3を作製する際には50~80秒の範囲内の所定の時間にそれぞれ設定した。他の処理条件は、上述の実施形態に記載の処理条件範囲内の条件であって、サンプル1~3にわたり共通の条件となるように設定した。 As Samples 1 to 3, films were formed on the wafer by the film forming sequence shown in FIG. The oxidant supply time in step 2 is a predetermined time within a range of 5 to 10 seconds when the sample 1 is manufactured, and a predetermined time within a range of 12 to 20 seconds when the sample 2 is manufactured. When preparing Sample 3, each was set to a predetermined time within the range of 50 to 80 seconds. The other processing conditions are those within the processing condition range described in the above embodiment, and are set so as to be common conditions for the samples 1 to 3.
 そして、サンプル1~3における各膜のN濃度をそれぞれ測定した。その結果を図6に示す。図6の縦軸は膜のN濃度(atoms/cm)を、横軸はサンプル1~3をそれぞれ示している。図6によれば、サンプル1の膜は、膜中にNを高濃度で含んでいることが分かる。また、サンプル2の膜は、膜中にNを含むものの、その濃度はサンプル1の膜のN濃度よりも低くなっていることが分かる。また、サンプル3の膜は、膜中にNを殆ど含まないことが分かる。 Then, the N concentration of each film in samples 1 to 3 was measured. The result is shown in FIG. The vertical axis in FIG. 6 indicates the N concentration (atoms / cm 3 ) of the film, and the horizontal axis indicates samples 1 to 3, respectively. According to FIG. 6, it can be seen that the film of Sample 1 contains N at a high concentration in the film. Moreover, although the film | membrane of sample 2 contains N in a film | membrane, it turns out that the density | concentration is lower than the N density | concentration of the film | membrane of sample 1. Further, it can be seen that the film of Sample 3 contains almost no N in the film.
 これらの結果から、ステップ2における酸化剤の供給時間を調整することにより、ウエハ上に形成される膜のN濃度を広範囲に制御できることが分かる。すなわち、酸化剤の供給時間を長くすると、膜のN濃度を低下させ、膜の組成をSiO膜に近づけることができることが分かる。また、酸化剤の供給時間を短くすると、膜のN濃度を低下させることなく、膜の組成をSiON膜に近づけることができることが分かる。なお、発明者等は、酸化剤の供給時間だけでなく、酸化剤の供給流量、分圧、種類を適正に調整したり選択したりすることによっても、膜のN濃度を広範囲に制御できることを併せて確認している。また、発明者等は、これらの各要素のうち、酸化剤の分圧、供給時間の2つが、N濃度を制御するのに特に有効であることも併せて確認している。 These results show that the N concentration of the film formed on the wafer can be controlled over a wide range by adjusting the supply time of the oxidizing agent in Step 2. That is, it can be seen that if the supply time of the oxidizing agent is lengthened, the N concentration of the film can be lowered and the composition of the film can be made closer to the SiO film. It can also be seen that when the supply time of the oxidizing agent is shortened, the composition of the film can be made closer to that of the SiON film without reducing the N concentration of the film. Note that the inventors can control the N concentration of the film over a wide range not only by supplying the oxidizing agent but also by appropriately adjusting and selecting the supply flow rate, partial pressure, and type of the oxidizing agent. It is also confirmed. The inventors have also confirmed that, among these factors, two of the partial pressure of the oxidant and the supply time are particularly effective for controlling the N concentration.
121  コントローラ(制御部)
200  ウエハ(基板)
201  処理室
202  処理炉
203  反応管
207  ヒータ
231  排気管
232a~232d  ガス供給管
 
121 Controller (control unit)
200 wafer (substrate)
201 processing chamber 202 processing furnace 203 reaction pipe 207 heater 231 exhaust pipe 232a to 232d gas supply pipe

Claims (15)

  1.  (a)基板に対して1分子中に所定元素と窒素との化学結合を少なくとも2つ含む原料を供給する工程と、
     (b)前記基板に対して酸化剤を供給する工程と、
     を非同時に行うサイクルを、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部が切断されることなく保持される条件下で、所定回数行うことで、前記基板上に、前記所定元素、窒素および酸素を含む膜を形成する工程を有する半導体装置の製造方法。
    (A) supplying a raw material containing at least two chemical bonds of a predetermined element and nitrogen in one molecule to a substrate;
    (B) supplying an oxidizing agent to the substrate;
    A non-simultaneous cycle is performed a predetermined number of times under a condition in which at least a part of the chemical bond between the predetermined element and nitrogen contained in the raw material is maintained without being broken. A method for manufacturing a semiconductor device, comprising forming a film containing a predetermined element, nitrogen and oxygen.
  2.  前記(a)では、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料を供給することで、前記所定元素と窒素との化学結合を含む第1層を形成する請求項1に記載の半導体装置の製造方法。 In (a), by supplying the raw material under a condition that at least a part of the chemical bond between the predetermined element and nitrogen contained in the raw material is not broken, the predetermined element and nitrogen are supplied. The method for manufacturing a semiconductor device according to claim 1, wherein a first layer including a chemical bond is formed.
  3.  前記(b)では、前記第1層に含まれる前記所定元素と窒素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記酸化剤を供給することで、前記第1層を不飽和酸化させ、前記所定元素と窒素との化学結合と、前記所定元素と酸素との化学結合と、を含む第2層を形成する請求項2に記載の半導体装置の製造方法。 In (b), the oxidant is supplied under the condition that at least a part of the chemical bond between the predetermined element and nitrogen contained in the first layer is maintained without being broken. The method for manufacturing a semiconductor device according to claim 2, wherein one layer is unsaturated-oxidized to form a second layer including a chemical bond between the predetermined element and nitrogen and a chemical bond between the predetermined element and oxygen.
  4.  前記原料は、さらに前記所定元素と炭素との化学結合を含み、前記サイクルを、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部および前記所定元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、所定回数行うことで、前記基板上に、前記所定元素、炭素、窒素および酸素を含む膜を形成する請求項1に記載の半導体装置の製造方法。 The raw material further includes a chemical bond between the predetermined element and carbon, and the cycle includes at least part of the chemical bond between the predetermined element and nitrogen and the chemical bond between the predetermined element and carbon included in the raw material. 2. The semiconductor device according to claim 1, wherein a film containing the predetermined element, carbon, nitrogen, and oxygen is formed on the substrate by performing a predetermined number of times under a condition in which at least a part is retained without being cut. Manufacturing method.
  5.  前記(a)では、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部および前記所定元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料を供給することで、前記所定元素と窒素との化学結合および前記所定元素と炭素との化学結合を含む第1層を形成する請求項4に記載の半導体装置の製造方法。 In the above (a), at least a part of a chemical bond between the predetermined element and nitrogen and at least a part of the chemical bond between the predetermined element and carbon contained in the raw material are maintained without being broken. The method of manufacturing a semiconductor device according to claim 4, wherein the first layer including the chemical bond between the predetermined element and nitrogen and the chemical bond between the predetermined element and carbon is formed by supplying the raw material.
  6.  前記(b)では、前記第1層に含まれる前記所定元素と窒素との化学結合の少なくとも一部および前記所定元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記酸化剤を供給することで、前記第1層を不飽和酸化させ、前記所定元素と窒素との化学結合、前記所定元素と炭素との化学結合、および前記所定元素と酸素との化学結合を含む第2層を形成する請求項5に記載の半導体装置の製造方法。 In (b), a condition in which at least part of the chemical bond between the predetermined element and nitrogen and at least part of the chemical bond between the predetermined element and carbon contained in the first layer is maintained without being broken. The first layer is unsaturated oxidized by supplying the oxidant, and the chemical bond between the predetermined element and nitrogen, the chemical bond between the predetermined element and carbon, and the predetermined element and oxygen. The method for manufacturing a semiconductor device according to claim 5, wherein the second layer including a chemical bond is formed.
  7.  前記酸化剤は、酸素および窒素を含む物質である請求項4に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein the oxidant is a substance containing oxygen and nitrogen.
  8.  前記(a)では、前記原料と一緒に酸素含有ガスを供給する請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein in (a), an oxygen-containing gas is supplied together with the raw material.
  9.  1サイクルあたりの前記酸素含有ガスの供給量を、1サイクルあたりの前記酸化剤の供給量よりも小さくする請求項8に記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8, wherein a supply amount of the oxygen-containing gas per cycle is made smaller than a supply amount of the oxidant per cycle.
  10.  1サイクルあたりの前記酸素含有ガスの供給流量を、1サイクルあたりの前記酸化剤の供給流量よりも小さくする請求項8に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 8, wherein a supply flow rate of the oxygen-containing gas per cycle is made smaller than a supply flow rate of the oxidant per cycle.
  11.  1サイクルあたりの前記酸素含有ガスの供給時間を、1サイクルあたりの前記酸化剤の供給時間以下とする請求項8に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 8, wherein a supply time of the oxygen-containing gas per cycle is set to be equal to or less than a supply time of the oxidant per cycle.
  12.  前記酸素含有ガスとして、前記酸化剤よりも酸化力が小さい物質を用いる請求項8に記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8, wherein a substance having an oxidizing power smaller than that of the oxidizing agent is used as the oxygen-containing gas.
  13.  前記酸素含有ガスは、酸素および窒素を含む物質であり、前記酸化剤は、窒素非含有の酸素含有物質である請求項8に記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8, wherein the oxygen-containing gas is a substance containing oxygen and nitrogen, and the oxidant is an oxygen-containing substance not containing nitrogen.
  14.  基板に対して処理が行われる処理室と、
     前記処理室内の基板に対して1分子中に所定元素と窒素との化学結合を少なくとも2つ含む原料を供給する原料供給系と、
     前記処理室内の基板に対して酸化剤を供給する酸化剤供給系と、
     前記処理室内の基板を加熱するヒータと、
     前記処理室内の圧力を調整する圧力調整部と、
     前記処理室内において、(a)基板に対して前記原料を供給する処理と、(b)前記基板に対して前記酸化剤を供給する処理と、を非同時に行うサイクルを、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部が切断されることなく保持される条件下で、所定回数行うことで、前記基板上に、前記所定元素、窒素および酸素を含む膜を形成する処理を行わせるように、前記原料供給系、前記酸化剤供給系、前記ヒータ、および前記圧力調整部を制御するよう構成される制御部と、
     を有する基板処理装置。
    A processing chamber in which processing is performed on the substrate;
    A raw material supply system for supplying a raw material containing at least two chemical bonds of a predetermined element and nitrogen in one molecule to a substrate in the processing chamber;
    An oxidizing agent supply system for supplying an oxidizing agent to the substrate in the processing chamber;
    A heater for heating the substrate in the processing chamber;
    A pressure adjusting unit for adjusting the pressure in the processing chamber;
    In the processing chamber, a cycle in which (a) a process of supplying the raw material to the substrate and (b) a process of supplying the oxidizing agent to the substrate are performed simultaneously is included in the raw material. A process of forming a film containing the predetermined element, nitrogen and oxygen on the substrate by performing a predetermined number of times under a condition in which at least a part of a chemical bond between the predetermined element and nitrogen is maintained without being broken. A control unit configured to control the raw material supply system, the oxidant supply system, the heater, and the pressure adjustment unit,
    A substrate processing apparatus.
  15.  (a)基板に対して1分子中に所定元素と窒素との化学結合を少なくとも2つ含む原料を供給する手順と、
     (b)前記基板に対して酸化剤を供給する手順と、
     を非同時に行うサイクルを、前記原料に含まれる前記所定元素と窒素との化学結合の少なくとも一部が切断されることなく保持される条件下で、所定回数行うことで、前記基板上に、前記所定元素、窒素および酸素を含む膜を形成する手順を、コンピュータによって基板処理装置に実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
     
    (A) supplying a raw material containing at least two chemical bonds of a predetermined element and nitrogen in one molecule to a substrate;
    (B) supplying an oxidant to the substrate;
    A non-simultaneous cycle is performed a predetermined number of times under a condition in which at least a part of the chemical bond between the predetermined element and nitrogen contained in the raw material is maintained without being broken. A computer-readable recording medium recording a program for causing a substrate processing apparatus to execute a procedure for forming a film containing a predetermined element, nitrogen and oxygen by a computer.
PCT/JP2016/058853 2016-03-18 2016-03-18 Semiconductor device production method, substrate processing device, and recording medium WO2017158848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/058853 WO2017158848A1 (en) 2016-03-18 2016-03-18 Semiconductor device production method, substrate processing device, and recording medium
JP2018505215A JP6470468B2 (en) 2016-03-18 2016-03-18 Semiconductor device manufacturing method, substrate processing apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058853 WO2017158848A1 (en) 2016-03-18 2016-03-18 Semiconductor device production method, substrate processing device, and recording medium

Publications (1)

Publication Number Publication Date
WO2017158848A1 true WO2017158848A1 (en) 2017-09-21

Family

ID=59850793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058853 WO2017158848A1 (en) 2016-03-18 2016-03-18 Semiconductor device production method, substrate processing device, and recording medium

Country Status (2)

Country Link
JP (1) JP6470468B2 (en)
WO (1) WO2017158848A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559974A (en) * 2017-09-26 2019-04-02 株式会社国际电气 Manufacturing method, substrate processing device and the recording medium of semiconductor devices
JP2019532894A (en) * 2016-09-28 2019-11-14 ダウ シリコーンズ コーポレーション Chlorodisilazane
CN110896023A (en) * 2018-09-13 2020-03-20 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020178973A1 (en) * 2019-03-05 2020-09-10 株式会社Kokusai Electric Method for producing semiconductor device, substrate processing apparatus and program
CN109559974B (en) * 2017-09-26 2024-03-22 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016641A (en) * 2004-06-30 2006-01-19 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method for producing metal silicon oxide, method for producing metal silicon oxynitride and method for producing silicon-doped metal nitride
JP2009500857A (en) * 2005-07-08 2009-01-08 アヴィザ テクノロジー インコーポレイテッド Method for depositing silicon-containing film
JP2011238894A (en) * 2010-04-12 2011-11-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing method, and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016641A (en) * 2004-06-30 2006-01-19 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method for producing metal silicon oxide, method for producing metal silicon oxynitride and method for producing silicon-doped metal nitride
JP2009500857A (en) * 2005-07-08 2009-01-08 アヴィザ テクノロジー インコーポレイテッド Method for depositing silicon-containing film
JP2011238894A (en) * 2010-04-12 2011-11-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing method, and substrate processing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532894A (en) * 2016-09-28 2019-11-14 ダウ シリコーンズ コーポレーション Chlorodisilazane
JP2020123750A (en) * 2016-09-28 2020-08-13 ダウ シリコーンズ コーポレーション Chlorodisilazane
JP7077357B2 (en) 2016-09-28 2022-05-30 ダウ シリコーンズ コーポレーション Chlorodisilazane
CN109559974A (en) * 2017-09-26 2019-04-02 株式会社国际电气 Manufacturing method, substrate processing device and the recording medium of semiconductor devices
JP2019062074A (en) * 2017-09-26 2019-04-18 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program
US10804100B2 (en) 2017-09-26 2020-10-13 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN109559974B (en) * 2017-09-26 2024-03-22 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN110896023A (en) * 2018-09-13 2020-03-20 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020178973A1 (en) * 2019-03-05 2020-09-10 株式会社Kokusai Electric Method for producing semiconductor device, substrate processing apparatus and program
JPWO2020178973A1 (en) * 2019-03-05 2020-09-10
CN113243042A (en) * 2019-03-05 2021-08-10 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and program
JP7149407B2 (en) 2019-03-05 2022-10-06 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program

Also Published As

Publication number Publication date
JPWO2017158848A1 (en) 2018-09-20
JP6470468B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US9837262B2 (en) Method of manufacturing a SiOCN film, substrate processing apparatus and recording medium
JP5775947B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
US9552980B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR101983437B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
TWI616926B (en) Manufacturing method of semiconductor device, substrate processing device and recording medium
JP6529348B2 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
WO2013054655A1 (en) Method for manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP2016072587A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
US10604842B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6741780B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
KR102419555B1 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
JP7371281B2 (en) Substrate processing method, semiconductor device manufacturing method, program, and substrate processing device
JP6470468B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2018125416A (en) Method for manufacturing semiconductor device, substrate processing device and program
JP6347548B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2018101687A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
WO2018193538A1 (en) Semiconductor device production method, substrate processing device and recording medium
JP2018121006A (en) Method of manufacturing semiconductor device, substrate processing device, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894466

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894466

Country of ref document: EP

Kind code of ref document: A1