WO2017155197A1 - Method for preparing superabsorbent resin, and superabsorbent resin - Google Patents

Method for preparing superabsorbent resin, and superabsorbent resin Download PDF

Info

Publication number
WO2017155197A1
WO2017155197A1 PCT/KR2017/000057 KR2017000057W WO2017155197A1 WO 2017155197 A1 WO2017155197 A1 WO 2017155197A1 KR 2017000057 W KR2017000057 W KR 2017000057W WO 2017155197 A1 WO2017155197 A1 WO 2017155197A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
polymer
water
superabsorbent polymer
meth
Prior art date
Application number
PCT/KR2017/000057
Other languages
French (fr)
Korean (ko)
Inventor
윤형기
남대우
이혜민
한장선
서성종
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160103024A external-priority patent/KR102075737B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/768,343 priority Critical patent/US10773237B2/en
Priority to CN201780003667.9A priority patent/CN108350189A/en
Priority to EP17763460.7A priority patent/EP3342801B1/en
Publication of WO2017155197A1 publication Critical patent/WO2017155197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/26Treatment of polymers prepared in bulk also solid polymers or polymer melts
    • C08F6/28Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a superabsorbent polymer and a method for preparing the same while maintaining excellent absorption performance and exhibiting improved liquid permeability, gel strength and absorption rate.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, a super absorbent material (SAM) and an absorbent gel (AGM) They are named differently.
  • SAM super absorbent material
  • AGM absorbent gel
  • Such super absorbent polymers have been put into practical use as physiological tools, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
  • the present invention is to provide a method for producing a super absorbent polymer, which exhibits improved fluid permeability, gel strength, absorption rate, and the like while maintaining excellent absorption performance.
  • the present invention comprises the steps of cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a part of a neutralized acidic group in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a crosslinked polymer;
  • Surface crosslinking comprising a surface crosslinking agent of alkylene carbonates having 2 to 5 carbon atoms in the presence of hydrophobic silica particles having a contact angle of greater than 10 ° to 150 ° with respect to water and hydrophilic silica particles having a contact angle of 10 ° or less with respect to water. It provides a method for producing a super absorbent polymer comprising the step of surface crosslinking the base resin powder using a liquid.
  • the present invention also provides a resin composition
  • a resin composition comprising: a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acid group; Formed on the base resin powder, and the first crosslinked polymer A surface crosslinking layer comprising a second crosslinked polymer further crosslinked via a surface crosslinker; And
  • EFFC represented by the following formula 1 is 24 to 28g / g,
  • a super absorbent polymer having a gel strength (G ′) of 9,000 to 15,000 Pa:
  • CRC is the high indicates a centrifugation beam SAT for half an hour for a normal saline solution (0.9 weight 0/0 aqueous sodium chloride solution) of a water-absorbent resin
  • AUP is the super-absorbent resin of the physiological saline (0.9 wt. 0 /.
  • the gel strength (G ′) is the horizontal gel strength of the superabsorbent polymer measured using a rheometer after swelling by absorbing physiological saline solution (0.9 wt. 0 /. Sodium chloride solution) for 1 hour to the superabsorbent polymer. Indicates.
  • a super absorbent polymer according to a specific embodiment of the present invention and a manufacturing method thereof will be described in more detail. However, this is presented as an example of the invention, thereby not limited to the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention.
  • Surface crosslinking comprising a surface crosslinking agent of alkylene carbonate having 2 to 5 carbon atoms in the presence of hydrophobic silica particles having a contact angle of greater than 10 ° to 150 ° with respect to water and hydrophilic silica particles having a contact angle of 10 ° or less with respect to water
  • a method for producing a super absorbent polymer comprising surface crosslinking the base resin powder using a liquid.
  • the present inventors have super-absorbent resin of the gel strength, barrel-component, and the absorption rate a 'result of continuous studies in order to further improve, and the conditions of the production step of the water-absorbent resin, for example, the type of the internal cross-linking agent to be described later and content of the polymerization Conditions are optimized to obtain a base resin powder having a high gel strength, specific surface crosslinking conditions (e.g., simultaneous or separate use of certain silica particles, more specifically two or more hydrophilic and hydrophobic silica particles upon surface crosslinking, etc.).
  • specific surface crosslinking conditions e.g., simultaneous or separate use of certain silica particles, more specifically two or more hydrophilic and hydrophobic silica particles upon surface crosslinking, etc.
  • the surface having a predetermined level or more on the base resin powder having a high gel strength as the specific silica particles defined in a predetermined contact angle range is used during the surface crosslinking, and the surface crosslinking is carried out under constant temperature raising conditions or the like. It appears that the crosslinking layer can be formed uniformly. This is because the specific silica particles are uniformly included in the crosslinking structure of the surface crosslinking layer to make the crosslinking structure more firm, and the surface crosslinking reaction occurs appropriately around each silica particle under the above elevated temperature conditions during surface crosslinking, thereby providing an appropriate crosslinking structure. It is expected because it can be formed.
  • the surface crosslinking layer may further increase the gel strength of each of the superabsorbent polymer particles, so that the superabsorbent polymer of one embodiment may have high gel strength.
  • the superabsorbent polymer prepared by the method of the embodiment can maintain excellent absorption performance defined by relatively high EFFC (arithmetic mean value of CRC and AUP) as the internal crosslinking structure and the surface crosslinking structure are optimized.
  • the superabsorbent polymer of one embodiment is highly desirable for various sanitary materials, such as ultra-thin diapers with reduced pulp content, as it exhibits excellent absorption performance with significantly improved fluidity, gel strength and absorption rate than previously known. Can be applied.
  • sanitary materials such as ultra-thin diapers with reduced pulp content
  • absorption performance with significantly improved fluidity, gel strength and absorption rate than previously known.
  • Can be applied a method of preparing the super absorbent polymer of one embodiment will be described in more detail.
  • Superabsorbent polymers typically contain a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized in the presence of an internal crosslinking agent, such as, for example, a mixture of acrylic acid and its sodium salt in which at least some carboxylic acid is neutralized with sodium salt or the like. After polymerization, it can be prepared by drying, pulverizing and classifying and surface crosslinking. In a specific example, in the manufacturing method of the embodiment, the superabsorbent polymer crosslinks the monomer in the presence of an internal crosslinking agent to obtain a base resin powder, and then, in the presence of a predetermined surface crosslinking agent and hydrophobic and hydrophilic silica particles. It can be obtained by surface crosslinking the base resin powder.
  • an internal crosslinking agent such as, for example, a mixture of acrylic acid and its sodium salt in which at least some carboxylic acid is neutralized with sodium salt or the like. After polymerization, it can be prepared by drying, pulver
  • a base resin powder having a high gel strength for example, specific silica particles, more specifically hydrophilic and hydrophobic silica particles defined by the contact angle range to water
  • specific silica particles more specifically hydrophilic and hydrophobic silica particles defined by the contact angle range to water
  • the surface crosslinking proceeds using, it was confirmed that a super absorbent polymer having excellent properties and effects as described above can be produced.
  • the following hydrophilic silica particles, more specifically, the hydrophilic and hydrophobic silica particles as follows can be used at the time of surface crosslinking.
  • the manufacturing method when the surface cross-linked more than 10 ° for water and 10 ° or greater than 150 ° or less, and more suitably from 12 ° to 150 ° of the And the hydrophobic silica particles having a contact angle, it is possible to use hydrophilic silica particles having a contact angle of 10 ° or less, or from 1 to 10 ° against water.
  • the superabsorbent polymer prepared by the method of the embodiment may further include hydrophilic silica particles and / or hydrophobic silica particles dispersed on the surface of the base resin powder, for example, on the surface crosslinking layer.
  • the hydrophilic silica particles or the hydrophobic silica particles are dispersed on the surface crosslinking layer means that each of these silica particles are contained / dispersed in the crosslinked structure of the surface crosslinking layer or embedded in the surface of the surface crosslinking layer. It may mean.
  • the hydrophobic silica particles may be included in the surface crosslinking solution and treated as described in more detail below, or may be separately mixed and treated on the base resin powder before the black surface crosslinking.
  • such hydrophobic silica particles may, for example, be present at least in part on the surface of the base resin powder, for example in the surface crosslinking layer, and a portion thereof may be embedded in the surface of the base resin powder.
  • the hydrophilic silica particles may be dispersed on the surface crosslinking layer and present in the crosslinking structure included therein, or a part thereof may be embedded in the surface of the surface crosslinking layer.
  • these hydrophilic and / or hydrophobic silica particles can effectively surround the surface crosslinking liquid. For this reason, it can suppress that a surface crosslinking liquid is absorbed rapidly only to a part of base resin powder locally, and can apply
  • hydrophilic and / or hydrophobic silica particles for improving the liquid permeability are present on at least the surface crosslinking layer, and the surface crosslinking solution is uniformly applied so that the surface crosslinking is uniformly performed on the base resin powder, thereby improving liquid permeability.
  • excellent physical properties can be expressed and maintained for a long time.
  • hydrophobic silica particles at least one of the commercialized hydrophobic silica particles having the above-described contact angle range may be used without any particular limitation, and more preferably, the hydrophobic silica particles may be included in the surface crosslinking solution.
  • particles having a contact angle of more than 10 ° and 50 ° or less may be used in view of dispersibility to the surface crosslinking liquid, or particles having a contact angle of 50 ° to 150 ° or less may be used together with a separate dispersant.
  • the particles having a contact angle of 50 ° to 150 ° or less may be more preferably used in terms of more effective fluid permeability and absorption rate. Can be.
  • the hydrophilic silica particles one or more kinds of commercially available water-dispersible silica particles having a contact angle range of 10 ° or less may be used without any particular limitation.
  • hydrophobic silica particles are trade name: DM30S or
  • Hydrophobic silica particles made of Aerosil or the like can be suitably used.
  • hydrophilic silica particles water-dispersible silica particles made of trade name: ST-O or ST-AK or the like can be used as appropriate, and the liquid permeability and absorption rate of the superabsorbent polymer, etc. Can be further improved.
  • a contact angle with respect to water for separating the hydrophilic and hydrophobic silica particles may be defined as a contact angle with respect to water of each silica particle measured on a glass substrate.
  • the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryl Anionic monomers and salts thereof of loylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2- (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
  • acrylic acid or salts thereof such as at least a portion of acrylic acid
  • Alkali metal salts such as neutralized acrylic acid and / or sodium salt thereof may be used, and the use of such monomers enables the production of superabsorbent polymers having better physical properties.
  • the alkali metal salt of acrylic acid 3 ⁇ 4 or the like is used as a monomer, at least a portion of acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • the internal crosslinking agent for crosslinking polymerization of such monomers includes bis (meth) acrylamide having 8 to 12 carbon atoms, poly (meth) acrylate having 2 to 10 carbon atoms, and poly (meth) having a polyol having 2 to 10 carbon atoms.
  • One or more types selected from the group consisting of allyl ether can be used.
  • the internal crosslinking agent is one selected from the group consisting of polyethylene glycol di (meth) acrylate, polypropyleneoxy di (meth) acrylate, glycerin diacrylate, glycerin triacrylate, and trimethy triacrylate.
  • the poly (meth) acrylate of the above poly can be used suitably.
  • the internal crosslinking agent such as polyethylene glycol di (meth) acrylate is used, an internal crosslinked structure can be optimized and a base resin powder having a high gel strength can be obtained. The water absorbent resin can be obtained more appropriately.
  • the specific internal crosslinking agent is 0.005 mol or more, black is 0.005 to 0.1 mol, or 0.005 to 0.05 mol (black is 0.3 parts by weight relative to 100 parts by weight of acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. Or 0.3 to 0.6 parts by weight).
  • black is 0.005 to 0.1 mol, or 0.005 to 0.05 mol (black is 0.3 parts by weight relative to 100 parts by weight of acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. Or 0.3 to 0.6 parts by weight).
  • a base resin powder can be obtained through drying, pulverization, and classification, and the like, and the base resin powder and The superabsorbent polymer obtained is suitably manufactured and provided to have a particle size of 150 to 850 1. More specifically, the base resin powder and And obtained therefrom is at least 95 parts by weight 0 / of the water absorbent resin. This has a particle size of more than 150 to 850 rni, 3 a differential having a particle size of less than 150 parts by weight 0 / less than 0, or 1 to 0.5 is less than 0 wt. /. Can be.
  • the superabsorbent polymer can more properly exhibit the excellent physical properties already described above.
  • the method of preparing a superabsorbent polymer may include forming a hydrogel polymer including a crosslinked polymer by thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator; Drying the hydrogel polymer; Grinding and classifying the dried polymer to form a base resin powder; And surface crosslinking the base resin powder in the presence of the hydrophobic and hydrophilic silica particles using a surface crosslinking solution including a surface crosslinking agent of alkylene carbonate having 2 to 5 carbon atoms.
  • the monomer composition includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator, and the type of the monomer is as described above.
  • the concentration of the water-soluble ethylenically unsaturated monomer may be 20 to 60 weight 0 /. Or 40 to 50 weight 0 /. With respect to the total monomer composition including each of the above-described raw materials and solvents. In consideration of polymerization time and reaction conditions, the concentration may be appropriate. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, if the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Phase problems may occur and the physical properties of the super absorbent polymer may be reduced.
  • the polymerization initiator is generally used for the production of superabsorbent polymers. It will not specifically limit, if it is used.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator since a certain amount of heat is generated by irradiation of ultraviolet radiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone can be used at least one selected from the group consisting of.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used.
  • a wider variety of photoinitiators are well specified in Reinhold Schwalm's book "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p1 15, and are not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of 0.01 to 1.0 weight 0 /. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbine.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K2S 2 O 8 ), and ammonium persulfate ((NH 4 ) 2 S 2 0 8 )
  • azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2, 2-azobis -(N, N- Isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-
  • the thermal polymerization initiator may be included in a concentration of 0.001 to 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
  • the type of the internal crosslinking agent included in the monomer composition is the same as described above, and the internal crosslinking agent is included at a concentration of 0.01 to 0.5 weight 0 / ° relative to the monomer composition to crosslink the polymerized polymer. Can be.
  • the internal crosslinking agent is 0.005 moles or more, or 0.005 to 0.1 moles, or 0.005 to 0.05 moles (or 100 parts by weight of acrylic acid) based on 1 mole of unneutralized acrylic acid contained in the monomer. 0.3 parts by weight or more, or 0.3 to 0.6 parts by weight).
  • the monomer composition may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants, and the like, as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, _ Ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone 1 selected from cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether toluene, xylene, butyrolactone carbyl, methyl cellosolve acetate and ⁇ , ⁇ -dimethylacetamide, etc. It can use combining a species or more.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the energy source of polymerization, and when the thermal polymerization is usually carried out, the polymerization method may be performed in a reactor having a stirring shaft such as a kneader. Although it can proceed in a reactor with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by supplying hot air to the reactor such as a kneader having a stirring shaft or by heating the reactor is subjected to thermal polymerization, depending on the shape of the stirring shaft provided in the reaction vessel.
  • the hydrogel polymer discharged to the outlet may be in the form of several centimeters to several millimeters.
  • the size of the hydrogel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, it can be usually obtained a hydrogel polymer having a weight average particle diameter of 2 to 50 mm.
  • the form of the hydrogel polymer usually obtained may be a hydrogel gel polymer on the sheet having the width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of 0.5 to 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness is too thin, the production efficiency is low, which is not preferable.
  • the polymer thickness on the sheet exceeds 5 cm, the polymerization reaction may not occur evenly over the entire thickness due to the excessively thick thickness.
  • the normal water content of the hydrogel polymer obtained in this way may be a 40 to 80 wt. 0/0.
  • water content means the content of water to account for the total weight of the hydrogel polymer minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying conditions are raised to 18C C at room temperature and maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of the temperature rise step, the moisture content is measured.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is 2 to 15mm.
  • drying is performed on the hydrogel polymer immediately after the polymerization which is coarsely crushed or not subjected to the coarsely crushing step.
  • the temperature may be 150 to 250 ° C. If the drying temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 C C, only the polymer surface may be dried excessively. Fine powder may occur in the grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Therefore, preferably, the drying may be performed at a temperature of 150 to 200 ° C, more preferably at a temperature of 160 to 180 ° C.
  • drying time in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply infrared irradiation microwave irradiation or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10 weight 0 /.
  • the polymer powder obtained after the grinding step may have a particle diameter of 150 to 850 / im.
  • Grinders used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used, but is not limited to the example described above.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed.
  • a polymer having a particle size of 150 to 850 m may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step. Since the particle size distribution of the base resin powder obtained through the above process has already been described above, further detailed description thereof will be omitted.
  • the base resin powder in the presence of a surface crosslinking solution containing the hydrophobic silica particles, the hydrophilic silica particles, and the surface crosslinking agent, the base resin powder may be thermally treated to surface crosslink.
  • the hydrophobic silica particles are first mixed and added to the base resin powder, and then the base resin powder is heat-treated in the presence of a surface crosslinking solution including the hydrophilic silica particles and the surface crosslinking agent. It may also proceed by a method of crosslinking.
  • particles having a contact angle of more than 10 ° and 50 ° or less that is, silica particles exhibiting relatively small hydrophobicity
  • particles having a contact angle of 50 ° to 150 ° or less may be used together with a separate dispersant.
  • any dispersant used to disperse the hydrophobic silica particles in a polar solvent such as a water-soluble solvent can be used without any particular limitation, and for example, a Tween dispersant, a Span dispersant, or a polysaccharide dispersant can be used. .
  • the hydrophobic silica particles may be mixed with the base resin powder in a solid state, and the surface thereof may be subjected to dry treatment. Or a method of mixing.
  • hydrophobic silica particles and hydrophilic silica particles may be used in an amount of 0.0001 to 0.3 parts by weight, or 0.001 to 0.1 parts by weight based on 100 parts by weight of the base resin powder, respectively.
  • the fluid permeability and the absorption rate of a super absorbent polymer can be improved more effectively.
  • the method for adding the surface crosslinking liquid containing the hydrophilic silica particles and the surface crosslinking agent and optionally the hydrophobic silica particles to the base resin powder is not particularly limited.
  • the surface crosslinking liquid, The base resin powder may be mixed in a semi-permanent mixture, or the surface crosslinking solution may be sprayed onto the base resin powder, or the base resin powder and the surface crosslinking solution may be continuously supplied to the mixer to be operated continuously.
  • more suitable examples of the alkylene carbonate having 2 to 5 carbon atoms that can be used as the surface crosslinking agent include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of course, it can also be used.
  • the surface crosslinking solution may further include a polycarboxylic acid copolymer disclosed in Korean Patent Application Publication No. 2015-0143167 (Korean Patent Application No. 2014-0072343), and the copolymer may further include the base resin powder. Based on 100 parts by weight, it may be included in the surface crosslinking liquid in an amount of 0.01 to 0.1. According to the use of this specific surface crosslinking liquid, the excellent particle strength, liquid permeability and absorption performance of one embodiment, etc. can be more effectively achieved.
  • the surface crosslinking liquid may further include water and / or methanol as a medium.
  • the surface crosslinking agent and the silica particles can be evenly dispersed on the base resin powder.
  • the content of water and methanol is to 100 parts by weight of the base resin powder for the purpose of inducing even dispersion of the surface crosslinking agent and silica particles, preventing aggregation of the base resin powder and optimizing the surface penetration depth of the surface crosslinking agent. It can be applied by adjusting the addition ratio.
  • the surface crosslinking step 5 minutes to 80 minutes, or 10 minutes to a maximum reaction temperature of 140 ° C to 20 C C, or 150 ° C to 190 ° C with respect to the base resin powder to which the surface cross-linking solution is added
  • the heat treatment may be performed for 70 minutes or 20 minutes to 65 minutes to proceed with the surface crosslinking reaction. More specifically, the surface cross-linking step is the temperature rise to the reaction maximum temperature over 10 minutes to 40 minutes at an initial temperature of 20 ° C to 130 ° C, or 40 ° C to 120 ° C, the maximum temperature is 5 It can be carried out by maintaining the heat treatment for minutes to 80 minutes.
  • the superabsorbent polymer which suitably stratifies the excellent liquid permeability, the absorption rate, etc. can be manufactured by layer reaction of reaction conditions at temperature).
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • a heat medium such as steam, hot air, or hot oil may be used. Consideration can be made as appropriate.
  • the heat source directly supplied may be a heating method through electricity, a gas heating method, but is not limited to the above-described example.
  • the superabsorbent polymer prepared by the above-described method is a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acid group; A surface crosslinking layer formed on the base resin powder, wherein the first crosslinking polymer comprises a second crosslinking polymer further crosslinked through a surface crosslinking agent; And hydrophilic silica particles dispersed on the surface crosslinking layer and having a contact angle of 10 ° or less with respect to water.
  • Such super-absorbent resin is spread on the surface cross-linked layer, it may further comprise a hydrophobic silica particles having a contact angle of 10 ° or less than 150 ° for water.
  • hydrophilic and / or hydrophobic silica particles may be included in the crosslinked structure in the surface crosslinked layer and dispersed, or may be present in the surface crosslinked layer.
  • Such superabsorbent polymers have hydrophilic and / or hydrophobic silica particles upon surface crosslinking, a base resin powder is prepared under the above-described predetermined conditions, and as the surface crosslinking process proceeds, hydrophilic and / or hydrophobicity on the surface crosslinking layer.
  • the silica particles may have a uniformly dispersed form, and furthermore, may exhibit excellent absorption performance with improved liquid permeability, gel strength and absorption rate.
  • Various physical properties of such a super absorbent polymer may be defined by respective property values described below.
  • the superabsorbent polymer may have a centrifugal water retention capacity (CRC) of 25 to 35 g / g, or 26 to 31 g / g.
  • CRC centrifugal water retention capacity
  • the superabsorbent values obtained by the method of the embodiment may exhibit excellent absorbency under no pressure.
  • the centrifugal water retention capacity (CRC) for the physiological saline can be calculated by the following formula 1 after absorbing the superabsorbent resin in physiological saline over 30 minutes:
  • W 0 (g) is the initial weight of superabsorbent polymer (g)
  • W ⁇ g) is absorbed by immersion in physiological saline for 30 minutes without using superabsorbent resin, and then centrifuge to 250G 3
  • the weight of the device measured after dehydration for a minute, W 2 (g) is absorbed by immersing the superabsorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, superabsorbent resin Including the measured device weight.
  • the superabsorbent polymer may have a pressure absorption capacity (AUP) of 24 to 30 g / g, or 24.2 to 27 g / g. As such, the superabsorbent polymer may exhibit excellent absorbency even under pressure.
  • AUP pressure absorption capacity
  • This pressurized absorbent capacity can be calculated according to Formula 2 after absorbing the superabsorbent resin in physiological saline under a pressurization of 0.7 psi over 1 hour:
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g ) Is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for 1 hour under a load (0.7 psi).
  • the superabsorbent polymer may have an EFFC of 24 to 28 g / g and a black color of 24.6 to 28 g / g.
  • CRC is the high-centrifuged for half an hour for a normal saline solution (0.9 weight-0 /.
  • Aqueous sodium chloride solution) of a water-absorbent resin exhibits an SAT correction
  • AUP represents the absorption capacity of the pressure for one hour under a 0.7psi for physiological saline solution (0.9 weight 0/0 aqueous sodium chloride solution) of the superabsorbent polymer.
  • the superabsorbent polymer may have excellent absorption performance such as basic absorption and absorption under pressure.
  • a super-absorbent resin mentioned above is induced Saline Flow (SFC) for a physiological saline solution of 30 to 160 1 (T 7 cm 3 s / g, or 85 to 160 10- 7 cm 3 's / g, or 85 To 120 ' 1 (T 7 cm 3' s / g.
  • SFC Saline Flow
  • the superabsorbent polymer may exhibit improved fluid permeability than previously known. This may include silica particles or the like in the surface crosslinking layer.
  • the surface crosslinking layer having a thickness of a predetermined level or more appears to be uniformly formed.
  • SFC physiological saline flow inducibility
  • the above-mentioned super-absorbent resin has such a high saline solution (0.9 weight 0/0 aqueous sodium chloride solution), after swelling by absorbing the horizontal direction, the gel strength of the superabsorbent polymer by using a rheometer for 1 hour, the water-absorbent resin (G When measuring '), the gel strength (G') can be 9,000 to 15,000 Pa, or 9,000 to 13,000 Pa.
  • the horizontal gel strength G ' can better reflect the excellent liquid permeability under the actual use environment of the super absorbent polymer.
  • the liquid permeability of the super absorbent polymer is generally included in sanitary materials such as diapers.
  • it can be determined to be more relevant depending on whether the force applied in the horizontal direction is excellent and whether it exhibits good shape retention and high gel strength.
  • the horizontal gel strength may well reflect the gel strength directly related to the liquid permeability. Can be. Therefore ;
  • the superabsorbent polymer having such a horizontal gel strength G 'satisfying the above-mentioned range exhibits excellent liquid permeability, it has been found that the superabsorbent polymer can be used very favorably in sanitary materials such as diapers.
  • the superabsorbent polymer obtained according to the method of the embodiment maintains excellent water absorption performance such as water retention capacity and pressure absorption capacity, and can achieve improved fluid permeability, gel strength and absorption rate. Therefore, hygiene materials such as diapers, in particular, ultra-thin hygiene materials having a reduced content of the peel can be used as appropriate.
  • a superabsorbent performance such as water-retaining capacity and pressure-absorbing capacity can be maintained excellent, and a superabsorbent polymer can be produced and provided with more improved fluid permeability, gel strength and absorption rate.
  • Such superabsorbent polymers have a high content of sanitary materials, especially diapers, such as diapers. Reduced ultra-thin hygiene and the like can be used as appropriate.
  • a hydrophobic silica particle was used as a coating liquid dispersed in a methylene chloride solvent at a concentration of 5 weight 0 /. After the coating solution was spin coated on the wafer, the contact angle was measured by dropwise dropping water on the coating layer. The measured contact angle is defined as the contact angle of the hydrophobic silica particles with respect to water, and the measured values are shown in Table 1 below.
  • hydrophilic silica particles except that a coating liquid dispersed in water at a concentration of 20 weight 0 /.
  • the particle diameters of the base resin powder and the super absorbent polymer used in the examples and the comparative examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • EDANA European Disposables and Nonwovens Association
  • CRC Centrifuge Retention Capacity
  • the resin of Examples and Comparative Examples W 0 (g, about 0.2g) after the insert uniformly in the envelope of the nonwoven fabric is sealed (se al), 0.9 at room temperature. It was immersed in the physiological saline solution which becomes the sodium chloride aqueous solution of the weight of 0 /. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. Moreover, after performing the same operation without using resin, the mass W ⁇ g at that time was measured.
  • W 0 (g) is the initial weight (g) of the super absorbent polymer
  • W ⁇ g is the weight of the device measured after immersion in physiological saline for 30 minutes without using a super absorbent polymer, and then dehydrated at 250 G for 3 minutes using a centrifuge,
  • W 2 (g) is the weight of the device, including the super absorbent polymer, after absorbing the superabsorbent polymer in physiological saline at room temperature for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • AUP Absorbing under Pressure
  • AUP Absorbency under Pressure
  • a glass filter having a diameter of 125 mm and a thickness of 5 mm was placed on the inside of the petri dish having a diameter of 150 mm, and the physiological saline composed of 0.90 weight 0 / ° sodium chloride was brought to the same level as the upper surface of the glass filter.
  • One sheet of filter paper 120 mm in diameter was loaded thereon.
  • the measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g) is the sum of the weight of the superabsorbent resin and the device weight capable of applying a load to the superabsorbent resin after absorbing physiological saline into the superabsorbent resin for 1 hour under a load (0.7 psi).
  • SFC saline flow conductivity
  • the rheometer is used to identify the shear strain in a linear viscoelastic regime with constant storage modulus and loss modulus at an oscilation frequency of 10 rad / s with increasing shear strain. It was. Generally in a swollen superabsorbent polymer sample, 0.1% shear strain is within the linear viscoelastic state section.
  • the storage modulus and the loss modulus of the superabsorbent polymer swollen for 60 seconds at the shear strain value of the linear viscoelastic state section were measured, respectively.
  • the storage modulus values obtained at this time were averaged to determine the horizontal gel strength.
  • the loss modulus is measured to be a very small value compared to the storage modulus.
  • the monomer composition was irradiated with light for 1 minute, and the polymerization reaction was carried out for 3 minutes by raising the temperature of the glass reaction vessel to 75 ° C.
  • the polymer obtained as a result of the polymerization was passed through a hole having a diameter of about 13 mm using a meat chopper to obtain a crumpled coarse polymer.
  • the polymer in the crumb state was dried in an oven capable of transferring air volume up and down. Specifically, the hot air of 18C C was flowed downwardly upwards for 15 minutes, and further upwards downwards for 15 minutes, thereby uniformly drying the polymer in the crumb state, and the water content of the final dried polymer was about 2% by weight. It adjusted to the following.
  • the dried polymer was pulverized with a grinder and then classified to obtain a base resin powder having a particle size of about 150 to 850.
  • the base resin powder was found to gradually increase in temperature at an initial temperature near 18C C, and was manipulated to reach a reaction temperature of 190 ° C. after 30 minutes. After reaching this reaction maximum temperature, the final prepared superabsorbent polymer sample was taken after further reaction for 65 minutes. After the surface crosslinking process, using a sieve (sieve) A surface crosslinked superabsorbent polymer having a particle diameter of about 150 to 850 was obtained.
  • Example 2 A surface crosslinked superabsorbent polymer having a particle diameter of about 150 to 850 was obtained.
  • Example 1 For 100 g of the base resin powder obtained in the same manner as in Example 1, 0.02 g of hydrophobic silica particles of Aerosil 200, 0.02 g of hydrophilic silica particles of ST-O, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 Example 1 except that a surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used. A super absorbent polymer was prepared in the same manner.
  • Example 3 After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve.
  • Example 3 a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve.
  • the particle size is about 150 to about 150 using a sieve.
  • Example 1 For 100 g of the base resin powder obtained in the same manner as in Example 1, 0.02 g of hydrophobic silica particles of Aerosil 200, 0.06 g of hydrophilic silica particles of ST-O, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 Example 1 except that a surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used. A super absorbent polymer was prepared in the same manner.
  • the particle size is about 150 to about 150 using a sieve.
  • Example 1 For 100 g of the base resin powder obtained in the same manner as in Example 1, except that a surface treatment liquid containing 0.06 g of Aerosil 200 hydrophobic silica particles, 1.5 g of ethylene carbonate, and 4.0 g of water as a solvent was formed and used. was prepared in the same manner as in Example 1.
  • a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve.
  • the physical properties of CRC, AUP, SFC and gel strength were measured and evaluated for the superabsorbent polymers of Examples 1 to 7, Comparative Examples 1 and 2, and the measured physical properties are shown in Table 2 below.
  • the EFFC value of Equation 1 was calculated from the measured CRC and AUP and shown in Table 2 together.

Abstract

The present invention relates to a method for preparing a superabsorbent resin, which maintains excellent absorption performance and exhibits improved liquid permeability and absorption rate. The method for preparing a superabsorbent resin may comprise the steps of: performing cross-linking polymerization on a water-soluble ethylenically unsaturated monomer having an at least partially neutralized acidic group to form a hydrogel polymer comprising a cross-linked polymer, in the presence of an internal cross-linking agent; drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder; and performing surface cross-linking on the base resin powder by using a surface cross-linking liquid containing a surface cross-linking agent of an alkylene carbonate having 2 to 5 carbon atoms, in the presence of hydrophobic silica particles having a contact angle of greater than 10° and smaller than or equal to 150° with respect to water and hydrophilic silica particles having a contact angle of smaller than or equal to 10° with respect to water.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
고흡수성 수지의 제조 방법, 및 고흡수성 수지  Method for producing super absorbent polymer, and super absorbent polymer
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용 Cross Citation with Related Application (s)
본 출원은 2016년 3월 1 1일자 한국 특허 출원 제 10-2016-0029834호 및 2016년 8월 12일자 한국 특허 출원 계 10-2016-0103024호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korea Patent Application No. 10-2016-0029834 dated March 1, 2016 and Korea Patent Application No. 10-2016-0103024 dated August 12, 2016, the corresponding Korean patent application All content disclosed in these references is included as part of this specification.
본 발명은 우수한 흡수 성능을 유지하면서도, 보다 향상된 통액성, 겔 강도 및 흡수 속도 등을 나타내는 고흡수성 수지 및 의 제조 방법에 관한 것이다.  The present invention relates to a superabsorbent polymer and a method for preparing the same while maintaining excellent absorption performance and exhibiting improved liquid permeability, gel strength and absorption rate.
【배경기술】  Background Art
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, a super absorbent material (SAM) and an absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성 (permeability)을 나타낼 필요가 있다.  In most cases, such superabsorbent polymers are widely used in the field of sanitary products such as diapers and sanitary napkins. For this purpose, it is necessary to exhibit high absorption of moisture, and the absorbed moisture must not escape the external pressure. In addition, it is necessary to maintain the shape well even in the state where the water is absorbed by volume expansion (swelling) to exhibit excellent permeability.
특히, 최근 들아보다 얇은 두깨 및 가벼운 중량을 가지면서도, 우수한 성능을 나타내는 기저귀를 제공하기 위한 노력이 계속됨에 따라, 통액성 및 흡수 속도 등 흡수 특성이 보다 향상된 고흡수성 수지를 제공하는데 많은 관심이 집중되고 있다. 이와 같은 빠른 흡수 속도 등 우수한 흡수 특성과, 향상된 통액성을 달성하기 위해서는, 고흡수성 수지 입자, 특히 표면 가교층의 표면 강도가 보다 단단하여 높은 겔 강도를 나타낼 필요가 있고, 이로 인해 소변이 기저귀의 흡수체 코어에 고르고 빠르게 분산될 필요가 있게 된다. In particular, as efforts have recently been made to provide a diaper that has a thinner thickness and a lighter weight, and exhibits superior performance, many efforts have been made to provide a superabsorbent polymer having improved absorption properties such as liquid permeability and absorption rate. Attention is focused. In order to achieve excellent absorption characteristics such as a high absorption rate and improved liquid permeability, the surface strength of the superabsorbent polymer particles, particularly the surface crosslinked layer, needs to be harder and thus high gel strength is required. It needs to be evenly and quickly dispersed in the absorbent core.
그러나, 이전에 알려진 방법으로 겔 강도를 높이고 통액성 등을 향상시키고자 할 경우, 기본적인 흡수 성능 (무가압하 및 가압하 흡수량) 자체가 크게 저하되는 단점이 있었다.  However, in the case of increasing the gel strength and improving the liquid permeability by a previously known method, there was a disadvantage in that the basic absorption performance (absorption under pressure and absorption under pressure) is greatly reduced.
이로 인해, 기본적인 흡수 성능을 우수하게 유지하면서도, 겔 강도, 통액성 및 흡수 속도 등이 보다 향상된 고흡수성 수지의 제공을. 가능케 하는 기술의 개발이 계속적으로 요구되고 있다.  As a result, it is possible to provide a super absorbent polymer with improved gel strength, liquid permeability and absorption rate while maintaining excellent basic absorption performance. There is a continuing need for the development of technologies that make this possible.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 우수한 흡수 성능을 유지하면서도, 보다 향상된 통액성, 겔 강도 및 흡수 속도 등을 나타내는 고흡수성 수지 및 의 제조 방법을 제공하는 것이다.  The present invention is to provide a method for producing a super absorbent polymer, which exhibits improved fluid permeability, gel strength, absorption rate, and the like while maintaining excellent absorption performance.
【과제의 해결 수단】  [Measures of problem]
본 발명은 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;  The present invention comprises the steps of cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a part of a neutralized acidic group in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a crosslinked polymer;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And
물에 대해 10° 초과 150° 이하의 접촉각을 갖는 소수성 실리카 입자 및 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법을 제공한다. Surface crosslinking comprising a surface crosslinking agent of alkylene carbonates having 2 to 5 carbon atoms in the presence of hydrophobic silica particles having a contact angle of greater than 10 ° to 150 ° with respect to water and hydrophilic silica particles having a contact angle of 10 ° or less with respect to water. It provides a method for producing a super absorbent polymer comprising the step of surface crosslinking the base resin powder using a liquid.
본 발명은 또한, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층; 및 The present invention also provides a resin composition comprising: a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acid group; Formed on the base resin powder, and the first crosslinked polymer A surface crosslinking layer comprising a second crosslinked polymer further crosslinked via a surface crosslinker; And
상기 표면 가교층 상에 분산되어 있고, 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자를 포함하는 고흡수성 수지로서, As a super absorbent polymer, which is dispersed on the surface crosslinking layer and comprises hydrophilic silica particles having a contact angle of 10 ° or less with respect to water,
하기 식 1로 표시되는 EFFC가 24 내지 28g/g이고,  EFFC represented by the following formula 1 is 24 to 28g / g,
생리 식염수 (0.685 중량0 /。 염화 나트륨 수용액)의 흐름 유도성 (SFC; 1CT7cm3 s/g)이 85 내지 160 ( 1(r7cm3 s/g)이며, Flow inducibility (SFC; 1CT 7 cm 3 s / g) of physiological saline solution (0.685 weight 0 /. Aqueous sodium chloride solution) is 85 to 160 (1 (r 7 cm 3 s / g),
겔 강도 (G')가 9,000 내지 15,000 Pa인 고흡수성 수지를 제공한다: Provided is a super absorbent polymer having a gel strength (G ′) of 9,000 to 15,000 Pa:
[식 1] [Equation 1]
EFFC = (CRC + AUP)/2 상기 식 1에서,  EFFC = (CRC + AUP) / 2
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며, AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타내고, CRC is the high indicates a centrifugation beam SAT for half an hour for a normal saline solution (0.9 weight 0/0 aqueous sodium chloride solution) of a water-absorbent resin, AUP is the super-absorbent resin of the physiological saline (0.9 wt. 0 /. Aqueous solution of sodium chloride Pressurized absorption capacity for 1 hour under 0.7 psi for
상기 겔 강도 (G')는 상기 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 측정한 고흡수성 수지의 수평 방향 겔 강도를 나타낸다. 이하, 발명의 구체적인 구현예에 따른 고흡수성 수지 및 이의 제조 방법 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다. The gel strength (G ′) is the horizontal gel strength of the superabsorbent polymer measured using a rheometer after swelling by absorbing physiological saline solution (0.9 wt. 0 /. Sodium chloride solution) for 1 hour to the superabsorbent polymer. Indicates. Hereinafter, a super absorbent polymer according to a specific embodiment of the present invention and a manufacturing method thereof will be described in more detail. However, this is presented as an example of the invention, thereby not limited to the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유''라 함은 어떤 구성요소 (또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. 발명의 일 구현예에 따르면, 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; In addition, unless otherwise indicated throughout the specification, "including" or "containing" refers to including any component (or component) without particular limitation, and adding other components (or component). Cannot be interpreted as excluding. According to one embodiment of the invention, cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a part of a neutralized acidic group in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a crosslinked polymer;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And
물에 대해 10° 초과 150° 이하의 접촉각을 갖는 소수성 실리카 입자 및 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법이 제공된다. Surface crosslinking comprising a surface crosslinking agent of alkylene carbonate having 2 to 5 carbon atoms in the presence of hydrophobic silica particles having a contact angle of greater than 10 ° to 150 ° with respect to water and hydrophilic silica particles having a contact angle of 10 ° or less with respect to water Provided is a method for producing a super absorbent polymer, the method comprising surface crosslinking the base resin powder using a liquid.
본 발명자들이 고흡수성 수지의 겔 강도, 통액성 및 흡수 속도를 '보다 향상시키기 위해 계속적으로 연구한 결과, 고흡수성 수지의 제조 공정의 조건, 예를 들어, 후술하는 내부 가교제의 종류 및 함량과 중합 조건을 최적화하여 높은 겔 강도를 갖는 베이스 수지 분말을 얻고, 특정한 표면 가교 조건 (예를 들어, 특정한 실리카 입자, 보다 구체적으로 2종 이상의 친수성 및 소수성 실리카 입자를 표면 가교시에 동시 또는 분리 사용하는 등) 하에 표면 가교를 진행함에 따라, 이전에 알려진 것보다 크게 향상된 겔 강도, 통액성 및 흡수 속도를 나타내면서도 우수한 흡수 성능 (무가압하 및 가압하 흡수량; 후술하는 CRC, AUP 및 EFFC 등)을 유지하는 고흡수성 수지가 제공될 수 있음을 확인하였다. The present inventors have super-absorbent resin of the gel strength, barrel-component, and the absorption rate a 'result of continuous studies in order to further improve, and the conditions of the production step of the water-absorbent resin, for example, the type of the internal cross-linking agent to be described later and content of the polymerization Conditions are optimized to obtain a base resin powder having a high gel strength, specific surface crosslinking conditions (e.g., simultaneous or separate use of certain silica particles, more specifically two or more hydrophilic and hydrophobic silica particles upon surface crosslinking, etc.). As the surface crosslinking proceeds under), it shows a significantly improved gel strength, permeability and absorption rate than previously known, while maintaining excellent absorption performance (absorption under pressure and under pressure; CRC, AUP and EFFC, etc. to be described later) It has been found that superabsorbent resins can be provided.
특히, 소정의 접촉각 범위로 정의되는 특정한 실리카 입자를 표면 가교시에 사용하고, 일정한 승온 조건 등으로 표면 가교를 진행함에 따라, 상기 높은 겔 강도를 갖는 베이스 수지 분말 상에 일정 수준 이상의 두께를 갖는 표면 가교층이 균일하게 형성될 수 있는 것으로 보인다. 이는 특정한 실리카 입자가 표면 가교층의 가교 구조 내에 균일하게 포함되어 이러한 가교 구조를 더욱 단단히 할 수 있을 뿐 아니라, 표면 가교시 상기 승온 조건 하에서 각 실리카 입자 주위로 표면 가교 반응이 적절히 일어나 적절한 가교 구조를 형성될 수 있기 때문으로 예측된다.  In particular, the surface having a predetermined level or more on the base resin powder having a high gel strength as the specific silica particles defined in a predetermined contact angle range is used during the surface crosslinking, and the surface crosslinking is carried out under constant temperature raising conditions or the like. It appears that the crosslinking layer can be formed uniformly. This is because the specific silica particles are uniformly included in the crosslinking structure of the surface crosslinking layer to make the crosslinking structure more firm, and the surface crosslinking reaction occurs appropriately around each silica particle under the above elevated temperature conditions during surface crosslinking, thereby providing an appropriate crosslinking structure. It is expected because it can be formed.
이에 따라, 상기 표면 가교층이 고흡수성 수지 입자 각각의 겔 강도를 더욱 높일 수 있으므로, 일 구현예의 고흡수성 수지는 높은 겔 강도와 함께, 크게 향상된 SFC 및 통액성과, 이에 따른 향상된 흡수 속도를 나타낼 수 있다. 또한, 일 구현예의 방법으로 제조된 고흡수성 수지는 내부 가교 구조 및 표면 가교 구조가 최적화됨에 따라, 상대적으로 높은 EFFC(CRC 및 AUP의 산술 평균 값) 로 정의되는 우수한 흡수 성능을 유지할 수 있다. Accordingly, the surface crosslinking layer may further increase the gel strength of each of the superabsorbent polymer particles, so that the superabsorbent polymer of one embodiment may have high gel strength. Significantly improved SFC and liquid permeability, and thus improved absorption rate. In addition, the superabsorbent polymer prepared by the method of the embodiment can maintain excellent absorption performance defined by relatively high EFFC (arithmetic mean value of CRC and AUP) as the internal crosslinking structure and the surface crosslinking structure are optimized.
따라서, 일 구현예의 고흡수성 수지는 이전에 알려진 것보다 크게 향상된 통액성, 겔 강도 및 흡수 속도와 함께, 우수한 흡수 성능을 나타냄에 따라, 펄프의 함량이 감소된 초박형 기저귀 등 각종 위생재에 매우 바람직하게 적용될 수 있다. 이하, 일 구현예의 고흡수성 수지의 제조 방법에 대해 보다 구체적으로 설명하기로 한다.  Accordingly, the superabsorbent polymer of one embodiment is highly desirable for various sanitary materials, such as ultra-thin diapers with reduced pulp content, as it exhibits excellent absorption performance with significantly improved fluidity, gel strength and absorption rate than previously known. Can be applied. Hereinafter, a method of preparing the super absorbent polymer of one embodiment will be described in more detail.
통상 고흡수성 수지는, 예를 들어, 적어도 일부의 카르복시산이 나트륨염 등으로 중화된 아크릴산 및 이의 나트륨염의 흔합물 등과 같이, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제의 존재 하에 중합시킨 후, 이를 건조, 분쇄 및 분급하고 표면 가교하여 제조될 수 있다. 구체적인 예에서, 상기 일 구현예의 제조 방법에서는, 상기 고흡수성 수지가 상기 단량체를 내부 가교제의 존재 하에 가교 중합시켜 베이스 수지 분말을 얻은 후, 소정의 표면 가교제와, 소수성 및 친수성 실리카 입자의 존재 하에 상기 베이스 수지 분말을 표면 가교시킴으로서 얻을 수 있다.  Superabsorbent polymers typically contain a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized in the presence of an internal crosslinking agent, such as, for example, a mixture of acrylic acid and its sodium salt in which at least some carboxylic acid is neutralized with sodium salt or the like. After polymerization, it can be prepared by drying, pulverizing and classifying and surface crosslinking. In a specific example, in the manufacturing method of the embodiment, the superabsorbent polymer crosslinks the monomer in the presence of an internal crosslinking agent to obtain a base resin powder, and then, in the presence of a predetermined surface crosslinking agent and hydrophobic and hydrophilic silica particles. It can be obtained by surface crosslinking the base resin powder.
특히, 내부 가교제의 종류 및 함량과 중합 조건 등을 조절하여 높은 겔 강도를 갖는 베이스 수지 분말을 얻고, 예를 들어, 특정한 실리카 입자, 보다 구체적으로 물에 대한 접촉각 범위로 정의되는 친수성 및 소수성 실리카 입자를 사용하여 표면 가교를 진행함에 따라, 상술한 우수한 물성 및 효과 등을 나타내는 고흡수성 수지가 제조될 수 있음이 확인되었다. 바람직한 일 예에서, 이러한 일 구현예의 제조 방법에서는, 특징적으로 이하와 같은 친수성 실리카 입자, 보다 구체적으로 이하와 같은 친수성 및 소수성 실리카 입자를 표면 가교시에 사용할 수 있다.  In particular, by adjusting the type and content of the internal crosslinking agent and polymerization conditions, to obtain a base resin powder having a high gel strength, for example, specific silica particles, more specifically hydrophilic and hydrophobic silica particles defined by the contact angle range to water As the surface crosslinking proceeds using, it was confirmed that a super absorbent polymer having excellent properties and effects as described above can be produced. In a preferred embodiment, in the production method of this embodiment, the following hydrophilic silica particles, more specifically, the hydrophilic and hydrophobic silica particles as follows can be used at the time of surface crosslinking.
먼저, 상기 일 구현예의 제조 방법에서는, 표면 가교시 물에 대해 10° 초과, 또는 10° 초과 150° 이하, 보다 적절하게는 12° 내지 150° 의 접촉각을 갖는 소수성 실리카 입자와, 물에 대해 10° 이하, 또는 1 내지 10° 의 접촉각을 갖는 친수성 실리카 입자를 사용할 수 있다. 이에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지는 상기 베이스 수지 분말의 표면 위, 예를 들어, 표면 가교층 상에 분산되어 있는 친수성 실리카 입자 및 /또는 소수성 실리카 입자를 더 포함할 수 있다. 이 때, 상기 친수성 실리카 입자 또는 소수성 실리카 입자가 표면 가교층 상에 분산되어 있다 함은 이들 각각의 실리카 입자가 상기 표면 가교층의 가교 구조 내에 포함 /분산되어 있거나, 상기 표면 가교층 표면에 박혀 있음을 의미할 수 있다. First, in the one embodiment the manufacturing method, when the surface cross-linked more than 10 ° for water and 10 ° or greater than 150 ° or less, and more suitably from 12 ° to 150 ° of the And the hydrophobic silica particles having a contact angle, it is possible to use hydrophilic silica particles having a contact angle of 10 ° or less, or from 1 to 10 ° against water. Accordingly, the superabsorbent polymer prepared by the method of the embodiment may further include hydrophilic silica particles and / or hydrophobic silica particles dispersed on the surface of the base resin powder, for example, on the surface crosslinking layer. In this case, the hydrophilic silica particles or the hydrophobic silica particles are dispersed on the surface crosslinking layer means that each of these silica particles are contained / dispersed in the crosslinked structure of the surface crosslinking layer or embedded in the surface of the surface crosslinking layer. It may mean.
한편, 구체적인 일 예에서, 상기 소수성 실리카 입자는 이하에 더욱 상세히 설명하는 바와 같이, 표면 가교액에 포함되어 처리되거나, 흑은 표면 가교 전에 상기 베이스 수지 분말 상에 별도로 흔합 및 처리될 수도 있다. 따라서, 이러한 소수성 실리카 입자는, 예를 들어, 적어도 일부가 베이스 수지 분말의 표면 위, 예를 들어, 상기 표면 가교층 내에 존재할 수 있으며ᅳ 이의 일부는 베이스 수지 분말의 표면에 박힌 상태로 존재할 수 있다. 또한, 상기 친수성 실리카 입자는 상기 표면 가교층 상에 분산되어, 이에 포함된 가교 구조 내에 존재하거나, 그 일부는 표면 가교층 표면에 박힌 상태로 존재할 수 있다.  On the other hand, in one specific example, the hydrophobic silica particles may be included in the surface crosslinking solution and treated as described in more detail below, or may be separately mixed and treated on the base resin powder before the black surface crosslinking. Thus, such hydrophobic silica particles may, for example, be present at least in part on the surface of the base resin powder, for example in the surface crosslinking layer, and a portion thereof may be embedded in the surface of the base resin powder. . In addition, the hydrophilic silica particles may be dispersed on the surface crosslinking layer and present in the crosslinking structure included therein, or a part thereof may be embedded in the surface of the surface crosslinking layer.
상술한 방법으로 소수성 및 친수성 실리카 입자를 처리함에 따라, 이들 친수성 및 /또는 소수성 실리카 입자가 표면 가교액을 효율적으로 둘러쌀 수 있다. 이 때문에, 표면 가교액이 국부적으로 베이스 수지 분말의 일부에만 빠르게 흡수되는 것을 억제할 수 있고, 베이스 수지 분말 전면에 걸쳐 균일하게 도포될 수 있다. 따라서, 표면 가교가 균일하게 이루어질 수 있으며, 이들 실리카 입자 역시 표면 가교층 상에 균일하게 분포될 수 있다. 이와 같이 통액성 향상을 위한 친수성 및 /또는 소수성 실리카 입자가 적어도 표면 가교층 상에 존재하고, 표면 가교액이 균일하게 도포되어 표면 가교가 베이스 수지 분말 위에서 균일하게 이루어짐에 따라, 이에 의한 향상된 통액성 등 우수한 물성이 장기간 동안 발현 및 유지될 수 있다.  By treating the hydrophobic and hydrophilic silica particles in the above-described manner, these hydrophilic and / or hydrophobic silica particles can effectively surround the surface crosslinking liquid. For this reason, it can suppress that a surface crosslinking liquid is absorbed rapidly only to a part of base resin powder locally, and can apply | coat uniformly over the base resin powder whole surface. Therefore, surface crosslinking can be made uniform, and these silica particles can also be uniformly distributed on the surface crosslinking layer. As such, hydrophilic and / or hydrophobic silica particles for improving the liquid permeability are present on at least the surface crosslinking layer, and the surface crosslinking solution is uniformly applied so that the surface crosslinking is uniformly performed on the base resin powder, thereby improving liquid permeability. Etc. Excellent physical properties can be expressed and maintained for a long time.
상기 소수성 실리카 입자로는 상술한 접촉각 범위를 갖는 상용화된 소수성 실리카 입자의 1종 이상을 별다른 제한 없이 모두 사용할 수 있고, 보다 적절하게는 상기 소수성 실리카 입자를 표면 가교액에 포함시켜 사용할 경우, 표면 가교액에 대한 분산성 등의 측면에서 10° 초과 50° 이하의 접촉각을 갖는 입자를 사용하거나, 50° 내지 150° 이하의 접촉각을 갖는 입자를 별도의 분산제와 함께 사용할 수도 있다. As the hydrophobic silica particles, at least one of the commercialized hydrophobic silica particles having the above-described contact angle range may be used without any particular limitation, and more preferably, the hydrophobic silica particles may be included in the surface crosslinking solution. When used, particles having a contact angle of more than 10 ° and 50 ° or less may be used in view of dispersibility to the surface crosslinking liquid, or particles having a contact angle of 50 ° to 150 ° or less may be used together with a separate dispersant.
그리고, 상기 소수성 실리카 입자를 표면 가교 전에 베이스 수지 분말에 별도로 첨가 및 흔합하여 처리할 경우, 보다 효과적인 통액성 및 흡수 속도의 향상 측면에서 50° 내지 150° 이하의 접촉각을 갖는 입자를 보다 바람직하게 사용할 수 있다. 또한, 상기 친수성 실리카 입자로는 상기 10° 이하의 접촉각 범위를 갖는 상용화된 수분산성 실리카 입자의 1종 이상을 별다른 제한 없이 모두 사용할 수 있다. In addition, when the hydrophobic silica particles are added and mixed separately to the base resin powder before the surface crosslinking, the particles having a contact angle of 50 ° to 150 ° or less may be more preferably used in terms of more effective fluid permeability and absorption rate. Can be. In addition, as the hydrophilic silica particles, one or more kinds of commercially available water-dispersible silica particles having a contact angle range of 10 ° or less may be used without any particular limitation.
보다 구체적으로, 상기 소수성 실리카 입자로는 상품명: DM30S 또는 More specifically, the hydrophobic silica particles are trade name: DM30S or
Aerosil 등으로 되는 소수성 실리카 입자를 적절히 사용할 수 있고, 상기 친수성 실리카 입자로는 상품명: ST-O 또는 ST-AK 등으로 되는 수분산성 실리카 입자를 적절히 사용하여, 고흡수성 수지의 통액성이나 흡수 속도 등을 보다 향상시킬 수 있다. Hydrophobic silica particles made of Aerosil or the like can be suitably used. As the hydrophilic silica particles, water-dispersible silica particles made of trade name: ST-O or ST-AK or the like can be used as appropriate, and the liquid permeability and absorption rate of the superabsorbent polymer, etc. Can be further improved.
그리고, 상기 친수성 및 소수성 실리카 입자를 각각 구분하는 물에 대한 접촉각은 유리 기판 상에서 측정된 각 실리카 입자의 물에 대한 접촉각으로 정의될 수 있다.  In addition, a contact angle with respect to water for separating the hydrophilic and hydrophobic silica particles may be defined as a contact angle with respect to water of each silica particle measured on a glass substrate.
한편, 일 구현예의 고흡수성 수지의 제조 방법에서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N- 치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2- 히드록시프로필 (메트)아크릴레이트,  On the other hand, in the manufacturing method of the super absorbent polymer of one embodiment, the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryl Anionic monomers and salts thereof of loylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2- (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
메록시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이중에서도, 아크릴산 또는 이의 염, 예를 들어, 아크릴산의 적어도 일부가 중화된 아크릴산 및 /또는 이의 나트륨염 등의 알칼리 금속염올 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산 ¾ 이의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산의 적어도 일부를 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다. Nonionic hydrophilic containing monomers of methoxypolyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate; And an amino group-containing unsaturated monomer of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and its quaternized product; It may include. Of these, acrylic acid or salts thereof, such as at least a portion of acrylic acid Alkali metal salts such as neutralized acrylic acid and / or sodium salt thereof may be used, and the use of such monomers enables the production of superabsorbent polymers having better physical properties. When the alkali metal salt of acrylic acid ¾ or the like is used as a monomer, at least a portion of acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
또한, 이러한 단량체를 가교 중합하기 위한 내부 가교제로는 탄소수 8 내지 12의 비스 (메트)아크릴아미드, 탄소수 2 내지 10의 폴리을의 폴리 (메트)아크릴레이트 및 탄소수 2 내지 10의 플리올의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 보다 구체적으로, 상기 내부 가교제로는 폴리에틸렌글리콜 디 (메트)아크릴레이트, 폴리프로필렌옥시 디 (메트)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트 및 트리메티를 트리아크릴레이트로 이루어진 군에서 선택된 하나 이상의 폴리을의 폴리 (메트)아크릴레이트를 적절히 사용할 수 있다. 이 중에서도, 상기 폴리에틸렌글리콜 디 (메트)아크릴레이트 등의 내부 가교제를 사용함에 따라, 내부 가교 구조가 최적화되고 높은 겔 강도를 갖는 베이스 수지 분말 등이 얻어질 수 있고, 이를 통해 우수한 물성을 층족하는 고흡수성 수지가 보다 적절히 얻어질 수 있다.  In addition, the internal crosslinking agent for crosslinking polymerization of such monomers includes bis (meth) acrylamide having 8 to 12 carbon atoms, poly (meth) acrylate having 2 to 10 carbon atoms, and poly (meth) having a polyol having 2 to 10 carbon atoms. One or more types selected from the group consisting of allyl ether can be used. More specifically, the internal crosslinking agent is one selected from the group consisting of polyethylene glycol di (meth) acrylate, polypropyleneoxy di (meth) acrylate, glycerin diacrylate, glycerin triacrylate, and trimethy triacrylate. The poly (meth) acrylate of the above poly can be used suitably. Among these, as the internal crosslinking agent such as polyethylene glycol di (meth) acrylate is used, an internal crosslinked structure can be optimized and a base resin powder having a high gel strength can be obtained. The water absorbent resin can be obtained more appropriately.
또, 상기 특정 내부 가교제를 단량체에 포함된 미중화 상태의 아크릴산 1몰을 기준으로, 0.005 몰 이상, 흑은 0.005 내지 0.1 몰, 혹은 0.005 내지 0.05 몰 (흑은 아크릴산의 100 중량부 대비 0.3 중량부 이상, 혹은 0.3 내지 0.6 중량부)의 비율로 사용할 수 있다. 이러한 내부 가교제의 함량 범위에 따라, 표면 가교 전의 겔 강도가 높은 베이스 수지 분말을 적절히 얻을 수 있고, 일 구현예의 방법을 통해 우수한 물성을 갖는 고흡수성 수지를 얻을 수 있다.  Further, the specific internal crosslinking agent is 0.005 mol or more, black is 0.005 to 0.1 mol, or 0.005 to 0.05 mol (black is 0.3 parts by weight relative to 100 parts by weight of acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. Or 0.3 to 0.6 parts by weight). According to the content range of the internal crosslinking agent, a base resin powder having a high gel strength before surface crosslinking can be appropriately obtained, and a superabsorbent polymer having excellent physical properties can be obtained through the method of one embodiment.
그리고, 상기 내부 가교제를 사용하여 단량체를 가교 중합시킨 후에는, 건조, 분쇄 및 분급 등의 공정을 거쳐 베이스 수지 분말을 얻을 수 있는데, 이러한 분쇄 및 분급 등의 공정을 통해, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지는 150 내지 850 1의 입경을 갖도록 제조 및 제공됨이 적절하다. 보다 구체적으로 상기 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지의 적어도 95 중량0 /。 이상이 150 내지 850 rni의 입경을 가지며, 150 미만의 입경을 갖는 미분이 3 중량0 /0 미만, 혹은 1 .5 중량0 /。 미만으로 될 수 있다. After the crosslinking polymerization of the monomer using the internal crosslinking agent, a base resin powder can be obtained through drying, pulverization, and classification, and the like, and the base resin powder and The superabsorbent polymer obtained is suitably manufactured and provided to have a particle size of 150 to 850 1. More specifically, the base resin powder and And obtained therefrom is at least 95 parts by weight 0 / of the water absorbent resin. This has a particle size of more than 150 to 850 rni, 3 a differential having a particle size of less than 150 parts by weight 0 / less than 0, or 1 to 0.5 is less than 0 wt. /. Can be.
이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 상기 고흡수성 수지가 이미 상술한 우수한 물성을 보다 적절히 나타낼 수 있다.  Thus, as the particle size distribution of the base resin powder and the super absorbent polymer is adjusted to a preferred range, the superabsorbent polymer can more properly exhibit the excellent physical properties already described above.
한편, 이하에서는 상술한 일 구현예의 방법에 대해 각 단계별로 보다 구체적으로 설명하기로 한다. 다만, 이미 상술한 단량체, 내부 가교제, 실리카 입자 및 입경 분포 등에 대해서는, 중복 설명을 생략하고, 나머지 공정 구성 및 조건을 단계별로 설명하기로 한다.  On the other hand, it will be described in more detail in each step with respect to the method of the embodiment described above. However, the above-described monomer, internal crosslinking agent, silica particles, particle size distribution, and the like will not be repeated, and the remaining process configurations and conditions will be described step by step.
상기 고흡수성 수지의 제조 방법은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합개시제를 포함하는 단량체 조성물에 열 중합 또는 광 중합을 진행하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄 및 분급하여 베이스 수지 분말올 형성하는 단계; 및 상기 소수성 및 친수성 실리카 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계를 포함할 수 있다.  The method of preparing a superabsorbent polymer may include forming a hydrogel polymer including a crosslinked polymer by thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator; Drying the hydrogel polymer; Grinding and classifying the dried polymer to form a base resin powder; And surface crosslinking the base resin powder in the presence of the hydrophobic and hydrophilic silica particles using a surface crosslinking solution including a surface crosslinking agent of alkylene carbonate having 2 to 5 carbon atoms.
이러한 제조 방법에서, 상기 단량체 조성물은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는데, 상기 단량체의 종류에 관해서는 이미 상술한 바와 같다.  In such a production method, the monomer composition includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator, and the type of the monomer is as described above.
또, 이러한 조성물 중에서, 상기 수용성 에틸렌계 불포화 단량체의 농도는, 상술한 각 원료 물질 및 용매를 포함하는 전체 단량체 조성물에 대해 20 내지 60 중량0 /。, 혹은 40 내지 50 중량 0/。로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔 중합체의 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. Further, in such a composition, the concentration of the water-soluble ethylenically unsaturated monomer may be 20 to 60 weight 0 /. Or 40 to 50 weight 0 /. With respect to the total monomer composition including each of the above-described raw materials and solvents. In consideration of polymerization time and reaction conditions, the concentration may be appropriate. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, if the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Phase problems may occur and the physical properties of the super absorbent polymer may be reduced.
또한, 상기 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. In addition, the polymerization initiator is generally used for the production of superabsorbent polymers. It will not specifically limit, if it is used.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation of ultraviolet radiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( α - aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸- 벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p1 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone can be used at least one selected from the group consisting of. Meanwhile, as an example of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . A wider variety of photoinitiators are well specified in Reinhold Schwalm's book "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p1 15, and are not limited to the examples described above.
· 상기 광중합 개시제는 상기 단량체 조성물에 대하여 0.01 내지 1 .0 중량0 /。의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. The photopolymerization initiator may be included in a concentration of 0.01 to 1.0 weight 0 /. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈^으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S2O8), 과황산칼륨 (Potassium persulfate; K2S2O8), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N- 디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochloride), 2-In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbine. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K2S 2 O 8 ), and ammonium persulfate ((NH 4 ) 2 S 2 0 8 ), And examples of azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2, 2-azobis -(N, N- Isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4'4-아조비스 -(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981 )', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. (Carbamoylazo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [ 2- (2-imidazolin-2-yl) propane] dihydrochloride), 4'4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)), and the like. More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p203, and are not limited to the examples described above.
상기 열중합 개시제는 상기 단량체 조성물에 대하여 0.001 내지 0.5 중량%의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of 0.001 to 0.5% by weight based on the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
그리고, 상기 단량체 조성물에 함께 포함되는 내부 가교제의 종류에 대해서는 이미 상술한 바와 같으며, 이러한 내부 가교제는 상기 단량체 조성물에 대하여 0.01 내지 0.5 중량0 /。의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. 또한, 이미 상술한 바와 같이, 상기 내부 가교제는 단량체 중에 포함된 미중화 상태의 아크릴산 1몰을 기준으로, 0.005 몰 이상, 혹은 0.005 내지 0.1 몰, 혹은 0.005 내지 0.05 몰 (혹은 아크릴산의 100 중량부 대비 0.3 중량부 이상, 혹은 0.3 내지 0.6 중량부)의 비율로 사용될 수 있다. 이러한 내부 가교제가 이러한 함량 범위로 사용됨에 따라, 베이스 수지 분말의 높은 겔 강도가 적절히 달성될 수 있고, 이를 사용해 이미 상술한 일 구현예의 물성을 보다 적절히 층족하는 고흡수성 수지가 제조될 수 있다. 또, 상기 단량체 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다. In addition, the type of the internal crosslinking agent included in the monomer composition is the same as described above, and the internal crosslinking agent is included at a concentration of 0.01 to 0.5 weight 0 / ° relative to the monomer composition to crosslink the polymerized polymer. Can be. In addition, as described above, the internal crosslinking agent is 0.005 moles or more, or 0.005 to 0.1 moles, or 0.005 to 0.05 moles (or 100 parts by weight of acrylic acid) based on 1 mole of unneutralized acrylic acid contained in the monomer. 0.3 parts by weight or more, or 0.3 to 0.6 parts by weight). As such an internal crosslinking agent is used in this content range, a high gel strength of the base resin powder can be appropriately achieved, and a super absorbent polymer can be prepared which more appropriately stratifies the physical properties of the above-described embodiment by using this. In addition, the monomer composition may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants, and the like, as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다. - 이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, _에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디을, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르 를루엔, 크실렌, 부틸로락톤ᅳ 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent. The solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, _ Ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone 1 selected from cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether toluene, xylene, butyrolactone carbyl, methyl cellosolve acetate and Ν, Ν-dimethylacetamide, etc. It can use combining a species or more.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, if the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is also the polymerization method normally used, there will be no restriction | limiting in particular in a structure.
구체적으로, 중합 방법은 증합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the energy source of polymerization, and when the thermal polymerization is usually carried out, the polymerization method may be performed in a reactor having a stirring shaft such as a kneader. Although it can proceed in a reactor with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔 중합체가 얻어질 수 있다.  For example, as described above, the hydrogel polymer obtained by supplying hot air to the reactor such as a kneader having a stirring shaft or by heating the reactor is subjected to thermal polymerization, depending on the shape of the stirring shaft provided in the reaction vessel. The hydrogel polymer discharged to the outlet may be in the form of several centimeters to several millimeters. Specifically, the size of the hydrogel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, it can be usually obtained a hydrogel polymer having a weight average particle diameter of 2 to 50 mm.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응 7'ᅵ에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 0.5 내지 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다. In addition, when the photopolymerization is carried out in the reaction 7 ' with a movable conveyor belt as described above, the form of the hydrogel polymer usually obtained may be a hydrogel gel polymer on the sheet having the width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of 0.5 to 5 cm can be obtained. Of the polymer on the sheet When the monomer composition is supplied to such an extent that the thickness is too thin, the production efficiency is low, which is not preferable. When the polymer thickness on the sheet exceeds 5 cm, the polymerization reaction may not occur evenly over the entire thickness due to the excessively thick thickness.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 내지 80 중량0 /0일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 18C C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. The normal water content of the hydrogel polymer obtained in this way may be a 40 to 80 wt. 0/0. On the other hand, throughout the present specification, "water content" means the content of water to account for the total weight of the hydrogel polymer minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying conditions are raised to 18C C at room temperature and maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of the temperature rise step, the moisture content is measured.
다음에, 얻어진 함수겔 중합체를 건조하는 단계를 수행한다.  Next, the step of drying the obtained hydrogel polymer is performed.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.  At this time, if necessary to coarse grinding before drying to increase the efficiency of the drying step may be more rough.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. 이때 조분쇄 단계는 함수겔 중합체의 입경이 2 내지 15mm로 되도록 분쇄할 수 있다.  At this time, the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example. At this time, the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is 2 to 15mm.
입경이 2 mm 미만으로 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 15 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.  Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause agglomeration between the milled particles. On the other hand, when the particle size is pulverized more than 15 mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 150 내지 250 °C일 수 있다. 건조 온도가 150 °C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250 CC를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 150 내지 200 °C의 온도에서, 더욱 바람직하게는 160 내지 180 °C의 온도에서 진행될 수 있다. As described above, drying is performed on the hydrogel polymer immediately after the polymerization which is coarsely crushed or not subjected to the coarsely crushing step. At this time, the drying of the drying step The temperature may be 150 to 250 ° C. If the drying temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 C C, only the polymer surface may be dried excessively. Fine powder may occur in the grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Therefore, preferably, the drying may be performed at a temperature of 150 to 200 ° C, more preferably at a temperature of 160 to 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 20 내지 90분 동안 진행될 수 있으나 이에 한정되지는 않는다.  On the other hand, in the case of drying time, in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로 열풍 공급 적외선 조사 극초단파 조사 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량0 /。일 수 있다. If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply infrared irradiation microwave irradiation or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.1 to about 10 weight 0 /.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.  Next, a step of pulverizing the dried polymer obtained through such a drying step is performed.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850/im 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다.  The polymer powder obtained after the grinding step may have a particle diameter of 150 to 850 / im. Grinders used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used, but is not limited to the example described above.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850 m인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다. 이러한 과정을 통해 얻어진 베이스 수지 분말의 입경 분포에 관해서는 이미 상술한 바도 있으므로, 이에 관한 더 이상의 구체적인 설명은 생략하기로 한다.  In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed. Preferably, a polymer having a particle size of 150 to 850 m may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step. Since the particle size distribution of the base resin powder obtained through the above process has already been described above, further detailed description thereof will be omitted.
한편, 상술한 분쇄 및 /또는 분급 공정을 거쳐 베이스 수지 분말을 얻은 후에는, 표면 가교 공정을 통해 일 구현예의 고흡수성 수지를 제조할 수 있다. 이러한 표면 가교 공정에서 사용 가능한 친수성 및 /또는 소수성 실리카 입자의 종류에 관해서는 이미 상술한 바 있으므로, 관련 설명은 생략한다. On the other hand, after obtaining the base resin powder through the above-mentioned grinding and / or classification process, it is possible to produce a super absorbent polymer of one embodiment through a surface crosslinking process. have. Since the kind of hydrophilic and / or hydrophobic silica particles which can be used in such a surface crosslinking process is already mentioned above, the related description is abbreviate | omitted.
이러한 표면 가교 공정에서는, 일 예에서, 상기 소수성 실리카 입자, 상기 친수성 실리카 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에 , 상기 베이스 수지 분말을 열처리하여 표면 가교하는 방법으로 진행할 수도 있지만, 다른 예에서, 상기 베이스 수지 분말 상에 소수성 실리카 입자를 먼저 흔합 및 첨가하여 처리한 후, 상기 친수성 실리카 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 방법으로 진행할 수도 있다.  In such a surface crosslinking process, in one example, in the presence of a surface crosslinking solution containing the hydrophobic silica particles, the hydrophilic silica particles, and the surface crosslinking agent, the base resin powder may be thermally treated to surface crosslink. In another example, the hydrophobic silica particles are first mixed and added to the base resin powder, and then the base resin powder is heat-treated in the presence of a surface crosslinking solution including the hydrophilic silica particles and the surface crosslinking agent. It may also proceed by a method of crosslinking.
또, 상기 일 예에 따른 방법에서는, 소수성 실리카 입자를 표면 가교액에 적절히 분산시켜 사용하기 위해, 10° 초과 50° 이하의 접촉각을 갖는 입자 (즉, 상대적으로 작은 소수성을 나타내는 실리카 입자)를 사용하거나, 50° 내지 150° 이하의 접촉각을 갖는 입자를 별도의 분산제와 함께 사용할 수도 있다. 이러한 분산제로는 소수성 실리카 입자를 수용매 등 극성 용매에 분산시키기 위해 사용되던 분산제를 별다른 제한 없이 모두 사용할 수 있으며, 예를 들어, Tween계 분산제, Span계 분산제, 또는 다당류계 분산제 등을 사용할 수 있다. In the method according to the above example, in order to properly disperse the hydrophobic silica particles in the surface crosslinking liquid, particles having a contact angle of more than 10 ° and 50 ° or less (that is, silica particles exhibiting relatively small hydrophobicity) are used. Alternatively, particles having a contact angle of 50 ° to 150 ° or less may be used together with a separate dispersant. As the dispersant, any dispersant used to disperse the hydrophobic silica particles in a polar solvent such as a water-soluble solvent can be used without any particular limitation, and for example, a Tween dispersant, a Span dispersant, or a polysaccharide dispersant can be used. .
그리고, 상기 소수성 실리카 입자를 별도로 먼저 처리하는 다른 예의 방법에서는, 베이스 수지 분말에 소수성 실리카 입자를 고체 상태로 흔합하여 그 표면을 건식 처리할 수 있는데, 이의 처리 방법은 일반적인 무기 분말의 건식 처리 및 /또는 흔합 방법에 따를 수 있다.  And, in another example method of separately treating the hydrophobic silica particles first, the hydrophobic silica particles may be mixed with the base resin powder in a solid state, and the surface thereof may be subjected to dry treatment. Or a method of mixing.
또, 상기 소수성 실리카 입자 및 친수성 실리카 입자는 각각 상기 베이스 수지 분말의 100 중량부에 대해, 0.0001 내지 0.3 중량부, 혹은 0.001 내지 0.1 중량부의 함량으로 사용될 수 있다. 이로서, 각 실리카 입자의 사용에 따라, 고흡수성 수지의 통액성 및 흡수 속도를 보다 효과적으로 향상시킬 수 있다.  In addition, the hydrophobic silica particles and hydrophilic silica particles may be used in an amount of 0.0001 to 0.3 parts by weight, or 0.001 to 0.1 parts by weight based on 100 parts by weight of the base resin powder, respectively. Thereby, according to the use of each silica particle, the fluid permeability and the absorption rate of a super absorbent polymer can be improved more effectively.
그리고, 친수성 실리카 입자 및 표면 가교제와, 선택적으로 소수성 실리카 입자를 포함하는 상기 표면 가교액을 베이스 수지 분말에 첨가하는 방법에 대해서도 그 구성의 특별한 한정은 없다. 예를 들어, 표면 가교액과, 베이스 수지 분말을 반웅조에 넣고 흔합하거나, 베이스 수지 분말에 표면 가교액를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다. 또, 상기 표면 가교 단계에서, 표면 가교제로 사용 가능한 탄소수 2 내지 5의 알킬렌 카보네이트의 보다 적절한 예로는, 에틸렌 카보네이트, 프로필렌 카보네이트 또는 부틸렌 카보네이트 등을 들 수 있고, 이들 중에 선택된 2종 이상을 함께 사용할 수도 있음은 물론이다. The method for adding the surface crosslinking liquid containing the hydrophilic silica particles and the surface crosslinking agent and optionally the hydrophobic silica particles to the base resin powder is not particularly limited. For example, the surface crosslinking liquid, The base resin powder may be mixed in a semi-permanent mixture, or the surface crosslinking solution may be sprayed onto the base resin powder, or the base resin powder and the surface crosslinking solution may be continuously supplied to the mixer to be operated continuously. Further, in the surface crosslinking step, more suitable examples of the alkylene carbonate having 2 to 5 carbon atoms that can be used as the surface crosslinking agent include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of course, it can also be used.
그리고, 상기 표면 가교액은 추가적으로 한국 공개 특허 제 2015- 0143167 호 (한국 특허 출원 제 2014-0072343 호)에 개시된 폴리카르복실산계 공중합체를 더 포함할 수 있으며, 이러한 공중합체는 상기 베이스 수지 분말의 100 중량부를 기준으로, 0.01 내지 0.1의 함량으로 표면 가교액에 포함될 수 있다. 이러한 특정 표면 가교액의 사용에 따라, 일 구현예의 우수한 입자 강도, 통액성 및 흡수 성능 등이 보다 효과적으로 달성될 수 있다.  In addition, the surface crosslinking solution may further include a polycarboxylic acid copolymer disclosed in Korean Patent Application Publication No. 2015-0143167 (Korean Patent Application No. 2014-0072343), and the copolymer may further include the base resin powder. Based on 100 parts by weight, it may be included in the surface crosslinking liquid in an amount of 0.01 to 0.1. According to the use of this specific surface crosslinking liquid, the excellent particle strength, liquid permeability and absorption performance of one embodiment, etc. can be more effectively achieved.
부가하여, 상기 표면 가교액은 매질로서 물 및 /또는 메탄올을 더 포함할 수 있다. 이로서, 표면 가교제 및 실리카 입자가 베이스 수지 분말 상에 골고루 분산될 수 있는 이점이 있다. 이때, 물 및 메탄올의 함량은 표면 가교제 및 실리카 입자의 고른 분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 베이스 수지 분말 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.  In addition, the surface crosslinking liquid may further include water and / or methanol as a medium. Thereby, there is an advantage that the surface crosslinking agent and the silica particles can be evenly dispersed on the base resin powder. At this time, the content of water and methanol is to 100 parts by weight of the base resin powder for the purpose of inducing even dispersion of the surface crosslinking agent and silica particles, preventing aggregation of the base resin powder and optimizing the surface penetration depth of the surface crosslinking agent. It can be applied by adjusting the addition ratio.
한편, 상기 표면 가교 단계는, 상기 표면 가교액이 첨가된 베이스 수지 분말에 대해 140°C 내지 20C C , 혹은 150 °C 내지 190°C의 반웅 최고 온도에서 5분 내지 80분, 또는 10분 내지 70분, 또는 20분 내지 65분 동안 열처리를 진행하여 표면 가교 반웅을 진행시키는 방법으로 진행할 수 있다. 보다 구체적으로는, 상기 표면 가교 단계는 20 °C 내지 130 °C , 혹은 40°C 내지 120 °C의 초기 온도에서 10분 내지 40분에 걸쳐 상기 반응 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 80분 동안 유지하여 열처리함으로서 진행될 수 있다. On the other hand, the surface crosslinking step, 5 minutes to 80 minutes, or 10 minutes to a maximum reaction temperature of 140 ° C to 20 C C, or 150 ° C to 190 ° C with respect to the base resin powder to which the surface cross-linking solution is added The heat treatment may be performed for 70 minutes or 20 minutes to 65 minutes to proceed with the surface crosslinking reaction. More specifically, the surface cross-linking step is the temperature rise to the reaction maximum temperature over 10 minutes to 40 minutes at an initial temperature of 20 ° C to 130 ° C, or 40 ° C to 120 ° C, the maximum temperature is 5 It can be carried out by maintaining the heat treatment for minutes to 80 minutes.
이러한 표면 가교 공정 조건 (특히, 승온 조건 및 반웅 최고 온도에서의 반웅 조건)의 층족에 의해 우수한 통액성 및 흡수 속도 등을 적절히 층족하는 고흡수성 수지가 제조될 수 있다. These surface crosslinking process conditions (especially elevated temperature conditions and reaction maximum The superabsorbent polymer which suitably stratifies the excellent liquid permeability, the absorption rate, etc. can be manufactured by layer reaction of reaction conditions at temperature).
표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다. 한편, 상술한 방법으로 제조된 고흡수성 수지는 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층; 및 상기 표면 가교층 상에 분산되어 있고, 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자를 포함하는 것으로 될 수 있다. 이러한 고흡수성 수지는 상기 표면 가교층 상에 분산되어 있고, 물에 대해 10° 초과 150° 이하의 접촉각을 갖는 소수성 실리카 입자를 더 포함할 수 있다. The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. In this case, as the type of heat medium that can be used, a heated fluid such as steam, hot air, or hot oil may be used. Consideration can be made as appropriate. On the other hand, the heat source directly supplied may be a heating method through electricity, a gas heating method, but is not limited to the above-described example. On the other hand, the superabsorbent polymer prepared by the above-described method is a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acid group; A surface crosslinking layer formed on the base resin powder, wherein the first crosslinking polymer comprises a second crosslinking polymer further crosslinked through a surface crosslinking agent; And hydrophilic silica particles dispersed on the surface crosslinking layer and having a contact angle of 10 ° or less with respect to water. Such super-absorbent resin is spread on the surface cross-linked layer, it may further comprise a hydrophobic silica particles having a contact angle of 10 ° or less than 150 ° for water.
또, 이미 상술한 바와 같이, 상기 친수성 및 /또는 소수성 실리카 입자는 상기 표면 가교층 내의 가교 구조에 포함되어 분산되어 있거나, 상기 표면 가교층 표면에 박혀 있는 상태로 존재할 수 있다.  In addition, as described above, the hydrophilic and / or hydrophobic silica particles may be included in the crosslinked structure in the surface crosslinked layer and dispersed, or may be present in the surface crosslinked layer.
이러한 고흡수성 수지는 표면 가교시 친수성 및 /또는 소수성 실리카 입자가 사용되고, 이미 상술한 소정의 조건 하에 베이스 수지 분말이 제조되고, 표면 가교 공정이 진행됨에 따라, 표면 가교층 상에 친수성 및 /또는 소수성 실리카 입자가 균일하게 분산된 형태를 가지게 되며, 더 나아가 보다 향상된 통액성, 겔 강도 및 흡수 속도 등과 함께 우수한 흡수 성능을 나타낼 수 있다. 이러한 고흡수성 수지의 제반 물성은 후술하는 각 물성 값들에 의해 정의될 수 있다. 먼저, 상기 고흡수성 수지는 원심분리 보수능 (CRC)이 25 내지 35 g/g, 혹은 26 내지 31 g/g로 될 수 있다. 이와 같이, 일 구현예의 방법으로 체조된 고흡수성 수치는 무가압 하에서 우수한 흡수성을 나타낼 수 있다. 이때, 상기 생리 식염수에 대한 원심분리 보수능 (CRC)은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출될 수 있다: Such superabsorbent polymers have hydrophilic and / or hydrophobic silica particles upon surface crosslinking, a base resin powder is prepared under the above-described predetermined conditions, and as the surface crosslinking process proceeds, hydrophilic and / or hydrophobicity on the surface crosslinking layer. The silica particles may have a uniformly dispersed form, and furthermore, may exhibit excellent absorption performance with improved liquid permeability, gel strength and absorption rate. Various physical properties of such a super absorbent polymer may be defined by respective property values described below. First, the superabsorbent polymer may have a centrifugal water retention capacity (CRC) of 25 to 35 g / g, or 26 to 31 g / g. As such, the superabsorbent values obtained by the method of the embodiment may exhibit excellent absorbency under no pressure. At this time, the centrifugal water retention capacity (CRC) for the physiological saline can be calculated by the following formula 1 after absorbing the superabsorbent resin in physiological saline over 30 minutes:
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - W^g) - W0(g)]/W0(g)} CRC (g / g) = {[W 2 (g)-W ^ g)-W 0 (g)] / W 0 (g)}
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W^g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다. W 0 (g) is the initial weight of superabsorbent polymer (g), W ^ g) is absorbed by immersion in physiological saline for 30 minutes without using superabsorbent resin, and then centrifuge to 250G 3 The weight of the device measured after dehydration for a minute, W 2 (g) is absorbed by immersing the superabsorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, superabsorbent resin Including the measured device weight.
또한, 상기 고흡수성 수지는 상기 가압 흡수능 (AUP)이 24 내지 30 g/g, 혹은 24.2 내지 27 g/g로 될 수 있다. 이와 같이, 상기 고흡수성 수지는 가압 하에서도 우수한 흡수성을 나타낼 수 있다.  In addition, the superabsorbent polymer may have a pressure absorption capacity (AUP) of 24 to 30 g / g, or 24.2 to 27 g / g. As such, the superabsorbent polymer may exhibit excellent absorbency even under pressure.
이러한 가압 흡수능 (AUP)은 고흡수성 수지를 1 시간에 걸쳐 0.7 psi의 가압 하에 생리 식염수에 흡수시킨 후, 하기 계산식 2에 따라 산출될 수 있다:  This pressurized absorbent capacity (AUP) can be calculated according to Formula 2 after absorbing the superabsorbent resin in physiological saline under a pressurization of 0.7 psi over 1 hour:
[계산식 2]  [Calculation 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g) AUP (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In Formula 2,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중 (0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. W 0 (g) is the initial weight (g) of the superabsorbent polymer, W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer, and W 4 (g ) Is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for 1 hour under a load (0.7 psi).
일 구현예의 방법으로 제조된 고흡수성 수지가 상술한 범위의 원심분리 보수능 (CRC) 및 가압 흡수능 (AUP)을 나타냄에 따라, 상기 고흡수성 수지는 하기 식 1로 정의되는 EFFC가 24 내지 28g/g, 흑은 24.6 내지 28g/g으로 될 수 있다. Superabsorbent polymers prepared by the method of one embodiment of the above-mentioned range As the centrifugal water retention capacity (CRC) and the pressure absorption capacity (AUP) are shown, the superabsorbent polymer may have an EFFC of 24 to 28 g / g and a black color of 24.6 to 28 g / g.
[식 1]  [Equation 1]
EFFC = (CRC + AUP)/2 상기 식 1에서,  EFFC = (CRC + AUP) / 2
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 .중량0 /。 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며, CRC is the high-centrifuged for half an hour for a normal saline solution (0.9 weight-0 /. Aqueous sodium chloride solution) of a water-absorbent resin exhibits an SAT correction,
AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타낸다. AUP represents the absorption capacity of the pressure for one hour under a 0.7psi for physiological saline solution (0.9 weight 0/0 aqueous sodium chloride solution) of the superabsorbent polymer.
이와 같이, 상기 고흡수성 수지는 기본적인 흡수력 및 가압 하 흡수력 등의 흡수 성능이 우수하게 발현될 수 있다.  As such, the superabsorbent polymer may have excellent absorption performance such as basic absorption and absorption under pressure.
또, 상술한 고흡수성 수지는 생리 식염수에 대한 생리 식염수 흐름 유도성 (SFC)이 30 내지 160 1 (T7cm3 s/g, 또는 85 내지 160 10-7cm3's/g, 또는 85 내지 120' 1 (T7cm3's/g 일 수 있다. 이와 같이, 상기 고흡수성 수지는 이전에 알려진 것보다 향상된 통액성을 나타낼 수 있다. 이는 표면 가교층에 소정의 실리카 입자 등이 포함되어 일정 수준 이상의 두께를 갖는 표면 가교층이 균일하게 형성됨에 따른 것으로 보인다. Further, a super-absorbent resin mentioned above is induced Saline Flow (SFC) for a physiological saline solution of 30 to 160 1 (T 7 cm 3 s / g, or 85 to 160 10- 7 cm 3 's / g, or 85 To 120 ' 1 (T 7 cm 3' s / g. As such, the superabsorbent polymer may exhibit improved fluid permeability than previously known. This may include silica particles or the like in the surface crosslinking layer. The surface crosslinking layer having a thickness of a predetermined level or more appears to be uniformly formed.
이러한 생리 식염수 흐름 유도성 (SFC)은 이전부터 당업자에게 잘 알려진 방법, 예를 들어, 미국공개특허 게 2009-0131255호의 컬럼 16의  Such physiological saline flow inducibility (SFC) is a method well known to those skilled in the art, for example, column 16 of US Patent Publication No. 2009-0131255
[0184] 내지 [0189]에 개시된 방법에 따라, 측정 및 산출할 수 있다. According to the method disclosed in [0184] to [0189], it can be measured and calculated.
그리고, 상술한 고흡수성 수지는 이러한 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 고흡수성 수지의 수평 방향 겔 강도 (G')를 측정하였을 때, 상기 겔 강도 (G')가 9,000 내지 15,000 Pa, 혹은 9,000 내지 13,000 Pa으로 될 수 있다. Then, the above-mentioned super-absorbent resin has such a high saline solution (0.9 weight 0/0 aqueous sodium chloride solution), after swelling by absorbing the horizontal direction, the gel strength of the superabsorbent polymer by using a rheometer for 1 hour, the water-absorbent resin (G When measuring '), the gel strength (G') can be 9,000 to 15,000 Pa, or 9,000 to 13,000 Pa.
상기 수평 방향 겔 강도 G'는 상기 고흡수성 수지의 실제 사용 환경 하에서의 우수한 통액성을 보다 잘 반영할 수 있다. 즉, 통상 고흡수성 수지의 통액성은 이러한 고흡수성 수지가 기저귀 등 위생재에 포함되었을 때, 수평 방향으로 가해지는 힘에도 블구하고 우수한 형태 유지성 및 높은 겔 강도를 나타내는지 여부에 따라 보다 관련성 높게 결정될 수 있는데, 상기 수평 방향 겔 강도는 이러한 통액성과 직접적으로 관련된 겔 강도를 잘 반영할 수 있다. 따라서 ; 이러한 수평 방향 겔 강도 G'가 상술한 범위를 충족하는 고흡수성 수지는 뛰어난 통액성을 나타냄에 따라, 기저귀 등 위생재에 매우 바람직하게 사용 가능한 것으로 확인되었다. The horizontal gel strength G 'can better reflect the excellent liquid permeability under the actual use environment of the super absorbent polymer. In other words, the liquid permeability of the super absorbent polymer is generally included in sanitary materials such as diapers. At the same time, it can be determined to be more relevant depending on whether the force applied in the horizontal direction is excellent and whether it exhibits good shape retention and high gel strength. The horizontal gel strength may well reflect the gel strength directly related to the liquid permeability. Can be. Therefore ; As the superabsorbent polymer having such a horizontal gel strength G 'satisfying the above-mentioned range exhibits excellent liquid permeability, it has been found that the superabsorbent polymer can be used very favorably in sanitary materials such as diapers.
이러한 수평 방향 겔 강도 G'는 고흡수성 수지에 1 시간 동안 생리 식염수를 흡수시킨 후에, 상용화된 레오미터를 사용하여, 다음의 각 단계를 포함하는 방법으로 측정될 수 있다:  This horizontal gel strength G 'can be measured by absorbing physiological saline in the superabsorbent resin for 1 hour and then using a commercialized rheometer in a method comprising each of the following steps:
1 ) 상기 고흡수성 수지에 생리 식염수를 흡수시켜 팽윤시키는 단계; 1) swelling by absorbing physiological saline to the super absorbent polymer;
2) 상기 팽윤된 고흡수성 수지를 소정의 간격을 갖는 레오미터의 플레이트 사이에 위치시키고 양 플레이트면을 가압하는 단계; 2) placing the swollen superabsorbent resin between the plates of the rheometer having a predetermined interval and pressing both plate surfaces;
3) 진동 하의 레오미터를 사용하여 전단 변형을 증가시키면서, 저장 탄성를 (storage modulus)과, 손실 탄성를 (loss modulus)이 일정한 선형 점탄성 상태 (linear viscoelastic regime) 구간의 전단 변형을 확인하는 단계;  3) using the rheometer under vibration to increase the shear strain, to identify the shear strain in a linear viscoelastic regime section in which the storage modulus and loss modulus are constant;
4) 상기 확인된 전단 변형 하에서 상기 팽윤된 고흡수성 수지의 저장 탄성를과, 손실 탄성률을 각각 측정하고, 상기 저장 탄성률의 평균 값을 겔 강도로서 측정하는 단계를 포함하는 방법. 상술한 바와 같이, 일 구현예의 방법에 따라 얻어진 고흡수성 수지는 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성, 겔 강도 및 흡수 속도 등을 층족할 수 있다. 따라서, 기저귀 등 위생재, 특히, 필프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다. 4) measuring the storage elasticity of the swelled superabsorbent resin and the loss modulus, respectively, and the average value of the storage elastic modulus as the gel strength under the identified shear deformation. As described above, the superabsorbent polymer obtained according to the method of the embodiment maintains excellent water absorption performance such as water retention capacity and pressure absorption capacity, and can achieve improved fluid permeability, gel strength and absorption rate. Therefore, hygiene materials such as diapers, in particular, ultra-thin hygiene materials having a reduced content of the peel can be used as appropriate.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성, 겔 강도 및 흡수 속도 등을 나타내는 고흡수성 수지가 제조 및 제공될 수 있다.  According to the present invention, a superabsorbent performance such as water-retaining capacity and pressure-absorbing capacity can be maintained excellent, and a superabsorbent polymer can be produced and provided with more improved fluid permeability, gel strength and absorption rate.
이러한 고흡수성 수지는 기저귀 등 위생재, 특히, 필프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다. Such superabsorbent polymers have a high content of sanitary materials, especially diapers, such as diapers. Reduced ultra-thin hygiene and the like can be used as appropriate.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 뜹기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이하의 실시예. 및 비교예에서, 소수성 실리카 입자 및 친수성 실리카 입자의 물에 대한 접촉각은 다음과 같이 측정하였다.  Hereinafter, one preferred embodiment for the purpose of understanding the present invention, the following examples are merely to illustrate the present invention is not limited to the scope of the following examples. Examples below. And in the comparative examples, the contact angles of the hydrophobic silica particles and the hydrophilic silica particles with respect to water were measured as follows.
먼저, 소수성 실리카 입자는 5 중량0 /。의 농도로 메틸렌클로라이드 용매에 분산시킨 코팅액을 사용하였다. 이러한 코팅액을 웨이퍼에 스핀코팅한 후, 이러한 코팅층 상에 물을 dropwise로 떨어뜨려 접촉각을 측정하였다. 이렇게 측정된 접촉각을 상기 소수성 실리카 입자의 물에 대한 접촉각으로 정의하여 그 측정값을 하기 표 1에 나타내었다. First, a hydrophobic silica particle was used as a coating liquid dispersed in a methylene chloride solvent at a concentration of 5 weight 0 /. After the coating solution was spin coated on the wafer, the contact angle was measured by dropwise dropping water on the coating layer. The measured contact angle is defined as the contact angle of the hydrophobic silica particles with respect to water, and the measured values are shown in Table 1 below.
또, 친수성 실리카 입자의 경우, 20 중량0 /。의 농도로 물에 분산된 코팅액을 사용한 것을 제외하고는, 소수성 실리카 입자와 동일한 방법으로 물에 대한 접촉각을 측정하여 하기 표 1에 나타내었다. In addition, in the case of hydrophilic silica particles, except that a coating liquid dispersed in water at a concentration of 20 weight 0 /.
[표 1] TABLE 1
Figure imgf000022_0001
또, 이하의 실시예 및 비교예에서, 각 고흡수성 수지의 물성은 다음의 방법으로 측정 및 평가하였다.
Figure imgf000022_0001
In addition, in the following Example and the comparative example, the physical property of each super absorbent polymer was measured and evaluated by the following method.
(1) 입경평가 (1) Grain size evaluation
실시예 및 비교예에서 사용된 베이스 수지 분말 및 고흡수성 수지의 입경은 유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정을 하였다. (2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity) The particle diameters of the base resin powder and the super absorbent polymer used in the examples and the comparative examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method. (2) Centrifuge Retention Capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 실시예 및 비교예의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다.  According to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 241.3, for the superabsorbent polymers of the Examples and Comparative Examples, the centrifugal water-retaining capacity (CRC) by unloaded absorption ratio was measured.
즉, 실시예 및 비교예의 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 . 중량0 /。의 염화 나트륨 수용액으로 되는 생리 식염수에 침수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W^g)을 측정했다. That is, the resin of Examples and Comparative Examples W 0 (g, about 0.2g) after the insert uniformly in the envelope of the nonwoven fabric is sealed (se al), 0.9 at room temperature. It was immersed in the physiological saline solution which becomes the sodium chloride aqueous solution of the weight of 0 /. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. Moreover, after performing the same operation without using resin, the mass W ^ g at that time was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.  Using each mass thus obtained, CRC (g / g) was calculated according to the following equation 1 to confirm the water holding capacity.
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - W^g) - W0(g)]/W0(g)} CRC (g / g) = {[W 2 (g)-W ^ g)-W 0 (g)] / W 0 (g)}
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W 0 (g) is the initial weight (g) of the super absorbent polymer,
W^g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고,  W ^ g) is the weight of the device measured after immersion in physiological saline for 30 minutes without using a super absorbent polymer, and then dehydrated at 250 G for 3 minutes using a centrifuge,
W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다. (3)가압흡수능 (Absorbing under Pressure, AUP) W 2 (g) is the weight of the device, including the super absorbent polymer, after absorbing the superabsorbent polymer in physiological saline at room temperature for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge. (3) Absorbing under Pressure (AUP)
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회 (European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.  For the superabsorbent polymers of Examples and Comparative Examples, Absorbency under Pressure (AUP) was measured according to the method of European Disposables and Nonwovens Association standard EDANA WSP 242.3.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23± 2 °C의 은도 및 45%의 상대 습도 조건하에서 철망상에 실시예 1 ~6 및 비교예 1 ~3으로 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤 (piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. First, a stainless steel 400 mesh on a cylindrical bottom of plastic with an inner diameter of 60 mm The wire mesh was fitted. Evenly spread the resin W 0 (g, 0.90 g) obtained in Examples 1 to 6 and Comparative Examples 1 to 3 on a wire mesh under conditions of silver of 23 ± 2 ° C. and relative humidity of 45% and thereon 4.83 kPa ( The piston, which can give a uniform load of 0.7 psi), has an outer diameter of slightly smaller than 60 mm, no gap with the inner wall of the cylinder, and unhindered movement of up and down. At this time, the weight W 3 (g) of the apparatus was measured.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량0 /。 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 120 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. A glass filter having a diameter of 125 mm and a thickness of 5 mm was placed on the inside of the petri dish having a diameter of 150 mm, and the physiological saline composed of 0.90 weight 0 / ° sodium chloride was brought to the same level as the upper surface of the glass filter. One sheet of filter paper 120 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.  Using each mass thus obtained, AUP (g / g) was calculated according to the following equation 2 to confirm the pressure absorbing ability.
[계산식 2]  [Calculation 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g) AUP (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In Formula 2,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W 0 (g) is the initial weight (g) of the superabsorbent polymer,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer,
W4(g)는 하중 (0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. (4) 생리 식염수흐름유도성 (SFC; saline flow conductivity) W 4 (g) is the sum of the weight of the superabsorbent resin and the device weight capable of applying a load to the superabsorbent resin after absorbing physiological saline into the superabsorbent resin for 1 hour under a load (0.7 psi). (4) saline flow conductivity (SFC)
미국공개특허 제 2009-0131255호의 컬럼 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정하였다.  It was measured according to the method disclosed in [0184] to [0189] of column 16 of US Patent Publication No. 2009-0131255.
(5) 겔 강도 (Gel Strength; G') (5) Gel Strength (G ')
실시예 및 비교예의 고흡수성 수지 /베이스 수지 분말에 대하여, 수평 방향 겔 강도 (Gel Strength)을 측정하였다. Horizontal with respect to the super absorbent polymer / base resin powder of Examples and Comparative Examples Aroma Gel Strength was measured.
먼저, 실시예 및 비교예의 고흡수성 수지 시료 (30 ~ 50 Mesh)를 체로 걸러서 0.5g을 칭량하였다. 칭량된 시료를 생리 식염수 50 g에 1시간 동안 층분히 팽윤시켰다. 그 후에, 흡수되지 않은 용매는 aspirator를 이용하여 4 분 동안 제거하고, 겉에 묻은 용매는 여과지에 골고루 분포시켜 1회 닦아 내었다.  First, 0.5 g of the superabsorbent polymer samples (30-50 Mesh) of Examples and Comparative Examples were sieved through a sieve. The weighed sample was swollen in 50 g of saline solution for 1 hour. Thereafter, unabsorbed solvent was removed using an aspirator for 4 minutes, and the external solvent was evenly distributed over filter paper and wiped off once.
팽윤된 고흡수성 수지 시료 2.5g을 레오미터 (Rheometer)와 2개 평행판 (직경 25mm, 하부에 2mm 정도의 샘플이 빠져나가지 않게 하는 벽이 있음) 사이에 놓고, 두 평행판 사이의 간격을 1 mm로 조절하였다. 이때, 팽윤된 고흡수성 수지 시료가 평행판 면에 모두 접촉되도록 약 3N의 힘으로 가압하여 상기 평행판사이의 간격올 조절하였다.  2.5 g of the swollen superabsorbent polymer sample is placed between the rheometer and two parallel plates (25 mm in diameter with a wall on the bottom to prevent 2 mm of sample from escaping), and the distance between the two parallel plates is 1 mm was adjusted. At this time, the swelled superabsorbent polymer sample was pressed with a force of about 3 N so as to contact all of the parallel plate surface to adjust the gap between the parallel plates.
상 7| 레오미터를 사용하여 10 rad/s의 Oscilation frequency에서, 전단 변형 을 증가시키면서, 저장 탄성률 (storage modulus)과, 손실 탄성를 (loss modulus)이 일정한 선형 점탄성 상태 (linear viscoelastic regime) 구간의 전단 변형을 확인하였다. 일반적으로 팽윤된 고흡수성 수지 시료에서, 전단 변형 0.1 %는 상기 선형 점탄성 상태 구간 내에 있다.  Award 7 | The rheometer is used to identify the shear strain in a linear viscoelastic regime with constant storage modulus and loss modulus at an oscilation frequency of 10 rad / s with increasing shear strain. It was. Generally in a swollen superabsorbent polymer sample, 0.1% shear strain is within the linear viscoelastic state section.
일정한 10 rad/s의 Oscilation frequency에서, 선형 점탄성 상태 구간의 전단 변형 값으로 60 초 동안 팽윤된 고흡수성 수지의 저장 탄성률과, 손실 탄성를을 각각 측정하였다. 이때 얻어진 저장 탄성률 값을 평균하여, 수평 방향 겔 강도를 구하였다. 참고로, 손실 탄성률은 저장 탄성률에 비해 매우 작은 값으로 측정된다. 실시예 1 :  At a constant oscillation frequency of 10 rad / s, the storage modulus and the loss modulus of the superabsorbent polymer swollen for 60 seconds at the shear strain value of the linear viscoelastic state section were measured, respectively. The storage modulus values obtained at this time were averaged to determine the horizontal gel strength. For reference, the loss modulus is measured to be a very small value compared to the storage modulus. Example 1:
25 °C로 미리 넁각된 열매체가 순환되는 자켓으로 둘러싸인 2L 용량의 유리 반웅기에, 아크릴산 500 g, 내부 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA; Mw=500) 2 g 및 알릴아크릴레이트 0.25g을 주입하고ᅳ IRGACURE 819의 개시제를 전체 아크릴산에 대해 100ppmw의 함량으로 주입하였다. In a 2L glass reaction vessel surrounded by a jacket in which the preheated medium at 25 ° C is circulated, 500 g of acrylic acid, 2 g of polyethylene glycol diacrylate (PEGDA; Mw = 500) and 0.25 g of allyl acrylate are used as internal crosslinking agents. The initiator of IRGACURE 819 was injected at a content of 100 ppmw relative to the total acrylic acid.
이어서, 상기 유리 반응기에 24중량0 /。 가성소다 (Na이 H) 수용액 720g을 서서히 가하여 흔합하였다. 상기 가성소다 용액의 적가시에, 중화열에 의해 단량체 조성물의 온도가 약 72 °C까지 상승하여, 약 45 °C로 냉각될 때까지 대기하였다. 이후, 위와 같이 얻어진 단량체 조성물 중의 아크릴산의 중화율은 약 70몰%로 확인되었다. Subsequently, 720 g of a 24 weight 0 /. Caustic soda (Na-H) solution in water was gradually added to the glass reactor and mixed. At the time of dropwise addition of the caustic soda solution, The temperature of the monomer composition rose to about 72 ° C. and waited until it cooled to about 45 ° C. Thereafter, the neutralization rate of acrylic acid in the monomer composition obtained as described above was found to be about 70 mol%.
상기 단량체 조성물의 온도가 약 45 °C로 넁각된 후, 상기 흔합 용액에 미리 준비한 과황산나트륨용액 28 g (물에 4 중량0 /。로 희석함)을 주입하고 흔합하였다. After the temperature of the monomer composition was sensed at about 45 ° C., 28 g of a sodium persulfate solution (diluted with 4 weight 0 / ° in water) was prepared and mixed in the mixed solution.
이어서, 위 단량체 조성물에 1분간 광을 조사하고, 유리 반웅기의 온도를 75°C로 올려 3분간 중합 반웅을 진행하였다. 상기 중합 결과 얻어진 중합체를 미트 쵸퍼 (meat chopper)를 사용해 직경이 약 13mm인 홀을 통과시켜 크럼 (crump)상태의 조분쇄된 중합체를 얻었다. Subsequently, the monomer composition was irradiated with light for 1 minute, and the polymerization reaction was carried out for 3 minutes by raising the temperature of the glass reaction vessel to 75 ° C. The polymer obtained as a result of the polymerization was passed through a hole having a diameter of about 13 mm using a meat chopper to obtain a crumpled coarse polymer.
계속하여, 상하로 풍량 전이가 가능한 오븐에서, 상기 크럼 상태의 중합체를 건조시켰다. 구체적으로 18C C의 핫 에어를 15분간 하방에서 상방으로 흐르게 하고, 다시 15분간 상방에서 하방으로 흐르게 하여, 상기 크럼 상태의 중합체를 균일하게 건조시켰으며, 최종 건조된 중합체의 함수율이 약 2 중량 % 이하가 되도록 조절하였다.  Subsequently, the polymer in the crumb state was dried in an oven capable of transferring air volume up and down. Specifically, the hot air of 18C C was flowed downwardly upwards for 15 minutes, and further upwards downwards for 15 minutes, thereby uniformly drying the polymer in the crumb state, and the water content of the final dried polymer was about 2% by weight. It adjusted to the following.
건조된 중합체를 분쇄기로 분쇄한 다음, 분급하여 입경 약 150 내지 850 인 베이스 수지 분말을 얻었다.  The dried polymer was pulverized with a grinder and then classified to obtain a base resin powder having a particle size of about 150 to 850.
상기 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.04g, ST-O의 친수성 실리카 입자 0.04 g, 에틸렌 카보네이트 1.5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하였다. 이러한 표면 가교액을 베이스 수지 분말에 분사하고 상온에서 교반하여 베이스 수지 분말에 표면 처리액이 고르게 분포하도록 흔합하였다. 이후, 이러한 베이스 수지 분말을 표면 가교 반웅기에 넣고 표면 가교 반웅을 진행하였다.  For 100 g of the base resin powder, 0.04 g of hydrophobic silica particles of Aerosil 200, 0.04 g of hydrophilic silica particles of ST-O, 1.5 g of ethylene carbonate, Korean Patent Application No. 2015-0143167 (Korean Patent Application No. 2014-0072343 A surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Ho) and 4.0 g of water as a solvent was formed. The surface crosslinking liquid was sprayed onto the base resin powder and stirred at room temperature, and the mixture was mixed so that the surface treatment liquid was evenly distributed in the base resin powder. Subsequently, the base resin powder was put in a surface crosslinking reaction machine and surface crosslinking reaction was performed.
이러한 표면 가교 반웅기 내에서, 베이스 수지 분말은 18C C 근방의 초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 30분 경과 후에 190 °C의 반웅 최고 온도에 도달하도록 조작하였다. 이러한 반웅 최고 온도에 도달한 이후에, 65분 동안 추가 반응시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 실시예 2: Within this surface crosslinking reaction vessel, the base resin powder was found to gradually increase in temperature at an initial temperature near 18C C, and was manipulated to reach a reaction temperature of 190 ° C. after 30 minutes. After reaching this reaction maximum temperature, the final prepared superabsorbent polymer sample was taken after further reaction for 65 minutes. After the surface crosslinking process, using a sieve (sieve) A surface crosslinked superabsorbent polymer having a particle diameter of about 150 to 850 was obtained. Example 2:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.02g, ST-O의 친수성 실리카 입자 0.02 g, 에틸렌 카보네이트 1 .5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  For 100 g of the base resin powder obtained in the same manner as in Example 1, 0.02 g of hydrophobic silica particles of Aerosil 200, 0.02 g of hydrophilic silica particles of ST-O, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 Example 1 except that a surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used. A super absorbent polymer was prepared in the same manner.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 실시예 3:  After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. Example 3:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.03g, ST-ᄋ의 친수성 실리카 입자 0.03 g, 에틸렌 카보네이트 1.5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  For 100 g of the base resin powder obtained in the same manner as in Example 1, 0.03 g of hydrosilic silica particles of Aerosil 200, 0.03 g of hydrophilic silica particles of ST-®, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 A surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used, and was used in the same manner as in Example 1. A super absorbent polymer was prepared by the method.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 m인 표면 가교된 고흡수성 수지를 얻었다. 실시예 4:  After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 m was obtained using a sieve. Example 4:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.02g, ST-ᄋ의 친수성 실리카 입자 0.04 g, 에틸렌 카보네이트 1 .5g, 한국 공개 특허 게 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공증합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. With respect to 100 g of the base resin powder obtained in the same manner as in Example 1, 0.02 g of hydrosilic silica particles of Aerosil 200, 0.04 g of hydrophilic silica particles of ST-®, 1.5 g of ethylene carbonate, Korean Patent Application No. 2015-0143167 To form a surface treatment liquid containing 0.05 g of the polycarboxylic acid-based co-polymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent. A superabsorbent polymer was prepared in the same manner as in Example 1 except that it was used.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 After the surface crosslinking process, the particle size is about 150 to about 150 using a sieve.
850 皿인 표면 가교된 고흡수성 수지를 얻었다. 실시예 5: A surface crosslinked superabsorbent polymer of 850 mm 3 was obtained. Example 5:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.02g, ST-O의 친수성 실리카 입자 0.06 g, 에틸렌 카보네이트 1 .5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  For 100 g of the base resin powder obtained in the same manner as in Example 1, 0.02 g of hydrophobic silica particles of Aerosil 200, 0.06 g of hydrophilic silica particles of ST-O, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 Example 1 except that a surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used. A super absorbent polymer was prepared in the same manner.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 실시예 6:  After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. Example 6:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.04g, ST-ᄋ의 친수성 실리카 입자 0.02 g, 에틸렌 카보네이트 1 .5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  With respect to 100 g of the base resin powder obtained in the same manner as in Example 1, 0.04 g of hydrophobic silica particles of Aerosil 200, 0.02 g of hydrophilic silica particles of ST-®, 1.5 g of ethylene carbonate, Korean Patent Application Publication No. 2015-0143167 Example 1 except that a surface treatment liquid containing 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Patent Application No. 2014-0072343 and 4.0 g of water as a solvent was used. A super absorbent polymer was prepared in the same manner.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 After the surface crosslinking process, the particle size is about 150 to about 150 using a sieve.
850 인 표면 가교된 고흡수성 수지를 얻었다. 실시예 7: A surface crosslinked superabsorbent resin of 850 was obtained. Example 7:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.06 ST-O의 친수성 실리카 입자 0.02 g, 에틸렌 카보네이트 1.5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 거 I 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. Hydrophilic silica particles of Aerosil 200 hydrophobic silica particles 0.06 ST-O to 100 g of base resin powder obtained in the same manner as in Example 1 above 0.02 g, 1.5 g of ethylene carbonate, 0.05 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korea Patent Application No. 2015-0143167 (Korean Patent Application No. I 2014-0072343) and 4.0 g of water as a solvent A super absorbent polymer was prepared in the same manner as in Example 1, except that the surface treatment liquid was formed and used.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 비교예 1 :  After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. Comparative Example 1:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해 에틸렌 카보네이트 1.5g, 한국 공개 특허 제 2015-0143167 호 (한국 특허 출원 제 2014-0072343 호)의 제조예 1에 개시된 폴리카르복실산계 공중합체 0.05g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  With respect to 100 g of the base resin powder obtained in the same manner as in Example 1, 1.5 g of ethylene carbonate, the polycarboxylic acid system disclosed in Preparation Example 1 of Korean Patent Application No. 2015-0143167 (Korean Patent Application No. 2014-0072343) A super absorbent polymer was prepared in the same manner as in Example 1, except that a surface treatment solution containing 0.05 g of a copolymer and 4.0 g of water as a solvent was used.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 비교예 2:  After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. Comparative Example 2:
상기 실시예 1과 동일한 방법을 얻은 베이스 수지 분말의 100 g에 대해, Aerosil 200의 소수성 실리카 입자 0.06g, 에틸렌 카보네이트 1.5g 및 용매로서 물의 4.0g를 포함하는 표면 처리액을 형성하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.  For 100 g of the base resin powder obtained in the same manner as in Example 1, except that a surface treatment liquid containing 0.06 g of Aerosil 200 hydrophobic silica particles, 1.5 g of ethylene carbonate, and 4.0 g of water as a solvent was formed and used. Was prepared in the same manner as in Example 1.
상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 상기 실시예 1 내지 7, 비교예 1 및 2의 고흡수성 수지에 대하여 CRC, AUP, SFC 및 겔 강도의 각 물성 측정 및 평가를 수행하였으며, 측정된 물성값은 하기 표 2에 나타낸 바와 같다. 또한, 상기 측정된 CRC, AUP로부터, 식 1의 EFFC 값을 산출하여, 하기 표 2에 함께 나타내었다. [표 2] After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. The physical properties of CRC, AUP, SFC and gel strength were measured and evaluated for the superabsorbent polymers of Examples 1 to 7, Comparative Examples 1 and 2, and the measured physical properties are shown in Table 2 below. In addition, the EFFC value of Equation 1 was calculated from the measured CRC and AUP and shown in Table 2 together. TABLE 2
Figure imgf000030_0001
상기 표 2를 참고하면, 실시예 1 내지 7의 고흡수성 수지는 비교예에 비해, 동등 수준 이상의 흡수 특성 (CRC, AUP 및 EFFC)과, 보다 향상된 겔 강도 및 통액성을 나타냄이 확인되었다.
Figure imgf000030_0001
Referring to Table 2, it was confirmed that the super absorbent polymers of Examples 1 to 7 exhibited more than equivalent level of absorption characteristics (CRC, AUP and EFFC), and improved gel strength and fluidity.

Claims

【청구범위】 【Claims】
【청구항 1】 【Claim 1】
내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; Cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acidic group in the presence of an internal cross-linking agent to form a water-soluble gel polymer including the cross-linking polymer;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 Forming a base resin powder by drying, pulverizing and classifying the water-containing gel polymer; and
물에 대해 10° 초과 150° 이하의 접촉각을 갖는 소수성 실리카 입자 및 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법. Surface cross-linking comprising a surface cross-linking agent of an alkylene carbonate having 2 to 5 carbon atoms in the presence of hydrophobic silica particles with a contact angle with respect to water of more than 10 ° and up to 150 ° and hydrophilic silica particles with a contact angle with water of less than 10 ° A method for producing a superabsorbent polymer comprising the step of surface crosslinking the base resin powder using a liquid.
【청구항 2】 【Claim 2】
제 1 항에 있어서, 상기 표면 가교 단계는 상기 소수성 실리카 입자, 상기 친수성 실리카 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법. The method of claim 1, wherein the surface crosslinking step includes surface crosslinking the base resin powder by heat treatment in the presence of a surface crosslinking solution containing the hydrophobic silica particles, the hydrophilic silica particles, and the surface crosslinking agent. Method for producing water absorbent resin.
【청구항 3】 【Claim 3】
제 2 항에 있어서, 상기 소수성 실리카 입자는 물에 대해 50° 내지 150° 의 접촉각을 가지며, 상기 표면 가교액은 분산제를 더 포함하는 고흡수성 수지의 제조 방법. The method of claim 2, wherein the hydrophobic silica particles have a contact angle with water of 50 ° to 150 ° , and the surface crosslinking liquid further includes a dispersant.
【청구항 4】 【Claim 4】
제 1 항에 있어서, 상기 소수성 실리카 입자 및 친수성 실리카 입자는 각각 상기 베이스 수지 분말의 100 중량부에 대해, 0.0001 내지 0.3 중량부의 함량으로 사용되는 고흡수성 수지의 제조 방법. The method of claim 1, wherein the hydrophobic silica particles and the hydrophilic silica particles are each used in an amount of 0.0001 to 0.3 parts by weight based on 100 parts by weight of the base resin powder.
【청구항 5】 제 1 항에 있어서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2- 히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메록시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법. 【Claim 5】 The method of claim 1, wherein the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth)acryloylpropanesulfonic acid, or anionic monomers of 2-(meth)acrylamide-2-methylpropanesulfonic acid and salts thereof; (meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, meroxypolyethylene glycol (meth)acrylate or polyethylene glycol ( A nonionic hydrophilic-containing monomer of meth)acrylate; and (Ν,Ν)-dimethylaminoethyl (meth)acrylate or (Ν,Ν)-dimethylaminopropyl (meth)acrylamide, an amino group-containing unsaturated monomer and its quaternary product; at least one selected from the group consisting of A method for producing a superabsorbent polymer comprising:
【청구항 6】 【Claim 6】
제 1 항에 있어서, 상기 내부 가교제는 탄소수 8 내지 12의 비스 (메트)아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리 (메트)아크릴레이트 및 탄소수 2 내지 10의 폴리올의 플리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법 . The method of claim 1, wherein the internal crosslinking agent is bis(meth)acrylamide having 8 to 12 carbon atoms, poly(meth)acrylate of a polyol having 2 to 10 carbon atoms, and poly(meth)allyl ether of a polyol having 2 to 10 carbon atoms. A method for producing a superabsorbent polymer comprising at least one member selected from the group consisting of:
【청구항 7】 【Claim 7】
제 1 항에 있어서, 상기 베이스 수지 분말은 150 내지 850 의 입경을 갖도록 분쇄 및 분급되는 고흡수성 수지의 제조 방법. The method of claim 1, wherein the base resin powder is pulverized and classified to have a particle size of 150 to 850.
【청구항 8】 【Claim 8】
제 1 항에 있어서, 상기 표면 가교 단계는 20 °C 내지 130 °C의 초기 온도에서 10분 내지 40분에 걸쳐 14C C 내지 20C C의 최고 온도로 승은하고, 상기 최고 온도를 5 분 내지 80분 동안 유지하여 열처리함으로서 진행되는 고흡수성 수지의 제조 방법. 【청구항 9】 The method of claim 1, wherein the surface crosslinking step is carried out from an initial temperature of 20 ° C to 130 ° C, raised to a maximum temperature of 14°C to 20°C over 10 to 40 minutes, and the maximum temperature is maintained for 5 to 80 minutes. A method of manufacturing a superabsorbent polymer that is carried out by heat treatment while maintaining it for a while. 【Claim 9】
제 1 항에 있어서, According to claim 1,
하기 식 1로 표시되는 EFFC가 24g/g 이상 28g/g 이하인 고흡수성 수지를 제조하는 고흡수성 수지의 제조 방법: A method for producing a superabsorbent polymer having an EFFC of 24 g/g or more and 28 g/g or less, represented by the following formula:
[식 1] [Equation 1]
EFFC = (CRC + AUP)/2 상기 식 1에서, EFFC = (CRC + AUP)/2 In Equation 1 above,
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량 % 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며, CRC represents the water retention capacity of the superabsorbent polymer in physiological saline (0.9% by weight sodium chloride aqueous solution) after centrifugation for 30 minutes,
AUP는 상기 고흡수성 수지의 생리 식염수 (0. AUP is the physiological saline solution of the superabsorbent polymer (0.
9 중량0 /。 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타낸다. 9 Weight 0 /。 It represents the pressure absorption capacity for 1 hour under 0.7psi for sodium chloride aqueous solution.
【청구항 10] [Claim 10]
제 1 항에 있어서, 생리 식염수 (0.685 중량0 /。 염화 나트륨 수용액)의 흐름 유도성 (SFC; ᄀ0-7 13 5/9)이 85 내지 160 C10"7cm3's/g)인 고흡수성 수지를 제조하는 고흡수성 수지의 제조 방법 . The method of claim 1, wherein the flow conductivity (SFC; ᄀ 0-7 1 3 5/9) of the physiological saline solution (0.685 weight 0 /。 sodium chloride aqueous solution) is 85 to 160 C10 "7 cm 3' s/g). Method for producing superabsorbent polymer.
【청구항 1 1】 【Claim 1 1】
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; A base resin powder comprising a first cross-linked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of a neutralized acidic group;
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층; 및 a surface cross-linked layer formed on the base resin powder and including a second cross-linked polymer in which the first cross-linked polymer is further cross-linked via a surface cross-linking agent; and
상기 표면 가교층 상에 분산되어 있고, 물에 대해 10° 이하의 접촉각을 갖는 친수성 실리카 입자를 포함하는 고흡수성 수지로서, A superabsorbent polymer comprising hydrophilic silica particles dispersed on the surface cross-linked layer and having a contact angle with water of 10 ° or less,
하기 식 1로 표시되는 EFFC가 24 내지 28g/g이고, The EFFC expressed by the following formula 1 is 24 to 28 g/g,
생리 식염수 (0.685 중량0 /。 염화 나트륨 수용액)의 흐름 유도성 (SFC; 10"7cm3 s/g)이 85 내지 160 C 10"7cm3 s/g)이며, The flow conductivity (SFC; 10 "7 cm 3 s/g) of saline solution (0.685 weight 0 /。 aqueous sodium chloride solution) is 85 to 160 C 10 "7 cm 3 s/g),
겔 강도 (G')가 9,000 내지 15,000 Pa인 고흡수성 수지: [식 1] Superabsorbent polymer with a gel strength (G') of 9,000 to 15,000 Pa: [Equation 1]
EFFC = (CRC + AUP)/2 상기 식 1에서, EFFC = (CRC + AUP)/2 In Equation 1 above,
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며, AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타내고, CRC represents the centrifugation retention capacity of the superabsorbent polymer for 30 minutes in physiological saline solution (0.9 weight 0/0 sodium chloride aqueous solution), and AUP represents the physiological saline solution ( 0.9 weight 0/0 sodium chloride aqueous solution) of the superabsorbent polymer. ) represents the pressure absorption capacity for 1 hour under 0.7psi,
상기 겔 강도 (G')는 상기 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량% 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 측정한 고흡수성 수지의 수평 방향 겔 강도를 나타낸다. The gel strength (G') refers to the horizontal gel strength of the superabsorbent polymer measured using a rheometer after the superabsorbent polymer was swollen by absorbing physiological saline solution (0.9% by weight sodium chloride aqueous solution) for 1 hour. .
【청구항 12】 【Claim 12】
제 11 항에 있어서, 상기 표면 가교층 상에 분산되어 있고, 물에 대해 The method of claim 11, wherein the surface cross-linked layer is dispersed in water and
10° 초과 150° 이하의 접촉각을 갖는 소수성 실리카 입자를 더 포함하는 고흡수성 수지. A superabsorbent polymer further comprising hydrophobic silica particles having a contact angle of more than 10 ° and less than or equal to 150 ° .
【청구항 13] [Claim 13]
제 1 1 항 또는 제 12 항에 있어서, 상기 친수성 실리카 입자 또는 상기 소수성 실리카 입자는 상기 표면 가교층 내에 분산되어 있거나, 상기 표면 가교층 표면에 박혀 있는 고흡수성 수지. The superabsorbent polymer according to claim 1 or 12, wherein the hydrophilic silica particles or the hydrophobic silica particles are dispersed in the surface cross-linked layer or embedded in the surface of the surface cross-linked layer.
PCT/KR2017/000057 2016-03-11 2017-01-03 Method for preparing superabsorbent resin, and superabsorbent resin WO2017155197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/768,343 US10773237B2 (en) 2016-03-11 2017-01-03 Method for preparing super absorbent polymer, and super absorbent polymer
CN201780003667.9A CN108350189A (en) 2016-03-11 2017-01-03 It is used to prepare the method and super absorbent polymer of super absorbent polymer
EP17763460.7A EP3342801B1 (en) 2016-03-11 2017-01-03 Method for preparing superabsorbent resin, and superabsorbent resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160029834 2016-03-11
KR10-2016-0029834 2016-03-11
KR1020160103024A KR102075737B1 (en) 2016-03-11 2016-08-12 Preparation method for super absorbent polymer, and super absorbent polymer
KR10-2016-0103024 2016-08-12

Publications (1)

Publication Number Publication Date
WO2017155197A1 true WO2017155197A1 (en) 2017-09-14

Family

ID=59789638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000057 WO2017155197A1 (en) 2016-03-11 2017-01-03 Method for preparing superabsorbent resin, and superabsorbent resin

Country Status (1)

Country Link
WO (1) WO2017155197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174389A (en) * 2019-10-07 2022-03-11 株式会社Lg化学 Method for preparing super absorbent polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020030A (en) * 2013-08-13 2015-02-25 주식회사 엘지화학 Preparation method for super absorbent polymer
KR20150056572A (en) * 2012-09-11 2015-05-26 가부시키가이샤 닛폰 쇼쿠바이 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
KR20150067729A (en) * 2013-12-10 2015-06-18 주식회사 엘지화학 Method for preparing super absorbent polymer
KR20150113042A (en) * 2013-01-29 2015-10-07 가부시키가이샤 닛폰 쇼쿠바이 Water-absorbable resin material and method for producing same
KR20160016714A (en) * 2014-08-04 2016-02-15 주식회사 엘지화학 Super absorbent polymer and its preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150056572A (en) * 2012-09-11 2015-05-26 가부시키가이샤 닛폰 쇼쿠바이 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
KR20150113042A (en) * 2013-01-29 2015-10-07 가부시키가이샤 닛폰 쇼쿠바이 Water-absorbable resin material and method for producing same
KR20150020030A (en) * 2013-08-13 2015-02-25 주식회사 엘지화학 Preparation method for super absorbent polymer
KR20150067729A (en) * 2013-12-10 2015-06-18 주식회사 엘지화학 Method for preparing super absorbent polymer
KR20160016714A (en) * 2014-08-04 2016-02-15 주식회사 엘지화학 Super absorbent polymer and its preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342801A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174389A (en) * 2019-10-07 2022-03-11 株式会社Lg化学 Method for preparing super absorbent polymer
CN114174389B (en) * 2019-10-07 2024-02-27 株式会社Lg化学 Process for the preparation of superabsorbent polymers

Similar Documents

Publication Publication Date Title
KR102075737B1 (en) Preparation method for super absorbent polymer, and super absorbent polymer
CN107922636B (en) Method for preparing super absorbent polymer
EP3156427B1 (en) Super absorbent resin
US10821418B2 (en) Super absorbent polymer
US10988582B2 (en) Super absorbent polymer and method for preparing same
WO2014077612A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared by same
JP6837139B2 (en) Highly water-absorbent resin and its manufacturing method
JP6277282B2 (en) Method for producing superabsorbent resin
CN108350190B (en) Superabsorbent polymers
WO2018117391A1 (en) Highly absorbent resin and method for producing same
KR101680830B1 (en) Super Absorbent Polymer Resin and the Method for Preparing of the Same
WO2017078228A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
WO2018004162A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2015190879A1 (en) Super absorbent resin
JP7039108B2 (en) High water absorption resin manufacturing method and high water absorption resin
KR102087339B1 (en) Preparation method for super absorbent polymer, and super absorbent polymer
WO2017155197A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2017171208A1 (en) Superabsorbent resin and method for producing same
WO2017078369A1 (en) Method for preparing superabsorbent polymer
WO2017099423A1 (en) Method for preparing super-absorbent resin
WO2017155196A1 (en) Superabsorbent resin
WO2016089005A1 (en) Super-absorbent resin and method for preparing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017763460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15768343

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE