WO2017152845A1 - 天然气燃烧器的燃烧监控方法、装置和系统 - Google Patents

天然气燃烧器的燃烧监控方法、装置和系统 Download PDF

Info

Publication number
WO2017152845A1
WO2017152845A1 PCT/CN2017/075984 CN2017075984W WO2017152845A1 WO 2017152845 A1 WO2017152845 A1 WO 2017152845A1 CN 2017075984 W CN2017075984 W CN 2017075984W WO 2017152845 A1 WO2017152845 A1 WO 2017152845A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
combustion
measurement result
sensor
combustion controller
Prior art date
Application number
PCT/CN2017/075984
Other languages
English (en)
French (fr)
Inventor
吕松军
佰索德·科斯特林
唐仕云
佰恩德·普拉德
Original Assignee
西门子公司
吕松军
佰索德·科斯特林
唐仕云
佰恩德·普拉德
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子公司, 吕松军, 佰索德·科斯特林, 唐仕云, 佰恩德·普拉德 filed Critical 西门子公司
Priority to EP17762531.6A priority Critical patent/EP3418636B1/en
Publication of WO2017152845A1 publication Critical patent/WO2017152845A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/005Regulating fuel supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Definitions

  • the invention relates to the field of burners, and in particular to a method, device and system for monitoring combustion of a natural gas burner.
  • Hydrogen has a higher flammability range than pure methane, and can burn when the volume is from 4% to 75%, while methane is 5% to 15%, ignition energy is 15 times smaller than methane, and combustion rate is 8 times higher than methane. Therefore, it is more explosive than methane.
  • temperature monitoring is typically performed by installing a thermocouple at the flame exit of the burner and triggering different protection operations based on the monitored temperature signal.
  • This method can only control the risk of overheating in the combustion of natural gas, and cannot avoid the instability of combustion and the increase of nitrogen oxide emissions.
  • one of the problems addressed by one embodiment of the present invention is to reduce the major risks of natural gas burner combustion.
  • a combustion monitoring method for a natural gas burner wherein the natural gas burner is connected to an intake duct connected to a natural gas combustion control system, the natural gas
  • the combustion control system includes a gas analyzer and a combustion controller, the method comprising: the gas analyzer sampling from the intake duct and sampling the natural gas Performing an analysis to obtain a measurement result, wherein the measurement result includes a gas component in the natural gas and a corresponding content; the gas analyzer transmits the measurement result to the combustion controller; the combustion control And inputting the measurement result into a preset control model to determine control information corresponding to the measurement result, wherein the control model is related to a gas component in the natural gas and a corresponding content;
  • the combustion controller adjusts the flow of natural gas in the intake conduit of the natural gas burner based on the control information.
  • the natural gas combustion control system further includes at least one of a dynamic sensor, an exhaust sensor, and a temperature sensor
  • the dynamic sensor is disposed in a combustion chamber of the natural gas burner
  • the emission sensor is disposed at the Downstream of the natural gas burner
  • the temperature sensor is disposed on the natural gas burner
  • the combustion monitoring method further comprising: the combustion controller acquiring a dynamic signal of the dynamic sensor, an emission signal of the emission sensor, At least one of the temperature signals of the temperature sensor as a feedback signal; wherein the step of determining, by the combustion controller, the control information comprises: the combustion controller inputting the measurement result and the feedback signal to a pre-
  • the control model is set to determine control information corresponding to the measurement result and the feedback signal, wherein the control model is related to a gas content in the natural gas and a corresponding content and the feedback signal.
  • control model performs real-time adjustment according to the feedback signal.
  • control logic of the preset control model is also associated with an arrangement position of the sensor.
  • each type of sensor disposed on one of the natural gas burners includes one or more, wherein the combustion monitoring method further comprises: if at least one of each type of sensors disposed fails, The combustion controller triggers an alarm message.
  • the combustion monitoring method further includes: the combustion controller determining a current corresponding risk level according to the gas component and the corresponding content in the measurement result; triggering an operation corresponding to the risk level.
  • the step of determining a risk level includes: the combustion controller combining the feedback according to a gas component and a corresponding content in the measurement result Signal to determine the current corresponding risk level.
  • the gas component and the corresponding content are hydrogen content.
  • a combustion monitoring method for a natural gas burner at a combustion controller end includes: acquiring an intake pipe to the natural gas burner a measurement result of natural gas in the pipeline, wherein the measurement result includes a gas component in the natural gas and a corresponding content; and the measurement result is input into a preset control model to determine a corresponding to the measurement result Control information, wherein the control model is related to a gas content in the natural gas and a corresponding content; and adjusting a natural gas flow rate in an intake pipe of the natural gas burner according to the control information.
  • the combustion monitoring method further includes: acquiring at least one of a dynamic signal of the dynamic sensor of the natural gas burner, an emission signal of the emission sensor, and a temperature signal of the temperature sensor as a feedback signal; Determining the control information includes: inputting the measurement result and the feedback signal into a preset control model to obtain control information corresponding to the measurement result and the feedback signal, wherein the control The model is related to the gas composition in the natural gas and the corresponding content and the feedback signal.
  • the combustion monitoring method further includes: determining a current corresponding risk level according to the gas component and the corresponding content in the measurement result; triggering an operation corresponding to the risk level.
  • a natural gas combustion control system includes a gas analyzer and a combustion controller: the gas analyzer is connected to an intake pipe of a natural gas burner, The gas analyzer is configured to sample from the intake pipe; analyze the sampled natural gas to obtain a measurement result, wherein the measurement result includes a gas component and a corresponding content in the natural gas; Sending the measurement result to the combustion controller; the combustion controller includes: an acquisition unit, configured to acquire a measurement result sent by the gas analyzer; and a determining unit, configured to input the measurement result to the pre- a control model for determining control information corresponding to the measurement result, wherein the control model is related to a gas component in the natural gas and a corresponding content; and an adjustment unit configured to, according to the control information, The flow of natural gas in the intake line of the natural gas burner is adjusted.
  • the natural gas combustion control system further includes at least one of a dynamic sensor, an exhaust sensor, and a temperature sensor
  • the dynamic sensor is disposed in a combustion chamber of the natural gas burner
  • the emission sensor is disposed at the Downstream of the natural gas burner
  • the temperature sensor is disposed on the natural gas burner
  • the combustion controller further includes: a feedback unit, configured to acquire a dynamic signal of the dynamic sensor, an emission signal of the emission sensor, At least one of the temperature signals of the temperature sensor is used as a feedback signal; wherein the determining unit is configured to: input the measurement result and the feedback signal into a preset control model to determine Control information corresponding to the feedback signal, wherein the control model is related to the day
  • the gas composition in the gas is related to the corresponding content and the feedback signal.
  • control model is related to a gas component in the natural gas and a corresponding content and the feedback signal
  • control logic of the preset control model is also associated with an arrangement position of the sensor.
  • each type of sensor disposed on one of the natural gas burners includes one or more, wherein the combustion controller further includes: an alarm unit for at least any of each type of sensors disposed If a failure occurs, an alarm message is triggered.
  • the combustion controller further includes: a wind control unit, configured to determine a current corresponding risk level according to the gas component and the corresponding content in the measurement result; and a triggering unit, configured to trigger the risk level Corresponding operation.
  • the wind control unit is configured to: according to the gas component and the corresponding content in the measurement result, combined with the feedback signal, determine a current corresponding Risk level.
  • the gas component and the corresponding content are hydrogen content.
  • a combustion controller for performing combustion monitoring of a natural gas burner
  • the combustion controller includes: an acquisition unit for acquiring an intake duct to the natural gas burner The measurement result of the natural gas, wherein the measurement result includes a gas component and a corresponding content in the natural gas; and a determining unit, configured to input the measurement result into a preset control model to determine Corresponding control information corresponding to the measurement result, wherein the control model is related to a gas component in the natural gas and a corresponding content; an adjusting unit configured to be in the intake duct of the natural gas burner according to the control information The natural gas flow is adjusted.
  • the combustion controller further includes: a feedback unit, configured to acquire at least one of a dynamic signal of the dynamic sensor of the natural gas burner, an emission signal of the emission sensor, and a temperature signal of the temperature sensor as feedback a signal, wherein the determining unit is configured to: input the measurement result and the feedback signal into a preset control model to obtain control information corresponding to the measurement result and the feedback signal, where The control model is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • a feedback unit configured to acquire at least one of a dynamic signal of the dynamic sensor of the natural gas burner, an emission signal of the emission sensor, and a temperature signal of the temperature sensor as feedback a signal
  • the determining unit is configured to: input the measurement result and the feedback signal into a preset control model to obtain control information corresponding to the measurement result and the feedback signal, where The control model is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • the combustion controller further includes: a wind control unit, configured to determine a current corresponding risk level according to the gas component and the corresponding content in the measurement result; and a trigger unit, configured to trigger An operation corresponding to the risk level.
  • the embodiment of the present invention does not control the combustion of the natural gas burner solely based on the temperature after combustion or the like, the gas analysis of the natural gas burned by the natural gas burner is directly performed to obtain the measurement result, and the measurement result is input.
  • the control information corresponding to the measurement result is determined in a preset control model to adjust the natural gas flow rate in the intake pipe of the natural gas burner according to the control information. In this way, the combustion condition of the natural gas burner can be accurately predicted, the hysteresis of the control is solved, and various major risks of the natural gas burner are reduced.
  • the embodiment of the present invention can also determine the control information or adjust the control information by combining feedback signals of various types of sensors, thereby further improving the accuracy of the control.
  • Figure 1 is a block diagram showing the construction of a natural gas combustion system using a natural gas combustion control system in accordance with one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a natural gas combustion system using a natural gas combustion control system in accordance with another embodiment of the present invention.
  • FIG. 3 is a block diagram of a combustion controller in accordance with one embodiment of the present invention.
  • FIG. 4 is a block diagram of a combustion controller in accordance with another embodiment of the present invention.
  • FIG. 5 is a block diagram of a combustion controller in accordance with another embodiment of the present invention.
  • FIG. 6 is a system flow diagram of a combustion controller control method employing a natural gas combustion control system, in accordance with one embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of controlling a combustion controller in accordance with one embodiment of the present invention.
  • FIG. 8 is a flow chart of a method of controlling a combustion controller in accordance with another embodiment of the present invention.
  • FIG. 9 is a flow chart of a combustion controller control method in accordance with another embodiment of the present invention.
  • Figure 10 is a schematic illustration of a natural gas burner including two sensors, in accordance with one embodiment of the present invention.
  • FIG 11 is a block diagram of a combustion controller in accordance with one embodiment of the present invention.
  • the teachings of the present invention can be readily utilized in a combustion monitoring and control system.
  • the method, system and apparatus of the present invention are applicable to both premixed burners and diffusion burners.
  • the invention is applicable to gas turbines (Gas Turbine).
  • Figure 1 is a block diagram showing the construction of a natural gas combustion system using a natural gas combustion control system in accordance with one embodiment of the present invention.
  • the natural gas combustion control system includes a combustion controller 10 and a gas analyzer 20.
  • the system architecture shown in Figure 1 is only one example of a natural gas combustion control system.
  • the combustion controller 10 is connected to the gas analyzer 20 and the control valve 50 located in the intake duct 30 by means of a wired connection or a wireless connection to acquire a signal transmitted by the gas analyzer 20 and to the intake duct 30.
  • the control valve 50 in the middle sends or acquires information.
  • the gas analyzer 20 is coupled to an intake conduit 30 of the natural gas burner 40 that enables the gas analyzer 20 to sample from the intake conduit 30, i.e., to obtain a sample of natural gas combusted by the natural gas burner 40.
  • the gas analyzer 20 analyzes the sampled natural gas to obtain a measurement result of various gas components and corresponding contents contained in the natural gas.
  • the analysis method comprises two methods: first, analyzing the content of the gas contained in the natural gas based on a predetermined gas composition, for example, preferably, preliminarily analyzing the content of the natural gas hydrogen gas
  • the gas analyzer 20 analyzes and determines the hydrogen content in the natural gas, for example, the hydrogen content is 15%.
  • the gas analyzer 20 first analyzes the component types of various gases contained in the natural gas, such as methane. Ethane, carbon dioxide, nitrogen, hydrogen, hydrogen sulfide, etc., and then the gas content corresponding to each gas component is determined based on the analyzed gas composition.
  • the gas analyzer 20 then sends the measurement to the combustion controller 10.
  • the combustion controller 10 After the combustion controller 10 obtains the measurement result, the measurement result is input as input data into a preset control model, and the measurement is directly or indirectly determined according to the output result of the control model.
  • the control information corresponding to the result is related to the gas content in the natural gas and the corresponding content.
  • the control model may directly contain different control information corresponding to different natural gas components and contents; or, the control model includes different intake gas flows corresponding to different natural gas components and contents, and then, combustion
  • the controller 10 determines corresponding control information according to the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in a two-dimensional or multi-dimensional curve, such as the value of the hydrogen axis on the abscissa axis, the gas flow value on the ordinate axis, and the like; Or other presentation methods.
  • the determination of the control model may include two ways: first, based on manual setting; and second, based on the default setting, real-time adjustment based on the feedback signal.
  • the feedback signal may be various types of sensor signals as described below.
  • the combustion controller 10 adjusts the natural gas flow rate in the intake duct 30 of the natural gas burner 40 by adjusting the control valve 50 based on the control information.
  • control valve 50 based on the control information.
  • the combustion controller 10 may further determine a current risk level according to the measurement result, for example, a high risk level, a medium risk level, and a low risk level.
  • a current risk level for example, a high risk level, a medium risk level, and a low risk level.
  • the natural gas burner 40 is triggered to be turned off
  • the natural gas burner 40 is triggered to trip.
  • the combustion controller 10 can also combine other signals to determine the current corresponding risk level and trigger the corresponding operation. For example, if the hydrogen content exceeds the normal limit and reaches a high risk level while the roar of the natural gas burner 40 exceeds a certain level for a certain duration, the natural gas burner 40 is triggered to trip.
  • the roar can be by placing a roping sensor on the natural gas burner 40 Obtain.
  • FIG. 2 is a block diagram showing a natural gas combustion system using a natural gas combustion control system in accordance with another embodiment of the present invention.
  • the natural gas combustion control system includes a combustion controller 10, a gas analyzer 20, and a temperature sensor 701, a temperature sensor 702, a dynamic sensor 80, and a discharge sensor 90.
  • the system architecture shown in Figure 2 is only one example of the application of a natural gas combustion control system that can be applied to gas turbines that use premixed burners.
  • the combustion controller 10 is connected to the gas analyzer 20 and the control valve 50 located in the intake duct 30 by means of a wired connection or a wireless connection to acquire a signal transmitted by the gas analyzer 20 and to the intake duct 30.
  • the control valve 50 in the middle sends or acquires information.
  • the gas analyzer 20 is coupled to an intake conduit 30 of the natural gas burner 40 that enables the gas analyzer 20 to sample from the intake conduit 30, i.e., to obtain a sample of natural gas combusted by the natural gas burner 40.
  • the gas analyzer 20 analyzes the sampled natural gas to obtain a measurement result of various gas components and corresponding contents contained in the natural gas.
  • the analysis method comprises two methods: first, analyzing the content of the gas contained in the natural gas based on a predetermined gas composition, for example, preferably, preliminarily analyzing the content of the natural gas hydrogen gas
  • the gas analyzer 20 analyzes and determines the hydrogen content in the natural gas, for example, the hydrogen content is 15%.
  • the gas analyzer 20 first analyzes the component types of various gases contained in the natural gas, such as methane. Ethane, carbon dioxide, nitrogen, hydrogen, hydrogen sulfide, etc., and then the gas content corresponding to each gas component is determined based on the analyzed gas composition.
  • the gas analyzer 20 then sends the measurement to the combustion controller 10.
  • Temperature sensors 701 and 702 are located on natural gas burner 40 to measure the burner temperature, which may be any device capable of measuring the temperature of the natural gas burner, such as a thermocouple.
  • the discharge sensor 90 is disposed downstream of the natural gas burner 40, where the person skilled in the art can understand the arrangement position of the discharge sensor.
  • the emission sensor 90 is capable of measuring the combustion exhaust gas of the natural gas burner 40.
  • a dynamic sensor 80 is placed in the combustion chamber of the natural gas burner to measure the combustion dynamics in the combustion chamber.
  • a specific combustion chamber is not shown in the drawings.
  • the position of the dynamic sensor 80 in the figure is merely illustrative, and those skilled in the art should understand the dynamic sensor.
  • the location of the 80 is merely illustrative, and those skilled in the art should understand the dynamic sensor. The location of the 80.
  • the number of the temperature sensor, the emission sensor, and the dynamic sensor are merely illustrative, and it is not meant that only a single sensor can be disposed at a corresponding position.
  • One skilled in the art can arrange two or more of the same type of sensors for each system or each burner based on actual needs.
  • one or more of the above three types of sensors may be disposed on the burner.
  • FIG. 2 a two-stage natural gas burner 40 and associated equipment are shown in FIG. 2; for example, control valve 601, control valve 602, and annular manifold (manifold ring piping) 1001, a ring-shaped parent pipe 1002, a distribution branch 301, an allocation branch 302, and the like.
  • control valve 601, control valve 602, and annular manifold (manifold ring piping) 1001, a ring-shaped parent pipe 1002, a distribution branch 301, an allocation branch 302, and the like in the natural gas combustion system architecture, a multi-stage natural gas burner of one or two stages and two or more stages and corresponding equipment such as a combustion controller, a gas analyzer, and various types of sensors may be included.
  • control valve 601 and the control valve 602 may be control devices for controlling the premixed gas and the duty gas, respectively.
  • the temperature sensor 701 and the temperature sensor 702 transmit corresponding temperature signals to the combustion controller 10, and the dynamic sensor 80 transmits a corresponding dynamic signal to the combustion controller 10, and the discharge sensor 90 transmits a corresponding emission signal to the combustion controller 10;
  • the combustion controller 10 acquires at least one of the above signals and uses it as a feedback signal.
  • the combustion controller 10 inputs the measurement result and the feedback signal as input data into a preset control model, and directly or indirectly determines the measurement result according to the output result of the input data of the control model.
  • Control information corresponding to the feedback signal is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • control model may directly contain different control information corresponding to different feedback signals of different natural gas components and contents; or the control model includes different natural gas components and contents and different feedback signals.
  • the combustion controller 10 determines corresponding control information based on the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in the form of a multi-dimensional curve, such as an abscissa axis being a hydrogen content value and one or more abscissa axes being a feedback signal respectively.
  • the value, the ordinate axis is the natural gas flow value, etc.; it can also be a table or other presentation.
  • the determination of the control model may include two ways: first, based on manual setting; Second, based on the default settings, real-time adjustment is performed based on the feedback signal.
  • control logic of the control model is also related to the placement position of the sensor.
  • the control logic is logic for determining a corresponding output (ie, corresponding control information) based on a certain input (ie, the type of the feedback signal and the corresponding value).
  • a corresponding output ie, corresponding control information
  • a certain input ie, the type of the feedback signal and the corresponding value
  • the control model for the temperature sensor 701 is different from the control model for the temperature sensor 702, such as the former The alarm temperature will be higher than the latter alarm temperature.
  • the combustion controller 10 adjusts the natural gas flow rate in the intake duct 30 of the natural gas burner 40 by adjusting at least one of the control valve 50, the control valve 601, and the control valve 602 based on the control information.
  • control valve 50 the control valve 50
  • control valve 601 the control valve 602
  • other adjustment methods as applicable to the present invention, are also included in the scope of protection of the present invention and are cited. The way is included here.
  • each type of sensor disposed on one of the natural gas burners includes one or more, and if at least any one of the sensors of each type disposed fails, the combustion controller 10 triggers an alarm message.
  • FIG. 10 shows a schematic diagram of a natural gas burner including two sensors, in accordance with one embodiment of the present invention.
  • Two temperature sensors 701, 702 are disposed on the natural gas burner 40 to collectively detect the temperature of the natural gas burner. If one of the temperature sensors, such as the temperature sensor 701, fails, the combustion controller 10 no longer acquires a temperature signal from the temperature sensor 701, thus determining that the temperature sensor 701 has failed and issues an alarm message.
  • the combustion controller 10 may determine the current corresponding risk according to the gas component and the corresponding content in the measurement result, in combination with the feedback signal. grade. For example, if the hydrogen content exceeds the normal limit and the emission signal of the emission sensor 90 indicates that the emission content exceeds the standard, it may be determined that the current corresponding risk level is the medium risk level; if the hydrogen content exceeds the normal limit, and the emission signal of the emission sensor 90 indicates the emission If the temperature signal of the temperature sensor 701 or 702 indicates a high temperature, the current corresponding risk level may be determined to be a high risk level; or if the hydrogen content exceeds a normal limit, the temperature signal of the temperature sensor 701 or 702 is displayed. At high temperatures, it can be determined that the current corresponding risk level is a high risk level.
  • the combustion controller 10 includes an acquisition unit 101, a determination unit 102, and an adjustment unit 103.
  • the acquisition unit 101 acquires a measurement result of the natural gas in the intake pipe of the natural gas burner, wherein the measurement result includes a gas component in the natural gas and a corresponding content.
  • the obtaining unit 101 can interact with a device such as a gas analyzer to obtain the measurement result sent by the gas analyzer.
  • the acquiring unit 101 can also interact with other devices capable of providing the measurement result to obtain the The measurement results are described.
  • the measurement unit After the acquisition unit 101 acquires the measurement result, the measurement unit sends the measurement result to the determination unit 102.
  • the determining unit 102 inputs the measurement result as input data into the preset control model, and directly or indirectly determines the control information corresponding to the measurement result according to the output result of the control model.
  • the control model is related to the gas content in the natural gas and the corresponding content.
  • the control model may directly contain different control information corresponding to different natural gas components and contents; or, the control model includes different intake gas flows corresponding to different natural gas components and contents, and then, combustion
  • the controller 10 determines corresponding control information according to the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in a two-dimensional or multi-dimensional curve, such as the value of the hydrogen axis on the abscissa axis, the gas flow value on the ordinate axis, and the like; Or other presentation methods.
  • the determination of the control model may include two ways: first, based on manual setting; and second, based on the default setting, real-time adjustment based on the feedback signal.
  • the determining unit 102 sends the control information to the adjusting unit 103, and the adjusting unit 103, according to the control information, adjusts the natural gas burner by adjusting, for example, a control valve located on an intake pipe of the natural gas burner.
  • the natural gas flow in the intake pipe is adjusted.
  • Combustion control The device 10 includes an obtaining unit 101, a determining unit 102, an adjusting unit 103, and a feedback unit 104.
  • the obtaining unit 101 and the adjusting unit 103 are the same as or similar to the corresponding device shown in FIG. 3, and thus are not described herein again, and are included herein by reference.
  • the feedback unit 104 interacts with a sensor corresponding to the natural gas burner or other device capable of providing a corresponding signal to acquire a dynamic signal of the dynamic sensor of the natural gas burner, an emission signal of the emission sensor, and a temperature signal of the temperature sensor. At least one of the signals is used as a feedback signal.
  • the determining unit 102 acquires the measurement result sent by the obtaining unit 101, and acquires a feedback signal sent by the feedback unit 104, and inputs the measurement result and the feedback signal as input data into a preset control model, and
  • the control information corresponding to the feedback signal is directly or indirectly determined according to the output result of the control model to the input data.
  • the control model is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • control model may directly contain different control information corresponding to different feedback signals of different natural gas components and contents; or the control model includes different natural gas components and contents and different feedback signals.
  • determining unit 102 determines corresponding control information according to the intake air flow rate, such as increasing flow rate or decreasing flow rate.
  • control model may be presented in the form of a multi-dimensional curve, such as an abscissa axis being a hydrogen content value and one or more abscissa axes being a feedback signal respectively.
  • the value, the ordinate axis is the natural gas flow value, etc.; it can also be a table or other presentation.
  • the determining of the control model may include two modes: first, based on manual setting; and second, based on the default setting, performing real-time adjustment based on the feedback signal.
  • control logic of the control model is also related to the placement position of the sensor.
  • the control logic is logic for determining a corresponding output (ie, corresponding control information) based on a certain input (ie, the type of the feedback signal and the corresponding value).
  • a corresponding output ie, corresponding control information
  • a certain input ie, the type of the feedback signal and the corresponding value
  • control model for the former is different from the control model for the latter, such as the alarm temperature of the former. Higher than the latter's alarm temperature, etc.
  • the combustion controller 10 further includes an alarm unit (not shown), wherein if each type of sensor disposed on the natural gas burner corresponding to the combustion controller 10 includes one or more, the alarm unit is used An alarm message is triggered if at least any one of the sensors of each type is disabled.
  • FIG. 10 shows a schematic diagram of a natural gas burner including two sensors, in accordance with one embodiment of the present invention.
  • Two temperature sensors 701, 702 are disposed on the natural gas burner 40 to collectively detect the temperature of the natural gas burner. If one of the temperature sensors, such as temperature sensor 701, fails, combustion controller 10 no longer acquires a temperature signal from temperature sensor 701, thus determining that temperature sensor 701 has failed and an alarm message is issued by the alarm unit.
  • FIG. 5 is a block diagram of a combustion controller in accordance with another embodiment of the present invention.
  • the combustion controller 10 includes an acquisition unit 101, a determination unit 102, an adjustment unit 103, a feedback unit 104, a wind control unit 105, and a trigger unit 106.
  • the obtaining unit 101, the determining unit 102, the adjusting unit 103, and the feedback unit 104 are the same as or similar to the corresponding devices shown in FIG. 3 or FIG. 4, and thus are not described herein again, and are included herein by reference.
  • the wind control unit 105 can acquire the measurement result from the acquisition unit 101, and determine the current corresponding risk level according to the measurement result, for example, a high risk level, a medium risk level, and a low risk level.
  • the trigger unit 106 triggers an operation corresponding to the risk level based on the risk level.
  • the natural gas burner is triggered to trip.
  • the combustion controller 10 can also combine other signals to determine the current corresponding risk level and trigger the corresponding operation. For example, if the hydrogen content exceeds the normal limit and reaches a high risk level, and the roar of the natural gas burner exceeds a certain level for a certain duration, the natural gas burner is triggered to trip.
  • the roar can be obtained by placing a roping sensor on the natural gas burner.
  • the wind control unit 105 can determine the current corresponding risk level according to the gas component and the corresponding content in the measurement result in combination with the feedback signal. For example, if the hydrogen content exceeds the normal limit and the emission signal of the emission sensor indicates that the emission content exceeds the standard, it can be determined that the current corresponding risk level is the medium risk level; if the hydrogen content exceeds the normal limit, and the emission signal of the emission sensor indicates that the emission content exceeds the standard And if the temperature signal of the temperature sensor shows a high temperature, it can be determined that the current corresponding risk level is a high risk level; or if the value of the hydrogen content exceeds the normal limit is high, and the temperature signal of the temperature sensor shows a high temperature, the current corresponding can be determined.
  • the risk level is a high risk level.
  • Each unit in FIG. 3-5 can be implemented by using software, hardware (for example, an integrated circuit, an FPGA (Field-Programmable Gate Array), or the like) or a combination of software and hardware.
  • software for example, an integrated circuit, an FPGA (Field-Programmable Gate Array), or the like
  • hardware for example, an integrated circuit, an FPGA (Field-Programmable Gate Array), or the like
  • FPGA Field-Programmable Gate Array
  • the combustion controller 10 can include a memory 1101 and a processor 1102.
  • the memory 1101 can store executable instructions.
  • the processor 1102 can implement the operations performed by the various units in FIGS. 3-5 in accordance with executable instructions stored by the memory 1101.
  • embodiments of the present invention also provide a machine readable medium having executable instructions stored thereon that, when executed, cause a machine to perform operations performed by processor 1102.
  • FIG. 6 is a system flow diagram of a combustion controller control method employing a natural gas combustion control system, in accordance with one embodiment of the present invention.
  • the natural gas combustion control system includes a combustion controller 10 and a gas analyzer 20.
  • Figure 1 shows a system architecture diagram of a natural gas combustion control system.
  • the combustion controller 10 is connected to the gas analyzer 20 and the control valve 50 located in the intake duct 30 by means of a wired connection or a wireless connection to acquire a signal transmitted by the gas analyzer 20 and to the intake duct 30.
  • the control valve 50 in the middle sends or acquires information.
  • the gas analyzer 20 is coupled to an intake conduit 30 of the natural gas burner 40 that enables the gas analyzer 20 to sample from the intake conduit 30, i.e., to obtain a sample of natural gas combusted by the natural gas burner 40.
  • step S1 the gas analyzer 20 analyzes the sampled natural gas to obtain a measurement result of various gas components and corresponding contents contained in the natural gas.
  • the analysis method comprises two methods: first, analyzing the content of the gas contained in the natural gas based on a predetermined gas composition, for example, preferably, preliminarily analyzing the content of the natural gas hydrogen gas
  • the gas analyzer 20 analyzes and determines the hydrogen content in the natural gas, for example, the hydrogen content is 15%.
  • the gas analyzer 20 first analyzes the component types of various gases contained in the natural gas, such as methane. Ethane, carbon dioxide, nitrogen, hydrogen, hydrogen sulfide, etc., and then the gas content corresponding to each gas component is determined based on the analyzed gas composition.
  • step S2 the gas analyzer 20 transmits the measurement result to the combustion controller 10.
  • step S3 after the combustion controller 10 obtains the measurement result, the measurement result is input as input data into a preset control model, and the output result of the input data is directly or according to the control model.
  • the grounding determines the control information corresponding to the measurement result.
  • the control model is related to the gas content in the natural gas and the corresponding content.
  • the control model may directly contain different control information corresponding to different natural gas components and contents; or, the control model includes different intake gas flows corresponding to different natural gas components and contents, and then, combustion The controller 10 determines corresponding control information according to the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in a two-dimensional or multi-dimensional curve, such as the value of the hydrogen axis on the abscissa axis, the gas flow value on the ordinate axis, and the like; Or other presentation methods.
  • the determination of the control model may include two ways: first, based on manual setting; and second, based on the default setting, real-time adjustment based on the feedback signal.
  • the feedback signal may be various types of sensor signals as described below.
  • step S4 the combustion controller 10 adjusts the natural gas flow rate in the intake duct 30 of the natural gas burner 40 by adjusting the control valve 50 based on the control information.
  • the control valve 50 based on the control information.
  • the method further comprises the step of determining a risk level (not shown): specifically, the combustion controller 10 determines the current corresponding risk level based on the measurement result, for example, a high risk level, a medium risk level, and a low Risk level.
  • a risk level (not shown): specifically, the combustion controller 10 determines the current corresponding risk level based on the measurement result, for example, a high risk level, a medium risk level, and a low Risk level.
  • the natural gas burner 40 is triggered to be turned off
  • the natural gas burner 40 is triggered to trip.
  • the method further comprises the step of determining the risk level in combination with the other signals and triggering the response operation (not shown): in particular, the combustion controller 10 may also combine other signals to determine the current corresponding risk level and trigger the corresponding operation.
  • the combustion controller 10 may also combine other signals to determine the current corresponding risk level and trigger the corresponding operation.
  • the hydrogen content exceeds the normal limit and reaches a high risk level while the roar of the natural gas burner 40 exceeds a certain level for a certain duration, the natural gas burner 40 is triggered to trip.
  • the roar can be obtained by placing a roping sensor on the natural gas burner 40.
  • the natural gas combustion control system includes a combustion controller 10, a gas analyzer 20, and a temperature sensor 701, a temperature sensor 702, a dynamic sensor 80, and a discharge sensor 90.
  • Temperature sensors 701 and 702 are located on natural gas burner 40 to measure the burner temperature, which may be any device capable of measuring the temperature of the natural gas burner, such as a thermocouple.
  • the discharge sensor 90 is disposed downstream of the natural gas burner 40, where the person skilled in the art can understand the arrangement position of the discharge sensor.
  • the emission sensor 90 is capable of measuring the combustion exhaust gas of the natural gas burner 40.
  • a dynamic sensor 80 is placed in the combustion chamber of the natural gas burner to measure the combustion dynamics in the combustion chamber.
  • a specific combustion chamber is not shown in the drawings.
  • the position of the dynamic sensor 80 in the figure is merely illustrative, and those skilled in the art should understand the arrangement position of the dynamic sensor 80.
  • the number of the temperature sensor, the emission sensor, and the dynamic sensor are merely illustrative, and it is not meant that only a single sensor can be disposed at a corresponding position.
  • One skilled in the art can arrange two or more of the same type of sensors for each system or each burner based on actual needs.
  • one or more of the above three types of sensors may be disposed on the burner.
  • FIG. 2 a two-stage natural gas burner 40 and associated equipment are shown in FIG. 2; for example, control valve 601, control valve 602, and annular manifold (manifold ring piping) 1001, ring-shaped parent tube 1002, distribution branch (distribution branch) 301, allocation branch 302, and the like.
  • the natural gas combustion system architecture it can include multi-stage natural gas burners of one or two stages and above and corresponding corresponding devices, such as combustion controllers, gas analyzers, various types of sensors, and the like.
  • the system method may further include the step of acquiring a feedback signal (not shown): specifically, the temperature sensor 701 and the temperature sensor 702 transmit a corresponding temperature signal to the combustion controller 10,
  • the dynamic sensor 80 transmits a corresponding dynamic signal to the combustion controller 10, which transmits a corresponding emission signal to the combustion controller 10; accordingly, the combustion controller 10 acquires at least one of the above signals and As a feedback signal.
  • step S3 the combustion controller 10 inputs the measurement result and the feedback signal as input data into a preset control model, and directly or indirectly according to the output result of the input data according to the control model.
  • the control information corresponding to the measurement signal and the feedback signal is determined.
  • the control model is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • control model may directly contain different control information corresponding to different feedback signals of different natural gas components and contents; or the control model includes different natural gas components and contents and different feedback signals.
  • the combustion controller 10 determines corresponding control information based on the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in the form of a multi-dimensional curve, such as an abscissa axis being a hydrogen content value and one or more abscissa axes being a feedback signal respectively.
  • the value, the ordinate axis is the natural gas flow value, etc.; it can also be a table or other presentation.
  • the determining of the control model may include two modes: first, based on manual setting; and second, based on the default setting, performing real-time adjustment based on the feedback signal.
  • control logic of the control model is also related to the placement position of the sensor.
  • the control logic is logic for determining a corresponding output (ie, corresponding control information) based on a certain input (ie, the type of the feedback signal and the corresponding value).
  • a corresponding output ie, corresponding control information
  • a certain input ie, the type of the feedback signal and the corresponding value
  • the control model for the temperature sensor 701 is not As with the control model of the temperature sensor 702, the alarm temperature of the former is higher than the alarm temperature of the latter.
  • step S4 the combustion controller 10 adjusts at least one of the control valve 50, the control valve 601, and the control valve 602 according to the control information to the intake duct 30 of the natural gas burner 40. Natural gas flow is adjusted.
  • control valve 50 the control valve 50
  • control valve 601 the control valve 602
  • other adjustment methods as applicable to the present invention, are also included in the scope of protection of the present invention and are cited. The way is included here.
  • the method further comprises the step of triggering alarm information (not shown), in particular, each type of sensor disposed on one of said natural gas burners comprises one or more, if each type of sensor is disposed At least one of the failures, the combustion controller 10 triggers an alarm message.
  • FIG. 10 shows a schematic diagram of a natural gas burner including two sensors, in accordance with one embodiment of the present invention.
  • Two temperature sensors 701, 702 are disposed on the natural gas burner 40 to collectively detect the temperature of the natural gas burner. If one of the temperature sensors, such as the temperature sensor 701, fails, the combustion controller 10 no longer acquires a temperature signal from the temperature sensor 701, thus determining that the temperature sensor 701 has failed and issues an alarm message.
  • the method further comprises the step of determining a risk level in conjunction with the feedback signal (not shown), in particular, when the combustion controller 10 also acquires the feedback signal, the combustion controller 10 may be based on the measurement The gas component in the result and the corresponding content, combined with the feedback signal, determine the current corresponding risk level.
  • the current corresponding risk level is the medium risk level; if the hydrogen content exceeds the normal limit, and the emission signal of the emission sensor 90 indicates the emission If the temperature signal of the temperature sensor 701 or 702 indicates a high temperature, the current corresponding risk level may be determined to be a high risk level; or if the hydrogen content exceeds a normal limit, the temperature signal of the temperature sensor 701 or 702 is displayed. At high temperatures, it can be determined that the current corresponding risk level is a high risk level.
  • FIG. 7 is a flow chart of a method of controlling a combustion controller in accordance with one embodiment of the present invention.
  • step S101 the combustion controller 10 acquires an intake duct for the natural gas burner The measurement result of the natural gas, wherein the measurement result includes a gas component in the natural gas and a corresponding content.
  • the combustion controller 10 can interact with a device such as a gas analyzer to obtain the measurement result sent by the gas analyzer, and in addition, the combustion controller 10 can also interact with other devices capable of providing the measurement result, Obtain the measurement result.
  • a device such as a gas analyzer to obtain the measurement result sent by the gas analyzer
  • the combustion controller 10 can also interact with other devices capable of providing the measurement result, Obtain the measurement result.
  • step S101 after the combustion controller 10 takes the measurement result, step S102 is performed.
  • step S102 the combustion controller 10 inputs the measurement result as input data into a preset control model, and directly or indirectly determines the measurement result according to the output result of the input data of the control model.
  • Corresponding control information is related to the gas content in the natural gas and the corresponding content.
  • the control model may directly contain different control information corresponding to different natural gas components and contents; or, the control model includes different intake gas flows corresponding to different natural gas components and contents, and then, combustion The controller 10 determines corresponding control information according to the intake air flow, such as increasing the flow rate or reducing the flow rate.
  • control model may be presented in a two-dimensional or multi-dimensional curve, such as the value of the hydrogen axis on the abscissa axis, the gas flow value on the ordinate axis, and the like; Or other presentation methods.
  • the determination of the control model may include two ways: first, based on manual setting; and second, based on the default setting, real-time adjustment based on the feedback signal.
  • step S103 is performed.
  • the combustion controller 10 is in the intake duct of the natural gas burner according to the control information by adjusting a control valve, for example, located on an intake duct of the natural gas burner.
  • the natural gas flow is adjusted.
  • a control valve for example, located on an intake duct of the natural gas burner.
  • FIG. 8 is a flow chart of a method of controlling a combustion controller in accordance with another embodiment of the present invention.
  • the steps S101 and S103 are the same as or similar to the corresponding steps shown in FIG. 7, and thus are not described herein again, and are included herein by reference.
  • step S104 the combustion controller 10 interacts with a sensor corresponding to the natural gas burner or other device capable of providing a corresponding signal to acquire a dynamic signal of the dynamic sensor of the natural gas burner and an emission signal of the emission sensor. At least the temperature signal of the temperature sensor Any one of the signals as a feedback signal.
  • step S102 acquires the measurement result sent in step S101, and acquires the feedback signal sent in step S104, and inputs the measurement result and the feedback signal as input data into a preset control model, and according to the The control model outputs the result of the input data to directly or indirectly determine the control information corresponding to the measurement result and the feedback signal.
  • the control model is related to a gas composition in the natural gas and a corresponding content and the feedback signal.
  • control model may directly contain different control information corresponding to different feedback signals of different natural gas components and contents; or the control model includes different natural gas components and contents and different feedback signals.
  • the combustion controller 10 determines corresponding control information according to the intake air flow, such as increasing the flow rate or decreasing the flow rate.
  • control model may be presented in the form of a multi-dimensional curve, such as an abscissa axis being a hydrogen content value and one or more abscissa axes being a feedback signal respectively.
  • the value, the ordinate axis is the natural gas flow value, etc.; it can also be a table or other presentation.
  • the determining of the control model may include two modes: first, based on manual setting; and second, based on the default setting, performing real-time adjustment based on the feedback signal.
  • control logic of the control model is also related to the placement position of the sensor.
  • the control logic is logic for determining a corresponding output (ie, corresponding control information) based on a certain input (ie, the type of the feedback signal and the corresponding value).
  • a corresponding output ie, corresponding control information
  • a certain input ie, the type of the feedback signal and the corresponding value
  • control model for the former is different from the control model for the latter, such as the alarm temperature of the former. Higher than the latter's alarm temperature, etc.
  • the method further comprises the step of triggering alarm information (not shown), in particular, in this step, if each type of sensor disposed on the natural gas burner corresponding to the combustion controller 10 includes one or In plurality, the combustion controller 10 triggers an alarm message if at least any one of the arranged types of sensors fails.
  • FIG. 10 shows a schematic diagram of a natural gas burner including two sensors, in accordance with one embodiment of the present invention.
  • Two temperature sensors 701, 702 are disposed on the natural gas burner 40 to collectively detect the temperature of the natural gas burner. If one of the temperature sensors, such as temperature If the degree sensor 701 fails, the combustion controller 10 no longer acquires the temperature signal from the temperature sensor 701, thus determining that the temperature sensor 701 has failed and the alarm unit issues an alarm message.
  • FIG. 9 is a flow chart of a combustion controller control method in accordance with another embodiment of the present invention.
  • step S105 the combustion controller 10 can acquire the measurement result from step S101, and according to the measurement result, determine the current corresponding risk level, for example, a high risk level, a medium risk level, and a low risk level.
  • step S106 the combustion controller 10 triggers an operation corresponding to the risk level based on the risk level.
  • the natural gas burner is triggered to trip.
  • the combustion controller 10 may also combine other signals to determine the current corresponding risk level and trigger the corresponding operation. For example, if the hydrogen content exceeds the normal limit and reaches a high risk level, and the roar of the natural gas burner exceeds a certain level for a certain duration, the natural gas burner is triggered to trip.
  • the roar can be obtained by placing a roping sensor on the natural gas burner.
  • step S105 when step S105 is further capable of acquiring the feedback signal from step S104 (not shown), in step S105, the combustion controller 10 may determine the gas composition and the corresponding content in the measurement result, In conjunction with the feedback signal, the current corresponding risk level is determined.
  • the current corresponding risk level is the medium risk level
  • the temperature signal of the temperature sensor shows a high temperature
  • the current corresponding risk level is a high risk level
  • the temperature signal of the temperature sensor shows a high temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

一种天然气燃烧器控制系统及其燃烧监控方法,该天然气燃烧控制系统包括燃烧控制器(10)与气体分析仪(20),燃烧控制器(10)通过有线连接或无线连接的方式,与气体分析仪(20)和位于进气管道(30)中的控制阀(50)相连接,以获取气体分析仪(20)所发送的信号并向所述进气管道(30)中的控制阀(50)发送或获取信息,该燃烧监控方法包括气体分析仪(20)从进气管道(30)中取样并对天然气进行分析,以获取对该天然气中所包含的各类气体成分与对应的含量的测量结果,然后,气体分析仪(20)将该测量结果发送至燃烧控制器(10),燃烧控制器(10)获取到该测量结果后,将该测量结果作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果所对应的控制信息,然后,燃烧控制器(10)根据该相对应的控制信息加大流量或减小流量等。该装置和方法能实现对天然气燃烧器的预控,降低了天然气燃烧器燃烧的主要风险。

Description

天然气燃烧器的燃烧监控方法、装置和系统 技术领域
本发明涉及燃烧器领域,尤其涉及一种天然气燃烧器的燃烧监控方法、装置和系统。
背景技术
随着天然气中的氢含量的逐渐增多,天然气变得越来越危险。与纯净的甲烷相比,氢气的可燃范围更高,当容积从4%到75%时均可燃,而甲烷是5%到15%,点火能量比甲烷小15倍,燃烧速度比甲烷高8倍,因此,其比甲烷更易爆炸。
对于在高氢气含量状态下,天然气燃烧器的燃烧所潜在的主要风险是:
-由于氢气高反应性而产生的逆燃(flash back)所造成的燃烧器过热;
-由于氢气更快速运动而产生的较天然气燃烧不一样的化学变化所导致的燃烧不稳定性;
-由于氢气更高的绝热燃烧温度所导致的氮氧化物排放的增加。
在现有技术中,通常通过在燃烧器的火焰出口处安装热电偶来进行温度监测,并基于所监测到的温度信号触发不同的保护操作。这种方法仅能控制天然气燃烧中的过热风险,无法避免燃烧的不稳定性以及氮氧化物排放的增加。
发明内容
有鉴于此,本发明的一个实施例解决的问题之一是降低天然气燃烧器燃烧的主要风险。
根据本发明的一个实施例,提供了一种天然气燃烧器的燃烧监控方法,其中,所述天然气燃烧器与进气管道相连接,所述进气管道与天然气燃烧控制系统相连接,所述天然气燃烧控制系统包含气体分析仪与燃烧控制器,所述方法包括:所述气体分析仪从所述进气管道中取样,并对所取样的天然气 进行分析,以获取测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;所述气体分析仪将所述测量结果发送至所述燃烧控制器;所述燃烧控制器将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;所述燃烧控制器根据所述控制信息,对所述天然气燃烧器的进气管道中的天然气流量进行调整。
可选地,所述天然气燃烧控制系统还包括动态传感器、排放传感器、温度传感器中的至少任一项,所述动态传感器布置在所述天然气燃烧器的燃烧室中,所述排放传感器布置在所述天然气燃烧器的下游,所述温度传感器布置在所述天然气燃烧器上,所述燃烧监控方法还包括:所述燃烧控制器获取所述动态传感器的动态信号、所述排放传感器的排放信号、所述温度传感器的温度信号中至少任意一个信号,以作为反馈信号;其中,所述燃烧控制器确定控制信息的步骤包括:所述燃烧控制器将所述测量结果以及所述反馈信号输入到预置的控制模型中,以确定与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
可选地,所述控制模型根据所述反馈信号进行实时调整。
可选地,所述预置的控制模型的控制逻辑还与所述传感器的布置位置相关联。
可选地,在一个所述天然气燃烧器上所布置的每类传感器包括一个或多个,其中,所述燃烧监控方法还包括:若所布置的每类传感器中的至少任意一个失效,则所述燃烧控制器触发报警信息。
可选地,所述燃烧监控方法还包括:所述燃烧控制器根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;触发与所述风险等级相对应的操作。
可选地,当所述燃烧控制器还获取所述反馈信号时,所述确定风险等级的步骤包括:所述燃烧控制器根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。
可选地,所述气体成分与对应的含量为氢气含量。
根据本发明的一个实施例,提供了一种在燃烧控制器端对天然气燃烧器的燃烧监控方法,其中,所述方法包括:获取对所述天然气燃烧器的进气管 道中的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;根据所述控制信息,对所述天然气燃烧器的进气管道中的天然气流量进行调整。
可选地,所述燃烧监控方法还包括:获取所述天然气燃烧器的动态传感器的动态信号、排放传感器的排放信号、温度传感器的温度信号中至少任意一个信号,以作为反馈信号;其中,所述确定控制信息的步骤包括:将所述测量结果以及所述反馈信号输入到预置的控制模型中,以获取与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
可选地,所述燃烧监控方法还包括:根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;触发与所述风险等级相对应的操作。
根据本发明的一个实施例,提供了一种天然气燃烧控制系统,其中,所述天然气燃烧控制系统包括气体分析仪与燃烧控制器:所述气体分析仪与天然气燃烧器的进气管道相连接,所述气体分析仪用于从所述进气管道中取样;对所取样的天然气进行分析,以获取测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;并将所述测量结果发送至所述燃烧控制器;所述燃烧控制器包括:获取单元,用于获取所述气体分析仪所发送的测量结果;确定单元,用于将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;调整单元,用于根据所述控制信息,对所述天然气燃烧器的进气管道中的天然气流量进行调整。
可选地,所述天然气燃烧控制系统还包括动态传感器、排放传感器、温度传感器中的至少任一项,所述动态传感器布置在所述天然气燃烧器的燃烧室中,所述排放传感器布置在所述天然气燃烧器的下游,所述温度传感器布置在所述天然气燃烧器上,所述燃烧控制器还包括:反馈单元,用于获取所述动态传感器的动态信号、所述排放传感器的排放信号、所述温度传感器的温度信号中至少任意一个信号,以作为反馈信号;其中,所述确定单元用于:将所述测量结果以及所述反馈信号输入到预置的控制模型中,以确定与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天 然气中的气体成分与对应的含量以及所述反馈信号相关。
可选地,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关
可选地,所述预置的控制模型的控制逻辑还与所述传感器的布置位置相关联。
可选地,在一个所述天然气燃烧器上所布置的每类传感器包括一个或多个,其中,所述燃烧控制器还包括:报警单元,用于若所布置的每类传感器中的至少任意一个失效,则触发报警信息。
可选地,所述燃烧控制器还包括:风控单元,用于根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;触发单元,用于触发与所述风险等级相对应的操作。
可选地,当所述燃烧控制器还包括所述反馈单元时,所述风控单元用于:根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。
可选地,所述气体成分与对应的含量为氢气含量。
根据本发明的一个实施例,提供了一种对天然气燃烧器进行燃烧监控的燃烧控制器,其中,所述燃烧控制器包括:获取单元,用于获取对所述天然气燃烧器的进气管道中的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;确定单元,用于将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;调整单元,用于根据所述控制信息,对所述天然气燃烧器的进气管道中的天然气流量进行调整。
可选地,所述燃烧控制器还包括:反馈单元,用于获取所述天然气燃烧器的动态传感器的动态信号、排放传感器的排放信号、温度传感器的温度信号中至少任意一个信号,以作为反馈信号;其中,所述确定单元用于:将所述测量结果以及所述反馈信号输入到预置的控制模型中,以获取与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
可选地,所述燃烧控制器还包括:风控单元,用于根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;触发单元,用于触发 与所述风险等级相对应的操作。
由于本发明实施例并非仅依据燃烧后的温度等来对天然气燃烧器的燃烧进行控制,而是直接对天然气燃烧器所燃烧的天然气进行气体分析,以获取测量结果,并将所述测量结果输入到预置的控制模型中以确定与所述测量结果相对应的控制信息,从而根据所述控制信息,对所述天然气燃烧器的进气管道中的天然气流量进行调整。利用这种方式,能够精确的对天然气燃烧器的燃烧状况进行预判,解决了控制的滞后性,降低了天然气燃烧器的多种主要风险。而且,本发明实施例还能够结合各类传感器的反馈信号来确定所述控制信息或对所述控制信息进行调整,进一步地提高了控制的准确性。
附图说明
本发明的其它特点、特征、优点和益处通过以下结合附图的详细描述将变得更加显而易见。
图1表示本发明一个实施例的一种应用天然气燃烧控制系统的天然气燃烧系统架构图。
图2表示本发明另一个实施例的一种应用天然气燃烧控制系统的天然气燃烧系统架构图。
图3是根据本发明的一个实施例的一种燃烧控制器的框图。
图4是根据本发明的另一个实施例的一种燃烧控制器的框图。
图5是根据本发明的另一个实施例的一种燃烧控制器的框图。
图6是根据本发明的一个实施例的一种应用天然气燃烧控制系统的燃烧控制器控制方法的系统流程图。
图7是根据本发明的一个实施例的一种燃烧控制器控制方法的流程图。
图8是根据本发明的另一个实施例的一种燃烧控制器控制方法的流程图。
图9是根据本发明的另一个实施例的一种燃烧控制器控制方法的流程图。
图10是根据本发明的一个实施例的一种包含两个传感器的天然气燃烧器的示意图。
图11是根据本发明的一个实施例的燃烧控制器的结构图。
为了有助于理解,使用了相同的附图标记,以在可能的情况下指代对于 附图共用的相同元件。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施方式。虽然附图中显示了本公开的优选实施方式,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整的传达给本领域的技术人员。
在阅读下述说明之后,本领域技术人员将清楚地认识到,本发明的教导可容易地用于燃烧监测和控制系统中。本发明所述的方法、系统与装置,对于预混燃烧器或扩散式燃烧器均可适用。优选地,本发明可应用于燃气涡轮机(Gas Turbine)中。
图1表示本发明一个实施例的一种应用天然气燃烧控制系统的天然气燃烧系统架构图。所述天然气燃烧控制系统包括燃烧控制器10与气体分析仪20。图1所显示的系统架构仅是应用天然气燃烧控制系统的一种示例。
燃烧控制器10通过有线连接或无线连接的方式,与气体分析仪20和位于进气管道30中的控制阀50相连接,以获取气体分析仪20所发送的信号并向所述进气管道30中的控制阀50发送或获取信息。
气体分析仪20与天然气燃烧器40的进气管道30相连接,该连接能够使得气体分析仪20从进气管道30中取样,即获取天然气燃烧器40所燃烧的天然气样本。
气体分析仪20对所取样的天然气进行分析,以获取对该天然气中所包含的各类气体成分与对应的含量的测量结果。在此,所述分析方法包含两种方式:第一,基于预先设定的气体成分,分析在该天然气中所包含的该气体的含量,例如,优选地,预先设定分析该天然气氢气的含量,则气体分析仪20对该天然气中的氢气含量进行分析与测定,如氢气含量为15%;第二,气体分析仪20首先分析该天然气中所包含的各种气体的成分类别,如甲烷、乙烷、二氧化碳、氮气、氢气、硫化氢等,然后基于所分析的气体成分,分别测定各类气体成分所对应的气体含量。
然后,气体分析仪20将该测量结果发送至燃烧控制器10。
燃烧控制器10获取到该测量结果后,将该测量结果作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果所对应的控制信息。其中,该控制模型与所述天然气中的气体成分与对应的含量相关。例如,该控制模型中可直接包含了不同的天然气气体成分与含量所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以二维或多维曲线的方式呈现的,如横坐标轴为氢气的含量值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于反馈信号来进行实时调整。在此,所述反馈信号可以是下文所述的各类传感器信号。
燃烧控制器10根据所述控制信息,通过调整控制阀50,来对所述天然气燃烧器40的进气管道30中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀50外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
优选地,燃烧控制器10还可以根据所述测量结果,确定当前所对应的风险等级,例如,高风险等级、中风险等级、低风险等级。以测量氢气含量为例:
若氢气含量超过正常限度并达到低风险等级,则发送报警信息;
若氢气含量超过正常限度并达到中风险等级,则触发天然气燃烧器40关闭;
若氢气含量超过正常限度并达到高风险等级,则触发天然气燃烧器40跳闸。
优选地,燃烧控制器10还可以结合其他信号来确定当前对应的风险等级并触发相对应的操作。例如,若氢气含量超过正常限度并达到高风险等级,同时天然气燃烧器40的轰鸣在某一持续时间内超过某一水平,则触发天然气燃烧器40跳闸。所述轰鸣可通过在天然气燃烧器40上放置轰鸣传感器来 获取。
图2表示本发明另一个实施例的一种应用天然气燃烧控制系统的天然气燃烧系统架构图。所述天然气燃烧控制系统包括燃烧控制器10、气体分析仪20以及温度传感器701、温度传感器702、动态传感器80、排放传感器90。图2所显示的系统架构仅是应用天然气燃烧控制系统的一种示例,该系统架构可应用于使用预混燃烧器的燃气涡轮机中。
燃烧控制器10通过有线连接或无线连接的方式,与气体分析仪20和位于进气管道30中的控制阀50相连接,以获取气体分析仪20所发送的信号并向所述进气管道30中的控制阀50发送或获取信息。
气体分析仪20与天然气燃烧器40的进气管道30相连接,该连接能够使得气体分析仪20从进气管道30中取样,即获取天然气燃烧器40所燃烧的天然气样本。
气体分析仪20对所取样的天然气进行分析,以获取对该天然气中所包含的各类气体成分与对应的含量的测量结果。在此,所述分析方法包含两种方式:第一,基于预先设定的气体成分,分析在该天然气中所包含的该气体的含量,例如,优选地,预先设定分析该天然气氢气的含量,则气体分析仪20对该天然气中的氢气含量进行分析与测定,如氢气含量为15%;第二,气体分析仪20首先分析该天然气中所包含的各种气体的成分类别,如甲烷、乙烷、二氧化碳、氮气、氢气、硫化氢等,然后基于所分析的气体成分,分别测定各类气体成分所对应的气体含量。
然后,气体分析仪20将该测量结果发送至燃烧控制器10。
温度传感器701与702位于天然气燃烧器40上,以测量燃烧器温度,所述温度传感器可以是任意能够测量天然气燃烧器温度的装置,如热电偶(thermocouple)。
排放传感器90布置在天然气燃烧器40的下游,在此,本领域技术人员可以理解排放传感器的布置位置。排放传感器90(emission sensor)能够测量天然气燃烧器40的燃烧排放气体。
动态传感器80(dynamic sensor)布置在天然气燃烧器的燃烧室中,能够测量燃烧室中的燃烧动态情况。为简明起见,图中并未示出具体的燃烧室,图中动态传感器80的位置仅为示意,本领域技术人员应能理解动态传感器 80的布置位置。
在此,所述温度传感器、排放传感器、动态传感器的数量仅为示意,并非表示仅能在相应的位置上布置单独的传感器。本领域技术人员可基于实际需要,为每个系统或每个燃烧器布置两个或多个同类传感器。此外,燃烧器上可布置上述三类传感器中的一类或多类。
在此,本领域技术人员应能理解,为便于说明与清楚起见,图2中示出了一个两级天然气燃烧器40以及配套的相应装置;例如,控制阀601、控制阀602,环形母管(manifold ring piping)1001、环形母管1002,分配分支(distribution branch)301、分配分支302等。在天然气燃烧系统架构中,可以包含一个一级或两级及两级以上的多级天然气燃烧器以及配套的相应装置,如燃烧控制器、气体分析仪、各类传感器等。
优选地,若图2所示的天然气燃烧系统架构应用于燃气涡轮机中,则控制阀601与控制阀602可以分别是控制预混气体与值班气体的控制装置。
温度传感器701、温度传感器702将相应的温度信号传送给燃烧控制器10,动态传感器80将相应的动态信号传送给燃烧控制器10,排放传感器90将相应的排放信号传送给燃烧控制器10;相应地,燃烧控制器10获取上述信号中的至少任一项,并将其作为反馈信号。
然后,燃烧控制器10将该测量结果以及该反馈信号作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果与该反馈信号所对应的控制信息。其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
例如,该控制模型中可直接包含了不同的天然气气体成分与含量下,不同的反馈信号所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量以及不同的反馈信号所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以多维曲线的方式呈现的,如一个横坐标轴为氢气的含量值,另一个或多个横坐标轴分别为一种反馈信号的值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第 二,在默认设置的基础上,基于所述反馈信号来进行实时调整。
优选地,所述控制模型的控制逻辑还与所述传感器的布置位置相关。其中,所述控制逻辑即为基于一定的输入(即上述反馈信号的类型与对应值)以确定对应输出(即所对应的控制信息)的逻辑。而当所述传感器的布置位置不同的情况下,同样的反馈信号所对应的控制信息不同。
例如,若温度传感器701在天然气燃烧器40上的位置比温度传感器702在天然气燃烧器40的位置更接近火焰,则对温度传感器701的控制模型不同于对温度传感器702的控制模型,如前者的报警温度会高于后者的报警温度等。
燃烧控制器10根据所述控制信息,通过调整控制阀50、控制阀601、控制阀602中的至少任一项,来对所述天然气燃烧器40的进气管道30中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀50、控制阀601、控制阀602外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
优选地,在一个所述天然气燃烧器上所布置的每类传感器包括一个或多个,若所布置的每类传感器中的至少任意一个失效,则所述燃烧控制器10触发报警信息。
以图10为例,图10示出了根据本发明的一个实施例的一种包含两个传感器的天然气燃烧器的示意图。天然气燃烧器40上布置有两个温度传感器701、702,共同检测该天然气燃烧器的温度。若其中一个温度传感器,如温度传感器701失效,则燃烧控制器10不再从该温度传感器701处获取温度信号,因此判定该温度传感器701失效,并发出报警信息。
优选地,当所述燃烧控制器10还获取所述反馈信号时,所述燃烧控制器10可以根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。例如,若氢气含量超过正常限度,同时排放传感器90的排放信号显示排放含量超标,则可确定当前对应的风险等级为中风险等级;若氢气含量超过正常限度,同时排放传感器90的排放信号显示排放含量超标且温度传感器701或702的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级;或者若氢气含量超过正常限度的值很高,同时温度传感器701或702的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级。
在此,本领域技术人员应能理解上述说明仅为举例,并非对本发明的限制,其他结合以确定风险等级的方式同样适用于本发明,并包含在本发明的保护范围内。
图3是根据本发明的一个实施例的一种燃烧控制器的框图。燃烧控制器10包括获取单元101、确定单元102、调整单元103。
获取单元101获取对所述天然气燃烧器的进气管道中的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量。
其中,获取单元101可以与如气体分析仪等设备相交互,以获取气体分析仪所发送的测量结果,此外,获取单元101还可以与其他能够提供所述测量结果的设备相交互,以获取所述测量结果。
获取单元101获取到该测量结果后,将该测量结果发送到确定单元102中。确定单元102将该测量结果作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果所对应的控制信息。其中,该控制模型与所述天然气中的气体成分与对应的含量相关。例如,该控制模型中可直接包含了不同的天然气气体成分与含量所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以二维或多维曲线的方式呈现的,如横坐标轴为氢气的含量值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于反馈信号来进行实时调整。
确定单元102将所述控制信息发送至调整单元103中,调整单元103根据所述控制信息,通过调整例如位于天然气燃烧器的进气管道上的控制阀等方式,来对所述天然气燃烧器的进气管道中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
图4是根据本发明的另一个实施例的一种燃烧控制器的框图。燃烧控制 器10包括获取单元101、确定单元102、调整单元103、反馈单元104。
其中,获取单元101与调整单元103与图3所示对应装置相同或相似,故在此不再赘述,并通过引用的方式包含于此。
反馈单元104通过与所述天然气燃烧器所对应的传感器或其他能够提供相应信号的设备相交互,以获取所述天然气燃烧器的动态传感器的动态信号、排放传感器的排放信号、温度传感器的温度信号中至少任意一个信号,以作为反馈信号。
然后,确定单元102获取获取单元101所发送的所述测量结果,以及获取反馈单元104所发送的反馈信号,将该测量结果以及该反馈信号作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果与该反馈信号所对应的控制信息。其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
例如,该控制模型中可直接包含了不同的天然气气体成分与含量下,不同的反馈信号所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量以及不同的反馈信号所对应的不同进气流量等,然后,确定单元102根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以多维曲线的方式呈现的,如一个横坐标轴为氢气的含量值,另一个或多个横坐标轴分别为一种反馈信号的值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于所述反馈信号来进行实时调整。
优选地,所述控制模型的控制逻辑还与所述传感器的布置位置相关。其中,所述控制逻辑即为基于一定的输入(即上述反馈信号的类型与对应值)以确定对应输出(即所对应的控制信息)的逻辑。而当所述传感器的布置位置不同的情况下,同样的反馈信号所对应的控制信息不同。
例如,若某一温度传感器在天然气燃烧器上的位置比另一温度传感器在天然气燃烧器的位置更接近火焰,则对前者的控制模型不同于对后者的控制模型,如前者的报警温度会高于后者的报警温度等。
优选地,燃烧控制器10还包括报警单元(未示出),其中,若在所述燃烧控制器10所对应的天然气燃烧器上所布置的每类传感器包括一个或多个,则报警单元用于若所布置的每类传感器中的至少任意一个失效,则触发报警信息。
以图10为例,图10示出了根据本发明的一个实施例的一种包含两个传感器的天然气燃烧器的示意图。天然气燃烧器40上布置有两个温度传感器701、702,共同检测该天然气燃烧器的温度。若其中一个温度传感器,如温度传感器701失效,则燃烧控制器10不再从该温度传感器701处获取温度信号,因此判定该温度传感器701失效,并由报警单元发出报警信息。
图5是根据本发明的另一个实施例的一种燃烧控制器的框图。燃烧控制器10包括获取单元101、确定单元102、调整单元103、反馈单元104、风控单元105、触发单元106。
其中,获取单元101、确定单元102、调整单元103、反馈单元104与图3或图4所示对应装置相同或相似,故在此不再赘述,并通过引用的方式包含于此。
风控单元105能够从获取单元101处获取所述测量结果,并根据所述测量结果,确定当前所对应的风险等级,例如,高风险等级、中风险等级、低风险等级。
触发单元106基于所述风险等级,触发与所述风险等级相对应的操作。
以测量氢气含量为例:
若氢气含量超过正常限度并达到低风险等级,则发送报警信息;
若氢气含量超过正常限度并达到中风险等级,则触发天然气燃烧器关闭;
若氢气含量超过正常限度并达到高风险等级,则触发天然气燃烧器跳闸。
优选地,燃烧控制器10还可以结合其他信号来确定当前对应的风险等级并触发相对应的操作。例如,若氢气含量超过正常限度并达到高风险等级,同时天然气燃烧器的轰鸣在某一持续时间内超过某一水平,则触发天然气燃烧器跳闸。所述轰鸣可通过在天然气燃烧器上放置轰鸣传感器来获取。
优选地,当风控单元105还获取所述反馈信号时(图中未示出),所述 风控单元105可以根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。例如,若氢气含量超过正常限度,同时排放传感器的排放信号显示排放含量超标,则可确定当前对应的风险等级为中风险等级;若氢气含量超过正常限度,同时排放传感器的排放信号显示排放含量超标且温度传感器的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级;或者若氢气含量超过正常限度的值很高,同时温度传感器的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级。
在此,本领域技术人员应能理解上述说明仅为举例,并非对本发明的限制,其他结合以确定风险等级的方式同样适用于本发明,并包含在本发明的保护范围内。
图3-5中的各单元可以采用软件、硬件(例如集成电路、FPGA(Field-Programmable Gate Array,现场可编程门阵列)等)、或软硬件结合的方式实现。
现在参考图11,其示出了按照本发明一个实施例的燃烧控制器的结构图。如图11所示,燃烧控制器10可以包括存储器1101和处理器1102。存储器1101可以存储可执行指令。处理器1102可以根据存储器1101所存储的可执行指令,实现图3-5中的各个单元所执行的操作。
此外,本发明实施例还提供一种机器可读介质,其上存储有可执行指令,当所述可执行指令被执行时,使得机器执行处理器1102所实现的操作。
图6是根据本发明的一个实施例的一种应用天然气燃烧控制系统的燃烧控制器控制方法的系统流程图。
所述天然气燃烧控制系统包括燃烧控制器10与气体分析仪20。
参考图1,图1示出了一种天然气燃烧控制系统的系统架构图。燃烧控制器10通过有线连接或无线连接的方式,与气体分析仪20和位于进气管道30中的控制阀50相连接,以获取气体分析仪20所发送的信号并向所述进气管道30中的控制阀50发送或获取信息。
气体分析仪20与天然气燃烧器40的进气管道30相连接,该连接能够使得气体分析仪20从进气管道30中取样,即获取天然气燃烧器40所燃烧的天然气样本。
在步骤S1中,气体分析仪20对所取样的天然气进行分析,以获取对该天然气中所包含的各类气体成分与对应的含量的测量结果。在此,所述分析方法包含两种方式:第一,基于预先设定的气体成分,分析在该天然气中所包含的该气体的含量,例如,优选地,预先设定分析该天然气氢气的含量,则气体分析仪20对该天然气中的氢气含量进行分析与测定,如氢气含量为15%;第二,气体分析仪20首先分析该天然气中所包含的各种气体的成分类别,如甲烷、乙烷、二氧化碳、氮气、氢气、硫化氢等,然后基于所分析的气体成分,分别测定各类气体成分所对应的气体含量。
然后,在步骤S2中,气体分析仪20将该测量结果发送至燃烧控制器10。
在步骤S3中,燃烧控制器10获取到该测量结果后,将该测量结果作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果所对应的控制信息。其中,该控制模型与所述天然气中的气体成分与对应的含量相关。例如,该控制模型中可直接包含了不同的天然气气体成分与含量所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以二维或多维曲线的方式呈现的,如横坐标轴为氢气的含量值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于反馈信号来进行实时调整。在此,所述反馈信号可以是下文所述的各类传感器信号。
在步骤S4中,燃烧控制器10根据所述控制信息,通过调整控制阀50,来对所述天然气燃烧器40的进气管道30中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀50外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
优选地,该方法还包括确定风险等级的步骤(未示出):具体地,燃烧控制器10根据所述测量结果,确定当前所对应的风险等级,例如,高风险等级、中风险等级、低风险等级。以测量氢气含量为例:
若氢气含量超过正常限度并达到低风险等级,则发送报警信息;
若氢气含量超过正常限度并达到中风险等级,则触发天然气燃烧器40关闭;
若氢气含量超过正常限度并达到高风险等级,则触发天然气燃烧器40跳闸。
优选地,该方法还包括结合其他信号确定风险等级以及触发响应操作的步骤(未示出):具体地,燃烧控制器10还可以结合其他信号来确定当前对应的风险等级并触发相对应的操作。例如,若氢气含量超过正常限度并达到高风险等级,同时天然气燃烧器40的轰鸣在某一持续时间内超过某一水平,则触发天然气燃烧器40跳闸。所述轰鸣可通过在天然气燃烧器40上放置轰鸣传感器来获取。
优选地,以图2为例,所述天然气燃烧控制系统包括燃烧控制器10、气体分析仪20以及温度传感器701、温度传感器702、动态传感器80、排放传感器90。
温度传感器701与702位于天然气燃烧器40上,以测量燃烧器温度,所述温度传感器可以是任意能够测量天然气燃烧器温度的装置,如热电偶(thermocouple)。
排放传感器90布置在天然气燃烧器40的下游,在此,本领域技术人员可以理解排放传感器的布置位置。排放传感器90(emission sensor)能够测量天然气燃烧器40的燃烧排放气体。
动态传感器80(dynamic sensor)布置在天然气燃烧器的燃烧室中,能够测量燃烧室中的燃烧动态情况。为简明起见,图中并未示出具体的燃烧室,图中动态传感器80的位置仅为示意,本领域技术人员应能理解动态传感器80的布置位置。
在此,所述温度传感器、排放传感器、动态传感器的数量仅为示意,并非表示仅能在相应的位置上布置单独的传感器。本领域技术人员可基于实际需要,为每个系统或每个燃烧器布置两个或多个同类传感器。此外,燃烧器上可布置上述三类传感器中的一类或多类。
在此,本领域技术人员应能理解,为便于说明与清楚起见,图2中示出了一个两级天然气燃烧器40以及配套的相应装置;例如,控制阀601、控制阀602,环形母管(manifold ring piping)1001、环形母管1002,分配分支 (distribution branch)301、分配分支302等。在天然气燃烧系统架构中,可以包含一级或两级及两级以上的多级天然气燃烧器以及配套的相应装置,如燃烧控制器、气体分析仪、各类传感器等。
若所述天然气燃烧控制系统包括传感器,则该系统方法还可以包括获取反馈信号的步骤(未示出):具体地,温度传感器701、温度传感器702将相应的温度信号传送给燃烧控制器10,动态传感器80将相应的动态信号传送给燃烧控制器10,排放传感器90将相应的排放信号传送给燃烧控制器10;相应地,燃烧控制器10获取上述信号中的至少任一项,并将其作为反馈信号。
然后,在步骤S3中,燃烧控制器10将该测量结果以及该反馈信号作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果与该反馈信号所对应的控制信息。其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
例如,该控制模型中可直接包含了不同的天然气气体成分与含量下,不同的反馈信号所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量以及不同的反馈信号所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以多维曲线的方式呈现的,如一个横坐标轴为氢气的含量值,另一个或多个横坐标轴分别为一种反馈信号的值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于所述反馈信号来进行实时调整。
优选地,所述控制模型的控制逻辑还与所述传感器的布置位置相关。其中,所述控制逻辑即为基于一定的输入(即上述反馈信号的类型与对应值)以确定对应输出(即所对应的控制信息)的逻辑。而当所述传感器的布置位置不同的情况下,同样的反馈信号所对应的控制信息不同。
例如,若温度传感器701在天然气燃烧器40上的位置比温度传感器702在天然气燃烧器40的位置更接近火焰,则对温度传感器701的控制模型不 同于对温度传感器702的控制模型,如前者的报警温度会高于后者的报警温度等。
在步骤S4中,燃烧控制器10根据所述控制信息,通过调整控制阀50、控制阀601、控制阀602中的至少任一项,来对所述天然气燃烧器40的进气管道30中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀50、控制阀601、控制阀602外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
优选地,该方法还包括触发报警信息的步骤(未示出),具体地,在一个所述天然气燃烧器上所布置的每类传感器包括一个或多个,若所布置的每类传感器中的至少任意一个失效,则所述燃烧控制器10触发报警信息。
以图10为例,图10示出了根据本发明的一个实施例的一种包含两个传感器的天然气燃烧器的示意图。天然气燃烧器40上布置有两个温度传感器701、702,共同检测该天然气燃烧器的温度。若其中一个温度传感器,如温度传感器701失效,则燃烧控制器10不再从该温度传感器701处获取温度信号,因此判定该温度传感器701失效,并发出报警信息。
优选地,该方法还包括结合反馈信号确定风险等级的步骤(未示出),具体地,当所述燃烧控制器10还获取所述反馈信号时,所述燃烧控制器10可以根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。例如,若氢气含量超过正常限度,同时排放传感器90的排放信号显示排放含量超标,则可确定当前对应的风险等级为中风险等级;若氢气含量超过正常限度,同时排放传感器90的排放信号显示排放含量超标且温度传感器701或702的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级;或者若氢气含量超过正常限度的值很高,同时温度传感器701或702的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级。
在此,本领域技术人员应能理解上述说明仅为举例,并非对本发明的限制,其他结合以确定风险等级的方式同样适用于本发明,并包含在本发明的保护范围内。
图7是根据本发明的一个实施例的一种燃烧控制器控制方法的流程图。
在步骤S101中,燃烧控制器10获取对所述天然气燃烧器的进气管道中 的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量。
其中,燃烧控制器10可以与如气体分析仪等设备相交互,以获取气体分析仪所发送的测量结果,此外,燃烧控制器10还可以与其他能够提供所述测量结果的设备相交互,以获取所述测量结果。
在步骤S101中,燃烧控制器10取到该测量结果后,执行步骤S102。在步骤S102中,燃烧控制器10将该测量结果作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果所对应的控制信息。其中,该控制模型与所述天然气中的气体成分与对应的含量相关。例如,该控制模型中可直接包含了不同的天然气气体成分与含量所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量所对应的不同进气流量等,然后,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以二维或多维曲线的方式呈现的,如横坐标轴为氢气的含量值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于反馈信号来进行实时调整。
然后执行步骤S103,在步骤S103中,燃烧控制器10根据所述控制信息,通过调整例如位于天然气燃烧器的进气管道上的控制阀等方式,来对所述天然气燃烧器的进气管道中的天然气流量进行调整。在此,本领域技术人员应能理解,除了调整控制阀外,其他的调整方式如能适用于本发明,同样包含在本发明的保护范围内并以引用的方式包含于此。
图8是根据本发明的另一个实施例的一种燃烧控制器控制方法的流程图。
其中,步骤S101与步骤S103与图7所示对应步骤相同或相似,故在此不再赘述,并通过引用的方式包含于此。
在步骤S104中,燃烧控制器10通过与所述天然气燃烧器所对应的传感器或其他能够提供相应信号的设备相交互,以获取所述天然气燃烧器的动态传感器的动态信号、排放传感器的排放信号、温度传感器的温度信号中至少 任意一个信号,以作为反馈信号。
然后,步骤S102获取步骤S101所发送的所述测量结果,以及获取步骤S104所发送的反馈信号,将该测量结果以及该反馈信号作为输入数据,输入到预置的控制模型中,并根据所述控制模型对该输入数据的输出结果,来直接或间接地确定该测量结果与该反馈信号所对应的控制信息。其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
例如,该控制模型中可直接包含了不同的天然气气体成分与含量下,不同的反馈信号所对应的不同控制信息;或者,该控制模型中包含了不同天然气气体成分与含量以及不同的反馈信号所对应的不同进气流量等,然后,在步骤S102中,燃烧控制器10根据该进气流量来确定相对应的控制信息,如是加大流量或减小流量等。
本领域技术人员应能理解,其中,所述控制模型可以是以多维曲线的方式呈现的,如一个横坐标轴为氢气的含量值,另一个或多个横坐标轴分别为一种反馈信号的值,纵坐标轴为天然气流量值等;也可以是表格或其他呈现方式。
其中,所述控制模型的确定可包含两种方式:第一,基于人工设置;第二,在默认设置的基础上,基于所述反馈信号来进行实时调整。
优选地,所述控制模型的控制逻辑还与所述传感器的布置位置相关。其中,所述控制逻辑即为基于一定的输入(即上述反馈信号的类型与对应值)以确定对应输出(即所对应的控制信息)的逻辑。而当所述传感器的布置位置不同的情况下,同样的反馈信号所对应的控制信息不同。
例如,若某一温度传感器在天然气燃烧器上的位置比另一温度传感器在天然气燃烧器的位置更接近火焰,则对前者的控制模型不同于对后者的控制模型,如前者的报警温度会高于后者的报警温度等。
优选地,该方法还包括触发报警信息的步骤(未示出),具体地,在该步骤中,若在所述燃烧控制器10所对应的天然气燃烧器上所布置的每类传感器包括一个或多个,则若所布置的每类传感器中的至少任意一个失效,则所述燃烧控制器10触发报警信息。
以图10为例,图10示出了根据本发明的一个实施例的一种包含两个传感器的天然气燃烧器的示意图。天然气燃烧器40上布置有两个温度传感器701、702,共同检测该天然气燃烧器的温度。若其中一个温度传感器,如温 度传感器701失效,则燃烧控制器10不再从该温度传感器701处获取温度信号,因此判定该温度传感器701失效,并由报警单元发出报警信息。
图9是根据本发明的另一个实施例的一种燃烧控制器控制方法的流程图。
其中,步骤S101、步骤S102、步骤S103、步骤S104与图7或图8所示对应步骤相同或相似,故在此不再赘述,并通过引用的方式包含于此。
在步骤S105中,燃烧控制器10能够从步骤S101处获取所述测量结果,并根据所述测量结果,确定当前所对应的风险等级,例如,高风险等级、中风险等级、低风险等级。
在步骤S106中,燃烧控制器10基于所述风险等级,触发与所述风险等级相对应的操作。
以测量氢气含量为例:
若氢气含量超过正常限度并达到低风险等级,则发送报警信息;
若氢气含量超过正常限度并达到中风险等级,则触发天然气燃烧器关闭;
若氢气含量超过正常限度并达到高风险等级,则触发天然气燃烧器跳闸。
优选地,在步骤S105中,燃烧控制器10还可以结合其他信号来确定当前对应的风险等级并触发相对应的操作。例如,若氢气含量超过正常限度并达到高风险等级,同时天然气燃烧器的轰鸣在某一持续时间内超过某一水平,则触发天然气燃烧器跳闸。所述轰鸣可通过在天然气燃烧器上放置轰鸣传感器来获取。
优选地,当步骤S105还能够从步骤S104处获取所述反馈信号时(图中未示出),在步骤S105中,燃烧控制器10可以根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。例如,若氢气含量超过正常限度,同时排放传感器的排放信号显示排放含量超标,则可确定当前对应的风险等级为中风险等级;若氢气含量超过正常限度,同时排放传感器的排放信号显示排放含量超标且温度传感器的温度信号显示高温度,则可确定当前对应的风险等级为高风险等级;或者若氢气含量超过正常限度的值很高,同时温度传感器的温度信号显示高温度,则可确定当前 对应的风险等级为高风险等级。
在此,本领域技术人员应能理解上述说明仅为举例,并非对本发明的限制,其他结合以确定风险等级的方式同样适用于本发明,并包含在本发明的保护范围内。
本领域技术人员应当理解,上面所公开的各个实施例,可以在不偏离发明实质的情况下做出各种变形和改变。因此,本发明的保护范围应当由所附的权利要求书来限定。

Claims (15)

  1. 一种天然气燃烧器(40)的燃烧监控方法,其中,所述天然气燃烧器(40)与进气管道(30)相连接,所述进气管道(30)与天然气燃烧控制系统相连接,所述天然气燃烧控制系统包含气体分析仪(20)与燃烧控制器(10),所述方法包括:
    所述气体分析仪(20)从所述进气管道(30)中取样,并对所取样的天然气进行分析,以获取测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;
    所述气体分析仪(20)将所述测量结果发送至所述燃烧控制器(10);
    所述燃烧控制器(10)将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;
    所述燃烧控制器(10)根据所述控制信息,对所述天然气燃烧器(40)的进气管道(30)中的天然气流量进行调整。
  2. 根据权利要求1所述的方法,其中,所述天然气燃烧控制系统还包括动态传感器(80)、排放传感器(90)、温度传感器(701,702)中的至少任一项,所述动态传感器(80)布置在所述天然气燃烧器(40)的燃烧室中,所述排放传感器(90)布置在所述天然气燃烧器(40)的下游,所述温度传感器(701,702)布置在所述天然气燃烧器(40)上,所述方法还包括:
    所述燃烧控制器(10)获取所述动态传感器(80)的动态信号、所述排放传感器(90)的排放信号、所述温度传感器(701,702)的温度信号中至少任意一个信号,以作为反馈信号;
    其中,所述燃烧控制器(10)确定控制信息的步骤包括:
    所述燃烧控制器(10)将所述测量结果以及所述反馈信号输入到预置的控制模型中,以确定与所述测量结果与所述反馈信号相对应的控制信息,其 中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
  3. 根据权利要求1或2所述的方法,其中,所述燃烧控制器(10)还获取所述反馈信号时,该方法还包括:
    所述燃烧控制器(10)根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级;
    触发与所述风险等级相对应的操作。
  4. 一种在燃烧控制器(10)端对天然气燃烧器(40)的燃烧监控方法,其中,所述方法包括:
    获取对所述天然气燃烧器(40)的进气管道(30)中的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;
    将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;
    根据所述控制信息,对所述天然气燃烧器(40)的进气管道(30)中的天然气流量进行调整。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    获取所述天然气燃烧器(40)的动态传感器(80)的动态信号、排放传感器(90)的排放信号、温度传感器(701,702)的温度信号中至少任意一个信号,以作为反馈信号;
    其中,所述确定控制信息的步骤包括:
    将所述测量结果以及所述反馈信号输入到预置的控制模型中,以获取与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
  6. 根据权利要求4或5所述的方法,其中,所述方法还包括:
    根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等 级;
    触发与所述风险等级相对应的操作。
  7. 一种天然气燃烧控制系统,其中,所述天然气燃烧控制系统包括气体分析仪(20)与燃烧控制器(10):
    所述气体分析仪(20)与天然气燃烧器(40)的进气管道(30)相连接,所述气体分析仪(20)用于从所述进气管道(30)中取样;对所取样的天然气进行分析,以获取测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;并将所述测量结果发送至所述燃烧控制器(10);
    所述燃烧控制器(10)包括:
    获取单元(101),用于获取所述气体分析仪(20)所发送的测量结果;
    确定单元(102),用于将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;
    调整单元(103),用于根据所述控制信息,对所述天然气燃烧器(40)的进气管道(30)中的天然气流量进行调整。
  8. 根据权利要求7所述的天然气燃烧控制系统,其中,所述天然气燃烧控制系统还包括动态传感器(80)、排放传感器(90)、温度传感器(701,702)中的至少任一项,所述动态传感器(80)布置在所述天然气燃烧器(40)的燃烧室中,所述排放传感器(90)布置在所述天然气燃烧器(40)的下游,所述温度传感器(701,702)布置在所述天然气燃烧器(40)上,所述燃烧控制器(10)还包括:
    反馈单元(104),用于获取所述动态传感器(80)的动态信号、所述排放传感器(90)的排放信号、所述温度传感器(701,702)的温度信号中至少任意一个信号,以作为反馈信号;
    其中,所述确定单元(102)用于:
    将所述测量结果以及所述反馈信号输入到预置的控制模型中,以确定与 所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
  9. 根据权利要求8所述的天然气燃烧控制系统,其中,所述预置的控制模型的控制逻辑还与所述传感器(80,90,701,702)的布置位置相关联。
  10. 根据权利要求8或9所述的天然气燃烧控制系统,其中,在一个所述天然气燃烧器(40)上所布置的每类传感器包括一个或多个,其中,所述燃烧控制器(10)还包括:
    报警单元,用于若所布置的每类传感器中的至少任意一个失效,则触发报警信息。
  11. 根据权利要求7至10中任一项所述的天然气燃烧控制系统,其中,所述燃烧控制器(10)还包括:
    风控单元(105),用于根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;
    触发单元(106),用于触发与所述风险等级相对应的操作。
  12. 根据权利要求11所述的天然气燃烧控制系统,其中,当所述燃烧控制器(10)还包括所述反馈单元(104)时,所述风控单元(105)用于:
    根据所述测量结果中的气体成分与对应的含量,结合所述反馈信号,确定当前对应的风险等级。
  13. 一种对天然气燃烧器(40)进行燃烧监控的燃烧控制器(10),其中,所述燃烧控制器(10)包括:
    获取单元(101),用于获取对所述天然气燃烧器(40)的进气管道(30)中的天然气的测量结果,其中,所述测量结果中包括所述天然气中的气体成分与对应的含量;
    确定单元(102),用于将所述测量结果输入到预置的控制模型中,以确定与所述测量结果相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量相关;
    调整单元(103),用于根据所述控制信息,对所述天然气燃烧器(40)的进气管道(30)中的天然气流量进行调整。
  14. 根据权利要求13所述的燃烧控制器(10),其中,所述燃烧控制器(10)还包括:
    反馈单元(104),用于获取所述天然气燃烧器(40)的动态传感器(80)的动态信号、排放传感器(90)的排放信号、温度传感器(701,702)的温度信号中至少任意一个信号,以作为反馈信号;
    其中,所述确定单元(102)用于:
    将所述测量结果以及所述反馈信号输入到预置的控制模型中,以获取与所述测量结果与所述反馈信号相对应的控制信息,其中,所述控制模型与所述天然气中的气体成分与对应的含量以及所述反馈信号相关。
  15. 根据权利要求13或14所述的燃烧控制器(10),其中,所述燃烧控制器(10)还包括:
    风控单元(105),用于根据所述测量结果中的气体成分与对应的含量,确定当前对应的风险等级;
    触发单元(106),用于触发与所述风险等级相对应的操作。
PCT/CN2017/075984 2016-03-09 2017-03-08 天然气燃烧器的燃烧监控方法、装置和系统 WO2017152845A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17762531.6A EP3418636B1 (en) 2016-03-09 2017-03-08 Combustion monitoring method and system for natural gas burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610133736.5 2016-03-09
CN201610133736.5A CN107178789B (zh) 2016-03-09 2016-03-09 天然气燃烧器的燃烧监控方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2017152845A1 true WO2017152845A1 (zh) 2017-09-14

Family

ID=59789021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075984 WO2017152845A1 (zh) 2016-03-09 2017-03-08 天然气燃烧器的燃烧监控方法、装置和系统

Country Status (3)

Country Link
EP (1) EP3418636B1 (zh)
CN (1) CN107178789B (zh)
WO (1) WO2017152845A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242807B2 (en) 2018-07-10 2022-02-08 Siemens Energy Global GmbH & Co. KG Method for operating a gas turbine plant with gaseous fuel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019766B (zh) * 2018-01-22 2023-11-14 长江大学 一种高压含硫气井的环空自动泄压燃烧装置
CN113251436B (zh) * 2021-06-04 2024-01-26 深圳粤通新能源环保技术有限公司 一种氢能助燃超低氮燃烧机控制方法
CN113640347B (zh) * 2021-10-18 2022-02-01 胜利油田华海石化有限责任公司 一种在线监测天然气露点装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731209A1 (de) * 1997-07-21 1999-01-28 Dieter Dr Ing Stockburger Verfahren zur Konditionierung brennbarer gasförmiger Reststoffe für die Verbrennung in einer Gasturbine
EP1022514A1 (fr) * 1999-01-22 2000-07-26 Saint-Gobain Vitrage Procédé et dispositif de regulation d'un courant de combustible gazeux
US6121628A (en) * 1999-03-31 2000-09-19 Siemens Westinghouse Power Corporation Method, gas turbine, and combustor apparatus for sensing fuel quality
DE10308384A1 (de) * 2003-02-27 2004-09-09 Alstom Technology Ltd Betriebsverfahren für eine Gasturbine
CN1623031A (zh) * 2002-01-25 2005-06-01 阿尔斯通技术有限公司 燃气轮机组的工作方法
CN101040148A (zh) * 2004-10-11 2007-09-19 西门子公司 操作燃烧器,特别为燃气轮机燃烧器的方法和用于实施所述方法的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578215C (zh) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 开放式天然气生成动力学研究装置及使用方法
US7942038B2 (en) * 2009-01-21 2011-05-17 General Electric Company Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
JP5159741B2 (ja) * 2009-09-30 2013-03-13 株式会社日立製作所 ガスタービン燃焼器の制御装置およびガスタービン燃焼器の制御方法
DE102013222225A1 (de) * 2013-10-31 2015-04-30 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gasturbine
EP2993401B1 (en) * 2014-09-02 2017-12-06 Ansaldo Energia IP UK Limited Method for controlling a gas turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731209A1 (de) * 1997-07-21 1999-01-28 Dieter Dr Ing Stockburger Verfahren zur Konditionierung brennbarer gasförmiger Reststoffe für die Verbrennung in einer Gasturbine
EP1022514A1 (fr) * 1999-01-22 2000-07-26 Saint-Gobain Vitrage Procédé et dispositif de regulation d'un courant de combustible gazeux
US6121628A (en) * 1999-03-31 2000-09-19 Siemens Westinghouse Power Corporation Method, gas turbine, and combustor apparatus for sensing fuel quality
CN1623031A (zh) * 2002-01-25 2005-06-01 阿尔斯通技术有限公司 燃气轮机组的工作方法
DE10308384A1 (de) * 2003-02-27 2004-09-09 Alstom Technology Ltd Betriebsverfahren für eine Gasturbine
CN101040148A (zh) * 2004-10-11 2007-09-19 西门子公司 操作燃烧器,特别为燃气轮机燃烧器的方法和用于实施所述方法的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418636A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242807B2 (en) 2018-07-10 2022-02-08 Siemens Energy Global GmbH & Co. KG Method for operating a gas turbine plant with gaseous fuel

Also Published As

Publication number Publication date
CN107178789A (zh) 2017-09-19
EP3418636A4 (en) 2019-12-25
CN107178789B (zh) 2020-06-09
EP3418636B1 (en) 2021-08-11
EP3418636A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2017152845A1 (zh) 天然气燃烧器的燃烧监控方法、装置和系统
CN104534505B (zh) 一种燃烧节能安全控制系统及方法
JP2014163383A (ja) 燃料ウォッベ指数を迅速に検知するための方法および装置
CN102331481A (zh) 多路配气模拟汽车尾气环境的氧传感器性能测试系统
CN103216339A (zh) 燃烧器熄火恢复方法和系统
CN102937382B (zh) 比例控制的燃烧系统的调优方法
CN107461934A (zh) 一种冷凝式壁挂炉及其调节方法
EP3009645B1 (en) Gas engine
JP2014105601A5 (zh)
CN111043631A (zh) 燃具的燃烧控制系统、方法、装置及存储介质
US9938919B2 (en) Method and controller for setting the combustion parameters for an internal combustion engine operated with liquefied natural gas
CN104903649A (zh) 具有改进的诊断和补偿功能的现场探针
CN203744293U (zh) 一种数控燃气燃烧装置
JP2016014388A (ja) 燃料の特性を取り入れたエンジン制御のためのシステム及び方法
TW201226809A (en) Method of testing and compensating gas supply for safety
JP4256767B2 (ja) ガスエンジンにおける燃焼制御方法及びその装置
JP5032951B2 (ja) ガス漏洩検知方法
EP2971964A1 (en) Burner combustion control method and device
CN103672904A (zh) 一种燃烧器的燃气管路
JP2010112892A (ja) 着火温度測定装置及び着火温度測定方法
WO2016106995A1 (zh) 增压发动机的燃烧参数调试方法及燃烧参数调试装置
EP3043115A1 (en) Method for operating a premix gas burner
KR20140085691A (ko) 가스 터빈의 자동 튜닝 장치 및 방법
JP5243843B2 (ja) 燃焼設備及び燃焼設備の異常診断方法
JP2018505372A (ja) ガスタービンエンジン用の試験装置を制御する方法、および試験装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017762531

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762531

Country of ref document: EP

Effective date: 20180921

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762531

Country of ref document: EP

Kind code of ref document: A1