WO2017141967A1 - Heat treatment apparatus - Google Patents

Heat treatment apparatus Download PDF

Info

Publication number
WO2017141967A1
WO2017141967A1 PCT/JP2017/005532 JP2017005532W WO2017141967A1 WO 2017141967 A1 WO2017141967 A1 WO 2017141967A1 JP 2017005532 W JP2017005532 W JP 2017005532W WO 2017141967 A1 WO2017141967 A1 WO 2017141967A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
reaction
fluid
heat
rectifying
Prior art date
Application number
PCT/JP2017/005532
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 康弘
茂樹 坂倉
信之 本間
敏之 坂田
高平 鶴ヶ谷
角田 大輔
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016027605 priority Critical
Priority to JP2016-027605 priority
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2017141967A1 publication Critical patent/WO2017141967A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/06Arrangements for sealing elements into header boxes or end plates by dismountable joints
    • F28F9/12Arrangements for sealing elements into header boxes or end plates by dismountable joints by flange-type connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors

Abstract

This heat treatment apparatus has: a heat exchange unit that uses heat exchange between a first fluid and a second fluid, the heat exchange unit including a plurality of first channels for channeling the first fluid and a second channel for channeling the second fluid; a space-forming part having a space facing channel opening parts of each of the plurality of first channels; a first opening part provided to the space-forming part, the first opening part having a first opening; a rectifier disposed in the space of the space-forming part, the rectifier rectifying the first fluid; and an attachment part for detachably attaching the rectifier through the first opening. The space of the space-forming part is a space where there is a confluence of the first fluid flowing out from each of the channel opening parts, or a space through which the confluent first fluid flows into each of the channel opening parts. The rectifier faces each of the channel opening parts while being attached to the space-forming part.

Description

熱処理装置Heat treatment equipment

 本開示は、熱交換型の熱処理装置に関する。 This disclosure relates to a heat exchange type heat treatment apparatus.

 流体間の熱交換を利用する熱交換器や反応装置などの熱処理装置では、処理効率向上のために、流体の流れの均等化を図る整流板が設けられている。特開2010-216749号公報(特許文献1)は、ダクト拡張部に、多孔板からなる複数の整流板を設けた熱交換器を開示している。 In heat treatment apparatuses such as heat exchangers and reaction apparatuses that use heat exchange between fluids, a rectifying plate that equalizes the flow of fluid is provided in order to improve treatment efficiency. Japanese Patent Laying-Open No. 2010-216749 (Patent Document 1) discloses a heat exchanger in which a duct expansion portion is provided with a plurality of rectifying plates made of a perforated plate.

特開2010-216749号公報JP 2010-216749 A

 例えば、流体の流量配分を変化させたい場合や、流体が腐食性を有するものであることに起因して整流板の状態が変化してしまう場合には、整流板の交換や点検を要する。特許文献1に示すような熱処理装置では、伝熱管バンドルを収容する装置本体部からダクト拡張部を開放可能な場合には、作業者は、ダクト拡張部を開放後、内部に設置されている整流板の交換等を行うことができる。 For example, when it is desired to change the flow rate distribution of the fluid or when the state of the rectifying plate changes due to the fluid being corrosive, the rectifying plate needs to be replaced or inspected. In the heat treatment apparatus as shown in Patent Document 1, when the duct extension part can be opened from the apparatus main body part that accommodates the heat transfer tube bundle, the operator opens the duct extension part and then rectifies the inside. The plate can be exchanged.

 これに対して、熱交換部において化学反応を進行させる反応装置としての熱処理装置では、熱交換部の下流側にある空間形成部としての流体溜まりを介して生成物を外部へ流出させる。このような反応装置では、流体溜まり内の流体の背圧を調整して上流側での複数の流路に対する流量配分を所望のものとするために、流体溜まりに適宜適切な整流板を設置することが望ましい。しかしながら、反応装置は、流体の漏出を抑えるために気密性が重要視されるなどの理由から、一般に装置全体が一体的な構造を有し、熱交換部に対して流体溜まり部分を開放することができない。したがって、流体溜まりに一旦設置された整流板をその後交換等することは難しい。また、整流板の交換等を可能とするために、流体溜まり部分を熱交換部から開放可能な構成とすることは、装置構造の複雑化を招く。 On the other hand, in a heat treatment apparatus as a reaction apparatus for causing a chemical reaction to proceed in the heat exchange section, the product flows out through a fluid pool as a space forming section on the downstream side of the heat exchange section. In such a reactor, in order to adjust the back pressure of the fluid in the fluid reservoir so that the flow distribution to the plurality of flow paths on the upstream side is as desired, an appropriate current plate is installed in the fluid reservoir. It is desirable. However, the reactor generally has an integral structure for the reason that airtightness is regarded as important in order to suppress fluid leakage, and the fluid reservoir is opened to the heat exchange part. I can't. Therefore, it is difficult to thereafter replace the current plate once installed in the fluid reservoir. In addition, in order to make it possible to replace the rectifying plate or the like, a configuration in which the fluid reservoir portion can be opened from the heat exchanging portion causes a complicated structure of the device.

 そこで、本開示は、装置構造の複雑化を抑えつつ、整流部の取り外しを容易とする点で有利な熱処理装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a heat treatment apparatus that is advantageous in terms of facilitating the removal of the rectification unit while suppressing the complexity of the apparatus structure.

 本開示の一態様に係る熱処理装置は、第1の流体と第2の流体との熱交換を利用する熱処理装置であって、第1の流体を流通させる複数の第1の流路と、第2の流体を流通させる第2の流路とを含む熱交換部と、複数の第1の流路の各々の流路開口部に面する空間を有する空間形成部と、空間形成部に設けられ、第1の開口を有する第1の開口部と、空間形成部の空間に配置され、第1の流体を整流する整流部と、第1の開口を通じて整流部を取り外し可能に取り付ける取付部と、を有し、空間形成部の空間は、各々の流路開口部から流出した第1の流体が合流する空間、又は、合流している第1の流体を各々の流路開口部へ流入させる空間であり、整流部は、空間形成部に取り付けられている状態で、複数の流路開口部に対向する。 A heat treatment apparatus according to an aspect of the present disclosure is a heat treatment apparatus that uses heat exchange between a first fluid and a second fluid, and includes a plurality of first flow paths that allow the first fluid to flow, A heat exchange section including a second flow path for circulating two fluids, a space forming section having a space facing each flow path opening of each of the plurality of first flow paths, and the space forming section. A first opening having a first opening, a rectifying unit arranged in the space of the space forming unit and rectifying the first fluid, and a mounting part removably attaching the rectifying unit through the first opening; And the space forming portion is a space where the first fluid flowing out from each flow passage opening merges, or a space where the first fluid flowing together flows into each flow passage opening. The rectifying unit faces the plurality of channel openings in a state where the rectifying unit is attached to the space forming unit.

図1は、本開示の一実施形態に係る反応装置の構成を示す側面図である。FIG. 1 is a side view illustrating a configuration of a reaction apparatus according to an embodiment of the present disclosure. 図2は、本開示の一実施形態に係る反応装置の構成を示す平面図である。FIG. 2 is a plan view illustrating a configuration of a reaction device according to an embodiment of the present disclosure. 図3は、一実施形態における熱交換部の構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a heat exchange unit in one embodiment. 図4は、第1実施形態における整流部及びその取付部を示す図である。FIG. 4 is a diagram illustrating a rectifying unit and an attaching unit thereof in the first embodiment. 図5は、第2実施形態における整流部及びその取付部を示す図である。FIG. 5 is a diagram illustrating a rectifying unit and an attaching unit thereof in the second embodiment.

 以下、本開示の各実施形態について図面を参照して詳細に説明する。ここで、各実施形態に示す寸法、材料、その他、具体的な数値等は、例示にすぎず、特に断る場合を除き、本開示を限定するものではない。また、明細書及び図面において、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本開示に直接関係のない要素は図示を省略する。更に、以下の各図では、鉛直方向にZ軸を取り、Z軸に垂直な平面内において、後述する反応流路150の複数の支流路150aの延設方向にX軸を取り、かつX軸に垂直な方向にY軸を取っている。 Hereinafter, each embodiment of the present disclosure will be described in detail with reference to the drawings. Here, the dimensions, materials, and other specific numerical values shown in the embodiments are merely examples, and the present disclosure is not limited unless otherwise specified. In the specification and the drawings, elements having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present disclosure are not shown. Further, in each of the following drawings, the Z axis is taken in the vertical direction, the X axis is taken in the extending direction of a plurality of branch flow paths 150a of the reaction flow path 150, which will be described later, in the plane perpendicular to the Z axis, and the X axis The Y axis is taken in a direction perpendicular to the axis.

 (第1実施形態)
 まず、本開示の第1実施形態に係る熱処理装置について説明する。本開示の熱処理装置は、第1の流体と第2の流体との熱交換を利用する。以下、本実施形態に係る熱処置装置は反応装置であるものとして説明するが、例えば熱交換器にも適用可能である。
(First embodiment)
First, the heat treatment apparatus according to the first embodiment of the present disclosure will be described. The heat treatment apparatus of the present disclosure uses heat exchange between the first fluid and the second fluid. Hereinafter, although the heat treatment apparatus according to the present embodiment will be described as a reaction apparatus, it can also be applied to, for example, a heat exchanger.

 図1は、本実施形態に係る反応装置1の構成を示す概略側面図である。図2は、反応装置1の構成を示す概略平面図である。反応装置1は、熱交換型であり、反応体としての反応原料を含んだ気体又は液体の反応流体を加熱又は冷却することで反応体の反応を進行させる。反応装置1は、本体部としての熱交換部101と、反応流体導入部120及び生成物排出部122と、熱媒体導入部130及び熱媒体排出部132とを備える。 FIG. 1 is a schematic side view showing a configuration of a reaction apparatus 1 according to the present embodiment. FIG. 2 is a schematic plan view showing the configuration of the reaction apparatus 1. The reaction apparatus 1 is a heat exchange type, and heats or cools a gaseous or liquid reaction fluid containing a reaction raw material as a reactant to advance the reaction of the reactant. The reaction apparatus 1 includes a heat exchange unit 101 as a main body, a reaction fluid introduction unit 120 and a product discharge unit 122, a heat medium introduction unit 130, and a heat medium discharge unit 132.

 図3は、熱交換部101の構成を示す断面図である。特に、図3(a)は、図1におけるA-A断面図を示し、図3(b)はB-B断面図を、図3(c)はC-C断面図をそれぞれ示す。熱交換部101は、複数の第1伝熱体210と、複数の第2伝熱体220と、蓋体230とを含む。熱交換部101は、第1の流体としての反応流体又は生成物と、第2の流体としての熱媒体とが反対方向に流れる対向流型の構造を有する。第1伝熱体210及び第2伝熱体220は、それぞれ耐熱性を有する熱伝導性素材で形成される矩形の平板状部材である。 FIG. 3 is a cross-sectional view showing the configuration of the heat exchange unit 101. In particular, FIG. 3A shows an AA cross-sectional view in FIG. 1, FIG. 3B shows a BB cross-sectional view, and FIG. 3C shows a CC cross-sectional view. The heat exchange unit 101 includes a plurality of first heat transfer bodies 210, a plurality of second heat transfer bodies 220, and a lid body 230. The heat exchange unit 101 has a counter-flow structure in which a reaction fluid or product as a first fluid and a heat medium as a second fluid flow in opposite directions. The first heat transfer body 210 and the second heat transfer body 220 are each a rectangular flat plate member formed of a heat conductive material having heat resistance.

 第1伝熱体210は、熱媒体又は第2伝熱体220から供給される熱又は冷熱を受容して反応流体へ供与する部材である。第1伝熱体210は、反応流路150、具体的には第1の流路である支流路150a及び合流路150bを構成する複数の溝を有する。支流路150aは、反応流体を反応させ、生成物を生成する反応領域を含む。なお、反応領域は、具体的には、支流路150aにおける図1に示した熱交換部101内の範囲、すなわち、支流路150aの延設方向において、後述する熱媒体排出部132と生成物排出部122との間の領域に相当する。一方、合流路150bは、以下で図4を用いて詳説するが、複数の支流路150aが下流側で連設する領域である。また、支流路150aには、反応体の反応を促進させるための触媒体140が設置されている。 The first heat transfer body 210 is a member that receives heat or cold supplied from the heat medium or the second heat transfer body 220 and supplies it to the reaction fluid. The first heat transfer body 210 has a plurality of grooves constituting the reaction flow path 150, specifically, the branch flow path 150a and the combined flow path 150b that are the first flow paths. The branch flow path 150a includes a reaction region in which a reaction fluid is reacted to generate a product. Specifically, the reaction region is a range within the heat exchange section 101 shown in FIG. 1 in the branch flow path 150a, that is, in the extending direction of the branch flow path 150a, and the heat medium discharge section 132 and product discharge described later. This corresponds to the area between the unit 122. On the other hand, the combined flow path 150b will be described in detail with reference to FIG. 4 below, but is a region where a plurality of branch flow paths 150a are arranged downstream. A catalyst body 140 for promoting the reaction of the reactant is installed in the branch flow path 150a.

 第2伝熱体220は、熱媒体によって供給される熱又は冷熱を反応流体へ直接的に、かつ第1伝熱体210を介して間接的に供給する部材である。第2伝熱体220は、熱媒体流路160、具体的には第2の流路である支流路160a及び合流路を構成する複数の溝を有する。なお、本実施形態のように第1伝熱体210に複数の支流路150aが存在する場合には、第2伝熱体220においても、複数の支流路160aを反応流路150の支流路150aの設置位置に合わせて平行で等間隔に設置することが望ましい。また、熱媒体流路160には、熱媒体との接触面積を増加させて熱媒体と熱交換部101との間の伝熱を促進するための伝熱促進体141が設置されている。伝熱促進体141は、熱交換部101との接触面積を確保するために、例えば、図3(b)等に示すような角張ったコルゲート板状とし得る。また、伝熱促進体141を構成する熱伝導性素材としては、アルミニウム、銅、ステンレス鋼、鉄系メッキ鋼等の金属が挙げられる。 The second heat transfer body 220 is a member that supplies heat or cold supplied from the heat medium directly to the reaction fluid and indirectly via the first heat transfer body 210. The second heat transfer body 220 has a heat medium flow path 160, specifically, a branch flow path 160a that is a second flow path, and a plurality of grooves that constitute a combined flow path. When a plurality of branch channels 150a exist in the first heat transfer body 210 as in the present embodiment, the plurality of branch channels 160a are also used as the branch channels 150a of the reaction channel 150 in the second heat transfer body 220. It is desirable to install in parallel and at equal intervals according to the installation position. The heat medium flow channel 160 is provided with a heat transfer promoting body 141 for increasing the contact area with the heat medium and promoting heat transfer between the heat medium and the heat exchange unit 101. In order to secure a contact area with the heat exchange unit 101, the heat transfer promoting body 141 can be formed into, for example, an angular corrugated plate as shown in FIG. Moreover, as a heat conductive material which comprises the heat-transfer promoter 141, metals, such as aluminum, copper, stainless steel, and iron-type plated steel, are mentioned.

 第1伝熱体210、第2伝熱体220及び蓋体230が平板面を水平として鉛直方向に交互に積層されることにより、積層体としての熱交換部101が形成される。また、熱交換部101の組み立ての際には、各部材間をTIG(Tungsten Inert Gas)溶接や拡散接合等のような接合方法を利用して固着させることで、各部材間の接触不良に起因する伝熱性の低下等が抑止される。 The first heat transfer body 210, the second heat transfer body 220, and the lid body 230 are alternately stacked in the vertical direction with the flat plate surface being horizontal, whereby the heat exchange section 101 as a stacked body is formed. Further, when the heat exchange unit 101 is assembled, each member is fixed by using a joining method such as TIG (Tungsten Inert Gas) welding or diffusion joining, resulting in poor contact between the members. A decrease in heat conductivity is suppressed.

 熱交換部101を構成する各要素の熱伝導性素材としては、鉄系合金やニッケル合金等の耐熱性金属が好適である。具体的には、ステンレス綱等の鉄系合金、インコネル625(登録商標)、インコネル617(登録商標)、Haynes230(登録商標)等のニッケル合金のような耐熱合金が挙げられる。これらの熱伝導性素材は、反応流路150での反応進行や熱媒体として使用し得る燃焼ガスに対する耐久性又は耐食性を有するので好ましいが、これらに限定されるものではない。また、鉄系メッキ鋼や、フッ素樹脂等の耐熱樹脂で被覆した金属、又は、カーボングラファイト等でもよい。 As the heat conductive material of each element constituting the heat exchange unit 101, a heat resistant metal such as an iron-based alloy or a nickel alloy is suitable. Specifically, heat-resistant alloys such as iron alloys such as stainless steel, nickel alloys such as Inconel 625 (registered trademark), Inconel 617 (registered trademark), Haynes 230 (registered trademark), and the like can be given. These heat conductive materials are preferable because they have durability or corrosion resistance to the combustion progress that can be used as the reaction progress and the heat medium in the reaction flow path 150, but are not limited thereto. Further, it may be iron-plated steel, metal coated with a heat-resistant resin such as fluororesin, or carbon graphite.

 なお、熱交換部101は、単にそれぞれ1つの第1伝熱体210と第2伝熱体220とを用いても構成可能であるが、第1伝熱体210及び第2伝熱体220の数が多い方が、熱交換性能が良い。そこで、本実施形態では、熱交換部101にそれぞれ複数の第1伝熱体210と第2伝熱体220とが用いられる。ただし、第2伝熱体220の数は、第1伝熱体210の数よりも1つ多い。また、熱交換部101における鉛直方向の両端である最上位及び最下位に第2伝熱体220を位置させることで、第1伝熱体210が第2伝熱体の間に挟持される。また、1つの第1伝熱体210に対する支流路150aの形成数は、特に限定されず、熱交換部101の設計条件及び伝熱効率等を考慮して適宜決定される。更に、反応流路150及び熱媒体流路160を構成する溝を第1伝熱体210及び第2伝熱体220の鉛直方向の両側に各々設け、積層状態において上下の溝の合体として反応流路150及び熱媒体流路160を構成してもよい。また、本実施形態では、熱交換部101自体が反応装置1の本体部であるが、熱交換部101からの放熱を抑制して熱損失を抑えるために、ハウジング又は断熱材で熱交換部101の周囲を覆う構成としてもよい。 In addition, although the heat exchange part 101 can also be comprised only using the 1st 1st heat transfer body 210 and the 2nd heat transfer body 220, respectively, the 1st heat transfer body 210 and the 2nd heat transfer body 220 are the same. The larger the number, the better the heat exchange performance. Therefore, in the present embodiment, a plurality of first heat transfer bodies 210 and second heat transfer bodies 220 are used for the heat exchange unit 101, respectively. However, the number of the second heat transfer bodies 220 is one more than the number of the first heat transfer bodies 210. In addition, the first heat transfer body 210 is sandwiched between the second heat transfer bodies by positioning the second heat transfer body 220 at the uppermost and lowermost positions, which are both ends in the vertical direction of the heat exchange unit 101. In addition, the number of branch passages 150a formed on one first heat transfer body 210 is not particularly limited, and is appropriately determined in consideration of the design conditions of the heat exchange unit 101, heat transfer efficiency, and the like. Further, grooves constituting the reaction flow path 150 and the heat medium flow path 160 are provided on both sides in the vertical direction of the first heat transfer body 210 and the second heat transfer body 220, respectively, and the reaction flow is combined as upper and lower grooves in the stacked state. The channel 150 and the heat medium channel 160 may be configured. In this embodiment, the heat exchanging unit 101 itself is the main body of the reaction apparatus 1. However, in order to suppress heat dissipation from the heat exchanging unit 101 and suppress heat loss, the heat exchanging unit 101 is made of a housing or a heat insulating material. It is good also as a structure which covers the circumference | surroundings.

 反応流体導入部120は、半球状の筐体であり、第1伝熱体210に形成されている複数の支流路150aが上流側で開放されている側の熱交換部101の側面を覆い、熱交換部101との間に空間を形成する。反応流体導入部120は、熱交換部101に対して着脱可能又は開閉可能に設置される。この着脱等により、例えば、作業者が反応流路150の複数の支流路150aに対する触媒体140の挿入や抜き出しを行うことができる。また、反応流体導入部120は、反応流体を熱交換部101の外部から内部へ導入する導入配管120aを有する。導入配管120aは、図1等に示すように、熱交換部101の側面に対して略中心、具体的にはYZ平面上の中心に位置し、複数の支流路150aの開口方向と同一方向に連接されている。これにより、導入配管120aは、図3(a)に示すように開放されている複数の支流路150aのそれぞれに、反応流体をバランス良く分配することができる。 The reaction fluid introduction unit 120 is a hemispherical housing and covers the side surface of the heat exchange unit 101 on the side where the plurality of branch channels 150a formed in the first heat transfer body 210 are opened on the upstream side, A space is formed with the heat exchange unit 101. The reaction fluid introduction unit 120 is detachably installed on the heat exchange unit 101 or can be opened and closed. With this attachment / detachment or the like, for example, an operator can insert and extract the catalyst body 140 with respect to the plurality of branch channels 150a of the reaction channel 150. In addition, the reaction fluid introduction unit 120 includes an introduction pipe 120 a that introduces the reaction fluid from the outside to the inside of the heat exchange unit 101. As shown in FIG. 1 and the like, the introduction pipe 120a is positioned substantially at the center with respect to the side surface of the heat exchange unit 101, specifically, at the center on the YZ plane, and in the same direction as the opening direction of the plurality of branch channels 150a. It is connected. As a result, the introduction pipe 120a can distribute the reaction fluid in a well-balanced manner to each of the plurality of branch channels 150a that are open as shown in FIG.

 図4は、図1におけるD-D断面図である。第1伝熱体210に形成されている支流路150aは、反応領域を過ぎた下流側で、支流路150aと直交しY軸方向に向かう合流路150bに連接される。合流路150bは、熱交換部101の外部に開放されて生成物を流出する流路開口部としての流出部150cを有する。 FIG. 4 is a DD cross-sectional view in FIG. The branch flow path 150a formed in the first heat transfer body 210 is connected to a joint flow path 150b orthogonal to the branch flow path 150a and extending in the Y-axis direction on the downstream side after the reaction region. The combined flow path 150b has an outflow portion 150c as a flow path opening that is opened to the outside of the heat exchange section 101 and flows out the product.

 生成物排出部122は、縦長の箱状の筐体であり、複数の流出部150cが存在する熱交換部101の側面の一部を鉛直方向に覆い、熱交換部101との間に空間を形成する空間形成部である。ただし、この筐体形状は一例であり、例えば、半円筒形やそれに類似した凹状に湾曲したものであってもよい。生成物排出部122は、熱交換部101の側面に一体的に固定されている。また、生成物排出部122は、その壁部に、生成物を装置外部へ排出するための開口を有する開口部122aを設置している。開口部122aが有する開口の中心軸の延伸方向は、流出部150cの開口方向とは異なる方向に延びている。なお、本実施形態では、開口部122aの本体が配管であるものとするが、配管部分を伴わない単なるフランジ部であってもよい。開口部122aは、装置外部の設備に連通し、生成物を導入する外部配管300に接続される。具体的には、外部配管300は、接続部としてのフランジ部300aを連設しており、一方、開口部122aは、フランジ部300aに対して接続及び開放を可能とする第1の接続部としてのフランジ部180bを連設している。開口部122aが配管部分を伴わない場合には、開口部122a自体がフランジ部となる。生成物排出部122と熱交換部101との間に形成される空間では、複数の流出部150cからそれぞれ流出した生成物が開口部122aに導入される前に合流する。すなわち、生成物排出部122の内部の空間は、いわゆる流体溜まりを構成する。 The product discharge unit 122 is a vertically long box-shaped casing, and covers a part of the side surface of the heat exchange unit 101 where the plurality of outflow portions 150c exist in the vertical direction, and provides a space between the product exchange unit 101 and the heat exchange unit 101. It is the space formation part to form. However, this housing shape is an example, and may be, for example, a semi-cylindrical shape or a concave shape similar to the semicylindrical shape. The product discharge unit 122 is integrally fixed to the side surface of the heat exchange unit 101. Moreover, the product discharge part 122 has installed in the wall part the opening part 122a which has an opening for discharging a product to the apparatus exterior. The extending direction of the central axis of the opening of the opening 122a extends in a direction different from the opening direction of the outflow part 150c. In the present embodiment, the main body of the opening 122a is a pipe, but it may be a simple flange without a pipe part. The opening 122a communicates with equipment outside the apparatus and is connected to an external pipe 300 for introducing a product. Specifically, the external pipe 300 is continuously provided with a flange portion 300a as a connecting portion, while the opening portion 122a is a first connecting portion that can be connected to and opened from the flange portion 300a. The flange portion 180b is continuously provided. When the opening 122a is not accompanied by a pipe portion, the opening 122a itself becomes a flange portion. In the space formed between the product discharge unit 122 and the heat exchange unit 101, the products respectively flowing out from the plurality of outflow portions 150c merge before being introduced into the opening 122a. That is, the space inside the product discharge unit 122 constitutes a so-called fluid reservoir.

 更に、反応装置1は、生成物排出部122内に設置される整流部170と、整流部170を生成物排出部122に取り付ける取付部180とを有する。 Furthermore, the reaction apparatus 1 has a rectification unit 170 installed in the product discharge unit 122 and an attachment unit 180 for attaching the rectification unit 170 to the product discharge unit 122.

 整流部170は、複数の支流路150aに流入する反応流体の流量配分をより均等化させるために、支流路150aの下流側にある生成物排出部122において反応流体の背圧を均等化させる。また、整流部170は、軸状であり、軸方向に延び、生成物を導入する側周部と、側周部から導入した生成物を開口部122aの開口に向かって軸方向に導出する端部とを含む。例えば、整流部170は、製作が容易で、かつ、良好な整流効果を発揮することができることから、側周部の全面に生成物を貫流可能とする複数の孔が形成されている抵抗体としての多孔部材とし得る。本実施形態では、一例として、整流部170の形状を、軸方向の断面形状が円形である円筒形としている。整流部170の材質は、耐熱性に優れるとともに、生成物が腐食を引き起こしやすい物質である場合には耐腐食性に優れた金属とすることが望ましい。 The rectifying unit 170 equalizes the back pressure of the reaction fluid in the product discharge unit 122 on the downstream side of the branch channel 150a in order to equalize the flow distribution of the reaction fluid flowing into the plurality of branch channels 150a. Further, the rectifying unit 170 has an axial shape, extends in the axial direction, and includes a side peripheral part that introduces a product, and an end that guides the product introduced from the side peripheral part in the axial direction toward the opening of the opening 122a. Part. For example, the rectifying unit 170 is easy to manufacture and can exhibit a good rectifying effect, so that the resistor is formed with a plurality of holes that allow the product to flow through the entire surface of the side periphery. It can be a porous member. In the present embodiment, as an example, the shape of the rectifying unit 170 is a cylindrical shape having a circular cross-sectional shape in the axial direction. The material of the rectifying unit 170 is desirably a metal having excellent heat resistance and a product having excellent corrosion resistance when the product is a substance that easily causes corrosion.

 また、整流部170は、生成物排出部122に取り付けられている状態では、開口部122aと同軸状に位置する。ここで、同軸とは、図4中の一点鎖線で示す、開口部122aの開口180gの中心軸190と同じ軸という意味であるが、これは厳密な同一のみならず、下記の作用及び効果を奏することができる範囲内において若干のずれが生じるものであっても構わない。また、整流部170の外径は、開口180gの内径よりも小さい。したがって、整流部170は、開口180gを通じて互いの軸方向を合わせながら生成物排出部122内に進入可能である。 In addition, the rectifying unit 170 is positioned coaxially with the opening 122a in a state where the rectifying unit 170 is attached to the product discharge unit 122. Here, the term “coaxial” means the same axis as the central axis 190 of the opening 180g of the opening 122a, which is indicated by a one-dot chain line in FIG. 4, but this is not only exactly the same, but also has the following functions and effects. A slight deviation may occur within a range where the performance can be achieved. Further, the outer diameter of the rectifying unit 170 is smaller than the inner diameter of the opening 180g. Therefore, the rectification unit 170 can enter the product discharge unit 122 while aligning the axial directions with each other through the opening 180g.

 更に、整流部170は、上記のとおり、開口180gの中心軸190の延伸方向が複数の流出部150cの開口方向とは異なる方向に延びている。そして、整流部170は、図4に示すように、生成物排出部122に取り付けられている状態では、側周部の全体が空間に囲まれ、かつ、側周部の少なくとも一部は、複数の流出部150cに対向する。したがって、整流部170は、Z軸方向に並ぶ複数の流出部150cからそれぞれ流出された生成物について、全体として生成物のZ軸方向の流れを整流することができる。さらに、整流部170は、側周部に対して垂直となるXY平面に沿った放射方向の生成物の流れも整流することができる。これにより、各々の流出部150cから流出した生成物を、効率良く整流部170に向かわせることができる。 Furthermore, as described above, in the rectifying unit 170, the extending direction of the central axis 190 of the opening 180g extends in a direction different from the opening direction of the plurality of outflow portions 150c. As shown in FIG. 4, the rectification unit 170 is attached to the product discharge unit 122, and the entire side peripheral part is surrounded by a space, and at least a part of the side peripheral part is plural. Opposite the outflow portion 150c. Therefore, the rectifying unit 170 can rectify the flow of the product in the Z-axis direction as a whole with respect to the products respectively discharged from the plurality of outflow portions 150c arranged in the Z-axis direction. Furthermore, the rectifying unit 170 can also rectify the flow of the product in the radial direction along the XY plane perpendicular to the side periphery. Thereby, the product flowing out from each outflow portion 150c can be efficiently directed to the rectifying portion 170.

 整流部170は、より効率的には、複数の流出部150cの配列方向に対して軸方向が平行となり、かつ、すべての流出部150cに対向し得る長さを有することが望ましい。これにより、すべての生成物は、図4中の矢印で示すように、複数の流出部150cから整流部170の側周部に向かって流出するので、直接的に側周部に到達する。ここで、直接的な到達とは、流出部150cから流出した生成物が生成物排出部122内で可能な限り循環せずに、言い換えれば流れを乱さずに整流部170に到達することをいい、複雑に循環してしまう場合に比べて背圧を効率良く均等化するのに好適である。なお、直接的な到達の確実性を向上させるために、整流部170は、一方の端部が開口部122a内にあり、他方の端部が、開口部122aと対向する側の生成物排出部122の内壁に接触する程度の長さを有することが望ましい。 More efficiently, it is desirable that the rectifying unit 170 has a length that allows the axial direction to be parallel to the arrangement direction of the plurality of outflow portions 150c and to face all the outflow portions 150c. As a result, all the products flow out from the plurality of outflow portions 150c toward the side peripheral portion of the rectifying unit 170 as indicated by arrows in FIG. Here, the direct arrival means that the product flowing out from the outflow portion 150c does not circulate as much as possible in the product discharge portion 122, in other words, reaches the rectifying portion 170 without disturbing the flow. This is suitable for efficiently equalizing the back pressure as compared with the case of complicated circulation. In addition, in order to improve the certainty of direct arrival, the rectifying unit 170 has one end portion in the opening portion 122a and the other end portion on the side facing the opening portion 122a. It is desirable to have a length that contacts the inner wall of 122.

 取付部180は、整流部170の一方の端部に連設される係止部180aと、開口部122a側のフランジ部180bに設けられている係合部180dとを含む。係止部180aは、整流部170側から外側に向かって突出している。具体的には、整流部170が生成物排出部122に取り付けられている状態で、整流部170の中心軸からの長さは、開口部122aの開口180gの半径よりも長い。係止部180aの具体的形状は、軸方向から見た形状が環状であってもよいし、複数の突起が放射状に突出するものであってもよい。また、係止部180aは、整流部170と同等の径を有する円筒部材180cを介して連設させてもよい。この場合、円筒部材180cは、整流部170とは別部材とし、整流部170の端部と溶接等で接続するものとしてもよいし、整流部170と一体とする、すなわち孔が形成されていない側周部としてもよい。 The mounting portion 180 includes a locking portion 180a provided continuously with one end portion of the rectifying portion 170, and an engaging portion 180d provided on the flange portion 180b on the opening portion 122a side. The locking part 180a protrudes outward from the rectifying part 170 side. Specifically, in a state where the rectifying unit 170 is attached to the product discharge unit 122, the length of the rectifying unit 170 from the central axis is longer than the radius of the opening 180g of the opening 122a. As for the specific shape of the locking part 180a, the shape seen from the axial direction may be annular, or a plurality of protrusions may protrude radially. Moreover, you may make the latching | locking part 180a connect through the cylindrical member 180c which has a diameter equivalent to the rectification | straightening part 170. FIG. In this case, the cylindrical member 180c may be a separate member from the rectifying unit 170, and may be connected to the end of the rectifying unit 170 by welding or the like, or integrated with the rectifying unit 170, that is, no hole is formed. It is good also as a side periphery.

 上記流量配分をより効率良く均等化させるために、整流部170を介さずに開口部122aの開口180gに抜ける生成物をなくすか又は可能な限り減らすことが望ましい。また、上記のとおり、生成物は、生成物排出部122内で可能な限り循環しないことが望ましい。そこで、円筒部材180c若しくは整流部170の側周部と開口部122aの内壁との間の隙間は、可能な限り小さいものとする。また、係止部180aは、複数の突起が放射状に突出するものよりも環状のものとする方が、上記隙間を塞ぐことができる分、望ましい。 In order to equalize the flow rate distribution more efficiently, it is desirable to eliminate or reduce as much as possible the product that passes through the opening 180g of the opening 122a without passing through the rectifying unit 170. Further, as described above, it is desirable that the product does not circulate as much as possible in the product discharge unit 122. Therefore, the gap between the cylindrical member 180c or the side periphery of the rectifying unit 170 and the inner wall of the opening 122a is assumed to be as small as possible. In addition, it is desirable that the locking portion 180a is annular rather than a plurality of protrusions projecting radially, because the gap can be closed.

 係合部180dは、整流部170が開口部122aの開口を通して装置外部から生成物排出部122に挿入された状態で、係止部180aと係合可能とする溝又は切り欠き部である。 The engaging portion 180d is a groove or notch that can be engaged with the locking portion 180a in a state where the rectifying portion 170 is inserted into the product discharge portion 122 from the outside of the apparatus through the opening of the opening portion 122a.

 一方、熱媒体導入部130は、半球状の筐体であり、第2伝熱体220に形成されている複数の支流路160aが上流側で開放されている側の熱交換部101の側面を覆い、熱交換部101との間に空間を形成する。熱媒体導入部130は、熱交換部101に対して着脱可能又は開閉可能に設置されてもよいが、伝熱促進体141を装置組み立て時に熱媒体流路160の複数の支流路160a内に設置していれば、本実施形態のように必ずしも着脱等を要するものではない。また、熱媒体導入部130は、熱媒体を熱交換部101の外部から内部へ導入する導入配管130aを有する。導入配管130aは、図1等に示すように、熱交換部101の側面に対して略中心、具体的にはYZ平面上の中心に位置し、複数の支流路160aの延設方向と同一方向に連接されている。これにより、導入配管130aは、図3(c)に示すように開放されている複数の支流路160aのそれぞれに、熱媒体をバランス良く分配することができる。 On the other hand, the heat medium introduction unit 130 is a hemispherical housing, and the side surface of the heat exchange unit 101 on the side where the plurality of branch passages 160a formed in the second heat transfer body 220 are opened on the upstream side. A space is formed between the cover and the heat exchange unit 101. The heat medium introducing unit 130 may be detachable or openable with respect to the heat exchanging unit 101, but the heat transfer promoting body 141 is installed in the plurality of branch channels 160a of the heat medium channel 160 when the apparatus is assembled. If it does, it will not necessarily require attachment and detachment etc. like this embodiment. The heat medium introduction unit 130 includes an introduction pipe 130 a that introduces the heat medium from the outside to the inside of the heat exchange unit 101. As shown in FIG. 1 and the like, the introduction pipe 130a is located substantially at the center with respect to the side surface of the heat exchange unit 101, specifically, at the center on the YZ plane, and in the same direction as the extending direction of the plurality of branch channels 160a. It is connected to. As a result, the introduction pipe 130a can distribute the heat medium in a balanced manner to each of the plurality of open branch channels 160a as shown in FIG. 3C.

 熱媒体排出部132は、縦長の箱状の筐体であり、熱媒体を流出する複数の流出部が存在する熱交換部101の側面の一部を覆い、熱交換部101との間に空間を形成する空間形成部である。ただし、この筐体形状も、半円筒形等であってもよい。ここで、第2伝熱体220に形成されている支流路160aは、第1伝熱体210と同様に、反応領域に対応する部分を過ぎた下流側で、支流路160aと直交しY軸方向に向かう不図示の合流路に連接される。これらの合流路は、それぞれ不図示の流路開口部としての流出部から熱交換部101の外部に開放されている。熱媒体排出部132も、熱交換部101の側面に一体的に固定されており、その壁部に、熱媒体を装置外部へ排出するための開口を有する開口部132aを設置している。本実施形態では、開口部132aの本体が配管であるものとするが、配管部分を伴わない単なるフランジ部であってもよい。また、熱交換部101との間に形成される空間では、第2伝熱体220の複数の流出部からそれぞれ放出された熱媒体が、開口部132aに導入される前に合流する。すなわち、熱媒体排出部132の内部の空間は、いわゆる流体溜まりを構成する。 The heat medium discharge part 132 is a vertically long box-shaped casing, covers a part of the side surface of the heat exchange part 101 where a plurality of outflow parts outflowing the heat medium exist, and is a space between the heat exchange part 101 It is the space formation part which forms. However, this housing shape may also be a semi-cylindrical shape or the like. Here, the branch flow path 160a formed in the second heat transfer body 220 is orthogonal to the branch flow path 160a on the downstream side past the portion corresponding to the reaction region, similarly to the first heat transfer body 210. It is connected to a not-shown joint channel that goes in the direction. These combined flow paths are opened to the outside of the heat exchange section 101 from an outflow section as a flow path opening (not shown). The heat medium discharge unit 132 is also integrally fixed to the side surface of the heat exchange unit 101, and an opening 132a having an opening for discharging the heat medium to the outside of the apparatus is installed on the wall portion. In the present embodiment, the main body of the opening 132a is a pipe, but it may be a simple flange part without a pipe part. Moreover, in the space formed between the heat exchange units 101, the heat medium discharged from the plurality of outflow portions of the second heat transfer body 220 merges before being introduced into the opening 132a. That is, the space inside the heat medium discharge unit 132 forms a so-called fluid reservoir.

 熱交換部101は、液-液型熱交換器、気-気型熱交換器及び気-液型熱交換器のいずれとしても使用可能であり、反応装置1に供給する反応流体及び熱媒体は、気体及び液体のいずれであってもよい。また、反応装置1は、吸熱反応や発熱反応など様々な熱的反応による化学合成を可能とする。そのような熱的反応による合成として、例えば、式(1)で示すメタンの水蒸気改質反応、式(2)で示すメタンのドライリフォーミング反応のような吸熱反応、式(3)で示すシフト反応、式(4)で示すメタネーション反応、式(5)で示すフィッシャー-トロプシュ(Fischer tropsch)合成反応等の発熱反応による合成がある。なお、これらの反応における反応流体は、気体状である。 The heat exchange unit 101 can be used as any of a liquid-liquid type heat exchanger, a gas-gas type heat exchanger, and a gas-liquid type heat exchanger, and the reaction fluid and heat medium supplied to the reaction apparatus 1 are Any of gas and liquid may be used. In addition, the reaction apparatus 1 enables chemical synthesis by various thermal reactions such as endothermic reaction and exothermic reaction. Examples of the synthesis by such a thermal reaction include an endothermic reaction such as a steam reforming reaction of methane represented by Formula (1), a dry reforming reaction of methane represented by Formula (2), and a shift represented by Formula (3). There is a synthesis by exothermic reaction such as a reaction, a methanation reaction represented by formula (4), and a Fischer-tropsch synthesis reaction represented by formula (5). Note that the reaction fluid in these reactions is gaseous.

 CH + HO → 3H + CO      ----式(1)
 CH + CO → 2H + 2CO     ----式(2)
 CO + HO → CO + H       ----式(3)
 CO + 3H → CH + HO      ----式(4)
 (2n+1)H + nCO → C2n+2 + nHO  ----式(5)
CH 4 + H 2 O → 3H 2 + CO ---- formula (1)
CH 4 + CO 2 → 2H 2 + 2CO ---- Formula (2)
CO + H 2 O → CO 2 + H 2 ---- Formula (3)
CO + 3H 2 → CH 4 + H 2 O ---- Formula (4)
(2n + 1) H 2 + nCO → C n H 2n + 2 + nH 2 O ------

 また、上記反応以外に、アセチル化反応、付加反応、アルキル化反応、脱アルキル化反応、水素脱アルキル化反応、還元性アルキル化反応、アミン化反応、芳香族化反応、アリール化反応、自熱式改質反応、カルボニル化反応、脱カルボニル化反応、還元性カルボニル化反応、カルボキシル化反応、還元性カルボキシル化反応、還元性カップリング反応、縮合反応、分解(クラッキング)反応、水素分解反応、環化反応、シクロオリゴマー化(cyclooligomerization)反応、脱ハロゲン化反応、二量体化反応、エポキシ化反応、エステル化反応、交換反応、ハロゲン化反応、水素化反応、水素ハロゲン化反応、同族体形成(homologation)反応、水和反応、脱水反応、水素化反応、脱水素化反応、水素カルボキシル化反応、水素ホルミル化反応、水添分解反応、水素金属化反応、ヒドロシリル化反応、加水分解反応、水素化処理反応、異性体化反応、メチル化反応、脱メチル化反応、メタセシス(置換)反応、ニトロ化反応、酸化反応、部分酸化反応、重合反応、還元反応、逆水性ガスシフト(reverse water gas shift)反応、スルホン化反応、短鎖重合反応、エステル交換反応、三量体化反応等の実施に、反応装置1を適用してもよい。 In addition to the above reactions, acetylation reaction, addition reaction, alkylation reaction, dealkylation reaction, hydrogen dealkylation reaction, reductive alkylation reaction, amination reaction, aromatization reaction, arylation reaction, self-heating Formula reforming reaction, carbonylation reaction, decarbonylation reaction, reductive carbonylation reaction, carboxylation reaction, reductive carboxylation reaction, reductive coupling reaction, condensation reaction, cracking reaction, hydrogenolysis reaction, ring Reaction, cyclooligomerization reaction, dehalogenation reaction, dimerization reaction, epoxidation reaction, esterification reaction, exchange reaction, halogenation reaction, hydrogenation reaction, hydrogen halogenation reaction, homologue formation ( homologation) reaction, hydration reaction, dehydration reaction, hydrogenation reaction, dehydrogenation reaction, hydrogen carboxylation reaction, hydrogen formylation reaction, hydrogenation Decomposition reaction, hydrogenation reaction, hydrosilylation reaction, hydrolysis reaction, hydrotreating reaction, isomerization reaction, methylation reaction, demethylation reaction, metathesis (substitution) reaction, nitration reaction, oxidation reaction, partial oxidation Even if the reaction apparatus 1 is applied to the implementation of the reaction, polymerization reaction, reduction reaction, reverse water gas shift reaction, sulfonation reaction, short chain polymerization reaction, transesterification reaction, trimerization reaction, etc. Good.

 反応装置1では、上記のような化学反応に関与する原料などの物質を反応体とし、その反応体を有する流体を反応流体とする。反応流体は、支流路150aを流通する間に、熱媒体流路160を流通する熱媒体の熱又は冷熱を受けて加熱又は冷却されて反応が進行して、反応体が目的生成物に変換される。なお、反応流体は、反応に関与しないキャリアを含有してもよい。キャリアは、実施する化学反応を考慮して、反応の進行に影響を与えない物質から適宜選択することができる。特に気体状の反応流体に使用可能なキャリアとしては、不活性ガスや低反応性の気体状物質等の気体キャリアが挙げられる。一方、熱媒体としては、反応装置1の構成素材を腐食させない流体物質が好適であり、例えば、水、油等の液状物質や、燃焼ガス等の気体状物質が使用できる。熱媒体として気体状物質を使用する構成は、液体媒体を使用する場合と比較して、取り扱いが容易である。 In the reaction apparatus 1, a material such as a raw material involved in the chemical reaction as described above is used as a reactant, and a fluid having the reactant is used as a reaction fluid. While the reaction fluid flows through the branch flow path 150a, the reaction fluid is heated or cooled by receiving heat or cold heat of the heat medium flowing through the heat medium flow path 160, and the reaction proceeds to convert the reactant into a target product. The The reaction fluid may contain a carrier that does not participate in the reaction. The carrier can be appropriately selected from substances that do not affect the progress of the reaction in consideration of the chemical reaction to be performed. In particular, examples of carriers that can be used for the gaseous reaction fluid include gaseous carriers such as inert gases and low-reactive gaseous substances. On the other hand, as the heat medium, a fluid substance that does not corrode the constituent materials of the reaction apparatus 1 is suitable. For example, a liquid substance such as water or oil, or a gaseous substance such as combustion gas can be used. The configuration using a gaseous substance as the heat medium is easy to handle as compared with the case where a liquid medium is used.

 触媒体140に含まれる触媒は、上述したような化学反応の進行促進に有効な活性金属を主成分として有し、反応装置1で遂行する合成反応に基づいて、反応促進に適したものが適宜選択される。触媒成分である活性金属としては、例えば、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)等が挙げられ、1種、又は、反応促進に有効である限り、複数種を組み合わせて使用してもよい。触媒体140は、例えば、触媒を構造材に担持することによって調製される。構造材は、耐熱性の金属から、成形加工が可能で、触媒の担持が可能なものが選択される。構造体、すなわち触媒体140は、反応流体との接触面積を増加させるために、断面が波状に丸く湾曲したコルゲート板状やギザギザに屈曲した形状などがあり得る。耐熱性の金属としては、Fe(鉄)、Cr(クロム)、Al(アルミニウム)、Y(イットリウム)、Co(コバルト)、Ni(ニッケル)、Mg(マグネシウム)、Ti(チタン)、Mo(モリブデン)、W(タングステン)、Nb(ニオブ)、Ta(タンタル)等の金属の1種又は複数種を主成分とする耐熱合金がある。例えば、Fecralloy(登録商標)等の耐熱合金製の薄板状構造材を成形加工して触媒体140を構成してもよい。触媒の担持方法としては、表面修飾等によって構造材上に直接担持する方法や、担体を用いて間接的に担持する方法などがあり、実用的には、担体を用いた触媒の担持が容易である。担体は、反応装置1で実施する反応を考慮して、反応の進行を阻害せず耐久性を有する材料であって、使用する触媒を良好に担持し得るものが適宜選択される。例えば、Al(アルミナ)、TiO(チタニア)、ZrO(ジルコニア)、CeO(セリア)、SiO(シリカ)等の金属酸化物が挙げられ、1種又は複数種を選択して担体として使用することができる。担体を用いた担持方法としては、例えば、成形した構造材の表面に触媒と担体との混合物層を形成する方式や、担体層を形成した後に表面修飾等によって触媒を担持させる方式などが挙げられる。 The catalyst contained in the catalyst body 140 has an active metal effective as a main component for promoting the progress of the chemical reaction as described above as a main component, and a catalyst suitable for promoting the reaction is appropriately selected based on the synthesis reaction performed in the reactor 1. Selected. Examples of the active metal that is a catalyst component include Ni (nickel), Co (cobalt), Fe (iron), Pt (platinum), Ru (ruthenium), Rh (rhodium), Pd (palladium), and the like. As long as it is effective for promoting one kind of reaction or reaction, a plurality of kinds may be used in combination. The catalyst body 140 is prepared by, for example, supporting a catalyst on a structural material. The structural material is selected from heat-resistant metals that can be molded and can carry a catalyst. In order to increase the contact area with the reaction fluid, the structure body, that is, the catalyst body 140 may have a corrugated plate shape whose section is curved in a wavy shape, a jagged shape, or the like. Examples of heat-resistant metals include Fe (iron), Cr (chromium), Al (aluminum), Y (yttrium), Co (cobalt), Ni (nickel), Mg (magnesium), Ti (titanium), and Mo (molybdenum). ), W (tungsten), Nb (niobium), Ta (tantalum) and the like, and there are heat-resistant alloys mainly composed of one or more kinds of metals. For example, the catalyst body 140 may be configured by molding a thin plate-like structural material made of a heat-resistant alloy such as Fecralloy (registered trademark). The catalyst loading method includes a method of directly loading on a structural material by surface modification or the like, and a method of indirectly loading using a carrier. In practical terms, it is easy to carry a catalyst using a carrier. is there. In consideration of the reaction to be carried out in the reaction apparatus 1, the support is appropriately selected from materials that do not hinder the progress of the reaction and have durability and that can favorably support the catalyst to be used. Examples include metal oxides such as Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), SiO 2 (silica), and one or more are selected. And can be used as a carrier. Examples of the supporting method using the carrier include a method of forming a mixture layer of the catalyst and the carrier on the surface of the formed structural material, and a method of supporting the catalyst by surface modification after forming the carrier layer. .

 次に、整流部170の取り付け及び取り外しについて説明する。開口部122a側のフランジ部180bと、外部配管300側のフランジ部300aとは、通常、Oリング180eを介してボルト180fにて締結されている。取り付け作業として、作業者は、ボルト180fを外して締結を解除した後、外部配管300をずらして開口部122aの開口180gを開放する。次に、作業者は、整流部170を開口180gから生成物排出部122内に進入させる。このとき、整流部170は、係止部180aが係合部180dに係合することで一定の位置で停止する。そして、作業者は、外部配管300を戻してボルト180fを締結すれば、係止部180aが開口部122aの軸方向に2つのフランジ部180b,300aで挟み込まれて固定され、整流部170の取り付け作業が完了する。一方、作業者は、上記と逆の手順で進めれば、生成物排出部122から整流部170を容易に取り外すことができる。反応装置1では、複数の支流路150aに流入する反応流体の流量配分が可能な限り均等であることが望ましいが、流量配分にばらつきが生じ、複数の支流路150aのそれぞれの流出部150cから流速分布の不均等な流れが流出する場合がある。これに対して、整流部170を生成物排出部122に設置しておけば、当初、生成物排出部122内に流速分布の不均等な流れが流入していても、整流部170に衝突している間に徐々に背圧が均等化される。これにより、複数の支流路150aに流入する反応流体の流量配分も徐々に均等化していく。特に本実施形態では、整流部170を上記のような構成とし、かつ、開口部122aと同軸状に設置するので、生成物排出部122内での生成物の循環を可能な限り抑えることができ、背圧を均等化する、すなわち反応流体の流量配分を効率良く均等化することができる。 Next, attachment and removal of the rectifying unit 170 will be described. The flange portion 180b on the opening 122a side and the flange portion 300a on the external pipe 300 side are usually fastened with bolts 180f via an O-ring 180e. As an attaching operation, the operator removes the bolt 180f to release the fastening, and then shifts the external pipe 300 to open the opening 180g of the opening 122a. Next, the operator causes the rectifying unit 170 to enter the product discharge unit 122 through the opening 180g. At this time, the rectifying unit 170 is stopped at a fixed position by the engagement of the locking portion 180a with the engaging portion 180d. Then, when the operator returns the external pipe 300 and fastens the bolt 180f, the locking portion 180a is sandwiched and fixed between the two flange portions 180b and 300a in the axial direction of the opening portion 122a, and the rectifying portion 170 is attached. The work is complete. On the other hand, the operator can easily remove the rectification unit 170 from the product discharge unit 122 by proceeding in the reverse procedure. In the reactor 1, it is desirable that the flow distribution of the reaction fluid flowing into the plurality of branch flow paths 150a be as uniform as possible. However, the flow distribution varies, and the flow velocity from each outflow portion 150c of the plurality of branch flow paths 150a. A non-uniform flow may flow out. On the other hand, if the rectifying unit 170 is installed in the product discharge unit 122, even if an uneven flow of the flow velocity distribution flows into the product discharge unit 122 at the beginning, it collides with the rectification unit 170. During this time, the back pressure is gradually equalized. Thereby, the flow distribution of the reaction fluid flowing into the plurality of branch channels 150a is also gradually equalized. In particular, in this embodiment, since the rectifying unit 170 is configured as described above and is installed coaxially with the opening 122a, the product circulation in the product discharge unit 122 can be suppressed as much as possible. The back pressure can be equalized, that is, the flow distribution of the reaction fluid can be equalized efficiently.

 一方、反応流体の流量配分のばらつきの程度によっては、設置されている整流部170の整流性能が十分ではなく、所望の流量配分に調整できない場合もあり得る。これに対して、本実施形態によれば、整流部170の取り外しが容易であるため、作業者は、整流性能が適切な整流部170に適宜交換することができる。例えば、整流部170が上記のように多孔部材であれば、孔径が異なる整流部170に交換すればよい。更に、当初、整流部170が上記流量配分を適切に調整することができていても、経時劣化や反応流体の腐食性等により、整流性能が次第に低下する場合もあり得る。このような場合も、上記と同様に新たな整流部170に適宜交換することができる。 On the other hand, depending on the degree of variation in the flow distribution of the reaction fluid, the rectification performance of the installed rectification unit 170 may not be sufficient, and the flow distribution may not be adjusted to a desired flow distribution. On the other hand, according to the present embodiment, since the rectification unit 170 can be easily removed, the operator can appropriately replace the rectification unit 170 with an appropriate rectification performance. For example, if the rectifying unit 170 is a porous member as described above, it may be replaced with a rectifying unit 170 having a different hole diameter. Furthermore, even if the rectifying unit 170 can adjust the flow rate distribution appropriately at the beginning, the rectifying performance may gradually decrease due to deterioration with time, corrosiveness of the reaction fluid, or the like. Also in such a case, it can be appropriately replaced with a new rectifying unit 170 in the same manner as described above.

 以上のように、本実施形態によれば、装置構造の複雑化を抑えつつ、整流部の取り外しを容易とする点で有利な熱処理装置を提供することができる。 As described above, according to this embodiment, it is possible to provide a heat treatment apparatus that is advantageous in terms of facilitating the removal of the rectifying unit while suppressing the complexity of the apparatus structure.

 (第2実施形態)
 次に、本開示の第2実施形態に係る熱処理装置について説明する。第1実施形態に係る反応装置1は、整流部170を、開口部122aの開口180gを通じて生成物排出部122に取り外し可能に設置する。ここで、整流部170を挿入し固定する部分の開口部を第1の開口部とするならば、第1実施形態では、生成物を装置外部へ排出する開口部122aが第1の開口部に相当する。これに対して、本実施形態に係る反応装置の特徴は、開口部122aではなく、生成物を装置外部へ排出しない別の開口部を第1の開口部とする点にある。
(Second Embodiment)
Next, a heat treatment apparatus according to the second embodiment of the present disclosure will be described. In the reaction apparatus 1 according to the first embodiment, the rectifying unit 170 is detachably installed in the product discharge unit 122 through the opening 180g of the opening 122a. Here, if the opening of the portion where the rectifying unit 170 is inserted and fixed is used as the first opening, in the first embodiment, the opening 122a for discharging the product to the outside of the apparatus is the first opening. Equivalent to. On the other hand, the feature of the reaction apparatus according to the present embodiment is that the first opening is not the opening 122a but another opening that does not discharge the product to the outside of the apparatus.

 図5は、本実施形態における整流部171及びその取付部181を示す図であり、図4に示した第1実施形態に係るD-D断面図に対応して図示している。整流部171の構成は、第1実施形態における整流部170と同様である。一方、取付部181は、第1実施形態と同様に、整流部171の一方の端部に連設する係止部181aを含む。また、生成物排出部122は、該生成物排出部122の内部と外部とで貫通する開口181gを有する開口部122bを有する。したがって、生成物排出部122は、第1実施形態で説明した装置外部と連通する開口部122aを第2の開口部とすれば、第1の開口部としての開口部122bと、第2の開口部としての開口部122aとの少なくとも2つの開口部を有することになる。また、開口部122bは、開口部122aに同軸状に対向する。すなわち、第1の開口181gと第2の開口180gとの中心軸は、ほぼ一致する。この場合も、整流部171の外径は、開口部122bの開口181gの径よりも小さい。 FIG. 5 is a view showing the rectifying unit 171 and its mounting portion 181 in the present embodiment, corresponding to the DD sectional view according to the first embodiment shown in FIG. The configuration of the rectifying unit 171 is the same as that of the rectifying unit 170 in the first embodiment. On the other hand, the attachment portion 181 includes a locking portion 181a provided continuously with one end portion of the rectifying portion 171 as in the first embodiment. Moreover, the product discharge part 122 has the opening part 122b which has the opening 181g penetrated in the inside and outside of the product discharge part 122. Therefore, the product discharger 122 has the opening 122b as the first opening and the second opening if the opening 122a communicating with the outside of the apparatus described in the first embodiment is a second opening. It has at least two openings with the opening 122a as a part. Further, the opening 122b faces the opening 122a coaxially. That is, the central axes of the first opening 181g and the second opening 180g substantially coincide. Also in this case, the outer diameter of the rectifying unit 171 is smaller than the diameter of the opening 181g of the opening 122b.

 開口部122bには、開口181gを遮蔽可能とする遮蔽板301が接続される。すなわち、開口部122bは、遮蔽板301に対して接続及び開放を可能とする第2の接続部としてのフランジ部181bを連設している。なお、本実施形態でも、開口部122bの本体が短い配管であるものとするが、配管部分を伴わない単なるフランジ部であってもよい。また、本実施形態における取付部181も、フランジ部181bに形成されている係合部181dを含む。係合部181dは、整流部171が開口部122bの開口181gを通して装置外部から生成物排出部122に挿入された状態で、係止部181aと係合可能とする溝又は切り欠き部である。また、円筒部材181c、Oリング181e及びボルト181fについても、第1実施形態における対応箇所と同様である。このような構成により、整流部171は、第1実施形態と同様、フランジ部181bと遮蔽板301とに挟み込まれて固定される。 A shielding plate 301 that can shield the opening 181g is connected to the opening 122b. That is, the opening 122 b is provided with a flange portion 181 b as a second connecting portion that can be connected to and disconnected from the shielding plate 301. In this embodiment as well, the main body of the opening 122b is a short pipe, but it may be a simple flange without a pipe. Further, the mounting portion 181 in the present embodiment also includes an engaging portion 181d formed on the flange portion 181b. The engaging portion 181d is a groove or a notch that can be engaged with the locking portion 181a in a state where the rectifying portion 171 is inserted into the product discharge portion 122 from the outside of the apparatus through the opening 181g of the opening portion 122b. Further, the cylindrical member 181c, the O-ring 181e, and the bolt 181f are the same as the corresponding portions in the first embodiment. With such a configuration, the rectifying unit 171 is sandwiched and fixed between the flange portion 181b and the shielding plate 301, as in the first embodiment.

 なお、上記の構成を採用する場合には、整流部171は、図5に示すように、他方の端部、すなわち生成物を流出させる側の端部が開口部122aの開口180g内に進入することが可能な軸方向長さを有することが望ましい。これにより、整流部170を通過しない生成物を可能な限り減らすことができる。結果として、第1実施形態と同様に、整流部170への生成物の直接的な到達の確実性を向上させることができる。 In addition, when employ | adopting said structure, as shown in FIG. 5, as for the rectification | straightening part 171, the other edge part, ie, the edge part on the side which flows out a product, approachs into the opening 180g of the opening part 122a. It is desirable to have a possible axial length. Thereby, the product which does not pass the rectification | straightening part 170 can be reduced as much as possible. As a result, as in the first embodiment, the certainty of direct arrival of the product to the rectifying unit 170 can be improved.

 本実施形態によれば、第1実施形態と同様の効果を奏し、特に開口部122aと外部配管300との接続を容易に解除できない場合などに好適である。生成物排出部122に開口部122bを設ける必要はあるが、生成物排出部122を熱交換部101から開放可能とする機構を設けるよりは、簡易な構成となる。また、整流部の取り外し作業は、作業者が外部配管300を移動させることなく、代わって遮蔽板301を取り外すのみであるので、第1実施形態よりも容易である。 According to the present embodiment, the same effects as those of the first embodiment can be obtained, which is particularly suitable when the connection between the opening 122a and the external pipe 300 cannot be easily released. Although it is necessary to provide the opening part 122b in the product discharge part 122, it becomes a simple structure rather than providing the mechanism which can open | release the product discharge part 122 from the heat exchange part 101. FIG. Also, the rectifying unit removal work is easier than the first embodiment because the operator simply removes the shielding plate 301 instead of moving the external pipe 300.

 (他の実施形態)
 上記各実施形態では、整流部170が円筒形であるものとした。これは、整流部170の断面形状すなわち生成物を流出させる端部の外形を開口180gの形状に合わせることが、整流部170を通過しない生成物を可能な限り減らしつつ、生成物排出部122内での生成物の循環を可能な限り減らす観点から望ましいからである。しかしながら、本開示は、整流部170の形状を円筒に限るものではなく、背圧を均等化する上で許容できる範囲であれば、端部の外形が多角形、すなわち断面形状が多角形である筒状の整流部を採用してもよい。その場合、整流部の端部の最長対角線は、排出配管122aの内径よりも小さくする必要がある。
(Other embodiments)
In each of the above embodiments, the rectifying unit 170 is cylindrical. This is because adjusting the cross-sectional shape of the rectifying unit 170, that is, the outer shape of the end portion through which the product flows out, to the shape of the opening 180g reduces the amount of products not passing through the rectifying unit 170 as much as possible. This is because it is desirable from the viewpoint of reducing the product circulation in the system as much as possible. However, according to the present disclosure, the shape of the rectifying unit 170 is not limited to a cylinder, and the outer shape of the end portion is a polygon, that is, the cross-sectional shape is a polygon, as long as the back pressure can be equalized. A cylindrical rectifying unit may be employed. In that case, the longest diagonal line at the end of the rectifying unit needs to be smaller than the inner diameter of the discharge pipe 122a.

 また、上記各実施形態では、整流部170が多孔部材であるものとしたが、本開示はこれに限定されず、例えば、同様の素材の細線を編んでフィルター状に製作された部材等であってもよい。 In each of the above embodiments, the rectifying unit 170 is a porous member. However, the present disclosure is not limited to this, and is, for example, a member manufactured in a filter shape by knitting thin wires of the same material. May be.

 また、上記各実施形態では、熱処理装置として反応装置1を例示した。これらの反応装置1では、下流側で背圧を好適に均等化させることで、結果的に上流側での反応流体の流量配分を効率良く均等化させるために、反応流体又は生成物の流れの下流側に位置する生成物排出部122内に軸状の整流部170を設置するものとしている。しかしながら、本開示は、これに限定されるものではない。 In each of the above embodiments, the reaction apparatus 1 is exemplified as the heat treatment apparatus. In these reactors 1, the back pressure is suitably equalized on the downstream side, and as a result, in order to efficiently equalize the flow distribution of the reaction fluid on the upstream side, A shaft-like rectification unit 170 is installed in the product discharge unit 122 located on the downstream side. However, the present disclosure is not limited to this.

 具体的には、例えば、同様に熱処理装置が反応装置である場合を考えると、上流側で直接的に整流作用を生じさせることで、反応流体の流量配分を効率良く均等化させることが望まれる場合もあり得る。特に、この場合の反応流体の上流側が、上記各実施形態とは逆に開口部122a側となる構成もあり得る。一方、例えば、本開示の熱処理装置が熱交換器である場合を考えると、第1の流体と第2の流体とが熱交換部に導入する部分及び熱交換器から導出する部分が、共に上記各実施形態でいう生成物排出部122のような構成となる場合もあり得る。このように、本開示の熱処理装置では、整流部が取付部を用いて配置される空間形成部が各流体の流れの上流側に位置するのか下流側に位置するのかは限定されない。換言すれば、上記例示した反応装置1のような構成において、各流体の導入方向及び導出方向は限定されない。 Specifically, for example, when considering the case where the heat treatment apparatus is a reaction apparatus, it is desirable to efficiently equalize the flow distribution of the reaction fluid by directly generating a rectifying action on the upstream side. There may be cases. In particular, there may be a configuration in which the upstream side of the reaction fluid in this case is the opening 122a side as opposed to the above embodiments. On the other hand, for example, when considering the case where the heat treatment apparatus of the present disclosure is a heat exchanger, both the part where the first fluid and the second fluid are introduced into the heat exchange part and the part derived from the heat exchanger are both described above. There may be a configuration like the product discharger 122 in each embodiment. As described above, in the heat treatment apparatus of the present disclosure, it is not limited whether the space forming unit in which the rectifying unit is disposed using the attachment unit is positioned on the upstream side or the downstream side of the flow of each fluid. In other words, in the configuration of the reaction apparatus 1 exemplified above, the introduction direction and the discharge direction of each fluid are not limited.

 このように、上記の他の実施形態も考慮すれば、本開示における第1の流体と第2の流体とは、適用される熱処理装置により、それぞれ異なる物質となる場合も、同一の物質となる場合もあり得る。特に、上記の第1及び第2の各実施形態においても、整流部170に求める作用によっては、第1の流体としている方の流体を熱媒体とし、第2の流体としている方の流体を反応流体又は生成物として捉えることも可能である。また、本開示が適用される熱処理装置が熱交換器であるならば、第1及び第2の流体ともに熱媒体となる場合もあり得る。 As described above, in consideration of the other embodiments described above, the first fluid and the second fluid in the present disclosure are the same material even when different materials are used depending on the heat treatment apparatus to be applied. There may be cases. In particular, also in the first and second embodiments described above, depending on the action required for the rectifying unit 170, the fluid that is the first fluid is used as the heat medium, and the fluid that is the second fluid is reacted. It can also be understood as a fluid or product. Further, if the heat treatment apparatus to which the present disclosure is applied is a heat exchanger, both the first and second fluids may be a heat medium.

 さらに、上記各実施形態では、熱交換部101は、平板状の2種の伝熱体を積層した積層体としたが、熱交換部がこのような積層体である必要はなく、円管等で直線的な反応流路を有する熱交換部を含む反応装置に適用することができる。 Furthermore, in each said embodiment, although the heat exchange part 101 was made into the laminated body which laminated | stacked 2 types of flat heat exchangers, it is not necessary for a heat exchange part to be such a laminated body, a circular pipe etc. And can be applied to a reaction apparatus including a heat exchange section having a linear reaction flow path.

 このように、本開示は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本開示の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る事項によってのみ定められる。 Thus, it is needless to say that the present disclosure includes various embodiments that are not described herein. Accordingly, the technical scope of the present disclosure is defined only by matters relating to the scope of claims reasonable from the above description.

Claims (9)

  1.  第1の流体と第2の流体との熱交換を利用する熱処理装置であって、
     前記第1の流体を流通させる複数の第1の流路と、前記第2の流体を流通させる第2の流路とを含む熱交換部と、
     前記複数の第1の流路の各々の流路開口部に面する空間を有する空間形成部と、
     前記空間形成部に設けられ、第1の開口を有する第1の開口部と、
     前記空間形成部の前記空間に配置され、前記第1の流体を整流する整流部と、
     前記第1の開口を通じて前記整流部を取り外し可能に取り付ける取付部と、
    を有し、
     前記空間形成部の前記空間は、前記各々の流路開口部から流出した前記第1の流体が合流する空間、又は、合流している前記第1の流体を前記各々の流路開口部へ流入させる空間であり、
     前記整流部は、前記空間形成部に取り付けられている状態で、前記複数の流路開口部に対向する熱処理装置。
    A heat treatment apparatus using heat exchange between a first fluid and a second fluid,
    A heat exchanging section including a plurality of first flow paths for circulating the first fluid and a second flow path for circulating the second fluid;
    A space forming portion having a space facing the flow channel opening of each of the plurality of first flow channels;
    A first opening provided in the space forming portion and having a first opening;
    A rectifying unit arranged in the space of the space forming unit and rectifying the first fluid;
    An attachment part for removably attaching the rectifying part through the first opening;
    Have
    The space of the space forming portion is a space where the first fluids flowing out from the respective flow channel openings merge or the merged first fluid flows into the respective flow channel openings. Space
    The said rectification | straightening part is the heat processing apparatus facing the said several flow-path opening part in the state attached to the said space formation part.
  2.  前記第1の開口の中心軸の延伸方向は、前記流路開口部の開口方向とは異なる請求項1に記載の熱処理装置。 The heat treatment apparatus according to claim 1, wherein the extending direction of the central axis of the first opening is different from the opening direction of the flow path opening.
  3.  前記整流部は、円筒形である請求項1又は2に記載の熱処理装置。 The heat treatment apparatus according to claim 1 or 2, wherein the rectifying unit is cylindrical.
  4.  前記整流部は、前記第1の流体を貫流可能とする複数の孔が形成されている多孔部材である請求項1乃至3のいずれか1項に記載の熱処理装置。 The heat treatment apparatus according to any one of claims 1 to 3, wherein the rectifying unit is a porous member in which a plurality of holes through which the first fluid can flow is formed.
  5.  前記第1の開口部は、前記第1の流体を流通させる装置外部の配管の接続及び開放を可能とする第1の接続部を含む請求項1乃至4のいずれか1項に記載の熱処理装置。 5. The heat treatment apparatus according to claim 1, wherein the first opening includes a first connection part that enables connection and release of piping outside the apparatus through which the first fluid flows. .
  6.  前記取付部は、前記整流部の一方の端部に連設され、前記整流部の中心軸からの長さが前記第1の開口の半径よりも長い係止部と、
     前記第1の接続部に設けられ、前記係止部と係合する係合部と、を含み、
     前記係止部が前記係合部に係合している状態で前記第1の接続部と装置外部の前記配管とを接続することで、前記整流部を取り付ける請求項5に記載の熱処理装置。
    The mounting portion is connected to one end portion of the rectifying portion, and a locking portion whose length from the central axis of the rectifying portion is longer than the radius of the first opening;
    An engagement portion provided at the first connection portion and engaged with the locking portion;
    The heat processing apparatus of Claim 5 which attaches the said rectification | straightening part by connecting the said 1st connection part and the said piping of the apparatus exterior in the state in which the said latching | locking part is engaging with the said engaging part.
  7.  前記第1の流体を流通させる装置外部の配管の接続及び開放を可能とする第1の接続部を含む第2の開口部と、
     前記第1の開口を遮蔽可能な遮蔽板と、を有し、
     前記第1の開口部は、前記遮蔽板を接続及び開放を可能とする第2の接続部を含む請求項1乃至4のいずれか1項に記載の熱処理装置。
    A second opening including a first connection portion that enables connection and release of piping outside the apparatus for circulating the first fluid;
    A shielding plate capable of shielding the first opening,
    5. The heat treatment apparatus according to claim 1, wherein the first opening includes a second connection portion that enables connection and release of the shielding plate.
  8.  前記取付部は、前記整流部の一方の端部に連設され、前記整流部の中心軸からの長さが前記第1の開口の半径よりも長い係止部と、
     前記第2の接続部に設けられ、前記係止部と係合する係合部と、を含み、
     前記係止部が前記係合部に係合している状態で前記第2の接続部と前記遮蔽板とを接続することで、前記整流部を取り付ける請求項7に記載の熱処理装置。
    The mounting portion is connected to one end portion of the rectifying portion, and a locking portion whose length from the central axis of the rectifying portion is longer than the radius of the first opening;
    An engagement portion provided at the second connection portion and engaged with the locking portion,
    The heat processing apparatus of Claim 7 which attaches the said rectification | straightening part by connecting the said 2nd connection part and the said shielding board in the state in which the said latching | locking part is engaging with the said engaging part.
  9.  前記第1の開口部は、前記第2の開口部に同軸状に対向し、
     前記整流部の他方の端部は、該整流部が前記空間形成部に取り付けられている状態で、前記第2の開口部の第2の開口に進入している請求項7に記載の熱処理装置。
    The first opening is coaxially opposed to the second opening,
    The heat treatment apparatus according to claim 7, wherein the other end portion of the rectifying unit enters the second opening of the second opening portion in a state where the rectifying unit is attached to the space forming unit. .
PCT/JP2017/005532 2016-02-17 2017-02-15 Heat treatment apparatus WO2017141967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016027605 2016-02-17
JP2016-027605 2016-02-17

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201780005594.7A CN108700392A (en) 2016-02-17 2017-02-15 Annealing device
JP2018500157A JP6699718B2 (en) 2016-02-17 2017-02-15 Heat treatment equipment
CA3012816A CA3012816C (en) 2016-02-17 2017-02-15 Heat treatment apparatus
EP17753223.1A EP3418666A4 (en) 2016-02-17 2017-02-15 Heat treatment apparatus
US16/034,773 US20180320994A1 (en) 2016-02-17 2018-07-13 Heat treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/034,773 Continuation US20180320994A1 (en) 2016-02-17 2018-07-13 Heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2017141967A1 true WO2017141967A1 (en) 2017-08-24

Family

ID=59626135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005532 WO2017141967A1 (en) 2016-02-17 2017-02-15 Heat treatment apparatus

Country Status (6)

Country Link
US (1) US20180320994A1 (en)
EP (1) EP3418666A4 (en)
JP (2) JP6699718B2 (en)
CN (1) CN108700392A (en)
CA (1) CA3012816C (en)
WO (1) WO2017141967A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207506B (en) * 2019-06-19 2020-08-11 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Heat exchanger suitable for multi-pressure-resistant-shell underwater equipment and using method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216749A (en) 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2012172534A (en) * 2011-02-17 2012-09-10 Tokyo Roki Co Ltd Egr cooler
JP2013188640A (en) * 2012-03-12 2013-09-26 Kobe Steel Ltd Multi-flow passage device
JP2014016083A (en) * 2012-07-09 2014-01-30 Sumitomo Precision Prod Co Ltd Heat exchanger
WO2014152239A2 (en) * 2013-03-15 2014-09-25 Thar Energy Llc Countercurrent heat exchanger/reactor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB413947A (en) * 1933-12-06 1934-07-26 Robert Morton & Company Ltd Improvements in or relating to wort coolers and similar heat exchange apparatus
GB1207919A (en) * 1968-10-29 1970-10-07 Apv Co Ltd Improvements in or relating to plate heat exchangers
US4303124A (en) * 1979-06-04 1981-12-01 The A.P.V. Company Limited Plate heat exchanger
US4287945A (en) * 1979-07-03 1981-09-08 The A.P.V. Company Limited Plate heat exchanger
JPH04155194A (en) * 1990-10-17 1992-05-28 Nippondenso Co Ltd Heat exchanger
JPH04371798A (en) * 1991-06-21 1992-12-24 Hitachi Ltd Heat exchanger
CA2461523A1 (en) * 2001-10-25 2003-05-01 Showa Denko K.K. Heat exchanger, method for fluorination of the heat exchanger or component members thereof, and method of manufacturing the heat exchanger
JP2003314984A (en) * 2002-02-19 2003-11-06 Calsonic Kansei Corp Stacked heat exchanger
US7000689B2 (en) * 2002-03-05 2006-02-21 Apv North America, Inc. Fluid connectors for heat exchangers
JP5946991B2 (en) * 2007-11-14 2016-07-06 スウェップ インターナショナル アクティエボラーグ Distribution pipe
ES2585594T3 (en) * 2011-09-22 2016-10-06 Alfa Laval Corporate Ab A plate evaporator of the falling film type and a plate evaporator apparatus having such a plate evaporator arranged in a housing
CN102679772B (en) * 2012-06-15 2014-03-26 张家港市江南锅炉压力容器有限公司 Tube plate type heat exchanger
CN203231512U (en) * 2013-03-26 2013-10-09 中南大学 Flat plate total heat exchange core for fresh air ventilator
DE102015010289A1 (en) * 2015-08-08 2017-02-09 Modine Manufacturing Company Plate heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216749A (en) 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2012172534A (en) * 2011-02-17 2012-09-10 Tokyo Roki Co Ltd Egr cooler
JP2013188640A (en) * 2012-03-12 2013-09-26 Kobe Steel Ltd Multi-flow passage device
JP2014016083A (en) * 2012-07-09 2014-01-30 Sumitomo Precision Prod Co Ltd Heat exchanger
WO2014152239A2 (en) * 2013-03-15 2014-09-25 Thar Energy Llc Countercurrent heat exchanger/reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418666A4 *

Also Published As

Publication number Publication date
JP2020073856A (en) 2020-05-14
JPWO2017141967A1 (en) 2018-10-18
EP3418666A1 (en) 2018-12-26
EP3418666A4 (en) 2019-11-06
CA3012816C (en) 2020-08-18
CA3012816A1 (en) 2017-08-24
CN108700392A (en) 2018-10-23
US20180320994A1 (en) 2018-11-08
JP6699718B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US9403142B2 (en) Microchannel compression reactor assembly
US20170007978A1 (en) Process for making styrene using microchannel process technology
US7520908B2 (en) Highly integrated fuel processor for distributed hydrogen production
US3541729A (en) Compact reactor-boiler combination
CA2554221C (en) Process for conducting an equilibrium limited chemical reaction using microchannel technology
JP5383508B2 (en) Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology
US6719832B2 (en) Hydrogen purification devices, components and fuel processing systems containing the same
US7517373B2 (en) Reformer
JP5731092B2 (en) Microchannel reactor and method using it for converting ethylene to ethylene oxide using microchannel process technology
TW590803B (en) Catalytic reactor
US7063131B2 (en) Perforated fin heat exchangers and catalytic support
KR100716461B1 (en) A chemical reactor and method for gas phase reactant catalytic reactions
CA2781762C (en) Catalytic oxidative dehydrogenation, and microchannel reactors for catalytic oxidative dehydrogenation
US4340501A (en) Fluid flow
US20110300039A1 (en) Integrated Combustion Reactors And Methods Of Conducting Simultaneous Endothermic and Exothermic Reactions
US7462209B2 (en) Reactor for performing a steam reforming reaction and a process to prepare synthesis gas
EP1436078B1 (en) Catalytic reactor
CA2337824C (en) Radial flow reactor
JP2006505387A (en) Catalyst in microchannel apparatus and reaction using the same
KR101826064B1 (en) Process and apparatus for reforming hydrocarbons
JP4616554B2 (en) Catalytic reactor
CA2709887C (en) Tube reactor having an insert for reduced volume outlet head space
US9011781B2 (en) Catalysts having catalytic material applied directly to thermally-grown alumina and catalytic methods using same; improved methods of oxidative dehydrogenation
CN102458638B (en) Multi-stage multi-tube shell-and-tube reactor
KR20040101313A (en) Method and apparatus for minimizing adverse effects of thermal expansion in a heat exchange reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3012816

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753223

Country of ref document: EP

Effective date: 20180917