WO2017138716A1 - Composition for catheter and production method therefor - Google Patents

Composition for catheter and production method therefor Download PDF

Info

Publication number
WO2017138716A1
WO2017138716A1 PCT/KR2017/001138 KR2017001138W WO2017138716A1 WO 2017138716 A1 WO2017138716 A1 WO 2017138716A1 KR 2017001138 W KR2017001138 W KR 2017001138W WO 2017138716 A1 WO2017138716 A1 WO 2017138716A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
poly
carbon nanotube
composition
zno
Prior art date
Application number
PCT/KR2017/001138
Other languages
French (fr)
Korean (ko)
Inventor
김종정
전용한
Original Assignee
주식회사 아폴론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170013674A external-priority patent/KR102152574B1/en
Priority claimed from KR1020170013679A external-priority patent/KR20170094758A/en
Priority claimed from KR1020170013677A external-priority patent/KR102082549B1/en
Application filed by 주식회사 아폴론 filed Critical 주식회사 아폴론
Priority to US16/068,173 priority Critical patent/US20190015560A1/en
Priority to CN201780006276.2A priority patent/CN108463489B/en
Publication of WO2017138716A1 publication Critical patent/WO2017138716A1/en
Priority to HUP1900200A priority patent/HU231404B1/en
Priority to HUP1900198A priority patent/HU231433B1/en
Priority to US16/991,435 priority patent/US20200368399A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L29/126Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0017Catheters; Hollow probes specially adapted for long-term hygiene care, e.g. urethral or indwelling catheters to prevent infections
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/224Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials containing metals, e.g. porphyrins, vitamin B12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0056Catheters; Hollow probes characterised by structural features provided with an antibacterial agent, e.g. by coating, residing in the polymer matrix or releasing an agent out of a reservoir
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a composition for producing a polycatheter to be inserted in vivo.
  • bladder palsy is inevitably accompanied, and treatment for bladder palsy is completely dependent on the patient's prognosis, and the treatment for such patients is to maintain a Foley Catheter in the bladder to drain urine outward. do.
  • the polycatheter bonds the Foley to the distal end of the tubular catheter body, so that the poly is expanded by a fluid flowing from the outside to have a balloon shape, thereby maintaining the catheter in the bladder.
  • the antibiotic or drug is applied to a polycatheter made of silicone to suppress the invasion of bacteria. This is caused by antibiotics initially, but due to the nature of the urinary catheter is inserted into the urinary tract 2-3 days or more biofilm forming will inevitably occur.
  • the conventional Foley catheter is always attracted within the fastening antibiotic antibiotics or substances applied to the surface, resulting in renal failure in about 40% of all patients due to urinary tract infection, stone formation, etc. is the leading cause of death of these patients It became.
  • the composition used to prepare a polycatheter inserted into a human body is a carbon nanotube polymer (CNT polymer) in which carbon nanotubes and zinc oxide (ZnO) are combined with silicon.
  • the carbon nanotube polymer is composed of 1.0 to 2.2 parts by weight based on 100 parts by weight of silicon.
  • the catheter poly composition according to an embodiment of the present invention is used to manufacture a catheter poly bonded to the catheter body so as to be expandable by a fluid flowing from the outside, and carbon nanotubes and zinc oxide (ZnO) are combined.
  • the carbon nanotube polymer (CNT Polymer) is composed of a material blended into silicon, or the carbon nanotube polymer is blended in an amount of 4.0 to 13.2 parts by weight based on 100 parts by weight of silicon.
  • a composite carbon nanotube and zinc oxide (ZnO) are formulated in silicon to form a material in which carbon nanotube polymer (CNT polymer) is blended in silicon.
  • a carbon nanotube and a zinc oxide (ZnO) -coupled carbon nanotube polymer is a material that is blended with silicone to form a catheter body and a catheter poly, a separate antibiotic material It is possible to suppress the formation of a biofilm that is the root of bacterial infection without the application or coating of.
  • the induction of the biopotential effect of the carbon nanotube polymer is maintained on the poly uniformly to have the effect of maintaining the antibacterial by mutating bacteria that are constricted to the poly inactive.
  • the catheter poly according to the present invention does not have side effects such as resistance of antibiotics, and its life is determined according to the electrostatic capacitance of the carbon nanotube polymer and the high thermal conductivity of the carbon nanotube, which leads to a human body.
  • the implantation process minimizes patient rejection, reduces additional replacement costs and increases the cost of infection.
  • FIG. 1 is a perspective view showing the configuration of a Foley catheter according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the cross-sectional configuration of the Foley catheter shown in FIG.
  • 3 to 8 are diagrams showing experimental results of the biofilm formation inhibitory effect of the material constituting the polycatheter and the poly for catheter.
  • 9 is a view showing the results of experiments for explaining the effect of reducing foreign body when inserting the human body of the material constituting the poly catheter and poly for catheter.
  • FIG. 10 is a view for explaining the configuration and operation of the catheter pulley according to an embodiment of the present invention.
  • FIG. 11 is a view showing an embodiment of the configuration of the catheter poly according to the present invention in more detail.
  • FIG. 12 to 16 are cross-sectional views illustrating examples of a cross-sectional configuration of the catheter poly shown in FIG. 11.
  • FIG. 1 is a perspective view showing the configuration of a poly catheter according to an embodiment of the present invention
  • Figure 2 is an example of a cross-sectional configuration of the poly catheter is a cross-sectional view taken along the line BB shown in FIG. .
  • the catheter according to an embodiment of the present invention may be a urethral catheter (Urine catheter) for discharging the urine in the bladder of the patient, the urine inlet and inflatable inflatable poly is installed on one side of the catheter body, the catheter body
  • the centrally located main can be a Foley catheter having a structure in communication with the urine discharge portion located on the other side of the body to discharge the urine in the bladder of the patient.
  • catheter and the catheter poly according to one embodiment of the present invention may be applied to various catheters such as cardiovascular catheter, in addition to the urethral catheter as described above.
  • the catheter includes a catheter body 100, which is a tubular tubular body, and a catheter poly 200 joined to the catheter body 100 to be expandable by a fluid flowing from the outside. Can be.
  • the catheter body 100 may have one end 50 blocked, and the urine passage 110 through which urine moves and the fluid passages 120 and 121 through which the fluid moves may be formed therein, respectively.
  • the urine inlet 11 is formed is connected to the urine passage 110 of the catheter body 100, the fluid outlet 21 may be connected to the fluid passage (120, 121) of the catheter body (100).
  • FIG. 2 a catheter and a catheter poly according to an embodiment of the present invention have been described with an example in which one urine passage 110 and two fluid passages 120 and 121 are formed in the catheter body 100.
  • the present invention is not limited to this.
  • one fluid passage may be formed in the catheter body 100, and a three-way system rather than a two-way catheter as illustrated in FIG. 1.
  • a drug passage (not shown) for injecting drugs separately from the urine passage 110 may be further provided.
  • the fluid passages 120 and 121 as described above are connected to the fluid outlet 21, respectively, so that the fluid flowing from the outside through the fluid inlet 23 opens the fluid passages 120 and 121 and the fluid outlet 21.
  • Through the catheter poly 200 can be delivered to the bonded portion.
  • the fluid may be a gas such as air or a liquid such as saline solution.
  • Catheter poly 200 is made of a material that can be expanded or expanded as the fluid is introduced, it may be bonded to the catheter body 100 while wrapping the fluid outlet 21 formed in the catheter body (100).
  • a polycatheter and a catheter poly according to an embodiment of the present invention having the configuration as described with reference to FIGS. 1 and 2 are made of a material in which a carbon nanotube polymer (CNT polymer) is blended in silicon, and It is possible to inhibit the formation of biofilms which are the root of bacterial infection without the application or coating of antibiotics.
  • CNT polymer carbon nanotube polymer
  • Carbon nanotubes are cylindrical crystals made of carbon atoms, with diameters of 2-20 nm (1 nm is 1 / 1,000,000 m) and lengths of hundreds to thousands of nm.
  • carbon nanotubes one carbon atom is sp2 bonded to three other carbon atoms around it to form a hexagonal honeycomb pattern, and the tube is called a nanotube because its diameter is extremely small, about several nanometers (nanometer, nm).
  • the carbon nanotube polymer (CNT Polymer) is a polymer in which carbon nanotubes (CNT) and zinc oxide (ZnO) are combined, and carbon nanotubes (CNT) and zinc oxide (ZnO) are polymerized in the same ratio, or Zinc oxide (ZnO) may be polymerized at a higher ratio than carbon nanotubes (CNT), and vice versa, if necessary.
  • the catheter body 100 constituting the catheter according to an embodiment of the present invention may be composed of a material blended with 1.0 to 2.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon, but the blending ratio is dependent on the functionality of the catheter It may be variable.
  • the carbon nanotube polymer which is a component of the catheter body 100, has a constant capacitance in response to the potential in the human body inserted into the body, such capacitance is harmless to the human body, but deadly electrostatic effect (Galvanic) to bacteria and biofilms effect to minimize the formation of biofilms, and due to the high thermal conductivity of carbon nanotubes can minimize the rejection of the person in the insertion process.
  • capacitance is harmless to the human body, but deadly electrostatic effect (Galvanic) to bacteria and biofilms effect to minimize the formation of biofilms, and due to the high thermal conductivity of carbon nanotubes can minimize the rejection of the person in the insertion process.
  • the carbon nanotubes may be a multi-walled carbon nanotubes (MWNT), which is a multi-walled carbon nanotubes (MWNT) used in the solid state This is because the company has an advantage in terms of price and is likely to be commercialized in terms of price.
  • MWNT multi-walled carbon nanotubes
  • the polycatheter and the catheter poly according to the embodiment of the present invention are carbon nanotube polymers (CNT polymer) in which carbon nanotubes (CNT) and zinc oxide (ZnO) are combined, as shown in Formula 1 below. It may be made of a material blended with silicone.
  • m, n, and p represent the number of molecules of silicon, zinc oxide (ZnO), and carbon nanotubes (CNT), respectively, m is 50 to 300, n is 7 to 30, and p is 10 to 50. It may have, but the present invention is not limited thereto.
  • the m, n, p may be set differently from each other.
  • carbon nanotubes (CNT) and zinc oxide (ZnO) is a carbon nanotube polymer ( CNT polymer) and silicon may be formed into a tubular tube by extruding a gel-like material blended in a predetermined ratio.
  • the material may be composed of a composite carbon nanotube (CNT) and zinc oxide (ZnO) dispersed in silicon using a chemical vapor deposition method (CVD composite), for example, a pressure of 50,000 Pa and 50 It may be prepared through a dispersion process of about 30 minutes at a temperature condition of °C.
  • CVD composite chemical vapor deposition method
  • a carbon nanotube polymer composed of carbon nanotubes (CNT) and zinc oxide (ZnO) may be uniformly embedded in silicon, and thus the catheter and the catheter poly made of the material may be uniform regardless of the position. It may have antimicrobial activity.
  • 3 to 5 are incubated for 3 days, 5 days, and 7 days, respectively, E. Coli. This is the result of experimenting with the degree of biofilm formation.
  • FIG. 6 is a graph showing the above experimental results for each test material
  • FIG. 7 is a graph showing the above test results according to the incubation time.
  • E. Coli a major bacterium for urinary tract infection, is composed of catheter and catheter poly with a material containing about 2% of zinc oxide (ZnO) in silicon and carbon nanotubes (CNT). It is possible to stably achieve the effect of inhibiting biofilm formation on Escherichia Coli.
  • FIG. 8 is a 7-day incubation of E. Coli. (Escherichia Coli.) In a material having a zinc oxide (ZnO) compounding ratio of 1%, and the results of the experiment were taken with a scanning electron microscope (SEM). .
  • SEM scanning electron microscope
  • the material constituting the catheter and the catheter poly according to an embodiment of the present invention the E. Coli.
  • staphylococcus aureus, pneumococci, Escherichia coli and Pseudomonas aeruginosa have a reduction rate of 99.9% or more bacteriostatic.
  • the catheter and the catheter poly configured as described above, it is possible to minimize the patient's rejection during the human insertion process due to the high thermal conductivity of the carbon nanotubes.
  • Figure 9 shows the experimental results for explaining the effect of reducing foreign body when inserting the material consisting of the poly catheter and the catheter poly for the human body
  • Figure 9 (a) is a thermal conduction of the catheter consisting of silicon not mixed carbon nanotubes
  • 9 (b) is a thermal conductivity picture of a catheter composed of silicon in which carbon nanotubes are embedded.
  • FIGS. 1 to 9 are views for explaining the configuration and operation of the catheter poly according to an embodiment of the present invention, the description of the same as described with reference to FIGS. 1 to 9 of the illustrated configuration will be omitted below do.
  • the urine inlet 11 and the catheter poly 200 are formed in the catheter body 100 so as to be adjacent to one end 50 inserted into the bladder among the poly catheter.
  • the catheter poly 200 may have a balloon shape when the fluid (eg, air or saline) is introduced from the fluid inlet 23 installed at the other side of the catheter.
  • the fluid eg, air or saline
  • the fluid may be introduced by injecting a fluid in advance into a syringe or the like, inserting a syringe needle into the inlet hole 22, which is the end of the fluid inlet 23, and compressing the syringe.
  • the catheter poly 200 formed to be adjacent to the one end 50 of the catheter body 100 is inserted into the bladder, the fluid inlets 23 through the fluid passages 120 and 121 and the fluid outlet 21. As the fluid flows into the catheter poly 200, the catheter poly 200 swells into a balloon shape and spans the bladder neck 60 to fix the catheter in the bladder.
  • a urine passage 110 connected to the urine inlet 11 is formed at the center of the cross section of the catheter body 100, and a urine discharge portion 13 is formed at the end of the urine passage 110.
  • the urine generated in the urethra flows into the urine passage 110 through the urine inlet 11 located in the urethra, and then the discharge hole 12 which is the end of the urine discharge part 13 located outside the urethra. Can be discharged through.
  • FIG. 11 illustrates an embodiment of the catheter poly according to the present invention in more detail. An enlarged portion of the poly catheter illustrated in FIGS. 1 and 11 is joined to the catheter poly 200. will be.
  • bonding surfaces 210 and 211 for joining the catheter body 100 are formed at both ends of the catheter poly 200, and the catheter poly 200 is provided on the catheter body 100. Bonding surfaces 210 and 211 may be adhered to the catheter body 100 using an adhesive in the process of forming the die.
  • a carbon nanotube polymer containing carbon nanotubes and zinc oxide (ZnO) bonded to the silicon is extruded into a tubular tube to produce a catheter body 100.
  • carbon nanotubes and zinc oxide is a carbon nanotube polymer (CNT Polymer) is bonded to the silicon material is extruded or injected into a tubular tube to produce a catheter poly (200).
  • the blending ratio of carbon nanotubes, zinc oxide (ZnO) or carbon nanotube polymer of the material for producing the catheter body 100, carbon nanotubes, zinc oxide of the material for producing the poly 200 for the catheter may be different.
  • the catheter poly 200 when the catheter poly 200 is expanded by a fluid flowing from the outside, the surface area is increased, and thus, the distribution of carbon nanotube polymer per unit area is decreased, thereby decreasing the antibacterial activity.
  • the catheter poly 200 when the catheter poly 200 is expanded and the antimicrobial activity is reduced, even if the formation of the biofilm in the catheter body 100 is suppressed, the biofilm may be formed in the catheter poly 200 having the antimicrobial power to cause bacterial infection. have.
  • the carbon nanotube polymer blending ratio of the catheter poly 200 is preferably higher than the carbon nanotube polymer blending ratio of the catheter body 100, and thus, the catheter poly 200 may be Even if expanded, the distribution of the carbon nanotube polymer per unit area has the same or similar range as that of the catheter body 100, thereby maintaining a uniform antimicrobial force regardless of the location of the polycatheter.
  • the catheter body 100 is composed of 1.0 to 2.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon.
  • the catheter poly 200 may be made of a material blended with 4.0 to 13.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon in proportion to the increase in surface area.
  • the values of n and m in Chemical Formula 1 may be increased in proportion to the amount of surface area increase when the catheter poly 200 is expanded.
  • a polycatheter may be manufactured by forming a tip provided with an inlet 11.
  • the method of manufacturing a polycatheter and a method of forming a poly for catheter according to an embodiment of the present invention may further include additional steps such as a drying step, in addition to the steps described above, a separate step for the additional configuration to be described below May be added further.
  • FIG. 12 is a cross-sectional view taken along line CC of FIG. 11, wherein the catheter poly 100 is provided with a catheter body 100 provided with a urine passage 110 and fluid passages 120 and 121.
  • the catheter poly 200 when the catheter poly 200 is manufactured using a material having a higher carbon nanotube polymer blending ratio than the catheter body 100, the catheter body 100 and the catheter poly 100 shown in FIG. 12. The current may flow until there is no potential difference between the 200.
  • ZnO zinc oxide
  • an insulating layer 900 is provided between the catheter body 100 and the catheter poly 200 as shown in FIG. 13. Can be formed.
  • the insulating layer 900 may be formed of a gas such as an air layer or a sterile gas layer (eg, EO gas) or a carbon nanotube coating layer having a high concentration.
  • a gas such as an air layer or a sterile gas layer (eg, EO gas) or a carbon nanotube coating layer having a high concentration.
  • the potential difference according to the difference in the carbon nanotube polymer blending ratio can be maintained, thereby the poly for catheter Even when the 200 is expanded, the antimicrobial force may be maintained in the same or similar range as the catheter body 100.
  • the catheter body 100 and the catheter poly are formed so that the insulating layer 900 is formed between the catheter body 100 and the catheter poly 200.
  • the air layer is injected between the 200 or the step of EO gas treatment or high concentration carbon nanotube coating treatment on the outer surface of the catheter body 100 may be added.
  • FIG. 14 is a cross-sectional view taken along the line D-D shown in FIG. 11, and illustrates a cross-sectional structure of a portion of the bonding surface 210 to which the catheter poly 200 is bonded to the catheter body 100.
  • an insulating film 1000 may be formed on the bonding surface 210 to which the catheter poly 200 is bonded to the catheter body 100.
  • the bonding surface 210 of the catheter poly 200 to the catheter body 100 has conductivity, the bonding surface 210 is caused by a potential difference depending on the difference in the carbon nanotube polymer blending ratio. Since the current may flow from the catheter poly 200 to the catheter body 100 through), it is to block the flow of current using the insulating film 1000.
  • the insulating film 1000 is a carbon nanotube insulating film, and may be formed by coating a high concentration of carbon nanotubes on the bonding surface 210, and naturally increases due to an increase in surface area when the poly 200 for catheter is expanded. It may be dismantled.
  • the insulating film 1000 as shown in FIG. 14 is preferably applied to a cardiovascular catheter.
  • FIG. 15 is a cross-sectional view taken along the line E-E shown in FIG. 11 and shows a cross-sectional structure of a portion where the fluid outlet 21 is formed.
  • fluid outlets 21a and 21b may be formed at positions corresponding to the two fluid passages 120 and 121 formed in the catheter body 100, respectively.
  • the fluid introduced from the outside moves through the fluid passages 120 and 121 of the catheter body 100, and then flows out through the fluid outlets 21a and 21b to the catheter poly 200 for the catheter.
  • the poly 200 is inflated by the pressure of the fluid.
  • FIG. 16 is a cross-sectional view illustrating the expanded state of the catheter poly 200.
  • the carbon nanotube polymer blending ratio of the catheter poly 200 is greater than the carbon nanotube polymer blending ratio of the catheter body 100 so as to be proportional to the increase in the surface area during expansion as described above.
  • the capacitance of the catheter poly 200 may be maintained the same or similar to the catheter body 100 so that the antimicrobial force of the catheter is uniform.
  • the steps according to the manufacturing method may be added or reduced according to the type or function of the catheter or the catheter poly according to the present invention.

Abstract

The present invention relates to a composition for use in producing a Foley catheter which is inserted into a human body, and a production method therefor. The composition for a Foley catheter is formed of a material in which a carbon nanotube polymer (CNT polymer), in which carbon nanotubes are combined with zinc oxides (ZnO), is mixed with silicone, wherein the carbon nanotube polymer is mixed in the amount of 1.0 to 2.2 parts by weight per 100 parts by weight of silicone.

Description

카테터용 조성물 및 그의 제조 방법Catheter composition and its manufacturing method
본 발명은 생체 내에 삽입되는 폴리 카테터를 제조하기 위한 조성물에 관한 것이다.The present invention relates to a composition for producing a polycatheter to be inserted in vivo.
일반적으로 뇌졸증과 같은 대뇌질환이나 척추손상 등에 의해 일어나는 전신 또는 하반신 마비환자는 고령인구의 증가와 교통사고 또는 산업재해의 급증 등의 원인에 의해 해마다 증가되고 있는 실정이다.In general, patients with general or lower paraplegia caused by cerebral diseases such as stroke or spinal cord injury are increasing year by year due to an increase in elderly population, traffic accidents, or industrial accidents.
위와 같은 환자에서 필연적으로 방광 마비가 동반되는데, 방광마비에 대한 치료는 환자의 예후에 전적으로 좌우하게 되며, 이러한 환자에 대한 치료법으로 폴리 카테터(Foley Catheter)를 방광 내에 유지시켜 소변을 외부로 배출하게 된다.In the above patients, bladder palsy is inevitably accompanied, and treatment for bladder palsy is completely dependent on the patient's prognosis, and the treatment for such patients is to maintain a Foley Catheter in the bladder to drain urine outward. do.
폴리 카테터는 튜브형 카테터 본체의 말단 부분에 폴리(Foley)를 접합시켜, 외부로부터 유입되는 유체에 의해 폴리가 팽창되어 풍선(Ballon) 형상을 가지도록 함으로써, 카테터가 방광내에 유지되도록 한다.The polycatheter bonds the Foley to the distal end of the tubular catheter body, so that the poly is expanded by a fluid flowing from the outside to have a balloon shape, thereby maintaining the catheter in the bladder.
종래의 항생 카테터의 경우, 실리콘 재질의 폴리 카테터에 항생 약품 또는 물질을 도포하여 세균의 침입을 억제하여 왔다. 이는 초기에 항생제로 인해 항생효과가 발생하나, 도뇨관의 특성상 요로에 2~3일 이상을 삽관하고 있어 생물막 생성(biofilm forming)이 필연적으로 발생하게 된다. In the case of the conventional antibiotic catheter, the antibiotic or drug is applied to a polycatheter made of silicone to suppress the invasion of bacteria. This is caused by antibiotics initially, but due to the nature of the urinary catheter is inserted into the urinary tract 2-3 days or more biofilm forming will inevitably occur.
이와 같은 생물막의 생성으로 인해 폴리 카테터의 항생 효과가 떨어지거나 사라져, 요로감염과 같은 합병증이 발생하게 되며, 이를 위한 처치가 수반되어 입원기간이 길어지는 문제점이 있다.Due to the generation of such a biofilm, the antibiotic effect of Foley catheter is reduced or disappeared, complications such as urinary tract infection occurs, there is a problem that the hospitalization period is lengthened with the treatment for this.
또한, 종래의 폴리 카테터는 표면에 도포한 항생 약품 또는 물질이 항시 체결 내에 유치되기 때문에 이로 인한 요로감염, 결석형성 등으로 전체환자의 약40%에서 신부전이 초래되어 이러한 환자의 가장 큰 사망원인이 되었다. In addition, the conventional Foley catheter is always attracted within the fastening antibiotic antibiotics or substances applied to the surface, resulting in renal failure in about 40% of all patients due to urinary tract infection, stone formation, etc. is the leading cause of death of these patients It became.
한편, 위와 같은 항생 카테터의 문제점을 해결하고자 카테터에 금, 은 또는 은나노 등과 같은 항균 물질을 코팅한 제품들이 있으나, 일정 기간이상 사용하는 경우 코팅된 항균 물질이 박리되어 항균성이 감소되는 문제가 있었다.On the other hand, there are products coated with an antimicrobial material such as gold, silver or silver nano to the catheter to solve the problems of the antibiotic catheter, there was a problem that the coated antimicrobial material is peeled off to reduce the antimicrobial when used for a certain period.
상기한 종래 기술의 문제점 및 과제에 대한 인식은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이 아니므로 이러한 인식을 기반으로 선행기술들과 대비한 본 발명의 진보성을 판단하여서는 아니 됨을 밝혀둔다.Recognition of the problems and problems of the prior art described above is not obvious to those of ordinary skill in the art of the present invention and should not judge the progress of the present invention compared to the prior art based on such recognition. Reveal.
본 발명은 향상된 향균성을 가지며 장기간의 사용에도 향균성이 유지될 수 있도록 하는 폴리 카테터를 제조하기 위한 조성물 및 그의 제조 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a composition for producing a polycatheter which has improved antimicrobial properties and is able to maintain antimicrobial properties even in prolonged use and a process for the preparation thereof.
본 발명의 일실시예에 따른 인체 내에 삽입되는 폴리 카테터를 제조하기 위해 사용되는 조성물은, 탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 구성되며, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 1.0 내지 2.2 중량부로 배합된다.The composition used to prepare a polycatheter inserted into a human body according to an embodiment of the present invention is a carbon nanotube polymer (CNT polymer) in which carbon nanotubes and zinc oxide (ZnO) are combined with silicon. The carbon nanotube polymer is composed of 1.0 to 2.2 parts by weight based on 100 parts by weight of silicon.
본 발명의 일실시예에 따른 카테터 폴리용 조성물은, 외부로부터 유입되는 유체에 의해 팽창 가능하도록 카테터 본체에 접합되는 카테터용 폴리를 제조하기 위해 사용되며, 탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 구성되거, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 4.0 내지 13.2 중량부로 배합된다.The catheter poly composition according to an embodiment of the present invention is used to manufacture a catheter poly bonded to the catheter body so as to be expandable by a fluid flowing from the outside, and carbon nanotubes and zinc oxide (ZnO) are combined. The carbon nanotube polymer (CNT Polymer) is composed of a material blended into silicon, or the carbon nanotube polymer is blended in an amount of 4.0 to 13.2 parts by weight based on 100 parts by weight of silicon.
본 발명의 일실시예에 따른 폴리 카테터용 조성물 제조 방법은, 분산된 탄소나노튜브와 징크옥사이드(ZnO)를 실리콘에 복합 처방하여 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재를 구성한다.In the method for preparing a composition for polycatheter according to an embodiment of the present invention, a composite carbon nanotube and zinc oxide (ZnO) are formulated in silicon to form a material in which carbon nanotube polymer (CNT polymer) is blended in silicon. .
본 발명의 일실시예에 따르면, 탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 카테터 본체와 카테터용 폴리를 구성함으로써, 별도의 항생 물질의 도포 또는 코팅 없이 세균 감염의 근윈인 생물막의 형성을 억제할 수 있다.According to an embodiment of the present invention, a carbon nanotube and a zinc oxide (ZnO) -coupled carbon nanotube polymer (CNT Polymer) is a material that is blended with silicone to form a catheter body and a catheter poly, a separate antibiotic material It is possible to suppress the formation of a biofilm that is the root of bacterial infection without the application or coating of.
또한, 탄소나노튜브 중합체가 가진 생체전위효과 유도를 폴리에 균일하게 유지하여 폴리에 협착하는 세균을 무활동성으로 변이시켜 항세균성을 유지할 수 있는 효과를 지니고 있다.In addition, the induction of the biopotential effect of the carbon nanotube polymer is maintained on the poly uniformly to have the effect of maintaining the antibacterial by mutating bacteria that are constricted to the poly inactive.
또한, 본 발명에 따른 카테터용 폴리는 항생물질의 내성과 같은 부작용이 없고, 탄소나노튜브 중합체가 가지고 있는 정전량에 따라 그 수명이 정해지는 특성과 탄소나노튜브의 특성인 높은 열전도로 인하여, 인체 삽입 과정에서 환자의 거부감을 최소화 하고 추가적인 교체 비용의 절감과 감염에 따른 의료비용증가를 막아주는 효과를 가지고 있다.In addition, the catheter poly according to the present invention does not have side effects such as resistance of antibiotics, and its life is determined according to the electrostatic capacitance of the carbon nanotube polymer and the high thermal conductivity of the carbon nanotube, which leads to a human body. The implantation process minimizes patient rejection, reduces additional replacement costs and increases the cost of infection.
상기한 본 발명의 효과는 본 발명에 따른 다양한 효과 중 하나일 뿐이며, 본 발명은 실시예 적용방식에 따라 다양한 형태로 실현될 수 있다.The effects of the present invention described above are only one of various effects according to the present invention, and the present invention can be realized in various forms according to the application method of the embodiments.
도 1은 본 발명의 일실시예에 따른 폴리 카테터의 구성을 나타내는 사시도이다.1 is a perspective view showing the configuration of a Foley catheter according to an embodiment of the present invention.
도 2는 도 1에 도시된 폴리 카테터의 단면 구성에 대한 일예를 나타내는 단면도이다.2 is a cross-sectional view showing an example of the cross-sectional configuration of the Foley catheter shown in FIG.
도 3 내지 도 8은 폴리 카테터와 카테터용 폴리를 구성하는 소재의 생물막 형성 억제 효과에 대한 실험 결과들을 나타내는 도면들이다.3 to 8 are diagrams showing experimental results of the biofilm formation inhibitory effect of the material constituting the polycatheter and the poly for catheter.
도 9는 폴리 카테터와 카테터용 폴리를 구성하는 소재의 인체 삽입시 이물감 감소 효과를 설명하기 위한 실험 결과를 나타내는 도면이다.9 is a view showing the results of experiments for explaining the effect of reducing foreign body when inserting the human body of the material constituting the poly catheter and poly for catheter.
도 10은 본 발명의 일실시예에 따른 카테터용 폴리의 구성 및 동작을 설명하기 위한 도면이다.10 is a view for explaining the configuration and operation of the catheter pulley according to an embodiment of the present invention.
도 11은 본 발명에 따른 카테터용 폴리의 구성에 대한 일실시예를 보다 상세히 나타내는 도면이다.11 is a view showing an embodiment of the configuration of the catheter poly according to the present invention in more detail.
도 12 내지 도 16은 도 11에 도시된 카테터용 폴리의 단면 구성에 대한 예들을 나타내는 단면도들이다.12 to 16 are cross-sectional views illustrating examples of a cross-sectional configuration of the catheter poly shown in FIG. 11.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예에 따른 폴리 카테터, 카테터용 폴리 및 그들의 제조 또는 형성 방법들에 관하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to a poly catheter, a catheter poly and their manufacturing or forming method according to an embodiment of the present invention.
본 발명의 상술한 목적, 특징들 및 장점은 첨부된 도면과 관련된 다음의 상세한 설명을 통하여 보다 분명해질 것이다. 이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 상세히 설명한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.The above objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like numbers refer to like elements throughout. In addition, when it is determined that the detailed description of the known function or configuration related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일실시예에 따른 폴리 카테터의 구성을 사시도로 도시한 것이며, 도 2는 폴리 카테터의 단면 구성에 대한 일예를 도시한 것으로 도 1에 도시된 B-B선에 따른 횡단면도를 나타낸 것이다.1 is a perspective view showing the configuration of a poly catheter according to an embodiment of the present invention, Figure 2 is an example of a cross-sectional configuration of the poly catheter is a cross-sectional view taken along the line BB shown in FIG. .
본 발명의 일실시예에 따른 카테터는 환자의 방광 내의 소변을 배출하기 위한 요도 카테터(Urine catheter)일 수 있으며, 카테터 본체의 일측에 소변유입구와 풍선 형태의 팽창 가능한 폴리가 설치되고, 카테터 본체의 중심에 위치한 주관이 본체의 타측에 위치한 소변배출부와 연통되어 환자의 방광 내의 소변을 배출하는 구조를 갖는 폴리(Foley) 카테터일 수 있다.The catheter according to an embodiment of the present invention may be a urethral catheter (Urine catheter) for discharging the urine in the bladder of the patient, the urine inlet and inflatable inflatable poly is installed on one side of the catheter body, the catheter body The centrally located main can be a Foley catheter having a structure in communication with the urine discharge portion located on the other side of the body to discharge the urine in the bladder of the patient.
다만, 본 발명의 일실시예에 따른 카테터 및 카테터용 폴리는 상기한 바와 같은 요도 카테터 이외에, 심혈관 카테터 등 다양한 카테터에 적용될 수도 있다.However, the catheter and the catheter poly according to one embodiment of the present invention may be applied to various catheters such as cardiovascular catheter, in addition to the urethral catheter as described above.
도 1 및 도 2를 참조하면, 폴리 카테터는 튜브형 관체인 카테터 본체(100)와, 외부로부터 유입되는 유체에 의해 팽창 가능하도록 카테터 본체(100)에 접합되는 카테터용 폴리(200)를 포함하여 구성될 수 있다.1 and 2, the catheter includes a catheter body 100, which is a tubular tubular body, and a catheter poly 200 joined to the catheter body 100 to be expandable by a fluid flowing from the outside. Can be.
보다 구체적으로, 카테터 본체(100)는 일단(50)이 막혀 있고, 소변이 이동하는 소변통로(110)와 유체가 이동하는 유체통로(120, 121)가 내부에 각각 형성되어 있을 수 있다.More specifically, the catheter body 100 may have one end 50 blocked, and the urine passage 110 through which urine moves and the fluid passages 120 and 121 through which the fluid moves may be formed therein, respectively.
또한, 소변유입구(11)는 카테터 본체(100)의 소변통로(110)와 연결되어 형성되며, 유체유출구(21)는 카테터 본체(100)의 유체통로(120, 121)와 연결될 수 있다.In addition, the urine inlet 11 is formed is connected to the urine passage 110 of the catheter body 100, the fluid outlet 21 may be connected to the fluid passage (120, 121) of the catheter body (100).
도 2에서는, 카테터 본체(100)에 하나의 소변통로(110)와 두 개의 유체통로들(120, 121)이 형성된 것을 예로 들어 본 발명의 일실시예에 따른 카테터 및 카테터용 폴리를 설명하였으나, 본 발명은 이에 한정되지 아니한다.In FIG. 2, a catheter and a catheter poly according to an embodiment of the present invention have been described with an example in which one urine passage 110 and two fluid passages 120 and 121 are formed in the catheter body 100. The present invention is not limited to this.
예를 들어, 카테터 본체(100)에 하나의 유체통로가 형성되어 있을 수도 있으며, 도 1에 도시된 바와 같은 투 웨이(Two-Way) 방식의 카테터가 아닌 쓰리 웨이(Three-Way)의 방식의 카테터의 경우 소변통로(110)와는 별도로 약품이 투입되기 위한 약품통로(미도시)가 추가로 구비될 수 있다.For example, one fluid passage may be formed in the catheter body 100, and a three-way system rather than a two-way catheter as illustrated in FIG. 1. In the case of a catheter, a drug passage (not shown) for injecting drugs separately from the urine passage 110 may be further provided.
상기한 바와 같은 유체통로(120, 121)는 각각 유체유출구(21)와 연결되어, 유체유입부(23)를 통해 외부로부터 유입되는 유체가 유체통로(120, 121) 및 유체유출구(21)를 통해 카테터용 폴리(200)가 접합된 부분까지 전달되도록 할 수 있다.The fluid passages 120 and 121 as described above are connected to the fluid outlet 21, respectively, so that the fluid flowing from the outside through the fluid inlet 23 opens the fluid passages 120 and 121 and the fluid outlet 21. Through the catheter poly 200 can be delivered to the bonded portion.
여기서, 상기 유체는 공기 등과 같은 기체이거나 또는 식염수 등과 같은 액체일 수 있다.Here, the fluid may be a gas such as air or a liquid such as saline solution.
카테터용 폴리(200)는 유체가 유입됨에 따라 신축 또는 팽창이 가능한 소재로 구성되며, 카테터 본체(100)에 형성된 유체유출구(21)를 감싸면서 카테터 본체(100)에 접합될 수 있다. Catheter poly 200 is made of a material that can be expanded or expanded as the fluid is introduced, it may be bonded to the catheter body 100 while wrapping the fluid outlet 21 formed in the catheter body (100).
도 1 및 도 2를 참조하여 설명한 바와 같은 구성을 가지는 본 발명의 일실시예에 따른 폴리 카테터 및 카테터용 폴리는, 실리콘에 탄소나노튜브 중합체(CNT Polymer)가 배합된 소재로 구성되어, 별도의 항생 물질의 도포 또는 코팅 없이 세균 감염의 근윈인 생물막의 형성을 억제할 수 있다.A polycatheter and a catheter poly according to an embodiment of the present invention having the configuration as described with reference to FIGS. 1 and 2 are made of a material in which a carbon nanotube polymer (CNT polymer) is blended in silicon, and It is possible to inhibit the formation of biofilms which are the root of bacterial infection without the application or coating of antibiotics.
탄소나노튜브(carbon nanotube, CNT)는 탄소원자가 만드는 원통형의 결정으로 직경 2~20nm(1nm는 1/1,000,000m), 길이는 수백~수천nm로 이루어진다. 탄소나노튜브에서 탄소원자 하나는 주위에 다른 탄소원자 3개와 sp2결합을 하여 육각형 벌집무늬를 형성하며, 이 튜브의 직경이 대략 수 나노미터(nanometer, nm) 정도로 극히 작기 때문에 나노튜브라고 부르게 되었다.Carbon nanotubes (CNTs) are cylindrical crystals made of carbon atoms, with diameters of 2-20 nm (1 nm is 1 / 1,000,000 m) and lengths of hundreds to thousands of nm. In carbon nanotubes, one carbon atom is sp2 bonded to three other carbon atoms around it to form a hexagonal honeycomb pattern, and the tube is called a nanotube because its diameter is extremely small, about several nanometers (nanometer, nm).
또한, 탄소나노튜브 중합체(CNT Polymer)는 탄소나노튜브(CNT)와 징크옥사이드(ZnO)가 결합된 중합체이며, 탄소나노튜브(CNT)와 징크옥사이드(ZnO)가 서로 동일한 비율로 중합되거나, 또는 징크옥사이드(ZnO)가 탄소나노튜브(CNT) 보다 높은 비율로 중합될 수 있으며, 필요에 따라 그 반대의 경우도 가능할 수 있다.In addition, the carbon nanotube polymer (CNT Polymer) is a polymer in which carbon nanotubes (CNT) and zinc oxide (ZnO) are combined, and carbon nanotubes (CNT) and zinc oxide (ZnO) are polymerized in the same ratio, or Zinc oxide (ZnO) may be polymerized at a higher ratio than carbon nanotubes (CNT), and vice versa, if necessary.
본 발명의 일실시예에 따른 카테터를 구성하는 카테터 본체(100)는 실리콘 100 중량부 대비 탄소나노튜브 중합체 1.0 내지 2.2 중량부로 배합된 소재로 구성될 수 있으나, 상기 배합비율은 카테터의 기능성에 따라 변동 가능할 수 있다.The catheter body 100 constituting the catheter according to an embodiment of the present invention may be composed of a material blended with 1.0 to 2.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon, but the blending ratio is dependent on the functionality of the catheter It may be variable.
본 발명에 따르면, 카테터 본체(100)의 구성물인 탄소나노튜브 중합체는 삽관된 인체 내 전위에 반응하여 일정한 정전용량을 가지게 됨으로써, 이러한 정전용량은 인체에는 무해하나 세균과 생물막에는 치명적인 정전효과(Galvanic effect)를 가지게 되어 생물막 형성을 최소화 할 수 있도록 하며, 탄소나노튜브의 특성인 높은 Thermal Conductivity로 인하여 인체 삽입 과정에서 해당자의 거부감을 최소화할 수 있다.According to the present invention, the carbon nanotube polymer, which is a component of the catheter body 100, has a constant capacitance in response to the potential in the human body inserted into the body, such capacitance is harmless to the human body, but deadly electrostatic effect (Galvanic) to bacteria and biofilms effect to minimize the formation of biofilms, and due to the high thermal conductivity of carbon nanotubes can minimize the rejection of the person in the insertion process.
또한, 기존 항생 물질을 도포 또는 코팅한 카테터의 경우 생물막 형성과 세균 감염으로 인해 1주 이상 사용이 불가하나, 본 발명에 따른 폴리 카테터는 상기한 바와 같은 효과를 가지는 탄소나노튜브 중합체(CNT ploymer)가 실리콘에 내첨됨에 따라 최소 4~5주의 사용연한을 가지게 될 수 있다.In addition, in the case of a catheter coated or coated with an existing antibiotic, it is impossible to use the catheter for one week or more due to biofilm formation and bacterial infection. May have a minimum life of 4 to 5 weeks as it is embedded in the silicone.
본 발명의 일실시예에 따르면, 상기 탄소나노튜브(CNT)는 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube, MWNT)일 수 있으며, 이는 다중벽 탄소나노튜브(MWNT)가 고체 상태에서의 사용에 장점이 있으며 가격 측면에서 상용화 가능성이 높기 때문이다.According to one embodiment of the invention, the carbon nanotubes (CNT) may be a multi-walled carbon nanotubes (MWNT), which is a multi-walled carbon nanotubes (MWNT) used in the solid state This is because the company has an advantage in terms of price and is likely to be commercialized in terms of price.
상기한 바와 같이 본 발명의 일실시예에 따른 폴리 카테터와 카테터용 폴리는 각각 아래의 화학식 1과 같이 탄소나노튜브(CNT)와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 구성될 수 있다.As described above, the polycatheter and the catheter poly according to the embodiment of the present invention are carbon nanotube polymers (CNT polymer) in which carbon nanotubes (CNT) and zinc oxide (ZnO) are combined, as shown in Formula 1 below. It may be made of a material blended with silicone.
Figure PCTKR2017001138-appb-C000001
Figure PCTKR2017001138-appb-C000001
상기 화학식 1에서 m, n, p는 실리콘, 징크옥사이드(ZnO), 탄소나노튜브(CNT)의 분자수를 각각 나타내는 것으로, m은 50 내지 300, n은 7 내지 30, p는 10 내지 50의 범위를 가질 수 있으나, 본 발명은 이에 한정하지 않는다.In Formula 1, m, n, and p represent the number of molecules of silicon, zinc oxide (ZnO), and carbon nanotubes (CNT), respectively, m is 50 to 300, n is 7 to 30, and p is 10 to 50. It may have, but the present invention is not limited thereto.
한편, 카테터와 카테터용 폴리에 있어서, 상기 m, n, p는 서로 상이하게 설정될 수 있다.On the other hand, in the catheter and the catheter poly, the m, n, p may be set differently from each other.
또한, 본 발명의 일실시예에 따른 카테터를 구성하기 위한 카테터 본체(100)와 카테터용 폴리(200)는 각각, 탄소나노튜브(CNT)와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)와 실리콘이 일정 비율로 배합된 젤상의 소재를 압출하여 튜브형의 관체로 형성된 것일 수 있다.In addition, the catheter body 100 and the catheter poly 200 for constituting the catheter according to the embodiment of the present invention, respectively, carbon nanotubes (CNT) and zinc oxide (ZnO) is a carbon nanotube polymer ( CNT polymer) and silicon may be formed into a tubular tube by extruding a gel-like material blended in a predetermined ratio.
여기서, 상기 소재는 화학기상증착법(CVD composite)을 이용하여 분산된 탄소나노튜브(CNT)와 징크옥사이드(ZnO)를 실리콘에 복합 처방하여 구성될 수 있으며, 예를 들어, 1,000,000 Pa의 압력 및 50℃의 온도 조건에서 약 30분의 분산공정을 통해 제조될 수 있다.Here, the material may be composed of a composite carbon nanotube (CNT) and zinc oxide (ZnO) dispersed in silicon using a chemical vapor deposition method (CVD composite), for example, a pressure of 50,000 Pa and 50 It may be prepared through a dispersion process of about 30 minutes at a temperature condition of ℃.
그에 따라, 탄소나노튜브(CNT)와 징크옥사이드(ZnO)로 이루어진 탄소나노튜브 중합체가 실리콘에 균일하에 내첨될 수 있으며, 그에 따라 해당 소재로 제조된 카테터 및 카테터용 폴리는 위치에 관계없이 균일한 항균력을 가질 수 있다.Accordingly, a carbon nanotube polymer composed of carbon nanotubes (CNT) and zinc oxide (ZnO) may be uniformly embedded in silicon, and thus the catheter and the catheter poly made of the material may be uniform regardless of the position. It may have antimicrobial activity.
이하, 도 3 내지 도 8을 참조하여 본 발명의 일실시예에 따른 폴리 카테터와 카테터용 폴리를 구성하는 소재의 생물막 형성 억제 효과에 대해 설명하기로 한다.Hereinafter, with reference to FIGS. 3 to 8, the biofilm formation suppression effect of the material constituting the polycatheter and the catheter poly according to an embodiment of the present invention will be described.
도 3 내지 도 5는 상기한 바와 같은 소재로 구성된 카테터 절편에 요로감염 주요 균인 E. Coli.(Escherichia Coli.)을 각각 3일, 5일, 7일 동안 배양시킨 후, CV(Crystal Violet) 방법을 이용해 생물막의 형성 정도를 실험한 결과이다.3 to 5 are incubated for 3 days, 5 days, and 7 days, respectively, E. Coli. This is the result of experimenting with the degree of biofilm formation.
도 3을 참조하면, E. Coli.(Escherichia Coli.)을 3일 동안 배양시킨 후, 징크옥사이드(ZnO)의 배합비율이 0%인 경우에는 흡광도의 평균값이 0.303으로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 1%인 경우에는 흡광도의 평균값이 0.326으로 측정되었으며, 징크옥사이드(ZnO)의 배합비율이 2%인 경우에는 흡광도의 평균값이 0.252로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 3%인 경우에는 흡광도의 평균값이 0.299로 측정되었다.Referring to FIG. 3, after incubating E. Coli. (Escherichia Coli.) For 3 days, when the compounding ratio of zinc oxide (ZnO) was 0%, the average value of absorbance was measured as 0.303, and zinc oxide (ZnO When the blending ratio of 1% was 1%, the average value of absorbance was measured as 0.326. When the blending ratio of zinc oxide (ZnO) was 2%, the average value of absorbance was measured as 0.252. The blending ratio of zinc oxide (ZnO) was measured. In the case of 3%, the average absorbance was measured at 0.299.
도 4를 참조하면, E. Coli.(Escherichia Coli.)을 5일 동안 배양시킨 후, 징크옥사이드(ZnO)의 배합비율이 0%인 경우에는 흡광도의 평균값이 0.362로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 1%인 경우에는 흡광도의 평균값이 0.380으로 측정되었으며, 징크옥사이드(ZnO)의 배합비율이 2%인 경우에는 흡광도의 평균값이 0.356로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 3%인 경우에는 흡광도의 평균값이 0.448로 측정되었다.Referring to FIG. 4, after incubating E. Coli. (Escherichia Coli.) For 5 days, when the compounding ratio of zinc oxide (ZnO) was 0%, the average value of absorbance was measured as 0.362, and zinc oxide (ZnO When the blending ratio of 1% is 1%, the average value of absorbance was measured as 0.380, and when the blending ratio of zinc oxide (ZnO) was 2%, the average value of absorbance was measured as 0.356, and the blending ratio of zinc oxide (ZnO) was measured. In the case of 3%, the average value of the absorbance was measured at 0.448.
도 5를 참조하면, E. Coli.(Escherichia Coli.)을 7일 동안 배양시킨 후, 징크옥사이드(ZnO)의 배합비율이 0%인 경우에는 흡광도의 평균값이 0.486으로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 1%인 경우에는 흡광도의 평균값이 0.425로 측정되었으며, 징크옥사이드(ZnO)의 배합비율이 2%인 경우에는 흡광도의 평균값이 0.407로 측정되었고, 징크옥사이드(ZnO)의 배합비율이 3%인 경우에는 흡광도의 평균값이 0.413으로 측정되었다.Referring to FIG. 5, after incubating E. Coli. (Escherichia Coli.) For 7 days, when the compounding ratio of zinc oxide (ZnO) was 0%, the average value of absorbance was determined to be 0.486 and zinc oxide (ZnO). When the blending ratio of 1% is 1%, the average value of absorbance was measured as 0.425. When the blending ratio of zinc oxide (ZnO) was 2%, the average value of absorbance was measured as 0.407. The blending ratio of zinc oxide (ZnO) was measured. In the case of 3%, the average absorbance was measured at 0.413.
도 6은 상기한 실험결과들을 실험물질별로 나타낸 그래프이며, 도 7은 상기한 실험결과들을 배양시간에 따라 나타낸 그래프이다.6 is a graph showing the above experimental results for each test material, and FIG. 7 is a graph showing the above test results according to the incubation time.
도 3 내지 도 6에 도시된 실험결과에 따르면, 실리콘과 탄소나노튜브(CNT)가 배합된 소재의 경우(징크옥사이드(ZnO) 0%) 시간이 지남에 따라 흡광도의 평균값이 급격하게 높아지며, 그에 따라 생물막의 형성이 증가됨을 알 수 있다.According to the experimental results illustrated in FIGS. 3 to 6, in the case of a material in which silicon and carbon nanotubes (CNT) are blended (zinc oxide (ZnO) 0%), the average value of absorbance rapidly increases over time, It can be seen that the formation of the biofilm accordingly.
한편, 실리콘과 탄소나노튜브(CNT)에 징크옥사이드(ZnO)가 1% 배합된 소재의 경우, 실리콘과 탄소나노튜브(CNT)가 배합된 소재의 경우(징크옥사이드(ZnO) 0%) 보다 흡광도의 평균값이 완만하게 증가하여, 그에 따라 생물막의 형성이 다소 억제됨을 알 수 있다.On the other hand, in the case of a material containing 1% of zinc oxide (ZnO) in silicon and carbon nanotubes (CNT), the absorbance is higher than in the case of a material in which silicon and carbon nanotubes (CNT) are mixed (in zinc oxide (ZnO) 0%). It can be seen that the average value of is gradually increased, whereby formation of the biofilm is somewhat suppressed.
또한, 실리콘과 탄소나노튜브(CNT)에 징크옥사이드(ZnO)가 2% 배합된 소재의 경우, 실리콘과 탄소나노튜브(CNT)가 배합된 소재(징크옥사이드(ZnO) 0%) 및 징크옥사이드(ZnO)가 1% 배합된 소재의 경우 보다 흡광도의 평균값이 전반적으로 낮게 되어, 그에 따라 요로감염 주요 균인 E. Coli.(Escherichia Coli.)에 대한 생물막 형성 억제 효과가 명확하게 나타남을 알 수 있다.In addition, in the case of the material containing 2% of zinc oxide (ZnO) in silicon and carbon nanotubes (CNT), the material in which silicon and carbon nanotubes (CNT) are mixed (zinc oxide (ZnO) 0%) and zinc oxide ( In the case of 1% of ZnO), the average absorbance value is lower than that of the 1% compounded material. Thus, the inhibitory effect of biofilm formation on E. Coli (Escherichia Coli.), A major urinary tract infection, is clearly seen.
그리고, 실리콘과 탄소나노튜브(CNT)에 징크옥사이드(ZnO)가 5% 배합된 소재의 경우, 7일 배양시 흡광도의 평균값이 오히려 이전보다 낮아져, 장기간 사용에 따른 생물막 형성 억제 효과가 나타남을 알 수 있다.In addition, in the case of the material containing 5% of zinc oxide (ZnO) in silicon and carbon nanotubes (CNT), the average value of absorbance at 7 days of incubation was lower than before, indicating that the biofilm formation inhibitory effect was observed with long-term use. Can be.
상기한 실험결과들을 기초로 판단할 때, 실리콘과 탄소나노튜브(CNT)에 징크옥사이드(ZnO)가 약 2% 배합된 소재로 카테터 및 카테터용 폴리를 구성하는 경우, 요로감염 주요 균인 E. Coli.(Escherichia Coli.)에 대한 생물막 형성 억제 효과를 안정적으로 달성할 수 있다.Judging from the above experimental results, E. Coli, a major bacterium for urinary tract infection, is composed of catheter and catheter poly with a material containing about 2% of zinc oxide (ZnO) in silicon and carbon nanotubes (CNT). It is possible to stably achieve the effect of inhibiting biofilm formation on Escherichia Coli.
도 8은 징크옥사이드(ZnO)의 배합비율이 1%인 소재에 E. Coli.(Escherichia Coli.)을 7일 동안 배양시킨 후, 실험결과를 전자현미경(Scanning Electron Microscope, SEM)으로 촬영한 것이다.FIG. 8 is a 7-day incubation of E. Coli. (Escherichia Coli.) In a material having a zinc oxide (ZnO) compounding ratio of 1%, and the results of the experiment were taken with a scanning electron microscope (SEM). .
도 8을 참조하면, 7일 배양 후에도 E. Coli. 균이 서로 뭉치거나 하여 생물막을 형성하지 않는 것을 알 수 있다.Referring to Figure 8, even after 7 days of culture E. Coli. It can be seen that the bacteria do not clump together and form a biofilm.
또한, 아래의 표 1에 나타난 실험결과들을 참조하면, 본 발명의 일실시예에 따른 카테터 및 카테터용 폴리를 구성하는 소재는, 상기 E. Coli. 균 이외에, 포도상구균, 폐렴균, 대장균 및 녹농균에 대해서도 99.9% 이상의 살균감소율과 정균감소율을 가짐을 알 수 있다.In addition, referring to the experimental results shown in Table 1 below, the material constituting the catheter and the catheter poly according to an embodiment of the present invention, the E. Coli. In addition to the bacteria, staphylococcus aureus, pneumococci, Escherichia coli and Pseudomonas aeruginosa have a reduction rate of 99.9% or more bacteriostatic.
Figure PCTKR2017001138-appb-T000001
Figure PCTKR2017001138-appb-T000001
한편, 상기한 바와 같이 구성된 카테터 및 카테터용 폴리는, 탄소나노튜브의 특성인 높은 열전도로 인하여 인체 삽입 과정에서 환자의 거부감을 최소화할 수 있다.On the other hand, the catheter and the catheter poly configured as described above, it is possible to minimize the patient's rejection during the human insertion process due to the high thermal conductivity of the carbon nanotubes.
도 9는 폴리 카테터와 카테터용 폴리를 구성하는 소재의 인체 삽입시 이물감 감소 효과를 설명하기 위한 실험 결과를 나타낸 것으로, 도 9의 (a)는 탄소나노튜브가 혼합되지 않은 실리콘으로 구성된 카테터의 열전도 사진이며, 도 9의 (b)는 탄소나노튜브가 내재화된 실리콘으로 구성된 카테터의 열전도 사진이다.Figure 9 shows the experimental results for explaining the effect of reducing foreign body when inserting the material consisting of the poly catheter and the catheter poly for the human body, Figure 9 (a) is a thermal conduction of the catheter consisting of silicon not mixed carbon nanotubes 9 (b) is a thermal conductivity picture of a catheter composed of silicon in which carbon nanotubes are embedded.
도 9의 (a) 및 (b)를 참조하면, 탄소나노튜브가 내재화된 실리콘으로 구성된 카테터의 경우가 높은 열전도에 의해 온도의 분포가 고르게 나타남을 알 수 있다.Referring to (a) and (b) of FIG. 9, it can be seen that in the case of a catheter composed of silicon in which carbon nanotubes are embedded, temperature distribution is evenly represented by high thermal conductivity.
도 10은 본 발명의 일실시예에 따른 카테터용 폴리의 구성 및 동작을 설명하기 위해 도시한 것으로, 도시된 구성들 중 도 1 내지 도 9를 참조하여 설명한 것과 동일한 것에 대한 설명은 이하 생략하기로 한다.10 is a view for explaining the configuration and operation of the catheter poly according to an embodiment of the present invention, the description of the same as described with reference to FIGS. 1 to 9 of the illustrated configuration will be omitted below do.
도 10을 참조하면, 폴리 카테터 중 방광 내에 삽입되는 일단(50)에 인접하도록 소변유입구(11)와 카테터용 폴리(200)가 카테터 본체(100)에 형성되어 있다.Referring to FIG. 10, the urine inlet 11 and the catheter poly 200 are formed in the catheter body 100 so as to be adjacent to one end 50 inserted into the bladder among the poly catheter.
카테터용 폴리(200)는 카테터의 타측에 설치되는 유체유입부(23)로부터 유체(예를 들어, 공기 또는 식염수)가 유입되면 확장되어 풍선의 형태를 가질 수 있다.The catheter poly 200 may have a balloon shape when the fluid (eg, air or saline) is introduced from the fluid inlet 23 installed at the other side of the catheter.
예를 들어, 주사기 등에 유체를 미리 주입하고, 유체유입부(23)의 말단인 유입공(22)에 주사기 바늘을 끼워 놓고, 주사기를 압축시키는 방식으로 유체가 유입될 수 있다.For example, the fluid may be introduced by injecting a fluid in advance into a syringe or the like, inserting a syringe needle into the inlet hole 22, which is the end of the fluid inlet 23, and compressing the syringe.
카테터 본체(100)의 일단(50)에 인접하도록 형성된 카테터용 폴리(200)가 방광 내에 삽입된 상태에서, 유체유입부(23)로부터 유체통로(120, 121) 및 유체유출구(21)를 통해 유체가 카테터용 폴리(200) 내로 유입됨에 따라, 카테터용 폴리(200)가 풍선 모양으로 부풀어올라 방광목(60)에 걸쳐져 카테터를 방광 내에 고정시키게 된다.In the state where the catheter poly 200 formed to be adjacent to the one end 50 of the catheter body 100 is inserted into the bladder, the fluid inlets 23 through the fluid passages 120 and 121 and the fluid outlet 21. As the fluid flows into the catheter poly 200, the catheter poly 200 swells into a balloon shape and spans the bladder neck 60 to fix the catheter in the bladder.
한편, 카테터 본체(100)의 단면의 중심부에는 소변유입구(11)와 연결된 소변통로(110)가 형성되어 있으며, 소변통로(110)의 말단에는 소변배출부(13)가 형성될다.Meanwhile, a urine passage 110 connected to the urine inlet 11 is formed at the center of the cross section of the catheter body 100, and a urine discharge portion 13 is formed at the end of the urine passage 110.
예를 들어, 요도 내에서 발생하는 소변은 요도 내에 위치하는 소변유입구(11)를 통해 소변통로(110)로 유입된 후, 요도 밖에 위치하는 소변배출부(13)의 말단인 배출공(12)을 통해 배출될 수 있다.For example, the urine generated in the urethra flows into the urine passage 110 through the urine inlet 11 located in the urethra, and then the discharge hole 12 which is the end of the urine discharge part 13 located outside the urethra. Can be discharged through.
도 11은 본 발명에 따른 카테터용 폴리의 구성에 대한 일실시예를 보다 상세히 도시한 것으로, 도 1 및 도 11에 도시된 폴리 카테터 중 카테터용 폴리(200)가 접합되어 있는 부분을 확대하여 나타낸 것이다.FIG. 11 illustrates an embodiment of the catheter poly according to the present invention in more detail. An enlarged portion of the poly catheter illustrated in FIGS. 1 and 11 is joined to the catheter poly 200. will be.
도 11을 참조하면, 카테터용 폴리(200)의 양 끝단에 카테터 본체(100)와 접합되기 위한 접합면들(210, 211)이 형성되어 있으며, 카테터 본체(100)에 카테터용 폴리(200)를 형성시키는 과정에서 접착제를 이용하여 접합면들(210, 211)을 카테터 본체(100)에 접착시킬 수 있다.Referring to FIG. 11, bonding surfaces 210 and 211 for joining the catheter body 100 are formed at both ends of the catheter poly 200, and the catheter poly 200 is provided on the catheter body 100. Bonding surfaces 210 and 211 may be adhered to the catheter body 100 using an adhesive in the process of forming the die.
이하, 본 발명의 일실시예에 따른 폴리 카테터 제조 방법 및 카테터용 폴리의 형성 방법에 대해 도 11을 참조하여 설명하기로 한다.Hereinafter, a method for producing a polycatheter and a method for forming a poly for catheter according to an embodiment of the present invention will be described with reference to FIG. 11.
먼저, 상기한 바와 같이 탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재를 튜브형 관체로 압출하여 카테터 본체(100)를 생성한다.First, as described above, a carbon nanotube polymer containing carbon nanotubes and zinc oxide (ZnO) bonded to the silicon is extruded into a tubular tube to produce a catheter body 100.
또한, 탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재를 튜브형 관체로 압출 또는 사출하여 카테터용 폴리(200)를 생성한다.In addition, carbon nanotubes and zinc oxide (ZnO) is a carbon nanotube polymer (CNT Polymer) is bonded to the silicon material is extruded or injected into a tubular tube to produce a catheter poly (200).
여기서, 카테터 본체(100)를 생성하기 위한 소재의 탄소나노튜브, 징크옥사이드(ZnO) 또는 탄소나노튜브 중합체의 배합비율과, 카테터용 폴리(200)를 생성하기 위한 소재의 탄소나노튜브, 징크옥사이드(ZnO) 또는 탄소나노튜브 중합체의 배합비율이 상이할 수 있다.Here, the blending ratio of carbon nanotubes, zinc oxide (ZnO) or carbon nanotube polymer of the material for producing the catheter body 100, carbon nanotubes, zinc oxide of the material for producing the poly 200 for the catheter The blending ratio of (ZnO) or carbon nanotube polymer may be different.
예를 들어, 카테터용 폴리(200)가 외부로부터 유입되는 유체에 의해 팽창되면 표면적이 증가하게 되고, 그에 따라 단위면적당 탄소나노튜브 중합체의 분포가 감소하여 항균력이 떨어질 수 있다.For example, when the catheter poly 200 is expanded by a fluid flowing from the outside, the surface area is increased, and thus, the distribution of carbon nanotube polymer per unit area is decreased, thereby decreasing the antibacterial activity.
위와 같이, 카테터용 폴리(200)가 팽창하여 항균력이 떨어지면, 카테터 본체(100)에서는 생물막의 형성이 억제되더라도, 향균력이 떨어진 카테터용 폴리(200)에서 생물막이 형성되어 세균 감염의 원인이 될 수 있다.As described above, when the catheter poly 200 is expanded and the antimicrobial activity is reduced, even if the formation of the biofilm in the catheter body 100 is suppressed, the biofilm may be formed in the catheter poly 200 having the antimicrobial power to cause bacterial infection. have.
본 발명의 일실시예에 따르면, 카테터용 폴리(200)의 탄소나노튜브 중합체 배합 비율은 카테터 본체(100)의 탄소나노튜브 중합체 배합 비율보다 높은 것이 바람직하며, 그에 따라 카테터용 폴리(200)가 팽창하더라도 단위면적당 탄소나노튜브 중합체의 분포가 카테터 본체(100)와 동일 또는 유사한 범위를 가져 폴리 카테터의 위치에 관계없이 균일한 향균력을 유지할 수 있다.According to an embodiment of the present invention, the carbon nanotube polymer blending ratio of the catheter poly 200 is preferably higher than the carbon nanotube polymer blending ratio of the catheter body 100, and thus, the catheter poly 200 may be Even if expanded, the distribution of the carbon nanotube polymer per unit area has the same or similar range as that of the catheter body 100, thereby maintaining a uniform antimicrobial force regardless of the location of the polycatheter.
카테터용 폴리(200)가 팽창하여 표면적이 약 4배 내지 6배 증가한다고 가정하면, 상기한 바와 같이 카테터 본체(100)가 실리콘 100 중량부 대비 탄소나노튜브 중합체 1.0 내지 2.2 중량부로 배합된 소재로 구성될 때, 카테터용 폴리(200)는 표면적의 증가량에 비례하여 실리콘 100 중량부 대비 탄소나노튜브 중합체 4.0 내지 13.2 중량부로 배합된 소재로 구성될 수 있다.Assuming that the catheter poly 200 is expanded and the surface area is increased by about 4 to 6 times, as described above, the catheter body 100 is composed of 1.0 to 2.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon. When constructed, the catheter poly 200 may be made of a material blended with 4.0 to 13.2 parts by weight of carbon nanotube polymer relative to 100 parts by weight of silicon in proportion to the increase in surface area.
한편, 카테터용 폴리(200)의 경우, 상기 화학식 1에서 n과 m의 값이, 카테터용 폴리(200)의 팽창 시 표면적 증가량에 비례하도록 증가되는 것이 바람직할 수 있다.Meanwhile, in the case of the catheter poly 200, the values of n and m in Chemical Formula 1 may be increased in proportion to the amount of surface area increase when the catheter poly 200 is expanded.
카테터 본체(100)와 카테터용 폴리(200)가 준비된 후에, 카테터용 폴리(200)의 접합면들(210, 211)을 카테터 본체(100)에 접착시키고, 카테터 본체(100)의 일단에 소변유입구(11)가 구비된 팁(tip)을 형성시켜 폴리 카테터를 제조할 수 있다.After the catheter body 100 and the catheter poly 200 are prepared, the bonding surfaces 210 and 211 of the catheter poly 200 are adhered to the catheter body 100 and urine at one end of the catheter body 100. A polycatheter may be manufactured by forming a tip provided with an inlet 11.
본 발명의 일실시예에 따른 폴리 카테터 제조 방법 및 카테터용 폴리의 형성 방법은 상기에서 설명한 단계들 이외에 건조 단계 등과 같은 추가적인 단계들을 더 포함할 수 있으며, 이하에서 설명할 추가적인 구성을 위한 별도의 단계들이 더 추가될 수도 있다.The method of manufacturing a polycatheter and a method of forming a poly for catheter according to an embodiment of the present invention may further include additional steps such as a drying step, in addition to the steps described above, a separate step for the additional configuration to be described below May be added further.
도 12 내지 도 16은 도 11에 도시된 카테터용 폴리의 단면 구성에 대한 예들을 단면도들로 도시한 것이다.12 to 16 show cross-sectional views of examples of the cross-sectional configuration of the catheter poly shown in FIG. 11.
도 12는 도 11에 도시된 C-C선에 따른 횡단면도를 나타낸 것으로, 소변통로(110)와 유체통로(120, 121)가 구비된 카테터 본체(100)를 카테터용 폴리(200)가 감싸고 있는 구조를 가질 수 있다.FIG. 12 is a cross-sectional view taken along line CC of FIG. 11, wherein the catheter poly 100 is provided with a catheter body 100 provided with a urine passage 110 and fluid passages 120 and 121. Can have
여기서, 상기한 바와 같이 카테터용 폴리(200)가 카테터 본체(100) 보다 탄소나노튜브 중합체의 배합비율이 높은 소재를 사용하여 제조된 경우, 도 12에 도시된 카테터 본체(100)와 카테터용 폴리(200) 사이에 전위차가 없어질 때까지 전류가 흐를 수 있다.Here, as described above, when the catheter poly 200 is manufactured using a material having a higher carbon nanotube polymer blending ratio than the catheter body 100, the catheter body 100 and the catheter poly 100 shown in FIG. 12. The current may flow until there is no potential difference between the 200.
이는, 징크옥사이드(ZnO)가 높은 전위를 만들어, 서로 접하는 부분에서 카테터용 폴리(200)로부터 카테터 본체(100)로 전류가 흐르게 되는 것으로서, 카테터 본체(100)와 카테터용 폴리(200) 사이에 전위차가 없어지게 되면 카테터용 폴리(200)가 팽창하는 경우 정전용량이 낮아져 항균력이 감소하게 될 수 있다.This is because zinc oxide (ZnO) creates a high potential, and a current flows from the catheter poly 200 to the catheter body 100 at a portion in contact with each other, and between the catheter body 100 and the catheter poly 200. When the potential difference disappears, when the catheter poly 200 is expanded, the capacitance may be lowered, thereby reducing the antibacterial activity.
위와 같이 카테터용 폴리(200)로부터 카테터 본체(100)로 전류가 흐르는 것을 방지하기 위하여, 도 13에 도시된 바와 같이 카테터 본체(100)와 카테터용 폴리(200) 사이에 절연층(900)이 형성될 수 있다.In order to prevent current from flowing from the catheter poly 200 to the catheter body 100 as described above, an insulating layer 900 is provided between the catheter body 100 and the catheter poly 200 as shown in FIG. 13. Can be formed.
상기 절연층(900)은 절연층은 공기층 또는 멸균 가스층(예를 들어, EO 가스) 등의 기체로 구성되거나, 또는 고농도의 탄소나노튜브 코팅층으로 구성될 수 있다.The insulating layer 900 may be formed of a gas such as an air layer or a sterile gas layer (eg, EO gas) or a carbon nanotube coating layer having a high concentration.
상기 절연층(900)에 의해 카테터용 폴리(200)로부터 카테터 본체(100)로 전류가 흐르는 것이 방지됨으로써, 탄소나노튜브 중합체 배합 비율의 차이에 따른 전위차가 유지될 수 있으며, 그로 인해 카테터용 폴리(200)의 팽창 시에도 카테터 본체(100)와 동일 또는 유사한 범위에서 항균력이 유지될 수 있다.By preventing the flow of current from the catheter poly 200 to the catheter body 100 by the insulating layer 900, the potential difference according to the difference in the carbon nanotube polymer blending ratio can be maintained, thereby the poly for catheter Even when the 200 is expanded, the antimicrobial force may be maintained in the same or similar range as the catheter body 100.
도 13에 도시된 바와 같이 카테터 본체(100)와 카테터용 폴리(200) 사이에 절연층(900)이 형성되도록, 카테터용 폴리(200)의 형성 과정에서 카테터 본체(100)와 카테터용 폴리(200) 사이에 공기층이 주입되도록 하거나 또는 카테터 본체(100)의 외면에 EO 가스 처리 또는 고농도의 탄소나노튜브 코팅 처리를 하는 단계가 추가될 수 있다.As shown in FIG. 13, the catheter body 100 and the catheter poly (in the process of forming the catheter poly 200) are formed so that the insulating layer 900 is formed between the catheter body 100 and the catheter poly 200. The air layer is injected between the 200 or the step of EO gas treatment or high concentration carbon nanotube coating treatment on the outer surface of the catheter body 100 may be added.
도 14는 도 11에 도시된 D-D선에 따른 횡단면도를 나타낸 것으로, 카테터용 폴리(200)가 카테터 본체(100)에 접합되는 접합면(210) 부분의 단면 구조를 도시한 것이다.FIG. 14 is a cross-sectional view taken along the line D-D shown in FIG. 11, and illustrates a cross-sectional structure of a portion of the bonding surface 210 to which the catheter poly 200 is bonded to the catheter body 100.
도 14를 참조하면, 카테터용 폴리(200)가 카테터 본체(100)에 접합되는 접합면(210)에 절연막(1000)이 형성될 수 있다.Referring to FIG. 14, an insulating film 1000 may be formed on the bonding surface 210 to which the catheter poly 200 is bonded to the catheter body 100.
이는, 카테터용 폴리(200)의 접합면(210)을 카테터 본체(100)에 접합시키기 위해 사용되는 접착제가 도전성을 가지는 경우, 탄소나노튜브 중합체 배합 비율의 차이에 따른 전위차에 의해 접합면(210)을 통해 카테터용 폴리(200)로부터 카테터 본체(100)로 전류가 흐를 수 있으므로, 절연막(1000)을 이용하여 전류의 흐름을 차단하기 위한 것이다.This is because, when the adhesive used to bond the bonding surface 210 of the catheter poly 200 to the catheter body 100 has conductivity, the bonding surface 210 is caused by a potential difference depending on the difference in the carbon nanotube polymer blending ratio. Since the current may flow from the catheter poly 200 to the catheter body 100 through), it is to block the flow of current using the insulating film 1000.
예를 들어, 절연막(1000)은 탄소나노튜브 절연막으로서, 고농도의 탄소나노튜브를 접합면(210)에 코팅하여 형성될 수 있으며, 카테터용 폴리(200)가 팽창되는 경우 표면적의 증가로 인해 자연스럽게 해체될 수도 있다.For example, the insulating film 1000 is a carbon nanotube insulating film, and may be formed by coating a high concentration of carbon nanotubes on the bonding surface 210, and naturally increases due to an increase in surface area when the poly 200 for catheter is expanded. It may be dismantled.
도 14에 도시된 바와 같은 절연막(1000)은 심혈관용 카테터에 대해서도 적용되는 것이 바람직하다.The insulating film 1000 as shown in FIG. 14 is preferably applied to a cardiovascular catheter.
도 15는 도 11에 도시된 E-E선에 따른 횡단면도를 나타낸 것으로, 유체유출구(21)가 형성된 부분의 단면 구조를 도시한 것이다.FIG. 15 is a cross-sectional view taken along the line E-E shown in FIG. 11 and shows a cross-sectional structure of a portion where the fluid outlet 21 is formed.
도 15를 참조하면, 카테터 본체(100)에 형성된 두 개의 유체통로들(120, 121)과 연통하도록 각각에 대응되는 위치에 유체 유출구들(21a, 21b)이 형성되어 있을 수 있다.Referring to FIG. 15, fluid outlets 21a and 21b may be formed at positions corresponding to the two fluid passages 120 and 121 formed in the catheter body 100, respectively.
그에 따라, 외부로부터 유입된 유체는 카테터 본체(100)의 유체통로들(120, 121)을 통해 이동한 후, 유체 유출구들(21a, 21b)을 통해 카테터용 폴리(200)로 유출되어 카테터용 폴리(200)를 유체의 압력에 의해 팽창시킨다.Accordingly, the fluid introduced from the outside moves through the fluid passages 120 and 121 of the catheter body 100, and then flows out through the fluid outlets 21a and 21b to the catheter poly 200 for the catheter. The poly 200 is inflated by the pressure of the fluid.
도 16은 카테터용 폴리(200)가 팽창된 상태를 나타내기 위해 도시한 단면도이다.FIG. 16 is a cross-sectional view illustrating the expanded state of the catheter poly 200.
도 16을 참조하면, 상기한 바와 같이 팽창 시 표면적 증가비율에 비례하도록 카테터용 폴리(200)의 탄소나노튜브 중합체 배합 비율을 카테터 본체(100)의 탄소나노튜브 중합체 배합 비율보다 크게 함으로써, 팽창 시에도 카테터용 폴리(200)의 정전용량이 카테터 본체(100)와 동일 또는 유사하게 유지되어 폴리 카테터의 향균력이 균일하도록 할 수 있다.Referring to FIG. 16, the carbon nanotube polymer blending ratio of the catheter poly 200 is greater than the carbon nanotube polymer blending ratio of the catheter body 100 so as to be proportional to the increase in the surface area during expansion as described above. In addition, the capacitance of the catheter poly 200 may be maintained the same or similar to the catheter body 100 so that the antimicrobial force of the catheter is uniform.
도면 상에 별도로 도시하지는 않았으나, 본 발명에 따른 카테터 또는 카테터용 폴리의 종류나 기능에 따라 상기 제조방법에 따른 단계들은 추가되거나 축소될 수 있다.Although not separately illustrated on the drawings, the steps according to the manufacturing method may be added or reduced according to the type or function of the catheter or the catheter poly according to the present invention.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.While the above has been shown and described with respect to preferred embodiments of the present invention, the present invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or prospect of the present invention.

Claims (10)

  1. 인체 내에 삽입되는 폴리 카테터를 제조하기 위해 사용되는 조성물에 있어서,In a composition used to make a foley catheter inserted into the human body,
    탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 구성되며, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 1.0 내지 2.2 중량부로 배합되는 폴리 카테터용 조성물.Carbon nanotube and zinc oxide (ZnO) is a carbon nanotube polymer (CNT Polymer) is composed of a material blended in silicon, the carbon nanotube polymer is a polycatheter compounded at 1.0 to 2.2 parts by weight compared to 100 parts by weight of silicon Composition.
  2. 제1항에 있어서, 상기 탄소나노튜브는The method of claim 1, wherein the carbon nanotubes
    다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube, MWNT)인 폴리 카테터용 조성물.Poly-Walled Carbon Nanotube (MWNT) is a composition for polycatheter.
  3. 제1항에 있어서,The method of claim 1,
    분산된 탄소나노튜브와 징크옥사이드(ZnO)가 실리콘에 복합 처방되어 구성되는 폴리 카테터용 조성물.Dispersed carbon nanotubes and zinc oxide (ZnO) is a composition for polycatheter composed of a composite formulation in silicone.
  4. 외부로부터 유입되는 유체에 의해 팽창 가능하도록 카테터 본체에 접합되는 카테터용 폴리를 제조하기 위해 사용되는 조성물에 있어서,In the composition used to prepare a catheter poly for bonding to the catheter body to be expandable by the fluid flowing from the outside,
    탄소나노튜브와 징크옥사이드(ZnO)가 결합된 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재로 구성되며, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 4.0 내지 13.2 중량부로 배합되는 카테터 폴리용 조성물.Carbon nanotubes and ZnO-bonded carbon nanotube polymer (CNT Polymer) is composed of a material that is blended in silicon, the carbon nanotube polymer is a catheter poly compounded at 4.0 to 13.2 parts by weight compared to 100 parts by weight of silicon Composition.
  5. 제4항에 있어서, 상기 탄소나노튜브는The method of claim 4, wherein the carbon nanotubes
    다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube, MWNT)인 카테터 폴리용 조성물.Multi-Walled Carbon Nanotube (MWNT) is a composition for catheter poly.
  6. 제4항에 있어서, The method of claim 4, wherein
    분산된 탄소나노튜브와 징크옥사이드(ZnO)가 실리콘에 복합 처방되어 구성되는 카테터 폴리용 조성물.A composition for catheter poly, wherein a dispersed carbon nanotube and zinc oxide (ZnO) are formulated in a silicone.
  7. 폴리 카테터에 사용되는 조성물을 제조하는 방법에 있어서,In the method for producing a composition for use in a poly catheter,
    분산된 탄소나노튜브와 징크옥사이드(ZnO)를 실리콘에 복합 처방하여 탄소나노튜브 중합체(CNT Polymer)가 실리콘에 배합된 소재를 구성하는 폴리 카테터용 조성물 제조 방법.A method for preparing a composition for polycatheter comprising a material in which carbon nanotubes and zinc oxide (ZnO) are dispersed in silicon and composed of carbon nanotube polymer (CNT polymer).
  8. 제7항에 있어서, The method of claim 7, wherein
    카테터용 폴리에 사용되는 경우, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 4.0 내지 13.2 중량부로 배합되는 폴리 카테터용 조성물 제조 방법.When used in a catheter poly, the carbon nanotube polymer is a method for producing a poly catheter composition is formulated in a 4.0 to 13.2 parts by weight relative to 100 parts by weight of silicone.
  9. 제7항에 있어서, The method of claim 7, wherein
    카테터 본체에 사용되는 경우, 상기 탄소나노튜브 중합체는 실리콘 100 중량부 대비 1.0 내지 2.2 중량부로 배합되는 폴리 카테터용 조성물 제조 방법.When used in the catheter body, the carbon nanotube polymer is a method for producing a composition for polycatheter compounded in 1.0 to 2.2 parts by weight relative to 100 parts by weight of silicone.
  10. 제7항에 있어서, 상기 탄소나노튜브는The method of claim 7, wherein the carbon nanotubes are
    다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube, MWNT)인 폴리 카테터용 조성물.Poly-Walled Carbon Nanotube (MWNT) is a composition for polycatheter.
PCT/KR2017/001138 2016-02-11 2017-02-02 Composition for catheter and production method therefor WO2017138716A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/068,173 US20190015560A1 (en) 2016-02-11 2017-02-02 Composition for catheter and production method therefor
CN201780006276.2A CN108463489B (en) 2016-02-11 2017-02-02 Composition for catheter and method for producing the same
HUP1900200A HU231404B1 (en) 2016-11-01 2017-10-16 Apparatus for manufacturing various cap assemblies for secondary batteries, and method for the same
HUP1900198A HU231433B1 (en) 2016-11-01 2017-10-16 Apparatus for manufacturing semi-finished cap plate products
US16/991,435 US20200368399A1 (en) 2016-02-11 2020-08-12 Catheter, composition for catheter, production method therefor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2016-0015841 2016-02-11
KR10-2016-0015702 2016-02-11
KR10-2016-0015711 2016-02-11
KR20160015841 2016-02-11
KR20160015702 2016-02-11
KR20160015711 2016-02-11
KR1020170013674A KR102152574B1 (en) 2016-02-11 2017-01-31 Composition for Foley Catheter
KR1020170013679A KR20170094758A (en) 2016-02-11 2017-01-31 Method of Manufacturing Composition for Catheter
KR10-2017-0013679 2017-01-31
KR10-2017-0013677 2017-01-31
KR1020170013677A KR102082549B1 (en) 2016-02-11 2017-01-31 Composition for Catheter Foley
KR10-2017-0013674 2017-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/068,173 A-371-Of-International US20190015560A1 (en) 2016-02-11 2017-02-02 Composition for catheter and production method therefor
US16/991,435 Division US20200368399A1 (en) 2016-02-11 2020-08-12 Catheter, composition for catheter, production method therefor

Publications (1)

Publication Number Publication Date
WO2017138716A1 true WO2017138716A1 (en) 2017-08-17

Family

ID=59563516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001138 WO2017138716A1 (en) 2016-02-11 2017-02-02 Composition for catheter and production method therefor

Country Status (2)

Country Link
CN (1) CN108463489B (en)
WO (1) WO2017138716A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328047B (en) * 2022-12-22 2023-10-10 上海琦识医疗科技有限公司 Precise medical catheter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724284A (en) * 2008-10-31 2010-06-09 中国石油化工股份有限公司 Anti-bacterial thermoplastic composite and preparation method thereof
JP2010534729A (en) * 2007-07-26 2010-11-11 スピーゲルベルク (ゲーエムベーハー ウント コンパニー) カーゲー Antibacterial plastic product and manufacturing method thereof
CN104387655A (en) * 2014-11-24 2015-03-04 苏州市贝克生物科技有限公司 Medical nano-zinc oxide antibacterial PE and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072868B2 (en) * 2008-10-27 2015-07-07 Pursuit Vascular, Inc. Device for delivery of antimicrobial agent into trans-dermal catheter
WO2011118680A1 (en) * 2010-03-26 2011-09-29 テルモ株式会社 Process for production of antimicrobial medical instrument, and antimicrobial medical instrument
CN102886077B (en) * 2012-10-19 2014-07-23 成都盛泰尔生物医药科技有限公司 Anti-microbial catheter and preparation method thereof
CN104225762A (en) * 2014-09-03 2014-12-24 科云生医科技股份有限公司 Antibacterial urethral catheter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534729A (en) * 2007-07-26 2010-11-11 スピーゲルベルク (ゲーエムベーハー ウント コンパニー) カーゲー Antibacterial plastic product and manufacturing method thereof
CN101724284A (en) * 2008-10-31 2010-06-09 中国石油化工股份有限公司 Anti-bacterial thermoplastic composite and preparation method thereof
CN104387655A (en) * 2014-11-24 2015-03-04 苏州市贝克生物科技有限公司 Medical nano-zinc oxide antibacterial PE and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUI, MINGHAO: "Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 452, 15 March 2013 (2013-03-15), pages 148 - 154, XP028546027, ISSN: 0048-9697, DOI: 10.1016/j.scitotenv.2013.02.056 *
YAZHINI, K. BHARATHI: "Antibacterial activity of cotton coated with ZnO and ZnO-CNT composites", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015 *

Also Published As

Publication number Publication date
CN108463489A (en) 2018-08-28
CN108463489B (en) 2022-01-04

Similar Documents

Publication Publication Date Title
CA1224717A (en) Antimicrobial compositions
Berra et al. Antimicrobial-coated endotracheal tubes: an experimental study
Nerurkar et al. Bacterial pathogens in urinary tract infection and antibiotic susceptibility pattern
Constantiniu et al. Cultural and biochemical characteristics of Acinetobacter spp. strains isolated from hospital units
CN103948973A (en) Medical tracheal catheter with safe and effective antibacterial performance
WO1992015286A1 (en) Anti-infective and anti-inflammatory releasing systems for medical devices
WO2017138716A1 (en) Composition for catheter and production method therefor
CN101579550B (en) Artificial trachea cannula made of nano materials and preparation method thereof
US5409467A (en) Antimicrobial catheter
WO2017138715A1 (en) Foley catheter and method for manufacturing same
CN101653635A (en) Manual tracheotomy tube with antibacterial nano material coating
CN101554505A (en) Artificial trachea cannula with nanometre anti-microbial coating
NZ578314A (en) Tube for enteral nutrition
KR102090471B1 (en) Method for manufacturing Foley Catheter
KR102082549B1 (en) Composition for Catheter Foley
KR102090477B1 (en) Method for forming Foley for Catheter
KR101900739B1 (en) Foley Catheter
KR102369704B1 (en) Foley Catheter
KR102152574B1 (en) Composition for Foley Catheter
KR102163875B1 (en) Foley for Catheter
US20180272039A1 (en) Foley catheter and method for manufacturing same
US20200368399A1 (en) Catheter, composition for catheter, production method therefor
JP2636838B2 (en) Antimicrobial sustained release urinary catheter
KR20170094758A (en) Method of Manufacturing Composition for Catheter
Alavaren et al. Urinary tract infection in patients with indwelling catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750408

Country of ref document: EP

Kind code of ref document: A1