WO2017135732A1 - Dual-channel scattering-type near-field scanning optical microscope - Google Patents

Dual-channel scattering-type near-field scanning optical microscope Download PDF

Info

Publication number
WO2017135732A1
WO2017135732A1 PCT/KR2017/001191 KR2017001191W WO2017135732A1 WO 2017135732 A1 WO2017135732 A1 WO 2017135732A1 KR 2017001191 W KR2017001191 W KR 2017001191W WO 2017135732 A1 WO2017135732 A1 WO 2017135732A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical microscope
light
scanning optical
beam splitter
detector
Prior art date
Application number
PCT/KR2017/001191
Other languages
French (fr)
Korean (ko)
Inventor
이은성
권혁상
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2017135732A1 publication Critical patent/WO2017135732A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Definitions

  • the present invention relates to a dual channel scattering near-field scanning optical microscope, and more particularly, two polarization states coexist in the same path so that each polarizing beam forms an independent interferometer, and dual polarizing beams having different phases
  • the present invention relates to a dual channel scattering near field scanning optical microscope that can measure each of the optical properties of a specimen quickly by measuring each at a channel detector.
  • microscopy techniques must have the same resolution as the line width in order to evaluate and detect various properties of the material on practically reactive non-uniform surfaces.
  • STM scanning tunneling microscope
  • AFM atomic force microscope
  • SPM scanning probe microscope
  • NSM Near-field scanning optical microscopy
  • Optical microscopy using NSOM has its own advantages over electron microscopes such as scanning electron microscope (SEM) and transmission electron microscope (TEM). And various combinations with other microscopy.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • NSOM enables the characterization of surface structures by comparing surface images with optical images obtained using various optical contrast methods (fluorescence, absorption, reflection, polarization, birefringence, and spectroscopy).
  • NSOM is an advanced optical microscope with high resolution of tens of nanometers that overcomes the diffraction limit of light. It is well known that conventional optical or "far-field" range resolutions are quite limited due to diffraction.
  • the resolution of the diffraction limit is usually expressed as ⁇ / NA, where ⁇ is the wavelength of light and NA is the aperture of the microscope objective.
  • the NA determines the light collecting capability of the lens, and usually, the larger the value, the more light can be collected. Also, the use of short wavelength light increases the resolution, which is generally limited by experimental difficulties.
  • FIG. 1 is a schematic diagram of a scattering type near field scanning optical microscope (s-NSOM) of NSOM.
  • s-NSOM scattering type near field scanning optical microscope
  • the s-NSOM is a light source 11, a probe 12 that is movable to the near-field region surrounding the surface of the specimen, and irradiated from the light source
  • a beam splitter 13 for dividing the split light driving means (not shown) for providing relative movement between the probe 12 and the sample surface, and cos position the light split through the beam splitter 13
  • driving means (not shown) for providing relative movement between the probe 12 and the sample surface, and cos position the light split through the beam splitter 13
  • a reflection mirror 16 supported by the piezoelectric transducer 15 movable in the z-axis so as to be measurable at each sin position, and a photodetector 17.
  • the s-NSOM arithmetically processes the image measured at the cos position and the sin position while the piezo transducer is moved, so that only information on the optical properties can be obtained. If the image is measured only at the position, the information about the optical properties of the specimen and the shape information are mixed and the desired data cannot be obtained.
  • the present invention has been made to solve the above problems, and an object of the present invention is that two polarization states coexist in the same path so that each polarizing beam constitutes an independent interferometer, and polarizing beams having different phases Are measured by dual channel detectors, and only the optical properties of the specimen can be quickly measured without moving the piezo transducers to measure the images in two positions. To provide a measurable dual channel scattering near field scanning optical microscope.
  • Dual channel scattering near-field scanning optical microscope of the present invention comprises a light source (100) for irradiating light; A 45 degree polarizer 200 through which light generated from the light source 100 passes to generate first polarized light and second polarized light; A first beam splitter 310 for splitting the light passing through the 45 degree polarizer 200; A probe 500 disposed in a near field surrounding a surface of a specimen and scattering light passing through the focusing lens (or mirror) 510 through the first beam splitter 310; A first phase difference plate for generating a phase difference between the first polarized light and the second polarized light by passing the first polarized light and the second polarized light through the first beam splitter 310 and then reflecting the light on the reflection mirror.
  • the scanning optical microscope 1 includes a first path L1 through which the light source passes through the focusing lens 510 and the probe 500, and the light source includes the first phase difference plate 410 and a reflection mirror 440.
  • the first phase difference plate 410 may be a ⁇ / 8 wave plate.
  • the scattering near-field scanning optical microscope (1) is located on the second path (L2), the second phase difference plate 420 and the polarizer 430 for making polarized light irradiated vertically or horizontally on the specimen, and the polarizer 430 It may be formed to include.
  • the second phase difference plate 420 may be a ⁇ / 2 wave plate.
  • the dual channel scattering type near field scanning optical microscope 1 may be formed to include a third detector 730 for arithmetically processing the images detected by the first detector 710 and the second detector 720. have.
  • first detector 710, the second detector 720, and the third detector 730 may be any one of a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT).
  • CCD charge coupled device
  • MCT MOS controlled thyristor
  • the dual-channel scattering near-field scanning optical microscope of the present invention is the same pass without the cumbersome process of measuring the image in both positions while moving the piezo transducer to obtain only the information about the optical properties of the specimen in the conventional s-NSOM, Polarization states coexist so that each polarization beam forms an independent interferometer, and polarization beams having different phases are measured by dual channel detectors so that only optical property information of the specimen can be quickly measured.
  • the dual-channel scattering near-field scanning optical microscope of the present invention has an effect on the environmental change that may occur during the movement of the piezo transducer to measure only the optical property information of the specimen without the shape information in the existing s-NSOM. It can block, and images of two positions can be measured simultaneously by two detectors, reducing measurement time and improving reliability.
  • FIG. 1 is a schematic diagram showing a conventional scattered near field scanning optical microscope (s-NSOM).
  • Figure 2 is a schematic diagram showing an embodiment of a dual channel scattering near field scanning optical microscope according to the present invention.
  • 3 and 4 are schematic diagrams showing yet another embodiment of a dual channel scattering near field scanning optical microscope according to the present invention.
  • FIG 5 is a graph conceptually illustrating the phase difference between the first polarization and the second polarization through the first phase difference plate in the dual channel scattering near field scanning optical microscope according to the present invention.
  • FIG. 1 is a schematic diagram showing a conventional scattering near-field scanning optical microscope (s-NSOM)
  • Figure 2 is a schematic diagram showing an embodiment of a dual channel scattering near-field scanning optical microscope according to the present invention
  • Figures 3 and 4 Is a schematic view showing another embodiment of a dual channel scattering near field scanning optical microscope according to the present invention
  • Figure 5 is a first polarization and the first polarization plate through the first phase difference plate in the dual channel scattering near field scanning optical microscope according to the present invention It is a graph conceptually showing the phase difference of two polarizations.
  • the dual channel scattering near-field scanning optical microscope 1 of the present invention photographs an interference pattern of interfering light after the light emitted from the light source 100 is reflected from the specimen and the probe 500.
  • the splitter 320 is formed to include a first detector 710 and a second detector 720.
  • the light source 100 is a light source for irradiating light, and may generate any one of infrared rays, visible rays, and ultraviolet rays.
  • the 45-degree polarizer 200 generates the first and second polarized light having different components while the light generated by the light source 100 passes.
  • each polarizing beam constitutes an independent interferometer.
  • the first beam splitter 310 divides the light passing through the 45 degree polarizer 200 at a predetermined ratio, and at this time, part of the light emitted from the light source 100 Reflected and proceeds towards the reflecting mirror.
  • the first phase difference plate 410 is further provided on the optical path between the first beam splitter 310 and the reflection mirror to convert phases of the first and second polarizations having different components.
  • the first phase difference plate 410 generates a phase difference between the first polarized light and the second polarized light by passing some light reflected by the first beam splitter 310 and then reflecting the light again on the reflective mirror. Be sure to
  • the first phase difference plate 410 is a ⁇ / 8 wave plate, and the first polarization and the second polarization are reflected by the reflection mirror so as to pass twice, thereby generating a total phase difference of ⁇ / 4.
  • FIG. 5 is a graph conceptually illustrating the phase difference between the first polarization and the second polarization that passed through the first phase difference plate 410. If the first polarization means light at the cosine position, the second polarization means light at the sine position. The phase difference between the first polarized light and the second polarized light may be 90 °.
  • the probe 500 is disposed in a near field surrounding the surface of the specimen, and scatters the light passing through the focusing lens (or mirror) 510 through the first beam splitter 310, Atomic force microscope May be a probe 500.
  • the scanning optical microscope 1 includes a first path L1 through which the light source passes through the focusing lens 510 and the probe 500, and the light source includes the first phase difference plate 410 and a reflection mirror. And a second path L2 passing through 440, wherein any one of the first path L1 and the second path L2 is on a path through which the light passing through the first beam splitter 310 passes. The other one may be disposed on a path through which the light reflected by the first beam splitter 310 passes.
  • a focusing lens 510 is disposed on a path through which the light passing through the first beam splitter 310 passes, and a first phase difference plate 410 on a path through which the reflected light passes. ) May be disposed, and as shown in FIG. 4, the focusing lens 510 and the first phase difference plate 410 may be disposed at opposite positions to each other.
  • the dual channel scattering near-field scanning optical microscope 1 of the present invention further includes driving means for providing relative movement between the probe 500 and the surface of the specimen, and the driving means includes the probe 500.
  • the x, y, z axis can be moved, and the specimen can be moved on the x, y, z axis.
  • the scattering near-field scanning optical microscope 1 of the present invention is located on the second path image (L2), the second phase difference plate 420 for making polarized light irradiated vertically or horizontally on the specimen, and a polarizer 430 may be further included.
  • the second phase difference plate 420 is a ⁇ / 2 wave plate, and the light is reflected again after reaching the probe 500 so that the second phase difference plate 420 passes twice and no phase difference is generated.
  • the conventional scattering near field scanning optical microscope 1 is incident on the probe 500 without the second phase difference plate 420 and the polarizer 430 on the optical path between the first beam splitter 310 and the probe 500.
  • the polarization angle to be adjusted had to be adjusted directly.
  • the second beam splitter 320 is reflected by the reflection mirror, passes through the first phase difference plate 410 and the first beam splitter 310, and then interferes with light scattered from the probe 500.
  • the first polarized light and the second polarized light are divided into different paths.
  • the first polarized light and the second polarized light passing through the second beam splitter 320 have interference with the light scattered from the probe 500 in a state where the phase difference is generated by the first phase difference plate 410. Is done.
  • the first detector 710 the first polarization component divided by the second beam splitter 320 is detected through the first objective lens 610, and in the second detector 720, the second polarization component is detected.
  • the second polarization component split by the beam splitter 320 is detected by passing through the second objective lens 620.
  • the dual channel scattering near-field scanning optical microscope 1 of the present invention arithmetically processes the images detected by the first detector 710 and the second detector 720, and finally obtains only the optical property information of the specimen to be obtained. It may be formed by further comprising a third detector 730 that can be obtained.
  • the first detector 710, the second detector 720, and the third detector 730 may be any one of a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT).
  • CCD charge coupled device
  • MCT MOS controlled thyristor
  • the first detector 710, the second detector 720, and the third detector 730 are appropriately selected from a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT) according to the wavelength of light. desirable.
  • the light irradiated from the light source 100 passes through the 45 degree polarizer 200, and thus the first and second polarization components are present.
  • the light passing through the first beam splitter 310 is divided into a predetermined ratio, and is divided into light traveling toward the probe 500 and light traveling toward the reflection mirror.
  • the light traveling toward the reflection mirror 440 passes through the first phase difference plate 410 located on the optical path, and is then reflected by the reflection mirror to pass through the first phase difference plate 410 once again. Through this process, a phase difference occurs between the first polarization and the second polarization.
  • phase difference plate 410 When the first phase difference plate 410 is a ⁇ / 8 wave plate, a phase difference of ⁇ / 4 occurs between the first polarization and the second polarization.
  • the light passes through the first beam splitter 310 and passes through the second beam splitter 320 in a different path between the first polarized light and the second polarized light which interfere with the light scattered from the probe 500. Divided.
  • the first polarized light component passes through the first objective lens 610 to reach the first detector 710, and the second polarized light component passes through the second objective lens 620 to the second detector 720. Will be reached.
  • the third detector 730 arithmetically processes the images detected by the first detector 710 and the second detector 720, so that only optical property information of the specimen to be finally obtained can be obtained.
  • the dual channel scattering near-field scanning optical microscope (1) of the present invention is a cumbersome process of measuring images in two positions while the piezo transducer is moved to obtain only information on the optical properties of the specimen in the conventional s-NSOM.
  • Two polarization states coexist in the same path so that each polarization beam constitutes an independent interferometer, and polarization beams having different phases can be measured by dual channel detectors, so that only the optical properties of the specimen can be measured quickly.
  • the dual channel scattering near-field scanning optical microscope 1 of the present invention is adapted to environmental changes that may occur during the time that the piezo transducer moves to measure only the optical property information of the specimen without the shape information in the existing s-NSOM. It can block the effects and the images of two positions can be measured simultaneously by two detectors, which can reduce the measurement time and improve the reliability.
  • first beam splitter 320 second beam splitter
  • first phase difference plate 420 second phase difference plate
  • probe 510 focusing lens
  • first objective lens 620 second objective lens
  • first detector 720 second detector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

The present invention relates to a dual-channel scattering-type near-field scanning optical microscope and, more specifically, to a dual-channel scattering-type near-field scanning optical microscope characterized by two polarization states coexisting on the same path, each polarization beam forming independent interferometer, respectively, and polarization beams, which have different phases from each other, being measured in a dual-channel detector, respectively, thereby enabling quick measurement of only the optical-properties information of a specimen.

Description

듀얼 채널 산란형 근접장 주사광학 현미경Dual Channel Scattering Near Field Scanning Optical Microscope
본 발명은 듀얼 채널 산란형 근접장 주사광학 현미경에 관한 것으로서, 더욱 상세하게 동일 패스에 두 개의 편광상태가 공존하여 각각의 편광빔이 독립적인 간섭계를 구성하도록 하고, 서로 다른 위상을 갖는 편광빔을 듀얼 채널 검출기에서 각각 측정하여 시편의 광학물성 정보만을 신속하게 측정 가능한 듀얼 채널 산란형 근접장 주사광학 현미경에 관한 것이다.The present invention relates to a dual channel scattering near-field scanning optical microscope, and more particularly, two polarization states coexist in the same path so that each polarizing beam forms an independent interferometer, and dual polarizing beams having different phases The present invention relates to a dual channel scattering near field scanning optical microscope that can measure each of the optical properties of a specimen quickly by measuring each at a channel detector.
최근 마이크로 전자산업이나 자성재료 및 에너지 저장재료 내에서 구성소자 및 배선구조들의 선폭이 1um 단위 이하로 감소하는 추세에 따라 각 구성 재료들에 대한 특성 평가에 있어, 보다 정밀한 정확성, 분해능력, 안정성 및 신뢰성 등이 요구된다.As the line width of components and wiring structures in the microelectronics industry, magnetic materials and energy storage materials has recently decreased to less than 1 um, the characteristics of each component are evaluated more precisely, resolution, stability and Reliability is required.
특히 현미경 기술은 실제적으로 반응성이 있는 불균일한 표면에서의 재료의 여러 가지 특성을 평가하고 탐지하기 위하여, 선폭과 동일한 분해능을 가져야 한다.In particular, microscopy techniques must have the same resolution as the line width in order to evaluate and detect various properties of the material on practically reactive non-uniform surfaces.
1981년 이후, Binning와 Rohrer 등에 의해 주사 터널링 현미경(scanning tunneling microscope, STM) 및 원자력간 현미경(atomic force microscope, AFM) 이 개발된 이래, 다양한 형태의 주사 탐침 현미경(scanning probe microscope, SPM)이 발달되었다.Since 1981, since scanning tunneling microscope (STM) and atomic force microscope (AFM) were developed by Binning and Rohrer, various types of scanning probe microscope (SPM) have been developed. It became.
근접장 주사광학현미경(near-field scanning optical microscopy, NSOM)도 SPM을 기반으로 회절(diffraction) 한계 이하의 분해능(resolution)을 가지고, 국부적인 광학 혹은 광전자특성을 측정하는 장비이다.Near-field scanning optical microscopy (NSOM) is also a device that measures local optical or optoelectronic properties with a resolution below the diffraction limit based on SPM.
NSOM을 이용한 광학현미경법은 그 자체적으로도 주사 전자 현미경(scanning electron microscope, SEM)이나, 투과 전자 현미경(transmission electron microscope, TEM) 등의 전자현미경보다 월등한 장점을 가지고 있는데, 이는 비교적 간단한 샘플제작, 기상 및 액상에서도 가능한 작동환경 및 타현미경법과의 다양한 접목 등이다.Optical microscopy using NSOM has its own advantages over electron microscopes such as scanning electron microscope (SEM) and transmission electron microscope (TEM). And various combinations with other microscopy.
또한, AFM으로는 불가능한 불균일한 표면 및 이종재료 구분이 가능하다. 즉, NSOM을 통해 표면 고저 이미지(topography)와 동시에 여러 가지 광학 콘트라스트법(형광, 흡수, 반사, 편광, 복굴절 및 분광법)을 이용하여 얻게 되는 광학이미지를 비교하여 표면 구조를 특성화할 수 있는 것이다.In addition, it is possible to distinguish non-uniform surfaces and dissimilar materials which are not possible with AFM. In other words, NSOM enables the characterization of surface structures by comparing surface images with optical images obtained using various optical contrast methods (fluorescence, absorption, reflection, polarization, birefringence, and spectroscopy).
이것이 NSOM이 오늘날 가장 일반적으로 응용되는 SPM들 중의 하나인 이유이다.This is why NSOM is one of the most commonly applied SPMs today.
NSOM은 빛의 회절한계를 극복하여 수십 나노미터의 고분해능을 가지는 첨단 광학현미경이다. 기존의 광학 혹은 “원접장(far-field)" 범위의 분해능은 회절로 인해 상당히 제한적이라는 사실은 잘 알려져 있다.NSOM is an advanced optical microscope with high resolution of tens of nanometers that overcomes the diffraction limit of light. It is well known that conventional optical or "far-field" range resolutions are quite limited due to diffraction.
회절한계의 분해능은 일반적으로 λ/NA로 표현되고, 여기서 λ는 빛의 파장 그리고 NA는 현미경 대물렌즈의 조리개수이다. NA는 렌즈의 집광능력을 결정하고, 통상 수치가 클수록 많은 빛을 모을 수 있다. 또한, 짧은 파장의 빛을 사용할수록 분해능은 증가하는데, 이는 일반적으로 실험상의 어려움에 의해 제한된다.The resolution of the diffraction limit is usually expressed as λ / NA, where λ is the wavelength of light and NA is the aperture of the microscope objective. The NA determines the light collecting capability of the lens, and usually, the larger the value, the more light can be collected. Also, the use of short wavelength light increases the resolution, which is generally limited by experimental difficulties.
이 기본적인 제한은 회절 이하의 크기를 가지는 작은 구멍을 사용하여 빛을 집중시킴으로써 극복되었고, 곧 NSOM에 적용 가능한 50nm 이하의 광학이미지를 얻을 수 있게 되었다.This basic limitation was overcome by concentrating light using small holes with sub-diffraction sizes, which soon resulted in optical images below 50nm applicable to NSOM.
관련 기술로는 국내공개특허 제2003-0003249호(공개일 2003.01.09, 명칭 : 근접장 주사 광학 현미경)가 있다.Related technologies include Korean Patent Publication No. 2003-0003249 (published on Jan. 09, 2003, name: Near Field Scanning Optical Microscope).
도 1은 NSOM을 산란형 근접장 주사광학현미경(s-NSOM)의 개략도를 나타낸 도면이다.1 is a schematic diagram of a scattering type near field scanning optical microscope (s-NSOM) of NSOM.
도 1을 참고로 산란형 근접장 주사광학현미경(10)의 구성을 살펴보면, s-NSOM은 광원(11)과, 시편의 표면을 둘러싸는 근접장 영역으로 이동 가능한 탐침(12)과, 상기 광원으로부터 조사된 광을 분할하는 빔스플리터(13), 상기 탐침(12)과 샘플 표면 사이에 상대이동을 제공하기 위한 구동수단(미도시)과, 상기 빔스플리터(13)를 통과하여 분할된 빛을 cos position 및 sin position에서 각각 측정 가능하도록 z축으로 이동 가능한 피에조 트랜스듀서(15)에 의해 지지된 반사미러(16)와, 광검출기(17)를 포함하여 형성된다.Looking at the configuration of the scattering near-field scanning optical microscope 10 with reference to Figure 1, the s-NSOM is a light source 11, a probe 12 that is movable to the near-field region surrounding the surface of the specimen, and irradiated from the light source A beam splitter 13 for dividing the split light, driving means (not shown) for providing relative movement between the probe 12 and the sample surface, and cos position the light split through the beam splitter 13 And a reflection mirror 16 supported by the piezoelectric transducer 15 movable in the z-axis so as to be measurable at each sin position, and a photodetector 17.
상술한 바와 같이, s-NSOM은 상기 피에조 트랜스듀서가 이동하면서 cos position 및 sin position에서 측정한 이미지를 산술적으로 프로세싱 함으로써, 광학물성에 대한 정보만 획득할 수 있도록 하는데, 이와 같은 과정을 거치지 않고 한 포지션에서만 이미지를 측정하면 시편의 광학물성에 대한 정보와 형상정보가 섞이게 되어 원하는 데이터를 얻을 수 없게 된다.As described above, the s-NSOM arithmetically processes the image measured at the cos position and the sin position while the piezo transducer is moved, so that only information on the optical properties can be obtained. If the image is measured only at the position, the information about the optical properties of the specimen and the shape information are mixed and the desired data cannot be obtained.
즉, 기존의 s-NSOM에서는 시편의 광학물성에 대한 정보만을 얻기 위해서는 두 포지션에서 각각 이미지를 측정한 다음, 광검출기에서 산술적 프로세싱을 거쳐야만 하는데, 이런 과정은 매우 번거롭고 데이터의 신뢰성을 저하시킬 수 있다는 문제점이 있다.In other words, in the existing s-NSOM, in order to obtain only the information about the optical properties of the specimen, the images must be measured at two positions, and then subjected to arithmetic processing in the photodetector. This process is very cumbersome and can reduce the reliability of the data. There is a problem.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 동일 패스에 두 개의 편광상태가 공존하여 각각의 편광빔이 독립적인 간섭계를 구성하도록 하고, 서로 다른 위상을 갖는 편광빔을 듀얼 채널 검출기에서 각각 측정하여, 기존의 s-NSOM에서 시편의 광학물성에 대한 정보만을 얻기 위해 피에조 트랜스듀서가 이동하면서 두 포지션에서 각각 이미지를 측정하던 과정 없이, 시편의 광학물성 정보만을 신속하게 측정 가능한 듀얼 채널 산란형 근접장 주사광학 현미경을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is that two polarization states coexist in the same path so that each polarizing beam constitutes an independent interferometer, and polarizing beams having different phases Are measured by dual channel detectors, and only the optical properties of the specimen can be quickly measured without moving the piezo transducers to measure the images in two positions. To provide a measurable dual channel scattering near field scanning optical microscope.
본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경은 광을 조사하는 광원(100); 상기 광원(100)으로부터 발생된 광이 통과하여 제1편광 및 제2편광을 생성시키는 45도 편광판(200); 상기 45도 편광판(200)을 통과한 광을 분할하는 제1빔스플리터(310); 시편의 표면을 둘러싸는 근접장 내에 배치되어, 상기 제1빔스플리터(310)를 거쳐 집속렌즈(또는 거울)(510)를 통과한 광을 산란시키는 탐침(500); 상기 제1빔스플리터(310)를 거친 제1편광 및 제2편광이 통과된 다음, 반사미러에서 반사되는 과정을 통해, 상기 제1편광 및 제2편광 사이에 위상차가 발생되도록 하는 제1위상차판(410); 상기 반사미러에서 반사되어 상기 제1위상차판(410) 및 제1빔스플리터(310)를 통과한 다음, 상기 탐침(500)으로부터 산란된 광과 간섭시킨 제1편광 및 제2편광이, 서로 다른 패스로 분할되도록 하는 제2빔스플리터(320); 상기 제2빔스플리터(320)에서 분할된 제1편광 성분이 제1대물렌즈(610)를 통과하여 검출되는 제1검출기(710); 및, 상기 제2빔스플리터(320)에서 분할된 제2편광 성분이 제2대물렌즈(620)를 통과하여 검출되는 제2검출기(720); 을 포함하는 것을 특징으로 한다.Dual channel scattering near-field scanning optical microscope of the present invention comprises a light source (100) for irradiating light; A 45 degree polarizer 200 through which light generated from the light source 100 passes to generate first polarized light and second polarized light; A first beam splitter 310 for splitting the light passing through the 45 degree polarizer 200; A probe 500 disposed in a near field surrounding a surface of a specimen and scattering light passing through the focusing lens (or mirror) 510 through the first beam splitter 310; A first phase difference plate for generating a phase difference between the first polarized light and the second polarized light by passing the first polarized light and the second polarized light through the first beam splitter 310 and then reflecting the light on the reflection mirror. 410; The first polarized light and the second polarized light that are reflected by the reflection mirror and pass through the first phase difference plate 410 and the first beam splitter 310 and then interfere with the light scattered from the probe 500 are different from each other. A second beam splitter 320 for splitting into paths; A first detector 710 in which the first polarization component divided by the second beam splitter 320 is detected through the first objective lens 610; And a second detector 720 in which the second polarization component divided by the second beam splitter 320 is detected through the second object lens 620; Characterized in that it comprises a.
또한, 상기 주사광학 현미경(1)은 상기 광원이 상기 집속렌즈(510) 및 탐침(500)을 지나는 제1경로(L1)와, 상기 광원이 상기 제1위상차판(410) 및 반사미러(440)를 지나는 제2경로(L2)를 포함하되, 상기 제1경로(L1) 및 제2경로(L2) 중 어느 하나는 상기 제1빔스플리터(310)를 통과한 광이 지나가는 경로 상에 배치되고, 나머지 하나는 상기 제1빔스플리터(310)에서 반사된 광이 지나가는 경로 상에 배치될 수 있다.In addition, the scanning optical microscope 1 includes a first path L1 through which the light source passes through the focusing lens 510 and the probe 500, and the light source includes the first phase difference plate 410 and a reflection mirror 440. Including a second path (L2) passing through, wherein any one of the first path (L1) and the second path (L2) is disposed on the path through which the light passing through the first beam splitter 310 passes. The other one may be disposed on a path through which the light reflected by the first beam splitter 310 passes.
또한, 상기 제1위상차판(410)은 λ/8 wave plate일 수 있다.In addition, the first phase difference plate 410 may be a λ / 8 wave plate.
또한, 상기 산란형 근접장 주사광학 현미경(1)은 상기 제2경로(L2) 상에 위치하며, 상기 시편에 수직 또는 수평으로 조사되는 편광을 만들어주는 제2위상차판(420)과, 편광기(430)를 포함하여 형성될 수 있다.In addition, the scattering near-field scanning optical microscope (1) is located on the second path (L2), the second phase difference plate 420 and the polarizer 430 for making polarized light irradiated vertically or horizontally on the specimen, and the polarizer 430 It may be formed to include.
또한, 상기 제2위상차판(420)은 λ/2 wave plate 일 수 있다.In addition, the second phase difference plate 420 may be a λ / 2 wave plate.
또한, 상기 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 상기 제1검출기(710) 및 제2검출기(720)에서 검출된 이미지를 산술적으로 처리하는 제3검출기(730)를 포함하여 형성될 수 있다.In addition, the dual channel scattering type near field scanning optical microscope 1 may be formed to include a third detector 730 for arithmetically processing the images detected by the first detector 710 and the second detector 720. have.
또한, 상기 제1검출기(710), 제2검출기(720) 및 제3검출기(730)는 포토다이오드 ,CCD(charge coupled device), MCT(MOS Controlled Thyristor) 중 어느 하나일 수 있다.In addition, the first detector 710, the second detector 720, and the third detector 730 may be any one of a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT).
본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경은 기존의 s-NSOM에서 시편의 광학물성에 대한 정보만을 얻기 위해 피에조 트랜스듀서가 이동하면서 두 포지션에서 각각 이미지를 측정하던 번거로운 과정 없이, 동일 패스에 두 개의 편광상태가 공존하여 각각의 편광빔이 독립적인 간섭계를 구성하도록 하고, 서로 다른 위상을 갖는 편광빔을 듀얼 채널 검출기에서 각각 측정하여 시편의 광학물성 정보만을 신속하게 측정 가능하다는 장점이 있다.The dual-channel scattering near-field scanning optical microscope of the present invention is the same pass without the cumbersome process of measuring the image in both positions while moving the piezo transducer to obtain only the information about the optical properties of the specimen in the conventional s-NSOM, Polarization states coexist so that each polarization beam forms an independent interferometer, and polarization beams having different phases are measured by dual channel detectors so that only optical property information of the specimen can be quickly measured.
즉, 본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경은 기존의 s-NSOM에서 형상정보 없이 시편의 광학물성 정보만을 측정하기 위해 피에조 트랜스듀서가 이동하는 시간동안 발생될 수 있는 환경변화에 대한 영향을 차단할 수 있으며, 두 포지션에 대한 이미지를 검출기 두 개에서 각각 동시에 측정할 수 있어 측정 시간을 단축하고, 신뢰성을 향상시킬 수 있다.In other words, the dual-channel scattering near-field scanning optical microscope of the present invention has an effect on the environmental change that may occur during the movement of the piezo transducer to measure only the optical property information of the specimen without the shape information in the existing s-NSOM. It can block, and images of two positions can be measured simultaneously by two detectors, reducing measurement time and improving reliability.
도 1은 종래의 산란형 근접장 주사광학 현미경(s-NSOM)을 나타낸 개략도.1 is a schematic diagram showing a conventional scattered near field scanning optical microscope (s-NSOM).
도 2는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경의 일실시예를 나타낸 개략도.Figure 2 is a schematic diagram showing an embodiment of a dual channel scattering near field scanning optical microscope according to the present invention.
도 3 및 도 4는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경의 또 다른 실시예를 나타낸 개략도. 3 and 4 are schematic diagrams showing yet another embodiment of a dual channel scattering near field scanning optical microscope according to the present invention.
도 5는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경에서 제1위상차판을 거친 제1편광 및 제2편광의 위상차를 개념적으로 나타낸 그래프.5 is a graph conceptually illustrating the phase difference between the first polarization and the second polarization through the first phase difference plate in the dual channel scattering near field scanning optical microscope according to the present invention.
이하, 상술한 바와 같은 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경을 첨부된 도면을 참조로 상세히 설명한다.Hereinafter, a dual channel scattering near-field scanning optical microscope according to the present invention as described above will be described in detail with reference to the accompanying drawings.
도 1은 종래의 산란형 근접장 주사광학 현미경(s-NSOM)을 나타낸 개략도이며, 도 2는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경의 일실시예를 나타낸 개략도이고, 도 3 및 도 4는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경의 또 다른 실시예를 나타낸 개략도이며, 도 5는 본 발명에 따른 듀얼 채널 산란형 근접장 주사광학 현미경에서 제1위상차판을 거친 제1편광 및 제2편광의 위상차를 개념적으로 나타낸 그래프이다.1 is a schematic diagram showing a conventional scattering near-field scanning optical microscope (s-NSOM), Figure 2 is a schematic diagram showing an embodiment of a dual channel scattering near-field scanning optical microscope according to the present invention, Figures 3 and 4 Is a schematic view showing another embodiment of a dual channel scattering near field scanning optical microscope according to the present invention, Figure 5 is a first polarization and the first polarization plate through the first phase difference plate in the dual channel scattering near field scanning optical microscope according to the present invention It is a graph conceptually showing the phase difference of two polarizations.
도 2에 도시된 바와 같이, 본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 광원(100)에서 조사된 광이 시편과 탐침(500)에서 반사된 후, 간섭되는 광의 간섭무늬를 촬영하여 시편의 내부 구조와 광학 물성을 측정하는 것으로, 크게 광원(100), 45도 편광판(200), 제1빔스플리터(310), 탐침(500), 제1위상차판(410), 제2빔스플리터(320), 제1검출기(710) 및 제2검출기(720)를 포함하여 형성된다.As shown in FIG. 2, the dual channel scattering near-field scanning optical microscope 1 of the present invention photographs an interference pattern of interfering light after the light emitted from the light source 100 is reflected from the specimen and the probe 500. By measuring the internal structure and optical properties of the specimen, the light source 100, 45 degree polarizer 200, the first beam splitter 310, the probe 500, the first phase plate 410, the second beam The splitter 320 is formed to include a first detector 710 and a second detector 720.
먼저, 상기 광원(100)은 광을 조사하는 광발생원으로서, 적외선, 가시광선 및 자외선 중 어느 하나를 발생시킬 수 있다.First, the light source 100 is a light source for irradiating light, and may generate any one of infrared rays, visible rays, and ultraviolet rays.
상기 45도 편광판(200)은 상기 광원(100)으로부터 발생된 광이 통과하면서 서로 다른 성분의 제1편광 및 제2편광을 발생시킨다.The 45-degree polarizer 200 generates the first and second polarized light having different components while the light generated by the light source 100 passes.
이때, 제1편광 및 제2편광은 동일 패스 상에 공존하는 것으로, 각각의 편광빔이 독립적인 간섭계를 구성하게 된다.In this case, the first polarized light and the second polarized light coexist on the same path, and each polarizing beam constitutes an independent interferometer.
도 2에 도시된 바와 같이, 상기 제1빔스플리터(310)는 상기 45도 편광판(200)을 통과한 광이 소정 비율로 분할되도록 하며, 이때, 상기 광원(100)에서 출사된 광의 일부 광이 반사되어 반사미러를 향해 진행된다.As shown in FIG. 2, the first beam splitter 310 divides the light passing through the 45 degree polarizer 200 at a predetermined ratio, and at this time, part of the light emitted from the light source 100 Reflected and proceeds towards the reflecting mirror.
상기 제1빔스플리터(310)와 반사미러 사이의 광경로 상에는 서로 다른 성분의 제1편광 및 제2편광의 위상을 변환시키기 위한 제1위상차판(410)이 더 구비된다.The first phase difference plate 410 is further provided on the optical path between the first beam splitter 310 and the reflection mirror to convert phases of the first and second polarizations having different components.
상기 제1위상차판(410)은 상기 제1빔스플리터(310)에서 반사된 일부 광이 통과한 다음 상기 반사미러에서 다시 반사되어 통과하는 과정을 통해 제1편광 및 제2편광 사이에 위상차가 발생되도록 한다.The first phase difference plate 410 generates a phase difference between the first polarized light and the second polarized light by passing some light reflected by the first beam splitter 310 and then reflecting the light again on the reflective mirror. Be sure to
이때, 상기 제1위상차판(410)은 λ/8 wave plate로, 제1편광 및 제2편광이 반사미러에 의해 반사됨으로써 두 번 통과하게 되어 총 λ/4의 위상차가 발생되도록 한다.In this case, the first phase difference plate 410 is a λ / 8 wave plate, and the first polarization and the second polarization are reflected by the reflection mirror so as to pass twice, thereby generating a total phase difference of λ / 4.
도 5는 제1위상차판(410)을 거친 제1편광 및 제2편광의 위상차를 개념적으로 나타낸 그래프인데, 제1편광이 cosine position의 광을 의미한다면 제2편광은 sine position의 광을 의미하며, 제1편광 및 제2편광의 위상차는 90°가 될 수 있다.FIG. 5 is a graph conceptually illustrating the phase difference between the first polarization and the second polarization that passed through the first phase difference plate 410. If the first polarization means light at the cosine position, the second polarization means light at the sine position. The phase difference between the first polarized light and the second polarized light may be 90 °.
상기 탐침(500)은 시편의 표면을 둘러싸는 근접장 내에 배치되어, 상기 제1빔스플리터(310)를 거쳐 집속렌즈(또는 거울)(510)를 통과한 광을 산란시키는 것으로, AFM(Atomic force microscope) 탐침(500)일 수 있다.The probe 500 is disposed in a near field surrounding the surface of the specimen, and scatters the light passing through the focusing lens (or mirror) 510 through the first beam splitter 310, Atomic force microscope May be a probe 500.
이때, 본 발명의 주사광학 현미경(1)은 상기 광원이 상기 집속렌즈(510) 및 탐침(500)을 지나는 제1경로(L1)와, 상기 광원이 상기 제1위상차판(410) 및 반사미러(440)를 지나는 제2경로(L2)를 포함하되, 상기 제1경로(L1) 및 제2경로(L2) 중 어느 하나는 상기 제1빔스플리터(310)를 통과한 광이 지나가는 경로 상에 배치되고, 나머지 하나는 상기 제1빔스플리터(310)에서 반사된 광이 지나가는 경로 상에 배치될 수 있다.In this case, the scanning optical microscope 1 includes a first path L1 through which the light source passes through the focusing lens 510 and the probe 500, and the light source includes the first phase difference plate 410 and a reflection mirror. And a second path L2 passing through 440, wherein any one of the first path L1 and the second path L2 is on a path through which the light passing through the first beam splitter 310 passes. The other one may be disposed on a path through which the light reflected by the first beam splitter 310 passes.
즉, 도 2에 도시된 바와 같이, 상기 제1빔스플리터(310)를 통과한 광이 지나가는 경로 상에 집속렌즈(510)가 배치되고, 반사된 광이 지나가는 경로 상에 제1위상차판(410)이 배치될 수도 있으며, 도 4에 도시된 바와 같이, 상기 집속렌즈(510) 및 제1위상차판(410)이 서로 반대 위치에 배치될 수도 있다.That is, as shown in FIG. 2, a focusing lens 510 is disposed on a path through which the light passing through the first beam splitter 310 passes, and a first phase difference plate 410 on a path through which the reflected light passes. ) May be disposed, and as shown in FIG. 4, the focusing lens 510 and the first phase difference plate 410 may be disposed at opposite positions to each other.
반대 위치에 배치되는 경우, 도 2에서 상기 제1위상차판(410) 및 반사미러(440)의 위치와, 상기 탐침(500) 및 집속렌즈(510)의 위치가 서로 바뀌게 된다.When disposed in the opposite position, the position of the first phase difference plate 410 and the reflection mirror 440, and the position of the probe 500 and the focusing lens 510 in FIG.
본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 상기 탐침(500)과 시편 표면 사이에 상대이동을 제공하기 위한 구동수단을 더 포함하여 형성되며, 상기 구동수단은 상기 탐침(500)을 x, y, z 축으로 이동시킬 수도 있으며, 시편을 x, y, z 축으로 이동시킬 수도 있다.The dual channel scattering near-field scanning optical microscope 1 of the present invention further includes driving means for providing relative movement between the probe 500 and the surface of the specimen, and the driving means includes the probe 500. The x, y, z axis can be moved, and the specimen can be moved on the x, y, z axis.
또한, 본 발명의 산란형 근접장 주사광학 현미경(1)은 상기 제2경로 상(L2)에 위치하며, 상기 시편에 수직 또는 수평으로 조사되는 편광을 만들어주는 제2위상차판(420)과, 편광기(430)를 더 포함하여 형성될 수 있다.In addition, the scattering near-field scanning optical microscope 1 of the present invention is located on the second path image (L2), the second phase difference plate 420 for making polarized light irradiated vertically or horizontally on the specimen, and a polarizer 430 may be further included.
이때, 상기 제2위상차판(420)은 λ/2 wave plate로, 광이 탐침(500)에 도달 후 다시 반사됨으로써, 두 번 통과하게 되면서 위상차는 발생되지 않는다.In this case, the second phase difference plate 420 is a λ / 2 wave plate, and the light is reflected again after reaching the probe 500 so that the second phase difference plate 420 passes twice and no phase difference is generated.
종래의 산란형 근접장 주사광학 현미경(1)은 상기 제1빔스플리터(310) 및 탐침(500) 사이 광경로 상에 제2위상차판(420) 및 편광기(430) 없이, 탐침(500)에 입사되는 편광 각도를 직접 조절해야만 했다.The conventional scattering near field scanning optical microscope 1 is incident on the probe 500 without the second phase difference plate 420 and the polarizer 430 on the optical path between the first beam splitter 310 and the probe 500. The polarization angle to be adjusted had to be adjusted directly.
다음으로, 상기 제2빔스플리터(320)는 상기 반사미러에서 반사되어 상기 제1위상차판(410) 및 제1빔스플리터(310)를 통과한 다음, 상기 탐침(500)으로부터 산란된 광과 간섭시킨 제1편광 및 제2편광이 서로 다른 패스로 분할되도록 한다.Next, the second beam splitter 320 is reflected by the reflection mirror, passes through the first phase difference plate 410 and the first beam splitter 310, and then interferes with light scattered from the probe 500. The first polarized light and the second polarized light are divided into different paths.
이때, 상기 제2빔스플리터(320)를 통과하는 제1편광 및 제2편광은 이미 상기 제1위상차판(410)에 의해 위상차가 발생된 상태로 상기 탐침(500)으로부터 산란된 광과 간섭이 이루어진다.At this time, the first polarized light and the second polarized light passing through the second beam splitter 320 have interference with the light scattered from the probe 500 in a state where the phase difference is generated by the first phase difference plate 410. Is done.
이후, 상기 제1검출기(710)에서는 상기 제2빔스플리터(320)에서 분할된 제1편광 성분이 제1대물렌즈(610)를 통과하여 검출되며, 상기 제2검출기(720)에서는 상기 제2빔스플리터(320)에서 분할된 제2편광 성분이 제2대물렌즈(620)를 통과하여 검출된다.Subsequently, in the first detector 710, the first polarization component divided by the second beam splitter 320 is detected through the first objective lens 610, and in the second detector 720, the second polarization component is detected. The second polarization component split by the beam splitter 320 is detected by passing through the second objective lens 620.
본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 상기 제1검출기(710) 및 제2검출기(720)에서 검출된 이미지를 산술적으로 처리하여, 최종적으로 얻고자 하는 시편의 광학적 물성 정보만을 획득할 수 있는 제3검출기(730)를 더 포함하여 형성될 수 있다.The dual channel scattering near-field scanning optical microscope 1 of the present invention arithmetically processes the images detected by the first detector 710 and the second detector 720, and finally obtains only the optical property information of the specimen to be obtained. It may be formed by further comprising a third detector 730 that can be obtained.
상기 제1검출기(710), 제2검출기(720) 및 제3검출기(730)는 포토다이오드 ,CCD(charge coupled device), MCT(MOS Controlled Thyristor) 중 어느 하나일 수 있다.The first detector 710, the second detector 720, and the third detector 730 may be any one of a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT).
상기 제1검출기(710), 제2검출기(720) 및 제3검출기(730)는 빛의 파장에 따라 포토다이오드 ,CCD(charge coupled device), MCT(MOS Controlled Thyristor) 중 적절히 선택하여 사용하는 것이 바람직하다.The first detector 710, the second detector 720, and the third detector 730 are appropriately selected from a photodiode, a charge coupled device (CCD), and a MOS controlled thyristor (MCT) according to the wavelength of light. desirable.
도 3을 참조로, 본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)의 작동과정을 설명하면,Referring to Figure 3, when explaining the operation of the dual channel scattering near-field scanning optical microscope (1) of the present invention,
먼저 광원(100)으로부터 조사된 광은 상기 45도 편광판(200)을 통과하면서 제1편광 성분 및 제2편광 성분이 존재하게 된다.Firstly, the light irradiated from the light source 100 passes through the 45 degree polarizer 200, and thus the first and second polarization components are present.
이후, 상기 제1빔스플리터(310)를 통과한 광은 소정비율로 분할되는데, 상기 탐침(500) 측으로 진행하는 광과, 상기 반사미러 측으로 진행하는 광으로 분할된다.Thereafter, the light passing through the first beam splitter 310 is divided into a predetermined ratio, and is divided into light traveling toward the probe 500 and light traveling toward the reflection mirror.
상기 반사미러(440) 측으로 진행하는 광은 광경로 상에 위치한 상기 제1위상차판(410)을 통과한 다음 상기 반사미러에서 반사되어 다시 한 번 상기 제1위상차판(410)을 통과하게 되고, 이 과정을 통해 제1편광 및 제2편광 사이에 위상차가 발생하게 된다.The light traveling toward the reflection mirror 440 passes through the first phase difference plate 410 located on the optical path, and is then reflected by the reflection mirror to pass through the first phase difference plate 410 once again. Through this process, a phase difference occurs between the first polarization and the second polarization.
상기 제1위상차판(410)은 λ/8 wave plate일 때, 상기 제1편광 및 제2편광 사이에는 λ/4의 위상차가 생긴다.When the first phase difference plate 410 is a λ / 8 wave plate, a phase difference of λ / 4 occurs between the first polarization and the second polarization.
이후, 광은 상기 제1빔스플리터(310)를 지나 , 상기 제2빔스플리터(320)를 통과하면서 상기 탐침(500)으로부터 산란된 광과 간섭시킨 제1편광 및 제2편광이 서로 다른 패스로 분할된다.Thereafter, the light passes through the first beam splitter 310 and passes through the second beam splitter 320 in a different path between the first polarized light and the second polarized light which interfere with the light scattered from the probe 500. Divided.
이때, 상기 제1편광 성분은 제1대물렌즈(610)를 지나 제1검출기(710)에 도달하게 되며, 상기 제2편광 성분은 제2대물렌즈(620)를 지나 제2검출기(720)에 도달하게 된다.In this case, the first polarized light component passes through the first objective lens 610 to reach the first detector 710, and the second polarized light component passes through the second objective lens 620 to the second detector 720. Will be reached.
마지막으로, 상기 제3검출기(730)에서는 상기 제1검출기(710) 및 제2검출기(720)에서 검출된 이미지를 산술적으로 처리하여, 최종적으로 얻고자 하는 시편의 광학적 물성 정보만을 얻을 수 있다.Finally, the third detector 730 arithmetically processes the images detected by the first detector 710 and the second detector 720, so that only optical property information of the specimen to be finally obtained can be obtained.
이에 따라, 본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 기존의 s-NSOM에서 시편의 광학물성에 대한 정보만을 얻기 위해 피에조 트랜스듀서가 이동하면서 두 포지션에서 각각 이미지를 측정하던 번거로운 과정 없이, 동일 패스에 두 개의 편광상태가 공존하여 각각의 편광빔이 독립적인 간섭계를 구성하도록 하고, 서로 다른 위상을 갖는 편광빔을 듀얼 채널 검출기에서 각각 측정하여 시편의 광학물성 정보만을 신속하게 측정 가능하다.Accordingly, the dual channel scattering near-field scanning optical microscope (1) of the present invention is a cumbersome process of measuring images in two positions while the piezo transducer is moved to obtain only information on the optical properties of the specimen in the conventional s-NSOM. Two polarization states coexist in the same path so that each polarization beam constitutes an independent interferometer, and polarization beams having different phases can be measured by dual channel detectors, so that only the optical properties of the specimen can be measured quickly. Do.
즉, 본 발명의 듀얼 채널 산란형 근접장 주사광학 현미경(1)은 기존의 s-NSOM에서 형상정보 없이 시편의 광학물성 정보만을 측정하기 위해 피에조 트랜스듀서가 이동하는 시간동안 발생될 수 있는 환경변화에 대한 영향을 차단할 수 있으며, 두 포지션에 대한 이미지를 검출기 두 개에서 각각 동시에 측정할 수 있어 측정 시간을 단축하고, 신뢰성을 향상시킬 수 있다.That is, the dual channel scattering near-field scanning optical microscope 1 of the present invention is adapted to environmental changes that may occur during the time that the piezo transducer moves to measure only the optical property information of the specimen without the shape information in the existing s-NSOM. It can block the effects and the images of two positions can be measured simultaneously by two detectors, which can reduce the measurement time and improve the reliability.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. It goes without saying that modifications can be made.
(부호의 설명)(Explanation of the sign)
1 : 듀얼 채널 산란형 근접장 주사광학현미경1: Dual Channel Scattering Near Field Scanning Optical Microscope
100 : 광원100: light source
200 : 45도 편광판200: 45 degree polarizer
310 : 제1빔스플리터 320 : 제2빔스플리터310: first beam splitter 320: second beam splitter
410 : 제1위상차판 420 : 제2위상차판410: first phase difference plate 420: second phase difference plate
430 : 편광기 440 : 반사미러430 polarizer 440 reflection mirror
500 : 탐침 510 : 집속렌즈500: probe 510: focusing lens
610 : 제1대물렌즈 620 : 제2대물렌즈610: first objective lens 620: second objective lens
710 : 제1검출기 720 : 제2검출기710: first detector 720: second detector
730 : 제3검출기730: third detector

Claims (7)

  1. 광을 조사하는 광원(100);A light source 100 for irradiating light;
    상기 광원(100)으로부터 발생된 광이 통과하여 제1편광 및 제2편광을 생성시키는 45도 편광판(200);A 45 degree polarizer 200 through which light generated from the light source 100 passes to generate first polarized light and second polarized light;
    상기 45도 편광판(200)을 통과한 광을 분할하는 제1빔스플리터(310);A first beam splitter 310 for splitting the light passing through the 45 degree polarizer 200;
    시편의 표면을 둘러싸는 근접장 내에 배치되어, 상기 제1빔스플리터(310)를 거쳐 집속렌즈(510)를 통과한 광을 산란시키는 탐침(500);A probe 500 disposed in a near field surrounding a surface of a specimen to scatter light passing through the focusing lens 510 through the first beam splitter 310;
    상기 제1빔스플리터(310)를 거친 제1편광 및 제2편광이 통과된 다음, 반사미러(440)에서 반사되는 과정을 통해, 상기 제1편광 및 제2편광 사이에 위상차가 발생되도록 하는 제1위상차판(410);The first polarization and the second polarized light passing through the first beam splitter 310 is passed, and then reflected by the reflection mirror 440, a phase difference between the first polarized light and the second polarized light is generated 1 phase difference plate 410;
    상기 반사미러에서 반사되어 상기 제1위상차판(410) 및 제1빔스플리터(310)를 통과한 다음, 상기 탐침(500)으로부터 산란된 광과 간섭시킨 제1편광 및 제2편광이, 서로 다른 패스로 분할되도록 하는 제2빔스플리터(320);The first polarized light and the second polarized light that are reflected by the reflection mirror and pass through the first phase difference plate 410 and the first beam splitter 310 and then interfere with the light scattered from the probe 500 are different from each other. A second beam splitter 320 for splitting into paths;
    상기 제2빔스플리터(320)에서 분할된 제1편광 성분이 제1대물렌즈(610)를 통과하여 검출되는 제1검출기(710); 및A first detector 710 in which the first polarization component divided by the second beam splitter 320 is detected through the first objective lens 610; And
    상기 제2빔스플리터(320)에서 분할된 제2편광 성분이 제2대물렌즈(620)를 통과하여 검출되는 제2검출기(720); 을 포함하는 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.A second detector 720 which detects a second polarization component divided by the second beam splitter 320 through the second object lens 620; Dual channel scattering type near field scanning optical microscope comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 주사광학 현미경(1)은The scanning optical microscope (1)
    상기 광원이 상기 집속렌즈(510) 및 탐침(500)을 지나는 제1경로(L1)와,A first path L1 through which the light source passes through the focusing lens 510 and the probe 500;
    상기 광원이 상기 제1위상차판(410) 및 반사미러(440)를 지나는 제2경로(L2)를 포함하되,The light source includes a second path L2 passing through the first phase difference plate 410 and the reflection mirror 440,
    상기 제1경로(L1) 및 제2경로(L2) 중 어느 하나는 상기 제1빔스플리터(310)를 통과한 광이 지나가는 경로 상에 배치되고,One of the first path L1 and the second path L2 is disposed on a path through which the light passing through the first beam splitter 310 passes.
    나머지 하나는 상기 제1빔스플리터(310)에서 반사된 광이 지나가는 경로 상에 배치되는 것을 특징으로 하는 근접장 주사광학 현미경.And the other is disposed on a path through which the light reflected by the first beam splitter 310 passes.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제1위상차판(410)은The first phase difference plate 410 is
    λ/8 wave plate 인 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.Dual channel scattered near field scanning optical microscope, characterized in that the lambda / 8 wave plate.
  4. 제 2항에 있어서,The method of claim 2,
    상기 산란형 근접장 주사광학 현미경(1)은The scattering near field scanning optical microscope (1)
    상기 제2경로(L2) 상에 위치하며, 상기 시편에 수직 또는 수평으로 조사되는 편광을 만들어주는 제2위상차판(420)과, 편광기(430)를 포함하여 형성되는 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.Located on the second path (L2), the dual channel scattering, characterized in that it comprises a second phase difference plate 420 and polarizer 430 to make the polarized light irradiated vertically or horizontally on the specimen Type near field scanning optical microscope.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제2위상차판(420)은The second phase difference plate 420 is
    λ/2 wave plate 인 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.Dual channel scattered near field scanning optical microscope, characterized in that the lambda / 2 wave plate.
  6. 제 2항에 있어서,The method of claim 2,
    상기 듀얼 채널 산란형 근접장 주사광학 현미경(1)은The dual channel scattering near field scanning optical microscope (1)
    상기 제1검출기(710) 및 제2검출기(720)에서 검출된 이미지를 산술적으로 처리하는 제3검출기(730)를 포함하여 형성되는 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.Dual channel scattering type near field scanning optical microscope, characterized in that it comprises a third detector (730) for arithmetically processing the image detected by the first detector (710) and the second detector (720).
  7. 제 6항에 있어서,The method of claim 6,
    상기 제1검출기(710), 제2검출기(720) 및 제3검출기(730)는The first detector 710, the second detector 720 and the third detector 730 is
    포토다이오드 ,CCD(charge coupled device), MCT(MOS Controlled Thyristor) 중 어느 하나인 것을 특징으로 하는 듀얼 채널 산란형 근접장 주사광학 현미경.Dual channel scattered near field scanning optical microscope, characterized in that any one of a photodiode, a charge coupled device (CCD), a MOS controlled thyristor (MCT).
PCT/KR2017/001191 2016-02-05 2017-02-03 Dual-channel scattering-type near-field scanning optical microscope WO2017135732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160014569A KR101791669B1 (en) 2016-02-05 2016-02-05 Dual channel scattering near-field scanning optical microscopy
KR10-2016-0014569 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135732A1 true WO2017135732A1 (en) 2017-08-10

Family

ID=59500878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001191 WO2017135732A1 (en) 2016-02-05 2017-02-03 Dual-channel scattering-type near-field scanning optical microscope

Country Status (2)

Country Link
KR (1) KR101791669B1 (en)
WO (1) WO2017135732A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019152018A1 (en) * 2018-01-31 2019-08-08 Cameca Instruments, Inc. Energy beam input to atom probe specimens from multiple angles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100192097B1 (en) * 1994-11-28 1999-06-15 모리시따 요오이 찌 Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
US20050174578A1 (en) * 2004-02-10 2005-08-11 Jay Wei High efficiency low coherence interferometry
KR100906508B1 (en) * 2008-06-12 2009-07-07 (주)펨트론 3d measurement apparatus using digital holography
KR20130039005A (en) * 2011-10-11 2013-04-19 (주)미래컴퍼니 Three dimensional depth and shape measuring device
US20140233016A1 (en) * 2010-02-05 2014-08-21 Applejack 199 L,P., Method and system for measuring patterned substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100192097B1 (en) * 1994-11-28 1999-06-15 모리시따 요오이 찌 Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
US20050174578A1 (en) * 2004-02-10 2005-08-11 Jay Wei High efficiency low coherence interferometry
KR100906508B1 (en) * 2008-06-12 2009-07-07 (주)펨트론 3d measurement apparatus using digital holography
US20140233016A1 (en) * 2010-02-05 2014-08-21 Applejack 199 L,P., Method and system for measuring patterned substrates
KR20130039005A (en) * 2011-10-11 2013-04-19 (주)미래컴퍼니 Three dimensional depth and shape measuring device

Also Published As

Publication number Publication date
KR20170093327A (en) 2017-08-16
KR101791669B1 (en) 2017-10-30

Similar Documents

Publication Publication Date Title
CN106595521B (en) vertical objective lens type Mueller matrix imaging ellipsometer based on liquid crystal phase modulation
US5442448A (en) Device for the laterally resolved investigation of a laterally heterogeneous ultrathin object layer
JP3708260B2 (en) Differential interference microscope
US7414786B2 (en) System and method converting the polarization state of an optical beam into an inhomogeneously polarized state
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US7323684B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
CN101231239A (en) System and method for measuring light spectrum bias ellipsoid imaging with changing incidence angle
KR100941980B1 (en) The minute measuring instrument for hign speed and large area and the method of thereof
US5859364A (en) Scanning probe microscope
US20040145748A1 (en) Multi-function opto-electronic detection apparatus
US10073045B2 (en) Optical method and system for measuring isolated features of a structure
US8209767B1 (en) Near field detection for optical metrology
US6693711B1 (en) Ellipsometer using radial symmetry
Oesterschulze et al. Cantilever probes for SNOM applications with single and double aperture tips
CN201000428Y (en) Varied incident angle spectrum ellipsometric imaging device for nana film surface measurement
WO2017135732A1 (en) Dual-channel scattering-type near-field scanning optical microscope
JP3073268B2 (en) Small displacement detection method
Nazirizadeh et al. Material-based three-dimensional imaging with nanostructured surfaces
Tan et al. Development of a tomographic Mueller-matrix scatterometer for nanostructure metrology
KR100951110B1 (en) Line Scan Type High Resolution Ellipsometer
WO2022025385A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
EP0522356B1 (en) Method for detecting structural defect of film
JP7471938B2 (en) Ellipsometer and semiconductor device inspection device
JP3523754B2 (en) Scanning probe microscope
KR101493836B1 (en) Microscopy Scanning Photocurrent and Photovoltage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747777

Country of ref document: EP

Kind code of ref document: A1