WO2017131035A1 - Nanofiber and nonwoven cloth - Google Patents

Nanofiber and nonwoven cloth Download PDF

Info

Publication number
WO2017131035A1
WO2017131035A1 PCT/JP2017/002554 JP2017002554W WO2017131035A1 WO 2017131035 A1 WO2017131035 A1 WO 2017131035A1 JP 2017002554 W JP2017002554 W JP 2017002554W WO 2017131035 A1 WO2017131035 A1 WO 2017131035A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
nanofiber
cellulose acylate
nonwoven fabric
temperature
Prior art date
Application number
PCT/JP2017/002554
Other languages
French (fr)
Japanese (ja)
Inventor
竜太 竹上
邦行 神長
片井 幸祐
幸助 谷口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187021457A priority Critical patent/KR102053562B1/en
Priority to JP2017564311A priority patent/JP6616849B2/en
Priority to CN201780007921.2A priority patent/CN108495958B/en
Publication of WO2017131035A1 publication Critical patent/WO2017131035A1/en
Priority to US16/044,602 priority patent/US20180327932A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/013Regenerated cellulose series
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/28Cellulose esters or ethers, e.g. cellulose acetate

Definitions

  • the present invention relates to a nanofiber and a nonwoven fabric using cellulose acylate.
  • Nanofibers that is, fibers with a nano-order diameter of several nanometers or more and less than 1000 nm are used as materials for products such as biofilters, sensors, fuel cell electrode materials, precision filters, electronic paper, etc. Development of applications in various fields is actively conducted.
  • Patent Document 1 states that “a harmful substance removing material comprising a carrier composed of fibers, wherein the fiber diameter is 10 nm or more and 1 ⁇ m or less, and the pore diameter of the carrier is 100 ⁇ m or more and 1 mm or less.
  • fibers constituting the carrier include fibers mainly composed of cellulose ester and cellulose acylate fibers ([Claim 3). ], [0019] to [0021]).
  • the present inventors examined nanofibers produced using cellulose acylate. Depending on the type of cellulose acylate used, the uniformity of the fiber diameter of the produced nanofibers was inferior, and a nonwoven fabric was produced. It was clarified that the appearance may be inferior when
  • an object of the present invention is to provide nanofibers having excellent fiber diameter uniformity and good appearance when a nonwoven fabric is produced, and a nonwoven fabric using the nanofiber.
  • the inventors of the present invention have a nanofiber produced using cellulose acylate having a specific substitution degree, excellent in fiber diameter uniformity, and appearance when a nonwoven fabric is produced. And the present invention was completed. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • the nonwoven fabric according to [8] which is used for a medical filter or mask.
  • nanofibers having excellent fiber diameter uniformity and good appearance when a nonwoven fabric is produced, and a nonwoven fabric using the nanofiber.
  • FIG. 1 is a schematic view of a nanofiber production apparatus.
  • FIG. 2 is a cross-sectional view showing the tip of the nozzle.
  • FIG. 3 shows a scanning electron microscope (Scanning / Electron / Microscope: SEM) image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Example 1.
  • 4 shows an SEM image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Example 2.
  • FIG. FIG. 5 shows an SEM image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Comparative Example 1.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • nanofiber The nanofiber of the present invention is a nanofiber containing cellulose acylate whose degree of substitution satisfies the following formula (1). 2.75 ⁇ degree of substitution ⁇ 2.95 (1)
  • nanofiber in the present specification refers to a fiber having an average fiber diameter of 10 nm or more and 1000 nm or less measured by a measurement method described later.
  • An average fiber diameter means the value measured as follows.
  • the surface of the nonwoven fabric made of nanofibers is observed with a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Observation with an electron microscope image is performed at a magnification selected from 1000 to 5000 times according to the size of the constituent fibers.
  • magnification selected from 1000 to 5000 times according to the size of the constituent fibers.
  • the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicularly intersecting with the straight line X is drawn in the same image, and 20 or more fibers intersect with the straight line Y.
  • the width (minor axis of the fiber) of at least 20 fibers is read for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y. .
  • the fiber diameters of at least 40 ⁇ 3 sets are read. The fiber diameters thus read are averaged to obtain the average fiber diameter.
  • the average fiber length of a cellulose fiber means the value measured as follows. That is, the fiber length of the cellulose fiber can be determined by analyzing the electron microscope observation image used when measuring the above-described average fiber diameter. Specifically, at least 20 fibers (that is, a total of at least 40 fibers) are read for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y with respect to the electron microscope observation image as described above. . In this way, at least three or more sets of electron microscope images as described above are observed, and the fiber length of at least 40 ⁇ 3 sets (that is, at least 120 sets) is read. The average fiber length is obtained by averaging the fiber lengths thus read.
  • the nanofiber of the present invention contains cellulose acylate having a degree of substitution of 2.75 or more and 2.95 or less, so that the fiber diameter is excellent in uniformity and the appearance when a nonwoven fabric is produced is good. Become.
  • electrospinning method an electrospinning method
  • a cellulose acylate having a substitution degree of 2.75 or more and 2.95 or less is used. By using it, the crystallinity of cellulose acylate is increased, so that the spinning into droplets is suppressed, and the entanglement of cellulose acylate molecules is promoted.
  • the ratio of the average fiber length to the average fiber diameter is 1000 because it is easy to produce a single nonwoven fabric composed of nanofibers.
  • the above is preferable, 2500 to 20000 is more preferable, and 5000 to 20000 is particularly preferable.
  • the nanofiber of the present invention preferably has an average fiber diameter of 50 to 800 nm, more preferably 100 to 600 nm, because the mechanical strength of the fiber is high and a nonwoven fabric can be easily produced.
  • the average fiber diameter is 50 to 800 nm, effects such as a size effect, a supramolecular arrangement effect, a cell recognition effect, and a hierarchical structure effect can be expected.
  • the nanofiber of the present invention preferably has an average fiber length of 500 ⁇ m or more, more preferably 1 mm or more, for the purpose of preventing the fibers from fraying when a nonwoven fabric is formed. More preferably, it is 5 to 5 mm.
  • the nanofiber of the present invention has a further improved viscosity of a fiber diameter and a better appearance when a nonwoven fabric is produced.
  • the reason why such an effect can be obtained is that when nanofibers are produced using the electrospinning method, it is possible to suppress spinning into droplets, and also to suppress nozzle burr. Conceivable.
  • the present inventors infer the reason why the uniformity of the fiber diameter is improved by controlling the substitution degree of cellulose acylate and the 6% solution viscosity.
  • a method for controlling the entanglement of the polymer (a) a method for enhancing the interaction (crystallinity) between molecules (hereinafter abbreviated as “method (a)”), (b) The method of increasing the length (molecular weight) (hereinafter abbreviated as “method (b)” in this paragraph) was presumed to be useful.
  • the substitution degree of cellulose acylate is adjusted to perform the method (a), and the 6% solution viscosity is adjusted to perform the method (b).
  • the adjustment of the degree of substitution of cellulose acylate suppresses the formation of a sudden entanglement in the late stage of drying
  • the adjustment of the 6% solution viscosity controls the formation of the entanglement in the early stage of drying, which is entangled throughout the entire process. Therefore, it can be inferred that spinning into droplets can be suppressed and uniform nanofibers can be created.
  • 6% solution viscosity says the value measured in the following procedures.
  • the dried cellulose acylate is precisely weighed, and a solution in which 6% by mass of cellulose acylate is dissolved in a mixed solvent in which the mass ratio of dichloromethane and methanol is 91: 9 is measured at 25 ° C. using an Ostwald viscometer.
  • the flow time is measured and calculated by the following formula.
  • 6% solution viscosity (mPa ⁇ s) flowing time (seconds) ⁇ viscosity coefficient
  • the viscometer coefficient is measured using the standard solution for calibration of the viscometer in the same manner as the above solution.
  • the cellulose acylate contained in the nanofiber of the present invention the synthesis method thereof, and the production method of the nanofiber of the present invention will be described in detail.
  • the cellulose acylate contained in the nanofiber of the present invention is a cellulose acylate whose degree of substitution satisfies the following formula (1). 2.75 ⁇ degree of substitution ⁇ 2.95 (1)
  • “cellulose acylate” means a part of hydrogen atoms constituting the hydroxyl groups of cellulose, that is, the free hydroxyl groups at the 2nd, 3rd and 6th positions of ⁇ -1,4-bonded glucose units. Or it refers to a cellulose ester that is entirely substituted with an acyl group.
  • “Degree of substitution” refers to the degree of substitution of acyl groups with hydrogen atoms constituting the hydroxyl groups of cellulose, and is calculated by comparing the carbon area intensity ratio of cellulose acylate measured by 13 C-NMR method. can do.
  • acyl group ⁇ Substituent (acyl group)> Specific examples of the acyl group include an acetyl group, a propionyl group, and a butyryl group. Moreover, the acyl group to substitute may be only 1 type (for example, only an acetyl group), and 2 or more types may be sufficient as it.
  • the uniformity of the fiber diameter is further improved, and when the nonwoven fabric is produced, the appearance of the nonwoven fabric is better.
  • the acyl group is preferably an acetyl group.
  • it is preferable that one of the acyl groups is an acetyl group.
  • an embodiment in which one kind of acyl group is used and the acyl group is an acetyl group is preferable.
  • the substitution degree of the acyl group is 2.75 to 2.95 as described above. However, for the reason that the uniformity of the fiber diameter is further improved and the appearance when the nonwoven fabric is produced becomes better, 2.80 to It is preferably 2.95, and more preferably 2.88 to 2.95.
  • the method for adjusting the substitution degree will be described in detail in the cellulose acylate synthesis method described later.
  • the amount of hemicellulose in the cellulose acylate is 0.1 to 3.0% by mass because the uniformity of the fiber diameter is further improved and the appearance of the nonwoven fabric is improved.
  • the content is 0.1 to 2.0% by mass.
  • the amount of hemicellulose refers to a value calculated from sugar analysis by the alditol-acetate method (Borchadt, L. G .; Piper, C. V .: Tappi, 53, 257 to 260 (1970)). The method for adjusting the amount of hemicellulose will be described in detail in the cellulose acylate synthesis method described below.
  • the number average molecular weight (Mn) of the cellulose acylate contained in the nanofiber of the present invention is not particularly limited, but is preferably 40,000 or more, more preferably 40000 to 150,000 from the viewpoint of the mechanical strength of the nanofiber. More preferably, it is 60000-100,000.
  • the weight average molecular weight (Mw) of the cellulose acylate is not particularly limited, but is preferably 100,000 or more, more preferably 100,000 to 500,000, and more preferably 150,000 to 300,000 from the viewpoint of the mechanical strength of the nanofiber. More preferably.
  • the weight average molecular weight and the number average molecular weight in this specification are measured by the gel permeation chromatography (GPC) method under the following conditions.
  • the cellulose acylate content in the nanofiber of the present invention is not particularly limited, but is preferably 25% by mass or more, more preferably 40 to 100% by mass, and more preferably 60 to 100% by mass with respect to the total mass of the nanofiber. More preferably, it is 100 mass%.
  • a raw material of cellulose for example, a raw material derived from hardwood pulp, softwood pulp, cotton linter and the like can be preferably mentioned.
  • a raw material derived from cotton linter is preferable because it can produce nanofibers with a small amount of hemicellulose and further improved uniformity in fiber diameter.
  • the amount of hemicellulose can be adjusted by purifying the cellulose raw material by an appropriate method.
  • the amount of hemicellulose can be obtained by subjecting cellulose raw materials to cooking bleaching by sulfite cooking, kraft cooking, etc .; bleaching with oxygen or chlorine bleach; alkali refining; Can be adjusted.
  • a 3-25% by mass strong alkaline aqueous solution is used and a low temperature of 20-40 ° C. is used when performing the alkali refining process.
  • a method of purifying with is preferable.
  • the cellulose raw material is preferably subjected to a treatment (activation) for contacting with an activator prior to acylation.
  • the activator include acetic acid, propionic acid, and butyric acid. Among them, acetic acid is preferable.
  • the addition amount of the activator is preferably 5% to 10,000%, more preferably 10% to 2000%, and still more preferably 30% to 1000%.
  • the addition method can be selected from methods such as spraying, dropping, and dipping.
  • the activation time is preferably 20 minutes to 72 hours, more preferably 20 minutes to 12 hours.
  • the activation temperature is preferably 0 ° C. to 90 ° C., more preferably 20 ° C. to 60 ° C.
  • 0.1 to 10% by mass of an acylation catalyst such as sulfuric acid can be added to the activator.
  • acylation It is uniform to acylate the hydroxyl group of cellulose by reacting cellulose with a carboxylic acid anhydride using a Bronsted acid or a Lewis acid (see “Science and Chemistry Dictionary", fifth edition (2000)) as a catalyst. It is preferable for synthesizing cellulose acylate, and the molecular weight can be controlled.
  • the cellulose acylate can be obtained by, for example, a method of reacting two carboxylic acid anhydrides as an acylating agent by mixing or sequentially adding; a mixed acid anhydride of two carboxylic acids (for example, acetic acid and propionic acid).
  • the synthesis of cellulose acylate having a high degree of substitution at the 6-position is described in publications such as JP-A-11-5851, JP-A-2002-212338, and JP-A-2002-338601.
  • the carboxylic acid anhydride is preferably a carboxylic acid anhydride having 2 to 6 carbon atoms, and specific examples thereof include acetic anhydride, propionic anhydride, butyric anhydride, and the like.
  • the acid anhydride is preferably added in an amount of 1.1 to 50 equivalents, more preferably 1.2 to 30 equivalents, and still more preferably 1.5 to 10 equivalents, relative to the hydroxyl group of cellulose.
  • acylation catalyst As the acylation catalyst, a Bronsted acid or a Lewis acid is preferably used, and sulfuric acid or perchloric acid is more preferably used.
  • the addition amount of the acylation catalyst is preferably from 0.1 to 30% by mass, more preferably from 1 to 15% by mass, and even more preferably from 3 to 12% by mass.
  • acylating solvent As the acylating solvent, it is preferable to use a carboxylic acid, and it is more preferable to use a carboxylic acid having 2 to 7 carbon atoms. Specifically, for example, acetic acid, propionic acid, butyric acid, and the like are used. Further preferred. These solvents may be used as a mixture.
  • the acylation temperature is preferably ⁇ 50 ° C. to 50 ° C., more preferably ⁇ 30 ° C. to 40 ° C., and further preferably ⁇ 20 ° C. to 35 ° C.
  • the minimum reaction temperature is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C. or higher, and further preferably ⁇ 20 ° C. or higher.
  • the acylation time is preferably 0.5 to 24 hours, more preferably 1 to 12 hours, and even more preferably 1.5 to 10 hours. The molecular weight can be adjusted by controlling the acylation time.
  • reaction terminator It is preferable to add a reaction terminator after the acylation reaction.
  • the reaction terminator may be any as long as it decomposes an acid anhydride, and specifically includes water, alcohols having 1 to 3 carbon atoms, and carboxylic acids (for example, acetic acid, propionic acid, butyric acid, etc.). A mixture of water and carboxylic acid (acetic acid) is preferred.
  • the composition of water and carboxylic acid is preferably 5 to 80% by mass of water, more preferably 10 to 60% by mass, and still more preferably 15 to 50% by mass.
  • neutralizing agent may be added after the acylation reaction is stopped.
  • the neutralizing agent include ammonium, organic quaternary ammonium, alkali metal, group 2 metal, group 3-12 metal, or group 13-15 element carbonate, bicarbonate, organic acid salt, water An oxide or an oxide can be given. Specifically, sodium, potassium, magnesium or calcium carbonate, hydrogen carbonate, acetate or hydroxide is preferably mentioned.
  • the cellulose acylate obtained by the acylation described above has a total degree of substitution close to about 3. However, for the purpose of adjusting to a desired degree of substitution (for example, about 2.8), a small amount of catalyst (for example, In the presence of residual acylation catalyst such as sulfuric acid) and water, the ester bond is partially hydrolyzed by keeping it at 20 to 90 ° C. for several minutes to several days, so that the acyl substitution degree of cellulose acylate is desired. Can be reduced to a degree. Note that the partial hydrolysis can be appropriately stopped by using the neutralizing agent for the remaining catalyst.
  • a desired degree of substitution for example, about 2.8
  • a small amount of catalyst for example, In the presence of residual acylation catalyst such as sulfuric acid
  • the ester bond is partially hydrolyzed by keeping it at 20 to 90 ° C. for several minutes to several days, so that the acyl substitution degree of cellulose acylate is desired. Can be reduced to a degree. Note that the partial hydrolysis can be appropriately stopped
  • Filtration may be performed at any step between the completion of acylation and reprecipitation. It is also preferred to dilute with a suitable solvent prior to filtration.
  • the cellulose acylate solution can be mixed with water or an aqueous solution of carboxylic acid (eg, acetic acid, propionic acid, etc.) and reprecipitated. Reprecipitation may be either continuous or batch.
  • carboxylic acid eg, acetic acid, propionic acid, etc.
  • washing It is preferable to perform a washing treatment after reprecipitation. Washing can be performed using water or warm water, and the completion of washing can be confirmed by pH, ion concentration, electrical conductivity, elemental analysis, and the like.
  • the cellulose acylate after washing is preferably added with a weak alkali (carbonates such as Na, K, Ca and Mg, bicarbonates, hydroxides and oxides) for stabilization.
  • a weak alkali carbonates such as Na, K, Ca and Mg, bicarbonates, hydroxides and oxides
  • the method for producing the nanofiber of the present invention is not particularly limited.
  • a solution in which the above-described cellulose acylate is dissolved in a solvent is taken out from the nozzle tip as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, It can be manufactured by applying a voltage between the solution and the collector and ejecting the fiber from the solution to the collector. Details will be described below with reference to the drawings.
  • a nanofiber production apparatus 110 shown in FIG. 1 is for producing nanofibers 46 from a solution 25 in which cellulose acylate is dissolved in a solvent.
  • the nanofiber manufacturing apparatus 110 includes a spinning chamber 111, a solution supply unit 112, a nozzle 13, an accumulation unit 15, and a power source 65.
  • the spinning chamber 111 accommodates, for example, the nozzle 13 and a part of the accumulating unit 15 and is configured to be hermetically sealed to prevent the solvent gas from leaking to the outside.
  • the solvent gas is obtained by vaporizing the solvent of the solution 25.
  • the solvent may be a simple substance or a mixture composed of a plurality of compounds.
  • Solvents for dissolving cellulose acylate include methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, hexane, cyclohexane, dichloromethane Chloroform, carbon tetrachloride, benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone (NMP), diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like.
  • NMP N-methylpyrrolidone
  • a mixture of dichloromethane and NMP a mixture of dichloromethane and cyclohexanone, a mixture of acetone and cyclohexanenone, or the like is used.
  • a nozzle 13 is disposed in the upper part of the spinning chamber 111.
  • the nozzle 13 is for discharging the solution 25 in a state of being charged to the first polarity by the power source 65 as will be described later.
  • the nozzle 13 is formed of a cylinder, and discharges the solution 25 from an opening 13 ⁇ / b> A (hereinafter, abbreviated as “end opening”).
  • the tip opening 13a is an outlet through which the solution 25 exits.
  • the nozzle 13 is made of stainless steel having an outer diameter of 0.65 mm and an inner diameter of 0.4 mm, for example, and is cut so that a tip opening edge portion 13b around the tip opening 13a is orthogonal to the cylinder center direction.
  • the front end opening edge 13b which is the cut surface, is polished flat.
  • the material of the nozzle 13 may be made of a conductive material such as an aluminum alloy, a copper alloy, or a titanium alloy instead of stainless steel.
  • the solution 25 may come into contact with the metal member at any location, be applied with a voltage, and exit from the tip opening 13a in a state of being charged to the first polarity. Therefore, the tip opening 13a does not necessarily need to be a conductive material as long as a voltage is applied at any location up to the tip opening 13a and the first opening is charged when exiting the tip opening 13a. .
  • the solution supply unit 112 is for supplying the solution 25 to the nozzle 13 of the spinning chamber 111.
  • the solution supply unit 112 includes a storage container 30, a first temperature controller 133, a pump 31, and a pipe 32.
  • the storage container 30 stores the solution 25.
  • the first temperature controller 133 adjusts the temperature of the stored solution 25 via the storage container 30.
  • the pump 31 sends the solution 25 from the storage container 30 to the nozzle 13 via the pipe 32.
  • the flow rate of the solution 25 delivered from the nozzle 13 can be adjusted.
  • the flow rate of the solution 25 is 3 cm 3 / hour, but the flow rate is not limited to this.
  • the saturated vapor pressure Ps (unit: kPa) of the solvent and the concentration C (unit: g / 100 cm 3 ) of the cellulose acylate satisfy the following condition (1).
  • the solution 25 is sent to the nozzle 13 in a state where this condition (1) is satisfied, and is discharged from the tip opening 13a.
  • the pipe 32 and the nozzle 13 are provided with temperature controllers (not shown) so that they are guided from the storage container 30 to the tip opening 13a and exit from the tip opening 13a in a state where the condition (1) is satisfied.
  • the temperature of the solution 25 is guided to the nozzle 13 while being kept at the temperature in the storage container 30 by these temperature controllers, and is discharged from the tip opening 13a.
  • the saturated vapor pressure Ps (t) of the solvent at the temperature t is obtained by the following equation (2).
  • the number of components of the solvent is n (n is a natural number of 1 or more)
  • the saturated vapor pressure of a single component i (i is a natural number of 1 to n) at temperature t is Pi (t)
  • the component i Let Xi be the molar fraction in the solvent.
  • the saturated vapor pressure Ps (t) is defined by the following equation.
  • Ps in the above condition (1) is obtained as the temperature t in the equation (2) by the temperature of the solution 25 coming out of the nozzle 13.
  • the saturated vapor pressure Ps is preferably in the range of 10 kPa to 50 kPa.
  • the solvent evaporates more easily than when the saturated vapor pressure Ps is less than 10 kPa, so that the droplets of the solution 25 and solid particles are not generated.
  • it is hard to evaporate a solvent when it is 50 kPa or less compared with the case where it is larger than 50 kPa, solidification by drying of the solution 25 is suppressed.
  • the first temperature controller 133 adjusts the saturated vapor pressure Ps of the solvent in the solution 25 by adjusting the temperature of the solution 25.
  • the saturated vapor pressure Ps can be adjusted by changing the mixing ratio of the solvent of the solution 25 as a mixture composed of a plurality of compounds instead of or in addition to the adjustment of the temperature of the solution 25.
  • the temperature of the solution 25 coming out of the nozzle 13 is preferably in the range of 5 ° C. or more and 40 ° C. or less, and in this embodiment, it is 25 ° C. ⁇ 1 ° C. (in the range of 24 ° C. or more and 26 ° C. or less).
  • the temperature of the solution 25 is 5 ° C.
  • the solution 25 is less likely to be gelled at a low temperature than when it is less than 5 ° C., and the solution 25 is stably discharged from the nozzle 13.
  • the temperature of the solution 25 is 40 ° C. or lower, intense evaporation (flash) due to the solvent exceeding the boiling point is less likely to occur than when the temperature is higher than 40 ° C., and solidification due to drying of the solution 25 is suppressed.
  • the temperature of the solution 25 exiting from the nozzle 13 is more preferably in the range of 10 ° C. or more and 35 ° C. or less, and further preferably in the range of 15 ° C. or more and 30 ° C. or less.
  • the viscosity of the solution 25 exiting from the nozzle 13 is preferably in the range of 1 mPa ⁇ s to 10 Pa ⁇ s.
  • the viscosity of the solution 25 can be adjusted by the temperature and the components of the solution 25.
  • the temperature of the solution 25 may be adjusted by the first temperature controller 133.
  • Examples of a method for adjusting the viscosity according to the components of the solution 25 include a method for changing the concentration C of cellulose acylate and a method for changing the solvent.
  • the solvent for example, when the solvent is composed of a simple substance, the kind of the simple substance is changed, or other ingredients are added to change the mixture, and when the solvent is a mixture, the composition ratio of the ingredients is mixed. And changing at least one of them.
  • the viscosity of the solution 25 exiting from the nozzle 13 is more preferably in the range of 1 mPa ⁇ s to 5 Pa ⁇ s, and still more preferably in the range of 2 mPa ⁇ s to 2 Pa ⁇ s.
  • the nozzle 13 is preferably provided with a cover 134 that covers the tip opening 13a and a second temperature controller 135 for adjusting the temperature inside the cover 134 as in the present embodiment.
  • a cover 134 that covers the tip opening 13a and a second temperature controller 135 for adjusting the temperature inside the cover 134 as in the present embodiment.
  • an opening 134 a for allowing the solution 25 to pass toward the collector 50 is formed between the tip opening 13 a and the collector 50.
  • the second temperature controller 135 By adjusting the internal temperature by the second temperature controller 135, the ambient temperature Ta around the tip opening 13a (around the outlet where the solution comes out) is adjusted.
  • the periphery is a range that covers at least the Taylor cone 44, and is preferably within a range of, for example, 20 mm from the tip opening 13a.
  • Ts-Ta the difference between the temperature Ts of the solution 25 coming out of the tip opening 13a and the atmospheric temperature Ta, that is, Ts-Ta within a range of ⁇ 15 ° C. to 15 ° C.
  • Ts-Ta is in the range of ⁇ 15 ° C. or more and 15 ° C. or less, the evaporation of the solvent is moderate compared to the case where Ts-Ta is outside this range, so that solidification due to drying of the solution 25 is suppressed, and There are no occurrences of ball-like droplets of the solution 25 or solid particles.
  • Ts—Ta is more preferably within a range of ⁇ 10 ° C. to 10 ° C., and further preferably within a range of ⁇ 5 ° C. to 5 ° C.
  • the method of adjusting the ambient temperature Ta around the tip opening 13a is not limited to the method using the cover 134 and the second temperature controller 135 of the present embodiment.
  • a gas such as air with a constant temperature is sent to the spinning chamber 111, and the temperature of the entire interior of the spinning chamber 111 is adjusted by this feeding.
  • Ta may be adjusted.
  • the atmospheric temperature Ta is adjusted to 25 ° C.
  • the relative humidity of the atmosphere around the tip opening 13a is set to 30% RH.
  • the cellulose acylate concentration C in the solution 25 is preferably in the range of 0.1 g / 100 cm 3 or more and 20 g / 100 cm 3 or less. Thereby, the viscosity of the solution 25 becomes moderate, and the molecules of the cellulose acylate are appropriately entangled with each other.
  • the concentration C is more preferably 0.5 g / 100 cm 3 or more and 15 g / 100 cm 3 or less, and further preferably 1 g / 100 cm 3 or more and 10 g / 100 cm 3 or less.
  • the accumulation unit 15 is disposed below the nozzle 13.
  • the stacking unit 15 includes a collector 50, a collector rotating unit 51, a support body supply unit 52, and a support body winding unit 53.
  • the collector 50 is for collecting the solution 25 exiting from the nozzle 13 as nanofibers 46, and in this embodiment, collects it on a support 60 described later.
  • the collector 50 is made of an endless belt made of a band-like metal, for example, stainless steel.
  • the collector 50 is not limited to stainless steel, and may be formed of a material that is charged by applying a voltage from the power source 65.
  • the collector rotating unit 51 is composed of a pair of rollers 55 and 56, a motor 57, and the like. The collector 50 is stretched horizontally around a pair of rollers 55 and 56.
  • a motor 57 disposed outside the spinning chamber 111 is connected to the shaft of one roller 55, and rotates the roller 55 at a predetermined speed. This rotation causes the collector 50 to circulate between the pair of rollers 55 and 56.
  • the moving speed of the collector 50 is 10 cm / hour, but is not limited to this.
  • the support body 60 made of a strip-shaped aluminum sheet (aluminum sheet) is supplied to the collector 50 by the support body supply section 52.
  • the support body 60 in the present embodiment has a thickness of approximately 25 ⁇ m.
  • the support 60 is for obtaining the nonwoven fabric 120 by accumulating (depositing) the nanofibers 46.
  • the support body 60 on the collector 50 is wound up by the support body winding part 53.
  • the support body supply unit 52 has a delivery shaft 52a.
  • a support roll 54 is attached to the core 23 of the delivery shaft 52a.
  • the support roll 54 is configured by winding the support 60.
  • the support winding portion 53 has a winding shaft 58.
  • the winding shaft 58 is rotated by a motor (not shown), and the support body 60 on which the nonwoven fabric 120 is formed is wound around the core 61 to be set.
  • the nonwoven fabric 120 is formed by integrating the nanofibers 46.
  • the nanofiber manufacturing apparatus 110 has a function of manufacturing the nonwoven fabric 120 in addition to the function of manufacturing the nanofiber 46.
  • the moving speed of the collector 50 and the moving speed of the support 60 are preferably the same so that friction does not occur between them. Further, the support body 60 may be placed on the collector 50 and moved as the collector 50 moves.
  • the nanofibers 46 may be directly accumulated on the collector 50 to form the nonwoven fabric 120.
  • the nonwoven fabric 120 may stick and be difficult to peel off. Therefore, as in this embodiment, it is preferable to guide the support body 60 on which the nonwoven fabric 120 is difficult to stick to the collector 50 and to accumulate the nanofibers 46 on the support body 60.
  • the power source 65 is a voltage application unit that applies a voltage to the nozzle 13 and the collector 50 to charge the nozzle 13 to the first polarity, and charges the collector 50 to the second polarity opposite to the first polarity. is there.
  • the nozzle 13 is charged positively (+) and the collector 50 is negatively charged ( ⁇ ).
  • the polarity of the nozzle 13 and the collector 50 may be reversed. By passing through the nozzle 13, the solution 25 is charged to the first polarity.
  • the voltage applied to the nozzle 13 and the collector 50 is 30 kV.
  • the distance L2 between the tip opening 13a of the nozzle 13 and the collector 50 varies depending on the type of cellulose acylate and the solvent, the mass ratio of the solvent in the solution 25, etc., but is preferably in the range of 30 mm to 300 mm. In the embodiment, it is 150 mm.
  • the distance L2 is 30 mm or more, the spun jet 45 formed by jetting is more reliably split by repulsion due to its own charge before reaching the collector 50, compared to a case where the distance L2 is shorter than 30 mm. Therefore, the thin nanofiber 46 can be obtained more reliably.
  • the solvent evaporates more reliably by splitting finely in this way, it is possible to more reliably prevent the non-woven fabric from which the solvent remains.
  • the voltage to apply can be restrained low compared with the case where distance L2 is 300 mm or less and it is too long exceeding 300 mm, abnormal discharge is suppressed.
  • the nonwoven fabric of this invention is a nonwoven fabric comprised by the nanofiber of this invention mentioned above, for example, as above-mentioned, the nonwoven fabric 120 can be manufactured with the nanofiber manufacturing apparatus 110 shown in FIG.
  • the nonwoven fabric of the present invention can also be produced by peeling a nanofiber deposit obtained by an electrospinning method from a substrate and subjecting it to a heat treatment.
  • the contact portion between the nanofibers is strongly bonded by a curing reaction by heating, and a high-strength nonwoven fabric having excellent heat resistance and chemical resistance is obtained.
  • the heating conditions are not particularly limited, and examples include conditions of heating at 150 to 250 ° C. for 10 minutes to 2 hours.
  • the thickness of the nonwoven fabric of the present invention can be adjusted as appropriate by the amount of nanofibers deposited or by stacking nanofiber deposits of appropriate thickness, and is preferably about 30 nm to 1 mm. More preferably, it is about 100 nm to 300 ⁇ m.
  • the nonwoven fabric of this invention can be used for uses, such as a medical filter, a mask, a heat resistant bag filter, a secondary battery separator, a secondary battery electrode, a heat insulating material, a filter cloth, and a sound absorption material, for example.
  • cellulose acylate is preferably used as a medical filter or mask from the viewpoint of excellent biocompatibility.
  • the nonwoven fabric of this invention it can be anticipated that selective separation ability will become high. This is because the nanofiber of the present invention has high uniformity of fiber diameter and high uniformity of voids, so that it has excellent physical selective separation ability.
  • cellulose acylate is both hydrophilic and hydrophobic.
  • a heat-resistant bag filter it can be used as a bag filter for a general waste incinerator or industrial waste incinerator.
  • a secondary battery separator it can be used as a separator for a lithium ion secondary battery.
  • a secondary battery electrode it can be used as a binder for secondary battery electrode formation by using the deposit of the thermosetting nanofiber before thermosetting.
  • a conductive nonwoven fabric obtained by dispersing and mixing a powder electrode material in the spinning solution of the present invention, electrospinning it, and thermosetting the deposit can also be used as a secondary battery electrode.
  • a heat insulating material it can be used as a heat-resistant brick backup material and a combustion gas seal.
  • a filter cloth it can be used as a filter cloth for a microfilter by adjusting the thickness of the nonwoven fabric and the like and adjusting the size of the pores of the nonwoven fabric. By using a filter cloth, solids in a fluid such as liquid or gas can be separated.
  • a sound absorbing material it can be used as a sound absorbing material such as a wall surface sound insulation reinforcement and an inner wall sound absorbing layer.
  • Example 1 Acylation was carried out by mixing cellulose (raw material: cotton linter) with an acylating agent and sulfuric acid as a catalyst and keeping the reaction temperature at 40 ° C. or lower.
  • the acylating agent can be selected from acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid and butyric anhydride, either alone or in combination depending on the desired degree of substitution.
  • the compound was acylated using acetic acid with an acetyl group (abbreviated as “Ac” in Table 1 below). After the cellulose as a raw material disappeared and acylation was completed, heating was further continued at 40 ° C. or lower to adjust to a desired degree of polymerization.
  • aqueous acetic acid solution was added to hydrolyze the remaining acid anhydride, and then partial hydrolysis was performed by heating at 60 ° C. or lower to adjust the degree of substitution.
  • the remaining sulfuric acid was neutralized with an excess amount of magnesium acetate.
  • Cellulose acylate was synthesized by reprecipitation from an aqueous acetic acid solution and repeated washing with water.
  • the synthesized cellulose acylate, dichloromethane 90%, N-methyl-2-pyrrolidone (NMP) was dissolved in 10% of the mixed solvent, the cellulose acylate solution of 4g / 100 cm 3 was prepared, producing nanofiber shown in FIG. 1 Using the apparatus 110, a nonwoven fabric made of cellulose acylate nanofibers of 20 ⁇ 30 cm was produced.
  • Examples 2 and 3 A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the partial hydrolysis time was changed and the degree of substitution with acetyl groups was intentionally adjusted.
  • Example 4 A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the raw material cotton linter was subjected to an alkali purification treatment and the amount of hemicellulose was intentionally adjusted.
  • Example 5 A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the raw material was changed from cotton linter to hardwood pulp.
  • Example 6 and 7 A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the reaction time in acylation was changed and the molecular weight was intentionally adjusted.
  • Example 8 A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the acyl group was changed from an acetyl group to a propionyl group (abbreviated as “Pr” in Table 1 below).
  • Example 9 A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the acyl group was changed from an acetyl group to a butyryl group (abbreviated as “Bu” in Table 1 below).
  • Example 1 A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the partial hydrolysis time was changed and the degree of substitution with acetyl groups was intentionally adjusted.
  • Example 3 A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 8, except that the partial hydrolysis time was changed and the degree of substitution with the propionyl group was intentionally adjusted.
  • Example 4 A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 9, except that the partial hydrolysis time was changed and the degree of substitution with the butyryl group was intentionally adjusted.

Abstract

The present invention addresses the problem of providing: a nanofiber having excellent uniformity of fiber diameter and having a good appearance when used to produce a nonwoven cloth; and a nonwoven cloth using the nanofiber. This nanofiber contains cellulose acylate having a degree of substitution of 2.75-2.95.

Description

ナノファイバーおよび不織布Nanofiber and non-woven fabric
 本発明は、セルロースアシレートを用いたナノファイバーおよび不織布に関する。 The present invention relates to a nanofiber and a nonwoven fabric using cellulose acylate.
 ナノファーバー、すなわち、数nm以上1000nm未満のナノオーダの径を有する繊維は、バイオフィルタ、センサ、燃料電池電極材、精密フィルタ、電子ペーパ等の製品の素材として利用されており、工学や医療等の各分野においての用途開発が盛んに行われている。 Nanofibers, that is, fibers with a nano-order diameter of several nanometers or more and less than 1000 nm are used as materials for products such as biofilters, sensors, fuel cell electrode materials, precision filters, electronic paper, etc. Development of applications in various fields is actively conducted.
 例えば、特許文献1には、「繊維から構成される担体からなる有害物質除去材であって、繊維径が10nm以上1μm以下であり、かつ担体の孔径が100μm以上1mm以下であることを特徴とする有害物質除去材。」が記載されており([請求項1])、担体を構成する繊維として、セルロースエステルを主成分とする繊維やセルロースアシレート繊維が記載されている([請求項3]、[0019]~[0021])。 For example, Patent Document 1 states that “a harmful substance removing material comprising a carrier composed of fibers, wherein the fiber diameter is 10 nm or more and 1 μm or less, and the pore diameter of the carrier is 100 μm or more and 1 mm or less. (Claim 1), and fibers constituting the carrier include fibers mainly composed of cellulose ester and cellulose acylate fibers ([Claim 3). ], [0019] to [0021]).
特開2009-291754号公報JP 2009-291754 A
 本発明者らは、セルロースアシレートを用いて作製したナノファイバーについて検討したところ、使用するセルロースアシレートの種類によっては、作製されるナノファイバーの繊維径の均一性が劣り、また、不織布を作製した際に外観が劣る場合があることを明らかとした。 The present inventors examined nanofibers produced using cellulose acylate. Depending on the type of cellulose acylate used, the uniformity of the fiber diameter of the produced nanofibers was inferior, and a nonwoven fabric was produced. It was clarified that the appearance may be inferior when
 そこで、本発明は、繊維径の均一性に優れ、不織布を作製した際の外観が良好となるナノファイバーおよびそれを用いた不織布を提供することを課題とする。 Therefore, an object of the present invention is to provide nanofibers having excellent fiber diameter uniformity and good appearance when a nonwoven fabric is produced, and a nonwoven fabric using the nanofiber.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の置換度を有するセルロースアシレートを用いて作製したナノファイバーが、繊維径の均一性に優れ、不織布を作製した際の外観も良好となることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive investigations to achieve the above-mentioned problems, the inventors of the present invention have a nanofiber produced using cellulose acylate having a specific substitution degree, excellent in fiber diameter uniformity, and appearance when a nonwoven fabric is produced. And the present invention was completed.
That is, it has been found that the above-described problem can be achieved by the following configuration.
 [1] 置換度が下記式(1)を満たすセルロースアシレートを含有するナノファイバー。
 2.75≦置換度≦2.95 ・・・(1)
 [2] 平均繊維径に対する平均繊維長の割合が1000以上である、[1]に記載のナノファイバー。
 [3] 平均繊維径が50~800nmである、[1]または[2]に記載のナノファイバー。
 [4] 平均繊維長が500μm以上である、[1]~[3]のいずれかに記載のナノファイバー。
 [5] セルロースアシレートが有するアシル基がアセチル基である、[1]~[4]のいずれかに記載のナノファイバー。
 [6] セルロースアシレートのヘミセルロース量が0.1~3.0質量%である、[1]~[5]のいずれかに記載のナノファイバー。
 [7] ジクロロメタンに6質量%溶解させた溶液の粘度が300mPa・s以上である、[1]~[6]のいずれかに記載のナノファイバー。
 [8] [1]~[7]のいずれかに記載されたナノファイバーで構成された不織布。
 [9] 医療用フィルターまたはマスクに用いる、[8]に記載の不織布。
[1] A nanofiber containing cellulose acylate whose degree of substitution satisfies the following formula (1).
2.75 ≦ degree of substitution ≦ 2.95 (1)
[2] The nanofiber according to [1], wherein the ratio of the average fiber length to the average fiber diameter is 1000 or more.
[3] The nanofiber according to [1] or [2], wherein the average fiber diameter is 50 to 800 nm.
[4] The nanofiber according to any one of [1] to [3], wherein the average fiber length is 500 μm or more.
[5] The nanofiber according to any one of [1] to [4], wherein the acyl group of cellulose acylate is an acetyl group.
[6] The nanofiber according to any one of [1] to [5], wherein the amount of hemicellulose in the cellulose acylate is 0.1 to 3.0% by mass.
[7] The nanofiber according to any one of [1] to [6], wherein the viscosity of a solution obtained by dissolving 6% by mass in dichloromethane is 300 mPa · s or more.
[8] A nonwoven fabric composed of the nanofiber according to any one of [1] to [7].
[9] The nonwoven fabric according to [8], which is used for a medical filter or mask.
 本発明によれば、繊維径の均一性に優れ、不織布を作製した際の外観が良好となるナノファイバーおよびそれを用いた不織布を提供することができる。 According to the present invention, it is possible to provide nanofibers having excellent fiber diameter uniformity and good appearance when a nonwoven fabric is produced, and a nonwoven fabric using the nanofiber.
図1は、ナノファイバーの製造装置の概略図である。FIG. 1 is a schematic view of a nanofiber production apparatus. 図2は、ノズルの先端を示す断面図である。FIG. 2 is a cross-sectional view showing the tip of the nozzle. 図3は、実施例1で作製したナノファイバーからなる不織布の走査型電子顕微鏡(Scanning Electron Microscope:SEM)画像(倍率:1800倍)を示す。FIG. 3 shows a scanning electron microscope (Scanning / Electron / Microscope: SEM) image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Example 1. 図4は、実施例2で作製したナノファイバーからなる不織布のSEM画像(倍率:1800倍)を示す。4 shows an SEM image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Example 2. FIG. 図5は、比較例1で作製したナノファイバーからなる不織布のSEM画像(倍率:1800倍)を示す。FIG. 5 shows an SEM image (magnification: 1800 times) of a nonwoven fabric made of nanofibers produced in Comparative Example 1.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ナノファイバー]
 本発明のナノファイバーは、置換度が下記式(1)を満たすセルロースアシレートを含有するナノファイバーである。
 2.75≦置換度≦2.95 ・・・(1)
 ここで、本明細書における「ナノファイバー」とは、後述する測定方法で測定した平均繊維径が10nm以上1000nm以下の繊維をいう。
[Nanofiber]
The nanofiber of the present invention is a nanofiber containing cellulose acylate whose degree of substitution satisfies the following formula (1).
2.75 ≦ degree of substitution ≦ 2.95 (1)
Here, “nanofiber” in the present specification refers to a fiber having an average fiber diameter of 10 nm or more and 1000 nm or less measured by a measurement method described later.
 <平均繊維径>
 平均繊維径とは、以下のように測定した値をいう。
 ナノファイバーからなる不織布の表面を、透過型電子顕微鏡(Transmission Electron Microscope:TEM)像、または、走査型電子顕微鏡(Scanning Electron Microscope:SEM)像を観察する。
 構成する繊維の大きさに応じて1000~5000倍から選択される倍率で電子顕微鏡画像による観察を行う。ただし、試料、観察条件や倍率は下記の条件を満たすように調整する。
 (1)観察画像内の任意箇所に一本の直線Xを引き、この直線Xに対し、20本以上の繊維が交差する。
 (2)同じ画像内で直線Xと垂直に交差する直線Yを引き、直線Yに対し、20本以上の繊維が交差する。
 上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の幅(繊維の短径)を読み取る。こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維径を読み取る。
 このように読み取った繊維径を平均して平均繊維径を求める。
<Average fiber diameter>
An average fiber diameter means the value measured as follows.
The surface of the nonwoven fabric made of nanofibers is observed with a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image.
Observation with an electron microscope image is performed at a magnification selected from 1000 to 5000 times according to the size of the constituent fibers. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.
(1) One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicularly intersecting with the straight line X is drawn in the same image, and 20 or more fibers intersect with the straight line Y.
For the electron microscope observation image as described above, the width (minor axis of the fiber) of at least 20 fibers (that is, at least 40 in total) is read for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y. . In this way, at least three or more sets of electron microscope images as described above are observed, and fiber diameters of at least 40 × 3 sets (that is, at least 120 sets) are read.
The fiber diameters thus read are averaged to obtain the average fiber diameter.
 <平均繊維長>
 セルロース繊維の平均繊維長とは、以下のように測定した値をいう。
 すなわち、セルロース繊維の繊維長は、上述した平均繊維径を測定する際に使用した電子顕微鏡観察画像を解析することにより求めることができる。
 具体的には、上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の繊維長を読み取る。
 こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維長を読み取る。
 このように読み取った繊維長を平均して平均繊維長を求める。
<Average fiber length>
The average fiber length of a cellulose fiber means the value measured as follows.
That is, the fiber length of the cellulose fiber can be determined by analyzing the electron microscope observation image used when measuring the above-described average fiber diameter.
Specifically, at least 20 fibers (that is, a total of at least 40 fibers) are read for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y with respect to the electron microscope observation image as described above. .
In this way, at least three or more sets of electron microscope images as described above are observed, and the fiber length of at least 40 × 3 sets (that is, at least 120 sets) is read.
The average fiber length is obtained by averaging the fiber lengths thus read.
 本発明のナノファイバーは、上述した通り、置換度が2.75以上2.95以下のセルロースアシレートを含有することにより、繊維径の均一性に優れ、不織布を作製した際の外観が良好となる。
 このような効果を奏する理由は詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、本発明においては、電界紡糸法(以下、「エレクトロスピニング法」ともいう。)を利用してナノファイバーを作製する際に、置換度が2.75以上2.95以下のセルロースアシレートを用いることにより、セルロースアシレートの結晶性が高くなることにより液滴状に紡糸されることが抑制され、また、セルロースアシレートの分子同士の絡み合いが促進されたためであると考えられる。
As described above, the nanofiber of the present invention contains cellulose acylate having a degree of substitution of 2.75 or more and 2.95 or less, so that the fiber diameter is excellent in uniformity and the appearance when a nonwoven fabric is produced is good. Become.
The reason for the effect is not clear in detail, but the present inventors presume as follows.
That is, in the present invention, when a nanofiber is produced using an electrospinning method (hereinafter also referred to as “electrospinning method”), a cellulose acylate having a substitution degree of 2.75 or more and 2.95 or less is used. By using it, the crystallinity of cellulose acylate is increased, so that the spinning into droplets is suppressed, and the entanglement of cellulose acylate molecules is promoted.
 本発明のナノファイバーは、ナノファイバーで構成された単一の不織布を作製しやすくなる理由から、平均繊維径に対する平均繊維長の割合、すなわち、アスペクト比(平均繊維長/平均繊維径)が1000以上であることが好ましく、2500~20000であることがより好ましく、5000~20000であることが特に好ましい。 In the nanofiber of the present invention, the ratio of the average fiber length to the average fiber diameter, that is, the aspect ratio (average fiber length / average fiber diameter) is 1000 because it is easy to produce a single nonwoven fabric composed of nanofibers. The above is preferable, 2500 to 20000 is more preferable, and 5000 to 20000 is particularly preferable.
 また、本発明のナノファイバーは、繊維の力学強度が高く、不織布を作製しやすくなる理由から、平均繊維径が50~800nmであることが好ましく、100~600nmであることがより好ましい。また、平均繊維径が50~800nmであると、サイズ効果、超分子配列効果、細胞認識効果、階層構造効果などの効果も期待できる。 In addition, the nanofiber of the present invention preferably has an average fiber diameter of 50 to 800 nm, more preferably 100 to 600 nm, because the mechanical strength of the fiber is high and a nonwoven fabric can be easily produced. In addition, when the average fiber diameter is 50 to 800 nm, effects such as a size effect, a supramolecular arrangement effect, a cell recognition effect, and a hierarchical structure effect can be expected.
 また、本発明のナノファイバーは、不織布を形成した際に、繊維がほつれることを抑止する理由から、平均繊維長が500μm以上であることが好ましく、1mm以上であることがより好ましく、1.5~5mmであることが更に好ましい。 In addition, the nanofiber of the present invention preferably has an average fiber length of 500 μm or more, more preferably 1 mm or more, for the purpose of preventing the fibers from fraying when a nonwoven fabric is formed. More preferably, it is 5 to 5 mm.
 本発明のナノファイバーは、繊維径の均一性が更に向上し、不織布を作製した際の外観がより良好となる理由から、ジクロロメタンに6質量%溶解させた溶液の粘度(以下、「6%溶液粘度」ともいう。)が300mPa・s以上であることが好ましく、300~1000mPa・sであることがより好ましく、300~900mPa・sであることが更に好ましく、350~800mPa・sであることが特に好ましい。
 このような効果が得られる理由は、エレクトロスピニング法を利用してナノファイバーを作製する際に、液滴状に紡糸されることを抑制でき、また、ノズルのカワバリも抑制することができるためと考えられる。特に、本発明者らは、セルロースアシレートの置換度と6%溶液粘度とを制御することにより繊維径の均一性が向上する理由を以下のように推察している。
 まず、均一なナノファイバーを形成するには、ノズルから溶液が吐出され、乾燥する間の過程でナノファイバーがちぎれないように、高分子の絡み合いを形成することが重要であると考えられる。そして、高分子の絡み合いを制御する方法としては、(a)分子間の相互作用(結晶性)を強める方法(以下、本段落において「方法(a)」と略す。)、(b)分子の長さ(分子量)を長くする方法(以下、本段落において「方法(b)」と略す。)、が有用であると推察した。そのため、本発明では、方法(a)を行うためにセルロースアシレートの置換度を調整し、方法(b)を行うために6%溶液粘度の調整を行っている。特に、セルロースアシレートの置換度の調整は、乾燥後期での急激な絡み合いの形成を抑制し、6%溶液粘度の調整は、乾燥初期での絡み合いの形成を制御しており、プロセス全体で絡み合いを制御することができるため、液滴状に紡糸されることを抑制し、均一なナノファイバーを作成できると推察できる。
 なお、本明細書において、6%溶液粘度は、以下の手順で測定した値をいう。
 まず、乾燥したセルロースアシレートを精秤し、ジクロロメタンとメタノールとの質量比率が91対9となる混合溶媒にセルロースアシレートを6質量%溶解させた溶液について、オストワルド粘度計を用いて25℃における流下時間を測定し、下記式により算出する。
 6%溶液粘度(mPa・s)=流下時間(秒)×粘度計係数
 ここで、粘度計係数は、粘度計較正用標準液を用いて、上記溶液と同様の操作で流下秒数を測定して求めることができ、具体的には、粘度計係数=標準液の絶対粘度(cps)×溶液の密度(1.235g/cm)/標準液の密度(g/cm)/標準液の流下時間(秒)で求めることができる。
The nanofiber of the present invention has a further improved viscosity of a fiber diameter and a better appearance when a nonwoven fabric is produced. The viscosity of a solution in which 6% by mass is dissolved in dichloromethane (hereinafter referred to as “6% solution”). Viscosity ”) is preferably 300 mPa · s or more, more preferably 300 to 1000 mPa · s, further preferably 300 to 900 mPa · s, and 350 to 800 mPa · s. Particularly preferred.
The reason why such an effect can be obtained is that when nanofibers are produced using the electrospinning method, it is possible to suppress spinning into droplets, and also to suppress nozzle burr. Conceivable. In particular, the present inventors infer the reason why the uniformity of the fiber diameter is improved by controlling the substitution degree of cellulose acylate and the 6% solution viscosity.
First, in order to form uniform nanofibers, it is considered important to form polymer entanglements so that the nanofibers are not broken during the process of discharging the solution from the nozzle and drying. As a method for controlling the entanglement of the polymer, (a) a method for enhancing the interaction (crystallinity) between molecules (hereinafter abbreviated as “method (a)”), (b) The method of increasing the length (molecular weight) (hereinafter abbreviated as “method (b)” in this paragraph) was presumed to be useful. Therefore, in the present invention, the substitution degree of cellulose acylate is adjusted to perform the method (a), and the 6% solution viscosity is adjusted to perform the method (b). In particular, the adjustment of the degree of substitution of cellulose acylate suppresses the formation of a sudden entanglement in the late stage of drying, and the adjustment of the 6% solution viscosity controls the formation of the entanglement in the early stage of drying, which is entangled throughout the entire process. Therefore, it can be inferred that spinning into droplets can be suppressed and uniform nanofibers can be created.
In addition, in this specification, 6% solution viscosity says the value measured in the following procedures.
First, the dried cellulose acylate is precisely weighed, and a solution in which 6% by mass of cellulose acylate is dissolved in a mixed solvent in which the mass ratio of dichloromethane and methanol is 91: 9 is measured at 25 ° C. using an Ostwald viscometer. The flow time is measured and calculated by the following formula.
6% solution viscosity (mPa · s) = flowing time (seconds) × viscosity coefficient Here, the viscometer coefficient is measured using the standard solution for calibration of the viscometer in the same manner as the above solution. it can ask Te, specifically, a density (1.235g / cm 3) of the absolute viscosity (cps) × solution viscometer coefficient = standard solution / standard solution density of (g / cm 3) / standard solution It can be determined by the flow time (seconds).
 以下に、本発明のナノファイバーに含まれるセルロースアシレートおよびその合成方法、ならびに、本発明のナノファイバーの作製方法について、詳述する。 Hereinafter, the cellulose acylate contained in the nanofiber of the present invention, the synthesis method thereof, and the production method of the nanofiber of the present invention will be described in detail.
 〔セルロースアシレート〕
 本発明のナノファイバーに含まれるセルロースアシレートは、置換度が下記式(1)を満たすセルロースアシレートである。
 2.75≦置換度≦2.95 ・・・(1)
 ここで、「セルロースアシレート」とは、セルロースの水酸基、すなわち、β-1,4結合しているグルコース単位の2位、3位および6位に有する遊離の水酸基を構成する水素原子の一部または全部がアシル基で置換されているセルロースエステルをいう。
 また、「置換度」とは、セルロースの水酸基を構成する水素原子へのアシル基の置換度をいい、13C-NMR法により測定したセルロースアシレートの炭素の面積強度比を比較することにより算出することができる。
[Cellulose acylate]
The cellulose acylate contained in the nanofiber of the present invention is a cellulose acylate whose degree of substitution satisfies the following formula (1).
2.75 ≦ degree of substitution ≦ 2.95 (1)
Here, “cellulose acylate” means a part of hydrogen atoms constituting the hydroxyl groups of cellulose, that is, the free hydroxyl groups at the 2nd, 3rd and 6th positions of β-1,4-bonded glucose units. Or it refers to a cellulose ester that is entirely substituted with an acyl group.
“Degree of substitution” refers to the degree of substitution of acyl groups with hydrogen atoms constituting the hydroxyl groups of cellulose, and is calculated by comparing the carbon area intensity ratio of cellulose acylate measured by 13 C-NMR method. can do.
 <置換基(アシル基)>
 アシル基としては、具体的には、例えば、アセチル基、プロピオニル基、ブチリル基など挙げられる。
 また、置換するアシル基は、1種類のみ(例えば、アセチル基のみ)であってもよく、2種以上であってもよい。
<Substituent (acyl group)>
Specific examples of the acyl group include an acetyl group, a propionyl group, and a butyryl group.
Moreover, the acyl group to substitute may be only 1 type (for example, only an acetyl group), and 2 or more types may be sufficient as it.
 本発明においては、繊維径の均一性が更に向上し、不織布を作製した際の外観がより良好となる理由から、1種類のアシル基を用いる場合は、アシル基がアセチル基であることが好ましく、2種類以上のアシル基を用いる場合は、アシル基の1種がアセチル基であることが好ましい。中でも、1種類のアシル基を用い、かつ、アシル基がアセチル基である態様が好ましい。 In the present invention, the uniformity of the fiber diameter is further improved, and when the nonwoven fabric is produced, the appearance of the nonwoven fabric is better. When one kind of acyl group is used, the acyl group is preferably an acetyl group. When two or more types of acyl groups are used, it is preferable that one of the acyl groups is an acetyl group. Among these, an embodiment in which one kind of acyl group is used and the acyl group is an acetyl group is preferable.
 <置換度>
 アシル基の置換度は、上述した通り2.75~2.95であるが、繊維径の均一性が更に向上し、不織布を作製した際の外観がより良好となる理由から、2.80~2.95であることが好ましく、2.88~2.95であることがより好ましい。
 なお、置換度の調整方法については、後述のセルロースアシレートの合成法で詳しく記述する。
<Degree of substitution>
The substitution degree of the acyl group is 2.75 to 2.95 as described above. However, for the reason that the uniformity of the fiber diameter is further improved and the appearance when the nonwoven fabric is produced becomes better, 2.80 to It is preferably 2.95, and more preferably 2.88 to 2.95.
The method for adjusting the substitution degree will be described in detail in the cellulose acylate synthesis method described later.
 <ヘミセルロース量>
 本発明においては、繊維径の均一性が更に向上し、不織布を作製した際の外観がより良好となる理由から、セルロースアシレートのヘミセルロース量が0.1~3.0質量%であることが好ましく、0.1~2.0質量%であることがより好ましい。
 このような効果が得られる理由は、エレクトロスピニング法を利用してナノファイバーを作製する際に、セルロースアシレートの結晶性が高くなることにより液滴状に紡糸されることが抑制されるためと考えられる。
 なお、本明細書において、ヘミセルロース量は、アルジトール-アセテート法(Borchadt, L. G.; Piper, C. V.: Tappi, 53, 257~260 (1970))による糖分析から算出した値をいう。
 また、ヘミセルロース量の調整方法については、後述のセルロースアシレートの合成法で詳しく記述する。
<Amount of hemicellulose>
In the present invention, the amount of hemicellulose in the cellulose acylate is 0.1 to 3.0% by mass because the uniformity of the fiber diameter is further improved and the appearance of the nonwoven fabric is improved. Preferably, the content is 0.1 to 2.0% by mass.
The reason why such an effect can be obtained is that, when nanofibers are produced by using the electrospinning method, it is possible to suppress spinning into droplets by increasing the crystallinity of cellulose acylate. Conceivable.
In the present specification, the amount of hemicellulose refers to a value calculated from sugar analysis by the alditol-acetate method (Borchadt, L. G .; Piper, C. V .: Tappi, 53, 257 to 260 (1970)).
The method for adjusting the amount of hemicellulose will be described in detail in the cellulose acylate synthesis method described below.
 <分子量>
 本発明のナノファイバーに含まれるセルロースアシレートの数平均分子量(Mn)は特に限定されないが、ナノファイバーの力学強度の観点から、40000以上であることが好ましく、40000~150000であることがより好ましく、60000~100000であることが更に好ましい。
 また、セルロースアシレートの重量平均分子量(Mw)は特に限定されないが、ナノファイバーの力学強度の観点から、100000以上であることが好ましく、100000~500000であることがより好ましく、150000~300000であることが更に好ましい。
 なお、本明細書における重量平均分子量や数平均分子量は、ゲル浸透クロマトグラフィ(GPC)法により以下の条件で測定したものである。
 ・装置名: HLC-8220GPC(東ソー)
 ・カラムの種類:TSK gel Super HZ4000およびHZ2000(東ソー)
 ・溶離液:ジメチルホルムアミド(DMF)
 ・流量:1ml/分
 ・検出器:RI
 ・試料濃度:0.5%
 ・検量線ベース樹脂:TSK標準ポリスレン(分子量1050、5970、18100、37900、190000、706000)
<Molecular weight>
The number average molecular weight (Mn) of the cellulose acylate contained in the nanofiber of the present invention is not particularly limited, but is preferably 40,000 or more, more preferably 40000 to 150,000 from the viewpoint of the mechanical strength of the nanofiber. More preferably, it is 60000-100,000.
The weight average molecular weight (Mw) of the cellulose acylate is not particularly limited, but is preferably 100,000 or more, more preferably 100,000 to 500,000, and more preferably 150,000 to 300,000 from the viewpoint of the mechanical strength of the nanofiber. More preferably.
In addition, the weight average molecular weight and the number average molecular weight in this specification are measured by the gel permeation chromatography (GPC) method under the following conditions.
・ Device name: HLC-8220GPC (Tosoh)
Column type: TSK gel Super HZ4000 and HZ2000 (Tosoh)
・ Eluent: Dimethylformamide (DMF)
・ Flow rate: 1 ml / min ・ Detector: RI
・ Sample concentration: 0.5%
Standard curve base resin: TSK standard polyester (molecular weight 1050, 5970, 18100, 37900, 190000, 706000)
 本発明のナノファイバーにおけるセルロースアシレートの含有量は特に限定されないが、ナノファイバーの全質量に対して25質量%以上であることが好ましく、40~100質量%であることがより好ましく、60~100質量%であることが更に好ましい。 The cellulose acylate content in the nanofiber of the present invention is not particularly limited, but is preferably 25% by mass or more, more preferably 40 to 100% by mass, and more preferably 60 to 100% by mass with respect to the total mass of the nanofiber. More preferably, it is 100 mass%.
 〔セルロースアシレートの合成方法〕
 上述したセルロースアシレートの合成方法は、発明協会公開技報(公技番号2001-1745、2001年3月15日発行、発明協会)p.7~12の記載も適用できる。
[Method of synthesizing cellulose acylate]
The above-mentioned method for synthesizing cellulose acylate is disclosed in JIII Journal of Technical Disclosure (Publication No. 2001-1745, published on March 15, 2001, Invention Association) p. The description of 7 to 12 is also applicable.
 <原料>
 セルロースの原料としては、例えば、広葉樹パルプ、針葉樹パルプ、綿花リンターなどに由来する原料が好適に挙げられる。中でも、綿花リンターに由来する原料が、ヘミセルロース量が少なく、繊維径の均一性が更に向上したナノファイバーを作製できる理由から好ましい。
<Raw material>
As a raw material of cellulose, for example, a raw material derived from hardwood pulp, softwood pulp, cotton linter and the like can be preferably mentioned. Among these, a raw material derived from cotton linter is preferable because it can produce nanofibers with a small amount of hemicellulose and further improved uniformity in fiber diameter.
 <ヘミセルロース量>
 ヘミセルロース量の調整は、セルロースの原料を適切な方法で精製することによりで調整することができる。
 例えば、セルロースの原料をサルファイト蒸解法、クラフト蒸解法などによる蒸解処理;酸素系または塩素系漂白剤による漂白処理;アルカリ精製処理;などの工程を組み合わせた精製漂白工程を行うことにより、ヘミセルロース量を調整することができる。
 具体的には、上述した蒸解処理、漂白処理およびアルカリ精製処理を組み合わせた精製漂白工程において、アルカリ精製処理を施す際に、3~25質量%の強アルカリ水溶液を用い、20~40℃の低温で精製処理する方法が好適に挙げられる。
<Amount of hemicellulose>
The amount of hemicellulose can be adjusted by purifying the cellulose raw material by an appropriate method.
For example, the amount of hemicellulose can be obtained by subjecting cellulose raw materials to cooking bleaching by sulfite cooking, kraft cooking, etc .; bleaching with oxygen or chlorine bleach; alkali refining; Can be adjusted.
Specifically, in the refining bleaching process combining the above-described cooking, bleaching and alkali refining processes, a 3-25% by mass strong alkaline aqueous solution is used and a low temperature of 20-40 ° C. is used when performing the alkali refining process. A method of purifying with is preferable.
 <活性化>
 セルロースの原料は、アシル化に先立って、活性化剤と接触させる処理(活性化)を行うことが好ましい。
 活性化剤としては、具体的には、例えば、酢酸、プロピオン酸、酪酸が挙げられ、中でも、酢酸が好ましい。
 活性化剤の添加量は、5%~10000%であることが好ましく、10%~2000%であることがより好ましく、30%~1000%であることが更に好ましい。
 添加方法は、噴霧、滴下、浸漬などの方法から選択できる。
 活性化時間は、20分~72時間が好ましく、20分~12時間がより好ましい。
 活性化温度は、0℃~90℃が好ましく、20℃~60℃がより好ましい。
 さらに活性化剤に硫酸などのアシル化の触媒を0.1~10質量%加えることもできる。
<Activation>
The cellulose raw material is preferably subjected to a treatment (activation) for contacting with an activator prior to acylation.
Specific examples of the activator include acetic acid, propionic acid, and butyric acid. Among them, acetic acid is preferable.
The addition amount of the activator is preferably 5% to 10,000%, more preferably 10% to 2000%, and still more preferably 30% to 1000%.
The addition method can be selected from methods such as spraying, dropping, and dipping.
The activation time is preferably 20 minutes to 72 hours, more preferably 20 minutes to 12 hours.
The activation temperature is preferably 0 ° C. to 90 ° C., more preferably 20 ° C. to 60 ° C.
Furthermore, 0.1 to 10% by mass of an acylation catalyst such as sulfuric acid can be added to the activator.
 <アシル化>
 セルロースとカルボン酸の酸無水物とをブレンステッド酸またはルイス酸(「理化学辞典」第五版(2000年)参照)を触媒として反応させることで、セルロースの水酸基をアシル化することが、均一なセルロースアシレートを合成する上で好ましく、また、分子量の制御も可能である。
 セルロースアシレートを得る方法は、例えば、アシル化剤として2種のカルボン酸無水物を混合または逐次添加により反応させる方法;2種のカルボン酸の混合酸無水物(例えば、酢酸とプロピオン酸との混合酸無水物)を用いる方法;カルボン酸と別のカルボン酸の酸無水物(例えば、酢酸とプロピオン酸の酸無水物)を原料として反応系内で混合酸無水物(例えば、酢酸とプロピオン酸との混合酸無水物)を形成させてセルロースと反応させる方法;置換度が3に満たないセルロースアシレートを一旦合成し、酸無水物や酸ハライドを用いて、残存する水酸基を更にアシル化する方法;などが挙げられる。
 また、6位置換度の大きいセルロースアシレートの合成については、特開平11-5851号、特開2002-212338号や特開2002-338601号などの公報に記載がある。
<Acylation>
It is uniform to acylate the hydroxyl group of cellulose by reacting cellulose with a carboxylic acid anhydride using a Bronsted acid or a Lewis acid (see "Science and Chemistry Dictionary", fifth edition (2000)) as a catalyst. It is preferable for synthesizing cellulose acylate, and the molecular weight can be controlled.
The cellulose acylate can be obtained by, for example, a method of reacting two carboxylic acid anhydrides as an acylating agent by mixing or sequentially adding; a mixed acid anhydride of two carboxylic acids (for example, acetic acid and propionic acid). A method using a mixed acid anhydride; a mixed acid anhydride (for example, acetic acid and propionic acid) in a reaction system using an acid anhydride of a carboxylic acid and another carboxylic acid (for example, an acid anhydride of acetic acid and propionic acid) as a raw material A mixed acid anhydride) and a reaction with cellulose; a cellulose acylate having a degree of substitution of less than 3 is once synthesized, and the remaining hydroxyl group is further acylated using an acid anhydride or an acid halide Method; and the like.
The synthesis of cellulose acylate having a high degree of substitution at the 6-position is described in publications such as JP-A-11-5851, JP-A-2002-212338, and JP-A-2002-338601.
 (酸無水物)
 カルボン酸の酸無水物としては、炭素数が2~6のカルボン酸の酸無水物が好ましく、具体的には、無水酢酸、プロピオン酸無水物、酪酸無水物などが好適に挙げられる。
 酸無水物は、セルロースの水酸基に対して1.1~50当量添加することが好ましく、1.2~30当量添加することがより好ましく、1.5~10当量添加することが更に好ましい。
(Acid anhydride)
The carboxylic acid anhydride is preferably a carboxylic acid anhydride having 2 to 6 carbon atoms, and specific examples thereof include acetic anhydride, propionic anhydride, butyric anhydride, and the like.
The acid anhydride is preferably added in an amount of 1.1 to 50 equivalents, more preferably 1.2 to 30 equivalents, and still more preferably 1.5 to 10 equivalents, relative to the hydroxyl group of cellulose.
 (触媒)
 アシル化触媒には、ブレンステッド酸またはルイス酸を使用することが好ましく、硫酸または過塩素酸を使用することがより好ましい。
 アシル化触媒の添加量は、0.1~30質量%であることが好ましく、1~15質量%であることがより好ましく、3~12質量%であることが更に好ましい。
(catalyst)
As the acylation catalyst, a Bronsted acid or a Lewis acid is preferably used, and sulfuric acid or perchloric acid is more preferably used.
The addition amount of the acylation catalyst is preferably from 0.1 to 30% by mass, more preferably from 1 to 15% by mass, and even more preferably from 3 to 12% by mass.
 (溶媒)
 アシル化溶媒としては、カルボン酸を使用することが好ましく、炭素数2以上7以下のカルボン酸を使用することがより好ましく、具体的には、例えば、酢酸、プロピオン酸、酪酸などを用いることが更に好ましい。これらの溶媒は混合して用いてもよい。
(solvent)
As the acylating solvent, it is preferable to use a carboxylic acid, and it is more preferable to use a carboxylic acid having 2 to 7 carbon atoms. Specifically, for example, acetic acid, propionic acid, butyric acid, and the like are used. Further preferred. These solvents may be used as a mixture.
 (条件)
 アシル化の反応熱による温度上昇を制御するために、アシル化剤は予め冷却しておくことが好ましい。
 アシル化温度は-50℃~50℃が好ましく、-30℃~40℃がより好ましく、-20℃~35℃が更に好ましい。
 反応の最低温度は-50℃以上が好ましく、-30℃以上がより好ましく、-20℃以上が更に好ましい。
 アシル化時間は0.5時間~24時間が好ましく、1時間~12時間がより好ましく、1.5時間~10時間が更に好ましい。
 アシル化時間の制御により、分子量の調整が可能である。
(conditions)
In order to control the temperature rise due to the heat of reaction of acylation, it is preferable to cool the acylating agent in advance.
The acylation temperature is preferably −50 ° C. to 50 ° C., more preferably −30 ° C. to 40 ° C., and further preferably −20 ° C. to 35 ° C.
The minimum reaction temperature is preferably −50 ° C. or higher, more preferably −30 ° C. or higher, and further preferably −20 ° C. or higher.
The acylation time is preferably 0.5 to 24 hours, more preferably 1 to 12 hours, and even more preferably 1.5 to 10 hours.
The molecular weight can be adjusted by controlling the acylation time.
 (反応停止剤)
 アシル化反応の後に、反応停止剤を加えることが好ましい。
 反応停止剤は、酸無水物を分解するものであればよく、具体的には、水、炭素数1~3のアルコール、カルボン酸(例えば、酢酸、プロピオン酸、酪酸等)が挙げられ、中でも水とカルボン酸(酢酸)との混合物が好ましい。
 水とカルボン酸との組成は、水が5~80質量%であることが好ましく、10~60質量%であることがより好ましく、15~50質量%であることが更に好ましい。
(Reaction terminator)
It is preferable to add a reaction terminator after the acylation reaction.
The reaction terminator may be any as long as it decomposes an acid anhydride, and specifically includes water, alcohols having 1 to 3 carbon atoms, and carboxylic acids (for example, acetic acid, propionic acid, butyric acid, etc.). A mixture of water and carboxylic acid (acetic acid) is preferred.
The composition of water and carboxylic acid is preferably 5 to 80% by mass of water, more preferably 10 to 60% by mass, and still more preferably 15 to 50% by mass.
 (中和剤)
 アシル化反応停止後に中和剤を添加してもよい。
 中和剤としては、例えば、アンモニウム、有機4級アンモニウム、アルカリ金属、2族の金属、3-12族金属、または、13-15族元素の、炭酸塩、炭酸水素塩、有機酸塩、水酸化物もしくは酸化物などを挙げることができる。具体的には、ナトリウム、カリウム、マグネシウムまたはカルシウムの、炭酸塩、炭酸水素塩、酢酸塩または水酸化物が好適に挙げられる。
(Neutralizer)
A neutralizing agent may be added after the acylation reaction is stopped.
Examples of the neutralizing agent include ammonium, organic quaternary ammonium, alkali metal, group 2 metal, group 3-12 metal, or group 13-15 element carbonate, bicarbonate, organic acid salt, water An oxide or an oxide can be given. Specifically, sodium, potassium, magnesium or calcium carbonate, hydrogen carbonate, acetate or hydroxide is preferably mentioned.
 (部分加水分解)
 上述したアシル化により得られたセルロースアシレートは、全置換度がほぼ3に近いものであるが、所望の置換度(例えば、2.8程度)に調整する目的で、少量の触媒(例えば、残存する硫酸などのアシル化触媒)と水との存在下で、20~90℃に数分~数日間保つことによりエステル結合を部分的に加水分解し、セルロースアシレートのアシル置換度を所望の程度まで減少させることができる。なお、部分加水分解は、残存触媒を上記中和剤を用いてを適宜停止させることができる。
(Partial hydrolysis)
The cellulose acylate obtained by the acylation described above has a total degree of substitution close to about 3. However, for the purpose of adjusting to a desired degree of substitution (for example, about 2.8), a small amount of catalyst (for example, In the presence of residual acylation catalyst such as sulfuric acid) and water, the ester bond is partially hydrolyzed by keeping it at 20 to 90 ° C. for several minutes to several days, so that the acyl substitution degree of cellulose acylate is desired. Can be reduced to a degree. Note that the partial hydrolysis can be appropriately stopped by using the neutralizing agent for the remaining catalyst.
 (ろ過)
 ろ過は、アシル化の完了から再沈殿までの間のいかなる工程において行ってもよい。ろ過に先立って適切な溶媒で希釈することも好ましい。
(Filtration)
Filtration may be performed at any step between the completion of acylation and reprecipitation. It is also preferred to dilute with a suitable solvent prior to filtration.
 (再沈殿)
 セルロースアシレート溶液を、水またはカルボン酸(例えば、酢酸、プロピオン酸など)水溶液と混合し、再沈殿させることができる。再沈殿は連続式、バッチ式どちらでもよい。
(Reprecipitation)
The cellulose acylate solution can be mixed with water or an aqueous solution of carboxylic acid (eg, acetic acid, propionic acid, etc.) and reprecipitated. Reprecipitation may be either continuous or batch.
 (洗浄)
 再沈殿後、洗浄処理することが好ましい。洗浄は水または温水を用い、pH、イオン濃度、電気伝導度、元素分析等で洗浄終了を確認できる。
(Washing)
It is preferable to perform a washing treatment after reprecipitation. Washing can be performed using water or warm water, and the completion of washing can be confirmed by pH, ion concentration, electrical conductivity, elemental analysis, and the like.
 (安定化)
 洗浄後のセルロースアシレートは、安定化のために、弱アルカリ(Na、K、Ca、Mg等の炭酸塩、炭酸水素塩、水酸化物、酸化物)を添加するのが好ましい。
(Stabilization)
The cellulose acylate after washing is preferably added with a weak alkali (carbonates such as Na, K, Ca and Mg, bicarbonates, hydroxides and oxides) for stabilization.
 (乾燥)
 50~160℃でセルロースアシレートの含水率を2質量%以下にまで乾燥することが好ましい。
(Dry)
It is preferable to dry the cellulose acylate to 50% by mass or less at 50 to 160 ° C.
 〔ナノファイバーの作製方法〕
 本発明のナノファイバーの作製方法は特に限定されないが、例えば、上述したセルロースアシレートが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から出し、溶液とコレクタとの間に電圧をかけて、溶液からコレクタにファイバを噴出することで作製することができる。以下に図を用いて詳細を述べる。
[Production method of nanofiber]
The method for producing the nanofiber of the present invention is not particularly limited. For example, a solution in which the above-described cellulose acylate is dissolved in a solvent is taken out from the nozzle tip as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, It can be manufactured by applying a voltage between the solution and the collector and ejecting the fiber from the solution to the collector. Details will be described below with reference to the drawings.
 図1に示すナノファイバー製造装置110は、セルロースアシレートが溶媒に溶解した溶液25からナノファイバー46を製造するためのものである。ナノファイバー製造装置110は、紡糸室111と、溶液供給部112と、ノズル13と、集積部15と、電源65とを備える。紡糸室111は、例えばノズル13や、集積部15の一部等を収容して、密閉可能に構成されており、溶媒ガスが外部に洩れることを防止している。溶媒ガスは、溶液25の溶媒が気化したものである。
 なお、溶媒は、単体でもよいし、複数の化合物からなる混合物であってもよい。セルロースアシレートを溶解する溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、ギ酸メチル、ギ酸エチル、ヘキサン、シクロヘキサン、ジクロロメタン、クロロホルム、四塩化炭素、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、N-メチルピロリドン(NMP)、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1-メトキシ-2-プロパノールなどが挙げられる。これらは、ポリマーの種類、飽和蒸気圧Ps、溶液25の粘度などに応じて単独で使用しても混合して使用してもよい。本実施形態では、溶媒として、ジクロロメタンとNMPとの混合物、ジクロロメタンとシクロヘキサノンとの混合物、アセトンとシクロヘキサンノンとの混合物などを用いている。
A nanofiber production apparatus 110 shown in FIG. 1 is for producing nanofibers 46 from a solution 25 in which cellulose acylate is dissolved in a solvent. The nanofiber manufacturing apparatus 110 includes a spinning chamber 111, a solution supply unit 112, a nozzle 13, an accumulation unit 15, and a power source 65. The spinning chamber 111 accommodates, for example, the nozzle 13 and a part of the accumulating unit 15 and is configured to be hermetically sealed to prevent the solvent gas from leaking to the outside. The solvent gas is obtained by vaporizing the solvent of the solution 25.
The solvent may be a simple substance or a mixture composed of a plurality of compounds. Solvents for dissolving cellulose acylate include methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, hexane, cyclohexane, dichloromethane Chloroform, carbon tetrachloride, benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone (NMP), diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like. These may be used alone or in combination depending on the type of polymer, the saturated vapor pressure Ps, the viscosity of the solution 25, and the like. In this embodiment, as a solvent, a mixture of dichloromethane and NMP, a mixture of dichloromethane and cyclohexanone, a mixture of acetone and cyclohexanenone, or the like is used.
 紡糸室111内の上部には、ノズル13が配される。ノズル13は、後述のように電源65により溶液25を第1の極性に帯電された状態で出すためのものである。図2に示すように、ノズル13は円筒から構成されており、先端の開口(以下、「先端開口」と略す。)13aから溶液25を出す。先端開口13aは、溶液25が出る出口である。ノズル13は、例えば外径が0.65mmで内径が0.4mmのステンレス製であり、先端開口13aの周りの先端開口縁部13bが筒心方向に直交するように切断されている。この切断面である先端開口縁部13bは、平坦に研磨されている。 A nozzle 13 is disposed in the upper part of the spinning chamber 111. The nozzle 13 is for discharging the solution 25 in a state of being charged to the first polarity by the power source 65 as will be described later. As shown in FIG. 2, the nozzle 13 is formed of a cylinder, and discharges the solution 25 from an opening 13 </ b> A (hereinafter, abbreviated as “end opening”). The tip opening 13a is an outlet through which the solution 25 exits. The nozzle 13 is made of stainless steel having an outer diameter of 0.65 mm and an inner diameter of 0.4 mm, for example, and is cut so that a tip opening edge portion 13b around the tip opening 13a is orthogonal to the cylinder center direction. The front end opening edge 13b, which is the cut surface, is polished flat.
 ノズル13の素材はステンレスに代えて、例えばアルミニウム合金、銅合金、チタン合金等の導電性材料で構成してもよい。なお、電界紡糸のためには、溶液25はいずれかの場所で金属部材に接し、電圧が印加され、第1の極性に帯電した状態で先端開口13aから出ればよい。したがって、先端開口13aに至るまでのいずれかの場所で電圧が印加され、先端開口13aから出る際に第1の極性に帯電していれば、先端開口13aは必ずしも導電性材料である必要はない。 The material of the nozzle 13 may be made of a conductive material such as an aluminum alloy, a copper alloy, or a titanium alloy instead of stainless steel. For electrospinning, the solution 25 may come into contact with the metal member at any location, be applied with a voltage, and exit from the tip opening 13a in a state of being charged to the first polarity. Therefore, the tip opening 13a does not necessarily need to be a conductive material as long as a voltage is applied at any location up to the tip opening 13a and the first opening is charged when exiting the tip opening 13a. .
 図1に示すように、ノズル13の基端には、溶液供給部112の配管32が接続されている。溶液供給部112は、紡糸室111のノズル13に前述の溶液25を供給するためのものである。溶液供給部112は、貯留容器30と第1温調器133とポンプ31と配管32とを備える。貯留容器30は溶液25を貯留する。第1温調器133は、貯留容器30を介して、貯留されている溶液25の温度を調節する。 As shown in FIG. 1, a pipe 32 of the solution supply unit 112 is connected to the base end of the nozzle 13. The solution supply unit 112 is for supplying the solution 25 to the nozzle 13 of the spinning chamber 111. The solution supply unit 112 includes a storage container 30, a first temperature controller 133, a pump 31, and a pipe 32. The storage container 30 stores the solution 25. The first temperature controller 133 adjusts the temperature of the stored solution 25 via the storage container 30.
 ポンプ31は、配管32を介して溶液25を貯留容器30からノズル13に送る。ポンプ31の回転数を変えることにより、ノズル13から送り出す溶液25の流量を調節することができる。本実施形態においては、溶液25の流量を3cm/時としているが、流量はこれに限定されない。ポンプ31によってノズル13に溶液25が送られることにより、溶液25は先端開口13aから出る。 The pump 31 sends the solution 25 from the storage container 30 to the nozzle 13 via the pipe 32. By changing the number of rotations of the pump 31, the flow rate of the solution 25 delivered from the nozzle 13 can be adjusted. In the present embodiment, the flow rate of the solution 25 is 3 cm 3 / hour, but the flow rate is not limited to this. When the solution 25 is sent to the nozzle 13 by the pump 31, the solution 25 exits from the tip opening 13a.
 貯留容器30の溶液25は、溶媒の飽和蒸気圧Ps(単位;kPa)と、セルロースアシレートの濃度C(単位;g/100cm)とが、以下の条件(1)を満たす。溶液25はこの条件(1)を満たした状態で、ノズル13へ送られて先端開口13aから出される。条件(1)を満たした状態で貯留容器30から先端開口13aへ案内されて先端開口13aから出るように、本実施形態では、配管32とノズル13とに温調器(図示無し)を設けており、これらの温調器により溶液25の温度を、貯留容器30における温度に保った状態で、ノズル13に案内し、先端開口13aから出している。
 Ps×C≦300・・・(1)
In the solution 25 of the storage container 30, the saturated vapor pressure Ps (unit: kPa) of the solvent and the concentration C (unit: g / 100 cm 3 ) of the cellulose acylate satisfy the following condition (1). The solution 25 is sent to the nozzle 13 in a state where this condition (1) is satisfied, and is discharged from the tip opening 13a. In this embodiment, the pipe 32 and the nozzle 13 are provided with temperature controllers (not shown) so that they are guided from the storage container 30 to the tip opening 13a and exit from the tip opening 13a in a state where the condition (1) is satisfied. The temperature of the solution 25 is guided to the nozzle 13 while being kept at the temperature in the storage container 30 by these temperature controllers, and is discharged from the tip opening 13a.
Ps × C ≦ 300 (1)
 温度tでの溶媒の飽和蒸気圧Ps(t)は、下記の式(2)で求められる。ここで、溶媒の成分数をn(nは、1以上の自然数)、温度tでの成分i(iは、1以上n以下の自然数)の単体の飽和蒸気圧をPi(t)、成分iの溶媒におけるモル分率をXiとする。成分数nのとき、飽和蒸気圧Ps(t)は次式で定義される。上記の条件(1)におけるPsは、ノズル13から出る溶液25の温度を式(2)における温度tとして求める。本実施形態では溶液25の温度を貯留容器30から先端開口13aに至るまで一定に保持しているので、貯留容器30における温度を式(2)の温度tとし、これにより飽和蒸気圧Psを求めている。また、濃度Cは、溶液25の体積をV(単位;cm)、セルロースアシレートの質量をM(単位;g)とするときに、(M×100)/Vで求める。 The saturated vapor pressure Ps (t) of the solvent at the temperature t is obtained by the following equation (2). Here, the number of components of the solvent is n (n is a natural number of 1 or more), the saturated vapor pressure of a single component i (i is a natural number of 1 to n) at temperature t is Pi (t), and the component i Let Xi be the molar fraction in the solvent. When the number of components is n, the saturated vapor pressure Ps (t) is defined by the following equation. Ps in the above condition (1) is obtained as the temperature t in the equation (2) by the temperature of the solution 25 coming out of the nozzle 13. In the present embodiment, since the temperature of the solution 25 is kept constant from the storage container 30 to the tip opening 13a, the temperature in the storage container 30 is set to the temperature t in the equation (2), thereby obtaining the saturated vapor pressure Ps. ing. Concentration C is determined by (M × 100) / V, where V (unit: cm 3 ) is the volume of solution 25 and M (unit: g) is the mass of cellulose acylate.
 飽和蒸気圧Psは10kPa以上50kPa以下の範囲内であることが好ましい。飽和蒸気圧Psが10kPa以上である場合には10kPa未満である場合に比べて、溶媒が蒸発しやすいため、溶液25の玉状の液滴や固形分の粒子を発生させない。また、50kPa以下である場合には、50kPaよりも大きい場合に比べて溶媒が蒸発しにくいので、溶液25の乾きによる固化が抑制される。 The saturated vapor pressure Ps is preferably in the range of 10 kPa to 50 kPa. When the saturated vapor pressure Ps is 10 kPa or higher, the solvent evaporates more easily than when the saturated vapor pressure Ps is less than 10 kPa, so that the droplets of the solution 25 and solid particles are not generated. Moreover, since it is hard to evaporate a solvent when it is 50 kPa or less compared with the case where it is larger than 50 kPa, solidification by drying of the solution 25 is suppressed.
 第1温調器133は、溶液25の温度を調節することにより溶液25中の溶媒の飽和蒸気圧Psを調節する。なお、飽和蒸気圧Psは、溶液25の温度の調節に代えて、または加えて、溶液25の溶媒を複数の化合物からなる混合物として、その混合比率を変えることで調節することができる。 The first temperature controller 133 adjusts the saturated vapor pressure Ps of the solvent in the solution 25 by adjusting the temperature of the solution 25. The saturated vapor pressure Ps can be adjusted by changing the mixing ratio of the solvent of the solution 25 as a mixture composed of a plurality of compounds instead of or in addition to the adjustment of the temperature of the solution 25.
 ノズル13から出る溶液25の温度は、5℃以上40℃以下の範囲内であることが好ましく、本実施形態においては25℃±1℃(24℃以上26℃以下の範囲内)にしている。ノズル13から出る溶液25の温度を上記範囲にするために、貯留溶液30において溶液25を5℃以上40℃以下の範囲内の温度に調節して貯留することが好ましく、本実施形態においては25℃±1℃にしている。溶液25の温度が5℃以上である場合には、5℃未満である場合に比べて溶液25は低温によるゲル化が起こりにくく、溶液25が安定してノズル13から出る。また、溶液25の温度が40℃以下である場合には、40℃よりも高い場合に比べて溶媒が沸点を超えることによる激しい蒸発(フラッシュ)が起こりにくく、溶液25の乾きによる固化が抑制される。ノズル13から出る溶液25の温度は、10℃以上35℃以下の範囲内であることがより好ましく、15℃以上30℃以下の範囲内であることがさらに好ましい。 The temperature of the solution 25 coming out of the nozzle 13 is preferably in the range of 5 ° C. or more and 40 ° C. or less, and in this embodiment, it is 25 ° C. ± 1 ° C. (in the range of 24 ° C. or more and 26 ° C. or less). In order to make the temperature of the solution 25 coming out of the nozzle 13 within the above range, it is preferable to store the solution 25 in the storage solution 30 by adjusting the temperature to a temperature within the range of 5 ° C. or more and 40 ° C. or less. ℃ ± 1 ℃. When the temperature of the solution 25 is 5 ° C. or higher, the solution 25 is less likely to be gelled at a low temperature than when it is less than 5 ° C., and the solution 25 is stably discharged from the nozzle 13. In addition, when the temperature of the solution 25 is 40 ° C. or lower, intense evaporation (flash) due to the solvent exceeding the boiling point is less likely to occur than when the temperature is higher than 40 ° C., and solidification due to drying of the solution 25 is suppressed. The The temperature of the solution 25 exiting from the nozzle 13 is more preferably in the range of 10 ° C. or more and 35 ° C. or less, and further preferably in the range of 15 ° C. or more and 30 ° C. or less.
 ノズル13から出る溶液25の粘度は、1mPa・s以上10Pa・s以下の範囲内であることが好ましい。溶液25の粘度は、温度と、溶液25の成分とによって調節することができる。溶液25の温度により粘度を調節する場合には、第1温調器133により溶液25の温度を調節するとよい。また、溶液25の成分によって粘度を調節する方法としては、例えばセルロースアシレートの濃度Cを変える方法、溶媒を変える方法等がある。溶媒を変える方法としては、例えば、溶媒が単体から構成される場合にはその単体の種類を変えることや他の成分を加え混合物に変えること、溶媒が混合物である場合にはその成分と配合比率との少なくともいずれか一方を変えることが挙げられる。ノズル13から出る溶液25の粘度は、1mPa・s以上5Pa・s以下の範囲内であることがより好ましく、2mPa・s以上2Pa・s以下の範囲内であることがさらに好ましい。 The viscosity of the solution 25 exiting from the nozzle 13 is preferably in the range of 1 mPa · s to 10 Pa · s. The viscosity of the solution 25 can be adjusted by the temperature and the components of the solution 25. When adjusting the viscosity according to the temperature of the solution 25, the temperature of the solution 25 may be adjusted by the first temperature controller 133. Examples of a method for adjusting the viscosity according to the components of the solution 25 include a method for changing the concentration C of cellulose acylate and a method for changing the solvent. As a method for changing the solvent, for example, when the solvent is composed of a simple substance, the kind of the simple substance is changed, or other ingredients are added to change the mixture, and when the solvent is a mixture, the composition ratio of the ingredients is mixed. And changing at least one of them. The viscosity of the solution 25 exiting from the nozzle 13 is more preferably in the range of 1 mPa · s to 5 Pa · s, and still more preferably in the range of 2 mPa · s to 2 Pa · s.
 ノズル13には、本実施形態のように、先端開口13aを覆うカバー134と、カバー134の内部の温度を調節するための第2温調器135とを設けることが好ましい。カバー134は、先端開口13aとコレクタ50との間に、コレクタ50に向かって溶液25が通過するための開口134aが形成されている。第2温調器135による内部温度の調節により、先端開口13aの周囲(溶液がでる出口周囲)の雰囲気温度Taを調節する。周囲とは、少なくともテイラーコーン44を覆う範囲であり、例えば先端開口13aから20mm以内の範囲であることが好ましい。この雰囲気温度Taの調節により、先端開口13aから出る溶液25の温度Tsと雰囲気温度Taとの差、すなわちTs-Taを-15℃以上15℃以下の範囲内にすることが好ましい。Ts-Taが-15℃以上15℃以下の範囲内である場合には、この範囲外である場合に比べて、溶媒の蒸発が適度であるので、溶液25の乾きによる固化が抑制され、また溶液25の玉状の液滴や固形分の粒子の発生も無い。Ts-Taは、-10℃以上10℃以下の範囲内であることがより好ましく、-5℃以上5℃以下の範囲内であることがさらに好ましい。 The nozzle 13 is preferably provided with a cover 134 that covers the tip opening 13a and a second temperature controller 135 for adjusting the temperature inside the cover 134 as in the present embodiment. In the cover 134, an opening 134 a for allowing the solution 25 to pass toward the collector 50 is formed between the tip opening 13 a and the collector 50. By adjusting the internal temperature by the second temperature controller 135, the ambient temperature Ta around the tip opening 13a (around the outlet where the solution comes out) is adjusted. The periphery is a range that covers at least the Taylor cone 44, and is preferably within a range of, for example, 20 mm from the tip opening 13a. By adjusting the atmospheric temperature Ta, it is preferable to set the difference between the temperature Ts of the solution 25 coming out of the tip opening 13a and the atmospheric temperature Ta, that is, Ts-Ta within a range of −15 ° C. to 15 ° C. When Ts-Ta is in the range of −15 ° C. or more and 15 ° C. or less, the evaporation of the solvent is moderate compared to the case where Ts-Ta is outside this range, so that solidification due to drying of the solution 25 is suppressed, and There are no occurrences of ball-like droplets of the solution 25 or solid particles. Ts—Ta is more preferably within a range of −10 ° C. to 10 ° C., and further preferably within a range of −5 ° C. to 5 ° C.
 先端開口13aの周囲の雰囲気温度Taを調節する方法としては、本実施形態のカバー134及び第2温調器135による方法には限られない。カバー134と第2温調器135に代えて、例えば、温度を一定に調整した空気などの気体を紡糸室111に送り、この送り込みによって紡糸室111の内部全体の温度を調節することで雰囲気温度Taを調節してもよい。なお、本実施形態においては、雰囲気温度Taを25℃に調節し、また、先端開口13aの周囲の雰囲気の相対湿度を30%RHにしている。 The method of adjusting the ambient temperature Ta around the tip opening 13a is not limited to the method using the cover 134 and the second temperature controller 135 of the present embodiment. Instead of the cover 134 and the second temperature controller 135, for example, a gas such as air with a constant temperature is sent to the spinning chamber 111, and the temperature of the entire interior of the spinning chamber 111 is adjusted by this feeding. Ta may be adjusted. In the present embodiment, the atmospheric temperature Ta is adjusted to 25 ° C., and the relative humidity of the atmosphere around the tip opening 13a is set to 30% RH.
 溶液25におけるセルロースアシレートの濃度Cは、0.1g/100cm以上20g/100cm以下の範囲内であることが好ましい。これにより、溶液25の粘度が適度になり、また、セルロースアシレートの分子同士が適度に絡み合う。濃度Cは、0.5g/100cm以上15g/100cm以下であることがより好ましく、1g/100cm以上10g/100cm以下であることがさらに好ましい。 The cellulose acylate concentration C in the solution 25 is preferably in the range of 0.1 g / 100 cm 3 or more and 20 g / 100 cm 3 or less. Thereby, the viscosity of the solution 25 becomes moderate, and the molecules of the cellulose acylate are appropriately entangled with each other. The concentration C is more preferably 0.5 g / 100 cm 3 or more and 15 g / 100 cm 3 or less, and further preferably 1 g / 100 cm 3 or more and 10 g / 100 cm 3 or less.
 ノズル13の下方には集積部15が配される。集積部15は、コレクタ50、コレクタ回転部51、支持体供給部52、及び支持体巻取り部53を有する。コレクタ50はノズル13から出た溶液25をナノファイバー46として捕集するためのものであり、本実施形態では、後述の支持体60上に捕集する。コレクタ50は、帯状の金属製、例えばステンレス製の無端ベルトから構成されている。コレクタ50はステンレス製に限定されず、電源65による電圧の印加により帯電する素材から形成されていればよい。コレクタ回転部51は、1対のローラ55,56、モータ57などから構成されている。コレクタ50は、1対のローラ55,56に水平に掛け渡されている。一方のローラ55の軸には紡糸室111の外に配されたモータ57が接続されており、ローラ55を所定速度で回転させる。この回転によりコレクタ50は1対のローラ55,56間で循環するように移動する。本実施形態においては、コレクタ50の移動速度は、10cm/時としているが、これに限定されない。 The accumulation unit 15 is disposed below the nozzle 13. The stacking unit 15 includes a collector 50, a collector rotating unit 51, a support body supply unit 52, and a support body winding unit 53. The collector 50 is for collecting the solution 25 exiting from the nozzle 13 as nanofibers 46, and in this embodiment, collects it on a support 60 described later. The collector 50 is made of an endless belt made of a band-like metal, for example, stainless steel. The collector 50 is not limited to stainless steel, and may be formed of a material that is charged by applying a voltage from the power source 65. The collector rotating unit 51 is composed of a pair of rollers 55 and 56, a motor 57, and the like. The collector 50 is stretched horizontally around a pair of rollers 55 and 56. A motor 57 disposed outside the spinning chamber 111 is connected to the shaft of one roller 55, and rotates the roller 55 at a predetermined speed. This rotation causes the collector 50 to circulate between the pair of rollers 55 and 56. In this embodiment, the moving speed of the collector 50 is 10 cm / hour, but is not limited to this.
 コレクタ50には支持体供給部52によって帯状のアルミニウムシート(アルミシート)からなる支持体60が供給される。本実施形態における支持体60は、厚みが概ね25μmである。支持体60は、ナノファイバー46を集積(堆積)させて不織布120として得るためのものである。コレクタ50上の支持体60は、支持体巻取り部53によって巻き取られる。支持体供給部52は送出軸52aを有する。送出軸52aの巻芯23には支持体ロール54が装着される。支持体ロール54は支持体60が巻き取られて構成されている。支持体巻取り部53は巻取り軸58を有する。巻取り軸58は図示省略のモータにより回転され、セットされる巻芯61に、不織布120が形成された支持体60を巻き取る。不織布120は、ナノファイバー46が集積されて形成されたものである。このように、このナノファイバー製造装置110は、ナノファイバー46を製造する機能に加え、不織布120を製造する機能をもつ。コレクタ50の移動速度と支持体60の移動速度は両者の間に摩擦が生じることがないように同じにすることが好ましい。また、支持体60は、コレクタ50上に載せて、コレクタ50の移動に伴って移動する態様にしてもよい。 The support body 60 made of a strip-shaped aluminum sheet (aluminum sheet) is supplied to the collector 50 by the support body supply section 52. The support body 60 in the present embodiment has a thickness of approximately 25 μm. The support 60 is for obtaining the nonwoven fabric 120 by accumulating (depositing) the nanofibers 46. The support body 60 on the collector 50 is wound up by the support body winding part 53. The support body supply unit 52 has a delivery shaft 52a. A support roll 54 is attached to the core 23 of the delivery shaft 52a. The support roll 54 is configured by winding the support 60. The support winding portion 53 has a winding shaft 58. The winding shaft 58 is rotated by a motor (not shown), and the support body 60 on which the nonwoven fabric 120 is formed is wound around the core 61 to be set. The nonwoven fabric 120 is formed by integrating the nanofibers 46. As described above, the nanofiber manufacturing apparatus 110 has a function of manufacturing the nonwoven fabric 120 in addition to the function of manufacturing the nanofiber 46. The moving speed of the collector 50 and the moving speed of the support 60 are preferably the same so that friction does not occur between them. Further, the support body 60 may be placed on the collector 50 and moved as the collector 50 moves.
 なお、コレクタ50の上にナノファイバー46を直接集積して不織布120を形成してもよいが、コレクタ50を形成する素材や表面状態等によっては不織布120が貼り付いて剥がしにくいことがある。そのため、本実施形態のように、不織布120が貼り付きにくくされた支持体60をコレクタ50上に案内して、この支持体60上にナノファイバー46を集積することが好ましい。 Note that the nanofibers 46 may be directly accumulated on the collector 50 to form the nonwoven fabric 120. However, depending on the material forming the collector 50, the surface state, and the like, the nonwoven fabric 120 may stick and be difficult to peel off. Therefore, as in this embodiment, it is preferable to guide the support body 60 on which the nonwoven fabric 120 is difficult to stick to the collector 50 and to accumulate the nanofibers 46 on the support body 60.
 電源65は、ノズル13とコレクタ50とに電圧を印加して、ノズル13を第1の極性に帯電させ、コレクタ50を第1の極性と逆極性の第2の極性に帯電させる電圧印加部である。本実施形態では、ノズル13をプラス(+)に帯電させ、コレクタ50をマイナス(-)に帯電させているが、ノズル13とコレクタ50との極性は逆であってもよい。ノズル13を通ることにより溶液25は第1の極性に帯電する。本実施形態では、ノズル13とコレクタ50とに印加する電圧は30kVとしている。 The power source 65 is a voltage application unit that applies a voltage to the nozzle 13 and the collector 50 to charge the nozzle 13 to the first polarity, and charges the collector 50 to the second polarity opposite to the first polarity. is there. In this embodiment, the nozzle 13 is charged positively (+) and the collector 50 is negatively charged (−). However, the polarity of the nozzle 13 and the collector 50 may be reversed. By passing through the nozzle 13, the solution 25 is charged to the first polarity. In the present embodiment, the voltage applied to the nozzle 13 and the collector 50 is 30 kV.
 ノズル13の先端開口13aとコレクタ50との距離L2は、セルロースアシレートと溶媒の種類、溶液25における溶媒の質量割合等によって適切な値が異なるが、30mm以上300mm以下の範囲内が好ましく、本実施形態では150mmとしている。この距離L2が30mm以上であることにより、30mmよりも短い場合に比べて、噴出して形成された紡糸ジェット45が、コレクタ50に到達するまでに、自身の電荷による反発でより確実に分裂するので、細いナノファイバー46がより確実に得られる。また、このように細く分裂することで溶媒がより確実に蒸発するため、溶媒が残留した不織布となることがより確実に防がれる。また、距離L2が300mm以下であることにより、300mmを超えて長すぎる場合と比べて、印加する電圧を低く抑えることができるので、異常放電が抑制される。 The distance L2 between the tip opening 13a of the nozzle 13 and the collector 50 varies depending on the type of cellulose acylate and the solvent, the mass ratio of the solvent in the solution 25, etc., but is preferably in the range of 30 mm to 300 mm. In the embodiment, it is 150 mm. When the distance L2 is 30 mm or more, the spun jet 45 formed by jetting is more reliably split by repulsion due to its own charge before reaching the collector 50, compared to a case where the distance L2 is shorter than 30 mm. Therefore, the thin nanofiber 46 can be obtained more reliably. Moreover, since the solvent evaporates more reliably by splitting finely in this way, it is possible to more reliably prevent the non-woven fabric from which the solvent remains. Moreover, since the voltage to apply can be restrained low compared with the case where distance L2 is 300 mm or less and it is too long exceeding 300 mm, abnormal discharge is suppressed.
[不織布]
 本発明の不織布は、上述した本発明のナノファイバーで構成された不織布であり、例えば、上述した通り、図1に示すナノファイバー製造装置110により、不織布120を製造することができる。
[Nonwoven fabric]
The nonwoven fabric of this invention is a nonwoven fabric comprised by the nanofiber of this invention mentioned above, for example, as above-mentioned, the nonwoven fabric 120 can be manufactured with the nanofiber manufacturing apparatus 110 shown in FIG.
 また、本発明の不織布は、エレクトロスピニング法により得られたナノファイバーの堆積物を基板から剥し、加熱処理することによっても作製することができる。
 加熱による硬化反応によってナノファイバー同士の接触部分が強固に結合して、耐熱性、耐薬品性に優れ、高強度の不織布が得られる。なお、加熱条件は特に限定されないが、150~250℃で10分間~2時間加熱する条件が挙げられる。
 また、本発明の不織布の厚さは、ナノファイバーを堆積させる量、または、適当な厚さのナノファイバー堆積物を重ねることにより適宜調整することができ、30nm~1mm程度であることが好ましく、100nm~300μm程度であることがより好ましい。
The nonwoven fabric of the present invention can also be produced by peeling a nanofiber deposit obtained by an electrospinning method from a substrate and subjecting it to a heat treatment.
The contact portion between the nanofibers is strongly bonded by a curing reaction by heating, and a high-strength nonwoven fabric having excellent heat resistance and chemical resistance is obtained. The heating conditions are not particularly limited, and examples include conditions of heating at 150 to 250 ° C. for 10 minutes to 2 hours.
Further, the thickness of the nonwoven fabric of the present invention can be adjusted as appropriate by the amount of nanofibers deposited or by stacking nanofiber deposits of appropriate thickness, and is preferably about 30 nm to 1 mm. More preferably, it is about 100 nm to 300 μm.
 本発明の不織布は、例えば、医療用フィルター、マスク、耐熱性バグフィルター、二次電池セパレーター、二次電池電極、断熱材料、濾布および吸音材料等の用途に用いることができる。
 これらのうち、セルロースアシレートが生体適合性に優れる観点から、医療用フィルターまたはマスクとして用いることが好ましい。また、本発明の不織布を医療用フィルターまたはマスクとして用いる場合は、選択分離能が高くなることが期待できる。これは、本発明のナノファイバーが、繊維径の均一性が高く、空隙の均一性も高いため、物理的な選択分離能に優れ、更に、セルロースアシレートが、親水性と疎水性の両方の特徴を有し、化学的な選択分離能も高いためである。
 また、耐熱性バグフィルターの場合、一般ごみ焼却炉・産業廃棄物焼却炉用のバグフイルターとして使用することができる。
 また、二次電池セパレーターの場合、リチウムイオン二次電池用のセパレーターとして使用することができる。
 また、二次電池電極の場合、熱硬化前の熱硬化性ナノファイバーの堆積物を用いることにより、二次電池電極形成用バインダーとして、使用することができる。さらに、本発明の紡糸液に粉末電極材料を分散混合し、それをエレクトロスピニングし、堆積物を熱硬化することにより得られた導電性不織布を、二次電池電極としても使用することができる。
 また、断熱材料の場合、耐熱レンガのバックアップ材、燃焼ガスシール用として使用することができる。
 また、濾布の場合、不織布の厚さ等を適宜調整し、不織布の孔の大きさを調整することにより、マイクロフィルター用の濾布などとして使用することができる。濾布を使用することにより、液若しくはガスなどの流体中の固形分を分離することができる。
 また、吸音材料の場合、壁面遮音補強、内壁吸音層などの吸音材料として使用することができる。
The nonwoven fabric of this invention can be used for uses, such as a medical filter, a mask, a heat resistant bag filter, a secondary battery separator, a secondary battery electrode, a heat insulating material, a filter cloth, and a sound absorption material, for example.
Of these, cellulose acylate is preferably used as a medical filter or mask from the viewpoint of excellent biocompatibility. Moreover, when using the nonwoven fabric of this invention as a medical filter or a mask, it can be anticipated that selective separation ability will become high. This is because the nanofiber of the present invention has high uniformity of fiber diameter and high uniformity of voids, so that it has excellent physical selective separation ability. Furthermore, cellulose acylate is both hydrophilic and hydrophobic. This is because it has characteristics and has high chemical selective separation ability.
Moreover, in the case of a heat-resistant bag filter, it can be used as a bag filter for a general waste incinerator or industrial waste incinerator.
Moreover, in the case of a secondary battery separator, it can be used as a separator for a lithium ion secondary battery.
Moreover, in the case of a secondary battery electrode, it can be used as a binder for secondary battery electrode formation by using the deposit of the thermosetting nanofiber before thermosetting. Furthermore, a conductive nonwoven fabric obtained by dispersing and mixing a powder electrode material in the spinning solution of the present invention, electrospinning it, and thermosetting the deposit can also be used as a secondary battery electrode.
Moreover, in the case of a heat insulating material, it can be used as a heat-resistant brick backup material and a combustion gas seal.
In the case of a filter cloth, it can be used as a filter cloth for a microfilter by adjusting the thickness of the nonwoven fabric and the like and adjusting the size of the pores of the nonwoven fabric. By using a filter cloth, solids in a fluid such as liquid or gas can be separated.
Moreover, in the case of a sound absorbing material, it can be used as a sound absorbing material such as a wall surface sound insulation reinforcement and an inner wall sound absorbing layer.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 〔実施例1〕
 セルロース(原料:綿花リンター)に、アシル化剤および触媒としての硫酸を混合し、反応温度を40℃以下に保ちながらアシル化を実施した。なお、アシル化剤としては、酢酸、無水酢酸、プロピオン酸、プロピオン酸無水物、酪酸および酪酸無水物から、目的とする置換度に応じて単独または複数を組み合わせて選択することができ、実施例1においては、酢酸を用い、アセチル基(下記表1中、「Ac」と略す。)でアシル化した。
 原料となるセルロースが消失してアシル化が完了した後、さらに40℃以下で加熱を続けて、所望の重合度に調整した。
 次いで、酢酸水溶液を添加して残存する酸無水物を加水分解した後、60℃以下で加熱を行うことで部分加水分解を行い、置換度を調整した。
 残存する硫酸を過剰量の酢酸マグネシウムにより中和した。酢酸水溶液から再沈殿を行い、さらに、水での洗浄を繰り返すことにより、セルロースアシレートを合成した。
 合成したセルロースアシレートを、ジクロロメタン90%、N-メチル-2-ピロリドン(NMP)10%の混合溶媒に溶解させ、4g/100cmのセルロースアシレート溶液を調製し、図1に示すナノファイバー製造装置110を用いて、20×30cmのセルロースアシレートナノファイバーからなる不織布を作製した。
[Example 1]
Acylation was carried out by mixing cellulose (raw material: cotton linter) with an acylating agent and sulfuric acid as a catalyst and keeping the reaction temperature at 40 ° C. or lower. The acylating agent can be selected from acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid and butyric anhydride, either alone or in combination depending on the desired degree of substitution. In 1, the compound was acylated using acetic acid with an acetyl group (abbreviated as “Ac” in Table 1 below).
After the cellulose as a raw material disappeared and acylation was completed, heating was further continued at 40 ° C. or lower to adjust to a desired degree of polymerization.
Next, an aqueous acetic acid solution was added to hydrolyze the remaining acid anhydride, and then partial hydrolysis was performed by heating at 60 ° C. or lower to adjust the degree of substitution.
The remaining sulfuric acid was neutralized with an excess amount of magnesium acetate. Cellulose acylate was synthesized by reprecipitation from an aqueous acetic acid solution and repeated washing with water.
The synthesized cellulose acylate, dichloromethane 90%, N-methyl-2-pyrrolidone (NMP) was dissolved in 10% of the mixed solvent, the cellulose acylate solution of 4g / 100 cm 3 was prepared, producing nanofiber shown in FIG. 1 Using the apparatus 110, a nonwoven fabric made of cellulose acylate nanofibers of 20 × 30 cm was produced.
 〔実施例2および3〕
 部分加水分解の時間を変更し、アセチル基による置換度を意図的に調整したこと以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
[Examples 2 and 3]
A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the partial hydrolysis time was changed and the degree of substitution with acetyl groups was intentionally adjusted.
 〔実施例4〕
 原料の綿花リンターにアルカリ精製処理を施し、ヘミセルロース量を意図的に調整したこと以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
Example 4
A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the raw material cotton linter was subjected to an alkali purification treatment and the amount of hemicellulose was intentionally adjusted.
 〔実施例5〕
 原料を綿花リンターから広葉樹パルプに変更したこと以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
Example 5
A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the raw material was changed from cotton linter to hardwood pulp.
 〔実施例6および7〕
 アシル化における反応時間を変更し、分子量を意図的に調整したこと以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
[Examples 6 and 7]
A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the reaction time in acylation was changed and the molecular weight was intentionally adjusted.
 〔実施例8〕
 アシル基を、アセチル基からプロピオニル基(下記表1中、「Pr」と略す。)に変更した以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
Example 8
A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the acyl group was changed from an acetyl group to a propionyl group (abbreviated as “Pr” in Table 1 below).
 〔実施例9〕
 アシル基を、アセチル基からブチリル基(下記表1中、「Bu」と略す。)に変更した以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
Example 9
A nonwoven fabric made of nanofibers was produced in the same manner as in Example 1 except that the acyl group was changed from an acetyl group to a butyryl group (abbreviated as “Bu” in Table 1 below).
 〔比較例1および2〕
 部分加水分解の時間を変更し、アセチル基による置換度を意図的に調整したこと以外は、実施例1と同様の方法で、ナノファイバーからなる不織布を作製した。
[Comparative Examples 1 and 2]
A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 1 except that the partial hydrolysis time was changed and the degree of substitution with acetyl groups was intentionally adjusted.
 〔比較例3〕
 部分加水分解の時間を変更し、プロピオニル基による置換度を意図的に調整したこと以外は、実施例8と同様の方法で、ナノファイバーからなる不織布を作製した。
[Comparative Example 3]
A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 8, except that the partial hydrolysis time was changed and the degree of substitution with the propionyl group was intentionally adjusted.
 〔比較例4〕
 部分加水分解の時間を変更し、ブチリル基による置換度を意図的に調整したこと以外は、実施例9と同様の方法で、ナノファイバーからなる不織布を作製した。
[Comparative Example 4]
A nonwoven fabric composed of nanofibers was produced in the same manner as in Example 9, except that the partial hydrolysis time was changed and the degree of substitution with the butyryl group was intentionally adjusted.
 合成した各セルロースアシレートについて、上述した方法により、置換度、ヘミセルロース量、6%溶液粘度、数平均分子量(Mn)および重量平均分子量(Mw)ならびに分子量分布(Mw/Mn)を測定した。結果を下記表1に示す。 For each synthesized cellulose acylate, the degree of substitution, hemicellulose amount, 6% solution viscosity, number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) were measured by the methods described above. The results are shown in Table 1 below.
 <評価>
 目視および走査型電子顕微鏡(S-4300、倍率1800倍、日立製作所製)を用いて、作製した各不織布を観察し、以下の基準で、不織布の均一性を5段階で評価した。結果を下記表1に示す。なお、実用上用いることが可能なのは2点以上である。
 また、各不織布のSEM画像から、上述した方法により、ナノファイバーの平均繊維長および平均繊維径を測定し、これらの値からアスペクト比(平均繊維長/平均繊維径)を算出した。結果を下記表1に示す。
 また、実施例1および2ならびに比較例1で作製した不織布を観察したSEM画像をそれぞれ図3~5に示す。
 5点: 目視およびSEMのいずれの観察でも欠陥が見られない。
 4点: 目視では欠陥が見られないが、SEMでは、ファイバー径が不均一な部分が一部見られる。
 3点: 目視では欠陥が見られないが、SEMでは、ファイバー径が不均一な部分が多く見られる。
 2点: 目視では、欠陥が一部見られ、SEMでは、ファイバー径が不均一な部分が多く見られる。
 1点: 目視およびSEMのいずれでも不均一な部分が多く見られる。
<Evaluation>
Each produced nonwoven fabric was observed visually and using a scanning electron microscope (S-4300, magnification: 1800 times, manufactured by Hitachi, Ltd.), and the uniformity of the nonwoven fabric was evaluated in five stages according to the following criteria. The results are shown in Table 1 below. Two or more points can be used in practice.
Moreover, from the SEM image of each nonwoven fabric, the average fiber length and average fiber diameter of the nanofiber were measured by the method described above, and the aspect ratio (average fiber length / average fiber diameter) was calculated from these values. The results are shown in Table 1 below.
In addition, SEM images obtained by observing the nonwoven fabrics produced in Examples 1 and 2 and Comparative Example 1 are shown in FIGS.
5 points: No defects are observed by visual observation or SEM observation.
4 points: Defects are not visually observed, but a part of the fiber diameter is not uniform in SEM.
3 points: Defects are not visually observed, but many portions with nonuniform fiber diameters are observed with SEM.
Two points: Some defects are visually observed, and many portions with non-uniform fiber diameters are observed with SEM.
1 point: Many non-uniform | heterogenous parts are seen by both visual observation and SEM.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、置換度が2.75未満のセルロースアシレートを用いた場合は、置換基の種類、ヘミセルロース量、6%溶液粘度などに依らず、均一性が劣ることが分かった(比較例1~4)。
 これに対し、置換度が2.75以上2.95以下となるセルロースアシレートを用いた場合は、ナノファイバーの繊維径の均一性に優れ、不織布の外観が良好となることが分かった(実施例1~9)。
 特に、実施例2、4および5の対比から、ヘミセルロース量が0.1~3.0の範囲であると、ナノファイバーの繊維径の均一性がより良好となり、不織布の外観がより良好となることが分かった。
 また、実施例2、6および7の対比から、6%溶液粘度が300mPa・s以上であると、ナノファイバーの繊維径の均一性がより良好となり、不織布の外観がより良好となることが分かった。
 また、実施例1~3の対比から、置換度が2.80~2.95であると、ナノファイバーの繊維径の均一性がより良好となり、不織布の外観がより良好となることが分かり、置換度が2.88~2.95であると、ナノファイバーの繊維径の均一性が更に良好となり、不織布の外観が更に良好となることが分かった。
From the results shown in Table 1, it was found that when cellulose acylate having a substitution degree of less than 2.75 was used, the uniformity was inferior regardless of the type of substituent, the amount of hemicellulose, the 6% solution viscosity, etc. ( Comparative Examples 1 to 4).
On the other hand, it was found that when cellulose acylate having a degree of substitution of 2.75 or more and 2.95 or less was used, the fiber diameter of nanofibers was excellent in uniformity and the appearance of the nonwoven fabric was improved (implementation) Examples 1-9).
In particular, from the comparison of Examples 2, 4 and 5, when the amount of hemicellulose is in the range of 0.1 to 3.0, the uniformity of the fiber diameter of the nanofiber becomes better and the appearance of the nonwoven fabric becomes better. I understood that.
In addition, from the comparison between Examples 2, 6 and 7, it is found that when the 6% solution viscosity is 300 mPa · s or more, the uniformity of the fiber diameter of the nanofibers becomes better and the appearance of the nonwoven fabric becomes better. It was.
Further, from the comparison of Examples 1 to 3, it can be seen that when the degree of substitution is 2.80 to 2.95, the uniformity of the fiber diameter of the nanofiber becomes better and the appearance of the nonwoven fabric becomes better, It was found that when the degree of substitution was 2.88 to 2.95, the uniformity of the fiber diameter of the nanofibers was further improved, and the appearance of the nonwoven fabric was further improved.
 13 ノズル
 13a 先端開口
 13b 先端開口縁部
 15 集積部
 23 巻芯
 25 溶液
 30 貯留容器
 31 ポンプ
 32 配管
 44 テイラーコーン
 45 紡糸ジェット
 46 ナノファイバー
 50 コレクタ
 51 コレクタ回転部
 52 支持体供給部
 52a 送出軸
 53 支持体巻取り部
 54 支持体ロール
 55 ローラ
 56 ローラ
 57 モータ
 58 巻取り軸
 60 支持体
 61 巻芯
 65 電源
 110 ナノファイバー製造装置
 111 紡糸室
 112 溶液供給部
 120 不織布
 133 第1温調器
 134 カバー
 134a 開口
 135 第2温調器
 P ポンプ
 M モータ
 L2 距離
13 Nozzle 13a Tip opening 13b Tip opening edge 15 Accumulation part 23 Core 25 Solution 30 Storage container 31 Pump 32 Pipe 44 Taylor cone 45 Spinning jet 46 Nanofiber 50 Collector 51 Collector rotating part 52 Support supply part 52a Delivery shaft 53 Support Body winding part 54 Support body roll 55 Roller 56 Roller 57 Motor 58 Winding shaft 60 Support body 61 Core 65 Power source 110 Nanofiber production apparatus 111 Spinning chamber 112 Solution supply part 120 Non-woven fabric 133 First temperature controller 134 Cover 134a Opening 135 Second temperature controller P Pump M Motor L2 Distance

Claims (9)

  1.  置換度が下記式(1)を満たすセルロースアシレートを含有するナノファイバー。
     2.75≦置換度≦2.95 ・・・(1)
    A nanofiber containing cellulose acylate having a substitution degree satisfying the following formula (1).
    2.75 ≦ degree of substitution ≦ 2.95 (1)
  2.  平均繊維径に対する平均繊維長の割合が1000以上である、請求項1に記載のナノファイバー。 The nanofiber according to claim 1, wherein the ratio of the average fiber length to the average fiber diameter is 1000 or more.
  3.  平均繊維径が50~800nmである、請求項1または2に記載のナノファイバー。 3. The nanofiber according to claim 1 or 2, wherein the average fiber diameter is 50 to 800 nm.
  4.  平均繊維長が500μm以上である、請求項1~3のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 3, wherein the average fiber length is 500 µm or more.
  5.  前記セルロースアシレートが有するアシル基がアセチル基である、請求項1~4のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 4, wherein the acyl group of the cellulose acylate is an acetyl group.
  6.  前記セルロースアシレートのヘミセルロース量が0.1~3.0質量%である、請求項1~5のいずれか1項に記載のナノファイバー。 6. The nanofiber according to claim 1, wherein the cellulose acylate has a hemicellulose content of 0.1 to 3.0% by mass.
  7.  ジクロロメタンに6質量%溶解させた溶液の粘度が300mPa・s以上である、請求項1~6のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 6, wherein the viscosity of a solution obtained by dissolving 6% by mass in dichloromethane is 300 mPa · s or more.
  8.  請求項1~7のいずれか1項に記載されたナノファイバーで構成された不織布。 A nonwoven fabric comprising the nanofiber according to any one of claims 1 to 7.
  9.  医療用フィルターまたはマスクに用いる、請求項8に記載の不織布。 The nonwoven fabric according to claim 8, which is used for medical filters or masks.
PCT/JP2017/002554 2016-01-26 2017-01-25 Nanofiber and nonwoven cloth WO2017131035A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187021457A KR102053562B1 (en) 2016-01-26 2017-01-25 Nano Fibers and Nonwovens
JP2017564311A JP6616849B2 (en) 2016-01-26 2017-01-25 Nanofiber and non-woven fabric
CN201780007921.2A CN108495958B (en) 2016-01-26 2017-01-25 Nanofiber and nonwoven fabric
US16/044,602 US20180327932A1 (en) 2016-01-26 2018-07-25 Nanofiber and nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012717 2016-01-26
JP2016012717 2016-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/044,602 Continuation US20180327932A1 (en) 2016-01-26 2018-07-25 Nanofiber and nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2017131035A1 true WO2017131035A1 (en) 2017-08-03

Family

ID=59398459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002554 WO2017131035A1 (en) 2016-01-26 2017-01-25 Nanofiber and nonwoven cloth

Country Status (5)

Country Link
US (1) US20180327932A1 (en)
JP (1) JP6616849B2 (en)
KR (1) KR102053562B1 (en)
CN (1) CN108495958B (en)
WO (1) WO2017131035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196783A (en) * 2019-05-31 2020-12-10 旭化成株式会社 Chemically modified cellulose fine fiber, and high heat resistant resin composite containing chemically modified cellulose fine fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423894A (en) * 2019-09-20 2022-04-29 富士胶片株式会社 Nonwoven fabric, method for producing nonwoven fabric, and filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583721B2 (en) * 1999-03-11 2004-11-04 日本たばこ産業株式会社 Biodegradable cellulose acetate structure and tobacco filter
JP2013508569A (en) * 2009-10-23 2013-03-07 イノヴィア フィルムズ リミテッド Biodegradable fiber and method for producing the same
JP2014520945A (en) * 2011-07-19 2014-08-25 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Cellulose acetate composition
WO2015107565A1 (en) * 2014-01-15 2015-07-23 株式会社ダイセル Cellulose acetate fiber, cellulose acetate fiber molded article, and methods respectively for producing said cellulose acetate fiber and said cellulose acetate fiber molded article
WO2016035473A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Nanofiber manufacturing method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT398588B (en) * 1992-12-02 1994-12-27 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF VISCOSE CELLS
DE19609143C1 (en) * 1996-03-08 1997-11-13 Rhodia Ag Rhone Poulenc Melt-blown fleece, process for its production and its uses
JPH09291102A (en) * 1996-04-24 1997-11-11 Bio Polymer Res:Kk Actylcellulose having excellent mechanical strength, its production, and molding composition containing the same
ES2620407T3 (en) * 2001-06-26 2017-06-28 Toray Industries, Inc. Composition of thermoplastic cellulose and fiber derivative containing the same
CN100398584C (en) * 2002-10-18 2008-07-02 富士胶片株式会社 Method for filting and producing polymer solution and process for preparing solvent
JP2005248341A (en) * 2004-03-02 2005-09-15 Toray Ind Inc Crystalline cellulose ester fiber
JP2009291754A (en) 2008-06-09 2009-12-17 Fujifilm Corp Harmful substance removing material and harmful substance removing method
CN102197080B (en) * 2008-10-29 2014-03-12 东丽株式会社 Thermoplastic cellulose ester composition and fibers made therefrom
JP5677754B2 (en) * 2010-03-05 2015-02-25 オリンパス株式会社 Cellulose nanofiber and method for producing the same, composite resin composition, molded article
JP5913875B2 (en) 2010-09-13 2016-04-27 株式会社Snt Nanofiber
BR112013009692B1 (en) * 2010-10-20 2020-09-29 Fitesa Germany Gmbh NON-WOVEN FABRIC, LAMINATED FABRIC, NON-WOVEN FABRIC PRODUCT, FIBER WITH MULTIPLE COMPONENTS, BLANKET, AND METHOD TO PRODUCE NON-WOVEN FABRIC
JP5741225B2 (en) * 2011-06-01 2015-07-01 Jnc株式会社 Heat-fusible composite fiber and non-woven fabric using the same
WO2013031601A1 (en) * 2011-08-26 2013-03-07 コニカミノルタホールディングス株式会社 Optical film, method for producing same, and element substrate using optical film
EP2762499B1 (en) * 2011-09-30 2017-07-19 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
GB201119192D0 (en) * 2011-11-07 2011-12-21 Ucl Business Plc Chromatography medium
JP6239297B2 (en) * 2013-03-25 2017-11-29 Art&Tech株式会社 Nonwoven fabric, sheet or film, molded article, and method for producing nonwoven fabric
CN104404635B (en) * 2014-11-07 2016-08-31 刘秀珠 A kind of preparation method of cellulose acetate electrostatic spinning solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583721B2 (en) * 1999-03-11 2004-11-04 日本たばこ産業株式会社 Biodegradable cellulose acetate structure and tobacco filter
JP2013508569A (en) * 2009-10-23 2013-03-07 イノヴィア フィルムズ リミテッド Biodegradable fiber and method for producing the same
JP2014520945A (en) * 2011-07-19 2014-08-25 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Cellulose acetate composition
WO2015107565A1 (en) * 2014-01-15 2015-07-23 株式会社ダイセル Cellulose acetate fiber, cellulose acetate fiber molded article, and methods respectively for producing said cellulose acetate fiber and said cellulose acetate fiber molded article
WO2016035473A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Nanofiber manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196783A (en) * 2019-05-31 2020-12-10 旭化成株式会社 Chemically modified cellulose fine fiber, and high heat resistant resin composite containing chemically modified cellulose fine fiber

Also Published As

Publication number Publication date
CN108495958A (en) 2018-09-04
KR102053562B1 (en) 2019-12-06
US20180327932A1 (en) 2018-11-15
JPWO2017131035A1 (en) 2018-11-15
KR20180097721A (en) 2018-08-31
JP6616849B2 (en) 2019-12-04
CN108495958B (en) 2021-06-11

Similar Documents

Publication Publication Date Title
JPH07170962A (en) Tobacco filter
US9476145B2 (en) Flexible ceramic fibers and a process for making same
WO2016035473A1 (en) Nanofiber manufacturing method
CN109072538B (en) Fiber composite, porous structure, and nonwoven fabric
US4894157A (en) Process for producing supported celluosic membranes and products
EP2826545A1 (en) Device for producing hollow porous film and method for producing hollow porous film
JP6616849B2 (en) Nanofiber and non-woven fabric
CN110291241B (en) Sheet and sheet manufacturing method
Bonakdar et al. Highly porous biobased membranes via electrospinning of PBS and CTAB
Heseltine et al. Fiber formation from silk fibroin using pressurized gyration
US4821750A (en) Cigarette filters
CN109843347B (en) Blood component selective adsorption filter material and blood filter
Sutka et al. Electro-Spinning derived cellulose-PVA composite nano-fibre mats
Chiţanu et al. Study of electrospun cellulose acetate fibers
Nurfaizey et al. Determination of Optimal Electrospinning Distance and Applied Voltage for Polyacrylonitrile Electrospun Fibre Production
JP7280369B2 (en) Non-woven fabrics and filters
Yudanova et al. Production of ultrafine cellulose acetate fibers
Zhang Fabrication of porous structure of electro-spun PVDF fibres
Madani et al. Studying of Nanoribbon and Circular Poly (Vinyl Alcohol) Nanofibers Deposited by Electrospinning: Film Synthesis, Characterization Structure, and Resistance Corrosion
Yeskermessov et al. The current state of electrospinning technology and its prospects for the future
CN105088867B (en) Nanofiber composite paper used for reducing phenol content in smoke and preparation method and application of nanofiber composite paper
Haghi et al. Production of electrospun nanofibers: An Investigation on governing parameters
Zhang Electrospun PAN and CA based bicomponent fibers: Nanoporosity and surface features
ANU et al. Study of electrospun cellulose acetate fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564311

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187021457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021457

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744265

Country of ref document: EP

Kind code of ref document: A1