WO2017130927A1 - 画像表示装置およびその制御方法 - Google Patents

画像表示装置およびその制御方法 Download PDF

Info

Publication number
WO2017130927A1
WO2017130927A1 PCT/JP2017/002232 JP2017002232W WO2017130927A1 WO 2017130927 A1 WO2017130927 A1 WO 2017130927A1 JP 2017002232 W JP2017002232 W JP 2017002232W WO 2017130927 A1 WO2017130927 A1 WO 2017130927A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blood vessel
vascular
ray
display device
Prior art date
Application number
PCT/JP2017/002232
Other languages
English (en)
French (fr)
Inventor
淳也 古市
耕一 井上
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2017564250A priority Critical patent/JP6866310B2/ja
Publication of WO2017130927A1 publication Critical patent/WO2017130927A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to synchronous display of tomographic images and X-ray images of living tissue.
  • An ultrasonic tomographic diagnosis apparatus IVUS: Intravascular ultrasound
  • IVUS Intravascular ultrasound
  • OCT optical coherence tomography
  • SS-OCT Swept-source Optical Coherence Tomography
  • Intravascular diagnostic apparatuses capable of acquiring tomographic images such as IVUS and OCT are more detailed information on the lesion site confirmed by the X-ray apparatus, such as the stenosis rate in the blood vessel, the presence of plaque in the branches, the distribution of calcification, etc. Used to get.
  • the doctor determines the details of the treatment, such as where to place the stent edge, by observing the tomographic image obtained by the intravascular diagnostic device described above.
  • a doctor performs treatment such as placement of a balloon or a stent while viewing an X-ray image (angio image) obtained by an X-ray apparatus. Therefore, understanding which position on the X-ray image the treatment site determined by confirming the vascular tomogram, that is, the installation position of the balloon or stent, is a very important factor in the treatment.
  • the doctor relies on landmarks such as branch positions on the X-ray image corresponding to the site diagnosed by the vascular tomogram. It is necessary to estimate the position of the treatment.
  • the X-ray image at the time of acquiring the vascular tomographic image is captured, and the X-ray image is displayed in synchronization with the vascular tomographic image.
  • An apparatus exists (see Patent Document 1).
  • a catheter connected to a vascular tomographic apparatus is provided with an X-ray opaque marker in the vicinity of the sensor unit, and the above-described estimation accuracy is improved by displaying the vascular tomographic image and the X-ray image in synchronization. I am letting.
  • this function it is possible to visualize the tomographic image and the X-ray opaque marker position on the X-ray image in a one-to-one correspondence.
  • a doctor when evaluating a lesion, a doctor does not see only a single vascular tomogram and a position on a single X-ray image, but evaluates the whole blood vessel.
  • the doctor grasps a lesion area having a certain length in the blood vessel longitudinal axis direction, imagines the area on the X-ray image corresponding to the lesion area, and evaluates / treats. It is carried out.
  • the lesion area on the X-ray image that the doctor wants to confirm cannot be visualized. Only the position on the X-ray image can be confirmed.
  • the present invention has been made in view of the above problems, and enables a user to easily grasp the cross-sectional information of a vascular tomographic image specified from a plurality of vascular tomographic images and the position on an X-ray image. Objective.
  • An image display device that achieves the above object has the following configuration. That is, Access means for accessing storage means storing a plurality of tomographic images acquired while moving the probe in the axial direction of the catheter and a plurality of X-ray images taken during the movement of the probe; Obtaining means for obtaining an X-ray image to be displayed from the plurality of X-ray images via the access means; A specifying means for specifying a vascular tomogram from the plurality of vascular tomograms; Determining means for determining a position corresponding to an acquisition position of the specified vascular tomographic image on a blood vessel image corresponding to a blood vessel to which the probe has moved in the X-ray image to be displayed; A predetermined figure is superimposed and displayed on the X-ray image to be displayed so as to indicate the position determined by the determining means, and information based on the cross-sectional information associated with the vascular tomographic image specified by the specifying means is displayed. Display control means for displaying
  • FIG. 1 is a diagram showing a configuration example of a display system that realizes synchronous display of a vascular tomogram and an X-ray image (Angio image) according to the present embodiment.
  • the tomographic image generation unit 101 is based on a signal obtained from a catheter system inserted into a blood vessel of a subject, such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT).
  • IVUS intravascular ultrasound
  • OCT optical coherence tomography
  • the catheter system 111 is inserted, for example, through the arteries at the base of the foot to the vicinity of the heart in order to take a tomogram in a blood vessel around the heart of the patient 10.
  • the tomographic image generation unit 101 emits measurement light through the probe of the catheter system 111 and makes the reflected light incident through the probe to obtain a tomographic image. Get a statue.
  • the intravascular diagnostic apparatus 100 is an ultrasonic tomography apparatus using IVUS
  • the tomographic image generation unit 101 outputs an ultrasonic signal via the probe of the catheter system 111 and the reflection signal is output via the probe. To obtain a tomographic image.
  • FIG. 2A and 2B are diagrams illustrating the catheter system 111.
  • the catheter system 111 includes a guiding catheter 112, a catheter 113 including a probe 115 for tomography, and a guide wire 114.
  • the guiding catheter 112 has a hollow for inserting the guide wire 114 and the catheter 113.
  • the doctor inserts the guiding catheter 112 to the vicinity of the coronary artery, and then sends the guide wire 114 through the guiding catheter 112 to the imaging portion of the coronary artery. Then, the doctor sends the catheter 113 along the guide wire 114 to send the imaging core 117 of the catheter 113 to the imaging region of the coronary artery.
  • the catheter 113 is provided with a guide wire lumen 119. By passing the guide wire 114 therethrough, the catheter 113 can be advanced along the guide wire.
  • FIG. 2B shows details of the portion 2B in FIG. 2A (the distal end portion of the catheter 131).
  • the probe 115 for tomography includes a metal shaft 116, an imaging core 117, and an X-ray opaque marker 118.
  • an imaging core 117 is connected to the tip of an optical fiber passing through the metal shaft 116.
  • the imaging core 117 includes an optical component that transmits and receives measurement light from the tip portion of the optical fiber.
  • a signal line passing through the metal shaft 116 and an imaging core 117 including an ultrasonic transducer that transmits and receives an ultrasonic signal are connected.
  • the metal shaft 116 moves in the axial direction of the catheter (moves in the direction of the arrow 121) (hereinafter referred to as pullback) while being driven to rotate (rotation in the direction of the arrow 120).
  • the imaging core 117 moves in the axial direction of the catheter while rotating together with the metal shaft 116. Since a tomographic image is obtained by one rotation of the imaging core, the tomographic image acquired while the rotating imaging core 117 is moving becomes a plurality of vascular tomographic images along the vascular path.
  • An X-ray opaque marker 118 for recognizing the position of the imaging core 117 on the X-ray image is provided between the imaging core 117 and the metal shaft 116. Note that the radiopaque marker 118 may be provided on the distal end side of the imaging core 117.
  • the tomographic image generation unit 101 stores the tomographic image (vascular tomographic image in the present embodiment) obtained by IVUS or OCT in the vascular tomographic image storage unit 105.
  • the frame rate of the tomographic image by the tomographic image generation unit 101 is about 160 to 180 Hz.
  • the cross-section information generation unit 102 displays information indicating the observation result of a tomographic image input by a doctor (designation of a lesion site (reference), monitoring result on calcification, etc.) and a vascular tomographic image generated by the tomographic image generation unit 101.
  • Intravascular diagnostic apparatus 100 and X-ray imaging apparatus 200 are connected by a cable 104.
  • the X-ray image acquisition unit 103 receives the X-ray image acquired by the X-ray imaging apparatus 200 from the X-ray imaging apparatus 200 via the cable 104 and stores it in the X-ray image storage unit 106.
  • the tomographic image storage unit 105 and the X-ray image storage unit 106 can be accessed by the image display device 300.
  • the example in which the communication between the intravascular diagnosis apparatus 100 and the X-ray imaging apparatus 200 is performed via the cable 104 (wired) is shown, but the present invention is not limited to this, and wireless communication or the like is possible. May be used.
  • the X-ray imaging apparatus 200 obtains an X-ray image (for example, an angio image) by driving the X-ray source 211 to irradiate the patient 10 with X-rays and detecting transmitted X-rays with the X-ray sensor 212.
  • the X-ray imaging apparatus 200 can transmit the obtained X-ray image to the intravascular diagnostic apparatus 100 via the cable 104.
  • the frame rate of the X-ray image in the X-ray imaging apparatus 200 is, for example, about 7 to 30 Hz.
  • the X-ray image acquisition unit 103 stores an X-ray image captured during pullback (during imaging of a blood vessel tomographic image) among the X-ray images transmitted from the X-ray imaging apparatus 200.
  • the image display apparatus 300 synchronously displays the X-ray image and the vascular tomographic image, and displays the cross-sectional information acquired for the vascular tomographic image superimposed on the position corresponding to the vascular tomographic image on the X-ray image.
  • the “position corresponding to the tomographic image of the blood vessel” is a position on the X-ray image of the imaging core 117 when the tomographic image of the blood vessel is taken, and is hereinafter also referred to as a tomographic image acquisition position.
  • the X-ray image reading unit 301 accesses the X-ray image storage unit 106 and reads an X-ray image.
  • the blood vessel detection unit 302 detects a blood vessel (a blood vessel in which the probe 115 has moved, hereinafter also referred to as a target blood vessel) from which the blood vessel tomographic image has been acquired from the X-ray image.
  • the position of the target blood vessel detected by the blood vessel detection unit 302 is stored in the blood vessel position information storage unit 304 as blood vessel position information.
  • the table generation unit 303 estimates an acquisition position on the target blood vessel detected by the blood vessel detection unit 302 for each frame of the blood vessel tomogram group stored in the blood vessel tomogram storage unit 105.
  • the table generation unit 303 generates a position conversion table in which the frame of the blood vessel tomogram and the estimated acquisition position (indicated by x and y coordinates on the X-ray image) are recorded in association with each other, and the conversion table Store in the storage unit 305.
  • the vascular tomographic image reading unit 306 accesses the vascular tomographic image storage unit 105 to read the vascular tomographic image and cross-sectional information, and provides them to the display control unit 307.
  • the display control unit 307 synchronously displays the X-ray image read by the X-ray image reading unit 301 and the vascular tomographic image read by the vascular tomographic image reading unit 306 on the display 308 and is added to the vascular tomographic image.
  • the cross-sectional information that is being displayed is superimposed.
  • Each unit of the image display device 300 described above may be realized by a computer executing a predetermined program, or a part or all of them may be realized by dedicated hardware.
  • FIG. 3A is a diagram for explaining the collection timing of the X-ray image and the vascular tomographic image according to the present embodiment.
  • the intravascular diagnostic device 100 starts low-speed rotation of the metal shaft 116 (and the imaging core 117) in the catheter 113. Thereafter, when the user gives an instruction to start pull-back ready on the operation panel of the intravascular diagnostic device 100, the intravascular diagnostic device 100 starts high-speed rotation of the metal shaft 116 (and the imaging core 117).
  • the imaging core 117 is rotated at a high speed, it becomes possible to start tomographic imaging while pulling back.
  • the user After the pull back ready is started, the user gives an instruction to start X-ray imaging from an operation panel (not shown) of the X-ray imaging apparatus 200.
  • the X-ray imaging apparatus 200 irradiates X-rays from the X-ray source 211 and captures an X-ray image (for example, an angio image) by the X-ray sensor 212.
  • the obtained X-ray image is transmitted to the intravascular diagnostic apparatus 100 via the cable 104.
  • the X-ray image group 321 received until the start of pullback is instructed is not stored in the X-ray image storage unit 106.
  • the user starts flashing after giving an instruction to start X-ray imaging.
  • a contrast medium is introduced into the blood vessel.
  • the intravascular diagnostic device 100 starts pulling back the imaging core 117 and starts generating a tomographic image of the blood vessel.
  • the vascular tomographic image group 311 during the pullback operation is stored in the vascular tomographic image storage unit 105.
  • the X-ray image group 322 acquired by the X-ray imaging apparatus 200 during the pullback operation is stored in the X-ray image storage unit 106 by the X-ray image acquisition unit 103.
  • the vascular tomographic image used for the synchronous display is a vascular tomographic image from the start of pullback in the vascular tomographic image group 311 to the vascular tomographic image in which the end of the guiding catheter 112 is detected (in this embodiment, N frames A vascular tomogram is present).
  • the X-ray image used for synchronous display is an M-frame X-ray image corresponding to the N-frame blood vessel tomographic image in the X-ray image group 322.
  • the ratio of N and M is the ratio between the frame rate of the vascular tomogram and the frame rate of the X-ray image.
  • the X-ray image group 321 before the start of pullback is not stored.
  • the X-ray image group 321 and the X-ray image group 322 may be stored in the X-ray image storage unit 106.
  • information indicating that the image is being pulled back is added to each X-ray image in the X-ray image group 322, and based on this information, the X-ray image reading unit 301 converts the X-ray image being pulled back. What is necessary is just to read.
  • the cross-section information generation unit 102 generates cross-section information for each of the N-frame vascular tomographic images, and adds the cross-sectional information to the vascular tomographic image or stores it in the vascular tomographic image storage unit 105 in association with the vascular tomographic image.
  • FIG. 3B shows a state in which cross-sectional information is associated with each of the N-frame vascular tomographic images.
  • the cross-section information generated by the cross-section information generation unit 102 includes information that is automatically analyzed and detected for each vascular tomographic image and information that is generated in response to a doctor's input, as shown in FIG. 3B.
  • Such cross-sectional information is acquired for all vascular tomographic images and is associated with each vascular tomographic image.
  • the cross-section information generation unit 102 automatically detects, as cross-section information, information indicating whether the vascular tomographic image is a proximal end portion or a distal end portion of the branch portion by automatically detecting the branch portion of the blood vessel. Generate. Furthermore, the cross-section information generation unit 102 detects the presence of a stent in the vascular tomogram, and generates information indicating the presence or absence of the stent as cross-section information.
  • the cross-section information generation unit 102 associates various information input by the doctor observing the vascular tomographic image, for example, information on calcification, reference position, and bookmark, as vascular tomographic images as cross-sectional information.
  • a doctor can observe a tomographic image of a blood vessel and instruct a range where calcification exists, and the cross-section information generation unit 102 indicates that calcification exists in a vascular tomographic image corresponding to the instructed range. Associate the information shown.
  • the doctor can measure the calcification thickness and the calcification angle from the vascular tomogram to each vascular tomogram, and the cross-section information generation unit 102 associates these measurement results with the vascular tomogram as cross-section information.
  • the doctor can add a bookmark to a desired vascular tomographic image while observing the vascular tomographic image, and the cross-section information generation unit 102 uses the information indicating whether or not the bookmark has been added to the vascular tomographic image as cross-sectional information.
  • the doctor can designate the vascular tomogram at the start and end of the lesion range, and the cross-section information generation unit 102 indicates the cross-section information indicating that each vascular tomogram corresponding to the designated lesion range is a reference position. Associate.
  • the image display device 300 displays the vascular tomographic image and the X-ray image. Synchronous display of line images and superimposed display of cross-sectional information are performed.
  • the synchronous display superimposed display by the image display apparatus 300 will be described with reference to the flowchart of FIG.
  • the blood vessel detection unit 302 detects a blood vessel (target blood vessel) that is a subject of imaging of a blood vessel tomographic image for each of the M frame X-ray images.
  • a blood vessel target blood vessel
  • blood vessel detection processing by the blood vessel detection unit 302 will be described in more detail with reference to the flowchart of FIG.
  • step S501 the X-ray image reading unit 301 reads the first X-ray image of the M frame X-ray image group stored in the X-ray image storage unit 106.
  • step S502 the blood vessel detection unit 302 normalizes the peripheral region of the marker estimated position on the X-ray image as a processing target region. In this step, normalization is performed so that the minimum value and the maximum value of the luminance values in the processing target area become the minimum value and the maximum value of the effective bit width.
  • the marker estimated position in the first frame of the X-ray image is the marker initial position given by the user, and the marker estimated position calculated in step S509 (described later) is used for the subsequent frames.
  • the user can specify the initial marker position by, for example, specifying the position of the X-ray opaque marker 118 on the X-ray image read in step S501 by the user's mouse operation.
  • the blood vessel detection unit 302 performs a filtering process on the processing target region to detect an image candidate of the X-ray opaque marker 118.
  • the X-ray opaque marker 118 looks like a small black circle on the X-ray image. Therefore, the blood vessel detection unit 302 detects a black spot candidate using, for example, a convolution filter or a frequency filter that can emphasize the black spot.
  • step S504 when a plurality of black spot candidates are obtained in step S503, the blood vessel detection unit 302 performs a labeling process on the detected black circle, calculates a correlation value for each label, and has the largest correlation value. Select a black spot candidate as a marker.
  • the blood vessel detection unit 302 uses the position of the selected black spot candidate (for example, the center of gravity position) as the marker position.
  • a correlation value the following can be used, for example.
  • the size of a typical radiopaque marker may be a fixed value, or the size of a black spot detected from the initial marker position given by the user, or the size of the radiopaque marker detected in the previous frame. You may use size.
  • Ii + 1 is the average brightness of one black spot candidate area in the i + 1 frame
  • Ii is the average brightness of the i frame portion corresponding to the black spot candidate area
  • ⁇ i + 1 is a standard deviation of luminance of the black spot candidate region in the i + 1 frame
  • ⁇ i is a standard deviation of luminance in the portion of the i frame.
  • step S505 the blood vessel detection unit 302 automatically traces the marker position determined in step S504, that is, the position of the radiopaque marker 118 to the blood vessel base so as to pass through a portion having a low luminance value.
  • the coordinate value sequence on the blood vessel obtained by tracing is held in the blood vessel position information storage unit 304 as blood vessel position information, and is used for a position conversion table generation process (step S402) described later. Note that the end position of the guiding catheter 112 is used as the blood vessel base.
  • the blood vessel detection unit 302 can automatically detect the end position, that is, the blood vessel base.
  • the range from the blood vessel base thus obtained to the radiopaque marker becomes the blood vessel tomographic imaging range.
  • FIG. 6A is a diagram for explaining the blood vessel position information obtained in step S505.
  • the x and y coordinate values of the corresponding points on the blood vessel obtained by automatic tracing from the marker position 602 that is the detection position of the radiopaque marker 118 to the blood vessel base 603 that is the end of the guiding catheter 112 are the blood vessels.
  • 6A shows a case where p corresponding points are acquired in automatic tracing from the marker position 602 to the blood vessel base 603, and p coordinates are acquired as blood vessel position information. The state is shown.
  • step S506 the blood vessel detection unit 302 determines whether or not the processed X-ray image is the final frame (whether or not the above-described M frame X-ray image has been processed). If it is determined that the frame is the final frame, this processing is terminated. If it is determined that the frame is not the final frame, the process proceeds to step S507.
  • the blood vessel detection unit 302 causes the X-ray image reading unit 301 to read the next frame of the X-ray image group 322.
  • the blood vessel detection unit 302 performs blood vessel tracking using the blood vessel position information of the immediately previous X-ray image (the blood vessel position information acquired in step S505) for the X-ray image acquired in step S507. Do.
  • the blood vessels displayed on the X-ray image have different positions on the image between frames due to the influence of a heartbeat or the like. This movement can be generally expressed by translation and rotation. Therefore, blood vessel tracking processing between frames is performed using a well-known image tracking algorithm such as the AKAZE algorithm having robust characteristics.
  • the blood vessel detection unit 302 calculates a marker estimated position in the X-ray image read in step S507. More specifically, the blood vessel detection unit 302 moves, on the blood vessel detected by the blood vessel tracking process, the position moved from the position corresponding to the marker position detected in the immediately previous frame to the base side by a predetermined interval. Is calculated as the marker estimated position.
  • the predetermined interval for moving the marker position can be determined from the pullback speed of the probe 115, for example.
  • the user may specify a marker position for the first few X-ray image groups 321 and calculate a predetermined interval from the interval between the specified positions.
  • step S509 When the estimated position of the marker is obtained in step S509, the process returns to step S502.
  • the marker estimated position calculated in step S509 is used as the marker estimated position in the subsequent step S502 instead of the marker initial position designated by the user.
  • the blood vessel detection process shown in FIG. The process proceeds from step S401 to step S402.
  • step S ⁇ b> 402 the table generation unit 303 generates a conversion table that associates the tomographic image with the imaging position in the X-ray image for each X-ray image of the X-ray image group 322 captured during pullback, and converts the table.
  • the table storage unit 305 Store in the table storage unit 305.
  • the conversion table generation processing by the table generation unit 303 will be described with reference to the flowchart of FIG. 7A.
  • the table generation unit 303 acquires the blood vessel position information of the mth X-ray image of the M frame X-ray images from the blood vessel position information storage unit 304.
  • the table generation unit 303 calculates the blood vessel length L (the length from the marker position to the blood vessel base) of the target blood vessel detected by the blood vessel detection processing based on the blood vessel position information.
  • the blood vessel length L is obtained by calculating a linear distance between adjacent corresponding points in the blood vessel position information and integrating them. For example, when the blood vessel position information has p coordinate values as shown in FIG. 6A, the blood vessel length L in the imaging range from the marker position to the blood vessel base (guiding catheter end) is calculated by the following [Equation 1].
  • step S704 the table generation unit 303 samples the blood vessel length L obtained in step S703 so as to be equally divided by the number of frames of the blood vessel tomographic image. That is, a position corresponding to the acquisition position of the blood vessel tomographic image is set so as to be arranged at equal intervals in the imaging range.
  • the table generation unit 303 obtains a sampling position by equally dividing the total length L by the number of acquisition positions of the tomographic image existing between the marker position of the mth X-ray image and the blood vessel base side.
  • N ′ N ⁇ (N / M) ⁇ (m ⁇ 1), and sampling is performed.
  • step S705 the table generation unit 303 acquires the coordinates on the X-ray image corresponding to the acquisition position of each vascular tomogram based on the sampling position interval, and generates a conversion table by associating them. And stored in the conversion table storage unit 305.
  • the coordinate value is obtained as follows, for example.
  • the coordinate position of the i-th vascular tomogram on the X-ray image is acquired based on the coordinate value immediately before or immediately after dL ⁇ i among the p coordinate values of the vascular position information.
  • the j-th or j + 1-th coordinate value satisfying the following [Equation 2] among the p coordinate values of the blood vessel information is used as the coordinate value corresponding to the acquisition position of the i-th blood vessel tomogram.
  • the acquisition position of the tomographic image of the blood vessel may be determined on a line segment connecting the jth and j + 1th coordinate values satisfying [Equation 2].
  • the blood vessel length up to the j-th coordinate in the blood vessel information is L1
  • the j-th coordinate value on the line segment connecting the j-th and j + 1-th coordinates You may make it use the coordinate value in the distance of dLxi-L1 as a coordinate value corresponding to the acquisition position of the i-th blood vessel tomogram.
  • the table generation unit 303 stores the vascular tomogram obtained as described above and the acquisition position (coordinate value) on the X-ray image in the conversion table storage unit 305 as a conversion table.
  • step S706 the table generation unit 303 determines whether or not the process has been completed for the last frame (Mth frame) of the X-ray image group 322. If there is an unprocessed frame, the process proceeds to step S707. After one m is added in step S707, the process returns to step S702. In this way, the conversion table generation processing described above is executed for the next X-ray image. If it is determined in step S706 that the last frame has been processed, the conversion table generation process ends. As a result, as shown in FIG. 7B, the conversion table storage unit 305 stores M conversion table groups 710 corresponding to the M X-ray images of the X-ray image group 322.
  • step S403 the display control unit 307 synchronously displays the X-ray image and the vascular tomographic image, and displays the cross-sectional information superimposed on the X-ray image.
  • an M-frame X-ray image corresponding to an N-frame vascular tomogram is obtained in accordance with the vascular tomographic frame rate by the intravascular diagnostic device 100 and the X-ray image frame rate by the X-ray imaging apparatus 200. . Therefore, it is possible to easily determine what vascular tomographic image corresponds to what X-ray image acquisition timing.
  • the tomographic image and the X-ray image having the acquisition timings corresponding to each other are displayed at the same time.
  • step S403 and the superimposed display of the cross-section information will be described with reference to the flowchart of FIG.
  • a case will be described in which an X-ray image to be displayed on the display 308 is designated, and a corresponding vascular tomographic image is read to realize synchronous display.
  • a tomographic image to be displayed on the display 308 is designated, and an X-ray image corresponding to this is read out to realize synchronous display.
  • step S801 the display control unit 307 acquires the designated X-ray image from the X-ray image storage unit 106 via the X-ray image reading unit 301 and displays it on the display 308.
  • step S ⁇ b> 802 the display control unit 307 displays the vascular tomogram corresponding to the X-ray image acquired in step S ⁇ b> 801 (the vascular tomogram corresponding to the X-ray image acquisition timing) via the vascular tomogram reading unit 306. Obtained from the image storage unit 105 and displayed on the display 308.
  • the X-ray image and the vascular tomographic image are displayed in synchronization.
  • step S803 the display control unit 307 acquires a conversion table corresponding to the X-ray image being displayed from the conversion table storage unit 305.
  • step S804 the display control unit 307 acquires the frame number of the blood vessel cross-sectional image associated with the section information item to be displayed.
  • the user can specify items of the cross-sectional information to be displayed. For example, it is assumed that the distal side position and the base side position of the reference are specified as items of cross-sectional information to be displayed.
  • the display control unit 307 displays the frame number of the vascular tomographic image to which information indicating the base side of the reference is added as the cross-sectional information and the frame number of the vascular tomographic image to which information indicating the peripheral side of the reference is attached. To get.
  • step S805 the display control unit 307 refers to the conversion table acquired in step S803 and obtains a coordinate value corresponding to the frame number acquired in step S804.
  • step S806 the display control unit 307 superimposes and displays the cross-sectional information on the X-ray image based on the acquired coordinate position.
  • the display control unit 307 refers to the cross-sectional information of the vascular tomographic image stored in the vascular tomographic image storage unit 105 and is designated as the reference position.
  • the most distal frame number and the most proximal frame number of the vascular tomograms are acquired.
  • the display control unit 307 refers to the conversion table obtained in step S803, acquires coordinate values on the X image corresponding to the frame numbers, and displays a display indicating the reference start position on the X-ray image. Do.
  • FIG. 9 is a diagram showing an example of synchronous display of the above-described vascular tomographic image and X-ray image, and an example of superimposed display of cross-sectional information.
  • an X-ray image 900 is the X-ray image acquired in step S801
  • a vascular tomographic image 920 is a vascular tomographic image acquired in step S802.
  • the longitudinal cross-sectional image 940 is a diagram showing a cross section in the blood vessel length direction generated using a predetermined range of blood vessel tomographic image groups including the blood vessel tomographic image 920.
  • a mark 910 is an acquisition position (M) of the blood vessel tomographic image 920 and coincides with the mark position detected on the X-ray image 900.
  • the longitudinal cross-sectional image 940 is a cross-section obtained by cutting out a predetermined length with the acquisition position (M) of the vascular tomographic image 920 as the center, for example.
  • the X-ray image 900 shows an example of the superimposed display of the reference position described above.
  • Reference positions of the base side (P) and the distal side (D) acquired as described above are indicated by marks 901 and 902 on the X-ray image 900.
  • Marks 901 and 902 are figures showing positions on the blood vessel image corresponding to the acquisition positions of the blood vessel tomographic images at the reference positions on the base side and the distal side.
  • a mark 901 is a line segment of a predetermined length arranged so that the coordinate value corresponding to the frame number on the base side is centered, and the direction thereof is determined based on the coordinate values of the blood vessel position information at both ends of the coordinate value. It is made to be orthogonal to the direction of the line segment.
  • the peripheral mark 902 is a line segment of a predetermined length arranged so that the coordinate value corresponding to the frame number on the peripheral side is the center, and the direction thereof is the blood vessel position information at both ends of the coordinate value.
  • the coordinate value is perpendicular to the direction of the line segment having both ends.
  • the positions of the vascular tomographic image corresponding to the reference position on the base side and the distal side and the positions corresponding to the vascular tomographic image 920 are indicated by marks 941, 942, and 943, respectively. .
  • FIG. 10A is a display example when a state relating to calcification is selected as an item of cross-sectional information to be superimposed and displayed.
  • the tomographic image 920 and the longitudinal section image 940 that are displayed synchronously are omitted.
  • the display control unit 307 searches the cross-section information in which the “calcification thickness” is recorded, and calculates the thickness distribution. Displayed by a bar 911.
  • the display range of the bar 911 is between the most proximal frame number position 912 and the most peripheral frame number position 913 of the frames having cross-sectional information describing the calcification thickness.
  • the bar 911 is classified by color or density according to the cross-sectional information (calcification thickness), and the doctor can know the distribution of the calcification thickness by the bar 911.
  • the color or density is determined by interpolation from other cross-section information.
  • the same display as the bar 911 can be performed for the “calcification angle”. In FIG. 10A, the bar 911 is displayed together with the display of the reference position, but the display regarding the reference position may not be performed.
  • FIG. 10B is a display example of an X-ray image in a case where both end positions of a region where an indwelled stent is present are designated as an item of cross-sectional information to be superimposed and displayed.
  • the display control unit 307 obtains the most proximal frame number and the most distal frame number among the vascular tomographic images associated with the cross-sectional information described as having a stent. Then, the display control unit 307 acquires corresponding coordinate values by referring to the position conversion table, and indicates both ends of the range where the stent exists by marks 914 and 915.
  • a bioabsorbable stent is not easily reflected in an X-ray image, and it is difficult to confirm the location of the bioabsorbable stent (BRS) in a vascular tomographic image. Therefore, according to such superposition display, the location of the bioabsorbable stent (BRS) that is difficult to be seen in the X-ray image is clearly indicated, which is effective for postoperative diagnosis and the like.
  • FIG. 10B the range where the stent exists is displayed together with the display of the reference position, but the display regarding the reference position may not be performed.
  • the above is an example of superimposed display, and various cross-sectional information can be displayed at corresponding positions on the X-ray image.
  • the information based on the cross-sectional information is superimposed and displayed on the X-ray image based on the acquisition position of the corresponding vascular tomographic image.
  • the information based on the cross-sectional information is not necessarily displayed in a superimposed manner.
  • the contents displayed in boxes 903 and 904 in FIGS. 9, 10A, and 10B may be displayed in an area other than the X-ray image display area, such as the longitudinal section image 940.
  • distance information indicating a distance (length) along the blood vessel between two points on the blood vessel image may be displayed.
  • the display control unit 307 obtains a distance (length) along the blood vessel based on the difference in distance included in the cross-sectional information associated with the blood vessel tomographic image corresponding to the two positions on the blood vessel image. Display as information based.
  • the display control unit 307 acquires the length along the blood vessel between the two from the cross-sectional information (distance) associated with the blood vessel tomographic image corresponding to each position of the mark 901 and the mark 902. This can be superimposed on the X-ray image or displayed on the longitudinal section image 940.
  • the use of the position conversion table is not limited to the above superimposed display. Since the position conversion table associates the frame number of the tomographic image with the coordinates on the X-ray image, for example, an arbitrary position on the blood vessel image of the blood vessel to which the probe on the X-ray image has moved is designated. Thus, a vascular tomographic image corresponding to this can be displayed. For example, in FIG. 9, when the mark 910 is moved to an arbitrary position on the blood vessel by a mouse operation or the like on the X-ray image 900, the display control unit 307 calculates the coordinate value of the moved mark 910.
  • the display control unit 307 acquires the frame number associated with the coordinate value closest to the calculated coordinate value in the position conversion table, and the acquired vascular tomographic image after the frame plate is stored in the vascular tomographic image storage unit.
  • the data is read from 105 and displayed.
  • by designating any two points on the blood vessel image of the blood vessel to which the probe has moved, based on the distance information included in the cross-sectional information associated with the blood vessel tomographic image having the designated two points as acquisition positions The distance along the blood vessel can be calculated and displayed.
  • the tomographic images may be sequentially acquired and displayed according to the movement position of the mark 910, or the corresponding vascular tomographic image may be acquired after the position after the movement of the mark 910 is determined. May be.
  • the X-ray image is immediately synchronized according to the vascular tomographic image that is switched during the movement of the mark 910, the user who moves the mark 910 is confused, so it is desirable to stop the synchronous display of the X-ray image. Therefore, it is desirable not to update the display of the X-ray image while the position designated by the user changes at intervals shorter than the predetermined time.
  • the synchronous display of the X-ray image may be resumed according to a predetermined user operation.
  • a position conversion table is generated in advance for all X-ray images in the vascular tomographic imaging period, and a position corresponding to the specified acquisition position of the vascular tomographic image is obtained. It is not limited. For each X-ray image selected as a display target, a position on the blood vessel image corresponding to the acquired acquisition position of the blood vessel tomographic image is determined each time a blood vessel tomographic image corresponding to the cross-sectional information to be superimposed is specified. May be. Alternatively, each time an X-ray image to be displayed is determined, the position conversion table described above for the X-ray image may be generated.
  • the lesion site confirmed by the vascular tomographic image on the X image that the doctor wanted to confirm can be visualized, so that the treatment strategy planning can be speeded up and the treatment can be facilitated.

Abstract

画像表示装置は、プローブをカテーテルの軸方向へ移動しながら取得した複数の血管断層像と、プローブの移動の間に撮影された複数のX線画像と、を格納した格納部へアクセスし、複数のX線画像から表示対象のX線画像を取得し、複数の血管断層像から血管断層像を特定する。画像表示装置は、取得されたX線画像におけるプローブが移動した血管に対応する血管像上の、特定された血管断層像の取得位置に対応する位置を決定し、決定された位置を示すように所定の図形をX線画像に重畳表示するとともに、特定された血管断層像に関連付けられた断面情報に基づく情報を表示する。

Description

画像表示装置およびその制御方法
 本発明は、生体組織の断層像とX線画像の同期表示に関する。
 バルーンカテーテル、ステント等の高機能カテーテルによる血管内治療が行われている。この血管内治療における手術前の診断、或いは、手術後の経過確認のために、超音波断層像診断装置(IVUS:Intravascular ultrasound)が用いられている。また、IVUSの代わりとして光干渉断層診断装置(OCT:Optical Coherence Tomography)や、OCTの改良型として、波長掃引を利用した光干渉断層診断装置(SS-OCT:Swept-source Optical coherence Tomography)が用いられている。IVUSやOCTなどの断層像を取得可能な血管内診断装置は、X線装置で確認した病変部位のより詳細な情報、例えば血管内の狭窄率や分枝におけるプラークの存在、石灰化の分布などを得るために使用される。
 医師は、治療が必要であると判断した場合、上述の血管内診断装置により得られた血管断層像を観察することで、例えばステントエッジ位置をどこにするか等の治療の詳細を決定する。こうして決定された治療部位を治療する際には、医師はX線装置で得られるX線画像(アンジオ画像)を見ながら、バルーンやステントの設置等の治療を実施する。そのため、血管断層像を確認して決定した治療部位、すなわちバルーンやステントの設置位置等が、X線画像上のどの位置に相当するかを理解することは治療において非常に重要な要素となる。
特開2013-116332号公報
 前述した通り、血管内治療等においては、得られた血管断層像とX線画像上の位置関係を把握する事が重要となる。しかしながら、血管内診断装置とX線装置はそれぞれ別のモダリティとして構成されているため、医師は例えば分枝位置などのランドマークを頼りに、血管断層像で診断した部位に対応するX線画像上の位置を推測して治療を行う必要がある。
 上述したような血管断層像に対応するX線画像上の位置の推測精度を向上させるために、血管断層像取得時のX線画像を取り込み、血管断層像と同期してX線画像を表示する装置が存在する(特許文献1を参照)。一般に、血管断層像装置に繋がるカテーテルには、そのセンサ部近傍にX線不透過マーカが設置されており、血管断層像とX線画像を同期して表示することにより、上記の推定精度を向上させている。この機能を用いることで、血管断層像とX線画像上のX線不透過マーカ位置とを一対一に対応付けて視覚化する事が可能である。
 しかしながら、医師は病変を評価する場合、単一の血管断層像と単一のX線画像上の位置のみを見ているのではなく、血管全体を見て評価を実施している。つまり、医師は、血管断層像を確認した結果として血管長軸方向にある程度の長さを持った病変範囲を把握し、その病変範囲に対応するX線画像上の範囲を想像し、評価・治療を行っている。前述したような血管断層像とX線画像を単に同期して表示する機能では、医師が確認したいX線画像上の病変範囲を視覚化できておらず、単一の血管断層像の、単一のX線画像上における位置しか確認することができない。
 本発明は、上記課題に鑑みてなされたものであり、複数の血管断層像から特定された血管断層像の断面情報とX線画像上における位置とをユーザが容易に把握できるようにすることを目的とする。
 上記の目的を達成する本発明の一態様による画像表示装置は以下の構成を備える。すなわち、
 プローブをカテーテルの軸方向へ移動しながら取得した複数の血管断層像と、前記プローブの前記移動の間に撮影された複数のX線画像とを格納した格納手段へアクセスするアクセス手段と、
 前記アクセス手段を介して前記複数のX線画像から表示対象のX線画像を取得する取得手段と、
 前記複数の血管断層像から血管断層像を特定する特定手段と、
 前記表示対象のX線画像において、前記プローブが移動した血管に対応する血管像上の、前記特定された血管断層像の取得位置に対応する位置を決定する決定手段と、
 前記決定手段により決定された位置を示すように所定の図形を前記表示対象のX線画像に重畳表示するとともに、前記特定手段により特定された血管断層像に関連付けられた断面情報に基づく情報を表示手段に表示する表示制御手段と、を備える。
 本発明によれば、複数の血管断層像から特定された血管断層像の断面情報とX線画像上における位置とが容易に把握される。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態による表示システムの構成を説明する図である。 血管断層像を取得するためのカテーテルシステムを説明する図である。 血管断層像を取得するためのカテーテルシステムを説明する図である。 血管断層像とX線画像の収集タイミングを説明する図である。 血管断層像に関連付けられる断面情報の構成例を示す図である。 実施形態の表示システムによる断層像情報のオーバーレイ表示処理を説明するフローチャートである。 実施形態による血管検出処理を説明するフローチャートである。 血管検出処理により得られる血管位置情報を説明する図である。 血管検出処理により得られる血管断層像の取得位置を説明する図である。 実施形態による変換テーブル生成処理を説明するフローチャートである。 変換テーブルのデータ構成例を示す図である。 実施形態による同期表示および断面情報重畳表示処理を説明するフローチャートである。 実施形態による同期表示と、X線画像における重畳表示の例を示す図である。 実施形態によるX線画像の重畳表示の例を示す図である。 実施形態によるX線画像の重畳表示の例を示す図である。
 以下、添付の図面を参照して本発明の好適な実施形態の一例を説明する。
 図1は、本実施形態による、血管断層像とX線画像(アンジオ画像)の同期表示を実現する表示システムの構成例を示す図である。血管内診断装置100において、断層像生成部101は、被検者の血管内に挿入されたカテーテルシステムから得られる信号に基づいて血管内超音波法(IVUS)または光干渉断層法(OCT)などにより血管内の断層像(以下、血管断層像)を生成する。カテーテルシステム111は、たとえば、患者10の心臓の周囲の血管内の断層像を撮影するために、足の付け根の動脈を通して心臓の近くまで挿入される。血管内診断装置100がOCTを用いた光干渉診断装置の場合、断層像生成部101はカテーテルシステム111のプローブを介して計測光を出射し、その反射光をプローブを介して入射することにより断層像を得る。他方、血管内診断装置100がIVUSを用いた超音波断層像撮影装置の場合、断層像生成部101は、カテーテルシステム111のプローブを介して超音波信号を出力し、その反射信号をプローブを介して入力することにより断層像を得る。
 図2A、図2Bは、カテーテルシステム111について説明する図である。図2Aに示されるように、カテーテルシステム111は、ガイディングカテーテル112、断層像撮影のためのプローブ115を内包したカテーテル113、ガイドワイヤ114を含む。ガイディングカテーテル112はガイドワイヤ114およびカテーテル113を挿通するための中空を有する。例えば、冠動脈の断層像を撮影する場合、医師は、ガイディングカテーテル112を冠動脈の付近まで挿入した後、ガイドワイヤ114をガイディングカテーテル112内に通して冠動脈の撮影部位まで送り込む。そして、医師は、ガイドワイヤ114に沿ってカテーテル113を送り込むことにより、カテーテル113のイメージングコア117を冠動脈の撮影領域まで送り込む。カテーテル113には、ガイドワイヤルーメン119が設けられており、これにガイドワイヤ114を通すことで、カテーテル113はガイドワイヤに沿って進むことができる。
 図2Bには、図2Aの符号2Bの部分(カテーテル131の先端部)の詳細が示されている。断層像撮影のためのプローブ115は、金属シャフト116、イメージングコア117、X線不透過マーカ118を含む。OCTによる断層撮影の場合、金属シャフト116内を通る光ファイバの先端にイメージングコア117が接続される。イメージングコア117は、光ファイバ先端部から測定光を送受信する光学部品を含む。他方、IVUSによる断層撮影の場合には、金属シャフト116内を通る信号線と、超音波信号を送受信する超音波トランスジューサを含むイメージングコア117とが接続される。金属シャフト116は回転駆動(矢印120の方向への回転)しながら、カテーテルの軸方向へ移動(矢印121の方向への移動)する(以下、プルバックという)。金属シャフト116とともにイメージングコア117も回転しながらカテーテルの軸方向へ移動する。イメージングコアの1回転により断層像が得られるので、回転するイメージングコア117の移動中に取得される断層像は、血管路に沿った複数の血管断層像となる。イメージングコア117と金属シャフト116の間には、X線画像上でイメージングコア117の位置を認識するためのX線不透過マーカ118が設けられている。なお、X線不透過マーカ118は、イメージングコア117の先端側に設けられてもよい。
 図1に戻り、断層像生成部101は、IVUSまたはOCTにより得られた断層像(本実施形態では血管断層像)を血管断層像格納部105に格納する。なお、断層像生成部101による断層像のフレームレートは、160~180Hz程度である。断面情報生成部102は、医師が入力した断層像の観察結果を示す情報(病変部位の区間指定(リファレンス)、石灰化に関する監察結果等)や、断層像生成部101が生成した血管断層像を自動的に解析して得た情報(血管の内腔面積や内腔平均径など)を断面情報として断層像に対応付けて血管断層像格納部105に格納する。血管内診断装置100とX線撮影装置200とはケーブル104により接続されている。X線画像取得部103は、X線撮影装置200により取得されたX線画像を、X線撮影装置200からケーブル104を介して受信し、X線画像格納部106に格納する。血管断層像格納部105とX線画像格納部106は画像表示装置300によるアクセスが可能である。なお、本実施形態では血管内診断装置100とX線撮影装置200との間の通信がケーブル104(有線)を介して行われる例を示したが、これに限られるものではなく、無線通信等が用いられてもよい。
 X線撮影装置200はX線源211を駆動してX線を患者10に照射し、X線センサ212で透過X線を検出することでX線画像(たとえば、アンジオ画像)を得る。X線撮影装置200は、得られたX線画像を、ケーブル104を介して血管内診断装置100へ送信することができる。X線撮影装置200におけるX線画像のフレームレートは、たとえば、7~30Hz程度である。なお、X線画像取得部103は、X線撮影装置200から送られてくるX線画像のうち、プルバック中(血管断層像の撮影中)に撮影されたX線画像を保存するものとする。
 画像表示装置300は、X線画像と血管断層像を同期表示するとともに、血管断層像について取得された断面情報を、X線画像上の血管断層像に対応する位置に重畳して表示する。なお、「血管断層像に対応する位置」とは、その血管断層像が撮影されたときのイメージングコア117のX線画像上の位置であり、以下、断層像取得位置ともいう。画像表示装置300において、X線画像読込部301はX線画像格納部106にアクセスしてX線画像を読み出す。血管検出部302は、X線画像から、血管断層像が取得された血管(プローブ115が移動した血管、以下、対象血管ともいう)を検出する。血管検出部302により検出された対象血管の位置は血管位置情報として血管位置情報格納部304に格納される。テーブル生成部303は、血管断層像格納部105に格納されている血管断層像群の各フレームについて、血管検出部302が検出した対象血管上における取得位置を推定する。そして、テーブル生成部303は、血管断層像のフレームと、推定された取得位置(X線画像上のx、y座標で示される)とを対応づけて記録した位置変換テーブルを生成し、変換テーブル格納部305に格納する。
 血管断層像読込部306は、血管断層像格納部105にアクセスして血管断層像および断面情報を読み込み、表示制御部307に提供する。表示制御部307は、X線画像読込部301により読み込まれたX線画像と、血管断層像読込部306により読み込まれた血管断層像とをディスプレイ308に同期表示するとともに、血管断層像に付加されている断面情報を重畳表示する。上述した画像表示装置300の各部は、コンピュータが所定のプログラムを実行することにより実現されてもよいし、それらの一部またはすべてが専用のハードウエアによって実現されてもよい。
 以下、上述のような構成を備えた本実施形態の表示システムによる血管断層像とX線画像の同期表示処理および重畳表示処理について説明する。まず、図3Aを参照して、本実施形態の血管内診断装置100による血管断層像およびX線画像の収集について説明する。
 図3Aは、本実施形態によるX線画像および血管断層像の収集のタイミングを説明する図である。血管内診断装置100の不図示の操作パネルにおいて、ユーザがスキャン開始を指示すると、血管内診断装置100はカテーテル113内の金属シャフト116(およびイメージングコア117)の低速回転を開始する。その後、血管内診断装置100の操作パネルにおいてユーザがプルバックレディ開始を指示すると、血管内診断装置100は金属シャフト116(およびイメージングコア117)の高速回転を開始する。イメージングコア117を高速回転させると、プルバックをしながらの断層像の撮影を開始できる状態となる。
 プルバックレディ開始の後、ユーザはX線撮影装置200の不図示の操作パネルからX線撮影開始を指示する。X線撮影開始が指示されると、X線撮影装置200はX線源211からX線を照射させてX線センサ212によりX線画像(たとえば、アンジオ画像)を撮影する。得られたX線画像は、血管内診断装置100にケーブル104を介して送信される。ただし、本実施形態では、プルバック開始が指示されるまでに受信されたX線画像群321はX線画像格納部106に格納されないようにしている。
 ユーザは、X線撮影開始を指示した後、フラッシュを開始する。フラッシュでは、血管内に造影剤が投入される。そして、ユーザによりプルバック開始が指示されると、血管内診断装置100はイメージングコア117のプルバックを開始するとともに、血管断層像の生成を開始する。プルバック動作中の血管断層像群311は血管断層像格納部105に格納される。また、このプルバック動作中にX線撮影装置200により取得されたX線画像群322は、X線画像取得部103によりX線画像格納部106に格納される。格納されるX線画像には、プルバックを行っている血管の注目領域が造影剤のある状態で映っており、イメージングコア117のプルバックとともに移動するX線不透過マーカ118が映っている。なお、同期表示に用いられる血管断層像は、血管断層像群311のうちのプルバック開始からガイディングカテーテル112の端部が検出される血管断層像までの血管断層像(本実施形態ではNフレームの血管断層像が存在するものとする)である。また、同期表示に用いられるX線画像は、X線画像群322のうち、上記Nフレームの血管断層像に対応するMフレームのX線画像である。NとMの比は、血管断層像のフレームレートとX線画像のフレームレートの比となる。
 なお、上記では、プルバック開始前のX線画像群321を保存しない構成としたが、X線画像群321およびX線画像群322をX線画像格納部106に保存するようにしてもよい。この場合、X線画像群322の各X線画像にはプルバック中の画像であることを示す情報を付加しておき、この情報をたよりにX線画像読込部301がプルバック中のX線画像を読み出すようにすればよい。
 続いて、断面情報生成部102は、Nフレームの血管断層像の各々について断面情報を生成し、断面情報を血管断層像に付加、または血管断層像に対応付けて血管断層像格納部105に格納する。図3Bは、Nフレームの血管断層像の各々に、断面情報が関連付けられた様子を示している。
 断面情報生成部102が生成する断面情報は、図3Bに示されるように、各血管断層像を自動的に解析して検出する情報と医師の入力に応じて生成される情報を含む。自動的に検出される断面情報としては、血管の内腔面積、内腔面積から求まる内腔平均径(内腔面積をSとすると、平均内腔径Da=2×√(S/π)となる)、内腔の最大径、最小径、偏芯度が挙げられる。これらの断面情報は、全ての血管断層像について取得され、各血管断層像に関連付けられる。また、断面情報生成部102は、血管の分枝部の自動検出により、血管断層像が分枝部の基部側端部または末梢側の端部であるかを示す情報を断面情報として自動的に生成する。さらに、断面情報生成部102は、血管断層像においてステントの存在を検出し、ステントの有無を示す情報を断面情報として生成する。
 さらに、断面情報生成部102は、医師が血管断層像を観察して入力した種々の情報、たとえば、石灰化に関する情報や、リファレンス位置、ブックマークに関する情報を断面情報として血管断層像に関連付ける。たとえば、医師は、血管断層像を観察して石灰化の存在する範囲を指示することができ、断面情報生成部102はその指示された範囲に対応する血管断層像に石灰化が存在することを示す情報を関連付ける。また、医師は、血管断層像から各血管断層像に石灰化の厚さや石灰化の角度を測定することができ、断面情報生成部102はそれら測定結果を断面情報として血管断層像に関連付ける。また、医師は、血管断層像を観察しながら、所望の血管断層像にブックマークを付与することができ、断面情報生成部102は、ブックマークの付与の有無を示す情報を断面情報として血管断層像に関連付ける。さらに医師は、病変範囲の開始と終了の血管断層像を指定することができ、断面情報生成部102は、指定された病変範囲に対応する各血管断層像にリファレンス位置であることを示す断面情報を関連付ける。
 以上のようにして血管断層像(血管断層像群311)とX線画像(X線画像群322)の収集と、断面情報の格納を終えると、画像表示装置300は、これら血管断層像とX線画像の同期表示および断面情報の重畳表示を行う。以下、画像表示装置300による同期表示重畳表示について図4のフローチャートを参照して説明する。
 まず、ステップS401において、血管検出部302は、MフレームのX線画像の各々について、血管断層像の撮影対象となった血管(対象血管)を検出する。以下、血管検出部302による対象血管の検出処理(以下、血管検出処理)について図5のフローチャートを参照してより詳細に説明する。
 血管検出処理では、まず、ステップS501において、X線画像読込部301はX線画像格納部106に格納されているMフレームのX線画像群のうちの1番目のX線画像を読み込む。そして、ステップS502において、血管検出部302は、X線画像上のマーカ推定位置の周辺領域を処理対象領域として正規化する。本ステップでは、処理対象領域内の輝度値の最小値と最大値が、有効ビット幅の最小値と最大値となるように正規化が行われる。なお、X線画像の最初のフレームにおけるマーカ推定位置は、ユーザから与えられたマーカ初期位置であり、それ以降のフレームについてはステップS509(後述)で算出されたマーカ推定位置が用いられる。なお、ユーザによるマーカ初期位置の指定は、たとえば、ユーザのマウス操作により、ステップS501で読み込まれたX線画像上におけるX線不透過マーカ118の位置を指定することで行うことができる。
 次に、ステップS503において、血管検出部302は、処理対象領域についてフィルタ処理を行ってX線不透過マーカ118の像の候補を検出する。X線不透過マーカ118はX線画像上で小さな黒丸のように見える。そこで、血管検出部302は、例えば、黒点を強調できるようなたたみこみフィルタや周波数フィルタを用いて黒点候補を検出する。
 ステップS504において、血管検出部302は、ステップS503で複数の黒点候補が得られた場合に、検出された黒丸にラベリング処理を実行し、各ラベル毎に相関値を算出し、相関値が最も大きい黒点候補をマーカとして選択する。血管検出部302は、選択された黒点候補の位置(たとえば、重心位置)を、マーカ位置として用いる。なお、相関値としては、たとえば以下のようなものを用いることができる。
・距離相関:マーカ推定位置(x0,y0)と黒点候補の位置(x,y)との距離が近いほど大きくなる相関値であり、たとえば、e=1/√((x0-x)2+(y0-y)2)により求める。
・面積比:黒点候補の面積(サイズ)が、代表的なX線不透過マーカのサイズに近いかを示す相関値であり、例えばΔS=Sj/Sr(Sjは現在対象としている黒点のサイズ、Srは代表的な不透過マーカのサイズ)により求める。代表的なX線不透過マーカのサイズは固定値を用いても、ユーザから与えられたマーカ初期位置から検出された黒点のサイズを用いても、前フレームで検出されたX線不透過マーカのサイズを用いても良い。
・輝度差分:フレーム間における輝度の変化を示す相関値である。この相関値は、フレーム間の黒点候補の位置における輝度の変化(i+1フレーム目の黒点候補の輝度値と、iフレーム目の画像の対応位置における輝度の変化)が大きいほど大きくなる。たとえば、ΔI=(Ii+1-Ii)+2(σi+1-σi)により求める。ここで、Ii+1は、i+1フレームにおける1つの黒点候補の領域の平均輝度、Iiはその黒点候補の領域に対応するiフレームの部分の平均輝度である。また、σi+1は、i+1フレームにおける上記黒点候補の領域の輝度の標準偏差、σiは、iフレームの、上記部分における輝度の標準偏差である。
 プルバック中において血管断層像を撮影している血管には造影剤が注入されているので、血管の画像の輝度は低くなる。ステップS505において、血管検出部302は、ステップS504で決定したマーカ位置、すなわちX線不透過マーカ118の位置から血管基部までを、輝度値が低い部分を通るように自動的にトレースする。トレースにより得られた血管上の座標値列は血管位置情報として血管位置情報格納部304に保持され、後述の位置変換テーブルの生成処理(ステップS402)に用いられる。なお、血管基部としては、ガイディングカテーテル112の端部位置が用いられる。ガイディングカテーテル112の端部位置はX線画像上において特徴的な像を提供するため、血管検出部302はこの端部位置、すなわち血管基部を自動的に検出することができる。こうして得られた血管基部からX線不透過マーカまでの範囲が血管断層像の撮影範囲となる。
 図6Aは、ステップS505で得られる血管位置情報を説明する図である。X線不透過マーカ118の検出位置であるマーカ位置602からガイディングカテーテル112の端部である血管基部603までの自動的なトレースにより得られた血管上の対応点のx、y座標値が血管位置情報として保持される。なお、図6Aの例では、マーカ位置602から血管基部603までの自動的なトレースにおいて、p個の対応点が取得された場合を示しており、血管位置情報としてp個の座標が取得された状態が示されている。
 次に、ステップS506において、血管検出部302は、処理したX線画像が最終フレームか否か(上述したMフレームのX線画像について処理したか否か)を判定する。最終フレームであると判定された場合には本処理を終了する。最終フレームでないと判定された場合には、処理はステップS507へ進む。
 ステップS507において、血管検出部302は、X線画像読込部301にX線画像群322の次のフレームを読み込ませる。そして、ステップS508において、血管検出部302は、ステップS507で取得されたX線画像について、直前のX線画像の血管位置情報(ステップS505で取得された血管位置情報)を用いた血管の追跡を行う。X線画像上に表示されている血管は心拍等の影響によりフレーム間で画像上の存在位置が異なる。この動きは、一般的には平行移動と回転で表現できる。そこで、これらにロバストな特性を持つAKAZEアルゴリズム等の周知の画像追跡アルゴリズムを用いてフレーム間での血管追跡処理を実施する。
 次に、ステップS509において、血管検出部302は、ステップS507で読み込まれたX線画像におけるマーカ推定位置を算出する。より具体的には、血管検出部302は、血管追跡処理で検出された血管上において、直前フレームにおいて検出されたマーカ位置に対応する位置から所定の間隔だけ基部側に移動した位置を、次フレームにおけるマーカ推定位置として算出する。ここで、マーカ位置を移動する所定の間隔は、たとえば、プローブ115のプルバックスピードから決定することができる。或いは、X線画像群321の最初の数枚についてユーザがマーカ位置を指定し、この指定された位置の間隔から所定の間隔を算出するようにしてもよい。
 ステップS509でマーカの推定位置が求まると、処理はステップS502に戻る。以降のステップS502におけるマーカの推定位置には、ユーザ指定されたマーカ初期位置に代えてステップS509で算出されたマーカ推定位置が用いられる。以上のようにして、プルバック中に撮影されたX線画像群322のうちのMフレームのX線画像について血管検出を終えると(ステップS506でYES)、図5に示される血管検出処理が終了し、処理はステップS401からステップS402に進む。
 ステップS402において、テーブル生成部303は、プルバック中に撮影されたX線画像群322の各X線画像について、血管断層像とX線画像における撮影位置とを対応付けた変換テーブルを生成し、変換テーブル格納部305に格納する。以下、テーブル生成部303による変換テーブル生成処理について図7Aのフローチャートを参照して説明する。
 まず、ステップS701において変数mが1に設定される。次に、ステップS702において、テーブル生成部303は、MフレームのX線画像のうちのm番目のX線画像の血管位置情報を血管位置情報格納部304から取得する。そして、ステップS703において、テーブル生成部303は、血管位置情報に基づいて血管検出処理で検出された対象血管の血管長L(マーカ位置から血管基部までの長さ)を算出する。血管長Lは、血管位置情報の隣り合う対応点間の直線距離を算出し、それらを積算することで得られる。例えば血管位置情報が図6Aに示すようにp個の座標値を有する場合、マーカ位置から血管基部(ガイディングカテーテル端部)までの撮影範囲における血管長Lは以下の[数1]により算出される。
Figure JPOXMLDOC01-appb-M000001
 次に、ステップS704において、テーブル生成部303は、ステップS703で求めた血管長Lを血管断層像のフレーム数で等分するようにサンプリングする。すなわち、撮影範囲において等間隔に並ぶように血管断層像の取得位置に対応する位置が設定される。本実施形態では、テーブル生成部303は、m番目のX線画像のマーカ位置から血管基部側の間に存在する血管断層像の取得位置の数で全長Lを等分してサンプリング位置を得る。たとえば、1番目のX線画像であれば、そのマーカ位置から血管基部までの間にNフレーム全ての断層像の取得位置が含まれるので、サンプリング位置の間隔dL(=L/(N-1))が得られる。より一般化すると、Xフレームのうちのm番目のX線画像における血管のマーカ位置から血管基部の間には、Nフレームの血管断層像のうちの、[(N/M)×(m-1)+1]フレーム目からNフレーム目までの血管断層像の取得位置が存在する。したがって、mフレーム目のX線画像においてマーカ位置から血管基部の間に取得位置が存在する血管断層像のフレーム数は、N’=N-(N/M)×(m-1)となり、サンプリング位置の間隔はdL=L/N’となる。この様子を図6Bに示す。
 次に、ステップS705において、テーブル生成部303は、サンプリング位置の間隔に基づいて、各血管断層像の取得位置に対応するX線画像上の座標を取得し、それらを対応付けて変換テーブルを生成し、変換テーブル格納部305に格納する。座標値はたとえば、次のようにして求める。
 i番目の血管断層像のX線画像上の座標位置は、血管位置情報が有するp個の座標値のうちのdL×iの直前または直後の座標値に基づいて取得される。たとえば、血管情報のp個の座標値のうちの以下の[数2]を満たすj番目またはj+1番目の座標値をi番目の血管断層像の取得位置に対応する座標値として用いる。
Figure JPOXMLDOC01-appb-M000002
 あるいは、[数2]を満たすj番目とj+1番目の座標値を結ぶ線分上に血管断層像の取得位置を決定するようにしてもよい。たとえば、図6Bに示されるように、血管情報のうちのj番目の座標までの血管長をL1とした場合に、j番目とj+1番目の座標を結ぶ線分上の、j番目の座標値からdL×i-L1の距離にある座標値をi番目の血管断層像の取得位置に対応する座標値として用いるようにしてもよい。
 テーブル生成部303は、以上のようにして得られた血管断層像とそのX線画像上における取得位置(座標値)とを変換テーブルとして変換テーブル格納部305に格納する。ステップS706において、テーブル生成部303は、X線画像群322の最終フレーム(M番目のフレーム)について処理を終えたか否かを判定し、未処理のフレームがあれば処理をステップS707に進める。ステップS707においてmが1つ加算された後、処理はステップS702に戻る。こうして、次のX線画像について上述した変換テーブルの生成処理が実行される。ステップS706で最終フレームを処理したと判定されると、変換テーブル生成処理が終了する。この結果、図7Bに示されるように、変換テーブル格納部305には、X線画像群322のM枚のX線画像に対応した、M個の変換テーブル群710が格納されることになる。
 各X線画像について変換テーブルが生成されると、処理はステップS402からステップ403へ進む。ステップS403において、表示制御部307は、X線画像と血管断層像を同期表示するとともに、X線画像上に断面情報を重畳表示する。本実施形態では血管内診断装置100による血管断層像のフレームレートとX線撮影装置200によるX線画像のフレームレートにしたがって、Nフレームの血管断層像に対応したMフレームのX線画像が得られる。したがって、何番目の血管断層像と何番目のX線画像の取得タイミングが対応しているかは容易に決定することができる。同期表示では、取得タイミングが互いに対応関係にある血管断層像とX線画像が同時に表示される。
 ステップS403における同期表示と、断面情報の重畳表示について図8のフローチャートを参照して説明する。以下では、ディスプレイ308に表示すべきX線画像が指定され、これに対応する血管断層像が読み出されて同期表示が実現される場合を説明する。但し、ディスプレイ308に表示すべき血管断層像が指定され、これに対応するX線画像が読み出されて同期表示が実現されてもよいことは言うまでもない。
 ステップS801において、表示制御部307は、指定されたX線画像をX線画像読込部301を介してX線画像格納部106から取得し、ディスプレイ308に表示する。ステップS802において、表示制御部307は、ステップS801で取得したX線画像に対応する血管断層像(X線画像の取得タイミングに対応する血管断層像)を血管断層像読込部306を介して血管断層像格納部105から取得し、ディスプレイ308に表示する。こうして、X線画像と血管断層像が同期して表示される。
 次に、ステップS803において、表示制御部307は変換テーブル格納部305から、表示中のX線画像に対応する変換テーブルを取得する。ステップS804において、表示制御部307は、表示すべき断面情報の項目が関連付けられた血管断面像のフレーム番号を取得する。なお、表示すべき断面情報の項目を、ユーザが指定できることが望ましい。たとえば、リファレンスの末梢側位置および基部側位置が表示すべき断面情報の項目として指定されたとする。この場合、表示制御部307は、断面情報としてリファレンスの基部側を示す情報が付されている血管断層像のフレーム番号と、リファレンスの末梢側を示す情報が付されている血管断層像のフレーム番号を取得する。
 ステップS805において、表示制御部307は、ステップS803で取得された変換テーブルを参照して、ステップS804で取得されたフレーム番号に対応する座標値を得る。ステップS806において、表示制御部307は、取得した座標位置に基づいて、断面情報をX線画像上に重畳表示する。例えば、重畳表示する断面情報としてリファンレス位置が指定された場合、表示制御部307は、血管断層像格納部105に格納されている血管断層像の断面情報を参照して、リファレンス位置に指定されている血管断層像のうち最も末梢側のフレーム番号と最も基部側のフレーム番号を取得する。そして、表示制御部307は、ステップS803で得られた変換テーブルを参照して、それらフレーム番号に対応したX画像上の座標値を取得し、X線画像上にリファレンスの開始位置を示す表示を行う。
 図9は、上述した血管断層像とX線画像の同期表示例、および、断面情報の重畳表示例を示す図である。図9において、X線画像900はステップS801で取得されたX線画像であり、血管断層像920はステップS802で取得された血管断層像である。縦断面画像940は、血管断層像920を含む所定範囲の血管断層像群を用いて生成された血管長方向の断面を示す図である。X線画像900において、マーク910は血管断層像920の取得位置(M)であり、X線画像900上で検出されたマーク位置と一致する。なお、縦断面画像940は、たとえば、血管断層像920の取得位置(M)を中央とした所定の長さを切り出した断面である。
 図9において、X線画像900には上述したリファレンス位置の重畳表示例が示されている。上述のようにして取得された基部側(P)と末梢側(D)のリファレンス位置が、X線画像900上でマーク901とマーク902により示されている。マーク901、902は、基部側と末梢側のリファレンス位置の血管断層像の取得位置に対応する血管像上の位置を示す図形である。マーク901は、基部側のフレーム番号に対応した座標値が中心となるように配置された所定長の線分であり、その方向は、その座標値の両端における血管位置情報の座標値を両端とする線分の方向に直交するようにしている。末梢側のマーク902も同様に、末梢側のフレーム番号に対応した座標値が中心となるように配置された所定長の線分であり、その方向は、その座標値の両端における血管位置情報の座標値を両端とする線分の方向に直交するようにしている。このような重畳表示により、基部側のリファレンス位置と末梢側のリファレンス位置が明示され、血管断層像群を用いて医師が指定した病変区間等が、X線画像上で明示される。なお、基部側および末梢側のリファレンス位置のフレームに関連付けられている断面情報(内腔面積、平均内腔径など)を、それぞれボックス903、904により表示するようにしてもよい。なお、縦断面画像940においても、基部側と末梢側のリファレンス位置に対応する血管断層像の位置と、血管断層像920に対応する位置とをそれぞれマーク941,942,943として示すようにしている。
 図10Aは、重畳表示する断面情報の項目として石灰化に関する状態を選択した場合の表示例である。図10Aでは、同期表示される血管断層像920と縦断面画像940を省略してある。たとえば、「石灰化の厚さ」に関する断面情報を表示するよう指示された場合、表示制御部307は、「石灰化の厚さ」が記録されている断面情報を検索し、厚さの分布をバー911により表示する。なお、バー911の表示範囲は、石灰化の厚さが記述されている断面情報を有するフレームのうち最も基部側のフレーム番号の位置912と最も末梢側のフレーム番号の位置913の間とする。バー911は、断面情報(石灰化の厚さ)に応じて色または濃度により区分されており、医師はバー911により石灰化の厚さの分布を知ることができる。なお、バー911の表示範囲のフレームに関連する断面情報に「石灰化の厚さ」が記述されていない場合には、他の断面情報から補間して色または濃度を決定する。「石灰化の角度」についてもバー911と同様の表示を行うことができる。なお、図10Aでは、リファレンス位置の表示とともにバー911を表示しているが、リファレンス位置に関する表示を行わないようにしてもよい。
 図10Bは、重畳表示する断面情報の項目として、留置済みのステントの存在する領域の両端位置が指定された場合のX線画像の表示例である。表示制御部307は、ステントが存在すると記述されている断面情報に関連付けられた血管断層像のうち、最も基部側のフレーム番号と最も末梢側のフレーム番号を取得する。そして、表示制御部307は、位置変換テーブルを参照して対応する座標値を取得し、ステントが存在する範囲の両端をマーク914とマーク915で示す。たとえば、生体吸収性ステント(BRS)はX線画像に映りにくくX線画像を見てもその所在を確認しにくいが、血管断層像においては比較的明瞭に映り検出が容易である。したがって、このような重畳表示によれば、X線画像に写りにくい生体吸収性ステント(BRS)の所在が明示され、術後の診断等に有効である。なお、図10Bでは、リファレンス位置の表示とともにステントの存在する範囲を表示しているが、リファレンス位置に関する表示を行わないようにしてもよい。
 以上は重畳表示の一例であり、種々の断面情報をX線画像上の対応する位置に表示することができる。なお、上記では、断面情報に基づく情報を、対応する血管断層像の取得位置に基づいてX線画像上に重畳して表示したが、断面情報に基づく情報は必ずしも重畳表示しなくてもよい。例えば、図9、図10A、図10Bにおいて、ボックス903,904で表示した内容を、縦断面画像940など、X線画像の表示領域以外の領域に表示してもよい。
 また、断面情報に基づく情報として、血管像上の2点間における血管に沿った距離(長さ)を示す距離情報を表示させてもよい。この場合、たとえば図3Bの断面情報(自動検出する情報)として、基準位置(たとえば、先頭の血管断層像の位置=先頭の血管断層像に対応するX線画像上のマーカ位置)からの血管に沿った距離(図6BのdL×i)を保持しておく。表示制御部307は、血管像上の2つの位置に対応する血管断層像に関連付けられた断面情報に含まれている距離の差により、血管に沿った距離(長さ)を求め、断面情報に基づく情報として表示する。例えば、図9において、表示制御部307は、マーク901とマーク902のそれぞれの位置に対応する血管断層像に関連付けられた断面情報(距離)から、両者の間の血管に沿った長さを取得することができ、これをX線画像上に重畳表示したり、縦断面画像940に表示したりすることができる。
 また、位置変換テーブルの利用は、上記の重畳表示に限られるものではない。位置変換テーブルには血管断層像のフレーム番号とX線画像上の座標が対応付けられているので、たとえば、X線画像上のプローブが移動した血管の血管像上における任意の位置を指定することで、これに対応した血管断層像を表示させることができる。例えば、図9において、X線画像900上でマウス操作等により、マーク910を血管上の任意の位置へ移動すると、表示制御部307は、移動後のマーク910の座標値を算出する。そして、表示制御部307は、位置変換テーブルにおいて、算出した座標値に最も近い座標値に対応付けられているフレーム番号を取得し、取得されたフレーム板後の血管断層像を血管断層像格納部105から読み込んで表示する。このように、X線画像上において、血管像上におけるユーザの指定位置を検出し、検出された指定位置に最も近い取得位置の血管断層像を選択して表示することができる。あるいは、プローブが移動した血管の血管像上で任意の2点を指定することにより、指定された2点を取得位置とする血管断層像に関連付けられた断面情報に含まれる距離の情報に基づいて、血管に沿った距離を算出し、表示することもできる。
 この場合、マーク910の移動位置に応じて逐次に断層像を取得し、表示するようにしてもよいし、マーク910の移動後の位置が確定してから対応する血管断層像を取得するようにしてもよい。但し、マーク910の移動中に切り替わる血管断層像に応じて直ちにX線画像を同期させてしまうと、マーク910を移動させるユーザが混乱するので、X線画像の同期表示は停止することが望ましい。したがって、所定時間よりも短い間隔でユーザによる指定位置が変化する間は、X線画像の表示の更新を行わないようにすることが望ましい。またその場合、マーク910が所定時間静止したことを確認してから、表示中の血管断層像に対応するX線画像へ切り替えて、同期表示を再開するようにしてよい。あるいは、マーク910の移動後、所定のユーザ操作に応じてX線画像の同期表示を再開するようにしてもよい。
 また、上記実施形態では、血管断層像の撮影期間における全てのX線画像について予め位置変換テーブルを生成しておき、特定された血管断層像の取得位置に対応する位置を得たが、これに限られるものではない。表示対象に選択されたX線画像について、重畳表示する断面情報に対応する血管断層像を特定するたびに、特定された血管断層像の取得位置に対応する血管像上の位置を決定するようにしてもよい。或いは、表示対象のX線画像が決定されるたびに、そのX線画像に関して上述した位置変換テーブルを生成するようにしてもよい。
 上記実施形態によれば、たとえば、血管断層像で確認された病変範囲をX線画像上に重畳表示することが可能となる。このため、医師が確認したかったX画像上における血管断層像で確認した病変部位が視覚化され、治療戦略立案の迅速化や治療の円滑化を図ることができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2016年1月26日提出の日本国特許出願特願2016-012768を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (19)

  1.  プローブをカテーテルの軸方向へ移動しながら取得した複数の血管断層像と、前記プローブの前記移動の間に撮影された複数のX線画像とを格納した格納手段へアクセスするアクセス手段と、
     前記アクセス手段を介して前記複数のX線画像から表示対象のX線画像を取得する取得手段と、
     前記複数の血管断層像から血管断層像を特定する特定手段と、
     前記表示対象のX線画像において、前記プローブが移動した血管に対応する血管像上の、前記特定された血管断層像の取得位置に対応する位置を決定する決定手段と、
     前記決定手段により決定された位置を示すように所定の図形を前記表示対象のX線画像に重畳表示するとともに、前記特定手段により特定された血管断層像に関連付けられた断面情報に基づく情報を表示手段に表示する表示制御手段と、を備えることを特徴とする画像表示装置。
  2.  前記決定手段は、
     前記表示対象のX線画像の前記血管像上における、前記複数の血管断層像の各々の取得位置に対応する位置を記録した位置変換テーブルを生成し、
     前記位置変換テーブルの参照により、前記特定された血管断層像の取得位置に対応する位置を決定することを特徴とする請求項1に記載の画像表示装置。
  3.  前記決定手段は、
     あらかじめ前記複数のX線画像の各々について位置変換テーブルを生成して保持し、
     前記表示対象のX線画像の位置変換テーブルを選択して参照することにより、前記表示対象のX線画像における前記対応する位置を決定することを特徴とする請求項2に記載の画像表示装置。
  4.  前記決定手段は、
     X線画像の前記プローブが移動した血管像において血管断層像の撮影範囲を特定し、
     前記撮影範囲に対応する血管断層像の複数の取得位置を、該撮影範囲において等間隔に並べた位置に基づいて、前記血管像上の対応する位置を決定することを特徴とする請求項1乃至3のいずれか1項に記載の画像表示装置。
  5.  前記撮影範囲は、前記血管像における、前記プローブに設けられたX線不透過マーカの位置からガイディングカテーテルの端部の位置までの範囲であることを特徴とする請求項4に記載の画像表示装置。
  6.  前記表示制御手段は、前記複数の血管断層像から、前記表示対象のX線画像の取得タイミングに対応する血管断層像を選択して前記表示対象のX線画像とともに表示する同期表示を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像表示装置。
  7.  前記特定手段は、前記複数の血管断層像に関連付けられた断面情報に基づいて、基部側のリファレンス位置の血管断層像と、末梢側のリファレンス位置の血管断層像を特定することを特徴とする請求項1乃至6のいずれか1項に記載の画像表示装置。
  8.  前記特定手段は、前記複数の血管断層像に関連付けられた断面情報に基づいて、1つの分枝部の基部側の血管断層像と該1つの分枝部の末梢側の血管断層像を特定することを特徴とする請求項1乃至7のいずれか1項に記載の画像表示装置。
  9.  前記特定手段は、前記複数の血管断層像に関連付けられた断面情報に基づいて、留置済みのステントの両端位置の血管断層像を特定することを特徴とする請求項1乃至8のいずれか1項に記載の画像表示装置。
  10.  前記表示制御手段は、前記特定手段により特定された血管断層像に関連付けられた断面情報から、内腔面積、内腔平均径、最大径、最小径、偏芯度の少なくともいずれか一つを表示することを特徴とする請求項1乃至9のいずれか1項に記載の画像表示装置。
  11.  前記特定手段は、前記複数の血管断層像に関連付けられた断面情報に基づいて、ユーザがブックマークを付加した血管断層像を特定することを特徴とする請求項1乃至10のいずれか1項に記載の画像表示装置。
  12.  前記表示制御手段は、前記特定手段により特定された血管断層像に関連付けられた断面情報に基づく情報を、前記決定手段により決定された位置に基づいて前記X線画像に重畳表示することを特徴とする請求項1乃至11のいずれか1項に記載の画像表示装置。
  13.  前記特定手段は、石灰化の厚さまたは石灰化の角度を示す情報を有する断面情報が関連付けられた血管断層像を特定し、
     前記表示制御手段は、前記血管像上の、前記特定された血管断層像の取得位置に対応する位置に基づいて、石灰化の厚さの分布または石灰化の角度の分布を表す表示を、前記X線画像に重畳することを特徴とする請求項1乃至12のいずれか1項に記載の画像表示装置。
  14.  前記X線画像上において、前記血管像上におけるユーザの指定位置を検出する検出手段をさらに備え、
     前記表示制御手段は、前記検出手段により検出された指定位置に最も近い取得位置の血管断層像を前記複数の血管断層像から選択して表示することを特徴とする請求項1乃至13のいずれか1項に記載の画像表示装置。
  15.  前記表示制御手段は、
     前記指定位置に最も近い取得位置の血管断層像の取得タイミングに対応したX線画像を前記複数のX線画像から選択して表示し、
     所定時間よりも短い間隔で前記指定位置が変化する間は、前記X線画像の表示の更新を行わないことを特徴とする請求項14に記載の画像表示装置。
  16.  前記断面情報は、基準位置から血管断層像の取得位置までの血管に沿った距離を示す距離情報を含み、
     前記表示制御手段は、前記特定手段により特定された2つの血管断層像に関連付けられた前記距離情報に基づいて前記2つの血管断層像の間の距離を表示することを特徴とする請求項1乃至15のいずれか1項に記載の画像表示装置。
  17.  前記特定手段は、前記X線画像における前記プローブが移動した血管の血管像上で、ユーザが指定した位置に対応する血管断層像を特定することを特徴とする請求項16に記載の画像表示装置。
  18.  画像表示装置の制御方法であって、
     プローブをカテーテルの軸方向へ移動しながら取得した複数の血管断層像と、前記プローブの前記移動の間に撮影された複数のX線画像とを格納した格納手段へアクセスして前記複数のX線画像から表示対象のX線画像を取得する取得工程と、
     前記複数の血管断層像から血管断層像を特定する特定工程と、
     前記表示対象のX線画像において、前記プローブが移動した血管に対応する血管像上の、前記特定された血管断層像の取得位置に対応する位置を決定する決定工程と、
     前記決定工程で決定された位置を示すように所定の図形を前記表示対象のX線画像に重畳表示するとともに、前記特定工程で特定された血管断層像に関連付けられた断面情報に基づく情報を表示手段に表示する表示制御工程と、を有することを特徴とする画像表示装置の制御方法。
  19.  請求項18に記載された画像表示装置の制御方法の各工程をコンピュータに実行させるためのプログラム。
PCT/JP2017/002232 2016-01-26 2017-01-24 画像表示装置およびその制御方法 WO2017130927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017564250A JP6866310B2 (ja) 2016-01-26 2017-01-24 画像表示装置およびその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012768 2016-01-26
JP2016012768 2016-01-26

Publications (1)

Publication Number Publication Date
WO2017130927A1 true WO2017130927A1 (ja) 2017-08-03

Family

ID=59397994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002232 WO2017130927A1 (ja) 2016-01-26 2017-01-24 画像表示装置およびその制御方法

Country Status (2)

Country Link
JP (1) JP6866310B2 (ja)
WO (1) WO2017130927A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025352A1 (en) * 2018-07-30 2020-02-06 Koninklijke Philips N.V. Intravascular imaging procedure-specific workflow guidance and associated devices, systems, and methods
CN111904474A (zh) * 2020-08-19 2020-11-10 深圳开立生物医疗科技股份有限公司 血管内超声图像处理方法、装置、系统及可读存储介质
WO2021199966A1 (ja) * 2020-03-30 2021-10-07 テルモ株式会社 プログラム、情報処理方法、学習モデルの生成方法、学習モデルの再学習方法、および、情報処理システム
WO2022071181A1 (ja) * 2020-09-29 2022-04-07 テルモ株式会社 情報処理装置、情報処理方法、プログラム及びモデル生成方法
WO2022071121A1 (ja) * 2020-09-29 2022-04-07 テルモ株式会社 情報処理装置、情報処理方法及びプログラム
WO2023100838A1 (ja) * 2021-11-30 2023-06-08 テルモ株式会社 コンピュータプログラム、情報処理装置、情報処理方法及び学習モデル生成方法
JP7378484B2 (ja) 2018-10-26 2023-11-13 コーニンクレッカ フィリップス エヌ ヴェ 自動及び支援ラベル及びブックマークを用いた管腔内超音波イメージング

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526387A (ja) * 2005-01-11 2008-07-24 ヴォルケイノウ・コーポレーション 血管情報取得装置
JP2010148778A (ja) * 2008-12-26 2010-07-08 Toshiba Corp 画像表示装置及び画像表示方法
JP2010526556A (ja) * 2006-11-22 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線の経脈管的に収集されたデータとの結合
JP2013056113A (ja) * 2011-09-09 2013-03-28 Toshiba Corp 画像表示装置
WO2015045368A1 (ja) * 2013-09-26 2015-04-02 テルモ株式会社 画像処理装置、画像表示システム、撮影システム、画像処理方法及びプログラム
WO2015044979A1 (ja) * 2013-09-26 2015-04-02 テルモ株式会社 情報処理装置、撮影システム、情報処理方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526387A (ja) * 2005-01-11 2008-07-24 ヴォルケイノウ・コーポレーション 血管情報取得装置
JP2010526556A (ja) * 2006-11-22 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線の経脈管的に収集されたデータとの結合
JP2010148778A (ja) * 2008-12-26 2010-07-08 Toshiba Corp 画像表示装置及び画像表示方法
JP2013056113A (ja) * 2011-09-09 2013-03-28 Toshiba Corp 画像表示装置
WO2015045368A1 (ja) * 2013-09-26 2015-04-02 テルモ株式会社 画像処理装置、画像表示システム、撮影システム、画像処理方法及びプログラム
WO2015044979A1 (ja) * 2013-09-26 2015-04-02 テルモ株式会社 情報処理装置、撮影システム、情報処理方法及びプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025352A1 (en) * 2018-07-30 2020-02-06 Koninklijke Philips N.V. Intravascular imaging procedure-specific workflow guidance and associated devices, systems, and methods
CN112512409A (zh) * 2018-07-30 2021-03-16 皇家飞利浦有限公司 血管内成像流程特异性工作流程引导和相关联的设备、系统和方法
JP2021531889A (ja) * 2018-07-30 2021-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管内撮像プロシージャ特有のワークフローガイド並びに関連する装置、システム、及び方法
US11666245B2 (en) 2018-07-30 2023-06-06 Philips Image Guided Therapy Corporation Intravascular imaging procedure-specific workflow guidance and associated devices, systems, and methods
JP7340594B2 (ja) 2018-07-30 2023-09-07 コーニンクレッカ フィリップス エヌ ヴェ 血管内撮像プロシージャ特有のワークフローガイド並びに関連する装置、システム、及び方法
JP7378484B2 (ja) 2018-10-26 2023-11-13 コーニンクレッカ フィリップス エヌ ヴェ 自動及び支援ラベル及びブックマークを用いた管腔内超音波イメージング
WO2021199966A1 (ja) * 2020-03-30 2021-10-07 テルモ株式会社 プログラム、情報処理方法、学習モデルの生成方法、学習モデルの再学習方法、および、情報処理システム
CN111904474A (zh) * 2020-08-19 2020-11-10 深圳开立生物医疗科技股份有限公司 血管内超声图像处理方法、装置、系统及可读存储介质
WO2022071181A1 (ja) * 2020-09-29 2022-04-07 テルモ株式会社 情報処理装置、情報処理方法、プログラム及びモデル生成方法
WO2022071121A1 (ja) * 2020-09-29 2022-04-07 テルモ株式会社 情報処理装置、情報処理方法及びプログラム
WO2023100838A1 (ja) * 2021-11-30 2023-06-08 テルモ株式会社 コンピュータプログラム、情報処理装置、情報処理方法及び学習モデル生成方法

Also Published As

Publication number Publication date
JPWO2017130927A1 (ja) 2018-11-22
JP6866310B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2017130927A1 (ja) 画像表示装置およびその制御方法
CN107787201B (zh) 血管内成像系统界面和阴影检测方法
JP6134695B2 (ja) 画質が高められた血管の画像を提供するためのシステム、及びその制御方法
CN107847135B (zh) 血管内成像系统界面和支架检测方法
US20160206267A1 (en) Image processing apparatus, image display system, imaging system, image processing method, and program
JP4835245B2 (ja) 循環器用画像診断装置
JP2017518786A (ja) カテーテルの特定の位置を決定するための装置
EP2934282B1 (en) Locating intravascular images
JP4746068B2 (ja) 画像解析装置及び画像解析方法
US10524652B2 (en) Information processing device, imaging system, information processing method and program
CN112996445A (zh) 用于管腔内超声成像的速度确定以及相关联的设备、系统和方法
Jorge et al. Optical coherence tomography of the pulmonary arteries: A systematic review
US20210085275A1 (en) Systems And Methods Of Combined Imaging
JP6284944B2 (ja) 画像診断装置及びその作動方法及び記憶媒体
US10733753B2 (en) Image display device and its control method, x-ray opaque marker detection method
JP6100911B2 (ja) 画像診断装置及びその作動方法
CN109414296A (zh) 测量细长管腔内设备的移动长度
JP7019758B2 (ja) 画像表示装置およびその作動方法
JP6809905B2 (ja) 画像診断装置、画像診断装置の作動方法及びプログラム
JP2006314781A (ja) 横断面画像の撮影装置
US20240008849A1 (en) Medical system, method for processing medical image, and medical image processing apparatus
US20240013386A1 (en) Medical system, method for processing medical image, and medical image processing apparatus
WO2023100838A1 (ja) コンピュータプログラム、情報処理装置、情報処理方法及び学習モデル生成方法
JP2015228990A (ja) 医療データ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564250

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744157

Country of ref document: EP

Kind code of ref document: A1