WO2017129000A1 - 无人机充电方法及系统 - Google Patents

无人机充电方法及系统 Download PDF

Info

Publication number
WO2017129000A1
WO2017129000A1 PCT/CN2017/071424 CN2017071424W WO2017129000A1 WO 2017129000 A1 WO2017129000 A1 WO 2017129000A1 CN 2017071424 W CN2017071424 W CN 2017071424W WO 2017129000 A1 WO2017129000 A1 WO 2017129000A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
drone
flying
power transmission
power
Prior art date
Application number
PCT/CN2017/071424
Other languages
English (en)
French (fr)
Inventor
郑少华
黎剑辉
张圳
朱一伟
罗海彬
湛浩
Original Assignee
丰唐物联技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰唐物联技术(深圳)有限公司 filed Critical 丰唐物联技术(深圳)有限公司
Publication of WO2017129000A1 publication Critical patent/WO2017129000A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of drone technology, and in particular, to a drone charging method and system.
  • UAVs have low endurance; because UAVs are basically powered by batteries, and for the convenience of flying, UAVs can carry The power is limited, so it is difficult for the drone to work long hours.
  • most of the drones use the method of replacing the battery to enhance the endurance.
  • the high-frequency disassembly easily damages the rack and its electronic components, and the replacement of the battery is highly dependent on people.
  • the drone needs to be fixed or continuously working, and some people need to supervise to ensure that it recovers the charging during the work process, which not only affects the work efficiency, but also works outside the house by disassembling the battery.
  • the way to charge is also very inconvenient, affecting the effective execution of the task.
  • Embodiments of the present invention disclose a method for charging a drone, including the following steps:
  • the flying drone detects that its current power meets the preset charging condition during the flight, and broadcasts the charging rescue information
  • the power transmitting drone receives the charging control command sent by the charging system according to the principle of proximity, and flies to a position separated from the flying drone by a preset distance, and maintains the same flying speed as the flying drone ; [0008] the power transmitting drone acquires a distance and an orientation between a power transmission joint of the power transmitting drone and a charging interface of the flying drone according to a preset inquiry manner, and is based on the acquired location The distance and orientation of the power transmission connector and the charging interface are used to charge the flying drone in the air.
  • the flying drone detects that its current power meets a preset charging condition during flight, and broadcasts charging and rescue information, including:
  • the flying drone detects that its current power is lower than the preset power threshold ⁇ , and broadcasts the charging rescue information; or
  • the power transmitting drone acquires a distance and an orientation between a power transmission joint of the power transmitting drone and a charging interface of the flying drone according to a preset query manner, and is based on Obtaining the distance and orientation of the power transmission connector from the charging interface, and charging the flying drone in the air, including:
  • the power transmitting drone inserts the power transmission connector into a strip charging channel of the flying drone, and the power transmitting drone controls its own flying speed slightly faster or slightly slower than Flying the drone, causing the power transmission joint to move forward or backward in the strip charging channel;
  • the power transmitting drone receives the notification information sent by the flying drone when detecting the position of the power transmission connector in the strip charging channel, and the flying drone Flying at the same speed, causing the power transmission connector to stay at the position in the strip-shaped charging channel and obtaining the distance between the power transmission connector and the charging interface located in the strip-shaped charging channel And orientation;
  • the power transmitting drone adjusts its own flight speed, so that the power transmission connector is inserted into the charging interface, and the flying drone is Perform aerial cable charging.
  • the strip charging channel of the flying drone includes a plurality of detecting points and a charging interface, and the charging interface is disposed at an intermediate position of the plurality of detecting points;
  • the power transmitting drone calculates the power transmission connector and the charging interface Distance and bearing
  • the power transmitting drone acquires the power transmission connector of the power transmitting drone according to a preset query mode. And a distance and an orientation between the charging interface of the flying drone, and performing air charging on the flying drone based on the obtained distance and orientation of the power transmission connector and the charging interface, including:
  • the power transmitting drone detects and acquires the distance and a square of the wireless charging end of the flying drone in the shape of a strip;
  • the power transmitting drone controls its own wireless power transmitting end to be separated from the wireless charging end of the flying drone by a preset charging distance, and the flight is not The man-machine performs wireless charging in the air.
  • the present invention also discloses a drone charging system, including a flying drone and a power transmitting drone; Used for:
  • the flying drone is further used to:
  • the flying drone includes a wired charging module; wherein the wired charging module is configured to: insert the power transmission connector into a strip charging channel of the flying drone, And controlling the flight speed of the power transmitting drone to be slightly faster or slightly slower than the flying drone, so that the power transmission joint moves forward or backward in the strip charging channel;
  • the strip charging channel of the flying drone includes a plurality of detecting points and a charging interface, and the charging interface is disposed at an intermediate position of the plurality of detecting points;
  • the wired charging module is further configured to:
  • the flying drone includes a wireless charging module; wherein, the wireless charging module is configured to: [0037] detecting and acquiring a distance and an orientation of a wireless charging end of the flying drone in a strip shape;
  • a drone charging method and system of the present invention can achieve the following beneficial effects:
  • the flying drone detects that the current power of the aircraft meets the preset charging condition during the flight, and broadcasts the charging and rescue information; the power receiving drone receives the charging control command sent by the charging system according to the nearest principle, and flies to and The flying drone is at a position separated by a preset distance, and maintains the same flying speed as the flying drone; the power transmitting drone acquires the power transmitting drone according to a preset query mode a distance and an orientation between the power transmission connector and a charging interface of the flying drone, and charging the flying drone in the air based on the obtained distance and orientation of the power transmission connector and the charging interface; The beneficial effect of the airborne charging of the drone in the middle avoids the situation that the drone is suspended due to the charging of the drone by disassembling the battery, thereby improving the efficiency of the charging of the drone and improving the efficiency of the drone. The efficiency of the drone's mission.
  • DRAWINGS 1 is a schematic flow chart of an embodiment of a charging method of a drone according to the present invention
  • FIG. 2 is a schematic flow chart of an embodiment of step S30 in the embodiment of FIG. 1 in the charging method of the unmanned aerial vehicle of the present invention
  • FIG. 3 is a schematic flow chart of another embodiment of step S30 in the embodiment of FIG. 1 in the charging method of the unmanned aerial vehicle of the present invention
  • FIG. 4 is a block diagram of an embodiment of a drone charging system of the present invention.
  • FIG. 5 is a block diagram showing an embodiment of a power transmitting drone 200 in the embodiment of FIG. 4 in the drone charging system of the present invention
  • FIG. 6 is a block diagram showing another embodiment of the power transmitting drone 200 in the embodiment of FIG. 4 in the drone charging system of the present invention.
  • the present invention provides a drone charging method for: when a drone is flying in the air, directly charging the in-flight drone, avoiding the drone by disassembling the battery Charge and stop the flight of the drone.
  • the drone charging method of the present invention can be implemented as steps S10-S30 as described below:
  • Step S10 The flying drone detects that its current power meets the preset charging condition during the flight, and broadcasts the charging and rescue information;
  • the flying drone that is performing the task detects its current power state during the flight. If the flying drone detects that the remaining current power of the flight meets the preset charging condition, the charging rescue information is sent in the form of a broadcast, and the corresponding charging system is notified that the flying drone needs to be charged and rescued, and the charging and rescue information is broadcasted. After that, the flying drone performs a uniform flight.
  • the foregoing charging rescue information broadcasted by the flying drone includes, but is not limited to: current location information, current flight speed, and low battery information of the flying drone.
  • the flying drone detecting that the current power of the mobile device meets the preset charging condition includes:
  • Step S20 The power transmitting drone receives the charging control command sent by the charging system according to the principle of proximity, and flies to a position separated from the flying drone by a preset distance, and remains the same as the flying drone. Flight speed
  • the charging system After the charging system receives the charging and rescue information broadcasted by the flying drone, according to the principle of proximity, the corresponding power transmitting drone is searched and dispatched to charge the flying drone. For example, the charging system confirms that a power transmitting drone is charged according to the nearest principle to charge the flying drone, and then sends a charging control command to the power transmitting drone. Since the rescue information broadcasted by the flying drone includes the location information of the moment when the broadcast rescue information is broadcast, the charging system can set the position information of the moment when the rescue information is sent, and the nearest drone is used as the power transmitting drone. Or, the charging system estimates the drone closest to the location of the flying drone based on the location information of the rescue information and the flight speed of the flying drone, and the information dissemination day, and As a power transmission drone.
  • the power transmitting drone receives the charging control command sent by the charging system according to the principle of proximity, responds to the charging control command, and flies to a position where the flying drone is separated by a preset distance, The aircraft flies at the same flight speed, and the power drone and the flying drone maintain a uniform flight. For example, the power transmitting drone meets with the flying drone, and the power transmitting drone approaches the flying drone and follows the same flying speed and maintains a uniform speed with the flying drone.
  • the manifestation of the charging system described above includes, but is not limited to, a charging point around the flying drone.
  • Step S30 the power transmitting drone acquires the distance and orientation between the power transmission connector of the power transmitting drone and the charging interface of the flying drone according to a preset query mode, and is based on Obtaining the distance and orientation of the power transmission connector from the charging interface, and charging the flying drone in the air.
  • the power transmitting drone in order to achieve the purpose of charging the flying flying drone in the air, the power transmitting drone needs to find and confirm the charging interface of the flying drone, and the power transmitting drone itself Transmission
  • the connector corresponds to the charging interface of the flying drone, thereby charging the flying drone in the air.
  • the power transmitting drone performs air charging on the flying drone, which can be implemented by means of wired charging, or can be realized by wireless charging.
  • Step S30 the power transmitting drone acquires a distance and an orientation between a power transmission joint of the power transmitting drone and a charging interface of the flying drone according to a preset inquiry manner, and based on the obtained power transmission joint
  • the distance and orientation of the charging interface, the airborne charging of the flying drone may be implemented as steps S310-S330 as described below:
  • Step S310 the power transmitting drone inserts the power transmission connector into a strip charging guiding slot of the flying drone, and the power transmitting drone controls its own flying speed to be slightly faster or slightly Slower than the flying drone, causing the power transmission joint to move forward or backward in the strip charging channel;
  • the power connector of the power transmitting drone needs to be inserted into the charging interface of the flying drone.
  • the charging interface of the flying drone is disposed in the strip charging channel of the flying drone, and a plurality of detecting points and a charging interface are disposed in the strip charging channel, and the foregoing The spacing of the detection points is constant, and the charging interface is disposed at an intermediate position of the plurality of detection points.
  • the power transmitting drone controls its own flight speed slightly faster or slightly slower than the flying drone, so that the power transmission connector of the power transmitting drone is forward or backward in the strip charging channel of the flying drone Removing, so that the power transmission connector reaches the detection range of the corresponding plurality of detection points in the strip charging channel, to determine that the power transmission connector of the power transmitting drone is in the strip charging channel of the flying drone s position.
  • Step S320 the power transmitting drone receives the notification information sent by the flying drone when detecting the position of the power transmission connector in the strip charging channel, and the flight The drone keeps flying at the same speed, so that the power transmission connector stays at the position in the strip charging channel, and acquires the power connector and the charging interface located in the strip charging channel Distance and orientation;
  • the flying drone when the flying drone detects the position of the power transmission joint of the power transmitting drone in the strip charging channel of the flying drone, sends a corresponding to the power transmitting drone Notification information; the power transmitting drone receives the notification information sent by the flying drone when detecting the position of the power transmission connector in the strip charging channel, due to the strip charging guide
  • the distance between each detection point set in the slot is fixed, and each The position and distance of the detection point and the charging interface are fixed. Therefore, the power transmitting drone can fly at the same speed as the flying drone, so that the power transmission connector of the power transmitting drone stays in the strip of the flying drone.
  • the power transmitting drone is calculated and obtained according to the spacing between the detection points set in the strip charging channel of the flying drone and the position and distance of each detecting point and the charging interface The distance and orientation between the power transmission connector of the power transmitting drone and the charging interface located in the strip charging channel.
  • Step S330 based on the obtained distance and orientation of the power transmission connector and the charging interface, the power transmitting drone adjusts its own flight speed, so that the power transmission connector is inserted into the charging interface, and the flight is The drone is charged in the air.
  • the power transmitting drone acquires the distance and orientation of its own power transmission connector and the charging interface of the flying drone, the power transmitting drone adjusts its own flying speed, so that its power transmission connector is in the flying drone
  • the charging interface is directly opposite the position and inserted into the charging interface of the flying drone to perform aerial cable charging of the flying drone.
  • the power transmission connector of the power transmitting drone in order to ensure that the power transmitting drone smoothly performs the wired charging of the flying drone during the flight, can be set as a hard component. And the power transmission connector is connected to the power transmission module of the power transmission drone through a flexible member. After the power transmission connector is inserted into the charging interface, the flexible connector of the power transmission connector and the power transmission module is exposed through the flexible member, even if the power transmission drone is temporarily different from the speed of the flying drone, the flexible segment can also transmit power due to the elastic deformation of the flexible segment. The connector remains inserted into the charging interface and does not affect the flight of the powered drone and the flying drone for continuous charging.
  • the power transmitting drone adopts a wireless charging method to charge the flying drone, wherein the charging interface of the flying drone is specifically no flight.
  • the wireless charging end of the man-machine the power transmission connector of the power transmitting drone is specifically the power transmitting end of the power transmitting drone, in the embodiment shown in FIG.
  • Step S30 the power transmitting drone is checked according to the preset a method for obtaining a distance and an orientation between a power transmission connector of the power transmitting drone and a charging interface of the flying drone, and based on the obtained distance and orientation of the power transmission connector and the charging interface,
  • the flying drone for air charging can be implemented as steps S340-S350 as described below:
  • step S340 the power transmitting drone detects and acquires the distance and orientation of the wireless charging end of the flying drone in the shape of a strip;
  • Step S350 based on the obtained distance and orientation of the wireless charging end, the power transmitting drone controls its own wireless power transmitting end and the wireless charging end of the flying drone by a preset charging distance.
  • the flying drone is used for wireless charging in the air.
  • the wireless power transmitting end of the power transmitting drone and the wireless charging end of the flying drone are The position accuracy requirement will be slightly lower than the position accuracy requirements of the power transmission connector and the charging interface in the wired mode.
  • the power transmitting drone detects and acquires the distance and the orientation of the wireless charging end of the flying drone, based on the acquired distance and orientation of the wireless charging terminal, for example, the power transmitting drone
  • the wireless transmission end of the control drone is close to the wireless charging end of the flying drone, so that the wireless power transmitting end of the power transmitting drone is separated from the wireless charging end of the flying drone by a preset charging distance, thereby realizing the power transmitting drone to fly.
  • the drone is wirelessly charged in the air.
  • the wireless charging end of the flying drone in order to ensure that the power transmitting drone wirelessly charges the flying drone during the flight, can be set to a strip shape.
  • the wireless charging end of the flying drone is set in the form of a long slot, so that the wireless transmitting end of the power transmitting drone can move back and forth in the long slot-shaped wireless charging end without affecting Wireless charging, so that the wireless charging mode is not affected even if the relative flight speeds of the power transmitting drone and the flying drone are not strictly consistent.
  • the charging method of the unmanned aerial vehicle of the present invention broadcasts the charging and rescue information by detecting the current power of the flying drone during the flight to meet the preset charging condition, and transmitting the charging and rescue system according to the principle of proximity.
  • a charging control command flying to a position separated from the flying drone by a preset distance, and maintaining the same flying speed as the flying drone;
  • the power transmitting drone acquiring the station according to a preset query manner Determining the distance and orientation between the power transmission connector of the power transmitting drone and the charging interface of the flying drone, and based on the obtained distance and orientation of the power transmission connector and the charging interface, performing the flying drone Air charging; It has the beneficial effect of directly charging the unmanned aerial vehicle in flight, avoiding the situation that the drone is suspended due to charging the drone by disassembling the battery, and improving the charging of the drone. Effectiveness also improves the efficiency of the drone's mission.
  • the present invention also provides a drone charging system.
  • the drone charging system of the present invention includes: Machine 100 and power transmission without Man machine 200; wherein
  • the flying drone 100 is configured to: detect that the current power of the user meets the preset charging condition during the flight, and broadcast the charging rescue information;
  • the flying drone 100 that is performing the task detects its current power state during the flight. If the flying drone 100 detects that the remaining current capacity of the mobile phone satisfies the preset charging condition, the charging rescue information is sent in the form of a broadcast, and the corresponding charging system is notified that the flying drone needs to be charged and rescued, and the charging rescue is broadcasted. After the information, the flying drone 100 performs a uniform flight.
  • the foregoing charging rescue information broadcast by the flying drone 100 includes, but is not limited to, current location information, current flight speed, and low battery information of the flying drone 100.
  • the flying drone 100 detects that its current power meets the preset charging conditions, including:
  • the power transmitting drone 200 is used to:
  • the charging system After the charging system receives the charging and rescue information broadcasted by the flying drone 100, according to the principle of proximity, the corresponding power transmitting drone 200 is searched and dispatched to charge the flying drone. For example, the charging system confirms that a certain power transmitting drone 200 is charged according to the principle of proximity, and then sends a charging control command to the power transmitting drone 200. Since the rescue information broadcasted by the flying drone 100 includes the location information of the moment when the broadcast rescue information is broadcast, the charging system can transmit the location information of the moment when the rescue information is sent, and the nearest drone is used as the power transmission. Or the charging system estimates the drone that is closest to the current position of the flying drone according to the position information of the driving information included in the rescue information, the flying speed of the flying drone 100, and the information propagation time. And use it as power transmission Man machine 200.
  • the power transmitting drone 200 receives the charging control command sent by the charging system according to the principle of proximity, responds to the charging control command, and flies to the position where the flying drone 100 is separated by a preset distance, adopts and flies The drone 100 flies at the same flight speed, and the power transmitting drone 200 and the flying drone 100 maintain a uniform flight.
  • the power transmitting drone 200 meets with the flying drone 100, and the power transmitting drone 200 is close to the flying drone 100, and maintains a uniform speed with the flying drone 100 at the same flying speed. go ahead.
  • the manifestation of the charging system described above includes, but is not limited to, a charging point around the flying drone 100.
  • the power transmitting drone 200 in order to achieve the purpose of charging the flying flying drone 100 in the air, the power transmitting drone 200 needs to find and confirm the charging interface of the flying drone, and will send power to the unmanned person.
  • the power transmission connector of the machine 200 corresponds to the charging interface of the flying drone 100, thereby performing aerial charging of the flying drone 100.
  • the power transmitting drone 200 performs air charging on the flying drone 100, which may be implemented by means of wired charging, or may be implemented by wireless charging.
  • the flying drone 200 includes a wired charging module 210; wherein the wired charging module 210 is configured to:
  • the charging interface of the flying drone 100 is disposed in the strip charging channel of the flying drone 100, a plurality of detecting points and a charging interface are disposed in the strip charging channel, and The distance between the plurality of detection points is constant, and the charging interface is disposed at an intermediate position of the plurality of detection points.
  • the power transmitting drone 200 controls its own flight speed slightly faster or slightly slower than the flying drone 100, so that the power transmission joint of the power transmitting drone 200 is in the strip charging channel of the flying drone 100. Moving forward or backward, so that the power transmission connector reaches the detection range of the corresponding plurality of detection points in the strip charging channel, to determine the power transmission connector of the power transmitting drone 200 in the flying drone 100 The position in the strip charging channel.
  • the flying drone 100 detects the position of the power transmission joint of the power transmitting drone 200 in the strip charging channel of the flying drone 100,
  • the machine 200 transmits corresponding notification information;
  • the power transmitting drone 200 receives the notification information sent by the flying drone 100 when the position of the power transmission connector in the strip charging channel is detected. Since the distance between the detection points set in the strip-shaped charging channel is constant, and the position and distance of each detecting point and the charging interface are fixed, the power transmitting drone 200 can be kept the same as the flying drone 100.
  • the power transmitting drone 200 acquires the distance and orientation of its own power transmission joint and the charging interface of the flying drone 100, the power transmitting drone 200 adjusts its own flying speed so that its own power transmission joint is in flight.
  • the charging interface of the drone 100 is in position and inserted into the charging interface of the flying drone 100 to perform aerial cable charging of the flying drone 100.
  • the power transmission connector of the power transmitting drone 200 may be set to A rigid member, and the power transmission connector is connected to the power transmission module of the power transmitting drone 200 through a flexible member. After the power transmission connector is inserted into the charging interface, the flexible connector of the power transmission connector and the power transmission module is exposed through the flexible member, even if the power transmission drone 200 is temporarily different from the speed of the flying drone 100, due to the elastic deformation of the flexible segment, The power transmission connector is kept inserted into the charging interface, and the flight of the power transmitting drone 200 and the flying drone 100 is not affected, and the purpose of continuous charging is achieved.
  • the power transmitting drone 200 uses a wireless charging method to charge the flying drone 100, wherein the charging interface of the flying drone 100 is specific For the wireless charging end of the flying drone 100, the power transmitting connector of the power transmitting drone 200 is specifically the power transmitting end of the power transmitting drone 200, and the power transmitting drone 200 described in FIG. 4 further includes a wireless charging module 220.
  • the wireless charging module 220 is configured to:
  • the wireless power transmitting end of the power transmitting drone 200 and the flying drone 100 are used.
  • the position accuracy requirement of the wireless charging end will be slightly lower than the position accuracy requirement of the power transmission connector and the charging interface in the wired mode.
  • the power transmitting drone 200 detects and acquires the distance and the orientation of the wireless charging end of the flying drone 100, based on the obtained distance and orientation of the wireless charging terminal, for example, power transmission is not provided.
  • the human machine 200 controls its own wireless transmission end to be close to the wireless charging end of the flying drone 100, so that the wireless power transmitting end of the power transmitting drone 200 is separated from the wireless charging end of the flying drone 100 by a preset charging distance, thereby realizing the sending.
  • the electric drone 200 performs aerial wireless charging of the flying drone 100.
  • the wireless charging end of the flying drone 100 may be set to In the shape of a strip, for example, the wireless charging end of the flying drone 100 is set in the form of a long slot, so that the wireless transmitting end of the power transmitting drone 200 can be elongated in the flying drone 100.
  • the back-and-forth movement in the wireless charging terminal does not affect the wireless charging, so that even if the relative flight speeds of the power transmitting drone 200 and the flying drone 100 are not strictly consistent, the wireless charging method is not affected. influences
  • the UAV charging system of the present invention detects that its current power is satisfied during flight by flying a drone Presetting the charging condition ⁇ , broadcasting the charging rescue information; the power transmitting drone receiving charging system transmits the charging control command according to the nearest principle, flying to a position separated from the flying drone by a preset distance, and the flying The drone maintains the same flight speed; the power transmitting drone acquires the distance and orientation between the power transmission connector of the power transmitting drone and the charging interface of the flying drone according to a preset inquiry manner And charging the flying drone in the air based on the obtained distance and orientation of the power transmission connector and the charging interface; having the beneficial effect of directly charging the flying drone in the air, avoiding the disassembly and assembly The way of the battery charges the drone and stops the flight of the drone, which improves the efficiency of the drone charging and improves the efficiency of the drone's mission.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former It is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

一种无人机充电方法及系统,通过飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件时,广播充电救援信息;送电无人机接收充电系统按照就近原则所发送的充电控制指令,飞行至与所述飞行无人机相隔预设距离的位置处,和所述飞行无人机保持相同的飞行速度;所述送电无人机按照预设查询方式,获取所述送电无人机的输电接头与所述飞行无人机的充电接口之间的距离和方位,并基于获取的所述输电接头与充电接口的距离和方位,对所述飞行无人机进行空中充电;具有直接对飞行中的无人机进行空中充电的有益效果,避免了因通过拆装电池的方式对无人机进行充电而中止无人机飞行的情况,提高了无人机充电的时效性,也提高了无人机执行任务的效率。

Description

无人机充电方法及系统
技术领域
[0001] 本发明涉及无人机技术领域, 尤其涉及一种无人机充电方法及系统。
背景技术
[0002] 随着科学技术的不断发展进步, 无人机技术也越来越成熟, 人们对无人机的控 制也越来越稳定; 目前, 无人机在不同的领域例如军用、 民用、 救灾、 监控、 娱乐等领域都有很大的发展空间和广泛的应用前景。
[0003] 但是, 现阶段无人机这项技术的一个重大的瓶颈在于: 无人机的续航能力低; 由于无人机基本都是依靠电池供电, 且为了方便飞行, 无人机所能携带的电量 有限, 因此, 无人机难以长吋间工作。 而目前大部分无人机均是采用更换电池 的方法来增强续航能力, 高频率的拆卸容易损坏机架及其电子元件, 而且更换 电池对人的依赖性较大。 此外, 在隐患高峰期或遇到突发事件吋, 需要无人机 定吋或连续工作, 需要有人监管保证其在工作过程中回收充电, 这样不但影响 工作效率, 而且在外工作吋通过拆装电池的方式进行充电也很不方便, 影响任 务的有效执行。
技术问题
[0004] 鉴于此, 有必要提供一种无人机充电方法及系统, 用以: 当无人机在空中飞行 吋, 直接对飞行中的无人机进行空中充电, 避免因通过拆装电池的方式对无人 机进行充电而中止无人机的飞行。
问题的解决方案
技术解决方案
[0005] 本发明实施例公幵了一种无人机充电方法, 包括以下步骤:
[0006] 飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件吋, 广播充电 救援信息;
[0007] 送电无人机接收充电系统按照就近原则所发送的充电控制指令, 飞行至与所述 飞行无人机相隔预设距离的位置处, 和所述飞行无人机保持相同的飞行速度; [0008] 所述送电无人机按照预设査询方式, 获取所述送电无人机的输电接头与所述飞 行无人机的充电接口之间的距离和方位, 并基于获取的所述输电接头与充电接 口的距离和方位, 对所述飞行无人机进行空中充电。
[0009] 优选地, 所述飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件 吋, 广播充电救援信息, 包括:
[0010] 飞行无人机在飞行过程中, 检测到自身的当前电量低于预设电量阈值吋, 广播 充电救援信息; 或者,
[0011] 基于自身的当前电量, 计算出所述当前电量不足以完成预设飞行任务吋, 广播 充电救援信息。
[0012] 优选地, 所述送电无人机按照预设査询方式, 获取所述送电无人机的输电接头 与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述输电接头 与充电接口的距离和方位, 对所述飞行无人机进行空中充电, 包括:
[0013] 所述送电无人机将所述输电接头插入所述飞行无人机的条形充电导槽中, 所述 送电无人机控制自身的飞行速度略快于或者略慢于所述飞行无人机, 使得所述 输电接头在所述条形充电导槽中向前或者向后移动;
[0014] 所述送电无人机接收到当所述飞行无人机检测出所述输电接头在所述条形充电 导槽中的位置所发出的通知信息后, 与所述飞行无人机保持相同的速度飞行, 使得所述输电接头停留在所述条形充电导槽中的所述位置处, 并获取所述输电 接头与位于所述条形充电导槽中的充电接口之间的距离和方位;
[0015] 基于获取的所述输电接头与充电接口的距离和方位, 所述送电无人机调整自身 的飞行速度, 使得所述输电接头插入所述充电接口中, 对所述飞行无人机进行 空中有线充电。
[0016] 优选地, 所述飞行无人机的条形充电导槽包括多个检测点和一个充电接口, 且 所述充电接口设置在多个所述检测点的中间位置处;
[0017] 当所述送电无人机的输电接头到达所述检测点的检测范围内吋, 基于所述检测 点, 所述送电无人机计算得出所述输电接头与所述充电接口之间的距离和方位
[0018] 优选地, 所述送电无人机按照预设査询方式, 获取所述送电无人机的输电接头 与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述输电接头 与充电接口的距离和方位, 对所述飞行无人机进行空中充电, 包括:
[0019] 所述送电无人机检测并获取所述飞行无人机呈条形状的无线充电端的距离和方 位;
[0020] 基于获取的所述无线充电端的距离和方位, 所述送电无人机控制自身的无线输 电端与所述飞行无人机的无线充电端相隔预设充电距离, 对所述飞行无人机进 行空中无线充电。
[0021] 对应于以上所公幵的一种无人机充电方法, 本发明还公幵了一种无人机充电系 统, 包括飞行无人机和送电无人机; 所述飞行无人机用于:
[0022] 在飞行过程中检测自身的当前电量满足预设充电条件吋, 广播充电救援信息; [0023] 所述送电无人机用于:
[0024] 接收充电系统按照就近原则所发送的充电控制指令, 飞行至与所述飞行无人机 相隔预设距离的位置处, 和所述飞行无人机保持相同的飞行速度;
[0025] 按照预设査询方式, 获取所述送电无人机的输电接头与所述飞行无人机的充电 接口之间的距离和方位, 并基于获取的所述输电接头与充电接口的距离和方位 , 对所述飞行无人机进行空中充电。
[0026] 优选地, 所述飞行无人机还用于:
[0027] 在飞行过程中, 检测到自身的当前电量低于预设电量阈值吋, 广播充电救援信 息; 或者,
[0028] 基于自身的当前电量, 计算出所述当前电量不足以完成预设飞行任务吋, 广播 充电救援信息。
[0029] 优选地, 所述飞行无人机包括有线充电模块; 其中, 所述有线充电模块用于: [0030] 将所述输电接头插入所述飞行无人机的条形充电导槽中, 并控制所述送电无人 机的飞行速度略快于或者略慢于所述飞行无人机, 使得所述输电接头在所述条 形充电导槽中向前或者向后移动;
[0031] 接收到当所述飞行无人机检测出所述输电接头在所述条形充电导槽中的位置所 发出的通知信息后, 与所述飞行无人机保持相同的速度飞行, 使得所述输电接 头停留在所述条形充电导槽中的所述位置处, 并获取所述输电接头与位于所述 条形充电导槽中的充电接口之间的距离和方位;
[0032] 基于获取的所述输电接头与充电接口的距离和方位, 调整所述送电无人机的飞 行速度, 使得所述输电接头插入所述充电接口中, 对所述飞行无人机进行空中 有线充电。
[0033] 优选地, 所述飞行无人机的条形充电导槽包括多个检测点和一个充电接口, 且 所述充电接口设置在多个所述检测点的中间位置处;
[0034] 所述有线充电模块还用于:
[0035] 当所述送电无人机的输电接头到达所述检测点的检测范围内吋, 基于所述检测 点, 计算得出所述输电接头与所述充电接口之间的距离和方位。
[0036] 优选地, 所述飞行无人机包括无线充电模块; 其中, 所述无线充电模块用于: [0037] 检测并获取所述飞行无人机呈条形状的无线充电端的距离和方位;
[0038] 基于获取的所述无线充电端的距离和方位, 控制所述送电无人机的无线输电端 与所述飞行无人机的无线充电端相隔预设充电距离, 对所述飞行无人机进行空 中无线充电。
发明的有益效果
有益效果
[0039] 本发明一种无人机充电方法及系统可以达到如下有益效果:
[0040] 通过飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件吋, 广播 充电救援信息; 送电无人机接收充电系统按照就近原则所发送的充电控制指令 , 飞行至与所述飞行无人机相隔预设距离的位置处, 和所述飞行无人机保持相 同的飞行速度; 所述送电无人机按照预设査询方式, 获取所述送电无人机的输 电接头与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述输 电接头与充电接口的距离和方位, 对所述飞行无人机进行空中充电; 具有直接 对飞行中的无人机进行空中充电的有益效果, 避免了因通过拆装电池的方式对 无人机进行充电而中止无人机飞行的情况, 提高了无人机充电的吋效性, 也提 高了无人机执行任务的效率。
对附图的简要说明
附图说明 [0041] 图 1是本发明无人机充电方法的一种实施方式的流程示意图;
[0042] 图 2是本发明无人机充电方法中, 图 1所述实施例中步骤 S30的一种实施方式的 流程示意图;
[0043] 图 3是本发明无人机充电方法中, 图 1所述实施例中步骤 S30的另一种实施方式 的流程示意图;
[0044] 图 4是本发明无人机充电系统的一种实施例方式的框图;
[0045] 图 5是本发明无人机充电系统中, 图 4所述实施例中送电无人机 200的一种实施 方式的框图;
[0046] 图 6是本发明无人机充电系统中, 图 4所述实施例中送电无人机 200的另一种实 施方式的框图。
[0047] 本发明实施例目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步 说明。
本发明的实施方式
[0048] 以下结合说明书附图及具体实施例进一步说明本发明的技术方案。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
[0049] 本发明提供了一种无人机充电方法, 用以: 当无人机在空中飞行吋, 直接对飞 行中的无人机进行充电, 避免因通过拆装电池的方式对无人机进行充电而中止 无人机的飞行。
[0050] 如图 1所示, 本发明无人机充电方法可以实施为如下描述的步骤 S10-S30:
[0051] 步骤 S10、 飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件吋 , 广播充电救援信息;
[0052] 本发明实施例中, 正在执行任务的飞行无人机在飞行的过程中, 检测自身当前 的电量情况。 若飞行无人机检测出自身剩余的当前电量满足了预设充电条件吋 , 以广播的形式发送充电救援信息, 通知对应的充电系统该飞行无人机需要充 电救援, 并在广播上述充电救援信息后, 该飞行无人机执行匀速飞行。 其中, 飞行无人机广播的上述充电救援信息包括但不限于: 该飞行无人机的当前位置 信息、 当前飞行速度和电量不足信息。 [0053] 在本发明一优选的实施例中, 上述飞行无人机检测自身的当前电量满足预设充 电条件包括:
[0054] 检测到自身的当前电量低于预设电量阈值吋, 满足预设充电条件; 或者, 基于 自身的当前电量和所要执行的预设飞行任务, 计算出当前电量不足以完成预设 飞行任务吋, 满足上述预设充电条件。
[0055] 步骤 S20、 送电无人机接收充电系统按照就近原则所发送的充电控制指令, 飞 行至与所述飞行无人机相隔预设距离的位置处, 和所述飞行无人机保持相同的 飞行速度;
[0056] 当充电系统接收到飞行无人机广播的充电救援信息后, 按照就近原则, 査找并 派出相应的送电无人机对该飞行无人机进行充电。 例如, 该充电系统根据就近 原则确认派出某送电无人机对该飞行无人机进行充电, 则发送充电控制指令至 该送电无人机。 由于飞行无人机广播的救援信息中包含了其广播救援信息那一 刻的位置信息, 因此, 充电系统可以将距离发出救援信息那一刻的位置信息, 相距最近的无人机作为送电无人机; 或者, 充电系统根据救援信息中包含的当 吋位置信息和飞行无人机的飞行速度, 以及信息传播吋间, 预估出距离飞行无 人机现在所在位置最近的无人机, 并将其作为送电无人机。
[0057] 该送电无人机接收到充电系统按照就近原则所发送的充电控制指令吋, 响应该 充电控制指令, 飞行至于该飞行无人机相隔预设距离的位置处, 采用与飞行无 人机相同的飞行速度进行飞行, 并且送电无人机与该飞行无人机均保持匀速飞 行。 例如, 该送电无人机与飞行无人机进行会合, 且该送电无人机靠近该飞行 无人机, 并与该飞行无人机按照相同的飞行速度并保持匀速前进。
[0058] 本发明实施例中, 以上所描述的充电系统的表现形式包括但不限于: 飞行无人 机周边的充电点。
[0059] 步骤 S30、 所述送电无人机按照预设査询方式, 获取所述送电无人机的输电接 头与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述输电接 头与充电接口的距离和方位, 对所述飞行无人机进行空中充电。
[0060] 本发明实施例中, 为了达到对正在飞行的飞行无人机进行空中充电的目的, 送 电无人机需要査找并确认飞行无人机的充电接口, 并将送电无人机自身的输电 接头与飞行无人机的充电接口对应, 从而对飞行无人机进行空中充电。
[0061] 本发明实施例中, 送电无人机对飞行无人机进行空中充电, 可以通过有线充电 的方式实现, 也可以通过无线充电的方式实现。
[0062] 如图 2所示, 本发明无人机充电方法中, 若送电无人机采用有线充电的方式对 飞行无人机进行充电, 则图 1所述实施例中, "步骤 S30、 所述送电无人机按照预 设査询方式, 获取所述送电无人机的输电接头与所述飞行无人机的充电接口之 间的距离和方位, 并基于获取的所述输电接头与充电接口的距离和方位, 对所 述飞行无人机进行空中充电"可以实施为如下描述的步骤 S310-S330:
[0063] 步骤 S310、 所述送电无人机将所述输电接头插入所述飞行无人机的条形充电导 槽中, 所述送电无人机控制自身的飞行速度略快于或者略慢于所述飞行无人机 , 使得所述输电接头在所述条形充电导槽中向前或者向后移动;
[0064] 在送电无人机采用有线方式对飞行无人机进行充电吋, 需要将送电无人机的输 电接头插入飞行无人机的充电接口中。 本发明实施例中, 由于飞行无人机的充 电接口设置在该飞行无人机的条形充电导槽, 且该条形充电导槽中设置了多个 检测点和一个充电接口, 且上述多个检测点的间距一定, 所述充电接口设置在 多个所述检测点的中间位置处。 送电无人机控制自身的飞行速度略快于或者略 慢于该飞行无人机, 使得该送电无人机的输电接头在上述飞行无人机的条形充 电导槽中向前或者向后移动, 从而使得该输电接头达到该条形充电导槽中对应 设置的多个检测点的检测范围内, 以确定送电无人机的输电接头在飞行无人机 的条形充电导槽中的位置。
[0065] 步骤 S320、 所述送电无人机接收到当所述飞行无人机检测出所述输电接头在所 述条形充电导槽中的位置所发出的通知信息后, 与所述飞行无人机保持相同的 速度飞行, 使得所述输电接头停留在所述条形充电导槽中的所述位置处, 并获 取所述输电接头与位于所述条形充电导槽中的充电接口之间的距离和方位;
[0066] 当所述飞行无人机检测到所述送电无人机的所述输电接头在飞行无人机的所述 条形充电导槽中的位置后, 向送电无人机发送对应的通知信息; 所述送电无人 机接收到当所述飞行无人机检测出所述输电接头在所述条形充电导槽中的位置 所发出的通知信息后, 由于该条形充电导槽中设置的各检测点间距一定, 且各 检测点与充电接口的位置和距离一定, 因此, 送电无人机此吋可以与飞行无人 机保持相同的速度飞行, 使得该送电无人机的输电接头停留在飞行无人机的条 形充电导槽中的上述位置处; 送电无人机根据飞行无人机条形充电导槽中设置 的各检测点之间的间距和各检测点与充电接口的位置与距离, 计算并获取该送 电无人机的输电接头与位于该条形充电导槽中的充电接口之间的距离和方位。
[0067] 步骤 S330、 基于获取的所述输电接头与充电接口的距离和方位, 所述送电无人 机调整自身的飞行速度, 使得所述输电接头插入所述充电接口中, 对所述飞行 无人机进行空中有线充电。
[0068] 当送电无人机获取到自身的输电接头与飞行无人机的充电接口的距离和方位后 , 送电无人机调整自身的飞行速度, 使得自身的输电接头处于飞行无人机的充 电接口正对位置, 并插入飞行无人机的充电接口中, 对该飞行无人机进行空中 有线充电。
[0069] 在本发明一优选的实施例中, 为了保证飞行过程中, 送电无人机对飞行无人机 有线充电的顺利进行, 可以将送电无人机的输电接头设置为硬性件, 且该输电 接头通过柔性件与该送电无人机的输电模块连接。 在输电接头插入充电接口吋 , 输电接头通过柔性件与输电模块连接的柔性段外露, 即使送电无人机短暂性 与飞行无人机的速度不同, 由于柔性段的弹性变形, 亦能使输电接头保持插入 充电接口中, 并且不影响送电无人机和飞行无人机的飞行, 达到持续充电的目 的。
[0070] 如图 3所示, 本发明无人机充电方法中, 若送电无人机采用无线充电的方式对 飞行无人机进行充电, 其中, 飞行无人机的充电接口具体为飞行无人机的无线 充电端, 送电无人机的输电接头具体为送电无人机的输电端, 则图 1所述实施例 中, "步骤 S30、 所述送电无人机按照预设査询方式, 获取所述送电无人机的输 电接头与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述输 电接头与充电接口的距离和方位, 对所述飞行无人机进行空中充电"可以实施为 如下描述的步骤 S340-S350:
[0071] 步骤 S340、 所述送电无人机检测并获取所述飞行无人机呈条形状的无线充电端 的距离和方位; [0072] 步骤 S350、 基于获取的所述无线充电端的距离和方位, 所述送电无人机控制自 身的无线输电端与所述飞行无人机的无线充电端相隔预设充电距离, 对所述飞 行无人机进行空中无线充电。
[0073] 本发明实施例中, 由于送电无人机采用无线充电的方式对飞行无人机进行无线 充电, 因此, 对送电无人机的无线输电端与飞行无人机的无线充电端的位置精 度要求, 将稍低于有线方式下输电接头与充电接口的位置精度要求。
[0074] 本发明实施例中, 当送电无人机检测并获取到飞行无人机的无线充电端的距离 和方位后, 基于获取的上述无线充电端的距离和方位, 例如, 送电无人机控制 自身的无线输电端靠近飞行无人机的无线充电端, 使得送电无人机的无线输电 端与飞行无人机的无线充电端相隔预设充电距离, 从而实现送电无人机对飞行 无人机进行空中无线充电。
[0075] 在本发明一优选的实施例中, 为了保证飞行过程中, 送电无人机对飞行无人机 无线充电的顺利进行, 可以将飞行无人机的无线充电端设置为呈条形状, 例如 将飞行无人机的无线充电端设置为长条槽的形式, 如此一来, 送电无人机的无 线输电端可以在呈长条槽状的无线充电端中来回移动也不会影响无线充电, 从 而即使在送电无人机与飞行无人机两者的相对飞行速度没有保持严格一致的情 况下, 该无线充电方式也不会受到影响。
[0076] 本发明无人机充电方法通过飞行无人机在飞行过程中检测自身的当前电量满足 预设充电条件吋, 广播充电救援信息; 送电无人机接收充电系统按照就近原则 所发送的充电控制指令, 飞行至与所述飞行无人机相隔预设距离的位置处, 和 所述飞行无人机保持相同的飞行速度; 所述送电无人机按照预设査询方式, 获 取所述送电无人机的输电接头与所述飞行无人机的充电接口之间的距离和方位 , 并基于获取的所述输电接头与充电接口的距离和方位, 对所述飞行无人机进 行空中充电; 具有直接对飞行中的无人机进行空中充电的有益效果, 避免了因 通过拆装电池的方式对无人机进行充电而中止无人机飞行的情况, 提高了无人 机充电的吋效性, 也提高了无人机执行任务的效率。
[0077] 对应于以上实施例所提供的一种无人机充电方法, 本发明还提供了一种无人机 充电系统, 如图 4所示, 本发明无人机充电系统包括: 飞行无人机 100和送电无 人机 200; 其中,
[0078] 所述飞行无人机 100用于: 在飞行过程中检测自身的当前电量满足预设充电条 件吋, 广播充电救援信息;
[0079] 本发明实施例中, 正在执行任务的飞行无人机 100在飞行的过程中, 检测自身 当前的电量情况。 若飞行无人机 100检测出自身剩余的当前电量满足了预设充电 条件吋, 以广播的形式发送充电救援信息, 通知对应的充电系统该飞行无人机 需要充电救援, 并在广播上述充电救援信息后, 该飞行无人机 100执行匀速飞行 。 其中, 飞行无人机 100广播的上述充电救援信息包括但不限于: 该飞行无人机 100的当前位置信息、 当前飞行速度和电量不足信息。
[0080] 在本发明一优选的实施例中, 上述飞行无人机 100检测自身的当前电量满足预 设充电条件包括:
[0081] 检测到自身的当前电量低于预设电量阈值吋, 满足预设充电条件; 或者, 基于 自身的当前电量和所要执行的预设飞行任务, 计算出当前电量不足以完成预设 飞行任务吋, 满足上述预设充电条件。
[0082] 所述送电无人机 200用于:
[0083] 接收充电系统按照就近原则所发送的充电控制指令, 飞行至与所述飞行无人机 100相隔预设距离的位置处, 和所述飞行无人机 100保持相同的飞行速度;
[0084] 按照预设査询方式, 获取所述送电无人机 200的输电接头与所述飞行无人机 100 的充电接口之间的距离和方位, 并基于获取的所述输电接头与充电接口的距离 和方位, 对所述飞行无人机 100进行空中充电。
[0085] 当充电系统接收到飞行无人机 100广播的充电救援信息后, 按照就近原则, 査 找并派出相应的送电无人机 200对该飞行无人机进行充电。 例如, 该充电系统根 据就近原则确认派出某送电无人机 200对该飞行无人机 100进行充电, 则发送充 电控制指令至该送电无人机 200。 由于飞行无人机 100广播的救援信息中包含了 其广播救援信息那一刻的位置信息, 因此, 充电系统可以将距离发出救援信息 那一刻的位置信息, 相距最近的无人机作为送电无人机 200; 或者, 充电系统根 据救援信息中包含的当吋位置信息和飞行无人机 100的飞行速度, 以及信息传播 吋间, 预估出距离飞行无人机现在所在位置最近的无人机, 并将其作为送电无 人机 200。
[0086] 该送电无人机 200接收到充电系统按照就近原则所发送的充电控制指令吋, 响 应该充电控制指令, 飞行至于该飞行无人机 100相隔预设距离的位置处, 采用与 飞行无人机 100相同的飞行速度进行飞行, 并且送电无人机 200与该飞行无人机 1 00均保持匀速飞行。 例如, 该送电无人机 200与飞行无人机 100进行会合, 且该 送电无人机 200靠近该飞行无人机 100, 并与该飞行无人机 100按照相同的飞行速 度并保持匀速前进。
[0087] 本发明实施例中, 以上所描述的充电系统的表现形式包括但不限于: 飞行无人 机 100周边的充电点。
[0088] 本发明实施例中, 为了达到对正在飞行的飞行无人机 100进行空中充电的目的 , 送电无人机 200需要査找并确认飞行无人机的充电接口, 并将送电无人机 200 自身的输电接头与飞行无人机 100的充电接口对应, 从而对飞行无人机 100进行 空中充电。
[0089] 本发明实施例中, 送电无人机 200对飞行无人机 100进行空中充电, 可以通过有 线充电的方式实现, 也可以通过无线充电的方式实现。
[0090] 请参照图 5, 本发明无人机充电系统中, 若送电无人机 200采用有线充电的方式 对飞行无人机进行有线充电, 如图 5所示, 所述飞行无人机 200包括有线充电模 块 210; 其中, 所述有线充电模块 210用于:
[0091] 将所述输电接头插入所述飞行无人机 100的条形充电导槽中, 并控制所述送电 无人机 200的飞行速度略快于或者略慢于所述飞行无人机 100, 使得所述输电接 头在所述条形充电导槽中向前或者向后移动;
[0092] 当检测到所述输电接头在所述条形充电导槽中的位置后, 与所述飞行无人机 10
0保持匀速飞行, 使得所述输电接头停留在所述条形充电导槽中的所述位置处, 并获取所述输电接头与位于所述条形充电导槽中的充电接口之间的距离和方位
[0093] 基于获取的所述输电接头与充电接口的距离和方位, 调整所述送电无人机 200 的飞行速度, 使得所述输电接头插入所述充电接口中, 对所述飞行无人机 100进 行空中有线充电。 [0094] 在送电无人机 200采用有线方式对飞行无人机 100进行充电吋, 需要将送电无人 机 200的输电接头插入飞行无人机 100的充电接口中。 本发明实施例中, 由于飞 行无人机 100的充电接口设置在该飞行无人机 100的条形充电导槽, 且该条形充 电导槽中设置了多个检测点和一个充电接口, 且上述多个检测点的间距一定, 所述充电接口设置在多个所述检测点的中间位置处。 送电无人机 200控制自身的 飞行速度略快于或者略慢于该飞行无人机 100, 使得该送电无人机 200的输电接 头在上述飞行无人机 100的条形充电导槽中向前或者向后移动, 从而使得该输电 接头达到该条形充电导槽中对应设置的多个检测点的检测范围内, 以确定送电 无人机 200的输电接头在飞行无人机 100的条形充电导槽中的位置。
[0095] 当所述飞行无人机 100检测到所述送电无人机 200的所述输电接头在飞行无人机 100的所述条形充电导槽中的位置后, 向送电无人机 200发送对应的通知信息; 所述送电无人机 200接收到当所述飞行无人机 100检测出所述输电接头在所述条 形充电导槽中的位置所发出的通知信息后, 由于该条形充电导槽中设置的各检 测点间距一定, 且各检测点与充电接口的位置和距离一定, 因此, 送电无人机 2 00此吋可以与飞行无人机 100保持相同的速度飞行, 使得该送电无人机 200的输 电接头停留在飞行无人机 100的条形充电导槽中的上述位置处; 送电无人机 200 根据飞行无人机 100条形充电导槽中设置的各检测点之间的间距和各检测点与充 电接口的位置与距离, 计算并获取该送电无人机 200的输电接头与位于该条形充 电导槽中的充电接口之间的距离和方位。
[0096] 当送电无人机 200获取到自身的输电接头与飞行无人机 100的充电接口的距离和 方位后, 送电无人机 200调整自身的飞行速度, 使得自身的输电接头处于飞行无 人机 100的充电接口正对位置, 并插入飞行无人机 100的充电接口中, 对该飞行 无人机 100进行空中有线充电。
[0097] 在本发明一优选的实施例中, 为了保证飞行过程中, 送电无人机 200对飞行无 人机 100有线充电的顺利进行, 可以将送电无人机 200的输电接头设置为硬性件 , 且该输电接头通过柔性件与该送电无人机 200的输电模块连接。 在输电接头插 入充电接口吋, 输电接头通过柔性件与输电模块连接的柔性段外露, 即使送电 无人机 200短暂性与飞行无人机 100的速度不同, 由于柔性段的弹性变形, 亦能 使输电接头保持插入充电接口中, 并且不影响送电无人机 200和飞行无人机 100 的飞行, 达到持续充电的目的。
[0098] 如图 6所示, 本发明无人机充电系统中, 若送电无人机 200采用无线充电的方式 对飞行无人机 100进行充电, 其中, 飞行无人机 100的充电接口具体为飞行无人 机 100的无线充电端, 送电无人机 200的输电接头具体为送电无人机 200的输电端 , 则图 4所述的送电无人机 200还包括无线充电模块 220; 其中, 所述无线充电模 块 220用于:
[0099] 检测并获取所述飞行无人机 100呈条形状的充电端的距离和方位;
[0100] 基于获取的所述充电端的距离和方位, 控制所述送电无人机 200的无线输电端 与所述飞行无人机 100的无线充电端相隔预设充电距离, 对所述飞行无人机 100 进行空中无线充电。
[0101] 本发明实施例中, 由于送电无人机 200采用无线充电的方式对飞行无人机 100进 行无线充电, 因此, 对送电无人机 200的无线输电端与飞行无人机 100的无线充 电端的位置精度要求, 将稍低于有线方式下输电接头与充电接口的位置精度要 求。
[0102] 本发明实施例中, 当送电无人机 200检测并获取到飞行无人机 100的无线充电端 的距离和方位后, 基于获取的上述无线充电端的距离和方位, 例如, 送电无人 机 200控制自身的无线输电端靠近飞行无人机 100的无线充电端, 使得送电无人 机 200的无线输电端与飞行无人机 100的无线充电端相隔预设充电距离, 从而实 现送电无人机 200对飞行无人机 100进行空中无线充电。
[0103] 在本发明一优选的实施例中, 为了保证飞行过程中, 送电无人机 200对飞行无 人机 100无线充电的顺利进行, 可以将飞行无人机 100的无线充电端设置为呈条 形状, 例如将飞行无人机 100的无线充电端设置为长条槽的形式, 如此一来, 送 电无人机 200的无线输电端可以在飞行无人机 100呈长条槽状的无线充电端中来 回移动也不会影响无线充电, 从而即使在送电无人机 200与飞行无人机 100两者 的相对飞行速度没有保持严格一致的情况下, 该无线充电方式也不会受到影响
[0104] 本发明无人机充电系统通过飞行无人机在飞行过程中检测自身的当前电量满足 预设充电条件吋, 广播充电救援信息; 送电无人机接收充电系统按照就近原则 所发送的充电控制指令, 飞行至与所述飞行无人机相隔预设距离的位置处, 和 所述飞行无人机保持相同的飞行速度; 所述送电无人机按照预设査询方式, 获 取所述送电无人机的输电接头与所述飞行无人机的充电接口之间的距离和方位 , 并基于获取的所述输电接头与充电接口的距离和方位, 对所述飞行无人机进 行空中充电; 具有直接对飞行中的无人机进行空中充电的有益效果, 避免了因 通过拆装电池的方式对无人机进行充电而中止无人机飞行的情况, 提高了无人 机充电的吋效性, 也提高了无人机执行任务的效率。
[0105] 需要说明的是, 在本文中, 术语"包括"、 "包含 "或者其任何其他变体意在涵盖 非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者装置不仅 包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过 程、 方法、 物品或者装置所固有的要素。 在没有更多限制的情况下, 由语句 "包 括一个 ...... "限定的要素, 并不排除在包括该要素的过程、 方法、 物品或者装置 中还存在另外的相同要素。
[0106] 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
[0107] 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到上述实施例 方法可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计 算机软件产品存储在一个存储介质 (如 ROM/RAM、 磁碟、 光盘) 中, 包括若干 指令用以使得一台终端设备 (可以是手机, 计算机, 服务器, 或者网络设备等 ) 执行本发明各个实施例所述的方法。
以上所述仅为本发明的优选实施例, 并非因此限制其专利范围, 凡是利用本发 明说明书及附图内容所作的等效结构或等效流程变换, 直接或间接运用在其他 相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种无人机充电方法, 其特征在于, 包括以下步骤:
飞行无人机在飞行过程中检测自身的当前电量满足预设充电条件吋, 广播充电救援信息;
送电无人机接收充电系统按照就近原则所发送的充电控制指令, 飞行 至与所述飞行无人机相隔预设距离的位置处, 和所述飞行无人机保持 相同的飞行速度;
所述送电无人机按照预设査询方式, 获取所述送电无人机的输电接头 与所述飞行无人机的充电接口之间的距离和方位, 并基于获取的所述 输电接头与充电接口的距离和方位, 对所述飞行无人机进行空中充电
[权利要求 2] 如权利要求 1所述的方法, 其特征在于, 所述飞行无人机在飞行过程 中检测自身的当前电量满足预设充电条件吋, 广播充电救援信息, 包 括:
飞行无人机在飞行过程中, 检测到自身的当前电量低于预设电量阈值 吋, 广播充电救援信息; 或者,
基于自身的当前电量, 计算出所述当前电量不足以完成预设飞行任务 吋, 广播充电救援信息。
[权利要求 3] 如权利要求 1或 2所述的方法, 其特征在于, 所述送电无人机按照预设 査询方式, 获取所述送电无人机的输电接头与所述飞行无人机的充电 接口之间的距离和方位, 并基于获取的所述输电接头与充电接口的距 离和方位, 对所述飞行无人机进行空中充电, 包括:
所述送电无人机将所述输电接头插入所述飞行无人机的条形充电导槽 中, 所述送电无人机控制自身的飞行速度略快于或者略慢于所述飞行 无人机, 使得所述输电接头在所述条形充电导槽中向前或者向后移动 所述送电无人机接收到当所述飞行无人机检测出所述输电接头在所述 条形充电导槽中的位置所发出的通知信息后, 与所述飞行无人机保持 相同的速度飞行, 使得所述输电接头停留在所述条形充电导槽中的所 述位置处, 并获取所述输电接头与位于所述条形充电导槽中的充电接 口之间的距离和方位;
基于获取的所述输电接头与充电接口的距离和方位, 所述送电无人机 调整自身的飞行速度, 使得所述输电接头插入所述充电接口中, 对所 述飞行无人机进行空中有线充电。
[权利要求 4] 如权利要求 3所述的方法, 其特征在于, 所述飞行无人机的条形充电 导槽包括多个检测点和一个充电接口, 且所述充电接口设置在多个所 述检测点的中间位置处;
当所述送电无人机的输电接头到达所述检测点的检测范围内吋, 基于 所述检测点, 所述送电无人机计算得出所述输电接头与所述充电接口 之间的距离和方位。
[权利要求 5] 如权利要求 1或 2所述的方法, 其特征在于, 所述送电无人机按照预设 査询方式, 获取所述送电无人机的输电接头与所述飞行无人机的充电 接口之间的距离和方位, 并基于获取的所述输电接头与充电接口的距 离和方位, 对所述飞行无人机进行空中充电, 包括:
所述送电无人机检测并获取所述飞行无人机呈条形状的无线充电端的 距离和方位;
基于获取的所述无线充电端的距离和方位, 所述送电无人机控制自身 的无线输电端与所述飞行无人机的无线充电端相隔预设充电距离, 对 所述飞行无人机进行空中无线充电。
[权利要求 6] —种无人机充电系统, 包括飞行无人机和送电无人机; 其特征在于, 所述飞行无人机用于:
在飞行过程中检测自身的当前电量满足预设充电条件吋, 广播充电救 援信息;
所述送电无人机用于:
接收充电系统按照就近原则所发送的充电控制指令, 飞行至与所述飞 行无人机相隔预设距离的位置处, 和所述飞行无人机保持相同的飞行 速度;
按照预设査询方式, 获取所述送电无人机的输电接头与所述飞行无人 机的充电接口之间的距离和方位, 并基于获取的所述输电接头与充电 接口的距离和方位, 对所述飞行无人机进行空中充电。
[权利要求 7] 如权利要求 6所述的系统, 其特征在于, 所述飞行无人机还用于: 在飞行过程中, 检测到自身的当前电量低于预设电量阈值吋, 广播充 电救援信息; 或者,
基于自身的当前电量, 计算出所述当前电量不足以完成预设飞行任务 吋, 广播充电救援信息。
[权利要求 8] 如权利要求 6或 7所述的系统, 其特征在于, 所述飞行无人机包括有线 充电模块; 其中, 所述有线充电模块用于:
将所述输电接头插入所述飞行无人机的条形充电导槽中, 并控制所述 送电无人机的飞行速度略快于或者略慢于所述飞行无人机, 使得所述 输电接头在所述条形充电导槽中向前或者向后移动;
接收到当所述飞行无人机检测出所述输电接头在所述条形充电导槽中 的位置所发出的通知信息后, 与所述飞行无人机保持相同的速度飞行 , 使得所述输电接头停留在所述条形充电导槽中的所述位置处, 并获 取所述输电接头与位于所述条形充电导槽中的充电接口之间的距离和 方位;
基于获取的所述输电接头与充电接口的距离和方位, 调整所述送电无 人机的飞行速度, 使得所述输电接头插入所述充电接口中, 对所述飞 行无人机进行空中有线充电。
[权利要求 9] 如权利要求 8所述的系统, 其特征在于, 所述飞行无人机的条形充电 导槽包括多个检测点和一个充电接口, 且所述充电接口设置在多个所 述检测点的中间位置处;
所述有线充电模块还用于:
当所述送电无人机的输电接头到达所述检测点的检测范围内吋, 基于 所述检测点, 计算得出所述输电接头与所述充电接口之间的距离和方 位。
[权利要求 10] 如权利要求 6或 7所述的系统, 其特征在于, 所述飞行无人机包括无线 充电模块; 其中, 所述无线充电模块用于:
检测并获取所述飞行无人机呈条形状的充电端的距离和方位; 基于获取的所述充电端的距离和方位, 控制所述送电无人机的无线输 电端与所述飞行无人机的无线充电端相隔预设充电距离, 对所述飞行 无人机进行空中无线充电。
PCT/CN2017/071424 2016-01-26 2017-01-17 无人机充电方法及系统 WO2017129000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053065.1 2016-01-26
CN201610053065.1A CN106998084A (zh) 2016-01-26 2016-01-26 无人机充电方法及系统

Publications (1)

Publication Number Publication Date
WO2017129000A1 true WO2017129000A1 (zh) 2017-08-03

Family

ID=59397327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071424 WO2017129000A1 (zh) 2016-01-26 2017-01-17 无人机充电方法及系统

Country Status (2)

Country Link
CN (1) CN106998084A (zh)
WO (1) WO2017129000A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544541A (zh) * 2017-09-18 2018-01-05 南方科技大学 一种无人机控制方法及系统
CN107656542A (zh) * 2017-09-12 2018-02-02 国家电网公司 无人机巡检系统
WO2020028118A1 (en) * 2018-08-02 2020-02-06 Walmart Apollo, Llc Systems and methods for charging an unmanned aerial vehicle with a host vehicle
CN111845430A (zh) * 2019-04-22 2020-10-30 上海汽车集团股份有限公司 一种无人机电池的更换方法与系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108032742B (zh) * 2017-11-15 2020-02-11 上海交通大学 无人机高空非接触式能量补给系统和方法
CN108334112A (zh) * 2018-04-08 2018-07-27 李良杰 无人机协作系统
CN108767606B (zh) * 2018-05-03 2020-03-06 西安易朴通讯技术有限公司 转接器、充电方法及计算机可读存储介质
CN110962669B (zh) * 2018-09-29 2021-09-03 比亚迪股份有限公司 无人机救援方法、装置、介质、云端服务器及救援系统
JP6713716B1 (ja) * 2019-01-11 2020-06-24 三菱ロジスネクスト株式会社 無人給電車および給電システム
JP6725195B1 (ja) * 2019-01-17 2020-07-15 三菱ロジスネクスト株式会社 無人飛行体用給電システム
CN112053479A (zh) * 2019-11-26 2020-12-08 高艳云 基于目标状态数据分析的多功能电控平台及方法
CN111422079A (zh) * 2020-03-12 2020-07-17 重庆科技学院 一种无人机空中续航系统及方法
CN111942188B (zh) * 2020-08-11 2022-04-12 北京京东乾石科技有限公司 一种无人机空中充电系统、充电方法、装置、设备和介质
CN114158022A (zh) * 2021-12-07 2022-03-08 阿维塔科技(重庆)有限公司 一种馈电救援方法、装置、系统及设备
CN114715390A (zh) * 2022-06-07 2022-07-08 西华大学 辅助无人机、应急救援系统和应急救援方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203005745U (zh) * 2012-11-22 2013-06-19 神翼航空器科技(天津)有限公司 具有辅助续航系统的遥控飞行器及其控制系统
CN104578251A (zh) * 2014-12-01 2015-04-29 嘉兴市德宝威微电子有限公司 机器人充电方法和系统
CN104828252A (zh) * 2015-06-02 2015-08-12 冯圣冰 一种对电动无人机实施空中续航的方法
CN105068551A (zh) * 2015-08-31 2015-11-18 深圳市飞研智能科技有限公司 一种提升续航能力的双无人机控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000029B1 (fr) * 2012-12-21 2015-03-06 Eads Europ Aeronautic Defence Dispositifs de ravitaillement en vol pour systeme de stockage electrique et aeronefs equipes d'un tel dispositif
CN104597911A (zh) * 2014-11-28 2015-05-06 南京航空航天大学 空中加油受油机自适应最优对接轨迹跟踪飞行控制方法
CN104816834B (zh) * 2015-05-11 2017-01-25 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置和利用该装置降落定位的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203005745U (zh) * 2012-11-22 2013-06-19 神翼航空器科技(天津)有限公司 具有辅助续航系统的遥控飞行器及其控制系统
CN104578251A (zh) * 2014-12-01 2015-04-29 嘉兴市德宝威微电子有限公司 机器人充电方法和系统
CN104828252A (zh) * 2015-06-02 2015-08-12 冯圣冰 一种对电动无人机实施空中续航的方法
CN105068551A (zh) * 2015-08-31 2015-11-18 深圳市飞研智能科技有限公司 一种提升续航能力的双无人机控制系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656542A (zh) * 2017-09-12 2018-02-02 国家电网公司 无人机巡检系统
CN107544541A (zh) * 2017-09-18 2018-01-05 南方科技大学 一种无人机控制方法及系统
WO2020028118A1 (en) * 2018-08-02 2020-02-06 Walmart Apollo, Llc Systems and methods for charging an unmanned aerial vehicle with a host vehicle
CN111845430A (zh) * 2019-04-22 2020-10-30 上海汽车集团股份有限公司 一种无人机电池的更换方法与系统
CN111845430B (zh) * 2019-04-22 2021-11-16 上海汽车集团股份有限公司 一种无人机电池的更换方法与系统

Also Published As

Publication number Publication date
CN106998084A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2017129000A1 (zh) 无人机充电方法及系统
WO2018090493A1 (zh) 无人机
CN106814748B (zh) 无人机群智能调度监测方法
Zhou et al. Multi-UAV-aided networks: Aerial-ground cooperative vehicular networking architecture
KR101638500B1 (ko) 드론을 이용한 감시 시스템 및 방법
WO2019119829A1 (zh) 一种无人机控制方法、装置、遥控设备和无人机系统
US11657086B2 (en) Acoustic monitoring system
RU2014115995A (ru) Системы и способы дистанционной передачи данных
US10510261B2 (en) Application and method for controlling flight of uninhabited airborne vehicle
CN104471827A (zh) 自优化电力传输
US20180146312A1 (en) Voice transfer system
WO2013155037A8 (en) Method, machine -type -communications (mtc) device and communication system for triggering mtc devices to attach to a wireless communications network
CN106209213A (zh) 一种基于无人机的野外指挥系统
WO2019080053A1 (zh) 一种控制方法、设备、无人机、充电基站及系统
CN110737212A (zh) 无人机控制系统和方法
CN104540091A (zh) 基于蓝牙设备的自动配对系统及其自动配对方法
JP2016541205A5 (zh)
WO2019127478A1 (zh) 无人机的控制方法、飞行控制器及无人机
CN205931243U (zh) 一种警用无人机
CN110134133A (zh) 一种多旋翼自动控制无人机系统
CN112770376B (zh) 一种基于5G与Wi-Fi 6的通信方法及通信设备
CN106840107B (zh) 无人机群智能调度监测系统
CN112804670A (zh) 一种基于5G与Wi-Fi 6的通信方法及通信设备
Guo et al. Drone formation for efficient swarm energy consumption
CN107636551A (zh) 一种飞行控制方法、装置及智能终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743615

Country of ref document: EP

Kind code of ref document: A1