WO2017127579A1 - Connector system for releasably connecting fluid conduits - Google Patents
Connector system for releasably connecting fluid conduits Download PDFInfo
- Publication number
- WO2017127579A1 WO2017127579A1 PCT/US2017/014189 US2017014189W WO2017127579A1 WO 2017127579 A1 WO2017127579 A1 WO 2017127579A1 US 2017014189 W US2017014189 W US 2017014189W WO 2017127579 A1 WO2017127579 A1 WO 2017127579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- connector system
- valve
- conduit
- passageway
- catch
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 claims abstract description 57
- 230000008878 coupling Effects 0.000 claims description 39
- 238000010168 coupling process Methods 0.000 claims description 39
- 238000005859 coupling reaction Methods 0.000 claims description 39
- 230000033001 locomotion Effects 0.000 claims description 28
- 230000014759 maintenance of location Effects 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000008030 elimination Effects 0.000 description 8
- 238000003379 elimination reaction Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920006169 Perfluoroelastomer Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004635 Polyester fiberglass Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005559 polyacrylic rubber Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004644 polycyanurate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004639 urea-formaldehyde foam Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
- A61M39/1011—Locking means for securing connection; Additional tamper safeties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M39/26—Valves closing automatically on disconnecting the line and opening on reconnection thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L37/00—Couplings of the quick-acting type
- F16L37/22—Couplings of the quick-acting type in which the connection is maintained by means of balls, rollers or helical springs under radial pressure between the parts
- F16L37/23—Couplings of the quick-acting type in which the connection is maintained by means of balls, rollers or helical springs under radial pressure between the parts by means of balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L37/00—Couplings of the quick-acting type
- F16L37/26—Couplings of the quick-acting type in which the connection is made by transversely moving the parts together, with or without their subsequent rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L37/00—Couplings of the quick-acting type
- F16L37/28—Couplings of the quick-acting type with fluid cut-off means
- F16L37/30—Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings
- F16L37/32—Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L37/00—Couplings of the quick-acting type
- F16L37/28—Couplings of the quick-acting type with fluid cut-off means
- F16L37/30—Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings
- F16L37/32—Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied
- F16L37/34—Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied at least one of the lift valves being of the sleeve type, i.e. a sleeve is telescoped over an inner cylindrical wall
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
- A61M2039/1016—Unlocking means providing a secure or comfortable disconnection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
- A61M2039/1027—Quick-acting type connectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
- A61M2039/1044—Verifying the connection, e.g. audible feedback, tactile feedback, visual feedback, using external light sources
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M39/26—Valves closing automatically on disconnecting the line and opening on reconnection thereof
- A61M2039/267—Valves closing automatically on disconnecting the line and opening on reconnection thereof having a sealing sleeve around a tubular or solid stem portion of the connector
- A61M2039/268—Valves closing automatically on disconnecting the line and opening on reconnection thereof having a sealing sleeve around a tubular or solid stem portion of the connector wherein the stem portion is moved for opening and closing the valve, e.g. by translation, rotation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0205—Materials having antiseptic or antimicrobial properties, e.g. silver compounds, rubber with sterilising agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/581—Means for facilitating use, e.g. by people with impaired vision by audible feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/582—Means for facilitating use, e.g. by people with impaired vision by tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/583—Means for facilitating use, e.g. by people with impaired vision by visual feedback
Definitions
- a broad object of a particular embodiment of the invention can be to provide a connector system for releasably connecting together tubes, for example medical tubing, and methods of making and using such a connector system, whereby the connector system includes a female coupler having a first passageway, a male coupler having a second passageway, a catch movably coupled to the female coupler, and a catch-receiving element coupled to the male coupler.
- the catch Upon releasable matable axial coupling of the female and male couplers, the catch engages with the catch-receiving element to fix an axial position of the female coupler in relation to the male coupler, thereby achieving a connected condition of the connector system in which the first and second passageways dispose in fluidic communication to provide a fluid flow path.
- the connector system further includes a release element movably coupled to the female coupler, whereby travel of the release element along or over a female coupler outer surface of the female coupler disengages the catch from the catch-receiving element to achieve a disconnected condition of the connector system.
- Another broad object of a particular embodiment of the invention can be to provide the connector system as described above, further including at least one valve operable to interrupt fluid flow through a passageway, whereby the valve is biased by a valve-biasing member disposed external to or outside of the passageway and accordingly, external to or outside of the fluid flow path when the female and male couplers releasably matably couple to achieve the connected condition of the connector system.
- Figure 1 A is an illustration of a method of using a particular embodiment of the connector system.
- Figure 1 B is an exploded perspective view of the particular embodiment of the connector system shown in Figure 1 A and Figure 2A through Figure 4G.
- Figure 2A is a perspective view of a particular embodiment of the connector system, whereby first and male couplers are releasably matably engaged.
- Figure 2B is a side view of the particular embodiment of the connector system shown in Figure 2A.
- Figure 2C is a top view of the particular embodiment of the connector system shown in Figure 2A.
- Figure 2D is a bottom view of the particular embodiment of the connector system shown in Figure 2A.
- Figure 2E is a first end view of the particular embodiment of the connector system shown in Figure 2A.
- Figure 2F is a second end view of the particular embodiment of the connector system shown in Figure 2A.
- Figure 2G is a cross-sectional view of the particular embodiment of the connector system shown in Figure 2E, whereby first and male couplers are releasably matably engaged.
- Figure 2H is a cross-sectional view of the particular embodiment of the connector system shown in Figure 2E, whereby first and male couplers are in adjacent axial relation but are not releasably matably engaged.
- Figure 3A is a perspective view of a particular embodiment of a female coupler of the connector system.
- Figure 3B is a side view of the female coupler of the connector system shown in Figure 3A.
- Figure 3C is a top view of the female coupler of the connector system shown in Figure
- Figure 3D is a bottom view of the female coupler of the connector system shown in Figure
- Figure 3E is a first end view of the female coupler of the connector system shown in Figure 3 A.
- Figure 3F is a second end view of the female coupler of the connector system shown in
- Figure 3G is a cross-sectional view of the female coupler of the connector system shown in Figure 3E.
- Figure 3H is a cross-sectional view of the female coupler of the connector system shown in Figure 3 B.
- Figure 31 is a cross-sectional view of the female coupler of the connector system shown in Figure 3H.
- Figure 4 A is a perspective view of a particular embodiment of a male coupler of the connector system.
- Figure 4B is a side view of the male coupler of the connector system shown in Figure 4A.
- Figure 4C is a top view of the male coupler of the connector system shown in Figure 4A.
- Figure 4D is a bottom view of the male coupler of the connector system shown in Figure
- Figure 4E is a first end view of the male coupler of the connector system shown in Figure 4A.
- Figure 4F is a second end view of the male coupler of the connector system shown in Figure 4A.
- Figure 4G is a cross-sectional view of the male coupler of the connector system shown in Figure 4E.
- Figure 5A is a perspective view of a particular embodiment of the connector system, whereby first and male couplers are releasably matably engaged.
- Figure 5B is a side view of the paiticular embodiment of the connector system shown in Figure 5A.
- Figure 5C is a top view of the particular embodiment of the connector system shown in Figure 5A.
- Figure 5D is a bottom view of the particular embodiment of the connector system shown in Figure 5A.
- Figure 5E is a first end view of the particular embodiment of the connector system shown in Figure 5A.
- Figure 5F is a second end view of the particular embodiment of the connector system shown in Figure 5 A.
- Figure 5G is a cross-sectional view of the particular embodiment of the connector system shown in Figure 5C, whereby first and male couplers are releasably matably engaged.
- Figure 5H is a cross-sectional view of the particular embodiment of the connector system shown in Figure 5C, whereby first and male couplers are in adjacent axial relation but are not releasably matably engaged.
- Figure 6A is a perspective view of a particular embodiment of a female coupler of the connector system.
- Figure 6B is a side view of the female coupler of the connector system shown in Figure
- Figure 6C is a top view of the female coupler of the connector system shown in Figure
- Figure 6D is a bottom view of the female coupler of the connector system shown in Figure
- Figure 6E is a first end view of the female coupler of the connector system shown in Figure 6A.
- Figure 6F is a second end view of the female coupler of the connector system shown in Figure 6A.
- Figure 6G is a cross-sectional view of the female coupler of the connector system shown in Figure 6C.
- Figure 7A is a perspective view of a particular embodiment of a male coupler of the connector system.
- Figure 7B is a side view of the male coupler of the connector system shown in Figure 7A.
- Figure 7C is a top view of the male coupler of the connector system shown in Figure 7A.
- Figure 7D is a bottom view of the male coupler of the connector system shown in Figure
- Figure 7E is a first end view of the male coupler of the connector system shown in Figure 7A.
- Figure 7F is a second end view of the male coupler of the connector system shown in Figure 7A.
- Figure 7G is a cross-sectional view of the male coupler of the connector system shown in Figure 7C.
- Figure 8 A is a perspective view of a release element of the connector system, whereby the release element is depicted as a pair of arrows to illustrate travel of the release element along or over a female coupler outer surface which can be achieved by the application of forces directed along or over the female coupler outer surface.
- Figure 8B is a side view of the release element of the connector system shown in Figure 8A.
- Figure 8C is a first end view of the release element of the connector system shown in Figure 8A.
- Figure 8D is a second end view of the release element of the connector system shown in Figure 8A.
- Figure 9A is a perspective view of a release element of the connector system, whereby the release element is depicted as an arrow to illustrate circumferential travel of the release element about a female coupler outer surface which can be achieved by the application of forces directed circumferentially along or over the female coupler outer surface.
- Figure 9B is a side view of the release element of the connector system shown in Figure
- Figure 9C is a first end view of the release element of the connector system shown in Figure 9A.
- Figure 9D is a second end view of the release element of the connector system shown in
- Figure 1 OA is a perspective view of a release element of the connector system, whereby the release element is depicted as an arrow to illustrate circumferential travel of the release element about a female coupler outer surface which can be achieved by the application of forces directed circumferentially along or over the female coupler outer surface.
- Figure 1 OB is a cross sectional view of the release element of the connector system shown in Figure 1 OA, whereby a catch disposes in an opening first portion defined by a release element inner surface first portion to provide a release element first position.
- Figure 1 1 A is a perspective view of a release element of the connector system, whereby the release element is depicted as an arrow to illustrate circumferential travel of the release element about a female coupler outer surface which can be achieved by the application of forces directed circumferentially along or over the female coupler outer surface.
- Figure 1 1 B is a cross sectional view of the release element of the connector system shown in Figure 1 1 A, whereby a catch disposes in an opening second portion defined by a release element inner surface second portion to provide a release element second position.
- Figure 12A is a perspective view of a release element of the connector system, whereby the release element is depicted as an arrow to illustrate helical travel of the release element about a female coupler outer surface which can be achieved by the application of forces directed helically along or over the female coupler outer surface.
- Figure 12B is a side view of the release element of the connector system shown in Figure
- Figure 12C is a first end view of the release element of the connector system shown in Figure 12A.
- Figure 12D is a second end view of the release element of the connector system shown in Figure 12 A.
- Figure 13A is a perspective view of a particular embodiment of a valve-biasing member configured as a resiliently flexible member disposed in axially-adjacent relation to an angled surface, whereby the resiliently flexible member is in a non-flexed condition.
- Figure 13B is a side view of the particular embodiment of the valve-biasing member shown in Figure 13 A.
- Figure 13C is a top view of the particular embodiment of the valve-biasing member shown in Figure 13 A.
- Figure 13D is a bottom view of the particular embodiment of the valve-biasing member shown in Figure 13A.
- Figure 13E is a first end view of the particular embodiment of the valve-biasing member shown in Figure 13A.
- Figure 13F is a second end view of the particular embodiment of the valve-biasing member shown in Figure 13A.
- Figure 13G is a cross-sectional view of the particular embodiment of the valve-biasing member shown in Figure 13E.
- Figure 14A is a perspective view of a particular embodiment of a valve-biasing member configured as a resiliently flexible member disposed in axially-adjacent relation to an angled surface, whereby the resiliently flexible member is in a flexed condition.
- Figure 14B is a side view of the particular embodiment of the valve-biasing member shown in Figure 14A.
- Figure 1 C is a top view of the particular embodiment of the valve-biasing member shown in Figure 14A.
- Figure 14D is a bottom view of the particular embodiment of the valve-biasing member shown in Figure 14A.
- Figure 14E is a first end view of the particular embodiment of the valve-biasing member shown in Figure 14A.
- Figure 14F is a second end view of the particular embodiment of the valve-biasing member shown in Figure 14A.
- Figure 14G is a cross-sectional view of the particular embodiment of the valve-biasing member shown in Figure 14E.
- Figure 15A is a perspective view of a particular embodiment of the connector system including a J-loop coupled to a connector system first end. whereby first and male couplers of the connector system are releasably matably engaged.
- Figure 15B is a perspective view of the particular embodiment of the connector system shown in Figure 15A, but whereby the first and male couplers are in adjacent axial relation but are not releasably matably engaged.
- Figure 1A illustrates a method of using a particular embodiment of a connector system (1) for releasably connecting together tubes (2), such as medical tubing employed in a bio-medical environment.
- the connector system (1 ) can be relatively easily and securely connected, and yet relatively easily intentionally disconnected.
- the connector system (1) includes a female coupler (3) having a first passageway (4) and a male coupler (5) having a second passageway (6).
- a connected condition (7) of the connector system (1 ) is achieved, disposing the first and second passageways (4)(6) in fluidic communication to provide a fluid flow path (8).
- a longitudinal direction can considered parallel to the first passageway (4), the second passageway (6), and/or the fluid flow path (8).
- the connector system (1) can further include a catch (9) movably coupled to the female coupler (3) and a catch-receiving element (10) coupled to the male coupler (5).
- the catch (9) engages with the catch-receiving element (10) to fix an axial position of the female coupler (3) in relation to the male coupler (5), thereby achieving the connected condition (7) of the connector system (1).
- the connector system (1 ) can further include a release element (1 1) movably coupled to the female coupler (3), whereby travel of the release element (1 1 ) along or over a female coupler outer surface (12) of the female coupler (3) disengages the catch (9) from the catch-receiving element (10) to achieve a disconnected condition (13) of the connector system (1 ).
- the term "catch” means a restraint which, upon matable engagement with a catch-receiving element (10), can function to partially or completely restrain travel of an associated component, such as a female coupler (3).
- the term "catch-receiving element” means a restraint which, upon matable engagement with a catch (9), can function to partially or completely restrain travel of an associated component, such as a male coupler (5).
- the connector system (1) can be configured to provide a connection indicium upon successful releasable matable axial coupling of the female and male couplers (3)(5) to achieve the connected condition (7), whereby the connection indicium can be a visible indicium, an audible indicium, a tactile indicium, or the like, or combinations thereof.
- the release element (1 1) can be configured as a cam and the catch (9) can function as a follower, whereby the release element (1 1) can transform input motion into reciprocating motion of the catch (9).
- the term “cam” means a movable element in a mechanical linkage, whereby the cam can have an irregular periphery and may be useful in transforming motion, for example transforming motion in a first direction into motion in a second direction.
- the term “follower” means a movable element in a mechanical linkage, whereby movement of the follower results from movement of the cam.
- linear or sliding motion of the release element (1 1) along the female coupler outer surface (12) can be transformed into inward or outward motion of the catch (9) such that the catch (9) can move either inwardly toward the interior of the female coupler (3) or outwardly away from the interior of the female coupler (3).
- the release element (1 1) can be biased by a release element-biasing member (14) which biases the release element (1 1) toward a release element first position (15), as shown in the examples of Figure 2G and Figure 3G through Figure 31.
- the release element (1 1 ) when in the release element first position (15), can bias the catch (9) inwardly toward the interior of the female coupler (3) to engage the catch (9) with the catch-receiving element ( 10) and achieve the connected condition (7) of the connector system (1).
- the release element-biasing member (14) can be configured as a resiliently compressible member (16), such as a spring (for example, a coil spring), whereby when the resiliently compressible member (16) disposes in a non-compressed condition (17), which is the normal biased condition, the release element (1 1) disposes in the release element first position (15).
- a resiliently compressible member (16) such as a spring (for example, a coil spring)
- the release element (14) need not be limited to this particular configuration.
- the resiliently compressible member (16) can be compressed toward a compressed condition (18), disposing the release element (1 1) in a release element second position (19), allowing the catch (9) to outwardly move away from the interior of the female coupler (3) and disengage with the catch-receiving element (10) to achieve the disconnected condition (13) of the connector system (1).
- Travel of the release element (1 1 ) along or over the female coupler outer surface (12) can be achieved by the application of forces directed along or over the female coupler outer surface (12), such as forces directed at an angle of between 0° to about ⁇ 45° in relation to the female coupler outer surface (12).
- forces directed along or over the female coupler outer surface (12) such as forces directed at an angle of between 0° to about ⁇ 45° in relation to the female coupler outer surface (12).
- This is in stark contrast to conventional "quick release" couplers which typically have a release element configured to travel upon the application of forces directed along an axis generally normal (or generally perpendicular) to the coupler outer surface, whereby one illustrative example of this type of release element is a pushbutton release element or a depressible release element.
- the instant release element (1 1 ) is advantageous over the conventional art, as only forces directed at an angle of between 0° to about ⁇ 45° in relation to the female coupler outer surface (12) can disengage the catch (9) from within the catch-receiving element (10) to achieve the disconnected condition (13) of the connector system (1 ), thus precluding inadvertent disconnecting by forces unintentionally applied at an angle of between about ⁇ 45° to about 90° in relation to the female coupler outer surface (12).
- travel of the release element (1 1 ) which can forcibly urge the resiliently compressible member (16) toward the compressed condition (18), can be longitudinal travel along the female coupler outer surface (12).
- the longitudinal travel can be between female coupler first and second ends (20)(21).
- the longitudinal travel can be sliding travel along the female coupler outer surface (12). Further, as to particular embodiments, the longitudinal travel can be linear or generally parallel to the female coupler outer surface (12), having an angle of about 0° in relation to the female coupler outer surface (12). Now referring primarily to Figure 9A through Figure 12D, as to other particular embodiments, travel of the release element (11), which can forcibly urge a resiliently compressible member (16) toward a compressed condition (18), can be circumferential travel about the female coupler outer surface (12).
- the circumferential travel can be rotating travel about the female coupler outer surface ( 12), whereby the circumferential travel can be any amount of travel about the circumference of the female coupler outer surface (12), whether partially or completely about the circumference of the female coupler outer surface (12). Further, as to particular embodiments, the circumferential travel can be generally parallel to the female coupler outer surface (12). Now referring primarily to Figure 12 A through Figure 12D, as to particular embodiments, the circumferential travel can be helical travel about the female coupler outer surface (12).
- the catch (9) can be configured a spherical element, such as a ball (22), and the catch-receiving element (10) can be configured as a retention groove (23) configured to receive a portion or an entirety of the ball (22).
- the catch (9) and catch-receiving element (10) need not be limited to these particular configurations and can be configured as any the art.
- the ball (22) can be movably coupled to the female coupler (3) proximate the female coupler outer surface (12).
- the ball (22) can be movably disposed within an opening (24) defined by the female coupler outer surface (12) (as shown in the example of Figure IB), whereby the opening (24) can be sufficiently configured to allow movement of the ball (22) through the opening (24) and inwardly toward the interior of the female coupler (3) or outwardly away from the interior of the female coupler (3).
- the ball (22) can be movably coupled to the female coupler (3) beneath the release element (1 1).
- the retention groove (23) can be coupled to the male coupler (5) proximate a male coupler matable end (25) which is matably received within a female coupler matable end (26) upon releasable matable axial coupling of the female and male couplers (3)(5) to provide the connected condition (7) of the connector system (1 ).
- the retention groove (23) can be disposed within a male coupler outer surface (27) proximate the male coupler matable end (25).
- Inward movement of the ball (22) can facilitate engagement of the ball (22) within the retention groove (23) upon matable reception of the male coupler matable end (25) within the female coupler matable end (26).
- outward movement of the ball (22) can facilitate disengagement of the ball (22) from within the retention groove (23), thereby allowing the female and male couplers (3)(5) to disconnect by axial movement away from one another.
- Movement of the ball (22) inward and outward and correspondingly, into and out of the retention groove (23), can be controlled, at least in part, by the release element (1 1 ), whereby the release element (1 1) can function as a cam and the ball (22) can function as a follower (as generally described above). Accordingly, linear or sliding motion of the release element (1 1 ) along the female coupler outer surface (12) can be transformed into inward or outward movement of the ball (9), causing the ball (9) to move either inwardly toward the retention groove (23) or outwardly away from the retention groove (23).
- a release element inner surface (28). which disposes proximate (or adjacent) the female coupler outer surface (12), can provide a cam surface (29) having a ball locking surface (30) and a ball unlocking surface (31 ).
- the ball locking surface (30) downwardly extends toward the female coupler outer surface ( 12) a greater distance than the ball unlocking surface (31), thereby disposing the ball locking surface (30) closer to the female coupler outer surface (12) than the ball unlocking surface (31 ).
- the ball unlocking surface (31) upwardly extends away from the female coupler outer surface (12) a greater distance than the ball locking surface (30), thereby disposing the ball unlocking surface (31) farther from the female coupler outer surface (12) than the ball locking surface (30).
- the release element-biasing member (14) for example a resiliently compressible member (16
- the release element (1 1 ) can bias the release element (1 1 ) toward a release element first position (15) when in a non-compressed condition (17).
- the ball locking surface (30) aligns with (or contacts) the ball (22) and correspondingly biases the ball (22) inwardly and toward engagement within the retention groove (23) to achieve the connected condition (7) of the connector system (1 ).
- the resiliently compressible member (16) can be compressed toward a compressed condition (18), disposing the release element (1 1 ) in a release element second position (19) in which the ball unlocking surface (31) aligns with (or contacts) the ball (22), allowing the ball (22) to outwardly move away from the retention groove (23) to achieve the disconnected condition (13) of the connector system (1).
- the connector system (1) can further include at least one conduit and at least one valve operable to interrupt fluid flow through the conduit.
- the female coupler (3) can include a first conduit (32) defining a first passageway (4) (which as to particular embodiments, may include a fixed or removable filter) and a first valve (33) operable to interrupt fluid flow through the first passageway (4).
- the first valve (33) can be movable within a first valve seat (34) to sealably occlude a first port (35) in fluid communication with the first passageway (4), thereby providing a first passageway closed condition (36) in which fluid flow through the first port (35) and accordingly, through the first passageway (4), is interrupted.
- the first valve (33) can be biased by a first valve-biasing member (37) which biases the first valve (33) toward a first valve closed position (38) in which the first valve (33) sealably occludes the first port (35), for example by sealably overlaying the first port (35), to provide the first passageway closed condition (36).
- the first valve-biasing member (37) can be configured as a resiliently compressible member (16), such as a spring; however, the first valve-biasing member (37) need not be limited to this particular configuration.
- the resiliently compressible member (16) can bias the first valve (33) toward the first valve closed position (38) in which the first valve (33) sealably occludes the first port (35) to provide the first passageway closed condition (36) (as shown in the examples of Figure 2H, Figure 3G, and Figure 31).
- the resiliently compressible member (16) can be compressed toward a compressed condition (18), allowing the first valve (33) to travel within the first valve seat (34) away from the first port (35) toward a first valve open position (39), thus providing a first passageway open condition (40) permitting fluid flow through the first port (35) and accordingly, through the first passageway (4) (as shown in the example of Figure 2G).
- the resiliently compressible member (16) can be compressed toward the compressed condition (18) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the first valve (33) to travel within the first valve seat (34) away from the first port (35) toward the first valve open position (39), thus providing the first passageway open condition (40) which permits fluid flow through the first port (35) and accordingly, through the first passageway (4).
- the first passageway (4) can fluidicly communicate with the second passageway (6) of the male coupler (5) to provide the fluid flow path (8) through which fluid can flow between connector system first and second ends (41 )(42).
- the instant first valve-biasing member (37) is disposed external to or outside of the first passageway (4) and accordingly, external to or outside of the fluid flow path (8) when the female and male couplers (3)(5) connect to achieve the connected condition (7) of the connector system (1).
- fluid flowing within the fluid flow path (8) does not contact the resiliently compressible member (16), which may be advantageous for a plurality of reasons, including elimination of a potential substrate for biofilm growth within the fluid flow path (8) and elimination of a physical impediment to fluid flow within the fluid flow path (8).
- the first valve (33) can be configured to telescopingly engage with the first conduit (32) such that the first valve (33) telescopingly disposes about the first conduit (32) and can longitudinally travel over the first conduit (32) or longitudinally slide over the first conduit (32).
- a first valve inner surface (43) of the first valve (33) can dispose adjacent a first conduit outer surface (44) of the first conduit (32), whereby a fluid-tight seal can exist between the first valve inner surface (43) and the first conduit outer surface (44).
- an o-ring (45) can be coupled to the first conduit outer surface (44), for example the o-ring (45) can be at least partially recessed within the first conduit outer surface (44), whereby when overlaid by the first valve inner surface (43), the o-ring (45) can function to provide the fluid-tight seal between the first valve inner surface (43) and the first conduit outer surface (44).
- the first valve (33) can either partially or entirely surround a portion of the first conduit (32) proximate (or adjacent) the first port (35), depending upon the configuration of the first conduit (32) and the first port (35). As shown in the particular embodiment illustrated in Figure 2G, Figure 2H, Figure 3G, and Figure 31, the first valve (33) can entirely surround a portion of the first conduit (32) proximate the first port (35) such that the first valve (33) and that portion of the first conduit (32) are coaxial. Thus, the first valve (33) and the portion of the first conduit (32) proximate the first port (35) can be disposed in concentric relation.
- first conduit (32) and the first valve (33) can together provide a portion of the first passageway (4). More specifically, a first conduit inner surface (46) and the first valve inner surface (43) can define a portion of the first passageway (4). As to particular embodiments, the first conduit inner surface (46) and the first valve inner surface (43) can define a first passageway (4) which is cylindrical or generally cylindrical, having a circular or generally circular cross section (as shown in the example of Figure 3F).
- a portion of the first conduit outer surface (44) can provide a first valve seat (34) in which the first valve (33) can move and specifically, in which the first valve (33) can longitudinally travel over the first conduit (32).
- the first valve (33) can travel within the first valve seat (34) in a first direction (47) to a first valve closed position (38) in which the first valve (33) sealably occlude the first port (35) in fluid communication with the first passageway (4) (as shown in the examples of Figure 2H, Figure 3G, and Figure 31), thereby providing the first passageway closed condition (36) in which fluid flow through the first port (35) and accordingly, through the first passageway (4), is interrupted.
- the first valve (33) When in the first valve closed position (38), the first valve (33) can sealably engage with a first seal assembly (48) which is fixedly coupled to the first conduit (32) in axially spaced apart relation.
- a first seal assembly (48) which is fixedly coupled to the first conduit (32) in axially spaced apart relation.
- one or more spacers (49) can fixedly couple the first seal assembly (48) to the first conduit (32) to dispose the first seal assembly (48) in spaced apart relation to the first conduit (32) or to dispose the first seal assembly (48) a distance from the first conduit (32).
- the first valve (33) can travel within the first valve seat (34) across the distance to sealably engage with the first seal assembly (48) and sealably occlude the first port (35) to interrupt fluid flow through the first passageway (4).
- the first conduit (32) and the first seal assembly (48) can be formed as a one-piece construct; however, the invention need not be so limited.
- the first conduit (32), one or more spacers (49), and the first seal assembly (48) can be formed as a one-piece construct; however, the invention need not be so limited.
- the first seal assembly (48) can include an o-ring (45) coupled to an o-ring support (50), for example the o-ring (45) can be at least partially recessed within the o-ring support (50), whereby when overlaid by the first valve inner surface (43), the o-ring (45) can function to provide a fluid-tight seal between the first valve inner surface (43) and the first seal assembly (48).
- the first valve (33) can be biased by a first valve-biasing member (37) which biases the first valve (33) toward the first seal assembly (48) and correspondingly, toward the first valve closed position (38) to provide the first passageway closed condition (36).
- the first valve-biasing member (37) can be configured as a resiliently compressible member (16), such as a spring and for example, a coil spring or a helical spring (51 ).
- the helical spring (51 ) can be disposed about a portion of the first valve (33) to entirely surround that portion of the first valve (33) such that the helical spring (51 ) and the first valve (33) are coaxial.
- the helical spring (51) and the first valve (33) can be disposed in concentric relation.
- the instant helical spring (51) is disposed external to or outside of the first passageway (4) and accordingly, external to or outside of the fluid flow path (8) when the female and male couplers (3)(5) connect to achieve the connected condition (7) of the connector system (1 ).
- fluid flowing within the fluid flow path (8) does not contact the helical spring (51), which may be advantageous for a plurality of reasons, including elimination of a potential substrate for biofilm growth within the fluid flow path (8) and elimination of a physical impediment to fluid flow within the fluid flow path (8).
- the helical spring (51 ) can be disposed between a pair of projecting ribs (52)(53).
- a helical spring first end (54) can bear against a first rib (52) outwardly extending from the first conduit outer surface (44) and an opposing helical spring second end (55) can bear against a second rib (53) outwardly extending from a first valve outer surface (56).
- the helical spring (51 ) can bias the first valve (33) toward sealable engagement with the first seal assembly (48) and correspondingly toward the first valve closed position (38) in which the first valve (33) sealably occludes the first port (35) to provide the first passageway closed condition (36).
- the helical spring (51 ) can be compressed toward a compressed condition (1 8), allowing the first valve (33) to travel within the first valve seat (34) away from the first seal assembly (48) and away from the first port (35) toward a first valve open position (39), thus providing a first passageway open condition (40) permitting fluid flow through the first port (35) and accordingly, through the first passageway (4) (as shown in the example of Figure 2G).
- the helical spring (51 ) can be compressed toward the compressed condition (18) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the first valve (33) to travel within the first valve seat (34) away from the first seal assembly (48) and away from the first port (35) toward the first valve open position (39), thus providing a first passageway open condition (40) permitting fluid flow through the first port (35) and accordingly, through the first passageway (4).
- the first passageway (4) can fluidicly communicate with the second passageway (6) of the male coupler (5) to provide the fluid flow path (8) through which fluid can flow between the connector system first and second ends (41)(42).
- the first valve-biasing member (37) can be configured as a resiliently flexible member (58); however, the first valve-biasing member (37) need not be limited to this particular configuration.
- the resiliently flexible member (58) can bias the first valve (33) toward the first valve closed position (38) in which the first valve (33) sealably occludes the first port (35) (as shown in the examples of Figure 5H and Figure 6G).
- the resiliently flexible member (58) can be flexed toward a flexed condition (60) (as shown in the examples of Figure 14A through Figure 14G), allowing the first valve (33) to travel within the first valve seat (34) toward a first valve open position (39) away from the first port (35), thereby permitting fluid flow through the first port (35) and accordingly, through the first passageway (4) to provide a first passageway open condition (40) (as shown in the example of Figure 5G).
- the resiliently flexible member (58) can be flexed toward the flexed condition (60) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the first valve (33) to travel within the first valve seat (34) toward the first valve open position (39) away from the first port (35), thereby permitting fluid flow through the first port (35) and accordingly, through the first passageway (4) to provide the first passageway open condition (40).
- the first passageway (4) can fluidicly communicate with the second passageway (6) of the male coupler (5) to provide the fluid flow path (8) through which fluid can flow between the connector system first and second ends (41)(42).
- the resiliently flexible member (58) can be configured as a plurality of resiliently flexible members (58) which dispose in circumferentially spaced-apart relation to define an internal space (61 ). Additionally, an angled surface (62) can be disposed in axially-adjacent relation to the plurality of resiliently flexible members (58).
- the plurality of resiliently flexible members (58) move axially toward the angled surface (62), whereby the angled surface (62) can be received within the internal space (61 ) while forcibly urging the plurality of resiliently flexible members (58) to flex about the angled surface (62) toward the flexed condition (60) (as shown in the examples of Figure 14A through Figure 14G).
- the first valve (33) travels within the first valve seat (34) toward the first valve open position (39) away from the first port (35), thereby permitting fluid flow through the first port (35) and accordingly, through the first passageway (4) to provide the first passageway open condition (40).
- the plurality of resiliently flexible members (58) are biased toward the non-flexed condition (59) (as shown in the examples of Figure 13A through Figure 13G), biasing the first valve (33) toward the first valve closed position (38) in which the first valve (33) sealably occludes the first port (35).
- the resiliently flexible member (58) and the first valve (33) can be formed as a one-piece construct; however, the invention need not be so limited.
- the male coupler (5) can include a second conduit (63) defining a second passageway (6) (which as to particular embodiments, may include a fixed or removable filter) and a second valve (64) operable to interrupt fluid flow through the second passageway (6).
- the second valve (64) can be movable within a second valve seat (65) to sealably occlude a second port (66) in fluid communication with the second passageway (6), thereby providing a second passageway closed condition (67) in which fluid flow through the second port (66) and accordingly, through the second passageway (6), is interrupted.
- the second valve (64) can be biased by a second valve-biasing member (68) which biases the second valve (64) toward a second valve closed position (69) in which the second valve (64) sealably occludes the second port (66), for example by sealably overlaying the second port (66), to provide the second passageway closed condition (67).
- a second valve-biasing member (68) which biases the second valve (64) toward a second valve closed position (69) in which the second valve (64) sealably occludes the second port (66), for example by sealably overlaying the second port (66), to provide the second passageway closed condition (67).
- the second valve-biasing member (68) can be configured as a resiliently compressible member (16), such as a spring; however, the second valve-biasing member (68) need not be limited to this particular configuration.
- the resiliently compressible member (16) can bias the second valve (64) toward the second valve closed position (69) in which the second valve (64) sealably occludes the second port (66) to provide the second passageway closed condition (67) (as shown in the examples of Figure 2H and Figure 4G).
- the resiliently compressible member (16) can be compressed toward a compressed condition (18), allowing the second valve (64) to travel within the second valve seat (65) away from the second port (66) toward a second valve open position (70), thus providing a second passageway open condition (71) permitting fluid flow through the second port (66) and accordingly, through the second passageway (6) (as shown in the example of Figure 2G).
- the resiliently compressible member (16) can be compressed toward the compressed condition (18) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the second valve (64) to travel within the second valve seat (65) away from the second port (66) toward the second valve open position (70), thus providing a second passageway open condition (71) which permits fluid flow through the second port (66) and accordingly, through the second passageway (6).
- the first passageway (4) of the female coupler (3) can fluidicly communicate with the second passageway (6) to provide the fluid flow path (8) through which fluid can flow between the connector system first and second ends (41 )(42).
- the instant second valve-biasing member (68) is disposed external to or outside of the second passageway (6) and accordingly, external to or outside of the fluid flow path (8) when the female and male couplers (3)(5) connect to achieve the connected condition (7) of the connector system (1).
- fluid flowing within the fluid flow path (8) does not contact the resiliently compressible member (16), which may be advantageous for a plurality of reasons, including elimination of a potential substrate for biofilm growth within the fluid flow path (8) and elimination of a physical impediment to fluid flow within the fluid flow path (8).
- the second valve (64) can be provided by the second conduit (63) which can longitudinally travel or longitudinally slide within the second valve seat (65).
- the second valve seat (65) can be configured to telescopingly engage with the second conduit (63) such that the second valve seat (65) telescopingly disposes about the second conduit (63) to allow longitudinal travel of the second conduit (63) within the second valve seat (65).
- a second valve seat inner surface (72) of the second valve seat (65) can dispose adjacent a second conduit outer surface (73) of the second conduit (63), whereby a fluid-tight seal can exist between the second valve seat inner surface (72) and the second conduit outer surface (73).
- an o-ring (45) can be coupled to the second conduit outer surface (73), for example the o-ring (45) can be at least partially recessed within the second conduit outer surface (73), whereby when overlaid by the second valve seat inner surface (72). the o-ring (45) can function to provide a fluid-tight seal between the second valve seat inner surface (72) and the second conduit outer surface (73).
- the second valve seat (65) can either partially or entirely surround a portion of the second conduit (63) proximate (or adjacent) the second port (66), depending upon the configuration of the second conduit (63) and the second port (66). As shown in the particular embodiment illustrated in Figure 2G, Figure 2H, and Figure 4G, the second valve seat (65) can entirely surround a portion of the second conduit (63) proximate the second port (66) such that the second valve seat (65) and that portion of the second conduit (63) are coaxial. Thus, the second valve seat (65) and the portion of the second conduit (63) proximate the second port (66) can be disposed in concentric relation. With this configuration, the second conduit (63) and the second valve seat (65) can together provide a portion of the second passageway (6).
- a second conduit inner surface (74) and the second valve seat inner surface (72) can define a portion of the second passageway (6).
- the second conduit inner surface (74) and the second valve seat inner surface (72) can define a second passageway (6) which is cylindrical or generally cylindrical, having a circular or generally circular cross section (as shown in the example of Figure 4E).
- the second valve (64) can travel within the second valve seat (65) in a first direction (47) to a second valve closed position (69) in which the second conduit (63) sealably occludes the second port (66) in fluid communication with the second passageway (6), thereby providing a second passageway closed condition (67) in which fluid flow through the second port (66) and accordingly, through the second passageway (6), is interrupted.
- a second seal assembly (75) which is fixedly coupled to the second conduit (63) in axially spaced apart relation via one or more spacers (49) can sealably engage with an engagement surface (76) provided by an inwardly tapering portion of the second valve seat inner surface (72), thus providing the second passageway closed condition (67) in which the second port (66) is sealably occluded to interrupt fluid flow through the second passageway (6).
- the second conduit (63) and the second seal assembly (75) can be formed as a one-piece construct; however, the invention need not be so limited.
- the second conduit (63), one or more spacers (49), and the second seal assembly (75) can be formed as a one-piece construct; however, the invention need not be so limited.
- the second seal assembly (75) can include an o-ring (45) coupled to an o-ring support (50), for example the o-ring (45) can be at least partially recessed within the o-ring support (50), whereby when overlaid by the engagement surface (76), the o-ring can function to provide the fluid-tight seal between the engagement surface (76) and the second seal assembly (75).
- the second conduit (63) can be biased by a second valve-biasing member (68) which biases the second conduit (63) and correspondingly the second seal assembly (75) toward the engagement surface (76) and correspondingly, toward the second valve closed position (69) to provide the second passageway closed condition (67).
- a second valve-biasing member (68) which biases the second conduit (63) and correspondingly the second seal assembly (75) toward the engagement surface (76) and correspondingly, toward the second valve closed position (69) to provide the second passageway closed condition (67).
- the second valve-biasing member (68) can be configured as a resiliently compressible member (16), such as a spring and for example, a coil spring or a helical spring (51 ).
- the helical spring (51) can be disposed about a portion of the second conduit (63) to entirely surround that portion of the second conduit (63) such that the helical spring (51) and the second conduit (63) are coaxial.
- the helical spring (51 ) and the second conduit (63) can be disposed in concentric relation.
- the instant helical spring (51 ) is disposed external to or outside of the second passageway (6) and accordingly, external to or outside of the fluid flow path (8) when the female and male couplers (3)(5) connect to achieve the connected condition (7) of the connector system (1).
- fluid flowing within the fluid flow path (8) does not contact the helical spring (51), which may be advantageous for a plurality of reasons, including elimination of a potential substrate for biofilm growth within the fluid flow path (8) and elimination of a physical impediment to fluid flow within the fluid flow path (8).
- the helical spring (51 ) can be disposed between a pair of projecting ribs (52)(53).
- a helical spring first end (54) can bear against a first rib (52) and an opposing helical spring second end (55) can bear against a second rib (53) outwardly extending from the second conduit outer surface (73).
- the helical spring (51 ) can bias the second conduit (63) and correspondingly the second seal assembly (75) toward the engagement surface (76) and correspondingly, toward the second valve closed position (69), thereby sealably occluding the second port (66) and providing the second passageway closed condition (67).
- the helical spring (51) can be compressed toward a compressed condition (18), allowing the second conduit (63) to travel within the second valve seat (65) to dispose the second seal assembly (75) away from the engagement surface (76) and away from the second port (66) toward a second valve open position (70), thus providing a second passageway open condition (71) permitting fluid flow through the second port (66) and accordingly, through the second passageway (6) (as shown in the example of Figure 2G).
- the helical spring (51) can be compressed toward the compressed condition (18) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the second conduit (63) to travel within the second valve seat (65) to dispose the second seal assembly (75) away from the engagement surface (76) and away from the second port (66) toward a second valve open position (70), thus providing a second passageway open condition (71) permitting fluid flow through the second port (66) and accordingly, through the second passageway (6).
- the first passageway (4) of the female coupler (3) can fluidicly communicate with the second passageway (6) to provide the fluid flow path (8) through which fluid can flow between the connector system first and second ends (41 )(42).
- the second valve-biasing member (68) can be configured as a resiliently flexible member (58); however, the second valve-biasing member (68) need not be limited to this particular configuration.
- the resiliently flexible member (58) can bias the second valve (64) toward the second valve closed position (69) in which the second valve (64) sealably occludes the second port (66) (as shown in the example of Figure 5H and Figure 7G).
- the resiliently flexible member (58) can be flexed toward a flexed condition (60) (as shown in the examples of Figure 14A through Figure 14G), allowing the second valve (64) to travel within the second valve seat (65) toward the second valve open position (70) away from the second port (66), thereby permitting fluid flow through the second port (66) and accordingly, through the second passageway (6) to provide the second passageway open condition (71) (as shown in the example of Figure 5G).
- the resiliently flexible member (58) can be flexed toward the flexed condition (60) upon forcible urging resulting from connection of the female and male couplers (3)(5), thus allowing the second valve (64) to travel within the second valve seat (65) toward the second valve open position (70) away from the second port (66), thereby permitting fluid flow through the second port (66) and accordingly, through the second passageway (6) to provide the second passageway open condition (71).
- the first passageway (4) of the female coupler (3) can fluidicly communicate with the second passageway (6) to provide the fluid flow path (8) through which fluid can flow between the connector system first and second ends (41 )(42).
- the resiliently flexible member (58) can be configured as a plurality of resiliently flexible members (58) which dispose in circumferentially spaced-apart relation to define an internal space (61 ). Additionally, an angled surface (62) can be disposed in axially-adjacent relation to the plurality of resiliently flexible members (58).
- the plurality of resiliently flexible members (58) move axially toward the angled surface (62), whereby the angled surface (62) can be received within the internal space (61) while forcibly urging the plurality of resiliently flexible members (58) to flex about the angled surface (62) toward the flexed condition (60) (as shown in the examples of Figure 14A through Figure 14G).
- the second valve (64) travels within the second valve seat (65) toward the second valve open position (70) away from the second port (66), thereby permitting fluid flow through the second port (66) and accordingly, through the second passageway (6) to provide the second passageway open condition (71 ).
- the plurality of resiliently flexible members (58) are biased toward the non-flexed condition (59) (as shown in the examples of Figure 13 A through Figure 13G), biasing the second valve (64) toward the second valve closed position (69) in which the second valve (64) sealably occludes the second port (66).
- the resiliently flexible member (58) and the second valve (64) can be formed as a one-piece construct; however, the invention need not be so limited.
- the connector system (1 ), as described above, can further include at least one tube (2) coupled to a connector system end (41)(42), for example the connector system first end (41), which can be configured as a barb (77). Accordingly, the tube (2) can engage with the barb (77), for example via frictional engagement about the barb (77), to securely couple the tube (2) to the connector system (1).
- the tube (2) can be configured as extension tubing (78), for example flexible extension tubing (78) such as a J-loop (79), having opposing J-loop first and second ends (80)(81 ), whereby the J- loop first end (81 ) can engage with the barb (77) outwardly extending from the connector system first end (41 ) to securely couple the J-loop (79) to the connector system (1 ), and the J-loop second end (81) can be configured to couple to an intravenous (IV) catheter, for example via an IV catheter connector (82) such as a luer lock fitting (83).
- IV intravenous
- the connector system second end (42) can also be configured as a luer lock fitting (83), which may be useful for connecting the connector system (1 ), J-loop (79), and IV catheter to a reservoir, whereby as but one illustrative example, the reservoir may contain fluids for intravenous delivery.
- a luer lock fitting 83
- the reservoir may contain fluids for intravenous delivery.
- the J-loop (79) can be configured to automatically disengage from the connector assembly (1) when a load force exceeds a predetermined threshold for safety.
- a method of making a particular embodiment of a connector system ( 1 ) for releasably connecting tubes (2) can include providing a female coupler (3) having a first passageway (4), providing a male coupler (5) having a second passageway (6), movably coupling a catch (9) to the female coupler (3), coupling a catch-receiving element (10) to the male coupler (5), and movably coupling a release element (1 1) to the female coupler (3); wherein travel of the release element (1 1 ) along a female coupler outer surface (12) of the female coupler (3) disengages the catch (9) from the catch-receiving element (10) to achieve a disconnected condition (13) of the connector system ( 1 ).
- a method of making another embodiment of a connector system (1) for releasably connecting tubes (2) can include providing a female coupler (3) comprising a first conduit (32) defining a first passageway (4), a first valve (33) operable to interrupt fluid flow through the first passageway (4). and a first valve-biasing member (37) disposed outside of the first passageway (4), whereby the first valve-biasing member (37) can be operable to bias the first valve (32) toward a first valve closed position (3); and providing a male coupler (5) comprising a second conduit (63) defining a second passageway (6).
- the method of making the connector system (1) can further include providing additional components of the connector system (1) as described above and in the claims.
- Components of the connector system (1 ) can be formed from one or more of any of a numerous and wide variety of materials capable of providing a functional connector system (1).
- the material can include or consist of: rubber, rubber-like material, plastic, plastic-like material, acrylic, polyamide, polyester, polypropylene, polyethylene, polyvinyl chloride-based materials, silicone-based materials, or the like, or combinations thereof.
- thermoplastics such as acrylic, nylon, polybenzimidazole, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polytetrafluoroethylene, or the like, or combinations thereof
- thermosets such as polyester fiberglass, polyurethanes, rubber, polyoxybenzylmethylenglycolanhydride, urea-formaldehyde foam, melamine resin, epoxy resin, polyimides, cynate esters, polycyanurates, polyester resin, or the like, or combinations thereof
- elastomers such as natural polyisoprene, synthetic polyisoprene, polybutadiene, chloropene rubber, butyl rubber, styrene-butadiene rubber, nitrile rubber, ethylene propylene rubber, epichlorohydrin rubber, polyacrylic rubber, silicone rubber, fluorosilicone rubber, fluoroelastomers, perfluoroelasto
- one or more components of the connector system (1 ) can be formed from an antibacterial material(s).
- one or more components of the connector system (1 ) can be formed entirety from non-metallic material(s).
- components of the connector system (1) can be produced from any of a wide variety of processes depending upon the application, such as press molding, injection molding, fabrication, machining, printing, additive printing, or the like, or combinations thereof, as one piece or assembled from a plurality of pieces into a component of the connector system (1).
- one or more components of the connector system (1) can be disposable or reusable, depending upon the application.
- a method of using a particular embodiment of a connector system (1) for releasably connecting tubes (2) can include obtaining the connector system ( 1 ) comprising: a female coupler (3) having a first passageway (4), a male coupler (5) having a second passageway (6), a catch (9) movably coupled to the female coupler (3), a catch-receiving element (10) coupled to the male coupler (5), whereby upon releasable matable axial coupling of the female and male couplers (3)(5), the catch (9) engages with the catch-receiving element (10) to fix an axial position of the female coupler (3) in relation to the male coupler (5), thereby achieving a connected condition (7) of the connector system (1) in which the first and second passageways (4)(6) dispose in fluidic communication to provide a fluid flow path (8), and a release element (1 1 ) movably coupled to the female coupler (3), whereby travel of the release element (1 1 ) along a female coupler outer surface (12) of the
- the method can further include flowing fluid through the fluid flow path (8).
- the method can further include forcibly urging the release element (1 1) to travel along the female coupler outer surface (12) to disengage the catch (9) from the catch-receiving element (10) to achieve the disconnected condition (13) of the connector system (1).
- a method of using another particular embodiment of a connector system (1) for releasably connecting tubes (2) can include obtaining the connector system (1) comprising a female coupler (3) including a first conduit (32) defining a first passageway (4), a first valve (33) operable to interrupt fluid flow through the first passageway (4); and a first valve-biasing member (37) disposed outside of the first passageway (4), whereby the first valve-biasing member (37) can be operable to bias the first valve (33) toward a first valve closed position (38), and a male coupler (5) including a second conduit (63) defining a second passageway (6), whereby upon releasable matable axial coupling of the female and male couplers (3)(5), a connected condition (7) of the connector system (1) can be achieved, and whereby in the connected condition (13), the first valve (33) is forcibly urged toward a first valve open position (39) to allow fluid to flow through the first passageway (4); coupling a first tube (2) to the female coupler (3)
- the basic concepts of the present invention may be embodied in a variety of ways.
- the invention involves numerous and varied embodiments of a connector system and methods for making and using such a connector system, including the best mode.
- each element of an apparatus or each step of a method may be described by an apparatus term or method term. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all steps of a method may be disclosed as an action, a means for taking that action, or as an element which causes that action. Similarly, each element of an apparatus may be disclosed as the physical element or the action which that physical element facilitates.
- connection should be understood to encompass disclosure of the act of "connecting”— whether explicitly discussed or not— and, conversely, were there effectively disclosure of the act of "connecting", such a disclosure should be understood to encompass disclosure of a “connector” and even a “means for connecting”.
- Such alternative terms for each element or step are to be understood to be explicitly included in the description.
- the term “a” or “an” entity refers to one or more of that entity unless otherwise limited. As such, the terms “a” or “an”, “one or more” and “at least one” can be used interchangeably herein.
- Coupled or derivatives thereof can mean indirectly coupled, coupled, directly coupled, connected, directly connected, or integrated with, depending upon the embodiment.
- each of the connector systems herein disclosed and described ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative embodiments which accomplish each of the functions shown, disclosed, or described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the previous elements disclosed.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Mechanical Engineering (AREA)
- Quick-Acting Or Multi-Walled Pipe Joints (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187023157A KR20180102141A (en) | 2016-01-19 | 2017-01-19 | A connector system for detachably connecting a fluid conduit |
CA3042633A CA3042633A1 (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
AU2017209195A AU2017209195B2 (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
MX2018008621A MX2018008621A (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits. |
JP2018537509A JP2019504970A (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
EP17741950.4A EP3405714A4 (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
AU2023200539A AU2023200539A1 (en) | 2016-01-19 | 2023-02-02 | Connector system for releasably connecting fluid conduits |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662280354P | 2016-01-19 | 2016-01-19 | |
US62/280,354 | 2016-01-19 | ||
US201662299499P | 2016-02-24 | 2016-02-24 | |
US62/299,499 | 2016-02-24 | ||
US15/410,636 US10173046B2 (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
US15/410,636 | 2017-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017127579A1 true WO2017127579A1 (en) | 2017-07-27 |
Family
ID=59314998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/014189 WO2017127579A1 (en) | 2016-01-19 | 2017-01-19 | Connector system for releasably connecting fluid conduits |
Country Status (8)
Country | Link |
---|---|
US (9) | US10173046B2 (en) |
EP (1) | EP3405714A4 (en) |
JP (1) | JP2019504970A (en) |
KR (1) | KR20180102141A (en) |
AU (2) | AU2017209195B2 (en) |
CA (1) | CA3042633A1 (en) |
MX (1) | MX2018008621A (en) |
WO (1) | WO2017127579A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110997056A (en) * | 2017-10-11 | 2020-04-10 | 心脏器械股份有限公司 | Dry disconnect/bubble-free coupling for blood transfer |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10173046B2 (en) | 2016-01-19 | 2019-01-08 | Wilmarc Holdings, Llc | Connector system for releasably connecting fluid conduits |
US10350401B2 (en) | 2017-03-08 | 2019-07-16 | Wilmarc Holdings, Llc | Catch assembly for releasably connecting fluid conduits |
WO2019171371A1 (en) * | 2018-03-05 | 2019-09-12 | Elcam Medical A.C.A.L | Breakaway intra-medical tubing connector assembly |
US11529154B2 (en) | 2018-08-08 | 2022-12-20 | Wilmarc Holdings, Llc | Stool management system |
KR20210144674A (en) | 2019-04-01 | 2021-11-30 | 스웨이지락 캄파니 | Push to Connect Conduit Fittings Assemblies and Devices |
US11555567B2 (en) | 2020-06-30 | 2023-01-17 | Wilmarc Holdings, Llc | Sanitary fitting |
WO2022185313A1 (en) * | 2021-03-03 | 2022-09-09 | Equashield Medical Ltd. | A tamper proof luer lock connector and a valve arrangement for an adaptor |
EP4433731A1 (en) | 2021-11-17 | 2024-09-25 | Swagelok Company | Check valve |
FR3129452B1 (en) * | 2021-11-22 | 2024-06-14 | Akwel | Quick-closing coupling fitting. |
US20230213129A1 (en) * | 2022-01-06 | 2023-07-06 | Entegris, Inc. | Aseptic coupling assembly and method of aseptic coupling |
WO2024205934A1 (en) * | 2023-03-30 | 2024-10-03 | Carefusion 303, Inc. | Multi-stage connector dislodgement prevention device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733692A (en) | 1985-05-30 | 1988-03-29 | Nitto Kohki Co., Ltd | Tube coupling |
US20110127767A1 (en) * | 2003-09-12 | 2011-06-02 | Value Plastics, Inc. | Releasable Connection Assembly for Joining Tubing Sections |
US20150076815A1 (en) * | 2013-09-13 | 2015-03-19 | Nordson Corporation | Quick connect fluid conduit connector having latch with integral spring arms for button release |
US20160033068A1 (en) * | 2014-07-29 | 2016-02-04 | Colder Products Company | Bayonet Coupling Assembly |
Family Cites Families (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US964310A (en) | 1910-01-20 | 1910-07-12 | Valentine S Perazio | Pipe-coupling. |
US2208286A (en) | 1937-01-26 | 1940-07-16 | Berger Julius | Pipe coupling |
US2218318A (en) | 1939-05-01 | 1940-10-15 | Blackhawk Mfg Co | Detachable conduit coupling |
US2263293A (en) | 1940-07-03 | 1941-11-18 | Romort Mfg Company | Quick action coupling |
US2304390A (en) | 1940-11-14 | 1942-12-08 | Arthur L Parker | Coupling |
US2456045A (en) * | 1945-01-02 | 1948-12-14 | Brock William Hudson James | Pipe coupling |
US2451218A (en) | 1946-07-13 | 1948-10-12 | Bendix Aviat Corp | Quick disconnect coupling |
US2545796A (en) * | 1947-10-08 | 1951-03-20 | Albert T Scheiwer | Quick-release coupling for highpressure fluid lines |
US2648548A (en) * | 1948-09-02 | 1953-08-11 | Albert T Scheiwer | Valved pipe coupling |
US2777716A (en) | 1949-10-11 | 1957-01-15 | Grav Company Inc | Socket type hose coupler with reciprocating detent |
US2805089A (en) * | 1954-12-30 | 1957-09-03 | Hansen Mfg Co | Pipe coupling with wedged spring ring detent means |
US2854259A (en) * | 1955-05-16 | 1958-09-30 | Snap Tite Inc | Self-sealing detachable coupling |
US2951713A (en) | 1956-03-12 | 1960-09-06 | Hoffstrom Bo Nilsson | Couplings |
US3291152A (en) | 1964-01-07 | 1966-12-13 | Thiokol Chemical Corp | Self sealing quick disconnect coupling |
US3460801A (en) | 1966-07-25 | 1969-08-12 | Hansen Mfg | Valved fluid coupling or conduit |
US3592231A (en) | 1969-10-17 | 1971-07-13 | Parker Hannifin Corp | Quick connect couplings with selective connection means |
US3719194A (en) | 1971-09-23 | 1973-03-06 | Wiggens E Inc | Breakaway coupling |
US3851650A (en) | 1972-06-06 | 1974-12-03 | Kendall & Co | Closed drainage system with double lumen tube |
US3847413A (en) * | 1973-10-23 | 1974-11-12 | Dow Chemical Co | Quick release coupling |
US3916929A (en) | 1974-08-16 | 1975-11-04 | Scovill Manufacturing Co | Self-sealing break-away fitting |
US4019512A (en) | 1975-12-04 | 1977-04-26 | Tenczar Francis J | Adhesively activated sterile connector |
US4135551A (en) | 1977-05-31 | 1979-01-23 | Fmc Corporation | Modified dry-break coupler |
US4220174A (en) | 1978-03-29 | 1980-09-02 | Spitz Russell W | Fluid control valves |
US4187846A (en) | 1978-06-22 | 1980-02-12 | Union Carbide Corporation | Sterile connectors |
JPS5688075A (en) | 1979-12-17 | 1981-07-17 | Mitsubishi Electric Corp | Controller for elevator |
US4421296A (en) * | 1980-07-17 | 1983-12-20 | Medical Valve Corporation | Disposable plastic reciprocating valve |
JPS6214465Y2 (en) * | 1981-03-13 | 1987-04-13 | ||
US4415085A (en) | 1981-12-21 | 1983-11-15 | Eli Lilly And Company | Dry pharmaceutical system |
US4541457A (en) | 1982-03-17 | 1985-09-17 | Colder Products Company | Two-way uncoupling valve assembly |
US4436125A (en) | 1982-03-17 | 1984-03-13 | Colder Products Company | Quick connect coupling |
US4500118A (en) | 1982-12-30 | 1985-02-19 | Colder Products Company | Fitting apparatus for soft tubing |
US4543993A (en) * | 1983-04-04 | 1985-10-01 | Calvin John H | Positive locking connector |
DE3439876A1 (en) | 1983-11-02 | 1985-05-15 | Daikin Industries, Ltd., Osaka | CORROSION RESISTANT QUICK RELEASE COUPLING DEVICE |
JPS6098289A (en) * | 1983-11-02 | 1985-06-01 | ダイキン工業株式会社 | Corrosion-resistant simple detachable piping joint |
US4576359A (en) | 1984-03-15 | 1986-03-18 | Hans Oetiker | Coupling for pressure gas lines |
US4703957A (en) | 1984-10-05 | 1987-11-03 | Colder Products Company | Miniature tube fitting having a barbed stem portion surrounded by a protective shroud and method for making same |
US4630847A (en) | 1984-10-05 | 1986-12-23 | Colder Products Company | Multiple tube connector |
FR2577300B1 (en) * | 1985-02-08 | 1987-08-21 | Fremy Raoul | QUICK CONNECTION WITH RADIAL MOVEMENT LOCK |
JPS6214465U (en) | 1985-07-11 | 1987-01-28 | ||
US4676778A (en) | 1986-10-27 | 1987-06-30 | Nelson Jr Richard L | Long intestinal catheter with sump |
BR8707734A (en) * | 1987-04-29 | 1989-10-03 | Bell Helicopter Textron Inc | HYDRAULIC COUPLING AND HYDRAULIC COUPLING FOR FAST CONNECTION AND DISCONNECTION |
US5033777A (en) | 1987-09-15 | 1991-07-23 | Colder Products Company | Male insert member having integrally molded part line free seal |
US5076615A (en) | 1988-02-19 | 1991-12-31 | Sampson Richard K | Apparatus for connecting an elastic hose to a system with an anti-hose rotation shaped hollow body |
US5165733A (en) | 1988-02-19 | 1992-11-24 | Sampson Richard K | Apparatus for connecting an elastic hose to a system |
US4877145A (en) | 1988-02-29 | 1989-10-31 | Warren R. Manner | Ribbon wrapped intrinsic opening plastic package |
US4946200A (en) | 1988-09-30 | 1990-08-07 | Colder Products Company | Self-tightening soft tubing fitting and method |
US4903995A (en) | 1988-09-30 | 1990-02-27 | Colder Products Company | Self-tightening soft tubing fitting and method of use |
US5104158A (en) | 1989-03-13 | 1992-04-14 | Colder Products Company | Two piece molded female coupling |
US5052725A (en) | 1989-03-13 | 1991-10-01 | Colder Products Company | Two piece molded female coupling |
US4934655A (en) | 1989-03-13 | 1990-06-19 | Colder Products Company | Shutoff valve assembly |
US4953592A (en) | 1989-03-25 | 1990-09-04 | Sanyo Kiki Kabushiki Kaisha | Self-sealing coupling with bypass for hydraulic circuit |
US5259894A (en) | 1990-01-26 | 1993-11-09 | Sampson Richard K | Method for solvent bonding non-porous materials to automatically create variable bond characteristics |
US5009252A (en) | 1990-05-03 | 1991-04-23 | The United States Of America As Represented By The Secretary Of The Army | Air distribution connector valve |
US5137527A (en) | 1990-09-20 | 1992-08-11 | Clintec Nutrition Co. | Enteral-specific spike/bag port system |
USD339417S (en) | 1991-02-14 | 1993-09-14 | Sampson Richard K | Tubing connector |
US5178303A (en) | 1991-05-17 | 1993-01-12 | Colder Products Company, Inc. | Dispensing valve apparatus |
CA2126065A1 (en) | 1991-12-30 | 1993-07-08 | Richard K. Sampson | Modular tubing assembly device |
US5295339A (en) | 1992-08-10 | 1994-03-22 | Manner Value Plastic, Inc. | Simulated individual self-venting overlapping plastic shake |
US5353836A (en) | 1992-08-19 | 1994-10-11 | Colder Products Company | Dispensing valve |
US5546985A (en) * | 1992-09-21 | 1996-08-20 | Proprietary Technology, Inc. | Quick connect fluid coupling |
US5316041A (en) | 1992-10-27 | 1994-05-31 | Colder Product Company | Quick connection coupling valve assembly |
USD357307S (en) | 1992-10-27 | 1995-04-11 | Colder Products Company | Quick connection coupling valve assembly |
USD372093S (en) | 1993-09-10 | 1996-07-23 | Sampson Richard K | Circular tubing connector handle |
USD375160S (en) | 1993-09-10 | 1996-10-29 | Sampson Richard K | Tubing connector handle |
US5529951A (en) | 1993-11-02 | 1996-06-25 | Sony Corporation | Method of forming polycrystalline silicon layer on substrate by large area excimer laser irradiation |
US5390702A (en) | 1994-02-15 | 1995-02-21 | National Coupling Company, Inc. | Undersea hydraulic coupling with pre-sealing guidance |
US5529085A (en) | 1994-09-13 | 1996-06-25 | Richards Industries | Breakaway hose coupling |
USD384731S (en) | 1994-10-04 | 1997-10-07 | Colder Products Company | Quick connection coupling valve assembly |
US6082401A (en) | 1995-01-06 | 2000-07-04 | Colder Products Company | Low spill high flow quick coupling valve assembly |
WO1996021120A1 (en) | 1995-01-06 | 1996-07-11 | Colder Products Company | Low spill high flow quick coupling valve assembly |
US5799987A (en) | 1995-06-05 | 1998-09-01 | Sampson; Richard K. | Fluid fitting coupling system |
US5695221A (en) | 1995-10-02 | 1997-12-09 | Dover Corporation | Fuel hose breakaway units |
USD388876S (en) | 1995-12-04 | 1998-01-06 | Sampson Richard K | Barb connector |
US5848997A (en) | 1996-03-15 | 1998-12-15 | Becton Dickinson And Company | Disconnect for medical access devices |
US5975489A (en) | 1996-04-12 | 1999-11-02 | Colder Products Company | Valve and method for assembling the same |
US5911403A (en) | 1996-04-12 | 1999-06-15 | Colder Products Company | Valve and method for assembling the same |
US5826610A (en) | 1996-05-06 | 1998-10-27 | Vita International, Inc. | Breakaway coupling device |
US6161578A (en) | 1996-10-09 | 2000-12-19 | Colder Products Company | Low spill high flow quick coupling valve assembly |
US5845943A (en) | 1996-12-02 | 1998-12-08 | Colder Products Company | Hybrid insert for fluid couplings |
US5837180A (en) | 1997-02-05 | 1998-11-17 | Fluoroware, Inc. | Composite plastic sanitary fitting |
US5938244A (en) | 1997-06-20 | 1999-08-17 | Colder Products Company | Apparatus for forming fluid tight seal between coupling body and insert |
SE510689C2 (en) * | 1997-10-23 | 1999-06-14 | Nyberg Bo Erik | Quick coupling, where both torsion and axial displacement are required for disassembly |
US6050297A (en) | 1998-11-17 | 2000-04-18 | Dresser Industries, Inc. | Breakaway hose coupling for fuel dispensers |
FR2786848B1 (en) * | 1998-12-02 | 2001-02-09 | Legris Sa | BALL COUPLER |
US6095191A (en) | 1998-12-03 | 2000-08-01 | National Coupling Company Inc. | Undersea hydraulic coupling with tapered probe |
JP3442683B2 (en) * | 1999-03-01 | 2003-09-02 | 日東工器株式会社 | Pipe fittings |
US6231089B1 (en) | 1999-03-10 | 2001-05-15 | Colder Products Company | Two piece molded female coupling |
US6302147B1 (en) | 1999-04-08 | 2001-10-16 | Joseph Lorney Rose | Automatic dry release valve coupling |
DK173857B1 (en) | 1999-08-06 | 2001-12-27 | Maersk Medical As | Hose connection for urine collection vessel |
JP3313675B2 (en) * | 1999-10-18 | 2002-08-12 | 日東工器株式会社 | Socket for fittings |
EP1232094B1 (en) | 1999-11-10 | 2007-12-19 | Scholle Corporation | Collapsible bag for dispensing liquids and method |
US6382593B1 (en) | 2000-03-06 | 2002-05-07 | Colder Products Company | Fluid coupling |
US6206040B1 (en) | 2000-03-28 | 2001-03-27 | National Coupling Company Inc. | Undersea hydraulic coupling |
US6672565B2 (en) | 2000-04-03 | 2004-01-06 | Larry R. Russell | Dual snap action for valves |
US20020011730A1 (en) | 2000-05-26 | 2002-01-31 | Stickan Kelley Allen | Apparatus and method for connecting flow conveyances |
WO2002006711A1 (en) | 2000-07-13 | 2002-01-24 | Colder Products Company | Fluid coupling valve assembly |
US6557824B1 (en) * | 2000-10-20 | 2003-05-06 | Eaton Aeroquip | Releasable coupling assembly |
DE10059052A1 (en) * | 2000-11-28 | 2002-06-06 | Froh House Tech Gmbh & Co Kg | Telescopic vacuum cleaner suction pipe |
BR0115698A (en) | 2000-12-18 | 2004-02-10 | Colder Prod Co | Coupling and closing apparatus for dispensing valve assembly |
US6464260B2 (en) | 2001-01-26 | 2002-10-15 | M. M. Buddy Barrier | Latch screw coupling and method of using same |
EP1300623B1 (en) * | 2001-02-28 | 2010-05-12 | Nitto Kohki Co., Ltd. | Pipe joint |
ATE308700T1 (en) | 2001-03-16 | 2005-11-15 | Colder Prod Co | CONNECTING DEVICE AND METHOD FOR COUPLING BIOLOGICAL DEVICES TO A SOURCE |
US6649829B2 (en) | 2001-05-21 | 2003-11-18 | Colder Products Company | Connector apparatus and method for connecting the same for controlling fluid dispensing |
US20020190453A1 (en) | 2001-06-15 | 2002-12-19 | Colder Products Company | Coated spring and method of making the same |
EP1440262A2 (en) | 2001-09-28 | 2004-07-28 | Colder Products Company | Closure valve apparatus for fluid dispensing |
US6705591B2 (en) | 2001-10-02 | 2004-03-16 | Colder Products Company | Poppet valve and method of making same |
AU2003231036A1 (en) | 2002-04-18 | 2003-11-03 | Colder Products Company | Closure device with self-aligning poppet |
DE10236059A1 (en) * | 2002-08-06 | 2004-02-26 | Gather Industrie Gmbh | Quick coupler for pipes, is made up of two sections, one of which contains valve piston which closes it until sections are connected, when contact in second section fits into recess in piston and opens it |
US7147627B2 (en) | 2002-08-21 | 2006-12-12 | Hollister Incorporated | Bowel management system |
US7352771B2 (en) | 2002-10-08 | 2008-04-01 | Colder Products Company | Data collision detection device and method |
US7544191B2 (en) | 2002-10-22 | 2009-06-09 | Baxter International Inc. | Formed, filled, sealed solution container, port and method for establishing flow between the container and an administration set |
JP3878903B2 (en) * | 2002-10-25 | 2007-02-07 | 日東工器株式会社 | Pipe fitting |
AT412322B (en) | 2002-12-20 | 2005-01-25 | W & H Dentalwerk Buermoos Gmbh | QUICK COUPLING FOR CONNECTING DEVICES OF A MEDICAL OR SURGICAL HAND-PARTICLE SYSTEM WITH A SUPPLY TUBE |
US6902144B2 (en) | 2003-01-10 | 2005-06-07 | Colder Products Company | Connector apparatus with seal protector and method of the same |
US20040222180A1 (en) | 2003-04-18 | 2004-11-11 | Wicks Jeffrey Clark | Apparatus for dispensing fluid into or drawing fluid from a container using a syringe |
US6962275B2 (en) | 2003-05-19 | 2005-11-08 | Colder Products Company | Fluid coupling with disposable connector body |
JP3940381B2 (en) * | 2003-05-30 | 2007-07-04 | 日東工器株式会社 | Sockets and plugs for pipe fittings |
DE10326181B4 (en) | 2003-06-06 | 2008-04-30 | Cvp Clean Value Plastics Gmbh | Wood-based panel and method for its production |
US7547047B2 (en) | 2003-07-02 | 2009-06-16 | Colder Products Company | Coupler and method of making molded coupler |
KR101118072B1 (en) | 2003-07-07 | 2012-02-24 | 씨브이피 클린 밸류 플라스틱스 게엠베하 | Method for producing a fibrous material |
ATE407320T1 (en) | 2003-07-17 | 2008-09-15 | Colder Prod Co | CLUTCH WITH LOCKING MECHANISM |
US7080665B2 (en) | 2003-09-09 | 2006-07-25 | Colder Products Company | Connector apparatus and method of coupling bioprocessor equipment to a media source |
US8016816B2 (en) | 2003-09-09 | 2011-09-13 | Convatec Technologies Inc. | Fecal management appliance and method and apparatus for introducing same |
USD503778S1 (en) | 2003-09-12 | 2005-04-05 | Value Plastics, Inc. | Tube connector |
US20050057042A1 (en) | 2003-09-12 | 2005-03-17 | Wicks Jeffrey Clark | Push button bayonet tube connector |
CN1946835A (en) | 2004-04-27 | 2007-04-11 | 巴克斯特国际公司 | Stirred-tank reactor system |
WO2005107006A1 (en) | 2004-04-27 | 2005-11-10 | Colder Products Company | Antenna for radio frequency identification reader |
US7546857B2 (en) | 2004-05-06 | 2009-06-16 | Colder Products Company | Connect/disconnect coupling for a container |
USD612021S1 (en) | 2004-07-15 | 2010-03-16 | Colder Products Company | Fluid coupling face |
WO2006031534A1 (en) | 2004-09-09 | 2006-03-23 | Colder Products Company | Penetrable membrane structure and coupler incorporating the same in a fluid path |
WO2006036863A1 (en) | 2004-09-24 | 2006-04-06 | Colder Products Company | Coupler with radio frequency identification tag |
US8075540B2 (en) | 2004-11-09 | 2011-12-13 | Hollister Incorporated | Bowel management system with physiologic sensors |
US7828336B2 (en) * | 2004-12-09 | 2010-11-09 | Adroit Development, Inc. | Quick disconnect safety connector |
US7708025B2 (en) | 2005-03-07 | 2010-05-04 | Colder Products Company | Poppet valve member |
EP1866611B1 (en) | 2005-03-17 | 2014-09-10 | Colder Products Company | Coupling device |
DE102005013693A1 (en) | 2005-03-21 | 2006-09-28 | Cvp Clean Value Plastics Gmbh | Process and plant for producing a pulp from agglomerated mixed plastic |
GB0508275D0 (en) | 2005-04-25 | 2005-06-01 | Visual Edge Ltd | Fastening system |
US7448653B2 (en) | 2005-06-10 | 2008-11-11 | Value Plastics, Inc. | Female connector for releasable coupling with a male connector defining a fluid conduit |
EP1910730B1 (en) | 2005-07-26 | 2010-04-14 | Colder Products Company | Coupling assembly with overmold sealing structures and method of forming the same |
US7575024B2 (en) * | 2005-11-05 | 2009-08-18 | Snap-Tite Technologies, Inc. | Threaded coupling with flow shutoff |
US7806139B2 (en) | 2006-01-20 | 2010-10-05 | Value Plastics, Inc. | Fluid conduit coupling assembly having male and female couplers with integral valves |
SE528826C2 (en) | 2006-02-01 | 2007-02-27 | Nyberg Bo Erik | Hose connection, includes first component with female part comprising spring biased locking sleeve for holding ball in place to fix male part into position |
EP1996851B1 (en) | 2006-03-13 | 2011-11-02 | Colder Products Company | Connection state sensing for coupling device |
KR100717759B1 (en) * | 2006-05-04 | 2007-05-11 | 삼성에스디아이 주식회사 | Fuel cartridge coupling apparatus for fuel cell |
EP2024673B1 (en) | 2006-05-15 | 2013-05-15 | Colder Products Company | Aseptic coupling devices |
JP4787682B2 (en) * | 2006-06-02 | 2011-10-05 | 日東工器株式会社 | Joint and socket used for this joint |
EP2051928A2 (en) | 2006-07-11 | 2009-04-29 | Colder Products Company | Connect/disconnect coupling for a container |
USD639398S1 (en) | 2006-07-26 | 2011-06-07 | Colder Products Company | Fluid coupling |
CN101534876B (en) | 2006-10-17 | 2013-02-13 | C.R.巴德有限公司 | Waste management system |
WO2008052140A2 (en) * | 2006-10-25 | 2008-05-02 | Icu Medical, Inc. | Medical connector |
FR2908494B1 (en) | 2006-11-15 | 2008-12-26 | Legris Sa | QUICK CONNECTOR |
DE102006054770B4 (en) | 2006-11-17 | 2015-12-10 | Cvp Clean Value Plastics Gmbh | Process for the recycling of waste plastic, in particular mixed plastic |
WO2008071012A1 (en) * | 2006-12-13 | 2008-06-19 | Oscar Meier Ag | Quick connect coupling for connecting hydraulic lines, especially in earth moving machines and the interchangeable add-on devices and tools thereof |
US7976072B2 (en) | 2007-03-06 | 2011-07-12 | Cooper Technologies Company | Receptacle with rotating release lock |
US8985131B2 (en) * | 2007-06-30 | 2015-03-24 | Koolance, Inc. | Coupling with automatic seal |
FR2919040B1 (en) * | 2007-07-18 | 2013-05-10 | Legris Sa | PERFECT BALL COUPLER |
FR2919372B1 (en) | 2007-07-25 | 2013-05-10 | Legris Sa | LIGHTING CONNECTION. |
JP4912375B2 (en) | 2007-09-28 | 2012-04-11 | 長堀工業株式会社 | Fluid coupling |
USD654573S1 (en) | 2007-11-19 | 2012-02-21 | Value Plastics, Inc. | Female quick connect fitting |
US7757704B2 (en) | 2007-12-26 | 2010-07-20 | Taiwan Vertex Production Corp. | Coupling assembly with a core unit therein |
WO2009097327A1 (en) | 2008-01-28 | 2009-08-06 | Colder Products Company | Quick connect/disconnect coupling assemblies |
JP5317761B2 (en) * | 2008-02-28 | 2013-10-16 | 日東工器株式会社 | Socket for pipe joint and pipe joint |
US20090232595A1 (en) | 2008-03-13 | 2009-09-17 | Benjamin Willemstyn | Connector, Gasket and Method of Attaching The Same |
EP2278945B1 (en) | 2008-05-01 | 2013-12-18 | ConvaTec Technologies Inc. | Rectal drain appliance |
US8235426B2 (en) | 2008-07-03 | 2012-08-07 | Nordson Corporation | Latch assembly for joining two conduits |
USD629894S1 (en) | 2008-07-03 | 2010-12-28 | Value Plastics, Inc. | Male body of connector for fluid tubing |
USD634840S1 (en) | 2008-07-03 | 2011-03-22 | Value Plastics, Inc. | Female body of connector for fluid tubing |
USD630320S1 (en) | 2008-07-03 | 2011-01-04 | Value Plastics, Inc. | Connector for fluid tubing |
US8186393B2 (en) * | 2008-07-24 | 2012-05-29 | Deere & Company | Fluid coupler including valve arrangement for connecting intake conduit of sprayer to transfer conduit of nurse tank during refill operation |
EP2321566A1 (en) | 2008-07-25 | 2011-05-18 | Colder Products Company | Coupling with low friction material |
US7954515B2 (en) | 2008-08-15 | 2011-06-07 | Colder Products Company | Combination cap and plug assembly |
CH699398A1 (en) | 2008-08-22 | 2010-02-26 | Medmix Systems Ag | Fitting for discharge. |
USD612019S1 (en) | 2009-01-28 | 2010-03-16 | Colder Products Company | Coupling body |
USD602128S1 (en) | 2009-01-28 | 2009-10-13 | Colder Products Company | Coupling insert |
EP2409067B1 (en) | 2009-03-16 | 2019-12-11 | Colder Products Company | Aseptic coupling devices |
US9371921B2 (en) | 2009-06-23 | 2016-06-21 | Nordson Corporation | Multi-port valve |
USD655393S1 (en) | 2009-06-23 | 2012-03-06 | Value Plastics, Inc. | Multi-port valve |
US9593518B2 (en) | 2009-09-15 | 2017-03-14 | Colder Products Company | Hinge coupling assembly |
JP5172804B2 (en) * | 2009-09-30 | 2013-03-27 | 日東工器株式会社 | Female fitting for pipe fitting |
US9464741B2 (en) | 2009-12-09 | 2016-10-11 | Nordson Corporation | Button latch with integrally molded cantilever springs |
USD649240S1 (en) | 2009-12-09 | 2011-11-22 | Value Plastics, Inc. | Male dual lumen bayonet connector |
US9388929B2 (en) | 2009-12-09 | 2016-07-12 | Nordson Corporation | Male bayonet connector |
USD650478S1 (en) | 2009-12-23 | 2011-12-13 | Value Plastics, Inc. | Female dual lumen connector |
JP5714028B2 (en) | 2009-12-23 | 2015-05-07 | ノードソン コーポレーションNordson Corporation | Fluid connector latch with profile retraction |
IN2012DN05216A (en) | 2009-12-30 | 2015-10-23 | Ericsson Telefon Ab L M | |
USD649939S1 (en) | 2010-05-25 | 2011-12-06 | Colder Products Company | Fluid and electrical coupling |
USD649938S1 (en) | 2010-05-25 | 2011-12-06 | Colder Products Company | Fluid and electrical coupling |
FR2960425B1 (en) | 2010-05-28 | 2013-03-08 | Sartorius Stedim Biotech Sa | CONNECTION WITH COMMUNICATION BETWEEN CONTAINERS AND / OR BIOPHARMACEUTICAL CONDUITS. |
CN103269744A (en) | 2010-08-06 | 2013-08-28 | 诺信公司 | Shutoff valves for fluid conduit connectors |
US20120153615A1 (en) | 2010-12-10 | 2012-06-21 | Rehder Randall J | Coupling assembly |
EP2654875B1 (en) | 2010-12-22 | 2018-02-21 | Colder Products Company | Breakaway coupling assembly |
US20120179052A1 (en) | 2011-01-10 | 2012-07-12 | Colder Products Company | Biodegradable Fluid Delivery Device |
USD652510S1 (en) | 2011-02-11 | 2012-01-17 | Value Plastics, Inc. | Connector for fluid tubing |
USD652511S1 (en) | 2011-02-11 | 2012-01-17 | Value Plastics, Inc. | Female body of connector for fluid tubing |
USD663022S1 (en) | 2011-02-11 | 2012-07-03 | Nordson Corporation | Male body of connector for fluid tubing |
EP2683614B1 (en) | 2011-03-07 | 2018-05-02 | Nordson Corporation | Sanitary fitting with parabolic entrance |
US20120259237A1 (en) | 2011-04-05 | 2012-10-11 | Carticept Medical, Inc. | Fluid injection system comprising a motion transfer cable |
GB2505132A (en) | 2011-06-08 | 2014-02-19 | Nxstage Medical Inc | Methods, devices, and systems for coupling fluid lines |
SE535936C2 (en) * | 2011-06-30 | 2013-02-26 | Cejn Ab | Coupling with safety lock |
DE102011108062A1 (en) | 2011-07-21 | 2013-01-24 | Cvp Clean Value Plastics Gmbh | Apparatus and method for removing contaminants on plastic chips |
DE102011108161A1 (en) | 2011-07-21 | 2013-01-24 | Cvp Clean Value Plastics Gmbh | Method for removing contaminants on plastic chips |
US8974437B2 (en) | 2011-07-28 | 2015-03-10 | Applied Medical Technology, Inc. | Coupling for medical fluids |
USD699841S1 (en) | 2011-07-29 | 2014-02-18 | Nordson Corporation | Female body of connector for fluid tubing |
USD698440S1 (en) | 2011-07-29 | 2014-01-28 | Nordson Corporation | Connector for fluid tubing |
US9808612B2 (en) | 2011-08-10 | 2017-11-07 | Fisher & Paykel Healthcare Limited | Conduit connector for a patient breathing device |
EP2766650B1 (en) | 2011-10-14 | 2016-07-06 | Colder Products Company | Coupling |
EP2814561B1 (en) | 2012-02-15 | 2018-04-11 | Colder Products Company | Aseptic coupling devices |
WO2013126766A2 (en) | 2012-02-24 | 2013-08-29 | Colder Products Company | Coupling for fluid bladder |
DE102012005189A1 (en) | 2012-03-16 | 2013-09-19 | Fresenius Medical Care Deutschland Gmbh | Medical device with a socket unit for connecting a device for providing medical fluids |
DE102012205490A1 (en) * | 2012-04-03 | 2013-10-10 | Parker Hannifin Manufacturing Germany GmbH & Co. KG | connecting element |
US9364653B2 (en) | 2012-04-27 | 2016-06-14 | Colder Products Company | Aseptic coupling devices |
WO2013188672A1 (en) | 2012-06-15 | 2013-12-19 | Colder Products Company | Quick disconnect coupling |
USD724703S1 (en) | 2012-08-01 | 2015-03-17 | Colder Products Company | Coupler with a side port |
CN105143748A (en) | 2013-03-15 | 2015-12-09 | 可得制品公司 | Low-spill coupling assembly |
US11067210B2 (en) | 2013-03-15 | 2021-07-20 | Colder Products Company | Low-spill coupling assembly |
WO2014151810A1 (en) | 2013-03-15 | 2014-09-25 | Colder Products Company | Leak detection assembly |
CN105247257B (en) | 2013-03-29 | 2018-05-08 | Emd密理博公司 | Sterile connection/disconnection connector and method |
GB2528013A (en) * | 2013-05-01 | 2016-01-06 | Parker Hannifin Corp | Twist-to-connect dry break coupling |
EP3488895B1 (en) | 2013-07-23 | 2022-04-20 | Colder Products Company | Aseptic coupling devices |
WO2015057574A1 (en) | 2013-10-14 | 2015-04-23 | Colder Products Company | Reagent magazine with motor latch coupler |
WO2015127205A1 (en) | 2014-02-20 | 2015-08-27 | Boston Scientific Scimed, Inc. | Peelable sheath |
WO2015138906A1 (en) | 2014-03-14 | 2015-09-17 | Colder Products Company | Genderless coupling devices |
US9752714B2 (en) | 2014-03-28 | 2017-09-05 | Eldon James Corp. | Releasable valved coupler |
JP6214465B2 (en) | 2014-05-19 | 2017-10-18 | 大阪ガスケミカル株式会社 | Resin fluidity improvement method |
WO2016011182A1 (en) | 2014-07-15 | 2016-01-21 | Colder Products Company | Fluid manifold assembly |
US10081194B2 (en) | 2014-08-14 | 2018-09-25 | Colder Products Company | Mechanical lock-out mechanism for motor latch coupler |
WO2016025877A2 (en) * | 2014-08-14 | 2016-02-18 | Flomax International, Inc. | Nozzle and keyed flush face receiver |
EP3204680B1 (en) | 2014-10-09 | 2023-07-26 | Colder Products Company | Female coupling device |
USD761395S1 (en) | 2015-03-09 | 2016-07-12 | Colder Products Company | Fluid coupling |
USD762826S1 (en) | 2015-03-09 | 2016-08-02 | Colder Products Company | Fluid coupling |
CN110608330B (en) | 2015-04-20 | 2021-05-07 | 考尔得产品公司 | Single-use sterile fluid coupling |
TW201713575A (en) | 2015-09-30 | 2017-04-16 | 陶氏全球科技有限責任公司 | Fitment with ethylene/[alpha]-olefin multi-block copolymer |
US10173046B2 (en) | 2016-01-19 | 2019-01-08 | Wilmarc Holdings, Llc | Connector system for releasably connecting fluid conduits |
US10350401B2 (en) * | 2017-03-08 | 2019-07-16 | Wilmarc Holdings, Llc | Catch assembly for releasably connecting fluid conduits |
-
2017
- 2017-01-19 US US15/410,636 patent/US10173046B2/en active Active
- 2017-01-19 KR KR1020187023157A patent/KR20180102141A/en not_active Application Discontinuation
- 2017-01-19 MX MX2018008621A patent/MX2018008621A/en unknown
- 2017-01-19 JP JP2018537509A patent/JP2019504970A/en active Pending
- 2017-01-19 EP EP17741950.4A patent/EP3405714A4/en active Pending
- 2017-01-19 WO PCT/US2017/014189 patent/WO2017127579A1/en active Application Filing
- 2017-01-19 AU AU2017209195A patent/AU2017209195B2/en active Active
- 2017-01-19 CA CA3042633A patent/CA3042633A1/en active Pending
- 2017-03-01 US US15/447,033 patent/US10293150B2/en active Active
-
2018
- 2018-06-29 US US16/024,414 patent/US11478625B2/en active Active
-
2019
- 2019-05-17 US US16/415,640 patent/US11478626B2/en active Active
-
2020
- 2020-02-26 US US16/802,412 patent/US11027111B2/en active Active
-
2021
- 2021-06-07 US US17/341,131 patent/US11534594B2/en active Active
-
2022
- 2022-10-21 US US17/971,271 patent/US12115334B2/en active Active
- 2022-10-24 US US17/971,966 patent/US20230181889A1/en active Pending
- 2022-12-22 US US18/086,833 patent/US11883624B2/en active Active
-
2023
- 2023-02-02 AU AU2023200539A patent/AU2023200539A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733692A (en) | 1985-05-30 | 1988-03-29 | Nitto Kohki Co., Ltd | Tube coupling |
US20110127767A1 (en) * | 2003-09-12 | 2011-06-02 | Value Plastics, Inc. | Releasable Connection Assembly for Joining Tubing Sections |
US20150076815A1 (en) * | 2013-09-13 | 2015-03-19 | Nordson Corporation | Quick connect fluid conduit connector having latch with integral spring arms for button release |
US20160033068A1 (en) * | 2014-07-29 | 2016-02-04 | Colder Products Company | Bayonet Coupling Assembly |
Non-Patent Citations (1)
Title |
---|
See also references of EP3405714A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110997056A (en) * | 2017-10-11 | 2020-04-10 | 心脏器械股份有限公司 | Dry disconnect/bubble-free coupling for blood transfer |
CN110997056B (en) * | 2017-10-11 | 2021-08-27 | 心脏器械股份有限公司 | Dry disconnect/bubble-free coupling for blood transfer |
Also Published As
Publication number | Publication date |
---|---|
MX2018008621A (en) | 2018-12-10 |
EP3405714A4 (en) | 2019-10-16 |
US20230134482A1 (en) | 2023-05-04 |
US20230142854A1 (en) | 2023-05-11 |
US20190269901A1 (en) | 2019-09-05 |
US11478626B2 (en) | 2022-10-25 |
US10173046B2 (en) | 2019-01-08 |
CA3042633A1 (en) | 2017-07-27 |
AU2017209195A1 (en) | 2018-07-19 |
KR20180102141A (en) | 2018-09-14 |
AU2017209195B2 (en) | 2022-11-03 |
US20210290927A1 (en) | 2021-09-23 |
EP3405714A1 (en) | 2018-11-28 |
US20230181889A1 (en) | 2023-06-15 |
US11027111B2 (en) | 2021-06-08 |
JP2019504970A (en) | 2019-02-21 |
US20170205011A1 (en) | 2017-07-20 |
US20180304066A1 (en) | 2018-10-25 |
US12115334B2 (en) | 2024-10-15 |
US11534594B2 (en) | 2022-12-27 |
US11478625B2 (en) | 2022-10-25 |
US20200188651A1 (en) | 2020-06-18 |
US11883624B2 (en) | 2024-01-30 |
US10293150B2 (en) | 2019-05-21 |
US20170203089A1 (en) | 2017-07-20 |
AU2023200539A1 (en) | 2023-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11027111B2 (en) | Connector system for releasably connecting fluid conduits | |
US11191942B2 (en) | Catch assembly for releasably connecting fluid conduits | |
US9752714B2 (en) | Releasable valved coupler | |
US20240358992A1 (en) | Genderless Aseptic Connector | |
US11555567B2 (en) | Sanitary fitting | |
WO2024226772A1 (en) | Genderless aseptic connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741950 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/008621 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2018537509 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017209195 Country of ref document: AU Date of ref document: 20170119 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187023157 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187023157 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017741950 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017741950 Country of ref document: EP Effective date: 20180820 |
|
ENP | Entry into the national phase |
Ref document number: 3042633 Country of ref document: CA |