WO2017122346A1 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device Download PDF

Info

Publication number
WO2017122346A1
WO2017122346A1 PCT/JP2016/051130 JP2016051130W WO2017122346A1 WO 2017122346 A1 WO2017122346 A1 WO 2017122346A1 JP 2016051130 W JP2016051130 W JP 2016051130W WO 2017122346 A1 WO2017122346 A1 WO 2017122346A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
test body
measurement apparatus
specimen
array probe
Prior art date
Application number
PCT/JP2016/051130
Other languages
French (fr)
Japanese (ja)
Inventor
友則 木村
石津 文雄
修三 和高
明弘 坂本
田中 洋次
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016544630A priority Critical patent/JP6081028B1/en
Priority to PCT/JP2016/051130 priority patent/WO2017122346A1/en
Publication of WO2017122346A1 publication Critical patent/WO2017122346A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Definitions

  • the present invention relates to an ultrasonic measurement technique for nondestructively measuring the physical property or state (hereinafter also referred to as “property”) of the surface and inside of a specimen using ultrasonic waves.
  • an ultrasonic wave is incident on the inside of a test body, and an ultrasonic wave (hereinafter also referred to as a “reflected echo”) reflected by a defective part inside the test body is detected, thereby the defective part.
  • a phased array method is a technique using an array probe including a large number of vibration elements arranged in a one-dimensional array or a two-dimensional array, and electronically controls the timing at which ultrasonic waves are emitted from the large number of vibration elements. This is a method for controlling the synthesized wave of the ultrasonic wave, that is, the wavefront of the ultrasonic beam. If the phased array method is used, for example, the propagation direction and spread of the ultrasonic beam can be controlled electronically, and the focal position of the ultrasonic beam inside the specimen can be controlled electronically.
  • Patent Document 1 discloses an ultrasonic flaw detection method that uses an array probe to detect oblique flaws in a test tube.
  • the diagonal flaw means a flaw extending in a direction inclined from the tube axis direction of the tube to be inspected in the tube to be inspected.
  • the incident angle in the tube circumferential direction and the incident angle in the tube axis direction of the ultrasonic beam are calculated by calculation using a predetermined formula.
  • the incident angle in the tube axis direction of the ultrasonic beam is set to the calculated value by electronically controlling the oscillation timing of each vibration element constituting the array probe, and the array type ultrasonic probe is used.
  • the incident angle in the tube circumferential direction of the ultrasonic beam is set to the calculated value by mechanically controlling the inclination in the entire tube circumferential direction or the amount of misalignment from the tube axis center.
  • JP 2006-177845 A paragraphs 0020 to 0021 and FIG. 1 and paragraphs 0023 to 0050
  • Oblique flaws in the pipe to be inspected may occur within a range where the inclination angle of the oblique flaw is 0 ° to 90 °.
  • the radiation directivity of each vibration element constituting the array probe is not taken into account, if the inclination angle is large, there is a possibility that the detection accuracy of the oblique flaw is lowered.
  • an object of the present invention is to provide a test body having a columnar structure such as a tube to be inspected, which is capable of accurately determining the property of a defect site extending obliquely with respect to the major axis direction of the test body. It is to provide a sound wave measuring device.
  • An ultrasonic measurement apparatus is an ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure, and includes a plurality of ultrasonic radiation elements arranged along a predetermined element arrangement direction.
  • An array probe including: an actuator that moves the array probe in a direction orthogonal to both the maximum radiation direction of the plurality of ultrasonic radiation elements and the element arrangement direction; and the plurality of ultrasonic radiation elements Ultrasonically controlling the first incident angle of the ultrasonic beam incident on the specimen when viewed from the circumferential direction of the specimen by electronically controlling the timing at which the ultrasonic waves are emitted from each of the specimens
  • a second control unit that controls the operation of the actuator and adjusts the amount of movement of the array probe to thereby adjust a second amount of the ultrasonic beam to the specimen when viewed from the longitudinal direction of the specimen.
  • a movement control unit for controlling the angle, the maximum radiation direction of the plurality of ultrasound radiating element is characterized in that it is inclined with respect to the element array direction.
  • the present invention since the decrease in detection sensitivity due to the radiation directivity of the ultrasonic radiation element is suppressed, it is possible to determine the property of the defective part inside the specimen with high accuracy.
  • FIG. 2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. 3 is a top view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. 4A is a diagram showing a state of transmission of ultrasonic waves between water and steel
  • FIG. 4B is a graph showing a measurement result of a round-trip transmittance of ultrasonic transverse waves between water and steel.
  • . 4 is a graph showing a relationship between an incident angle and an inclination angle according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of a procedure of the ultrasonic measurement method according to the first embodiment.
  • 2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. 8 is a diagram showing a schematic cross section of an array probe and a test body taken along line VIII-VIII shown in FIG. 3 is a top view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. 2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. 11 is a diagram showing a schematic cross section of an array probe and a test body along the line XI-XI shown in FIG. 10.
  • FIG. 3 is a top view schematically showing an array probe and a test body in Embodiment 1.
  • FIG. It is a graph which shows the example of the measurement result of the radiation directivity of a single vibration element. It is sectional drawing which shows roughly the array probe and test body in a comparative example.
  • FIG. 15 is a diagram showing a schematic cross section of an array probe and a test body along the XV-XV line shown in FIG. 14. It is sectional drawing which shows roughly the array probe and test body in a comparative example.
  • FIG. 17 is a diagram showing a schematic cross section of an array probe and a test body taken along line XVII-XVII shown in FIG. 16. It is sectional drawing which shows roughly the array probe and test body in a comparative example.
  • FIG. 15 is a diagram showing a schematic cross section of an array probe and a test body along the XV-XV line shown in FIG. 14. It is sectional drawing which shows roughly the array probe and test body in a comparative example.
  • FIG. 20 is a diagram showing a schematic cross section of an array probe and a test body along the line XIX-XIX shown in FIG. It is a schematic sectional drawing of the array probe in Embodiment 2 which concerns on this invention. It is a figure which shows schematic structure of the ultrasonic measurement apparatus of Embodiment 3 which concerns on this invention.
  • 6 is a schematic cross-sectional view of an array probe in a third embodiment.
  • FIG. 6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3.
  • FIG. 10 is a top view schematically showing an array probe and a test body in a third embodiment. 6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3.
  • FIG. 6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3.
  • FIG. FIG. 10 is a top view schematically showing an array probe and a test body in a third embodiment. It is a graph which shows the example of the measurement result of the radiation directivity of a single vibration element. It is a schematic sectional drawing of the array probe in Embodiment 4 which concerns on this invention.
  • FIG. 6 is a schematic cross-sectional view of an array probe in a fourth embodiment.
  • FIG. 6 is a schematic cross-sectional view of an array probe in a fourth embodiment.
  • FIG. 10 is a diagram schematically showing an example of an actuator and a drive mechanism in a fourth embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an ultrasonic measurement apparatus 1 according to the first embodiment of the present invention.
  • the ultrasonic measurement apparatus 1 has a function of measuring the properties of a defective portion that may exist on the surface or inside of a test body having a columnar structure, using ultrasonic waves, in a nondestructive manner.
  • the ultrasonic measurement apparatus 1 includes an array probe 10, a transmitter / receiver 20, and an array probe 10 that are to be arranged facing the test body 2 in the X-axis direction of FIG. And an actuator 30 that is moved along.
  • FIG. 1 schematically shows an example of a cross-sectional structure of the array probe 10 and the test body 2 when viewed from the front direction of the test body 2.
  • FIG. 2 is a schematic cross-sectional view of the array probe 10 and the test body 2 taken along the line II-II shown in FIG.
  • FIG. 2 shows a schematic cross section of the array probe 10 and the test body 2 when viewed from the right side of the test body 2.
  • 3 is an external view schematically showing the upper surfaces of the array probe 10 and the test body 2 shown in FIG. Although water exists as a contact medium interposed between the test body 2 and the array probe 3, this contact medium is not shown.
  • the Y-axis direction is a direction parallel to the central axis CA in the longitudinal direction of the test body 2.
  • the test body 2 is a tubular structure having an outer peripheral surface 2a and an inner peripheral surface 2b extending along the Y-axis direction.
  • the outer peripheral surface 2 a is curved along the circumferential direction of the test body 2.
  • An example of this type of tubular structure is a steel pipe having a certain thickness.
  • the measurement object of the ultrasonic measurement apparatus 1 may be a columnar structure that propagates ultrasonic waves, and is not limited to the tubular structure shown in FIGS.
  • the array probe 10 has a plurality of vibration elements Tr,..., Tr fixed to the main body 11 as ultrasonic radiation elements.
  • Each vibration element Tr may be configured using, for example, a piezoelectric element that emits ultrasonic waves in response to a high-frequency excitation signal.
  • the vibration elements Tr,..., Tr are arranged along a predetermined element arrangement direction (in the Y-axis direction in the case of FIG. 2) and have the same radiation directivity. .
  • the maximum radiation direction (direction indicating the maximum radiation intensity) of these vibration elements Tr,..., Tr is inclined at an angle of 90 ° ⁇ 0 with respect to the element arrangement direction (hereinafter, ⁇ 0 is referred to as an offset angle). .)
  • Such an array probe 10 is arranged so that the element arrangement direction is parallel to the central axis CA of the test body 2.
  • Actuator 30 is a mechanism for moving holder 31 that holds array probe 10. That is, the actuator 30 has a circumferential direction of the test body 2 that is orthogonal to both the maximum radiation direction of the vibration elements Tr,..., Tr and the element arrangement direction (Y-axis direction). ) To move the array probe 10.
  • the transceiver 20 includes a main control unit 21, a movement control unit 22 that controls the operation of the actuator 30 according to the control by the main control unit 21, and the control by the main control unit 21.
  • the signal generator 23 for generating the excitation signal group, the transmission amplifier 24 for amplifying the excitation signal group, and the excitation signal group amplified by the transmission amplifier 24 are converted into the vibration elements Tr, .., Tr, a wiring group 28, a receiving amplifier 25 for amplifying a receiving analog signal group input from the wiring group 28, and a receiving analog signal group amplified by the receiving amplifier 25 as a receiving digital signal group
  • an A / D converter 26 for converting the received digital signal group and a memory 27 for storing the received digital signal group. Note that, when the intensity of the reception analog signal group is large, the reception amplifier 25 may be omitted.
  • the main control unit 21 includes an ultrasonic control unit 21A and a property determination unit 21B.
  • the ultrasonic control unit 21A supplies a command signal for exciting the vibration elements Tr,..., Tr in the array probe 10 to the signal generator 23 in accordance with the phased array method. Based on this command signal, the signal generator 23 generates a plurality of excitation signals respectively corresponding to the vibration elements Tr,...
  • the transmission amplifier 24 amplifies these excitation signals and supplies the amplified excitation signals to the vibration elements Tr,..., Tr via the wiring group 28, respectively.
  • the ultrasonic control unit 21 ⁇ / b> A can electronically control the timing at which ultrasonic waves are emitted from each vibration element Tr in the array probe 10 by adjusting the delay time for delaying each excitation signal.
  • the incident angle ⁇ yz is a projection angle of the incident angle ⁇ of the ultrasonic beam Tw on the test body 2 onto the YZ plane (a plane parallel to both the Y-axis direction and the Z-axis direction).
  • the Z-axis direction in the figure is a direction perpendicular to both the X-axis direction and the Y-axis direction.
  • controlling the propagation direction of the ultrasonic beam by electronic control in this way is referred to as “steering” or “beam steering”.
  • the movement control unit 22 can adjust the amount of movement ⁇ in the X-axis direction of the array probe 10 by controlling the operation of the actuator 30.
  • the movement control unit 22 can variably control the incident angle ⁇ xz of the ultrasonic beam Tw when viewed from the longitudinal direction (Y-axis direction) of the test body 2.
  • the incident angle ⁇ xz is a projection angle of the incident angle ⁇ of the ultrasonic beam Tw on the test body 2 onto the XZ plane (a plane parallel to both the X-axis direction and the Z-axis direction).
  • the ultrasonic beam Tw When the ultrasonic beam Tw is incident on the test body 2, it propagates through the test body 2 as a diffracted wave Dw.
  • the vibrating elements Tr,..., Tr in the array probe 10 convert the reflected echoes into electrical signal groups and output the received analog signal groups to the wiring group 28 when the reflected echoes arrive from the test body 2.
  • the reception amplifier 25 amplifies the reception analog signal group input from the wiring group 28.
  • the A / D converter 26 converts the amplified reception analog signal group into a reception digital signal group.
  • the memory 27 stores the received digital signal group.
  • the property determination unit 21B has a function of reading the received digital signal group from the memory 27 and analyzing the received digital signal group to determine the surface and internal properties of the test body 2.
  • the property determination unit 21B can estimate the size of the defect site in the test body 2 based on, for example, the measurement result of the amplitude or intensity of the reflected echo, and the test body 2 based on the measurement result of the propagation time of the reflected echo. It is also possible to estimate the position of the defect site in the inside.
  • the main control unit 21 and the movement control unit 22 described above can be realized by, for example, a computer with a CPU (Central Processing Unit).
  • the main control unit 21 and the movement control unit 22 may be LSI (Large Realization) such as DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). Good.
  • the inner peripheral surface 2b of the test body 2 is also referred to as a defect site Dx (hereinafter referred to as “oblique flaw Dx”) that extends obliquely with respect to the longitudinal direction of the test body 2. ) Is formed.
  • This oblique flaw Dx is inclined at an angle ⁇ (hereinafter also referred to as “flaw inclination angle ⁇ ”) with respect to the longitudinal direction of the specimen 2 as shown in FIG. It is known that the following relational expressions (1) and (2) are established when the properties of such an oblique flaw Dx are measured using ultrasonic waves.
  • FIG. 4A is a diagram schematically illustrating a state in which the transverse wave of the ultrasonic wave UW is transmitted at the boundary surface between water and steel. As shown in FIG. 4A, the ultrasonic wave UW enters the steel from water at an incident angle ⁇ .
  • FIG. 4A is a diagram schematically illustrating a state in which the transverse wave of the ultrasonic wave UW is transmitted at the boundary surface between water and steel. As shown in FIG. 4A, the ultrasonic wave UW enters the steel from water at an incident angle ⁇ .
  • FIG. 4B is a graph showing the reciprocal transmittance of the transverse wave of the ultrasonic wave at the boundary surface between water and steel, and the horizontal axis of this graph shows the incident angle ⁇ .
  • FIG. 4B is a graph showing the incident angle dependency of the round-trip transmittance of the transverse wave. As shown in FIG. 4B, there are 16 ° to 22 ° as an angle range in which the incident angle dependency of the round-trip transmittance is low.
  • the actual incident angle ⁇ may be about 15 ° due to factors such as installation errors or sound speed fluctuations. In this case, the transmittance rapidly increases. May decrease. For this reason, it is preferable to use about 17 ° as the initial setting value of the incident angle ⁇ .
  • the scratch inclination angle ⁇ is small, the property of the oblique scratch can be measured by a method in which the incident angle ⁇ yz of the ultrasonic beam Tw is electronically variably controlled while the incident angle ⁇ xz is fixed at 17 °. It is.
  • the reciprocal transmittance maintains a relatively large value up to about 25 °, but it is preferable that the upper limit of the effective range is about 22 ° in consideration of the reflectance at an oblique flaw.
  • the upper limit of the effective range is about 22 ° in consideration of the reflectance at an oblique flaw.
  • the flaw inclination angle ⁇ exceeds 41 °, the incident angle ⁇ needs to be set to a value of 22 ° or more. This value exceeds the effective range (17 ° to 22 °) of the incident angle that gives a suitable round-trip transmittance.
  • FIG. 6 is a flowchart schematically showing an example of a basic procedure of ultrasonic measurement processing by the transceiver 20.
  • the ultrasonic control unit 21A sets control conditions for the array probe 10 (step ST11). Specifically, the ultrasonic control unit 21A sets the target values of the incident angles ⁇ xz and ⁇ yz to appropriate initial values.
  • the movement control unit 22 moves the array probe 10 by the movement amount ⁇ so that the incident angle ⁇ xz of the ultrasonic beam Tw becomes the target value (step ST12).
  • the ultrasonic control unit 21A transmits the ultrasonic beam Tw from the array probe 10 to the test body 2 so that the incident angle ⁇ yz of the ultrasonic beam Tw becomes a target value (step ST13).
  • the transceiver 20 receives the received analog signal group detected by the array probe 10 (step ST14). That is, the reception amplifier 25 amplifies the reception analog signal group input from the wiring group 28. The A / D converter 26 converts the amplified reception analog signal group into a reception digital signal group. Then, the memory 27 stores this received digital signal group (step ST15).
  • the ultrasonic control unit 21A determines whether or not the scanning of the test object 2 within a predetermined angle range has been completed (step ST16). When the scanning of the predetermined angle range is not completed (NO in step ST16), the ultrasonic control unit 21A changes the control condition regarding the steering (step ST17). Thereafter, steps ST13 to ST16 are executed. When the scanning of the predetermined angle range is completed (YES in step ST16), the ultrasonic control unit 21A ends the transmission of the ultrasonic beam Tw (step ST18). Then, the property determination unit 21B reads the received digital signal group from the memory 27, analyzes the received digital signal group, and determines the surface and internal properties of the test body 2 (step ST19).
  • the ultrasonic measurement apparatus 1 is characterized in that the maximum radiation direction of the vibration elements Tr,..., Tr in the array probe 10 is inclined at an angle of 90 ° ⁇ 0 with respect to the element arrangement direction, and is non-zero. a point having an offset angle alpha 0 of.
  • the vibrating element Tr, ..., the maximum radiation direction of the Tr is also inclined at an angle of 90 °-.alpha. 0 relative to the longitudinal direction of the test material 2.
  • a decrease in detection sensitivity due to the radiation directivity of the vibration element Tr is suppressed as compared with the case where the maximum radiation direction of the vibration elements Tr,. Therefore, the property of the defective part of the test body 2 can be determined with high accuracy.
  • the defect site D1 is formed on the inner peripheral surface 2b of the test body 2 so as to extend in the longitudinal direction of the test body 2.
  • 8 is a diagram showing a schematic cross section of the array probe 10 and the test body 2 along the line VIII-VIII shown in FIG. 7, and
  • FIG. 9 is a diagram showing the array probe 10 and the test shown in FIG. 2 is an external view schematically showing an upper surface of a body 2.
  • FIG. 8 the vibration elements Tr,..., Tr of the array probe 10 have a non-zero offset angle ⁇ 0 .
  • test material 2 is steel, the offset angle alpha 0 of the vibrating element Tr is assumed to be set to + 8.5 °.
  • the movement control unit 22 moves the array probe 10 from the apex position of the test body 2 in the negative direction of the X axis.
  • the incident angle ⁇ xz of the ultrasonic beam Tw is set to 17 °.
  • the incident angle ⁇ yz of the ultrasonic beam Tw is set to 0 °. Need to be done. Therefore, in the ultrasonic control unit 21A, as shown in FIG.
  • the propagation direction of the ultrasonic beam Tw is inclined by an angle ⁇ (hereinafter also referred to as “steering angle ⁇ ”) from the maximum radiation direction of the vibration element Tr.
  • the ultrasonic beam Tw is steered so as to be in the direction.
  • the steering angle ⁇ is set to ⁇ 8.5 °, which cancels the offset angle ⁇ 0 .
  • the defect site D2 is formed on the inner peripheral surface 2b of the test body 2 so as to extend in a direction orthogonal to the longitudinal direction of the test body 2.
  • 11 is a diagram showing a schematic cross section of the array probe 10 and the test body 2 along the line XI-XI shown in FIG. 10, and
  • FIG. 12 shows the array probe 10 and the test shown in FIG. 2 is an external view schematically showing an upper surface of a body 2.
  • FIG. 10 to 12 it is assumed that the test body 2 is a steel pipe and the offset angle ⁇ 0 of the vibration element Tr is set to + 8.5 °.
  • the incident angle ⁇ xz of the ultrasonic beam Tw is set to 0 °.
  • the defect portion D2 can be detected with high sensitivity. Therefore, as shown in FIG.
  • the angle ⁇ yz needs to be set to 17 °. Therefore, the steering angle ⁇ in this case is set to + 8.5 °.
  • the movement control unit 22 changes the movement amount ⁇ of the array probe 10 from the apex position of the test body 2. By doing so, the incident angle ⁇ xz viewed from the longitudinal direction of the specimen 2 may be changed within a range of 0 ° to 17 °.
  • the ultrasonic control unit 21A changes the steering angle ⁇ of the ultrasonic beam Tw within a range of ⁇ 8.5 ° to + 8.5 °, so that the incident angle ⁇ yz viewed from the circumferential direction of the test body 2 is obtained. Can be varied within a range of 0 ° to 17 °.
  • the range of the steering angle ⁇ corresponding to the range of 0 ° to 90 ° of the flaw inclination angle ⁇ can be set to ⁇ 8.5 ° to + 8.5 °.
  • FIG. 13 is a graph showing an example of measurement results of radiation directivity of the vibration element Tr alone.
  • FIG. 13 shows the radiation directivity measurement result of the vibration element Tr alone when the element width is 0.9 mm and the frequency is 3 MHz.
  • the horizontal axis of the graph indicates the steering angle ⁇ (unit: °) centered on the maximum radiation intensity
  • the vertical axis of the graph indicates the relative amplitude (unit: dB) of the ultrasonic wave.
  • the maximum change width (sensitivity difference) of the relative amplitude is within 4 dB. Therefore, it can be seen that even when the radiation directivity of the vibration element Tr alone of the array probe 10 is strong, the ultrasonic measurement apparatus 1 according to the present embodiment can suppress a decrease in sensitivity.
  • FIG. 14 is a schematic cross-sectional view of the array probe 100 disposed so as to face the test body 2 having the defect site Dx.
  • FIG. 15 is a diagram showing a schematic cross section of the array probe 10 and the specimen 2 along the line XV-XV shown in FIG.
  • the configuration of the array probe 100 is the same as the configuration of the array probe 10 except that the maximum radiation direction of the vibration elements Tr,..., Tr is perpendicular to the element arrangement direction.
  • FIG. 17 is a view showing a schematic cross section of the array probe 100 and the test body 2 along the line XVII-XVII shown in FIG.
  • FIG. 19 is a diagram showing a schematic cross section of the array probe 100 and the test body 2 along the XIX-XIX line shown in FIG. In the examples of FIGS. 16 to 19, the test body 2 is a steel pipe.
  • the incident angle ⁇ xz is set to 17 °, and electronic control of the ultrasonic beam Tw is not performed. Further, as shown in FIG. 17, the incident angle ⁇ yz is set to 0 °.
  • the vibrating elements Tr,..., Tr are excited simultaneously and receive reflected echoes simultaneously.
  • the incident angle ⁇ xz is set to 0 °.
  • the electronic control of the ultrasonic beam Tw is performed.
  • the incident angle ⁇ yz is set to 17 °.
  • the steering range ⁇ 2 is a range of 0 ° to 17 ° of the incident angle ⁇ yz .
  • the sensitivity difference between 0 ° and 17 ° is 10 dB or more.
  • the maximum radiation direction of the vibration elements Tr,..., Tr in the array probe 10 is inclined with respect to the element arrangement direction. Therefore, even when the radiation directivity of the vibration element Tr alone is strong, a decrease in sensitivity can be suppressed. Therefore, the property of the defective part in the inside of the test body 2 can be determined with high accuracy.
  • the moving amount ⁇ of the array probe 10 can be changed according to the diameter of the specimen 2 and the flaw inclination angle ⁇ . Further, the timing for exciting each vibration element Tr of the array probe 10 can also be changed according to the flaw inclination angle ⁇ . It is desirable to calculate the movement amount ⁇ and timing in advance and store them in the memory 27 as information. In this case, the main control unit 21 reads the information stored in the memory 27 in accordance with the diameter and the flaw inclination angle ⁇ of the test body 2 and determines the amount of movement ⁇ based on the information or the signal generator A command signal to be supplied to the control unit 23 may be generated.
  • FIG. 20 is a schematic cross-sectional view of the array probe 12 in the second embodiment.
  • the configuration of the ultrasonic measurement apparatus according to the present embodiment is the same as that of the ultrasonic measurement apparatus 1 according to the first embodiment except that the array probe 12 is provided instead of the array probe 10. is there.
  • the array probe 12 in this embodiment includes M (M is a positive integer) sub-array probes arranged along a predetermined array arrangement direction (Y-axis direction). It is comprised including the child 12 1 ,..., 12 M.
  • M is a positive integer
  • Each of the sub-array probes 12 1 ,..., 12 M has a plurality of vibration elements Tr,. It should be noted that the number of subarray probes 12 1 ,..., 12 M need not be four or more, and may be two or three.
  • the maximum radiation direction of the vibration elements Tr,..., Tr of the present embodiment is inclined at a non-zero offset angle ⁇ 0 with respect to the array arrangement direction (Y-axis direction). Therefore, as in the case of the first embodiment, even when the radiation directivity of the vibration element Tr alone is strong, the range of the steering angle ⁇ can be set to a range where the sensitivity difference is small, and thus the sensitivity reduction is suppressed. be able to. Therefore, it is possible to determine the property of the defective part inside the specimen 2 with high accuracy.
  • the array probe 12 has an advantage that it is easy to manufacture.
  • the ultrasonic control unit 21A controls the timing at which ultrasonic waves are emitted from the vibrating elements Tr,..., Tr of each subarray probe 12 m (m is an arbitrary integer from 1 to M).
  • m is an arbitrary integer from 1 to M.
  • FIG. 21 is a diagram showing a schematic configuration of an ultrasonic measurement apparatus 1A according to the third embodiment of the present invention.
  • This ultrasonic measurement apparatus 1A also has a function of nondestructively measuring the properties of defective portions that may exist on the surface or inside of a test body having a columnar structure.
  • the ultrasonic measurement apparatus 1 ⁇ / b> A moves the array probe 13, the transceiver 20 ⁇ / b> M, and the array probe 13 to be arranged facing the test body 2 in the X-axis direction of FIG. 21.
  • an actuator 32 that is moved along.
  • FIG. 21 schematically shows an example of a cross-sectional structure of the array probe 13 and the test body 2 when viewed from the front direction of the test body 2.
  • FIG. 22 is an enlarged view of the cross-sectional structure of the array probe 13 shown in FIG.
  • FIG. 23 is a schematic sectional view of the array probe 13 and the test body 2 taken along the line XXIII-XXIII shown in FIG.
  • FIG. 23 shows a schematic cross section of the array probe 10 and the test body 2 when viewed from the right side of the test body 2.
  • FIG. 24 is an external view schematically showing the top surfaces of the array probe 13 and the test body 2 shown in FIG.
  • water exists as a contact medium interposed between the test body 2 and the array probe 13, this contact medium is not illustrated.
  • the array probe 13 has a plurality of vibration elements Tra,..., Tra fixed to the main body 14 as ultrasonic radiation elements. These vibration elements Tra,..., Tra are arranged along a predetermined element arrangement direction and have the same radiation directivity. As shown in FIG. 23, each vibration element Tra extends along a direction orthogonal to the element arrangement direction (in the case of FIG. 23, the Y-axis direction). Each vibration element Tra may be configured using, for example, a piezoelectric element that emits ultrasonic waves in response to a high-frequency excitation signal.
  • the array probe 13 is disposed at a position facing the test body 2 and intersecting a plane including the central axis CA of the test body 2. This plane is parallel to the YZ plane. Vibrating element Tra, ..., the maximum radiation direction of the Tra is inclined at an offset angle alpha 0 to this plane.
  • the actuator 32 is arrayed from a parallel state in which the extending direction of the vibration elements Tra,..., Tra is parallel to the longitudinal direction of the test body 2 to an inclined state in which the extending direction is inclined with respect to the longitudinal direction of the test body 2. It has a mechanism for changing the arrangement state of the probe 13. 21 to 24 show the parallel state of the array probe 13. The tilted state of the array probe 13 will be described later.
  • the transceiver 20M includes a main control unit 21M, a movement control unit 22M that controls the operation of the actuator 32 according to the control by the main control unit 21M, and a control by the main control unit 21M.
  • a wiring group 28M transmitted to Tra a receiving amplifier 25M for amplifying a receiving analog signal group input from the wiring group 28M, and a receiving analog signal group amplified by the receiving amplifier 25M.
  • a / D converter 26M for converting the received digital signal group, and a memory 27 for storing the received digital signal group. Note that the receiving amplifier 25M may be omitted when the intensity of the received analog signal group is large.
  • the main control unit 21M includes an ultrasonic control unit 21MA and a property determination unit 21MB.
  • the ultrasonic controller 21MA supplies a command signal for exciting the vibration elements Tra,..., Tra in the array probe 13 to the signal generator 23M according to the phased array method. Based on this command signal, the signal generator 23M generates a plurality of excitation signals corresponding to the vibration elements Tra,..., Tra, respectively.
  • the transmitting amplifier 24M amplifies these excitation signals and supplies the amplified excitation signals to the vibration elements Tra,..., Tra via the wiring group 28M.
  • the ultrasonic control unit 21MA can electronically control the timing at which ultrasonic waves are radiated from each vibration element Tra in the array probe 13 by adjusting the delay time for delaying each excitation signal.
  • the incident angle ⁇ xz is a projection angle of the incident angle ⁇ of the ultrasonic beam Tw on the test body 2 onto the XZ plane (a plane parallel to both the X-axis direction and the Z-axis direction).
  • the movement control unit 22M can change the arrangement state of the array probe 13 by controlling the operation of the actuator 32.
  • the vibration elements Tra,..., Tra in the array probe 13 convert the reflected echoes into electrical signal groups and output the received analog signal groups to the wiring group 28M when the reflected echoes arrive from the test body 2.
  • the receiving amplifier 25M amplifies the received analog signal group input from the wiring group 28M.
  • the A / D converter 26M converts the amplified received analog signal group into a received digital signal group.
  • the memory 27 stores the received digital signal group.
  • the property determining unit 21MB has a function of reading the received digital signal group from the memory 27 and analyzing the received digital signal group to determine the surface and internal properties of the test body 2.
  • the property determination unit 21MB can estimate the size of the defect site in the specimen 2 based on the measurement result of the amplitude or intensity of the reflected echo, for example, and the specimen 2 based on the measurement result of the propagation time of the reflected echo. It is also possible to estimate the position of the defect site in the inside.
  • the main control unit 21M and the movement control unit 22M described above can be realized by, for example, a computer with a built-in CPU.
  • the main control unit 21M and the movement control unit 22M may be realized by an LSI such as a DSP, ASIC, or FPGA.
  • the basic procedure of ultrasonic measurement processing by the transceiver 20M is the same as the procedure shown in FIG.
  • the ultrasonic measuring apparatus 1A described above is characterized in that the maximum radiation direction of the vibration elements Tra,..., Tra is inclined at an offset angle ⁇ 0 with respect to the plane including the central axis CA of the test body 2. As will be described below, this feature suppresses a decrease in detection sensitivity due to the radiation directivity of the vibration element Tra, so that the property of the defective part of the test body 2 can be determined with high accuracy. .
  • is an angle corresponding to the position of the incident point of the ultrasonic beam Tw when measuring the property of the defect site D1.
  • the incident angle ⁇ yz needs to be set to 0 °, the arrangement state of the array probe 13 is a parallel state.
  • 26 is a schematic cross-sectional view of the array probe 13 and the test body 2 taken along the line XXVI-XXVI shown in FIG. 25, and
  • FIG. 27 is a diagram of the array probe 13 and the test body 2 shown in FIG. FIG.
  • the ultrasonic control unit 21MA steers the ultrasonic beam Tw so that the incident angle ⁇ xz of the ultrasonic beam Tw becomes 0 °.
  • the steering angle ⁇ is set to ⁇ 8.5 °, which cancels the offset angle ⁇ 0 .
  • the incident angle ⁇ yz needs to be set to 17 °, the extending direction of the vibration elements Tra,..., Tra of the array probe 13 is set to 17 with respect to the longitudinal direction as shown in FIG. Tilt at °.
  • the incident angle ⁇ xz can be changed within the range of 0 ° to 17 ° by changing the steering angle ⁇ of the array probe 13, and the incident angle ⁇ yz Can be varied from 0 ° to 17 °.
  • the steering angle ⁇ of the ultrasonic beam Tw can be set in the range of ⁇ 8.5 ° to 8.5 ° ⁇ .
  • FIG. 28 is a graph showing the same measurement results as the measurement results shown in FIG. In the case of FIG. 28, in the steering angle ⁇ range ⁇ 3 ( ⁇ 8.5 ° to + 8.5 ° ⁇ ), the maximum change width (sensitivity difference) of the relative amplitude is within 4 dB. Therefore, even when the radiation directivity of the vibration element Tra alone of the array probe 13 is strong, it can be seen that the ultrasonic measurement apparatus 1A according to the present embodiment can suppress a decrease in sensitivity.
  • FIG. 4 a fourth embodiment according to the present invention will be described.
  • the present embodiment is a modification of the third embodiment.
  • 29 and 30 are schematic cross-sectional views of the array probe 15 according to the fourth embodiment
  • FIG. 31 is a schematic cross-sectional view of the k-th sub-array probe 15 k .
  • FIG. 32 is a diagram showing a schematic configuration of the actuator 32A and the drive mechanism in the fourth embodiment.
  • the configuration of the ultrasonic measurement apparatus according to the present embodiment includes an array probe 15 instead of the array probe 13, and an actuator 32A and a drive mechanism shown in FIG. Is substantially the same as the configuration of the ultrasonic measurement apparatus 1A of the third embodiment.
  • 31 includes substantially the same structure as the cross-sectional structure illustrated in FIG.
  • the array probe 15 has K subarray probes (K is a positive integer) arranged along a predetermined array arrangement direction (Y-axis direction).
  • child 15 1, ..., is configured to include a 15 K.
  • Each of the sub-array probes 15 1 ,..., 15 K has a plurality of vibration elements Trb,.
  • the number of subarray probes 15 1 ,..., 15 K need not be four or more, and may be two or three.
  • each sub-array probe 15 k has an acoustic lens Ls that expands the ultrasonic beam Tw in the longitudinal direction of the test body 2.
  • the valley of the ultrasonic beam Tw is narrow or the valley becomes shallow, it is possible to suppress a decrease in detection accuracy of the defective part. If the beam width is sufficiently wide even without the acoustic lens Ls, the acoustic lens Ls may not be used.
  • Actuator 32A in FIG. 32 the vibrating element Trb of each sub-array probes 15 k, ..., from a parallel state in which the extending direction of the Trb is parallel to the longitudinal direction of the test material 2 (FIG. 30), the extending direction thereof It has a mechanism for changing the arrangement state of the array probe 15 to an inclined state (FIG. 29) inclined with respect to the longitudinal direction of the test body 2.
  • the actuator 32 ⁇ / b> A can cause a shift between the support members 41 and 42 using the drive shaft 40.
  • Drive shaft 40 is connected to the rotating shaft portion 43 0, 44 0.
  • the support members 41 and 42 support the subarray probes 15 1 ,..., 15 K via the rotation shaft portions 43 1 to 43 K and the rotation shaft portions 44 1 to 44 K.
  • the actuator 32A can switch between the inclined state of FIG. 29 and the parallel state of FIG. 30 by adjusting the amount of deviation between the support members 41 and 42.
  • the maximum radiation direction of the vibration elements Trb,..., Trb is inclined with respect to the plane including the central axis CA of the test body 2. Therefore, since a decrease in detection sensitivity due to the radiation directivity of the vibration element Trb is suppressed, it is possible to determine the property of the defective part of the test body 2 with high accuracy.
  • the ultrasonic measurement apparatus can measure the surface or internal properties of a columnar test body in a non-destructive manner, the presence / absence, presence position, size, shape, or distribution of the defective portion of the columnar test body, etc. It is suitable for being used for nondestructive testing.
  • 1,1A ultrasonic measuring device 2 specimens, 2a peripheral surface, 2b in peripheral surfaces, 10,12,13,15 array probe, 12 1, ..., 12 M subarrays probe, 15 1, ..., 15 K subarray probe, 20, 20M transceiver, 21, 21M main control unit, 21A, 21MA ultrasonic control unit, 21B, 21MB property determination unit, 22, 22M movement control unit, 23, 23M signal generator, 24 , 24M transmission amplifier, 25, 25M reception amplifier, 26, 26M A / D converter, 27 memory, 28, 28M wiring group, 30, 32, 32A actuator, 100 array probe, Tw ultrasonic beam, Dw Diffraction wave, Tr vibration element, Tr, Tra, Trb vibration element, Dx, D1, D2 Defect site, UW ultrasonic wave, CA central axis, Ls acoustic lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An ultrasonic measuring device (1) is provided with: an array probe (10) including a plurality of ultrasonic radiating elements disposed along an element array direction (Y-axis direction); an actuator (30) for moving the array probe (10) in a direction (X-axis direction) orthogonal to both a maximum radiation direction of the ultrasonic radiating elements and the element array direction; an ultrasonic control unit (21A) for controlling a first incident angle of an ultrasonic beam (Tw) as viewed in the circumferential direction of a test object (2); and a movement control unit (22) for controlling the operation of the actuator (30) to control a second incident angle (αxz) of the ultrasonic beam (Tw) as viewed in the longitudinal direction (Y-axis direction) of the test object (2). The maximum radiation direction of the ultrasonic radiating elements of the array probe (10) is tilted with respect to the element array direction (Y-axis direction).

Description

超音波測定装置Ultrasonic measuring device
 本発明は、超音波を用いて試験体の表面及び内部の物理的な性質または状態(以下「性状」ともいう。)を非破壊で測定するための超音波測定技術に関するものである。 The present invention relates to an ultrasonic measurement technique for nondestructively measuring the physical property or state (hereinafter also referred to as “property”) of the surface and inside of a specimen using ultrasonic waves.
 超音波測定技術では、超音波を試験体の内部に入射させて当該試験体の内部の欠陥部位で反射された超音波(以下「反射エコー」ともいう。)を検出することにより、当該欠陥部位の性状を判定することができる。また、近年、フェーズドアレイ法と呼ばれる超音波測定技術が注目されている。フェーズドアレイ法は、1次元配列または2次元配列がなされた多数の振動素子を含むアレイ探触子を利用する技術であり、それら多数の振動素子から超音波が放射されるタイミングを電子的に制御することにより、当該超音波の合成波すなわち超音波ビームの波面を制御する方法である。フェーズドアレイ法を使用すれば、たとえば、超音波ビームの伝搬方向及び広がりを電子的に制御することができ、また、試験体内部における超音波ビームの集束位置を電子的に制御することもできる。 In the ultrasonic measurement technique, an ultrasonic wave is incident on the inside of a test body, and an ultrasonic wave (hereinafter also referred to as a “reflected echo”) reflected by a defective part inside the test body is detected, thereby the defective part. Can be determined. In recent years, an ultrasonic measurement technique called a phased array method has attracted attention. The phased array method is a technique using an array probe including a large number of vibration elements arranged in a one-dimensional array or a two-dimensional array, and electronically controls the timing at which ultrasonic waves are emitted from the large number of vibration elements. This is a method for controlling the synthesized wave of the ultrasonic wave, that is, the wavefront of the ultrasonic beam. If the phased array method is used, for example, the propagation direction and spread of the ultrasonic beam can be controlled electronically, and the focal position of the ultrasonic beam inside the specimen can be controlled electronically.
 フェーズドアレイ法に関する従来技術は、たとえば、特許文献1(特開2006-177845号公報)に開示されている。特許文献1には、アレイ探触子を使用して被検査管の斜めきずを検出する超音波探傷方法が開示されている。ここで、斜めきずとは、被検査管において当該被検査管の管軸方向から傾斜する方向に延びるきずをいう。この超音波探傷方法では、所定の式を用いた計算によって、超音波ビームの管周方向の入射角及び管軸方向の入射角が算出される。そして、アレイ探触子を構成する各振動素子の発振タイミングを電子的に制御することにより超音波ビームの管軸方向の入射角が当該算出値に設定され、且つ、アレイ型超音波探触子全体の管周方向の傾きまたは管軸中心からの芯ずれ量を機械的に制御することにより超音波ビームの管周方向の入射角が当該算出値に設定される。このように管周方向の入射角及び管軸方向の入射角を設定することによって、被検査管への超音波ビームの入射角が定められる。 The prior art relating to the phased array method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-177845. Patent Document 1 discloses an ultrasonic flaw detection method that uses an array probe to detect oblique flaws in a test tube. Here, the diagonal flaw means a flaw extending in a direction inclined from the tube axis direction of the tube to be inspected in the tube to be inspected. In this ultrasonic flaw detection method, the incident angle in the tube circumferential direction and the incident angle in the tube axis direction of the ultrasonic beam are calculated by calculation using a predetermined formula. The incident angle in the tube axis direction of the ultrasonic beam is set to the calculated value by electronically controlling the oscillation timing of each vibration element constituting the array probe, and the array type ultrasonic probe is used. The incident angle in the tube circumferential direction of the ultrasonic beam is set to the calculated value by mechanically controlling the inclination in the entire tube circumferential direction or the amount of misalignment from the tube axis center. Thus, by setting the incident angle in the tube circumferential direction and the incident angle in the tube axis direction, the incident angle of the ultrasonic beam to the tube to be inspected is determined.
特開2006-177845号公報(段落0020~0021、並びに、図1及び段落0023~0050)JP 2006-177845 A (paragraphs 0020 to 0021 and FIG. 1 and paragraphs 0023 to 0050)
 被検査管における斜めきずは、当該斜めきずの傾斜角度が0°~90°となる範囲内で発生する可能性がある。しかしながら、特許文献1の従来技術では、アレイ探触子を構成する各振動素子の放射指向性が考慮されていないので、傾斜角度が大きいと、斜めきずの検出精度が低下するおそれが生ずる。 Oblique flaws in the pipe to be inspected may occur within a range where the inclination angle of the oblique flaw is 0 ° to 90 °. However, in the prior art of Patent Document 1, since the radiation directivity of each vibration element constituting the array probe is not taken into account, if the inclination angle is large, there is a possibility that the detection accuracy of the oblique flaw is lowered.
 すなわち、特許文献1の従来技術では、斜めきずの傾斜角度が大きいと、アレイ探触子を構成する振動素子の最大放射方向(最大放射強度を指す方向)と被検査管への超音波ビームの入射方向との間の差が大きくならざるを得ない場合がある。この場合には、各振動素子の放射指向性に起因して超音波ビームの入射強度が低くなり、これにより反射エコーの受信強度が弱くなる。この結果、その反射エコーのSN比(信号対雑音比)が低下して斜めきずの検出精度を低下させるおそれが生じる。 That is, in the prior art of Patent Document 1, when the inclination angle of the oblique flaw is large, the maximum radiation direction (direction indicating the maximum radiation intensity) of the vibration elements constituting the array probe and the ultrasonic beam to the tube to be inspected. In some cases, the difference between the incident direction and the incident direction must be large. In this case, the incident intensity of the ultrasonic beam is lowered due to the radiation directivity of each vibration element, and thereby the reception intensity of the reflected echo is weakened. As a result, the SN ratio (signal-to-noise ratio) of the reflected echo is lowered, and there is a possibility that the detection accuracy of the oblique flaw is lowered.
 上記に鑑みて本発明の目的は、被検査管などの柱状構造を有する試験体において当該試験体の長軸方向に対して斜め方向に延びる欠陥部位の性状を高い精度で判定することができる超音波測定装置を提供することである。 In view of the above, an object of the present invention is to provide a test body having a columnar structure such as a tube to be inspected, which is capable of accurately determining the property of a defect site extending obliquely with respect to the major axis direction of the test body. It is to provide a sound wave measuring device.
 本発明の一態様による超音波測定装置は、柱状構造を有する試験体の性状を判定する超音波測定装置であって、予め定められた素子配列方向に沿って配列された複数の超音波放射素子を含むアレイ探触子と、前記複数の超音波放射素子の最大放射方向と前記素子配列方向との双方に直交する方向に前記アレイ探触子を移動させるアクチュエータと、前記複数の超音波放射素子の各々から超音波が放射されるタイミングを電子的に制御することにより、前記試験体の周方向から視たときの前記試験体へ入射する超音波ビームの第1の入射角度を制御する超音波制御部と、前記アクチュエータの動作を制御して前記アレイ探触子の移動量を調整することにより、前記試験体の長手方向から視たときの前記試験体への前記超音波ビームの第2の入射角度を制御する移動制御部とを備え、前記複数の超音波放射素子の最大放射方向は、前記素子配列方向に対して傾斜していることを特徴とする。 An ultrasonic measurement apparatus according to an aspect of the present invention is an ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure, and includes a plurality of ultrasonic radiation elements arranged along a predetermined element arrangement direction. An array probe including: an actuator that moves the array probe in a direction orthogonal to both the maximum radiation direction of the plurality of ultrasonic radiation elements and the element arrangement direction; and the plurality of ultrasonic radiation elements Ultrasonically controlling the first incident angle of the ultrasonic beam incident on the specimen when viewed from the circumferential direction of the specimen by electronically controlling the timing at which the ultrasonic waves are emitted from each of the specimens A second control unit that controls the operation of the actuator and adjusts the amount of movement of the array probe to thereby adjust a second amount of the ultrasonic beam to the specimen when viewed from the longitudinal direction of the specimen. Enter And a movement control unit for controlling the angle, the maximum radiation direction of the plurality of ultrasound radiating element is characterized in that it is inclined with respect to the element array direction.
 本発明によれば、超音波放射素子の放射指向性に起因する検出感度の低下が抑制されるので、試験体内部における欠陥部位の性状を高い精度で判定することができる。 According to the present invention, since the decrease in detection sensitivity due to the radiation directivity of the ultrasonic radiation element is suppressed, it is possible to determine the property of the defective part inside the specimen with high accuracy.
本発明に係る実施の形態1の超音波測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the ultrasonic measurement apparatus of Embodiment 1 which concerns on this invention. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す断面図である。2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1. FIG. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す上面図である。3 is a top view schematically showing an array probe and a test body in Embodiment 1. FIG. 図4Aは、水と鋼との間の超音波の透過の様子を示す図であり、図4Bは、水と鋼との間の超音波の横波の往復透過率の測定結果を示すグラフである。FIG. 4A is a diagram showing a state of transmission of ultrasonic waves between water and steel, and FIG. 4B is a graph showing a measurement result of a round-trip transmittance of ultrasonic transverse waves between water and steel. . 実施の形態1に係る入射角ときず傾斜角との間の関係を示すグラフである。4 is a graph showing a relationship between an incident angle and an inclination angle according to the first embodiment. 実施の形態1に係る超音波測定方法の手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of a procedure of the ultrasonic measurement method according to the first embodiment. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す断面図である。2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1. FIG. 図7に示したVIII-VIII線におけるアレイ探触子及び試験体の概略断面を示す図である。FIG. 8 is a diagram showing a schematic cross section of an array probe and a test body taken along line VIII-VIII shown in FIG. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す上面図である。3 is a top view schematically showing an array probe and a test body in Embodiment 1. FIG. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す断面図である。2 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 1. FIG. 図10に示したXI-XI線におけるアレイ探触子及び試験体の概略断面を示す図である。FIG. 11 is a diagram showing a schematic cross section of an array probe and a test body along the line XI-XI shown in FIG. 10. 実施の形態1におけるアレイ探触子と試験体とを概略的に示す上面図である。3 is a top view schematically showing an array probe and a test body in Embodiment 1. FIG. 振動素子単体の放射指向性の測定結果の例を示すグラフである。It is a graph which shows the example of the measurement result of the radiation directivity of a single vibration element. 比較例におけるアレイ探触子と試験体とを概略的に示す断面図である。It is sectional drawing which shows roughly the array probe and test body in a comparative example. 図14に示したXV-XV線におけるアレイ探触子及び試験体の概略断面を示す図である。FIG. 15 is a diagram showing a schematic cross section of an array probe and a test body along the XV-XV line shown in FIG. 14. 比較例におけるアレイ探触子と試験体とを概略的に示す断面図である。It is sectional drawing which shows roughly the array probe and test body in a comparative example. 図16に示したXVII-XVII線におけるアレイ探触子及び試験体の概略断面を示す図である。FIG. 17 is a diagram showing a schematic cross section of an array probe and a test body taken along line XVII-XVII shown in FIG. 16. 比較例におけるアレイ探触子と試験体とを概略的に示す断面図である。It is sectional drawing which shows roughly the array probe and test body in a comparative example. 図19に示したXIX-XIX線におけるアレイ探触子及び試験体の概略断面を示す図である。FIG. 20 is a diagram showing a schematic cross section of an array probe and a test body along the line XIX-XIX shown in FIG. 本発明に係る実施の形態2におけるアレイ探触子の概略断面図である。It is a schematic sectional drawing of the array probe in Embodiment 2 which concerns on this invention. 本発明に係る実施の形態3の超音波測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the ultrasonic measurement apparatus of Embodiment 3 which concerns on this invention. 実施の形態3におけるアレイ探触子の概略断面図である。6 is a schematic cross-sectional view of an array probe in a third embodiment. FIG. 実施の形態3におけるアレイ探触子と試験体とを概略的に示す断面図である。6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3. FIG. 実施の形態3におけるアレイ探触子と試験体とを概略的に示す上面図である。FIG. 10 is a top view schematically showing an array probe and a test body in a third embodiment. 実施の形態3におけるアレイ探触子と試験体とを概略的に示す断面図である。6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3. FIG. 実施の形態3におけるアレイ探触子と試験体とを概略的に示す断面図である。6 is a cross-sectional view schematically showing an array probe and a test body in Embodiment 3. FIG. 実施の形態3におけるアレイ探触子と試験体とを概略的に示す上面図である。FIG. 10 is a top view schematically showing an array probe and a test body in a third embodiment. 振動素子単体の放射指向性の測定結果の例を示すグラフである。It is a graph which shows the example of the measurement result of the radiation directivity of a single vibration element. 本発明に係る実施の形態4におけるアレイ探触子の概略断面図である。It is a schematic sectional drawing of the array probe in Embodiment 4 which concerns on this invention. 実施の形態4におけるアレイ探触子の概略断面図である。FIG. 6 is a schematic cross-sectional view of an array probe in a fourth embodiment. 実施の形態4におけるアレイ探触子の概略断面図である。FIG. 6 is a schematic cross-sectional view of an array probe in a fourth embodiment. 実施の形態4におけるアクチュエータ及び駆動機構の一例を概略的に示す図である。FIG. 10 is a diagram schematically showing an example of an actuator and a drive mechanism in a fourth embodiment.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. In addition, the component to which the same code | symbol was attached | subjected in the whole drawing shall have the same structure and the same function.
実施の形態1.
 図1は、本発明に係る実施の形態1である超音波測定装置1の概略構成を示す図である。この超音波測定装置1は、柱状構造を有する試験体の表面または内部に存在し得る欠陥部位の性状を超音波を用いて非破壊で測定する機能を有する。図1に示されるように超音波測定装置1は、試験体2に対向して配置されるべきアレイ探触子10と、送受信器20と、アレイ探触子10を図1のX軸方向に沿って移動させるアクチュエータ30とを備えて構成される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of an ultrasonic measurement apparatus 1 according to the first embodiment of the present invention. The ultrasonic measurement apparatus 1 has a function of measuring the properties of a defective portion that may exist on the surface or inside of a test body having a columnar structure, using ultrasonic waves, in a nondestructive manner. As shown in FIG. 1, the ultrasonic measurement apparatus 1 includes an array probe 10, a transmitter / receiver 20, and an array probe 10 that are to be arranged facing the test body 2 in the X-axis direction of FIG. And an actuator 30 that is moved along.
 図1には、試験体2の正面方向から視たときのアレイ探触子10及び試験体2の断面構造の例が概略的に示されている。また、図2は、図1に示したII-II線におけるアレイ探触子10及び試験体2の概略断面図である。図2には、試験体2の右側方から視たときのアレイ探触子10及び試験体2の概略断面が示されている。そして、図3は、図1に示したアレイ探触子10及び試験体2の上面を概略的に示す外観図である。なお、試験体2とアレイ探触子3との間に介在する接触媒質として水が存在するが、この接触媒質は図示されていない。 FIG. 1 schematically shows an example of a cross-sectional structure of the array probe 10 and the test body 2 when viewed from the front direction of the test body 2. FIG. 2 is a schematic cross-sectional view of the array probe 10 and the test body 2 taken along the line II-II shown in FIG. FIG. 2 shows a schematic cross section of the array probe 10 and the test body 2 when viewed from the right side of the test body 2. 3 is an external view schematically showing the upper surfaces of the array probe 10 and the test body 2 shown in FIG. Although water exists as a contact medium interposed between the test body 2 and the array probe 3, this contact medium is not shown.
 図3に示されるように、Y軸方向は、試験体2の長手方向における中心軸CAと平行な方向である。図1及び図2に示されるように、試験体2は、Y軸方向に沿って延在する外周面2a及び内周面2bを有する管状構造物である。外周面2aは、試験体2の周方向に沿って湾曲している。この種の管状構造物としては、たとえば、一定の肉厚を有する鋼管が挙げられる。なお、超音波測定装置1の測定対象物は、超音波を伝搬する柱状構造物であればよく、図1及び図2に示した管状構造物に限定されるものではない。 3, the Y-axis direction is a direction parallel to the central axis CA in the longitudinal direction of the test body 2. As shown in FIGS. 1 and 2, the test body 2 is a tubular structure having an outer peripheral surface 2a and an inner peripheral surface 2b extending along the Y-axis direction. The outer peripheral surface 2 a is curved along the circumferential direction of the test body 2. An example of this type of tubular structure is a steel pipe having a certain thickness. The measurement object of the ultrasonic measurement apparatus 1 may be a columnar structure that propagates ultrasonic waves, and is not limited to the tubular structure shown in FIGS.
 アレイ探触子10は、本体部11に固定された複数の振動素子Tr,…,Trを超音波放射素子として有する。各振動素子Trは、たとえば、高周波の励振信号に応じて超音波を放射する圧電素子を用いて構成されればよい。また、振動素子Tr,…,Trは、図2に示されるように、予め定められた素子配列方向(図2の場合、Y軸方向)に沿って配列されており、同じ放射指向性を有する。これら振動素子Tr,…,Trの最大放射方向(最大放射強度を指す方向)は、素子配列方向に対して90°-αの角度で傾斜している(以下、αをオフセット角と呼ぶ。)。このようなアレイ探触子10は、素子配列方向が試験体2の中心軸CAと平行になるように配置される。 The array probe 10 has a plurality of vibration elements Tr,..., Tr fixed to the main body 11 as ultrasonic radiation elements. Each vibration element Tr may be configured using, for example, a piezoelectric element that emits ultrasonic waves in response to a high-frequency excitation signal. Further, as shown in FIG. 2, the vibration elements Tr,..., Tr are arranged along a predetermined element arrangement direction (in the Y-axis direction in the case of FIG. 2) and have the same radiation directivity. . The maximum radiation direction (direction indicating the maximum radiation intensity) of these vibration elements Tr,..., Tr is inclined at an angle of 90 ° −α 0 with respect to the element arrangement direction (hereinafter, α 0 is referred to as an offset angle). .) Such an array probe 10 is arranged so that the element arrangement direction is parallel to the central axis CA of the test body 2.
 アクチュエータ30は、アレイ探触子10を保持するホルダ31を移動させる機構である。すなわち、アクチュエータ30は、振動素子Tr,…,Trの最大放射方向と素子配列方向(Y軸方向)との双方に直交する試験体2の周方向(図1~図3の場合、X軸方向)に沿ってアレイ探触子10を移動させることができる。 Actuator 30 is a mechanism for moving holder 31 that holds array probe 10. That is, the actuator 30 has a circumferential direction of the test body 2 that is orthogonal to both the maximum radiation direction of the vibration elements Tr,..., Tr and the element arrangement direction (Y-axis direction). ) To move the array probe 10.
 一方、図1を参照すると、送受信器20は、主制御部21と、この主制御部21による制御に応じてアクチュエータ30の動作を制御する移動制御部22と、主制御部21による制御に応じて励振信号群を発生する信号発生器23と、当該励振信号群を増幅する送信用増幅器24と、この送信用増幅器24で増幅された励振信号群をアレイ探触子10内の振動素子Tr,…,Trに伝達する配線群28と、この配線群28から入力された受信アナログ信号群を増幅する受信用増幅器25と、この受信用増幅器25で増幅された受信アナログ信号群を受信ディジタル信号群に変換するA/D変換器26と、当該受信ディジタル信号群を記憶するメモリ27とを含んで構成されている。なお、受信アナログ信号群の強度が大きい場合には、受信用増幅器25は省略されてもよい。 On the other hand, referring to FIG. 1, the transceiver 20 includes a main control unit 21, a movement control unit 22 that controls the operation of the actuator 30 according to the control by the main control unit 21, and the control by the main control unit 21. The signal generator 23 for generating the excitation signal group, the transmission amplifier 24 for amplifying the excitation signal group, and the excitation signal group amplified by the transmission amplifier 24 are converted into the vibration elements Tr, .., Tr, a wiring group 28, a receiving amplifier 25 for amplifying a receiving analog signal group input from the wiring group 28, and a receiving analog signal group amplified by the receiving amplifier 25 as a receiving digital signal group And an A / D converter 26 for converting the received digital signal group and a memory 27 for storing the received digital signal group. Note that, when the intensity of the reception analog signal group is large, the reception amplifier 25 may be omitted.
 主制御部21は、超音波制御部21A及び性状判定部21Bを含む。超音波制御部21Aは、フェーズドアレイ法に従って、アレイ探触子10内の振動素子Tr,…,Trを励振するための指令信号を信号発生器23に供給する。信号発生器23は、この指令信号に基づいて、振動素子Tr,…,Trにそれぞれ対応する複数の励振信号を発生する。送信用増幅器24は、これら励振信号を増幅し、当該増幅された励振信号を配線群28を介して振動素子Tr,…,Trにそれぞれ供給する。超音波制御部21Aは、各励振信号を遅延させる遅延時間を調整することにより、アレイ探触子10内の各振動素子Trから超音波が放射されるタイミングを電子的に制御することができる。これにより、図2に例示されるように、試験体2の周方向(X軸方向)から視たときの試験体2に入射する超音波ビームTwの入射角αyzを可変制御することが可能となる。この入射角αyzは、試験体2への超音波ビームTwの入射角αのY-Z平面(Y軸方向及びZ軸方向の双方に平行な平面)への投影角である。ここで、図中のZ軸方向は、X軸方向及びY軸方向の双方に垂直な方向である。 The main control unit 21 includes an ultrasonic control unit 21A and a property determination unit 21B. The ultrasonic control unit 21A supplies a command signal for exciting the vibration elements Tr,..., Tr in the array probe 10 to the signal generator 23 in accordance with the phased array method. Based on this command signal, the signal generator 23 generates a plurality of excitation signals respectively corresponding to the vibration elements Tr,... The transmission amplifier 24 amplifies these excitation signals and supplies the amplified excitation signals to the vibration elements Tr,..., Tr via the wiring group 28, respectively. The ultrasonic control unit 21 </ b> A can electronically control the timing at which ultrasonic waves are emitted from each vibration element Tr in the array probe 10 by adjusting the delay time for delaying each excitation signal. Thereby, as illustrated in FIG. 2, it is possible to variably control the incident angle α yz of the ultrasonic beam Tw incident on the test body 2 when viewed from the circumferential direction (X-axis direction) of the test body 2. It becomes. The incident angle α yz is a projection angle of the incident angle α of the ultrasonic beam Tw on the test body 2 onto the YZ plane (a plane parallel to both the Y-axis direction and the Z-axis direction). Here, the Z-axis direction in the figure is a direction perpendicular to both the X-axis direction and the Y-axis direction.
 本明細書では、このように電子的な制御により超音波ビームの伝搬方向を制御することを「ステアリング(steering)」または「ビームステアリング(beam steering)」と呼ぶこととする。 In this specification, controlling the propagation direction of the ultrasonic beam by electronic control in this way is referred to as “steering” or “beam steering”.
 また、移動制御部22は、図1及び図3に例示されるように、アクチュエータ30の動作を制御してアレイ探触子10のX軸方向における移動量δを調整することができる。これにより、移動制御部22は、図1に例示されるように、試験体2の長手方向(Y軸方向)から視たときの超音波ビームTwの入射角度αxzを可変制御することができる。この入射角αxzは、試験体2への超音波ビームTwの入射角αのX-Z平面(X軸方向及びZ軸方向の双方に平行な平面)への投影角である。超音波ビームTwは、試験体2に入射されると、回折波Dwとなって試験体2の内部を伝搬する。 Further, as illustrated in FIGS. 1 and 3, the movement control unit 22 can adjust the amount of movement δ in the X-axis direction of the array probe 10 by controlling the operation of the actuator 30. Thereby, as illustrated in FIG. 1, the movement control unit 22 can variably control the incident angle α xz of the ultrasonic beam Tw when viewed from the longitudinal direction (Y-axis direction) of the test body 2. . The incident angle α xz is a projection angle of the incident angle α of the ultrasonic beam Tw on the test body 2 onto the XZ plane (a plane parallel to both the X-axis direction and the Z-axis direction). When the ultrasonic beam Tw is incident on the test body 2, it propagates through the test body 2 as a diffracted wave Dw.
 一方、アレイ探触子10内の振動素子Tr,…,Trは、試験体2から反射エコーが到来したとき、当該反射エコーを電気信号群に変換して受信アナログ信号群を配線群28に出力する。受信用増幅器25は、この配線群28から入力された受信アナログ信号群を増幅する。A/D変換器26は、当該増幅された受信アナログ信号群を受信ディジタル信号群に変換する。そして、メモリ27は、この受信ディジタル信号群を記憶する。性状判定部21Bは、メモリ27から受信ディジタル信号群を読み出し、これら受信ディジタル信号群を解析して試験体2の表面及び内部の性状を判定する機能を有する。性状判定部21Bは、たとえば、反射エコーの振幅または強度の測定結果に基づいて試験体2内の欠陥部位の寸法を推定することができ、反射エコーの伝搬時間の測定結果に基づいて試験体2内の欠陥部位の存在位置を推定することもできる。 On the other hand, the vibrating elements Tr,..., Tr in the array probe 10 convert the reflected echoes into electrical signal groups and output the received analog signal groups to the wiring group 28 when the reflected echoes arrive from the test body 2. To do. The reception amplifier 25 amplifies the reception analog signal group input from the wiring group 28. The A / D converter 26 converts the amplified reception analog signal group into a reception digital signal group. The memory 27 stores the received digital signal group. The property determination unit 21B has a function of reading the received digital signal group from the memory 27 and analyzing the received digital signal group to determine the surface and internal properties of the test body 2. The property determination unit 21B can estimate the size of the defect site in the test body 2 based on, for example, the measurement result of the amplitude or intensity of the reflected echo, and the test body 2 based on the measurement result of the propagation time of the reflected echo. It is also possible to estimate the position of the defect site in the inside.
 なお、上記した主制御部21及び移動制御部22は、たとえば、CPU(Central Processing Unit)内蔵のコンピュータにより実現可能である。あるいは、主制御部21及び移動制御部22は、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などのLSI(Large Scale Integrated circuit)により実現されてもよい。 The main control unit 21 and the movement control unit 22 described above can be realized by, for example, a computer with a CPU (Central Processing Unit). Alternatively, the main control unit 21 and the movement control unit 22 may be LSI (Large Realization) such as DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). Good.
 次に、図1~図3を参照すると、試験体2の内周面2bには、当該試験体2の長手方向に対して斜め方向に延びる欠陥部位Dx(以下「斜めきずDx」ともいう。)が形成されている。この斜めきずDxは、図3に示されるように試験体2の長手方向に対して角度β(以下「きず傾斜角β」ともいう。)で傾斜しているものとする。このような斜めきずDxの性状を超音波を用いて測定する場合には、以下の関係式(1),(2)が成立することが知られている。 Next, referring to FIG. 1 to FIG. 3, the inner peripheral surface 2b of the test body 2 is also referred to as a defect site Dx (hereinafter referred to as “oblique flaw Dx”) that extends obliquely with respect to the longitudinal direction of the test body 2. ) Is formed. This oblique flaw Dx is inclined at an angle β (hereinafter also referred to as “flaw inclination angle β”) with respect to the longitudinal direction of the specimen 2 as shown in FIG. It is known that the following relational expressions (1) and (2) are established when the properties of such an oblique flaw Dx are measured using ultrasonic waves.
  tanαxz=tanα×cosβ      (1)
  tanαyz=tanα×sinβ      (2)
tan α xz = tan α × cos β (1)
tan α yz = tan α × sin β (2)
 上記関係式(1),(2)と等価な式が、たとえば、特許文献2(特開2005-221371号公報)に開示されている。 An expression equivalent to the above relational expressions (1) and (2) is disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-221371.
 上記関係式(1),(2)と、試験体2の表面における超音波の透過率とに基づき、きず傾斜角βに対して入射角αxz,αyxの両方を定めることができる。この理由を、図4A,図4B及び図5を例に挙げて以下に説明する。図4Aは、水と鋼との境界面において超音波UWの横波が透過する様子を概略的に示す図である。図4Aに示されるように、超音波UWは、入射角αで水から鋼に入射する。図4Bは、水と鋼との境界面における超音波の横波の往復透過率を示すグラフであり、このグラフの横軸は入射角αを示している。言い換えれば、図4Bは、横波の往復透過率の入射角依存性を表すグラフである。図4Bに示されるように、当該往復透過率の入射角依存性が低い角度範囲として16°~22°が存在する。図5は、上式(1)を用いて算出された入射角αの特性曲線を示すグラフであり、このグラフの横軸はきず傾斜角βを示している。図5のグラフでは、αxz=17°に固定された場合の特性曲線が実線で示され、αxz=7°に固定された場合の特性曲線が点線で示されている。 Based on the above relational expressions (1) and (2) and the transmittance of ultrasonic waves on the surface of the test body 2, both the incident angles α xz and α yx can be determined with respect to the flaw inclination angle β. The reason for this will be described below with reference to FIG. 4A, FIG. 4B and FIG. FIG. 4A is a diagram schematically illustrating a state in which the transverse wave of the ultrasonic wave UW is transmitted at the boundary surface between water and steel. As shown in FIG. 4A, the ultrasonic wave UW enters the steel from water at an incident angle α. FIG. 4B is a graph showing the reciprocal transmittance of the transverse wave of the ultrasonic wave at the boundary surface between water and steel, and the horizontal axis of this graph shows the incident angle α. In other words, FIG. 4B is a graph showing the incident angle dependency of the round-trip transmittance of the transverse wave. As shown in FIG. 4B, there are 16 ° to 22 ° as an angle range in which the incident angle dependency of the round-trip transmittance is low. FIG. 5 is a graph showing the characteristic curve of the incident angle α calculated using the above equation (1), and the horizontal axis of this graph shows the flaw inclination angle β. In the graph of FIG. 5, the characteristic curve when α xz = 17 ° is fixed is indicated by a solid line, and the characteristic curve when α xz = 7 ° is fixed is indicated by a dotted line.
 図4Bに示されるように、水と鋼との境界面における往復透過率は、入射角α=16°付近でピークを示す。しかしながら、入射角αが16°に初期設定されると、設置誤差または音速変動などの要因により、実際の入射角αが15°程度になることが考えられ、この場合には急激に透過率が低下するおそれがある。このため、入射角αの初期設定値としては17°程度を用いることが好ましい。 As shown in FIG. 4B, the reciprocal transmittance at the boundary surface between water and steel shows a peak near the incident angle α = 16 °. However, when the incident angle α is initially set to 16 °, the actual incident angle α may be about 15 ° due to factors such as installation errors or sound speed fluctuations. In this case, the transmittance rapidly increases. May decrease. For this reason, it is preferable to use about 17 ° as the initial setting value of the incident angle α.
 傾斜角β=0°の斜めきずの性状は、上式(1),(2)から明らかなように、αxz=α=17°とし、αyz=0°として測定されればよい。きず傾斜角βが小さい場合には、入射角αxzが17°に固定された状態で、超音波ビームTwの入射角αyzを電子的に可変制御する方法によって、斜めきずの性状が測定可能である。 As is apparent from the above formulas (1) and (2), the properties of the oblique flaw with the inclination angle β = 0 ° may be measured with α xz = α = 17 ° and α yz = 0 °. When the scratch inclination angle β is small, the property of the oblique scratch can be measured by a method in which the incident angle α yz of the ultrasonic beam Tw is electronically variably controlled while the incident angle α xz is fixed at 17 °. It is.
 また、図4Bに示すように往復透過率は25°程度まで比較的大きな値を保っているが、斜めきずでの反射率を考慮すると22°程度を有効範囲の上限することが好ましい。図5に示すように、αxz=17°に固定されても、きず傾斜角β=41°まで測定可能である。しかしながら、きず傾斜角βが41°を超えると、入射角αを22°以上の値に設定する必要がある。この値は、好適な往復透過率を与える入射角の有効範囲(17°~22°)を超えてしまう。 In addition, as shown in FIG. 4B, the reciprocal transmittance maintains a relatively large value up to about 25 °, but it is preferable that the upper limit of the effective range is about 22 ° in consideration of the reflectance at an oblique flaw. As shown in FIG. 5, even if α xz = 17 °, measurement is possible up to a scratch inclination angle β = 41 °. However, if the flaw inclination angle β exceeds 41 °, the incident angle α needs to be set to a value of 22 ° or more. This value exceeds the effective range (17 ° to 22 °) of the incident angle that gives a suitable round-trip transmittance.
 したがって、きず傾斜角βが大きい斜めきずの性状を測定するには、入射角αxzも変える必要がある。図5に示すように、たとえば、αxz=7°とすれば、きず傾斜角β=71°の斜めきずであっても、入射角αの有効範囲(17°~22°)内で測定可能である。このようにして2種類の入射角αxz,αyzの両方を変化させることにより、きず傾斜角βの広い範囲について斜めきずの性状を測定することが可能となる。 Therefore, in order to measure the properties of an oblique flaw having a large flaw inclination angle β, it is also necessary to change the incident angle α xz . As shown in FIG. 5, for example, if α xz = 7 °, even an oblique flaw with a flaw angle β = 71 ° can be measured within an effective range (17 ° to 22 °) of the incident angle α. It is. Thus, by changing both of the two types of incident angles α xz and α yz , it becomes possible to measure the properties of the oblique flaws over a wide range of the flaw inclination angle β.
 次に、上記超音波測定装置1の動作について説明する。図6は、送受信器20による超音波測定処理の基本的な手順の一例を概略的に示すフローチャートである。先ず、超音波制御部21Aは、アレイ探触子10に関する制御条件を設定する(ステップST11)。具体的には、超音波制御部21Aは、上記入射角αxz,αyzの目標値をそれぞれ適当な初期値に設定する。次に、移動制御部22は、超音波ビームTwの入射角αxzが目標値となるように移動量δだけアレイ探触子10を移動させる(ステップST12)。また、超音波制御部21Aは、超音波ビームTwの入射角αyzが目標値となるようにアレイ探触子10から試験体2へ超音波ビームTwを送信させる(ステップST13)。 Next, the operation of the ultrasonic measurement apparatus 1 will be described. FIG. 6 is a flowchart schematically showing an example of a basic procedure of ultrasonic measurement processing by the transceiver 20. First, the ultrasonic control unit 21A sets control conditions for the array probe 10 (step ST11). Specifically, the ultrasonic control unit 21A sets the target values of the incident angles α xz and α yz to appropriate initial values. Next, the movement control unit 22 moves the array probe 10 by the movement amount δ so that the incident angle α xz of the ultrasonic beam Tw becomes the target value (step ST12). In addition, the ultrasonic control unit 21A transmits the ultrasonic beam Tw from the array probe 10 to the test body 2 so that the incident angle α yz of the ultrasonic beam Tw becomes a target value (step ST13).
 その後、送受信器20は、アレイ探触子10で検出された受信アナログ信号群を受信する(ステップST14)。すなわち、受信用増幅器25は、配線群28から入力された受信アナログ信号群を増幅する。A/D変換器26は、当該増幅された受信アナログ信号群を受信ディジタル信号群に変換する。そして、メモリ27は、この受信ディジタル信号群を記憶する(ステップST15) Thereafter, the transceiver 20 receives the received analog signal group detected by the array probe 10 (step ST14). That is, the reception amplifier 25 amplifies the reception analog signal group input from the wiring group 28. The A / D converter 26 converts the amplified reception analog signal group into a reception digital signal group. Then, the memory 27 stores this received digital signal group (step ST15).
 次に、超音波制御部21Aは、試験体2の所定の角度範囲の走査が完了したか否かを判定する(ステップST16)。所定の角度範囲の走査が完了していない場合は(ステップST16のNO)、超音波制御部21Aは、ステアリングに関する制御条件を変更する(ステップST17)。その後、ステップST13~ST16が実行される。所定の角度範囲の走査が完了した場合は(ステップST16のYES)、超音波制御部21Aは、超音波ビームTwの送信を終了させる(ステップST18)。そして、性状判定部21Bは、メモリ27から受信ディジタル信号群を読み出し、これら受信ディジタル信号群を解析して試験体2の表面及び内部の性状を判定する(ステップST19)。 Next, the ultrasonic control unit 21A determines whether or not the scanning of the test object 2 within a predetermined angle range has been completed (step ST16). When the scanning of the predetermined angle range is not completed (NO in step ST16), the ultrasonic control unit 21A changes the control condition regarding the steering (step ST17). Thereafter, steps ST13 to ST16 are executed. When the scanning of the predetermined angle range is completed (YES in step ST16), the ultrasonic control unit 21A ends the transmission of the ultrasonic beam Tw (step ST18). Then, the property determination unit 21B reads the received digital signal group from the memory 27, analyzes the received digital signal group, and determines the surface and internal properties of the test body 2 (step ST19).
 上記した超音波測定装置1の特徴は、アレイ探触子10内の振動素子Tr,…,Trの最大放射方向が、素子配列方向に対して90°-αの角度で傾斜し、非零のオフセット角αを有する点である。これにより、振動素子Tr,…,Trの最大放射方向は、試験体2の長手方向に対しても90°-αの角度で傾斜する。以下に説明するように、振動素子Tr,…,Trの最大放射方向が素子配列方向に対して傾斜しない場合と比べると、振動素子Trの放射指向性に起因する検出感度の低下が抑制されるので、試験体2の欠陥部位の性状を高い精度で判定することが可能となる。 The ultrasonic measurement apparatus 1 is characterized in that the maximum radiation direction of the vibration elements Tr,..., Tr in the array probe 10 is inclined at an angle of 90 ° −α 0 with respect to the element arrangement direction, and is non-zero. a point having an offset angle alpha 0 of. Thus, the vibrating element Tr, ..., the maximum radiation direction of the Tr is also inclined at an angle of 90 °-.alpha. 0 relative to the longitudinal direction of the test material 2. As will be described below, a decrease in detection sensitivity due to the radiation directivity of the vibration element Tr is suppressed as compared with the case where the maximum radiation direction of the vibration elements Tr,. Therefore, the property of the defective part of the test body 2 can be determined with high accuracy.
 図7は、きず傾斜角β=0°の欠陥部位D1を有する試験体2と対向して配置されたアレイ探触子10の概略断面図である。欠陥部位D1は、試験体2の内周面2bに、当該試験体2の長手方向に延在するように形成されている。また、図8は、図7に示したVIII-VIII線におけるアレイ探触子10及び試験体2の概略断面を示す図であり、図9は、図7に示したアレイ探触子10及び試験体2の上面を概略的に示す外観図である。図8に示されるようにアレイ探触子10の振動素子Tr,…,Trは、非零のオフセット角αを有する。図7~図9の例では、試験体2は鋼管であり、振動素子Trのオフセット角αは+8.5°に設定されているものとする。 FIG. 7 is a schematic cross-sectional view of the array probe 10 arranged to face the test body 2 having the defect portion D1 having a flaw inclination angle β = 0 °. The defect site D1 is formed on the inner peripheral surface 2b of the test body 2 so as to extend in the longitudinal direction of the test body 2. 8 is a diagram showing a schematic cross section of the array probe 10 and the test body 2 along the line VIII-VIII shown in FIG. 7, and FIG. 9 is a diagram showing the array probe 10 and the test shown in FIG. 2 is an external view schematically showing an upper surface of a body 2. FIG. As shown in FIG. 8, the vibration elements Tr,..., Tr of the array probe 10 have a non-zero offset angle α 0 . In the example of FIGS. 7 to 9, test material 2 is steel, the offset angle alpha 0 of the vibrating element Tr is assumed to be set to + 8.5 °.
 図7に示されるように、きず傾斜角β=0°の欠陥部位D1の性状を測定するために、移動制御部22は、アレイ探触子10を試験体2の頂点位置からX軸負方向に移動させて超音波ビームTwの入射角αxzを17°とする。一方、欠陥部位D1の延在方向に対して垂直に超音波ビームが入射されると当該欠陥部位D1を感度良く検出することができるため、超音波ビームTwの入射角αyzは0°に設定される必要がある。このため、超音波制御部21Aは、図8に示されるように、超音波ビームTwの伝搬方向が振動素子Trの最大放射方向から角度γ(以下「ステアリング角γ」ともいう。)だけ傾斜する方向となるように超音波ビームTwをステアリングする。ここで、ステアリング角γは、オフセット角αを相殺する-8.5°に設定されている。 As shown in FIG. 7, in order to measure the property of the defect site D <b> 1 having the flaw inclination angle β = 0 °, the movement control unit 22 moves the array probe 10 from the apex position of the test body 2 in the negative direction of the X axis. The incident angle α xz of the ultrasonic beam Tw is set to 17 °. On the other hand, when the ultrasonic beam is incident perpendicularly to the extending direction of the defect site D1, the defect site D1 can be detected with high sensitivity. Therefore, the incident angle α yz of the ultrasonic beam Tw is set to 0 °. Need to be done. Therefore, in the ultrasonic control unit 21A, as shown in FIG. 8, the propagation direction of the ultrasonic beam Tw is inclined by an angle γ (hereinafter also referred to as “steering angle γ”) from the maximum radiation direction of the vibration element Tr. The ultrasonic beam Tw is steered so as to be in the direction. Here, the steering angle γ is set to −8.5 °, which cancels the offset angle α 0 .
 一方、図10は、きず傾斜角β=90°の欠陥部位D2を有する試験体2と対向して配置されたアレイ探触子10の概略断面図である。欠陥部位D2は、試験体2の内周面2bに、当該試験体2の長手方向と直交する方向に延在するように形成されている。また、図11は、図10に示したXI-XI線におけるアレイ探触子10及び試験体2の概略断面を示す図であり、図12は、図10に示したアレイ探触子10及び試験体2の上面を概略的に示す外観図である。図10~図12の例でも、試験体2は鋼管であり、振動素子Trのオフセット角αは+8.5°に設定されているものとする。 On the other hand, FIG. 10 is a schematic cross-sectional view of the array probe 10 arranged to face the test body 2 having the defect portion D2 having a flaw inclination angle β = 90 °. The defect site D2 is formed on the inner peripheral surface 2b of the test body 2 so as to extend in a direction orthogonal to the longitudinal direction of the test body 2. 11 is a diagram showing a schematic cross section of the array probe 10 and the test body 2 along the line XI-XI shown in FIG. 10, and FIG. 12 shows the array probe 10 and the test shown in FIG. 2 is an external view schematically showing an upper surface of a body 2. FIG. 10 to 12, it is assumed that the test body 2 is a steel pipe and the offset angle α 0 of the vibration element Tr is set to + 8.5 °.
 図10に示されるように、きず傾斜角β=0°の欠陥部位D2の性状を測定するために、移動制御部22は、アレイ探触子10を試験体2の頂点位置から移動させずに超音波ビームTwの入射角αxzを0°とする。一方、欠陥部位D2の延在方向に対して垂直に超音波ビームが入射されると当該欠陥部位D2を感度良く検出することができるため、図11に示されるように、超音波ビームTwの入射角αyzは17°に設定される必要がある。よって、この場合のステアリング角γは+8.5°に設定されている。 As shown in FIG. 10, the movement control unit 22 does not move the array probe 10 from the apex position of the test body 2 in order to measure the property of the defect site D2 having the flaw inclination angle β = 0 °. The incident angle α xz of the ultrasonic beam Tw is set to 0 °. On the other hand, when an ultrasonic beam is incident perpendicularly to the extending direction of the defect portion D2, the defect portion D2 can be detected with high sensitivity. Therefore, as shown in FIG. The angle α yz needs to be set to 17 °. Therefore, the steering angle γ in this case is set to + 8.5 °.
 きず傾斜角βが0°~90°となる範囲内で欠陥部位が発生し得る場合には、移動制御部22は、試験体2の頂点位置からのアレイ探触子10の移動量δを変化させることにより、試験体2の長手方向から視た入射角αxzを0°~17°の範囲内で変化させればよい。また、超音波制御部21Aは、超音波ビームTwのステアリング角γを-8.5°~+8.5°の範囲内で変化させることにより、試験体2の周方向から視た入射角αyzを0°~17°の範囲内で変化させることができる。このように、オフセット角αを与えることにより、きず傾斜角βの0°~90°の範囲に対応するステアリング角γの範囲を-8.5°~+8.5°とすることができる。 If a defect site can occur within the range where the scratch inclination angle β is 0 ° to 90 °, the movement control unit 22 changes the movement amount δ of the array probe 10 from the apex position of the test body 2. By doing so, the incident angle α xz viewed from the longitudinal direction of the specimen 2 may be changed within a range of 0 ° to 17 °. In addition, the ultrasonic control unit 21A changes the steering angle γ of the ultrasonic beam Tw within a range of −8.5 ° to + 8.5 °, so that the incident angle α yz viewed from the circumferential direction of the test body 2 is obtained. Can be varied within a range of 0 ° to 17 °. Thus, by giving the offset angle α 0 , the range of the steering angle γ corresponding to the range of 0 ° to 90 ° of the flaw inclination angle β can be set to −8.5 ° to + 8.5 °.
 図13は、振動素子Tr単体の放射指向性の測定結果の例を示すグラフである。図13では、素子幅0.9mmで且つ周波数3MHzとした場合の振動素子Tr単体の放射指向性の測定結果が示されている。また、グラフの横軸は、最大放射強度を中心とするステアリング角γ(単位:°)を示し、グラフの縦軸は、超音波の相対振幅(単位:dB)を示している。図13の場合、ステアリング角γの範囲Δ1(-8.5°~+8.5°)では、相対振幅の最大変化幅(感度差)は4dB以内である。したがって、アレイ探触子10の振動素子Tr単体の放射指向性が強い場合でも、本実施の形態の超音波測定装置1は、感度低下を抑制することができることが分かる。 FIG. 13 is a graph showing an example of measurement results of radiation directivity of the vibration element Tr alone. FIG. 13 shows the radiation directivity measurement result of the vibration element Tr alone when the element width is 0.9 mm and the frequency is 3 MHz. The horizontal axis of the graph indicates the steering angle γ (unit: °) centered on the maximum radiation intensity, and the vertical axis of the graph indicates the relative amplitude (unit: dB) of the ultrasonic wave. In the case of FIG. 13, in the range Δ1 (−8.5 ° to + 8.5 °) of the steering angle γ, the maximum change width (sensitivity difference) of the relative amplitude is within 4 dB. Therefore, it can be seen that even when the radiation directivity of the vibration element Tr alone of the array probe 10 is strong, the ultrasonic measurement apparatus 1 according to the present embodiment can suppress a decrease in sensitivity.
 一方、仮に、振動素子Tr,…,Trの最大放射方向が素子配列方向に対して傾斜せずに垂直である場合には、感度低下は著しく大きくなる。以下、この点について説明する。図14は、欠陥部位Dxを有する試験体2と対向して配置されたアレイ探触子100の概略断面図である。また、図15は、図14に示したXV-XV線におけるアレイ探触子10及び試験体2の概略断面を示す図である。このアレイ探触子100の構成は、振動素子Tr,…,Trの最大放射方向が素子配列方向に対して垂直である点を除いて、上記アレイ探触子10の構成と同じである。 On the other hand, if the maximum radiation direction of the vibration elements Tr,..., Tr is perpendicular to the element arrangement direction without being inclined, the sensitivity reduction is significantly increased. Hereinafter, this point will be described. FIG. 14 is a schematic cross-sectional view of the array probe 100 disposed so as to face the test body 2 having the defect site Dx. FIG. 15 is a diagram showing a schematic cross section of the array probe 10 and the specimen 2 along the line XV-XV shown in FIG. The configuration of the array probe 100 is the same as the configuration of the array probe 10 except that the maximum radiation direction of the vibration elements Tr,..., Tr is perpendicular to the element arrangement direction.
 図16は、きず傾斜角β=0°の欠陥部位D1を有する試験体2と対向して配置されたアレイ探触子100の概略断面図である。また、図17は、図16に示したXVII-XVII線におけるアレイ探触子100及び試験体2の概略断面を示す図である。一方、図18は、きず傾斜角β=90°の欠陥部位D2を有する試験体2と対向して配置されたアレイ探触子100の概略断面図である。また、図19は、図18に示したXIX-XIX線におけるアレイ探触子100及び試験体2の概略断面を示す図である。図16~図19の例では、試験体2は鋼管である。 FIG. 16 is a schematic cross-sectional view of the array probe 100 arranged to face the test body 2 having the defect site D1 having a flaw inclination angle β = 0 °. FIG. 17 is a view showing a schematic cross section of the array probe 100 and the test body 2 along the line XVII-XVII shown in FIG. On the other hand, FIG. 18 is a schematic cross-sectional view of the array probe 100 arranged to face the test body 2 having the defect portion D2 having a flaw inclination angle β = 90 °. FIG. 19 is a diagram showing a schematic cross section of the array probe 100 and the test body 2 along the XIX-XIX line shown in FIG. In the examples of FIGS. 16 to 19, the test body 2 is a steel pipe.
  図16に示されるように、きず傾斜角βが0°の場合には、入射角度αxzは17°に設定され、超音波ビームTwの電子的な制御は行われない。また、図17に示されるように、入射角度αyzは0°に設定されている。振動素子Tr,…,Trは、同時に励振され、同時に反射エコーを受信する。 As shown in FIG. 16, when the flaw inclination angle β is 0 °, the incident angle α xz is set to 17 °, and electronic control of the ultrasonic beam Tw is not performed. Further, as shown in FIG. 17, the incident angle α yz is set to 0 °. The vibrating elements Tr,..., Tr are excited simultaneously and receive reflected echoes simultaneously.
 一方、図18に示されるように、きず傾斜角βが90°の場合には、入射角度αxzは0°に設定され、図19に示されるように、超音波ビームTwの電子的な制御により入射角度αyzは17°に設定される。 On the other hand, as shown in FIG. 18, when the flaw inclination angle β is 90 °, the incident angle α xz is set to 0 °. As shown in FIG. 19, the electronic control of the ultrasonic beam Tw is performed. Thus, the incident angle α yz is set to 17 °.
 図16~図19から分かるように、きず傾斜角βの0°~90°の範囲に対応するには、ステアリングにより入射角度αyzを0°~17°に設定する必要がある。この結果、大きく反射エコーの受信強度(感度)が低下する可能性がある。図13の場合、ステアリング範囲Δ2は、入射角度αyzの0°~17°の範囲となる。このため、図13に示されるように、0°と17°との感度差は10dB以上ある。送信だけで10dB以上の差があるので、送受信兼用の場合には、20dB以上の差があることになる。したがって、図13に示したような放射指向性が強い振動素子Trを用いた場合、図16に示したきず傾斜角β=0°の場合と比較して、図18に示したきず傾斜角β=90°の場合は、20dB以上の感度低下が生じる可能性がある。 As can be seen from FIG. 16 to FIG. 19, in order to cope with the range of 0 ° to 90 ° of the flaw inclination angle β, it is necessary to set the incident angle α yz to 0 ° to 17 ° by the steering. As a result, there is a possibility that the reception intensity (sensitivity) of the reflected echo is greatly reduced. In the case of FIG. 13, the steering range Δ2 is a range of 0 ° to 17 ° of the incident angle α yz . For this reason, as shown in FIG. 13, the sensitivity difference between 0 ° and 17 ° is 10 dB or more. Since there is a difference of 10 dB or more only by transmission, there is a difference of 20 dB or more when used for both transmission and reception. Therefore, when the vibration element Tr having a strong radiation directivity as shown in FIG. 13 is used, the flaw inclination angle β shown in FIG. 18 is compared with the flaw inclination angle β = 0 ° shown in FIG. In the case of = 90 °, the sensitivity may be lowered by 20 dB or more.
 以上に説明したように実施の形態1の超音波測定装置1では、アレイ探触子10内の振動素子Tr,…,Trの最大放射方向が素子配列方向に対して傾斜している。これにより、振動素子Tr単体の放射指向性が強い場合でも、感度低下を抑制することができる。したがって、試験体2の内部における欠陥部位の性状を高い精度で判定することができる。 As described above, in the ultrasonic measurement apparatus 1 according to the first embodiment, the maximum radiation direction of the vibration elements Tr,..., Tr in the array probe 10 is inclined with respect to the element arrangement direction. Thereby, even when the radiation directivity of the vibration element Tr alone is strong, a decrease in sensitivity can be suppressed. Therefore, the property of the defective part in the inside of the test body 2 can be determined with high accuracy.
 なお、アレイ探触子10の移動量δは、試験体2の直径及びきず傾斜角βに応じて変化し得る。また、アレイ探触子10の各振動素子Trを励振するタイミングも、きず傾斜角βに応じて変化し得る。これら移動量δ及びタイミングを予め計算しておき、メモリ27内に情報として記憶させておくことが望ましい。この場合、主制御部21は、試験体2の直径及びきず傾斜角βに応じてメモリ27内に記憶させた情報を読み出し、その情報に基づいて、移動量δを決定したり、信号発生器23に供給すべき指令信号を生成したりしてもよい。 Note that the moving amount δ of the array probe 10 can be changed according to the diameter of the specimen 2 and the flaw inclination angle β. Further, the timing for exciting each vibration element Tr of the array probe 10 can also be changed according to the flaw inclination angle β. It is desirable to calculate the movement amount δ and timing in advance and store them in the memory 27 as information. In this case, the main control unit 21 reads the information stored in the memory 27 in accordance with the diameter and the flaw inclination angle β of the test body 2 and determines the amount of movement δ based on the information or the signal generator A command signal to be supplied to the control unit 23 may be generated.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。本実施の形態は、上記実施の形態1の変形例である。図20は、実施の形態2におけるアレイ探触子12の概略断面図である。本実施の形態の超音波測定装置の構成は、上記アレイ探触子10に代えてアレイ探触子12を有する点を除いて、上記実施の形態1の超音波測定装置1の構成と同じである。
Embodiment 2. FIG.
Next, a second embodiment according to the present invention will be described. The present embodiment is a modification of the first embodiment. FIG. 20 is a schematic cross-sectional view of the array probe 12 in the second embodiment. The configuration of the ultrasonic measurement apparatus according to the present embodiment is the same as that of the ultrasonic measurement apparatus 1 according to the first embodiment except that the array probe 12 is provided instead of the array probe 10. is there.
 図20に示されるように、本実施の形態におけるアレイ探触子12は、予め定められたアレイ配列方向(Y軸方向)に沿って配列されたM個(Mは正整数)のサブアレイ探触子12,…,12を含んで構成されている。サブアレイ探触子12,…,12の各々は、複数の振動素子Tr,…,Trを有する。なお、サブアレイ探触子12,…,12の個数は、4個以上である必要はなく、2個または3個であってもよい。 As shown in FIG. 20, the array probe 12 in this embodiment includes M (M is a positive integer) sub-array probes arranged along a predetermined array arrangement direction (Y-axis direction). It is comprised including the child 12 1 ,..., 12 M. Each of the sub-array probes 12 1 ,..., 12 M has a plurality of vibration elements Tr,. It should be noted that the number of subarray probes 12 1 ,..., 12 M need not be four or more, and may be two or three.
 図20に示されるように、本実施の形態の振動素子Tr,…,Trの最大放射方向は、アレイ配列方向(Y軸方向)に対して非零のオフセット角αで傾斜している。よって、上記実施の形態1の場合と同様に、振動素子Tr単体の放射指向性が強い場合でも、ステアリング角γの範囲を感度差の小さい範囲に設定することができるため、感度低下を抑制することができる。したがって、試験体2の内部における欠陥部位の性状を高い精度で判定することが可能である。 As shown in FIG. 20, the maximum radiation direction of the vibration elements Tr,..., Tr of the present embodiment is inclined at a non-zero offset angle α 0 with respect to the array arrangement direction (Y-axis direction). Therefore, as in the case of the first embodiment, even when the radiation directivity of the vibration element Tr alone is strong, the range of the steering angle γ can be set to a range where the sensitivity difference is small, and thus the sensitivity reduction is suppressed. be able to. Therefore, it is possible to determine the property of the defective part inside the specimen 2 with high accuracy.
 また、上記実施の形態のアレイ探触子10と比べると、小さな振動素子Tr,…,Trの最大放射方向を素子配列方向に対して一定角度で傾斜させる必要がないので、本実施の形態のアレイ探触子12は製造しやすいという利点がある。 Further, as compared with the array probe 10 of the above embodiment, it is not necessary to incline the maximum radiation direction of the small vibrating elements Tr,..., Tr at a constant angle with respect to the element arrangement direction. The array probe 12 has an advantage that it is easy to manufacture.
 なお、本実施の形態のアレイ探触子12はサブアレイ化されているので、アレイ配列方向における超音波ビームTwのビーム幅に谷間が発生する可能性がある。当該谷間に欠陥部位が存在する場合には、当該欠陥部位の検出精度が低下するおそれがある。これに対処すべく、超音波制御部21Aは、各サブアレイ探触子12(mは1~Mのうちの任意整数)の振動素子Tr,…,Trから超音波が放射されるタイミングを制御することにより、各サブアレイ探触子12から放射される超音波ビームのビーム幅をアレイ配列方向に拡げることが望ましい。これにより、超音波ビームTwの谷間が狭く、あるいは当該谷間が浅くなるので、欠陥部位の検出精度の低下を抑制することができる。 Since the array probe 12 according to the present embodiment is subarrayed, there is a possibility that a valley occurs in the beam width of the ultrasonic beam Tw in the array arrangement direction. When a defective part exists in the valley, the detection accuracy of the defective part may be lowered. In order to cope with this, the ultrasonic control unit 21A controls the timing at which ultrasonic waves are emitted from the vibrating elements Tr,..., Tr of each subarray probe 12 m (m is an arbitrary integer from 1 to M). Thus, it is desirable to expand the beam width of the ultrasonic beam emitted from each subarray probe 12 m in the array arrangement direction. Thereby, since the valley of the ultrasonic beam Tw is narrow or the valley becomes shallow, it is possible to suppress a decrease in detection accuracy of the defective part.
実施の形態3.
 次に、本発明に係る実施の形態3について説明する。図21は、本発明に係る実施の形態3である超音波測定装置1Aの概略構成を示す図である。この超音波測定装置1Aも、柱状構造を有する試験体の表面または内部に存在し得る欠陥部位の性状を超音波を用いて非破壊で測定する機能を有する。図21に示されるように超音波測定装置1Aは、試験体2に対向して配置されるべきアレイ探触子13と、送受信器20Mと、アレイ探触子13を図21のX軸方向に沿って移動させるアクチュエータ32とを備えて構成されている。
Embodiment 3 FIG.
Next, a third embodiment according to the present invention will be described. FIG. 21 is a diagram showing a schematic configuration of an ultrasonic measurement apparatus 1A according to the third embodiment of the present invention. This ultrasonic measurement apparatus 1A also has a function of nondestructively measuring the properties of defective portions that may exist on the surface or inside of a test body having a columnar structure. As shown in FIG. 21, the ultrasonic measurement apparatus 1 </ b> A moves the array probe 13, the transceiver 20 </ b> M, and the array probe 13 to be arranged facing the test body 2 in the X-axis direction of FIG. 21. And an actuator 32 that is moved along.
 図21には、試験体2の正面方向から視たときのアレイ探触子13及び試験体2の断面構造の例が概略的に示されている。図22は、図21に示したアレイ探触子13の断面構造の拡大図である。また、図23は、図21に示したXXIII-XXIII線におけるアレイ探触子13及び試験体2の概略断面図である。図23には、試験体2の右側方から視たときのアレイ探触子10及び試験体2の概略断面が示されている。そして、図24は、図21に示したアレイ探触子13及び試験体2の上面を概略的に示す外観図である。なお、試験体2とアレイ探触子13との間に介在する接触媒質として水が存在するが、この接触媒質は図示されていない。 FIG. 21 schematically shows an example of a cross-sectional structure of the array probe 13 and the test body 2 when viewed from the front direction of the test body 2. FIG. 22 is an enlarged view of the cross-sectional structure of the array probe 13 shown in FIG. FIG. 23 is a schematic sectional view of the array probe 13 and the test body 2 taken along the line XXIII-XXIII shown in FIG. FIG. 23 shows a schematic cross section of the array probe 10 and the test body 2 when viewed from the right side of the test body 2. FIG. 24 is an external view schematically showing the top surfaces of the array probe 13 and the test body 2 shown in FIG. In addition, although water exists as a contact medium interposed between the test body 2 and the array probe 13, this contact medium is not illustrated.
 アレイ探触子13は、図22に示されるように、本体部14に固定された複数の振動素子Tra,…,Traを超音波放射素子として有する。これら振動素子Tra,…,Traは、予め定められた素子配列方向に沿って配列されており、同じ放射指向性を有する。また、図23に示されるように、各振動素子Traは、素子配列方向と直交する方向(図23の場合、Y軸方向)に沿って延在している。各振動素子Traは、たとえば、高周波の励振信号に応じて超音波を放射する圧電素子を用いて構成されればよい。 As shown in FIG. 22, the array probe 13 has a plurality of vibration elements Tra,..., Tra fixed to the main body 14 as ultrasonic radiation elements. These vibration elements Tra,..., Tra are arranged along a predetermined element arrangement direction and have the same radiation directivity. As shown in FIG. 23, each vibration element Tra extends along a direction orthogonal to the element arrangement direction (in the case of FIG. 23, the Y-axis direction). Each vibration element Tra may be configured using, for example, a piezoelectric element that emits ultrasonic waves in response to a high-frequency excitation signal.
 また、図21及び図24に示されるように、アレイ探触子13は、試験体2と対向し、且つ試験体2の中心軸CAを含む平面と交差する位置に配置されている。この平面は、Y-Z平面と平行である。振動素子Tra,…,Traの最大放射方向は、この平面に対してオフセット角αで傾斜している。 Further, as shown in FIGS. 21 and 24, the array probe 13 is disposed at a position facing the test body 2 and intersecting a plane including the central axis CA of the test body 2. This plane is parallel to the YZ plane. Vibrating element Tra, ..., the maximum radiation direction of the Tra is inclined at an offset angle alpha 0 to this plane.
 アクチュエータ32は、振動素子Tra,…,Traの延在方向が試験体2の長手方向と平行になる平行状態から、その延在方向が試験体2の長手方向に対して傾斜する傾斜状態へアレイ探触子13の配置状態を変化させる機構を有する。図21~図24には、アレイ探触子13の平行状態が示されている。アレイ探触子13の傾斜状態については、後述する。 The actuator 32 is arrayed from a parallel state in which the extending direction of the vibration elements Tra,..., Tra is parallel to the longitudinal direction of the test body 2 to an inclined state in which the extending direction is inclined with respect to the longitudinal direction of the test body 2. It has a mechanism for changing the arrangement state of the probe 13. 21 to 24 show the parallel state of the array probe 13. The tilted state of the array probe 13 will be described later.
 一方、図21を参照すると、送受信器20Mは、主制御部21Mと、この主制御部21Mによる制御に応じてアクチュエータ32の動作を制御する移動制御部22Mと、主制御部21Mによる制御に応じて励振信号群を発生する信号発生器23Mと、当該励振信号群を増幅する送信用増幅器24Mと、この送信用増幅器24Mで増幅された励振信号群をアレイ探触子13内の振動素子Tra,…,Traに伝達する配線群28Mと、この配線群28Mから入力された受信アナログ信号群を増幅する受信用増幅器25Mと、この受信用増幅器25Mで増幅された受信アナログ信号群を受信ディジタル信号群に変換するA/D変換器26Mと、当該受信ディジタル信号群を記憶するメモリ27とを含んで構成されている。なお、受信アナログ信号群の強度が大きい場合には、受信用増幅器25Mは省略されてもよい。 On the other hand, referring to FIG. 21, the transceiver 20M includes a main control unit 21M, a movement control unit 22M that controls the operation of the actuator 32 according to the control by the main control unit 21M, and a control by the main control unit 21M. A signal generator 23M for generating an excitation signal group, a transmission amplifier 24M for amplifying the excitation signal group, and an excitation signal group amplified by the transmission amplifier 24M as a vibration element Tra in the array probe 13. ..., a wiring group 28M transmitted to Tra, a receiving amplifier 25M for amplifying a receiving analog signal group input from the wiring group 28M, and a receiving analog signal group amplified by the receiving amplifier 25M. A / D converter 26M for converting the received digital signal group, and a memory 27 for storing the received digital signal group. Note that the receiving amplifier 25M may be omitted when the intensity of the received analog signal group is large.
 主制御部21Mは、超音波制御部21MA及び性状判定部21MBを含む。超音波制御部21MAは、フェーズドアレイ法に従って、アレイ探触子13内の振動素子Tra,…,Traを励振するための指令信号を信号発生器23Mに供給する。信号発生器23Mは、この指令信号に基づいて、振動素子Tra,…,Traにそれぞれ対応する複数の励振信号を発生する。送信用増幅器24Mは、これら励振信号を増幅し、当該増幅された励振信号を配線群28Mを介して振動素子Tra,…,Traにそれぞれ供給する。超音波制御部21MAは、各励振信号を遅延させる遅延時間を調整することにより、アレイ探触子13内の各振動素子Traから超音波が放射されるタイミングを電子的に制御することができる。これにより、図21に例示されるように、試験体2の長手方向(Y軸方向)から視たときの試験体2に入射する超音波ビームTwの入射角αxzを可変制御することが可能となる。この入射角αxzは、試験体2への超音波ビームTwの入射角αのX-Z平面(X軸方向及びZ軸方向の双方に平行な平面)への投影角である。 The main control unit 21M includes an ultrasonic control unit 21MA and a property determination unit 21MB. The ultrasonic controller 21MA supplies a command signal for exciting the vibration elements Tra,..., Tra in the array probe 13 to the signal generator 23M according to the phased array method. Based on this command signal, the signal generator 23M generates a plurality of excitation signals corresponding to the vibration elements Tra,..., Tra, respectively. The transmitting amplifier 24M amplifies these excitation signals and supplies the amplified excitation signals to the vibration elements Tra,..., Tra via the wiring group 28M. The ultrasonic control unit 21MA can electronically control the timing at which ultrasonic waves are radiated from each vibration element Tra in the array probe 13 by adjusting the delay time for delaying each excitation signal. This makes it possible to variably control the incident angle α xz of the ultrasonic beam Tw incident on the test body 2 when viewed from the longitudinal direction (Y-axis direction) of the test body 2, as illustrated in FIG. It becomes. The incident angle α xz is a projection angle of the incident angle α of the ultrasonic beam Tw on the test body 2 onto the XZ plane (a plane parallel to both the X-axis direction and the Z-axis direction).
 また、移動制御部22Mは、アクチュエータ32の動作を制御してアレイ探触子13の配置状態を変化させることができる。 Further, the movement control unit 22M can change the arrangement state of the array probe 13 by controlling the operation of the actuator 32.
 一方、アレイ探触子13内の振動素子Tra,…,Traは、試験体2から反射エコーが到来したとき、当該反射エコーを電気信号群に変換して受信アナログ信号群を配線群28Mに出力する。受信用増幅器25Mは、この配線群28Mから入力された受信アナログ信号群を増幅する。A/D変換器26Mは、当該増幅された受信アナログ信号群を受信ディジタル信号群に変換する。そして、メモリ27は、この受信ディジタル信号群を記憶する。性状判定部21MBは、メモリ27から受信ディジタル信号群を読み出し、これら受信ディジタル信号群を解析して試験体2の表面及び内部の性状を判定する機能を有する。性状判定部21MBは、たとえば、反射エコーの振幅または強度の測定結果に基づいて試験体2内の欠陥部位の寸法を推定することができ、反射エコーの伝搬時間の測定結果に基づいて試験体2内の欠陥部位の存在位置を推定することもできる。 On the other hand, the vibration elements Tra,..., Tra in the array probe 13 convert the reflected echoes into electrical signal groups and output the received analog signal groups to the wiring group 28M when the reflected echoes arrive from the test body 2. To do. The receiving amplifier 25M amplifies the received analog signal group input from the wiring group 28M. The A / D converter 26M converts the amplified received analog signal group into a received digital signal group. The memory 27 stores the received digital signal group. The property determining unit 21MB has a function of reading the received digital signal group from the memory 27 and analyzing the received digital signal group to determine the surface and internal properties of the test body 2. The property determination unit 21MB can estimate the size of the defect site in the specimen 2 based on the measurement result of the amplitude or intensity of the reflected echo, for example, and the specimen 2 based on the measurement result of the propagation time of the reflected echo. It is also possible to estimate the position of the defect site in the inside.
 なお、上記した主制御部21M及び移動制御部22Mは、たとえば、CPU内蔵のコンピュータにより実現可能である。あるいは、主制御部21M及び移動制御部22Mは、DSP、ASICまたはFPGAなどのLSIにより実現されてもよい。また、上記送受信器20Mによる超音波測定処理の基本的な手順は、図6に示した手順と同様である。 The main control unit 21M and the movement control unit 22M described above can be realized by, for example, a computer with a built-in CPU. Alternatively, the main control unit 21M and the movement control unit 22M may be realized by an LSI such as a DSP, ASIC, or FPGA. The basic procedure of ultrasonic measurement processing by the transceiver 20M is the same as the procedure shown in FIG.
 上記した超音波測定装置1Aの特徴は、振動素子Tra,…,Traの最大放射方向が、試験体2の中心軸CAを含む平面に対してオフセット角αで傾斜している点にある。以下に説明するように、この特徴により、振動素子Traの放射指向性に起因する検出感度の低下が抑制されるので、試験体2の欠陥部位の性状を高い精度で判定することが可能となる。 The ultrasonic measuring apparatus 1A described above is characterized in that the maximum radiation direction of the vibration elements Tra,..., Tra is inclined at an offset angle α 0 with respect to the plane including the central axis CA of the test body 2. As will be described below, this feature suppresses a decrease in detection sensitivity due to the radiation directivity of the vibration element Tra, so that the property of the defective part of the test body 2 can be determined with high accuracy. .
 図21、図23及び図24に示される試験体2は、きず傾斜角β=0°の欠陥部位D1を有している。オフセット角αは+8.5°に設定されているものとする。図21に示されるように、超音波制御部21MAは、超音波ビームTwの伝搬方向が入射角αxz=17°を形成するように超音波ビームTwをステアリングする。この場合のステアリング角γは、8.5°-θである。ここで、θは、図21に示すように、欠陥部位D1の性状を測定するときの超音波ビームTwの入射点位置に対応する角度である。一方、図23に示されるように入射角αyzは0°に設定される必要があるので、アレイ探触子13の配置状態は、平行状態である。 The test body 2 shown in FIG. 21, FIG. 23 and FIG. 24 has a defect part D1 having a flaw inclination angle β = 0 °. It is assumed that the offset angle α 0 is set to + 8.5 °. As shown in FIG. 21, the ultrasonic control unit 21MA steers the ultrasonic beam Tw so that the propagation direction of the ultrasonic beam Tw forms an incident angle α xz = 17 °. In this case, the steering angle γ is 8.5 ° −θ. Here, as shown in FIG. 21, θ is an angle corresponding to the position of the incident point of the ultrasonic beam Tw when measuring the property of the defect site D1. On the other hand, as shown in FIG. 23, since the incident angle α yz needs to be set to 0 °, the arrangement state of the array probe 13 is a parallel state.
 一方、図25は、きず傾斜角β=90°の欠陥部位D2を有する試験体2と対向して配置されたアレイ探触子13の端面を概略的に示す図である。また、図26は、図25に示したXXVI-XXVI線におけるアレイ探触子13及び試験体2の概略断面図であり、図27は、図25に示したアレイ探触子13及び試験体2の上面を概略的に示す外観図である。図25に示されるように、超音波制御部21MAは、超音波ビームTwの入射角αxzを0°にするように超音波ビームTwをステアリングする。ここで、ステアリング角γは、オフセット角αを相殺する-8.5°に設定されている。一方、入射角αyzは17°に設定される必要があるので、図26に示されるように、アレイ探触子13の振動素子Tra,…,Traの延在方向を長手方向に対して17°で傾斜させる。 On the other hand, FIG. 25 is a diagram schematically showing an end face of the array probe 13 disposed to face the test body 2 having the defect portion D2 having a flaw inclination angle β = 90 °. 26 is a schematic cross-sectional view of the array probe 13 and the test body 2 taken along the line XXVI-XXVI shown in FIG. 25, and FIG. 27 is a diagram of the array probe 13 and the test body 2 shown in FIG. FIG. As shown in FIG. 25, the ultrasonic control unit 21MA steers the ultrasonic beam Tw so that the incident angle α xz of the ultrasonic beam Tw becomes 0 °. Here, the steering angle γ is set to −8.5 °, which cancels the offset angle α 0 . On the other hand, since the incident angle α yz needs to be set to 17 °, the extending direction of the vibration elements Tra,..., Tra of the array probe 13 is set to 17 with respect to the longitudinal direction as shown in FIG. Tilt at °.
 きず傾斜角βが0°~90°の場合、アレイ探触子13のステアリング角γを変えることにより入射角αxzを0°~17°の範囲内で変化させることができ、入射角αyzを0°~17°まで変化させることができる。このようにアレイ探触子13にオフセット角αを与えることにより、超音波ビームTwのステアリング角γを-8.5°~8.5°-θの範囲とすることができる。 When the flaw inclination angle β is 0 ° to 90 °, the incident angle α xz can be changed within the range of 0 ° to 17 ° by changing the steering angle γ of the array probe 13, and the incident angle α yz Can be varied from 0 ° to 17 °. By giving the offset angle α 0 to the array probe 13 in this way, the steering angle γ of the ultrasonic beam Tw can be set in the range of −8.5 ° to 8.5 ° −θ.
 図28は、図13に示した測定結果と同じ測定結果を示すグラフである。図28の場合、ステアリング角γの範囲Δ3(-8.5°~+8.5°-θ)では、相対振幅の最大変化幅(感度差)は4dB以内である。したがって、アレイ探触子13の振動素子Tra単体の放射指向性が強い場合でも、本実施の形態の超音波測定装置1Aは、感度低下を抑制することができることが分かる。 FIG. 28 is a graph showing the same measurement results as the measurement results shown in FIG. In the case of FIG. 28, in the steering angle γ range Δ3 (−8.5 ° to + 8.5 ° −θ), the maximum change width (sensitivity difference) of the relative amplitude is within 4 dB. Therefore, even when the radiation directivity of the vibration element Tra alone of the array probe 13 is strong, it can be seen that the ultrasonic measurement apparatus 1A according to the present embodiment can suppress a decrease in sensitivity.
実施の形態4.
 次に、本発明に係る実施の形態4について説明する。本実施の形態は、上記実施の形態3の変形例である。図29及び図30は、実施の形態4におけるアレイ探触子15の概略断面図であり、図31は、k番目のサブアレイ探触子15の概略断面図である。また、図32は、実施の形態4におけるアクチュエータ32A及び駆動機構の概略構成を示す図である。
Embodiment 4 FIG.
Next, a fourth embodiment according to the present invention will be described. The present embodiment is a modification of the third embodiment. 29 and 30 are schematic cross-sectional views of the array probe 15 according to the fourth embodiment, and FIG. 31 is a schematic cross-sectional view of the k-th sub-array probe 15 k . FIG. 32 is a diagram showing a schematic configuration of the actuator 32A and the drive mechanism in the fourth embodiment.
 本実施の形態の超音波測定装置の構成は、上記アレイ探触子13に代えてアレイ探触子15を有する点と、上記アクチュエータ32に代えて図23のアクチュエータ32A及び駆動機構を有する点とを除いて、上記実施の形態3の超音波測定装置1Aの構成と略同じである。また、図31に示す断面構造は、図22に示した断面構造と実質的に同じ構造を含む。 The configuration of the ultrasonic measurement apparatus according to the present embodiment includes an array probe 15 instead of the array probe 13, and an actuator 32A and a drive mechanism shown in FIG. Is substantially the same as the configuration of the ultrasonic measurement apparatus 1A of the third embodiment. 31 includes substantially the same structure as the cross-sectional structure illustrated in FIG.
 図29に示されるように、本実施の形態におけるアレイ探触子15は、予め定められたアレイ配列方向(Y軸方向)に沿って配列されたK個(Kは正整数)のサブアレイ探触子15,…,15を含んで構成されている。サブアレイ探触子15,…,15の各々は、複数の振動素子Trb,…,Trbを有する。なお、サブアレイ探触子15,…,15の個数は、4個以上である必要はなく、2個または3個であってもよい。 As shown in FIG. 29, the array probe 15 according to the present embodiment has K subarray probes (K is a positive integer) arranged along a predetermined array arrangement direction (Y-axis direction). child 15 1, ..., is configured to include a 15 K. Each of the sub-array probes 15 1 ,..., 15 K has a plurality of vibration elements Trb,. The number of subarray probes 15 1 ,..., 15 K need not be four or more, and may be two or three.
 また、本実施の形態のアレイ探触子15はサブアレイ化されているので、アレイ配列方向における超音波ビームTwのビーム幅に谷間が発生する可能性がある。当該谷間に欠陥部位が存在する場合には、当該欠陥部位の検出精度が低下するおそれがある。これに対処すべく、各サブアレイ探触子15は、超音波ビームTwを試験体2の長手方向に拡げる音響レンズLsを有している。これにより、超音波ビームTwの谷間が狭く、あるいは当該谷間が浅くなるので、欠陥部位の検出精度の低下を抑制することができる。なお、音響レンズLsが無くてもビーム幅が十分広ければ、音響レンズLsは用いなくてもよい。 Further, since the array probe 15 of the present embodiment is sub-arrayed, there is a possibility that a valley occurs in the beam width of the ultrasonic beam Tw in the array arrangement direction. When a defective part exists in the valley, the detection accuracy of the defective part may be lowered. In order to cope with this, each sub-array probe 15 k has an acoustic lens Ls that expands the ultrasonic beam Tw in the longitudinal direction of the test body 2. Thereby, since the valley of the ultrasonic beam Tw is narrow or the valley becomes shallow, it is possible to suppress a decrease in detection accuracy of the defective part. If the beam width is sufficiently wide even without the acoustic lens Ls, the acoustic lens Ls may not be used.
 図32のアクチュエータ32Aは、各サブアレイ探触子15の振動素子Trb,…,Trbの延在方向が試験体2の長手方向と平行になる平行状態(図30)から、その延在方向が試験体2の長手方向に対して傾斜する傾斜状態(図29)へアレイ探触子15の配置状態を変化させる機構を有する。図30に示されるように、アクチュエータ32Aは駆動軸40を用いて、支持部材41,42間にずれを生じさせることができる。駆動軸40は、回転軸部43,44に接続されている。また、支持部材41,42は、回転軸部43~43及び回転軸部44~44を介してサブアレイ探触子15,…,15を支持している。アクチュエータ32Aは、支持部材41,42間のずれ量を調整することで、図29の傾斜状態と図30の平行状態との間を切り替えることができる。 Actuator 32A in FIG. 32, the vibrating element Trb of each sub-array probes 15 k, ..., from a parallel state in which the extending direction of the Trb is parallel to the longitudinal direction of the test material 2 (FIG. 30), the extending direction thereof It has a mechanism for changing the arrangement state of the array probe 15 to an inclined state (FIG. 29) inclined with respect to the longitudinal direction of the test body 2. As shown in FIG. 30, the actuator 32 </ b> A can cause a shift between the support members 41 and 42 using the drive shaft 40. Drive shaft 40 is connected to the rotating shaft portion 43 0, 44 0. Further, the support members 41 and 42 support the subarray probes 15 1 ,..., 15 K via the rotation shaft portions 43 1 to 43 K and the rotation shaft portions 44 1 to 44 K. The actuator 32A can switch between the inclined state of FIG. 29 and the parallel state of FIG. 30 by adjusting the amount of deviation between the support members 41 and 42.
 実施の形態4でも、図31に示されるように、振動素子Trb,…,Trbの最大放射方向が、試験体2の中心軸CAを含む平面に対して傾斜している。したがって、振動素子Trbの放射指向性に起因する検出感度の低下が抑制されるので、試験体2の欠陥部位の性状を高い精度で判定することが可能となる。 Also in the fourth embodiment, as shown in FIG. 31, the maximum radiation direction of the vibration elements Trb,..., Trb is inclined with respect to the plane including the central axis CA of the test body 2. Therefore, since a decrease in detection sensitivity due to the radiation directivity of the vibration element Trb is suppressed, it is possible to determine the property of the defective part of the test body 2 with high accuracy.
 以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。なお、本発明の範囲内において、上記実施の形態1~4の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 Although various embodiments according to the present invention have been described above with reference to the drawings, these embodiments are examples of the present invention, and various forms other than these embodiments can be adopted. Within the scope of the present invention, the above-described first to fourth embodiments can be freely combined, any constituent element of each embodiment can be modified, or any constituent element of each embodiment can be omitted.
 本発明に係る超音波測定装置は、柱状試験体の表面または内部の性状を非破壊で測定することができるので、その柱状試験体の欠陥部位の有無、存在位置、大きさ、形状または分布などを調べる非破壊試験(nondestructive testing)に使用されることに適している。 Since the ultrasonic measurement apparatus according to the present invention can measure the surface or internal properties of a columnar test body in a non-destructive manner, the presence / absence, presence position, size, shape, or distribution of the defective portion of the columnar test body, etc. It is suitable for being used for nondestructive testing.
 1,1A 超音波測定装置、2 試験体、2a 外周面、2b 内周面、10,12,13,15 アレイ探触子、12,…,12 サブアレイ探触子、15,…,15 サブアレイ探触子、20,20M 送受信器、21,21M 主制御部、21A,21MA 超音波制御部、21B,21MB 性状判定部、22,22M 移動制御部、23,23M 信号発生器、24,24M 送信用増幅器、25,25M 受信用増幅器、26,26M A/D変換器、27 メモリ、28,28M 配線群、30,32,32A アクチュエータ、100 アレイ探触子、Tw 超音波ビーム、Dw 回折波、Tr 振動素子、Tr,Tra,Trb 振動素子、Dx,D1,D2 欠陥部位、UW 超音波、CA 中心軸、Ls 音響レンズ。 1,1A ultrasonic measuring device, 2 specimens, 2a peripheral surface, 2b in peripheral surfaces, 10,12,13,15 array probe, 12 1, ..., 12 M subarrays probe, 15 1, ..., 15 K subarray probe, 20, 20M transceiver, 21, 21M main control unit, 21A, 21MA ultrasonic control unit, 21B, 21MB property determination unit, 22, 22M movement control unit, 23, 23M signal generator, 24 , 24M transmission amplifier, 25, 25M reception amplifier, 26, 26M A / D converter, 27 memory, 28, 28M wiring group, 30, 32, 32A actuator, 100 array probe, Tw ultrasonic beam, Dw Diffraction wave, Tr vibration element, Tr, Tra, Trb vibration element, Dx, D1, D2 Defect site, UW ultrasonic wave, CA central axis, Ls acoustic lens.

Claims (15)

  1.  柱状構造を有する試験体の性状を判定する超音波測定装置であって、
     予め定められた素子配列方向に沿って配列された複数の超音波放射素子を含むアレイ探触子と、
     前記複数の超音波放射素子の最大放射方向と前記素子配列方向との双方に直交する方向に沿って前記アレイ探触子を移動させるアクチュエータと、
     前記複数の超音波放射素子の各々から超音波が放射されるタイミングを電子的に制御することにより、前記試験体の周方向から視たときの前記試験体へ入射する超音波ビームの第1の入射角度を制御する超音波制御部と、
     前記アクチュエータの動作を制御して前記アレイ探触子の移動量を調整することにより、前記試験体の長手方向から視たときの前記試験体への前記超音波ビームの第2の入射角度を制御する移動制御部と
    を備え、
     前記複数の超音波放射素子の最大放射方向は、前記素子配列方向に対して傾斜していることを特徴とする超音波測定装置。
    An ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure,
    An array probe including a plurality of ultrasonic radiating elements arranged along a predetermined element arrangement direction;
    An actuator for moving the array probe along a direction orthogonal to both the maximum radiation direction of the plurality of ultrasonic radiation elements and the element arrangement direction;
    By electronically controlling the timing at which ultrasonic waves are emitted from each of the plurality of ultrasonic radiation elements, the first ultrasonic beam incident on the test body when viewed from the circumferential direction of the test body An ultrasonic control unit for controlling the incident angle;
    By controlling the movement of the array probe by controlling the operation of the actuator, the second incident angle of the ultrasonic beam to the specimen when viewed from the longitudinal direction of the specimen is controlled. And a movement control unit that
    The ultrasonic measurement apparatus, wherein a maximum radiation direction of the plurality of ultrasonic radiation elements is inclined with respect to the element arrangement direction.
  2.  請求項1記載の超音波測定装置であって、前記試験体から到来した反射エコーに基づいて前記試験体の内部の性状を判定する性状判定部を更に備え、
     前記複数の超音波放射素子は、前記反射エコーを電気信号群に変換して受信信号群を出力し、
     前記性状判定部は、前記受信信号群を解析して前記試験体の性状を判定する、
    ことを特徴とする超音波測定装置。
    The ultrasonic measurement apparatus according to claim 1, further comprising a property determination unit that determines a property inside the test body based on a reflected echo coming from the test body,
    The plurality of ultrasonic radiation elements convert the reflected echo into an electrical signal group and output a reception signal group,
    The property determination unit analyzes the received signal group to determine the property of the specimen.
    An ultrasonic measurement device characterized by that.
  3.  請求項1記載の超音波測定装置であって、前記試験体は、当該試験体の周方向に沿って湾曲する外周面を有することを特徴とする超音波測定装置。 2. The ultrasonic measurement apparatus according to claim 1, wherein the test body has an outer peripheral surface that is curved along a circumferential direction of the test body.
  4.  柱状構造を有する試験体の性状を判定する超音波測定装置であって、
     予め定められたアレイ配列方向に沿って配列され、且つ各々が複数の超音波放射素子を含む複数のサブアレイ探触子と、
     前記複数の超音波放射素子の最大放射方向と前記アレイ配列方向との双方に直交する方向に沿って前記複数のサブアレイ探触子を移動させるアクチュエータと、
     前記複数の超音波放射素子の各々から超音波が放射されるタイミングを電子的に制御することにより、前記試験体の周方向から視たときの前記試験体へ入射する超音波ビームの第1の入射角度を制御する超音波制御部と、
     前記アクチュエータの動作を制御して前記複数のサブアレイ探触子の移動量を調整することにより、前記試験体の長手方向から視たときの前記試験体への前記超音波ビームの第2の入射角度を制御する移動制御部と
    を備え、
     前記複数の超音波放射素子の最大放射方向は、前記アレイ配列方向に対して傾斜していることを特徴とする超音波測定装置。
    An ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure,
    A plurality of sub-array probes arranged along a predetermined array arrangement direction and each including a plurality of ultrasonic radiation elements;
    An actuator for moving the plurality of subarray probes along a direction orthogonal to both the maximum radiation direction of the plurality of ultrasonic radiation elements and the array arrangement direction;
    By electronically controlling the timing at which ultrasonic waves are emitted from each of the plurality of ultrasonic radiation elements, the first ultrasonic beam incident on the test body when viewed from the circumferential direction of the test body An ultrasonic control unit for controlling the incident angle;
    A second incident angle of the ultrasonic beam to the specimen when viewed from the longitudinal direction of the specimen by controlling the movement of the actuator to adjust the movement amount of the plurality of subarray probes A movement control unit for controlling
    The ultrasonic measurement apparatus, wherein a maximum radiation direction of the plurality of ultrasonic radiation elements is inclined with respect to the array arrangement direction.
  5.  請求項4記載の超音波測定装置であって、前記複数の超音波放射素子は、前記アレイ配列方向に対して傾斜する方向に沿って配列されており、前記複数の超音波放射素子の最大放射方向は、当該複数の超音波放射素子の配列方向と直交していることを特徴とする超音波測定装置。 5. The ultrasonic measurement apparatus according to claim 4, wherein the plurality of ultrasonic radiation elements are arranged along a direction inclined with respect to the array arrangement direction, and the maximum radiation of the plurality of ultrasonic radiation elements. The ultrasonic measurement apparatus, wherein the direction is orthogonal to the arrangement direction of the plurality of ultrasonic radiation elements.
  6.  請求項4記載の超音波測定装置であって、前記試験体から到来した反射エコーに基づいて前記試験体の性状を判定する性状判定部を更に備え、
     前記複数の超音波放射素子は、前記反射エコーを電気信号群に変換して受信信号群を出力し、
     前記性状判定部は、前記受信信号群を解析して前記試験体の性状を判定する、
    ことを特徴とする超音波測定装置。
    The ultrasonic measurement apparatus according to claim 4, further comprising a property determination unit that determines a property of the test body based on a reflected echo that has arrived from the test body,
    The plurality of ultrasonic radiation elements convert the reflected echo into an electrical signal group and output a reception signal group,
    The property determination unit analyzes the received signal group to determine the property of the specimen.
    An ultrasonic measurement device characterized by that.
  7.  請求項4記載の超音波測定装置であって、前記試験体は、当該試験体の周方向に沿って湾曲する外周面を有することを特徴とする超音波測定装置。 5. The ultrasonic measurement apparatus according to claim 4, wherein the test body has an outer peripheral surface that is curved along a circumferential direction of the test body.
  8.  柱状構造を有する試験体の性状を判定する超音波測定装置であって、
     予め定められた素子配列方向に沿って配列され、且つ各々が前記素子配列方向とは直交する方向に延在する複数の超音波放射素子を含むアレイ探触子と、
     前記複数の超音波放射素子の延在方向が前記試験体の長手方向と平行になる平行状態から、前記延在方向が前記長手方向に対して傾斜する傾斜状態へ前記アレイ探触子の配置状態を変化させるアクチュエータと、
     前記複数の超音波放射素子の各々から超音波が放射されるタイミングを電子的に制御することにより、前記長手方向から視たときの前記試験体へ入射する超音波ビームの第1の入射角度を制御する超音波制御部と、
     前記アクチュエータの動作を制御して前記試験体の周方向から視たときの前記超音波ビームの第2の入射角度を制御する移動制御部と
    を備え、
     前記複数の超音波放射素子の最大放射方向は、前記長手方向における前記試験体の中心軸を含む平面に対して傾斜することを特徴とする超音波測定装置。
    An ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure,
    An array probe including a plurality of ultrasonic radiation elements arranged along a predetermined element arrangement direction and extending in a direction perpendicular to the element arrangement direction;
    Arrangement state of the array probe from a parallel state in which the extending direction of the plurality of ultrasonic radiating elements is parallel to the longitudinal direction of the test body to an inclined state in which the extending direction is inclined with respect to the longitudinal direction An actuator that changes
    By electronically controlling the timing at which ultrasonic waves are radiated from each of the plurality of ultrasonic radiation elements, the first incident angle of the ultrasonic beam incident on the specimen when viewed from the longitudinal direction is set. An ultrasonic control unit to control,
    A movement control unit that controls the second incident angle of the ultrasonic beam when the operation of the actuator is controlled and viewed from the circumferential direction of the specimen,
    The ultrasonic measurement apparatus, wherein the maximum radiation direction of the plurality of ultrasonic radiation elements is inclined with respect to a plane including a central axis of the specimen in the longitudinal direction.
  9.  請求項8記載の超音波測定装置であって、前記試験体から到来した反射エコーに基づいて前記試験体の性状を判定する性状判定部を更に備え、
     前記複数の超音波放射素子は、前記反射エコーを電気信号群に変換して受信信号群を出力し、
     前記性状判定部は、前記受信信号群を解析して前記試験体の性状を判定する、
    ことを特徴とする超音波測定装置。
    The ultrasonic measurement apparatus according to claim 8, further comprising a property determination unit that determines a property of the test body based on a reflected echo that has arrived from the test body.
    The plurality of ultrasonic radiation elements convert the reflected echo into an electrical signal group and output a reception signal group,
    The property determination unit analyzes the received signal group to determine the property of the specimen.
    An ultrasonic measurement device characterized by that.
  10.  請求項8記載の超音波測定装置であって、前記試験体は、当該試験体の周方向に沿って湾曲する外周面を有することを特徴とする超音波測定装置。 9. The ultrasonic measurement apparatus according to claim 8, wherein the test body has an outer peripheral surface that is curved along a circumferential direction of the test body.
  11.  柱状構造を有する試験体の性状を判定する超音波測定装置であって、
     各々が複数の超音波放射素子を含み、且つ予め定められたアレイ配列方向に沿って配列された複数のサブアレイ探触子と、
     前記複数のサブアレイ探触子を移動させるアクチュエータと、
     前記複数の超音波放射素子の各々から超音波が放射されるタイミングを電子的に制御することにより、前記試験体の長手方向から視たときの前記試験体へ入射する超音波ビームの第1の入射角度を制御する超音波制御部と、
     前記アクチュエータの動作を制御して前記試験体の周方向から視たときの前記超音波ビームの第2の入射角度を制御する移動制御部と
    を備え、
     前記複数の超音波放射素子は、前記アレイ配列方向と直交する素子配列方向に沿って配列され、前記複数の超音波放射素子の各々は、前記素子配列方向とは直交する方向に延在しており、
     前記アクチュエータは、前記移動制御部による制御に応じて、前記複数の超音波放射素子の延在方向が前記試験体の長手方向と平行になる平行状態から、前記延在方向が前記長手方向に対して傾斜する傾斜状態へ前記複数のサブアレイ探触子の配置状態を変化させ、
     前記複数の超音波放射素子の最大放射方向は、前記長手方向における前記試験体の中心軸を含む平面に対して傾斜する
    ことを特徴とする超音波測定装置。
    An ultrasonic measurement apparatus for determining the properties of a test body having a columnar structure,
    A plurality of sub-array probes each including a plurality of ultrasonic radiating elements and arranged along a predetermined array arrangement direction;
    An actuator for moving the plurality of subarray probes;
    By electronically controlling the timing at which ultrasonic waves are emitted from each of the plurality of ultrasonic radiation elements, a first ultrasonic beam incident on the test body when viewed from the longitudinal direction of the test body An ultrasonic control unit for controlling the incident angle;
    A movement control unit that controls the second incident angle of the ultrasonic beam when the operation of the actuator is controlled and viewed from the circumferential direction of the specimen,
    The plurality of ultrasonic radiating elements are arranged along an element arrangement direction orthogonal to the array arrangement direction, and each of the plurality of ultrasonic radiating elements extends in a direction orthogonal to the element arrangement direction. And
    The actuator is configured so that, depending on the control by the movement control unit, the extending direction of the plurality of ultrasonic radiation elements is parallel to the longitudinal direction of the specimen, and the extending direction is relative to the longitudinal direction. Changing the arrangement state of the plurality of subarray probes to an inclined state
    The ultrasonic measurement apparatus, wherein the maximum radiation direction of the plurality of ultrasonic radiation elements is inclined with respect to a plane including a central axis of the specimen in the longitudinal direction.
  12.  請求項11記載の超音波測定装置であって、前記各サブアレイ探触子は、前記超音波ビームを前記長手方向に拡げる音響レンズを有することを特徴とする超音波測定装置。 12. The ultrasonic measurement apparatus according to claim 11, wherein each of the subarray probes includes an acoustic lens that expands the ultrasonic beam in the longitudinal direction.
  13.  請求項11記載の超音波測定装置であって、前記超音波制御部は、前記超音波ビームを前記試験体の周方向に集束させることを特徴とする超音波測定装置。 12. The ultrasonic measurement apparatus according to claim 11, wherein the ultrasonic control unit focuses the ultrasonic beam in a circumferential direction of the specimen.
  14.  請求項11記載の超音波測定装置であって、前記試験体から到来した反射エコーに基づいて前記試験体の性状を判定する性状判定部を更に備え、
     前記複数の超音波放射素子は、前記反射エコーを電気信号群に変換して受信信号群を出力し、
     前記性状判定部は、前記受信信号群を解析して前記試験体の性状を判定する、
    ことを特徴とする超音波測定装置。
    The ultrasonic measurement apparatus according to claim 11, further comprising a property determination unit that determines a property of the test body based on a reflected echo that has arrived from the test body.
    The plurality of ultrasonic radiation elements convert the reflected echo into an electrical signal group and output a reception signal group,
    The property determination unit analyzes the received signal group to determine the property of the specimen.
    An ultrasonic measurement device characterized by that.
  15.  請求項11記載の超音波測定装置であって、前記試験体は、当該試験体の周方向に沿って湾曲する外周面を有することを特徴とする超音波測定装置。 12. The ultrasonic measurement apparatus according to claim 11, wherein the test body has an outer peripheral surface that is curved along a circumferential direction of the test body.
PCT/JP2016/051130 2016-01-15 2016-01-15 Ultrasonic measuring device WO2017122346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016544630A JP6081028B1 (en) 2016-01-15 2016-01-15 Ultrasonic measuring device
PCT/JP2016/051130 WO2017122346A1 (en) 2016-01-15 2016-01-15 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051130 WO2017122346A1 (en) 2016-01-15 2016-01-15 Ultrasonic measuring device

Publications (1)

Publication Number Publication Date
WO2017122346A1 true WO2017122346A1 (en) 2017-07-20

Family

ID=58043276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051130 WO2017122346A1 (en) 2016-01-15 2016-01-15 Ultrasonic measuring device

Country Status (2)

Country Link
JP (1) JP6081028B1 (en)
WO (1) WO2017122346A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320275A (en) * 2019-08-09 2019-10-11 华中科技大学无锡研究院 Promote the method and ultrasound detection voussoir of ultrasonic probe sound field effective coverage range

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907076B (en) * 2019-10-21 2020-11-17 武汉大学 Method for detecting uniform hoop restraining force of circular steel tube concrete column in real time by ultrasonic waves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192652A (en) * 1986-02-19 1987-08-24 Nippon Steel Corp Setting method for array probe in steel tube flaw detection
JPH08304358A (en) * 1995-05-10 1996-11-22 Hitachi Constr Mach Co Ltd Ultrasonic array probe, and ultrasonic angle beam probing device and probing method
JP2005221371A (en) * 2004-02-05 2005-08-18 Jfe Steel Kk Ultrasonic probe
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078322A (en) * 2010-10-06 2012-04-19 Mitsubishi Heavy Ind Ltd Ultrasonic test jig
JP5931551B2 (en) * 2012-04-09 2016-06-08 株式会社東芝 Ultrasonic flaw detector, ultrasonic sensor support device, and ultrasonic flaw detector method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192652A (en) * 1986-02-19 1987-08-24 Nippon Steel Corp Setting method for array probe in steel tube flaw detection
JPH08304358A (en) * 1995-05-10 1996-11-22 Hitachi Constr Mach Co Ltd Ultrasonic array probe, and ultrasonic angle beam probing device and probing method
JP2005221371A (en) * 2004-02-05 2005-08-18 Jfe Steel Kk Ultrasonic probe
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320275A (en) * 2019-08-09 2019-10-11 华中科技大学无锡研究院 Promote the method and ultrasound detection voussoir of ultrasonic probe sound field effective coverage range

Also Published As

Publication number Publication date
JPWO2017122346A1 (en) 2018-01-18
JP6081028B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP4596336B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection method, and seamless tube manufacturing method
JP4596337B2 (en) Ultrasonic flaw detection method and seamless tube manufacturing method
CN102439436B (en) Test probe as well as family of test probes for the non-destructive testing of a workpiece by means of ultrasonic sound and testing device
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP2008209364A (en) Apparatus and method for ultrasonically detecting flaw of tube
US9194844B2 (en) Destruction-free and contactless inspection method and inspection apparatus for surfaces of components with ultrasound waves
KR20100124242A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP4955359B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP6081028B1 (en) Ultrasonic measuring device
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
EP2728347B1 (en) Ultrasonic flaw detection method and ultrasonic array probe
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
JP2007278854A (en) Ultrasonic inspection method and device
JP2000146921A (en) Method and device for ultrasonic crack detection
JP5672725B2 (en) SH wave generation method and ultrasonic measurement method
WO2022180972A1 (en) Ultrasonic inspection device
JP5810873B2 (en) Ultrasonic flaw detection method
JP2501488B2 (en) Ultrasonic testing of pipes
JP2011247676A (en) Ultrasonic flaw detection device
JP5428249B2 (en) Apparatus for measuring the thickness of a tubular body, method thereof, and method of manufacturing a tubular body
JP5118339B2 (en) Ultrasonic flaw detection apparatus and method
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP7102726B2 (en) How to determine the flaw detection range of an ultrasonic flaw detector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884949

Country of ref document: EP

Kind code of ref document: A1