WO2017119125A1 - 絶縁抵抗測定装置 - Google Patents

絶縁抵抗測定装置 Download PDF

Info

Publication number
WO2017119125A1
WO2017119125A1 PCT/JP2016/050531 JP2016050531W WO2017119125A1 WO 2017119125 A1 WO2017119125 A1 WO 2017119125A1 JP 2016050531 W JP2016050531 W JP 2016050531W WO 2017119125 A1 WO2017119125 A1 WO 2017119125A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
current
insulation resistance
power supply
Prior art date
Application number
PCT/JP2016/050531
Other languages
English (en)
French (fr)
Inventor
賢 新土井
將司 三木
聡 牧原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017560012A priority Critical patent/JP6416416B2/ja
Priority to CN201680077731.3A priority patent/CN108474818B/zh
Priority to KR1020187014556A priority patent/KR20180102542A/ko
Priority to PCT/JP2016/050531 priority patent/WO2017119125A1/ja
Publication of WO2017119125A1 publication Critical patent/WO2017119125A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to an insulation resistance measuring device for measuring a ground insulation resistance on a load side when a load is driven by a power conversion device such as an inverter.
  • ground voltages VU and VV of the switching power source sequentially input by a switching switch , VW and the leakage current I0 detected by the zero-phase current transformer from the power supply cable, and the signal processing for measuring the phase difference between any of the ground voltages VU, VV, VW and the leakage current I0 and performing signal processing Based on the phase difference between the effective value of the measured current I0, the effective value of the ground voltages VU, VV, VW, the ground voltage VU, VV, VW and the leakage current I0 obtained in the signal processing unit.
  • a device for calculating a leakage current Igr flowing via a leakage resistance is disclosed (for example, see Patent Document 1).
  • the value of the leakage current Igr can be measured even when the electric device driven by the switching power supply is in an operating state, the degree of insulation deterioration can be constantly monitored, and the insulation deterioration progresses. It is possible to prevent a ground fault that occurs.
  • the insulation resistance measurement device In order to grasp the occurrence of leakage current on the output side of the power converter that drives the load, it is necessary to measure and monitor the insulation resistance value, and use the insulation resistance measurement device in the power failure state of the electrical equipment that is the load.
  • the measurement method is general.
  • the conventional leakage current measuring device of Patent Document 1 by measuring the leakage current flowing through the ground insulation resistance from the measured secondary voltage and zero-phase current, the insulation resistance is reduced during energization. It can measure and solve this problem.
  • this method since the voltage on the secondary side is measured, there is a problem that noise accompanying the switching operation of the power conversion device is superimposed on the voltage, and accurate voltage measurement is not easy.
  • the present invention has been made in order to solve the above-described problems, and can measure the secondary side ground insulation resistance of a power conversion device that drives a load, and has excellent noise resistance.
  • the object is to provide a measuring device.
  • an insulation resistance measuring apparatus includes a voltage measuring unit that measures a ground voltage of each phase of an AC power source connected to a power converter that outputs AC power to a load, and the AC A current measuring unit that measures either a zero-phase current of a power supply or a secondary-side zero-phase current of the power converter, and the ground voltage of each phase is full-wave rectified by the power converter, and the full-wave A basic voltage calculation processing unit for calculating a basic voltage having the lowest frequency component after rectification as a basic frequency component; and a basic current calculation processing unit for calculating a basic current as the basic frequency component from the zero-phase current; And an insulation resistance calculation unit for calculating an insulation resistance on the secondary side of the power converter from the basic voltage and the basic current.
  • the power converter can be measured by a simple method of measuring either the ground voltage of the AC power source or the zero-phase current on the primary side or the secondary side of the power converter. Since the secondary side insulation resistance is calculated, the device configuration is simple, and an excellent device capable of measuring the ground insulation resistance without being affected by the switching noise of the power converter is obtained. There is.
  • FIG. 1 It is a basic composition figure of the electric equipment to which the insulation resistance measuring device concerning Embodiment 1 was connected.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a 1st Example in Embodiment 1, and is a whole block diagram at the time of applying an insulation resistance measuring apparatus to the alternating current power supply grounded in S phase by the three-phase three-wire system ⁇ connection.
  • 2 is a block diagram showing details of the configuration of the insulation resistance measuring apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the ground voltage waveform of the R phase of the primary side of the power converter device shown in FIG. 2, T phase, and S phase. It is the ground voltage waveform after the rectification by the rectifier circuit of the power converter device shown in FIG.
  • FIG. 1 It is a block diagram when the insulation resistance measuring apparatus is applied to the AC power supply which shows the 2nd Example in Embodiment 1 and is S-phase grounding by the single phase 2 wire system. It is a figure which shows the ground voltage waveform of the R phase and S phase of the primary side of the power converter device shown in FIG. It is a ground voltage waveform after the rectification by the rectifier circuit of the power converter device shown in FIG. It is a figure which shows the basic voltage waveform in the power supply frequency component of the U phase of the secondary side of the power converter device shown in FIG. 12, V phase, and W phase.
  • FIG. 16 It is a block diagram when the insulation resistance measuring apparatus is applied to the AC power supply which shows the 3rd Example in Embodiment 1 and is neutrally grounded by the three-phase four-wire system. It is a figure which shows the ground voltage waveform of the R phase of the primary side of the power converter device shown in FIG. 16, T phase, S phase, and N phase. It is a ground voltage waveform after the rectification by the rectifier circuit of the power converter device shown in FIG. It is a figure which shows the basic voltage waveform in the 3rd harmonic component of the power supply frequency of the U side of the secondary side of the power converter device shown in FIG. 16, V phase, and W phase.
  • FIG. 6 is a block diagram illustrating details of the configuration of an insulation resistance measurement device according to a second embodiment. It is a figure which shows the equivalent circuit model of the insulation resistance and electrostatic capacitance between the grounds inside the power converter device shown in FIG.
  • FIG. 22 is a flowchart for calculating a ground insulation resistance of only the secondary side of the power conversion device by determining a drive state of a load when a leakage occurs inside the power conversion device illustrated in FIG. 21.
  • the 1st Example in Embodiment 2 is shown, The positive side voltage waveform after the rectification
  • the 1st Example in Embodiment 2 is shown, The negative side voltage waveform after the rectification
  • the 2nd Example in Embodiment 2 is shown, The secondary side of the power converter device after the rectification
  • the 3rd Example in Embodiment 2 is shown, The positive side ground voltage waveform and power supply after rectification
  • the 3rd Example in Embodiment 2 is shown,
  • straightening by the rectifier circuit of a power converter device when an alternating current power supply is a three-phase four-wire system and is neutral-point grounded It is a basic voltage waveform of a side harmonic voltage waveform and a third harmonic component of a power supply frequency. It is a basic composition figure of the electric equipment to which the insulation resistance measuring apparatus concerning Embodiment 3 was connected. It is a basic block diagram of the electric equipment with which the insulation resistance measuring apparatus which concerns on Embodiment 4 was connected. It is a basic composition figure of the electric equipment to which the insulation resistance measuring device concerning Embodiment 5 was connected.
  • FIG. 1 shows a basic configuration diagram when the insulation resistance measuring apparatus according to the first embodiment is applied to an electrical apparatus.
  • FIG. 2 is an overall configuration diagram showing a case where an insulation resistance measuring apparatus is applied to an AC power source grounded in S phase with a three-phase three-wire ⁇ connection in the first example of the first embodiment.
  • FIG. 3 is a block diagram showing details of the configuration of the insulation resistance measuring apparatus according to the first embodiment.
  • an electric device 7 serving as a load is driven by a power converter 3 that converts AC power from a commercial AC power source 1 to generate three-phase AC.
  • the insulation resistance measuring device 2 includes a voltage measuring unit 2a that measures a voltage v (t) with respect to the ground of each phase of the AC power supply 1, and a load side of the power converter 3 using a zero-phase current transformer 2ba including all phases.
  • Current measurement unit 2b that measures current i0 (t) of the current, and calculates insulation resistance R0L from the measured voltage v (t) and current i0 (t) to the ground on the secondary side (load side) of power converter 3 And an insulation resistance calculator 2c.
  • the current measuring unit 2 b is connected to the primary side (input side) of the power conversion device 3. Furthermore, the insulation resistance measuring device 2 includes a display unit 2d that displays the calculated result of the insulation resistance R0L, and a reporting unit 2e that reports based on the result of the insulation resistance.
  • the AC power supply 1 is compatible with three-phase three-wire system, one-phase two-wire system with one phase grounded, and three-phase four-wire system with neutral point (N phase) grounded.
  • the rectifier circuit 4 of the device 3 is connected.
  • the AC power supply 1 and the rectifier circuit 4 are typically connected by one line.
  • the number of lines connected to the rectifier circuit 4 is In the case of a single-phase two-wire system, there are two wires.
  • a ground wire is input to the voltage measuring unit 2a.
  • the power conversion device 3 includes a rectifier circuit 4 that converts AC power of the AC power supply 1 into DC and an inverter circuit 5 that converts DC into three-phase AC. In addition, the power conversion device 3 performs switching operation of the inverter circuit 5 to generate and output AC power having an arbitrary frequency in order to drive the load 7.
  • the load side circuit 6 has an insulation resistance value Ru, between the U phase, the V phase, and the W phase and each ground.
  • the parallel value of the insulation resistance values Ru, Rv, and Rw can be expressed as an insulation resistance R0L
  • the parallel value of the capacitance values Cu, Cv, and Cw can be expressed as a capacitance C0L.
  • the insulation resistance measuring device 2 can calculate the insulation resistance R0L and the capacitance C0L on the secondary side of the power conversion device 3.
  • FIG. 2 shows an overall configuration diagram in the case where the AC power supply 1 is an AC power supply 11 that is S-phase grounded by a three-phase three-wire ⁇ connection.
  • a motor is assumed as an electric device of the load 7.
  • the insulation resistance measuring device 2 uses the insulation resistance R0L and the capacitance C0L. The operation principle for calculating is described.
  • FIG. 4 shows the R-phase, S-phase, and T-phase ground voltage waveforms of the AC power supply 11 input to the power conversion device 3.
  • a case where the frequency of the AC power supply 11 is 60 Hz and the effective value of the voltage is 200 V is shown as an example.
  • the rectifier circuit 4 includes three-phase voltages vR (t), vS of rectifier diodes 4a, 4b, 4c, 4d, 4e, and 4f that constitute a bridge diode and an input AC power supply 11.
  • (T) vT (t) is composed of a smoothing capacitor 4g for smoothing the voltage subjected to full-wave rectification after full-wave rectification by a bridge diode.
  • the voltage having the largest input voltage appears on the positive side
  • the voltage having the largest input voltage appears on the negative side
  • the voltage appearing on the negative side is referred to as the positive side voltage
  • the voltage appearing on the negative side is referred to as the negative side voltage.
  • the ground voltage waveforms of the positive side voltage and the negative side voltage are shown in FIG.
  • the inverter circuit 5 is a three-phase inverter circuit configured by semiconductor switching elements 5a, 5b, 5c, 5d, 5e and 5f for PWM modulation.
  • PWM modulation is performed by alternately turning on and off the semiconductor switching elements 5a, 5b, and 5c on the positive side and the semiconductor switching elements 5d, 5e, and 5f on the negative side of the inverter circuit 5 with respect to the rectified voltage waveform.
  • the control unit of the semiconductor switching element is omitted.
  • the phase of the output voltage of the three-phase driving frequency of the U phase, the V phase, and the W phase is changed by shifting the phase of the pulse controlling each switching element by each output.
  • a waveform delayed by 120 ° with respect to the U phase is output to the V phase, and a waveform advanced by 120 ° with respect to the U phase is output to the W phase.
  • FIG. 6, FIG. 7 and FIG. 8 are examples showing the U-phase, V-phase and W-phase ground output voltages (solid lines) after switching and their envelopes.
  • the upper dotted line represents the upper envelope
  • the lower dotted line represents the lower envelope (dotted line).
  • the frequency of the switching pulse is 500 Hz.
  • the frequency of the switching pulse is generally several kHz to several tens of kHz, but this frequency is used because the state of switching is not known.
  • the phase of the switching pulse is different in each of the U phase, the V phase, and the W phase, the voltage waveforms of the rectified positive side voltage and the negative side voltage that are the basis of switching are the same.
  • the upper envelope of each phase on the secondary side is the same, and the lower envelope of each phase is also the same. Therefore, since the envelope of the ground voltage waveform of each phase on the secondary side of the power conversion device 3 is the same, the frequency components in the upper envelope and the lower envelope of the output voltage of each phase are the same. Become.
  • the pulse for switching between the positive side voltage and the negative side voltage after rectification is composed of pulses having different duty ratios.
  • Switching is repeated with a probability of 50%. Therefore, in the ground voltage waveform after switching, the upper envelope and the lower envelope are output with a probability of 50%.
  • the ground voltage waveform after switching has a voltage waveform obtained by averaging the positive side voltage and the negative side voltage. Contains frequency components.
  • FIG. 9 shows a voltage waveform obtained by extracting the fundamental frequency component of the power supply frequency f from the ground voltage waveform obtained by averaging the positive side voltage and the negative side voltage.
  • a voltage having a fundamental frequency component of the power supply frequency f extracted from the ground voltage waveform obtained by averaging the positive side voltage and the negative side voltage is defined as a secondary side basic voltage vf (t).
  • FIG. 10 shows an equivalent circuit model of the load side circuit 6 on the secondary side viewed from the power converter 3 when the AC power supply 8 is set to the secondary side basic voltage vf (t).
  • a current i0f (t) proportional to the secondary side basic voltage vf (t) flows through the insulation resistance R0L and the capacitance C0L. Accordingly, by using the current i0f (t) flowing through the insulation resistance R0L and the capacitance C0L by the secondary side basic voltage vf (t) and the secondary side basic voltage vf (t), the insulation resistance R0L and the capacitance can be obtained. C0L can be calculated.
  • the total of the currents flowing through the insulation resistance R0 and the capacitance C0 by the secondary side basic voltage vf (t) is referred to as a secondary side basic current i0f (t).
  • the secondary side basic voltage vf (t) is a fundamental frequency component of the power source frequency f of the voltage waveform obtained by averaging the positive side voltage and the negative side voltage.
  • the positive side voltage and the negative side voltage are the AC power source 11.
  • the secondary side basic voltage vf (t) can be estimated from the input voltage v (t). Further, since the frequency of the secondary side basic current i0f (t) is the same as the power supply frequency f, by extracting the fundamental frequency component of the power supply frequency f from the current i0 (t) measured by the current measurement unit 2b.
  • the secondary side basic current i0f (t) can be calculated.
  • the current i0 (t) represents a leakage current.
  • the secondary side basic voltage vf (t) and the secondary side basic current i0f (t) can be expressed by Expression (1) and Expression (2).
  • is the phase difference of the secondary side basic voltage vf (t) with respect to the R phase voltage
  • is the phase difference of the secondary side basic current i0f (t) with respect to the R phase voltage.
  • Vf is an effective value of the secondary side basic voltage vf (t)
  • I0f is an effective value of the secondary side basic current i0f (t)
  • is an angular frequency at the power supply frequency f.
  • phasor Pvf ( ⁇ ) of secondary side basic voltage vf (t), phasor Pi0f ( ⁇ ) of secondary side basic current i0f (t), phasor PvR and T phase of R phase voltage vR The relationship between the phasor PvT of the voltage vT, the phasor Pi0R ( ⁇ ) of the current i0R (t) flowing through the insulation resistance R0L, and the phasor Pi0C ( ⁇ ) of the current i0C (t) flowing through the capacitance C0L is shown.
  • is the difference between ⁇ and ⁇ .
  • the insulation resistance divided current effective value I0R and the capacitance divided current effective value I0C can be calculated, the insulation resistance R0L and the capacitance C0L can be calculated.
  • the calculation method of the insulation resistance R0L and the electrostatic capacitance C0L is shown in Formula (5) and Formula (6). From Expressions (5) and (6), the insulation resistance R0L and the capacitance C0L are expressed as the phasor P0f ( ⁇ ) of the secondary side basic voltage vf (t) and the phasor Pi0f (2) of the secondary side basic current i0f (t). It can be seen that it can be calculated from ⁇ ).
  • the insulation resistance R0L and the capacitance C0L are equal to the secondary side basic voltage vf (t) calculated from the voltages vR (t), vS (t) and vT (t) of the AC power supply 11, and It can be understood that the calculation can be performed using the secondary basic current i0f (t) calculated from the current i0 (t) measured by the zero-phase current transformer 2ba including the phases.
  • Insulation resistance measuring device 2 can detect insulation deterioration using the value of insulation resistance R0L. Since the insulation resistance R0L is a parallel value, when the insulation resistance of any phase is lowered, a small resistance acts predominantly on the parallel value, so that insulation deterioration can be detected.
  • FIG. 3 shows details of the configuration of the insulation resistance measuring apparatus 2 in the first embodiment.
  • the insulation resistance calculation unit 2c is configured to calculate the insulation resistance R0L from the voltage v (t) of the AC power source 1 measured by the voltage measurement unit 2a and the zero-phase current i0 (t) measured by the current measurement unit 2b. Is shown. It will be described later that the insulation resistance can be calculated using this configuration also in the case of other phase wire systems.
  • the insulation resistance calculation unit 2c includes a secondary side basic voltage calculation processing unit 2c1 that calculates a secondary side basic voltage vf (t) from the voltage v (t) of the AC power source 1 measured by the voltage measurement unit 2a, and a current measurement.
  • the secondary side basic current calculation processing unit 2c2 that calculates the secondary side basic current i0f (t) from the current i0 (t) measured by the unit 2b, and the secondary side calculated by the secondary side basic voltage calculation processing unit 2c1
  • the edge resistance calculation processing unit 2C5 is made of.
  • the configuration of the voltage measuring unit 2a can be similarly applied to the case where the AC power supply 1 is a three-phase three-wire Y-connection, a single-phase two-wire system, and a three-phase four-wire system.
  • the voltage measurement unit 2 a and the secondary side basic voltage calculation processing unit 2 c 1 are schematically connected by one line, but the number of lines differs depending on the phase wire type of the AC power supply 1.
  • the secondary side basic voltage calculation processing unit 2c1 calculates a secondary side basic voltage vf (t) that is a ground voltage waveform of the fundamental frequency component of the power supply frequency f on the secondary side of the power conversion device 3.
  • Specific methods include the following methods, for example. A positive voltage and a negative voltage are generated from the voltage v (t) of the AC power supply 1, and a component of the power supply frequency f is extracted from a voltage waveform obtained by averaging the positive voltage and the negative voltage.
  • Other methods for extracting the fundamental frequency component of the power supply frequency f include a method using a filter having a frequency characteristic for extracting only the fundamental frequency component of the power supply frequency f, and extracting only the fundamental frequency component of the power supply frequency f by Fourier transform. There is a way to do it.
  • the secondary side basic voltage vf (t) can also be obtained by the following method.
  • the secondary side basic voltage vf (t) is a fundamental frequency component of the power supply frequency f obtained as a result of Fourier series expansion of the voltage waveform obtained by averaging the positive side voltage and the negative side voltage.
  • Formula (7) shows the formula for Fourier series expansion.
  • f (t) is a waveform to be subjected to Fourier series expansion.
  • Equation (8) and (9) The input R-phase and T-phase voltages vR (t) and vT (t) are expressed as Equations (8) and (9), and Fourier series expansion is performed on the voltage waveform obtained by averaging the positive and negative voltages.
  • Expression (10) is obtained.
  • V is an effective value of the R-phase and T-phase voltages.
  • the amplitude of the secondary side basic voltage vf (t) is 0.578 times the value of the T phase amplitude (the value after the decimal point is rounded off to the fourth decimal place), and the phase is the voltage waveform of the T phase. It can be seen that it is delayed by ⁇ / 6. Therefore, the secondary side basic voltage vf (t) can be calculated by multiplying the amplitude of the T-phase voltage by 0.578 and delaying the phase by ⁇ / 6.
  • One method of generating a waveform that delays the phase by ⁇ / 6 is a method of generating it from the sum of the R-phase voltage and the T-phase voltage.
  • Formula (11) shows the result of the sum of the R-phase voltage vR (t) and the T-phase voltage vT (t).
  • the secondary side basic voltage vf (t) of Expression (10) can be acquired by multiplying Expression (11) by 1 / ⁇ 3 and multiplying by 0.578.
  • the secondary side basic current calculation processing unit 2c2 calculates a secondary side basic current i0f (t) that is a fundamental frequency component of the power supply frequency f from the current i0 (t). Similar to the calculation of the secondary side basic voltage vf (t), a filter having a frequency characteristic for extracting only the fundamental frequency component of the power supply frequency f, or the fundamental frequency of the power supply frequency f from the current i0 (t) by Fourier transform. Ingredients can be obtained.
  • the phasor calculation processing unit 2c3 calculates the phasor Pvf ( ⁇ ) represented by the expression (3) from the secondary side basic voltage vf (t).
  • the calculation can be performed by Fourier transforming the secondary side basic voltage vf (t).
  • the phasor Pvf ( ⁇ ) can also be calculated by synchronously detecting the sine wave and cosine wave of the power supply frequency f with respect to the secondary side basic voltage vf (t).
  • the phasor calculation processing unit 2c4 calculates the phasor Pi0f ( ⁇ ) represented by the equation (4) from the secondary side basic current i0f (t).
  • the phasor calculation processing unit 2c3 can calculate the phasor Pvf ( ⁇ ) using the same method.
  • the insulation resistance calculation processing unit 2c5 calculates the insulation resistance R0L from the phasor Pi0f ( ⁇ ) and the phasor Pvf ( ⁇ ). From equation (5), the real part resulting from dividing phasor Pvf ( ⁇ ) by phasor Pi0f ( ⁇ ) is insulation resistance R0L, and the imaginary part is capacitance C0L.
  • the insulation resistance measuring device 2 can determine whether or not leakage has occurred on the secondary side of the power conversion device 3 based on the calculated value of the insulation resistance R0L.
  • the insulation resistance R0L can be calculated based on the same principle.
  • the leakage current flows also inside the power conversion device 3, so the current measuring unit 2 b is connected to the primary side of the power conversion device 3.
  • the measured current differs between the case and the case of connection to the secondary side. Therefore, the first embodiment can be applied to the case where no electric leakage occurs in the power conversion device 3. Further, a case where a leakage occurs inside the power conversion device 3 will be described in a second embodiment.
  • the insulation resistance measuring device 2 can display the calculated insulation resistance R0L on the display unit 2d.
  • the display unit 2d can display each item measured and calculated in addition to the insulation resistance R0L. Furthermore, it is possible to report to the outside by using the reporting unit 2e that determines insulation failure based on a preset threshold for the insulation resistance R0L.
  • the AC power supply 1 is the AC power supply 11 that is S-phase grounded by a three-phase three-wire ⁇ connection
  • the voltage v (t) of the AC power supply 1 measured by the voltage measurement unit 2a and the current measurement unit
  • the method of calculating the secondary side insulation resistance R0L of the power conversion device 3 from the current i0 (t) measured in 2b has been described.
  • FIG. 12 shows an overall configuration diagram in the case of the AC power supply 12 in which the S phase is grounded with a single-phase two-wire system. Except for the AC power supply 12 and the rectifying diode, the configuration is the same as that of the AC power supply 11 that is S-phase grounded by a three-phase three-wire ⁇ connection.
  • FIG. 13 shows R-phase and S-phase ground voltage waveforms input to the power conversion device 3.
  • the frequency f has an amplitude of 60 Hz and an effective value of 200V.
  • FIG. 14 shows voltage waveforms of the positive side voltage and the negative side voltage after rectification.
  • the AC power supply 1 is a single-phase two-wire AC power supply 12
  • the positive phase voltage and negative side voltage after rectification are alternately turned on and off to the U phase, V phase and W phase.
  • Output Therefore, as in the case of the three-phase three-type ⁇ connection, the envelope of the ground voltage waveform of each phase on the secondary side of the power converter 3 is the same, and the frequency components in the envelope of the output voltage of each phase are the same. It becomes.
  • the upper and lower envelopes are repeatedly switched with a probability of 50%. Therefore, the ground voltage waveform after switching is output with a probability of 50% in the upper envelope and the lower envelope.
  • the upper envelope and the lower envelope are the same as the positive voltage and the negative voltage, the frequency of the voltage waveform obtained by averaging the positive voltage and the negative voltage is included in the ground voltage waveform after switching. Contains ingredients.
  • the secondary side basic voltage in the case of the single-phase two-wire AC power supply 12 is used.
  • vf (t) has a waveform obtained by multiplying the R-phase voltage vR (t) by 1/2.
  • FIG. 15 shows the waveform of the secondary side basic voltage vf (t).
  • Expression (12) shows the secondary side basic voltage vf (t) when the AC power supply 1 is a single-phase two-wire AC power supply 12.
  • the secondary-side basic voltage vf (t) matches in each phase on the secondary side of the power converter 3, the secondary side of the power converter 3 is single-phase 2 when viewed from the fundamental frequency component of the power supply frequency f. It can be regarded as a linear system, and can be represented by an equivalent circuit model similar to that of FIG. Therefore, even when the AC power source 1 is a single-phase two-wire AC power source 12, the voltage v (t) of the AC power source 1 measured by the voltage measuring unit 2a and the current i0 (measured by the current measuring unit 2b). By using t), the insulation resistance R0L can be calculated. The calculation method is the same as in the case of the three-phase three-wire ⁇ connection.
  • the insulation resistance calculation unit 2c has the configuration shown in FIG. 3 as in the case of the three-phase three-wire ⁇ connection.
  • the configuration of the secondary side basic voltage calculation processing unit 2c1 differs depending on the input from the AC power source 1. About each other part, it is the same as that of the case of a three-phase three-wire system (DELTA) connection, and insulation resistance R0L is computable.
  • DELTA three-phase three-wire system
  • the secondary-side basic voltage vf (t) is the same as the voltage waveform obtained by multiplying the R-phase voltage by 1/2.
  • the secondary side basic voltage vf (t) is calculated by multiplying the R-phase voltage vR (t) by 1/2.
  • FIG. 16 shows an overall configuration diagram in the case of an AC power supply 13 having a three-phase four-wire system and having a neutral point grounded. Except for the AC power supply 13 and the rectifying diode, the configuration is the same as that of the AC power supply 11 that is S-phase grounded by a three-phase three-wire ⁇ connection.
  • FIG. 17 shows R-phase, S-phase, T-phase, and N-phase ground voltage waveforms input to the power conversion device 3.
  • the frequency is 60 Hz and the effective value is 200 V.
  • FIG. 18 shows voltage waveforms of the positive side voltage and the negative side voltage after rectification.
  • the AC power supply 1 is a three-phase four-wire AC power supply 13
  • the positive side voltage and negative side voltage after rectification are alternately turned on and off to output the voltage to the U phase, V phase and W phase.
  • the envelope of the ground voltage waveform of each phase on the secondary side of the power converter 3 is the same, and the frequency component in the envelope of the output voltage of each phase is It will be the same.
  • the upper and lower envelopes are repeatedly switched with a probability of 50%. Therefore, the ground voltage waveform after switching is output with a probability of 50% in the upper envelope and the lower envelope.
  • the upper envelope and the lower envelope are the same for the positive voltage and the negative voltage, the frequency of the voltage waveform obtained by averaging the positive voltage and the negative voltage in the ground voltage waveform after switching. Contains ingredients.
  • FIG. 19 is a voltage waveform obtained by extracting the fundamental frequency component of the third harmonic component 3f of the power supply frequency f from the voltage waveform obtained by averaging the positive side voltage and the negative side voltage.
  • the secondary side basic voltage vf (t) is a fundamental frequency component of the third harmonic component 3f of the power supply frequency f extracted from the voltage waveform obtained by averaging the positive side voltage and the negative side voltage.
  • the secondary side basic voltage vf (t) matches in each phase on the secondary side of the power conversion device 3, the secondary side of the power conversion device 3 as seen from the component of the third harmonic component 3f of the power supply frequency f.
  • the calculation method is the same as in the case of the three-phase three-wire ⁇ connection.
  • the insulation resistance calculation unit 2c has the configuration shown in FIG. 3 as in the case of the three-phase three-wire ⁇ connection.
  • the configuration of the secondary side basic voltage calculation processing unit 2c1 differs depending on the difference in input from the AC power supply 13.
  • the basic frequency component calculated by the secondary side basic current calculation processing unit 2c2 is also 3 of the power supply frequency f. This is the frequency component of the next harmonic component 3f.
  • the insulation resistance R0L is computable.
  • the secondary side basic voltage vf (with the fundamental frequency component 3f of the power source frequency f on the secondary side of the power converter 3 as a fundamental frequency) t) is calculated.
  • Specific methods include the following methods, for example.
  • a basic frequency of the third harmonic component 3f of the power supply frequency f is generated from a voltage waveform obtained by generating a positive voltage and a negative voltage from the voltage v (t) input from the AC power supply 13 and averaging the positive voltage and the negative voltage. Extract ingredients.
  • the method of extracting the fundamental frequency component of the third harmonic component 3f of the power supply frequency f is a method using a filter having a frequency characteristic for extracting only the fundamental frequency component of the third harmonic component 3f of the power supply frequency f, There is a method of extracting only the fundamental frequency component of the third harmonic component 3f of the power supply frequency f by FFT.
  • the secondary side basic voltage vf (t) can be calculated by the following method.
  • the secondary side fundamental voltage vf (t) is obtained by converting the third harmonic component 3f of the power supply frequency f obtained by Fourier series expansion to the voltage waveform obtained by averaging the positive side voltage and the negative side voltage to the fundamental frequency component. It becomes.
  • the input R-phase voltage vR (t) is represented by Expression (8)
  • the S-phase voltage vS (t) and the T-phase voltage vT (t) are represented by Expression (13) and Expression (14).
  • V is the effective value of the R-phase, S-phase, and T-phase voltages.
  • the frequency of the secondary side basic voltage vf (t) is the third harmonic component 3f of the power supply frequency f, and the amplitude is the voltage of the measured R phase (may be S phase or T phase). It can be seen that vR (t) is -0.207 (the value after the decimal point is rounded off to the fourth decimal place) times. From these, the frequency of the measured R phase (which may be S phase or T phase) is tripled, a sine wave is generated from the frequency, and the amplitude of R phase (which may be S phase or T phase) is determined.
  • the secondary side basic voltage vf (t) can be calculated by multiplying -0.207 by the sine wave.
  • the frequency of the secondary-side basic current i0f (t) is the fundamental frequency component of the third-order harmonic component 3f of the power supply frequency f, so the secondary-side basic current calculation processing unit 2c2
  • the fundamental frequency component of the third harmonic component 3f of the power supply frequency f is calculated from the current i0 (t).
  • a filter having a frequency characteristic for extracting only the fundamental frequency component of the third harmonic component 3f of the power supply frequency f, or the current i0 ( From t) the fundamental frequency component of the third harmonic component 3f of the power supply frequency f can be acquired.
  • the AC power supply 2 of the power conversion device that drives the load in an energized state regardless of the three-phase three-wire system, the single-phase two-wire system, and the three-phase four-wire system.
  • the secondary side insulation resistance can be calculated. Also, by measuring the voltage on the primary side of the power converter, the secondary side can be accurately and easily measured without being affected by the switching noise of the power converter, compared to when measuring the voltage on the secondary side.
  • the ground insulation resistance can be calculated.
  • the insulation resistance measuring apparatus According to the insulation resistance measuring apparatus according to the first embodiment, the voltage of the AC power supply and the zero-phase current of the AC power supply and the secondary-side zero-phase current of the power converter are measured. Since the secondary side ground insulation resistance is calculated by a simple method in an energized state, a device that measures the ground insulation resistance without being affected by the switching noise of the power converter with a simple device configuration. There is an effect that it is obtained.
  • the current measuring unit 2b is provided on the primary side of the power conversion device 3, but the other part of the first embodiment of FIG. As shown in the insulation resistance measuring device of the embodiment, the current measuring unit 2b may be provided on the secondary side of the power conversion device 3, and the same effect as described in the first embodiment can be obtained.
  • FIG. FIG. 21 shows a basic configuration diagram when the insulation resistance measuring apparatus according to the second embodiment is applied to an electrical device.
  • FIG. 22 is a block diagram showing the configuration of the insulation resistance measuring apparatus according to the second embodiment.
  • FIG. 23 is an equivalent circuit model in the case where a leakage occurs inside the power conversion device in the basic configuration diagram of the second embodiment.
  • FIG. 24 is a flowchart for calculating the insulation resistance on the secondary side in the second embodiment.
  • the insulation resistance measuring apparatus according to the second embodiment calculates the ground insulation resistance when a leakage occurs inside the power converter.
  • the difference from the insulation resistance measuring apparatus according to the first embodiment is that, as shown in FIG. 21, a load current measuring unit 2f that measures the load current iz (t) of any one phase of the AC power supply 1 that is not grounded. And a load drive state determination unit 2g for determining whether or not the load is driven from the measured load current, and the determination result is sent to the insulation resistance calculation unit 9c, and the determined load drive time The respective insulation resistances when not driven are calculated, and the insulation resistances on the secondary side of the power converter are calculated using these insulation resistances. Since the other configuration and operation of the insulation resistance measurement device of the second embodiment are the same as those of the insulation resistance measurement device of the first embodiment, the description thereof is omitted.
  • the load current measuring unit 2 f is connected to the primary side of the power converter 3.
  • FIG. 23 is an equivalent circuit model when a leakage occurs inside the power conversion device 3.
  • An insulation resistance R0S1 and a capacitance C0S1 are connected between the positive ground after rectification, and an insulation resistance R0S2 and a capacitance C0S2 are connected to the negative side.
  • the insulation resistance R0S which is a parallel resistance value between the insulation resistance R0S1 and the insulation resistance R0S2 between the ground inside the power conversion device 3, and the capacitance C0S1 and the capacitance between the ground and the ground.
  • Capacitance C0S which is the parallel capacitance value of C0S2
  • the insulation resistance R0L which is the parallel resistance value of the secondary side of the power converter 3
  • Ru, Rv, Rw, and the capacitance value Cu , Cv, Cw can be calculated as a capacitance C0L.
  • the voltage measurement unit 2 a measures the voltage of each phase of the AC power supply 1.
  • the current measuring unit 2b is connected to the zero-phase current transformer 2ba including all phases, and measures a current i0 (t) after the connected portion.
  • the load current measuring unit 2f measures the load current iz (t) at the load 7 connected to the secondary side of the power converter 3 with the current transformer 2fa connected to any phase other than the grounded phase. .
  • the load drive state determination unit 2g determines that the load 7 is driven when the load current iz (t) output from the load current measurement unit 2f is equal to or greater than a certain value, and when it is equal to or less than the certain value. Is determined not to be driven.
  • the insulation resistance calculation processing unit 9c5 is instructed to calculate the insulation resistance when driving the load and the insulation resistance when not driving.
  • the insulation resistance calculation processing unit 9c5 calculates the insulation resistance R0L on the secondary side from the insulation resistance R0 ′ during driving and the insulation resistance R0S during non-driving.
  • the load current is measured by the current transformer 2fa to determine the load driving state.
  • the driving state information can be acquired from the power converter 3 or the load 7, that information is used. May be.
  • switching control is performed by the inverter circuit 5 in the power conversion device 3.
  • the switching frequency component in the inverter circuit 5 can be acquired from the current i0 (t) measured by the current measuring unit 2b, and the driving state can be determined from the current component.
  • the method of acquiring the switching frequency component can be acquired by, for example, Fourier transforming the current i0 (t).
  • FIG. 25 shows a waveform of the fundamental frequency component of the power supply frequency f at the positive side voltage
  • FIG. 26 shows a waveform of the fundamental frequency component of the power supply frequency f at the negative side voltage. It can be seen that the fundamental frequency components of the respective power supply frequencies f match in both the positive side voltage of FIG. 25 and the negative side voltage of FIG. Note that the DC component is removed.
  • the secondary side basic voltage vf (t) is a fundamental frequency component of the power supply frequency f in the average voltage of the positive side voltage and the negative side voltage.
  • the secondary side basic voltage vf (t) is an average value of the fundamental frequency component of the power supply frequency f of the positive voltage and the fundamental frequency component of the power supply frequency f of the negative voltage.
  • the fundamental frequency components of the power supply frequency f of the positive side voltage and the negative side voltage are equal, the fundamental frequency components of the power supply frequency f of the positive side voltage and the negative side voltage are the same voltage even if averaged. Therefore, the secondary side basic voltage vf (t) is the same as the voltage of the fundamental frequency component of the power supply frequency f of the positive side voltage and the negative side voltage.
  • FIG. 27 is an equivalent circuit model in which the AC power supply 8 is the secondary side basic voltage vf (t) and the inside of the power conversion device 3 and the secondary side of the power conversion device 3 are viewed.
  • the positive side voltage and the negative side voltage contain a direct current component, but the zero phase current transformer 2ba does not need to be considered because the direct current component is not measured.
  • the insulation resistance R0 ′ can be calculated when the load is driven, and the insulation resistance R0S can be calculated when the load is not driven.
  • the insulation resistance R0L is calculated using Equation (16). can do.
  • FIG. 22 shows the configuration of the insulation resistance measuring apparatus 23 according to the second embodiment.
  • the insulation resistance calculation unit 9c includes a secondary side basic voltage calculation processing unit 9c1 that calculates the secondary side basic voltage vf (t) from the voltage v (t) of the AC power source 1 measured by the voltage measurement unit 2a, and a current measurement.
  • Secondary side basic current calculation processing unit 9c2 for calculating secondary side basic current i0f (t) from current i0 (t) measured by unit 2b, and secondary calculated by secondary side basic voltage calculation processing unit 9c1
  • a phasor Pi0f ( ⁇ ) from a phasor calculation processing unit 9c3 that calculates a phasor Pvf ( ⁇ ) of the side basic voltage vf (t) and a secondary side basic current i0f (t) calculated by the secondary side basic current calculation processing unit 9c2.
  • And output processing unit 9C5 in the configuration has the same structure as the insulation resistance calculating portion 2c of the first embodiment.
  • the difference from the insulation resistance calculation unit 2c is that the insulation resistance calculation processing unit 9c5 differs from the load drive state determination unit 2g that determines the drive state of the load based on the load current iz (t) measured by the load current measurement unit 2f.
  • Insulation resistance R0 'when driving the load and insulation resistance R0S when not driving are calculated based on the command.
  • the insulation resistance R0L is calculated using the insulation resistance R0 ′ and the insulation resistance R0S.
  • Insulation resistance calculation processing unit 2c5 of the first embodiment can also calculate insulation resistance R0S when not driven.
  • step 1 the voltage v (t) of the AC power supply 1 is measured by the voltage measuring unit 2a.
  • step 2a the voltage v (t) of the AC power supply 1 is measured by the voltage measuring unit 2a.
  • the secondary side basic voltage vf (t) is calculated from the voltage v (t)
  • the phasor calculation processing unit 9c3 the secondary side basic voltage vf (t ) Phasor Pvf ( ⁇ ).
  • the current i0 (t) is measured by the current measuring unit 2b.
  • the secondary side basic current calculation unit 9c2 calculates the secondary side basic current i0f (t) from the current i0 (t), and the phasor calculation processing unit 9c4 further calculates the secondary side basic current i0f (t ) Phasor Pi0f ( ⁇ ).
  • Step 2 (S02) the load drive state determination unit 2g determines whether the load is driven based on the load current iz (t) measured by the load current measurement unit 2f. If the load is driven, the process proceeds to step 3 (S03), and if the load is not driven, the process proceeds to step 4 (S04).
  • step 3 (S03) in the insulation resistance calculation processing unit 9c5 the parallel resistance value of the insulation resistance R0S in the power converter 3 and the insulation resistance R0L on the secondary side is calculated from the phasor Pvf ( ⁇ ) and the phasor Pi0f ( ⁇ ). A certain insulation resistance R0 ′ is calculated, and the process proceeds to step 5 (S05).
  • step 4 (S04) the insulation resistance calculation processing unit 9c5 calculates only the insulation resistance R0S inside the power converter 3 from the phasor Pvf ( ⁇ ) and the phasor Pi0f ( ⁇ ), and then proceeds to step 5 (S05). To do.
  • step 5 (S05) the insulation resistance R0L is calculated from the insulation resistance R0 ′ calculated in step 3 (S03) and the insulation resistance R0S calculated in step 4 (S04) using equation (16). If it is desired to calculate only the insulation resistance R0S, it may be taken out in step 4 (S04).
  • the AC power supply 1 is an AC power supply 12 that is S-phase grounded in a single-phase two-wire system
  • the waveforms of the positive side voltage and negative side voltage after rectification in the case of the single-phase two-wire system are shown in FIG. From FIG. 14, it can be seen that one cycle of both the positive and negative waveforms matches one cycle of the power supply frequency f.
  • the fundamental frequency component of the power supply frequency f obtained by Fourier transforming the positive side voltage and the negative side voltage is the same.
  • FIG. 28 shows the waveform of the fundamental frequency component of the power supply frequency f at the positive side voltage
  • FIG. 29 shows the waveform of the fundamental frequency component of the power supply frequency f at the negative side voltage. It can be seen that the fundamental frequency components of the respective power supply frequencies f are the same in both the positive side voltage of FIG. 28 and the negative side voltage of FIG. Note that the DC component is removed.
  • the fundamental frequency component of the power supply frequency f of the positive side voltage and the negative side voltage is the secondary side of the power converter 3 for the same reason as in the case of the three-phase three-wire type ⁇ connection. This coincides with the secondary side basic voltage vf (t).
  • the insulation resistance R0S in the power conversion device 3 and the insulation resistance R0L on the secondary side of the power conversion device 3 are calculated by determining the drive state of the load as in the case of the three-phase three-wire ⁇ connection. Can do.
  • the AC power supply 1 is an AC power supply 13 that is a three-phase four-wire system and is neutrally grounded
  • the waveforms of the positive side voltage and the negative side voltage after rectification in the case of the three-phase four-wire system are shown in FIG.
  • FIG. 30 shows the waveform of the third harmonic component 3f of the power supply frequency f at the positive voltage
  • FIG. 31 shows the waveform of the third harmonic component 3f of the power supply frequency f at the negative voltage. Note that the DC component is removed. It can be seen that the fundamental frequency component of the third harmonic component 3f of each power supply frequency f is the same in both the positive side voltage of FIG. 30 and the negative side voltage of FIG.
  • the third harmonic component 3f of the power supply frequency f of the positive side voltage and the negative side voltage is the same as that of the three-phase three-wire type ⁇ connection. This coincides with the secondary side basic voltage vf (t), which is the fundamental frequency component of the third harmonic component 3f of the power supply frequency f on the secondary side.
  • the insulation resistance R0S in the power converter 3 and the secondary-side insulation resistance R0L of the power converter 3 are measured by determining the drive state of the load as in the case of the three-phase three-wire ⁇ connection. Can do.
  • the insulation resistance in the power conversion device is calculated by determining the drive state of the load while having the same effect as in the first embodiment. It is possible to calculate the secondary side insulation resistance of the power converter.
  • FIG. 32 shows a basic configuration diagram when the insulation resistance measuring apparatus according to the third embodiment is applied to an electrical device.
  • the insulation resistance measuring apparatus according to Embodiment 3 calculates the insulation resistance at each load in a configuration in which a plurality of loads are connected to the power converter.
  • the difference from the insulation resistance measuring device according to the first embodiment is that, in the insulation resistance measuring device 24 of the third embodiment, a plurality of loads 71 and 72 are driven by one AC power source 1 and one power converter 3. In some cases, corresponding to a plurality of loads 71 and 72, current measuring units 2b1 and 2b2 provided on the secondary side of the power converter 3, and a current selecting unit 2h for selecting the current measuring units 2b1 and 2b2, It is equipped with. Since the other configuration and operation of the insulation resistance measuring apparatus according to the third embodiment are the same as those of the insulation resistance measuring apparatus according to the first embodiment, description thereof is omitted.
  • the current measuring units 2b1 and 2b2 are connected to all the phases of the loads 71 and 72 connected to the secondary side of the power converter 3 in which the zero-phase current transformers 2ba1 and 2ba2 are connected.
  • Currents i0A (t) and i0B (t) are measured.
  • the overall configuration is the same as that of the first embodiment, and therefore the insulation resistance R0L1 can be measured by the same method as that of the first embodiment.
  • the secondary side basic voltage vf (t) is equal in the loads 71 and 72. Therefore, using the secondary side basic voltage vf (t) generated from the primary side voltage of the power converter 3 and the currents i0A (t) and i0B (t) measured at the loads 71 and 72, The insulation resistances R0L1 and R0L2 of the load side circuits 61 and 62 in the loads 71 and 72 can be calculated using the same method as in the first embodiment.
  • the load 71 (or 72) for which the insulation resistance is to be calculated is selected by the current selection unit 2h, and the current i0A measured by the current measurement unit 2b1 (or 2b2) at the selected load 71 (or 72). (T) (or i0B (t)) is input to the insulation resistance calculator 2c.
  • the insulation resistance calculation unit 2c, the display unit 2d, and the notification unit 2e have the same configuration as that of the first embodiment.
  • phase wire system corresponding to the AC power source 1 is a three-phase three-wire system, a single-phase two-wire system, and a three-phase four-wire system in which one phase is grounded, as in the case of the first embodiment.
  • FIG. 32 shows an example with two loads, but when three or more loads are connected, the current i0 (t) can be similarly measured for each load, and the insulation resistance R0L can be calculated.
  • the same effect as in the first embodiment is obtained, and even when a plurality of loads are connected to the power converter, a plurality of loads can be handled. There is an effect that it is possible to calculate the insulation resistance on the secondary side of the power converter.
  • FIG. 33 shows a basic configuration diagram when the insulation resistance measuring apparatus according to the fourth embodiment is applied to an electrical device.
  • the insulation resistance measuring device according to Embodiment 4 calculates the insulation resistance on the secondary side of each power conversion device in a configuration in which a plurality of power conversion devices are connected.
  • each of the loads 71 and 72 is caused by a plurality of power conversion devices 31 and 32 with one AC power supply 1.
  • the current measurement units 2b1, 2b2 and the current measurement units 2b1, 2b2 provided on the primary side of the power conversion devices 31, 32 are selected corresponding to the plurality of power conversion devices 31, 32, respectively.
  • Current selection unit 2h Since the other configuration and operation of the insulation resistance measurement apparatus according to the fourth embodiment are the same as those of the insulation resistance measurement apparatus according to the first embodiment, description thereof is omitted.
  • the current measuring units 2b1 and 2b2 are configured such that the zero-phase current transformers 2ba1 and 2ba2 are connected to include all the primary phases of the power converters 31 and 32, and currents i0A (t), i0B (t) can be measured.
  • the overall configuration is the same as that in the first embodiment, and therefore the insulation resistance R0L1 can be measured by the same method as in the first embodiment.
  • the configuration is the same as that of the third embodiment. Therefore, by connecting the current measuring units 2b1 and 2b2 to the loads 71 and 72, the loads 71 and 72 are connected.
  • the insulation resistances R0L1 and R0L2 at 72 can be measured. Even when a plurality of power conversion devices 31 and 32 are connected, the voltage of the AC power supply 1 input to each of the power conversion devices 31 and 32 is equal, so the secondary side basic voltage vf (t) It becomes equal on the secondary side of the devices 31 and 32. Therefore, the secondary-side basic voltage vf (t) calculated from the primary-side voltage v (t) of the power converters 31 and 32 and the currents i0A (t) and i0B measured in the power converters 31 and 32. Using (t), the insulation resistances R0L1 and R0L2 in the power converters 31 and 32 can be calculated using the same method as in the first embodiment.
  • the current selection unit 2h selects the power conversion device 31 or 32 that is the calculation target of the insulation resistance, and the selected power conversion device 31 or 32 is measured by the current measurement units 2b1 and 2b2.
  • the currents i0A (t) and i0B (t) are output to the insulation resistance calculator 2c.
  • the insulation resistance calculation unit 2c, the display unit 2d, and the notification unit 2e have the same configuration as that of the first embodiment.
  • FIG. 33 two examples of the power conversion device are shown, but even when three or more power conversion devices are connected, the current i0 (t) is similarly measured for each power conversion device, and the insulation resistance R0L is calculated. Can do.
  • phase wire system corresponding to the AC power source 1 is a three-phase three-wire system, a single-phase two-wire system, and a three-phase four-wire system in which one phase is grounded, as in the case of the first embodiment.
  • the zero-phase current transformers 2ba1 and 2ba2 are shown as being provided on the primary side of the respective power converters 31 and 32.
  • the zero-phase current transformers Even if 2ba1 and 2ba2 are provided on the secondary side of each power converter 31 and 32, the insulation resistances R0L1 and R0L2 can be calculated in the same manner as in the first embodiment.
  • the same effect as in the first embodiment is obtained, and a plurality of power conversions are performed even when loads are connected to the plurality of power conversion apparatuses. There is an effect that the insulation resistance of the secondary side of the apparatus can be calculated.
  • FIG. FIG. 34 shows a basic configuration diagram when the insulation resistance measuring apparatus according to the fifth embodiment is applied to an electrical device.
  • Insulation resistance measuring apparatus according to Embodiment 5 includes a configuration in which a plurality of power conversion devices are connected, and an insulation resistance and each power conversion device inside each power conversion device when leakage occurs inside the power conversion device The insulation resistance on the secondary side is calculated.
  • each of the loads 71 and 72 is caused by a plurality of power conversion devices 31 and 32 with one AC power supply 1.
  • the current measurement units 2b1, 2b2 and the current measurement units 2b1, 2b2 provided on the primary side of the power conversion devices 31, 32 are selected corresponding to the plurality of power conversion devices 31, 32, respectively.
  • the load is driven from the current selection unit 2h, the load current measurement units 2f1 and 2f2 provided on the primary side of the power converters 31 and 32, and the measured load currents izA (t) and izB (t), respectively.
  • a load drive state determination unit 2g that selects the load current measurement units 2f1 and 2f2 and determines whether or not the load current is measured. Since the other configuration and operation of the insulation resistance measurement apparatus according to the fifth embodiment are the same as those of the insulation resistance measurement apparatus according to the fourth embodiment, description thereof is omitted.
  • the configuration is the same as that of the second embodiment, and the internal edge resistance of the power conversion device 31 and the insulation resistance on the secondary side of the power conversion device 31 are calculated. Can do. Even when a plurality of power conversion devices 31 and 32 are connected, the voltage of the AC power source 1 input to each of the power conversion devices 31 and 32 is the same, so that the power conversion device 31 is the same as in the second embodiment.
  • the fundamental frequency component of the power source frequency f of the positive side voltage and the negative side voltage 32 (the third harmonic component 3f of the power source frequency f when the AC power source 1 is a three-phase four-wire system) is the second order. Side basic voltage vf (t).
  • the insulation resistances R0SA, R0SB inside the respective power conversion devices 31, 32 and the secondary side insulation resistances R0L1, R0L2 of the respective power conversion devices 31, 32 are processed in the same manner as in the second embodiment. Can be used to calculate.
  • the calculation target of the insulation resistance is selected by the current selection unit 2h, and the selected current i0 (t) is output to the insulation resistance calculation unit 2c. Further, the load drive state determination unit 2g outputs the load drive state of the load 71 or 72 for which the insulation resistance is to be calculated to the insulation resistance calculation unit 2c.
  • the insulation resistance calculation unit 2c, the display unit 2d, and the notification unit 2e have the same configuration as that of the second embodiment.
  • the insulation resistance measuring apparatus According to the insulation resistance measuring apparatus according to the fifth embodiment, the same effect as in the second and fourth embodiments is obtained, and even when the load is connected to each of the plurality of power converters, By determining the drive state, there is an effect that the insulation resistance inside the plurality of power conversion devices and the insulation resistance on the secondary side of the power conversion devices can be calculated.
  • the present invention can be freely combined with each other, or can be appropriately modified or omitted.
  • Insulation resistance measuring device 2a voltage measuring unit, 2b, 2b1, 2b2 current measuring unit, 2ba, 2ba1, 2ba2 zero phase change Current sink, 2c, 9c Insulation resistance calculation unit, 2d display unit, 2e notification unit, 2f, 2f1, 2f2, load current measurement unit, 2fa, 2fa1, 2fa2 current transformer, 2g load drive state determination unit, 2h current selection unit, 2c1, 9c1, secondary side basic voltage calculation processing unit, 2c2, 9c2, secondary side basic current calculation processing unit, 2c3, 2c4, 9c3, 9c4 phasor calculation processing unit, 2c5, 9c5 insulation resistance calculation processing unit, 3, 31, 32 Power converter, 4, 41, 42 rectifier circuit, 5, 51, 52 inverter circuit, 6, 61, 62 load side circuit, 7, 71, 72 load 8 AC power supply.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

絶縁抵抗測定装置(2)は、交流電源(1)の各相の対地に対する電圧v(t)を測定する電圧測定部(2a)と、全相を包括して零相変流器により電力変換装置(3)の2次側の電流i0(t)を測定する電流測定部(2b)と、測定された電圧v(t)及び電流i0(t)から電力変換装置(3)の2次側の対地に対する絶縁抵抗R0Lを算出する絶縁抵抗算出部(2c)と、で構成されている。電圧v(t)の整流後の基本周波数を有する2次側基本電圧vf(t)を交流電源(8)として、負荷側の回路(6)の等価回路モデルから絶縁抵抗R0Lを算出する。

Description

絶縁抵抗測定装置
 本発明は、インバータ等の電力変換装置により負荷を駆動する場合において、負荷側の対地絶縁抵抗を測定する絶縁抵抗測定装置に関するものである。
 従来、インバータ等のスイッチング電源により駆動される電気機器及びその回路の対地絶縁抵抗を通じて流れる漏洩電流を測定する漏洩電流測定装置としては、切換開閉器によって順次入力されたスイッチング電源の対地電圧VU,VV,VWと、零相変流器が給電ケーブルから検出した漏洩電流I0とを信号処理し、対地電圧VU,VV,VWのいずれかと漏洩電流I0との位相差を計測して信号処理する信号処理部と、信号処理部において得られた測定電流I0の実効値、対地電圧VU,VV,VWの実効値、対地電圧VU,VV,VWのいずれかと漏洩電流I0との位相差に基いて、対地漏洩抵抗を経由して流れる漏洩電流Igrを演算するものが開示されている(例えば、特許文献1参照。)。これにより、スイッチング電源で駆動される電気機器を稼動状態のままでも、漏洩電流Igrの値を測定することができるので、絶縁劣化の程度を常時監視することが可能で、絶縁劣化が進行して発生する地絡故障を未然に防止することが可能となる。
特開2009-115754号公報
 負荷を駆動する電力変換装置の出力側での漏洩電流の発生を把握するには、絶縁抵抗値を測定し、監視する必要があり、負荷である電機機器の停電状態において絶縁抵抗測定装置を用いて測定する方法が一般的である。これに対して、例えば、特許文献1の従来の漏洩電流測定装置では、測定された2次側の電圧と零相電流から対地絶縁抵抗を流れる漏洩電流を測定することにより、通電時に絶縁抵抗を測定することができ、この課題を解決している。しかしながら、この方法では、2次側の電圧を測定しているために、電力変換装置のスイッチング動作に伴うノイズが電圧に重畳され、正確な電圧の測定が容易ではないという課題があった。
 また、電力変換装置が複数ある場合においては、各電力変換装置の2次側の漏洩電流を測定するためには、それぞれの電力変換装置に絶縁抵抗測定装置を接続する必要があるといった課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、負荷を駆動する電力変換装置の2次側の対地絶縁抵抗を測定することができる、耐ノイズ性に優れた絶縁抵抗測定装置を提供することを目的としている。
 上記課題を解決するために、本発明に係る絶縁抵抗測定装置は、負荷に交流電力を出力する電力変換装置に接続された交流電源の各相の対地電圧を測定する電圧測定部と、前記交流電源の零相電流と前記電力変換装置の2次側の零相電流のいずれか一方を測定する電流測定部と、前記電力変換装置により前記各相の対地電圧が全波整流され、前記全波整流された後の最低次の周波数成分を基本周波数成分とする基本電圧を算出する基本電圧算出処理部と、前記零相電流から前記基本周波数成分とする基本電流を算出する基本電流算出処理部と、前記基本電圧と前記基本電流とから前記電力変換装置の2次側における絶縁抵抗を算出する絶縁抵抗算出部と、を備えたことを特徴とするものである。
 本発明の絶縁抵抗測定装置によれば、交流電源の対地電圧と、電力変換装置の1次側と2次側の零相電流のいずれか一方を測定するという簡単な方法により、電力変換装置の2次側の絶縁抵抗を算出するようにしているので、装置構成が簡素で、電力変換装置のスイッチングノイズの影響を受けずに対地絶縁抵抗を測定することができる優れた装置が得られるといった効果がある。
実施の形態1に係る絶縁抵抗測定装置が接続された電気機器の基本構成図である。 実施の形態1における第一の実施例を示すものであり、三相3線式Δ結線でS相接地されている交流電源に絶縁抵抗測定装置が適用された場合の全体構成図である。 実施の形態1に係る絶縁抵抗測定装置の構成の詳細を示すブロック図である。 図2に示す電力変換装置の1次側のR相、T相及びS相の対地電圧波形を示す図である。 図2に示す電力変換装置の整流回路による整流後の対地電圧波形である。 図2に示す電力変換装置の2次側のU相の対地電圧波形を示す図である。 図2に示す電力変換装置の2次側のV相の対地電圧波形を示す図である。 図2に示す電力変換装置の2次側のW相の対地電圧波形を示す図である。 図2に示す電力変換装置の2次側のU相、V相及びW相の電源周波数成分での基本電圧波形を示す図である。 図2に示す電力変換装置の2次側における電源周波数成分での基本電圧に対する等価回路モデルを示す図である。 図2における電力変換装置の2次側基本電圧、2次側基本電流等のフェーザ表示によるベクトル図である。 実施の形態1における第二の実施例を示すものであり、単相2線式でS相接地されている交流電源に絶縁抵抗測定装置が適用された場合の構成図である。 図12に示す電力変換装置の1次側のR相及びS相の対地電圧波形を示す図である。 図12に示す電力変換装置の整流回路による整流後の対地電圧波形である。 図12に示す電力変換装置の2次側のU相、V相及びW相の電源周波数成分での基本電圧波形を示す図である。 実施の形態1における第三の実施例を示すものであり、三相4線式で中性点が接地されている交流電源に絶縁抵抗測定装置が適用された場合の構成図である。 図16に示す電力変換装置の1次側のR相、T相、S相及びN相の対地電圧波形を示す図である。 図16に示す電力変換装置の整流回路による整流後の対地電圧波形である。 図16に示す電力変換装置の2次側のU相、V相及びW相の電源周波数の3次調波成分での基本電圧波形を示す図である。 実施の形態1に係る絶縁抵抗測定装置が接続された電気機器の他の実施態様を示す基本構成図である。 実施の形態2に係る絶縁抵抗測定装置が接続された電気機器の基本構成図である。 実施の形態2に係る絶縁抵抗測定装置の構成の詳細を示すブロック図である。 図21に示す電力変換装置の内部での対地間における絶縁抵抗及び静電容量の等価回路モデルを示す図である。 図21に示す電力変換装置の内部で漏電が発生した場合における負荷の駆動状態を判定して電力変換装置の2次側のみの対地絶縁抵抗を算出するフロー図である。 実施の形態2における第一の実施例を示すものであり、交流電源が三相3線式Δ結線でS相接地されている場合の電力変換装置の整流回路による整流後の正側電圧波形と電源周波数成分の基本電圧波形である。 実施の形態2における第一の実施例を示すものであり、交流電源が三相3線式Δ結線でS相接地されている場合の電力変換装置の整流回路による整流後の負側電圧波形と電源周波数成分の基本電圧波形である。 図21に示す電力変換装置の内部及び2次側における整流後の電源周波数成分での基本電圧に対する等価回路モデルである。 実施の形態2における第二の実施例を示すもので、交流電源が単相2線式でS相接地されている場合の電力変換装置の整流回路による整流後の正側対地電圧波形と電源周波数成分の基本電圧波形である。 実施の形態2における第二の実施例を示すもので、交流電源が単相2線式でS相接地されている場合の電力変換装置の整流回路による整流後の電力変換装置の2次側対地電圧波形と電源周波数成分の基本電圧波形である。 実施の形態2における第三の実施例を示すもので、交流電源が三相4線式で中性点接地されている場合の電力変換装置の整流回路による整流後の正側対地電圧波形と電源周波数の3次調波成分の基本電圧波形である。 実施の形態2における第三の実施例を示すもので、交流電源が三相4線式で中性点接地されている場合の電力変換装置の整流回路による整流後の電力変換装置の2次側側対地電圧波形と電源周波数の3次調波成分の基本電圧波形である。 実施の形態3に係る絶縁抵抗測定装置が接続された電気機器の基本構成図である。 実施の形態4に係る絶縁抵抗測定装置が接続された電気機器の基本構成図である。 実施の形態5に係る絶縁抵抗測定装置が接続された電気機器の基本構成図である。
 以下、本発明の実施の形態に係る絶縁抵抗測定装置の詳細について、図1から図33を参照して説明する。
実施の形態1.
 図1は、実施の形態1に係る絶縁抵抗測定装置が電気機器に適用された場合の基本構成図を示すものである。図2は、実施の形態1における第一の実施例で、三相3線式Δ結線でS相接地されている交流電源に絶縁抵抗測定装置が適用された場合を示す全体構成図である。図3は、実施の形態1に係る絶縁抵抗測定装置の構成の詳細を示すブロック図である。
 図1に示すように、負荷となる電気機器7は、商用の交流電源1からの交流電力を電力変換し、三相の交流を生成する電力変換装置3により駆動される。絶縁抵抗測定装置2は、交流電源1の各相の対地に対する電圧v(t)を測定する電圧測定部2aと、全相を包括して零相変流器2baにより電力変換装置3の負荷側の電流i0(t)を測定する電流測定部2bと、測定された電圧v(t)及び電流i0(t)から電力変換装置3の2次側(負荷側)の対地に対する絶縁抵抗R0Lを算出する絶縁抵抗算出部2cと、で構成されている。ここでは、電流測定部2bは、電力変換装置3の1次側(入力側)に接続されている。さらに、絶縁抵抗測定装置2は、算出された絶縁抵抗R0Lの結果を表示する表示部2dと、絶縁抵抗の結果に基づいて通報する通報部2eと、を備えたものである。
 交流電源1は、いずれかの一相が接地された三相3線式、単相2線式及び中性点(N相)が接地された三相4線式に対応しており、電力変換装置3の整流回路4に接続されている。図1では、交流電源1と整流回路4とは、模式的に1線で接続されているが、交流電源1が、三相3線式の場合には、整流回路4に接続される本数が3線となり、単相2線式の場合には2線となる。ただし、三相4線式の場合には、電圧測定部2aに対して接地線を入力する。
 電力変換装置3は、図1に示すように、交流電源1の交流電力を直流に変換する整流回路4と、直流から三相の交流に変換するインバータ回路5と、で構成されている。また、電力変換装置3は、インバータ回路5をスイッチング動作させて、負荷7を駆動するために任意の周波数の交流電力を生成し、出力する。
 図1で示すように、負荷7が電力変換装置3の2次側に接続された場合の負荷側回路6は、U相、V相及びW相とそれぞれの対地間との絶縁抵抗値Ru,Rv,Rwと、U相、V相及びW相とそれぞれの対地間との静電容量値Cu,Cv,Cwと、で表わされる。また、その絶縁抵抗値Ru,Rv,Rwの並列値を絶縁抵抗R0Lとし、静電容量値Cu,Cv,Cwの並列値を静電容量C0Lとして表わすことができる。
 絶縁抵抗測定装置2は、電力変換装置3の2次側における絶縁抵抗R0L及び静電容量C0Lを算出することができる。
 図2に、交流電源1が、三相3線式Δ結線でS相接地されている交流電源11である場合における全体構成図を示す。ここでは、負荷7の電気機器としてモータを想定している。次に、図3から図11を参照して、三相3線式Δ結線でS相が接地されている交流電源11の場合において、絶縁抵抗測定装置2により、絶縁抵抗R0Lと静電容量C0Lを算出する動作原理について説明する。
 図4に、電力変換装置3に入力される交流電源11のR相、S相及びT相の対地電圧波形を示す。ここでは、交流電源11の周波数が60Hz、電圧の実効値が200Vの場合を例に示す。
 整流回路4は、図2に示すように、ブリッジダイオードを構成する整流用ダイオード4a,4b,4c,4d,4e及び4fと、入力された交流電源11の三相の電圧vR(t)、vS(t)、vT(t)がブリッジダイオードにより全波整流された後、全波整流された電圧を平滑化する平滑コンデンサ4gとで構成されている。
 ここで、整流回路4の上側の3つのダイオード4a,4b,4cの出力の内、入力電圧の一番大きい電圧が正側に現れ、下側の3つのダイオード4d,4e,4fの出力の内、入力電圧の一番小さい電圧が負側に現れる。以下、対地を基準として、整流後の正側に現れる電圧を正側電圧、負側に現れる電圧を負側電圧と呼ぶ。正側電圧と負側電圧の対地電圧波形を図5に示す。
 インバータ回路5は、図2に示すように、PWM変調用の半導体スイッチング素子5a,5b,5c,5d,5e及び5fによって構成される三相のインバータ回路である。整流後の電圧波形に対して、インバータ回路5の正側の半導体スイッチング素子5a,5b,5cと負側の半導体スイッチング素子5d,5e、5fとを交互にオンとオフを繰り返すことで、PWM変調を行って負荷を駆動する駆動周波数のU相、V相及びW相の三相の出力電圧を生成する。なお、ここでは、半導体スイッチング素子の制御部は、省略されている。
 インバータ回路5では、それぞれのスイッチング素子を制御するパルスの位相を各出力で、ずらすことによりU相、V相及びW相の三相の駆動周波数の出力電圧の位相を変化させている。U相に対して120°遅れた波形をV相へ、U相に対して120°進んだ波形をW相へ、それぞれ出力している。
 次に、電力変換装置3の2次側において、対地に対する電源周波数fの基本周波数成分における電圧波形が各相で一致する原理について説明する。
 U相、V相及びW相へは、整流後の正側電圧と負側電圧を交互にオン、オフして電圧を出力する。図6、図7及び図8は、スイッチング後のU相、V相及びW相の対地出力電圧(実線)とそれらの包絡線を示した一例である。ここで、図6、図7及び図8において、上側の点線が上側の包絡線、下側の点線が下側の包絡線(点線)を表わしている。また、ここでは、スイッチングパルスの周波数は500Hzとしている。スイッチングパルスの周波数は、一般的には数kHz~数十kHzであるがスイッチングの様子が分からないためこの周波数としている。
 U相、V相及びW相で、それぞれスイッチングのパルスの位相は異なっているが、スイッチングの基となる整流後の正側電圧と負側電圧の電圧波形は同じであるため、電力変換装置3の2次側の各相の上側の包絡線は同一となり、また、各相の下側の包絡線も同一となる。したがって、電力変換装置3の2次側の各相の対地電圧波形の包絡線が同一であることから、各相の出力電圧の上側の包絡線及び下側の包絡線における周波数成分は、同一となる。
 整流後の正側電圧と負側電圧をスイッチングするパルスは、異なるデューティ比のパルスにより構成されているが、負荷7を駆動する電圧波形に直流成分が出力されないようにするため、オンとオフ、それぞれ50%の確率でスイッチングが繰り返されている。そのため、スイッチング後の対地電圧波形では、上側の包絡線と下側の包絡線が50%の確率で出力される。ここで、上側の包絡線と下側の包絡線は、正側電圧と負側電圧で同じであるため、スイッチング後の対地電圧波形には、正側電圧と負側電圧を平均した電圧波形の周波数成分が含まれている。
 正側電圧と負側電圧を平均した電圧波形の1周期は、交流電源11の電源周波数fの1周期と同一であることから、スイッチング後の対地電圧波形には、電源周波数fの基本周波数成分が含まれる。図9に、正側電圧と負側電圧を平均した対地電圧波形から電源周波数fの基本周波数成分を抽出した電圧波形を示す。ここで、正側電圧と負側電圧を平均した対地電圧波形から抽出された電源周波数fの基本周波数成分を持つ電圧を2次側基本電圧vf(t)とする。
 以上のことから、電力変換装置3の2次側の各相における包絡線は一致しているため、2次側基本電圧vf(t)が電力変換装置3の2次側の各相で一致する。
 2次側基本電圧vf(t)が電力変換装置3の2次側の各相で一致することから、図2に示す各相における絶縁抵抗Ru,Rv,Rwと静電容量Cu,Cv,Cwは、並列に接続されていることと等価となる。これらは、絶縁抵抗R0L及び静電容量C0Lとして表わされる。したがって、2次側基本電圧vf(t)を交流電源8として、電力変換装置3の2次側を単相2線式と見なすことができる。図10は、交流電源8を2次側基本電圧vf(t)とした場合に、電力変換装置3から見た2次側の負荷側回路6の等価回路モデルを示す。
 図10に示すように、2次側基本電圧vf(t)に比例した電流i0f(t)が、絶縁抵抗R0L及び静電容量C0Lに流れることが分かる。したがって、2次側基本電圧vf(t)によって絶縁抵抗R0L及び静電容量C0Lに流れる電流i0f(t)と、2次側基本電圧vf(t)を用いることで、絶縁抵抗R0L及び静電容量C0Lを算出することができる。ここで、2次側基本電圧vf(t)によって絶縁抵抗R0及び静電容量C0に流れる電流の合計を2次側基本電流i0f(t)と称する。
 前述した通り、2次側基本電圧vf(t)は、正側電圧と負側電圧を平均した電圧波形の電源周波数fの基本周波数成分であり、正側電圧と負側電圧は、交流電源11からの入力電圧を全波整流することで得られるため、2次側基本電圧vf(t)は、入力電圧v(t)から推定することができる。また、2次側基本電流i0f(t)の周波数は、電源周波数fと同じであるため、電流測定部2bによって測定される電流i0(t)から電源周波数fの基本周波数成分を抽出することで、2次側基本電流i0f(t)を算出することができる。ここで、電流i0(t)は、漏洩電流を表わしている。
 2次側基本電圧vf(t)及び2次側基本電流i0f(t)は、式(1)及び式(2)で表すことができる。ここで、θは、2次側基本電圧vf(t)のR相の電圧に対する位相差、φは、R相の電圧に対する2次側基本電流i0f(t)の位相差である。Vfは、2次側基本電圧vf(t)の実効値、I0fは、2次側基本電流i0f(t)の実効値、ωは、電源周波数fにおける角周波数を示す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 2次側基本電圧vf(t)及び2次側基本電流i0f(t)を電源周波数fの基本周波数におけるフェーザ表記したPvf(θ)及びPi0f(φ)を式(3)及び式(4)に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図11に、2次側基本電圧vf(t)のフェーザPvf(θ)と、2次側基本電流i0f(t)のフェーザPi0f(φ)と、R相の電圧vRのフェーザPvR及びT相の電圧vTのフェーザPvTと、絶縁抵抗R0Lに流れる電流i0R(t)のフェーザPi0R(δ)及び静電容量C0Lに流れる電流i0C(t)のフェーザPi0C(δ)との関係を示す。ここで、δは、θとφの差である。
 図11よりPi0R(δ)及びPi0C(δ)は、2次側基本電流i0f(t)のフェーザPi0f(φ)の実部及び虚部であることが分かる。したがって、2次側基本電圧vf(t)のフェーザPvf(θ)と2次側基本電流i0f(t)のフェーザPi0f(φ)から位相差δを算出し、2次側基本電流i0f(t)の実効値I0fにcosδを乗算することで、絶縁抵抗R0Lに流れる電流の実効値である絶縁抵抗分電流実効値I0Rを算出することができる。また、sinδを乗算することで、静電容量C0Lに流れる電流の実効値である静電容量分電流実効値I0Cを算出することができる。
 以上により、絶縁抵抗分電流実効値I0Rと静電容量分電流実効値I0Cを算出することができるので、絶縁抵抗R0L及び静電容量C0Lを算出することができる。
 次に、式(5)及び式(6)に、絶縁抵抗R0L及び静電容量C0Lの算出方法を示す。式(5)及び式(6)より、絶縁抵抗R0L及び静電容量C0Lは、2次側基本電圧vf(t)のフェーザPvf(θ)及び2次側基本電流i0f(t)のフェーザPi0f(φ)から算出できることが分かる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 以上のことから、絶縁抵抗R0L及び静電容量C0Lは、交流電源11の電圧vR(t)、vS(t)及びvT(t)から算出された2次側基本電圧vf(t)と、全相を包括して零相変流器2baで測定された電流i0(t)から算出された2次側基本電流i0f(t)と、を用いて算出できることが分かる。
 絶縁抵抗測定装置2では、この絶縁抵抗R0Lの値を用いて絶縁劣化を検出することができる。絶縁抵抗R0Lは並列値であるため、いずれかの相の絶縁抵抗が低下した際には、並列値は小さい抵抗が支配的に作用するため、絶縁劣化を検出することができる。
 以下に、2次側基本電圧vf(t)を算出する方法及び電流i0(t)から2次側基本電流i0f(t)を算出する方法と、絶縁抵抗R0Lの算出方法について絶縁抵抗算出部2cの構成と共に述べる。
 図3は、実施の形態1における絶縁抵抗測定装置2の構成の詳細を示すものである。絶縁抵抗算出部2cは、電圧測定部2aにより測定された交流電源1の電圧v(t)と電流測定部2bにより測定される零相電流i0(t)から絶縁抵抗R0Lを算出するまでの構成を示している。他の相線式の場合についても、本構成を使用して絶縁抵抗を算出できることは後述する。
 絶縁抵抗算出部2cは、電圧測定部2aで測定された交流電源1の電圧v(t)から2次側基本電圧vf(t)を算出する2次側基本電圧算出処理部2c1と、電流測定部2bで測定された電流i0(t)から2次側基本電流i0f(t)を算出する2次側基本電流算出処理部2c2と、2次側基本電圧算出処理部2c1で算出された2次側基本電圧vf(t)のフェーザPvf(θ)を算出するフェーザ算出処理部2c3と、2次側基本電流算出処理部2c2で算出された2次側基本電流i0f(t)からフェーザPi0f(φ)を算出するフェーザ算出処理部2c4と、フェーザ算出処理部2c3で算出されたフェーザPvf(θ)及びフェーザ算出処理部2c4で算出されたフェーザPi0f(φ)とにより絶縁抵抗R0Lを算出する絶縁抵抗算出処理部2c5と、により構成されている。後述するが、電圧測定部2aの構成は、交流電源1が三相3線式Y結線、単相2線式及び三相4線式の場合についても同様に適用することができる。なお、図3において、電圧測定部2aと2次側基本電圧算出処理部2c1とは、模式的に1線で接続されているが、交流電源1の相線式によって線の数は異なる。
 次に、絶縁抵抗算出部2c内の各部の動作について説明する。
 2次側基本電圧算出処理部2c1では、電力変換装置3の2次側における電源周波数fの基本周波数成分の対地電圧波形である2次側基本電圧vf(t)を算出する。具体的な方法としては、例えば、次のような方法がある。交流電源1の電圧v(t)から正側電圧と負側電圧を生成し、正側電圧と負側電圧を平均した電圧波形から電源周波数fの成分を抽出する。他に、電源周波数fの基本周波数成分を抽出する方法は、電源周波数fの基本周波数成分のみを抽出する周波数特性を有するフィルタを使用する方法やフーリエ変換によって電源周波数fの基本周波数成分のみを抽出する方法がある。
 また、次のような方法によっても2次側基本電圧vf(t)を取得することができる。2次側基本電圧vf(t)は、正側電圧と負側電圧を平均した電圧波形に対して、フーリエ級数展開して得た結果の電源周波数fの基本周波数成分となる。式(7)にフーリエ級数展開の公式を示す。f(t)は、フーリエ級数展開の対象となる波形である。
Figure JPOXMLDOC01-appb-M000007
 入力されるR相及びT相の電圧vR(t)、vT(t)を式(8)及び式(9)として、正側電圧と負側電圧を平均した電圧波形に対してフーリエ級数展開し、電源周波数fの基本周波数成分を抽出すると式(10)となる。ここで、Vは、R相及びT相の電圧の実効値である。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 式(10)より、2次側基本電圧vf(t)の振幅は、T相の振幅の0.578(小数点以下、第4位を四捨五入した値)倍となり、位相は、T相の電圧波形に対して、π/6だけ遅れていることがわかる。したがって、T相の電圧の振幅を0.578倍し、位相をπ/6だけ遅らせることで、2次側基本電圧vf(t)を算出することができる。位相をπ/6だけ遅らせる波形を生成する方法の一つとして、R相の電圧とT相の電圧の和から生成する方法がある。式(11)に、R相の電圧vR(t)とT相の電圧vT(t)の和の結果を示す。
Figure JPOXMLDOC01-appb-M000011
 したがって、式(11)を1/√3倍し、0.578倍することで、式(10)の2次側基本電圧vf(t)を取得することができる。
 2次側基本電流算出処理部2c2では、電流i0(t)から電源周波数fの基本周波数成分である2次側基本電流i0f(t)を算出する。2次側基本電圧vf(t)の算出の場合と同様、電源周波数fの基本周波数成分のみを抽出する周波数特性を持ったフィルタや、フーリエ変換によって電流i0(t)から電源周波数fの基本周波数成分を取得することができる。
 フェーザ算出処理部2c3では、2次側基本電圧vf(t)から式(3)で示したフェーザPvf(θ)を算出する。算出方法としては、例えば、2次側基本電圧vf(t)をフーリエ変換することで算出できる。また、電源周波数fの正弦波及び余弦波を搬送波として2次側基本電圧vf(t)に対して同期検波することでフェーザPvf(θ)を算出することもできる。
 フェーザ算出処理部2c4では、2次側基本電流i0f(t)から式(4)で示したフェーザPi0f(φ)を算出する。フェーザ算出処理部2c3によるフェーザPvf(θ)の算出の場合と同様の方法を用いて算出することができる。
 絶縁抵抗算出処理部2c5では、フェーザPi0f(φ)とフェーザPvf(θ)から絶縁抵抗R0Lを算出する。式(5)より、フェーザPvf(θ)をフェーザPi0f(φ)で除算した結果の実部が絶縁抵抗R0Lとなり、虚部が静電容量C0Lとなる。
 以上のことから、本実施の形態の絶縁抵抗測定装置2は、算出された絶縁抵抗R0Lの値により、電力変換装置3の2次側における漏電の発生の有無を判定することができる。
 なお、電流測定部2bを電力変換装置3の2次側に接続した場合においても、同様の原理で絶縁抵抗R0Lを算出することができる。ここで、電力変換装置3の内部において漏電が発生している場合には、電力変換装置3の内部においても漏洩電流が流れるため、電流測定部2bを電力変換装置3の1次側に接続した場合と2次側に接続した場合とでは、測定される電流が異なる。したがって、実施の形態1では、電力変換装置3の内部で漏電が発生していない場合について適用することができる。また、電力変換装置3の内部で漏電が発生している場合については、実施の形態2で説明する。
 また、絶縁抵抗測定装置2は、算出された絶縁抵抗R0Lを表示部2dに表示させることができる。表示部2dでは、絶縁抵抗R0L以外にも、測定及び算出された各項目を表示することができる。さらに、絶縁抵抗R0Lに対して予め設定された閾値によって絶縁不良の判定を行う通報部2eを利用して、外部に通報することができる。
 以上、交流電源1が、三相3線式Δ結線でS相接地されている交流電源11の場合について、電圧測定部2aで測定された交流電源1の電圧v(t)と電流測定部2bで測定された電流i0(t)から電力変換装置3の2次側の絶縁抵抗R0Lを算出する方法について説明した。
 次に、交流電源1が、単相2線式でS相接地されている交流電源12である場合について説明する。
 図12に、単相2線式でS相が接地されている交流電源12の場合の全体構成図を示す。交流電源12と整流用ダイオード以外は、三相3線式Δ結線でS相接地されている交流電源11の場合と同じ構成である。
 図13に、電力変換装置3に入力されるR相及びS相の対地電圧波形を示す。周波数fは60Hz、実効値が200Vとなる振幅となっている。図14は、整流後の正側電圧と負側電圧の電圧波形である。
 交流電源1が、単相2線式の交流電源12の場合においても、U相、V相及びW相へは、整流後の正側電圧と負側電圧を交互にオン、オフして電圧を出力する。したがって、三相3式Δ結線の場合と同様に、電力変換装置3の2次側の各相の対地電圧波形の包絡線は同一であり、各相の出力電圧の包絡線における周波数成分は同一となる。
 また、三相3線式Δ結線の場合と同様に、上側と下側の包絡線は、50%の確率でスイッチングが繰り返されている。そのため、スイッチング後の対地電圧波形は、上側の包絡線と下側の包絡線は50%の確率で出力される。ここで上側の包絡線と下側の包絡線は、正側電圧及び負側電圧と同じであるため、スイッチング後の対地電圧波形には、正側電圧と負側電圧を平均した電圧波形の周波数成分が含まれている。
 正側電圧と負側電圧を平均した電圧波形は、R相の電圧vR(t)を半分にした波形と同一であるため、単相2線式の交流電源12の場合の2次側基本電圧vf(t)は、R相の電圧vR(t)に1/2を乗じた波形となる。図15に、2次側基本電圧vf(t)の波形を示す。式(12)に、交流電源1が、単相2線式の交流電源12の場合の2次側基本電圧vf(t)を示す。
Figure JPOXMLDOC01-appb-M000012
 以上のことから、電力変換装置3の2次側の各相における対地電圧波形の包絡線は一致しているため、単相2線式の交流電源12の場合においても、2次側基本電圧vf(t)が、電力変換装置3の2次側の各相で一致する。
 2次側基本電圧vf(t)が、電力変換装置3の2次側の各相で一致することから、電源周波数fの基本周波数成分から見て電力変換装置3の2次側を単相2線式と見なすことができ、図10と同様の等価回路モデルで表すことができる。したがって、交流電源1が、単相2線式の交流電源12の場合においても、電圧測定部2aで測定された交流電源1の電圧v(t)と電流測定部2bで測定された電流i0(t)を用いることで、絶縁抵抗R0Lを算出することができる。算出方法は、三相3線式Δ結線の場合と同様である。
 単相2線式の場合における絶縁抵抗算出部2cは、三相3線式Δ結線の場合と同様、図3の構成となる。ただし、交流電源1からの入力の違いにより、2次側基本電圧算出処理部2c1の構成が異なる。その他の各部については、三相3線式Δ結線の場合と同様であり、絶縁抵抗R0Lを算出することができる。
 単相2線式の場合の2次側基本電圧算出処理部2c1では、2次側基本電圧vf(t)は、R相の電圧に1/2を乗じた電圧波形と同じであるため、例えば、R相の電圧vR(t)に1/2を乗じて2次側基本電圧vf(t)を算出する。
 次に、交流電源1が、三相4線式で中性点接地されている交流電源13である場合について説明する。
 図16に、三相4線式で中性点が接地されている交流電源13の場合の全体構成図を示す。交流電源13と整流用ダイオード以外は、三相3線式Δ結線でS相接地されている交流電源11の場合と同じ構成である。
 図17に、電力変換装置3に入力されるR相、S相、T相及びN相の対地電圧波形を示す。周波数は60Hz、実効値が200Vとなる振幅となっている。図18は、整流後の正側電圧と負側電圧の電圧波形である。
 交流電源1が、三相4線式の交流電源13の場合においてもU相、V相及びW相へは、整流後の正側電圧と負側電圧を交互にオン、オフして電圧を出力する。したがって、三相3線式Δ結線の場合と同様に、電力変換装置3の2次側の各相の対地電圧波形の包絡線は同一であり、各相の出力電圧の包絡線における周波数成分は同一となる。
 また、三相3線式Δ結線の場合と同様に、上側と下側の包絡線は、50%の確率でスイッチングが繰り返されている。そのため、スイッチング後の対地電圧波形は、上側の包絡線と下側の包絡線は、50%の確率で出力される。ここで、上側の包絡線と下側の包絡線は正側電圧と負側電圧で同じであるため、スイッチング後の対地電圧波形には、正側電圧と負側電圧を平均した電圧波形の周波数成分が含まれている。
 正側電圧と負側電圧を平均した電圧波形の1周期は、交流電源13の電源周波数fの1周期の1/3であることから、スイッチング後の対地電圧波形には、電源周波数fの3次調波成分3fの基本周波数成分が含まれる。図19は、正側電圧と負側電圧を平均した電圧波形から電源周波数fの3次調波成分3fの基本周波数成分を抽出した電圧波形である。三相4線式の場合における2次側基本電圧vf(t)は、正側電圧と負側電圧を平均した電圧波形から抽出した電源周波数fの3次調波成分3fの基本周波数成分となる。
 以上のことから、電力変換装置3の2次側の各相における包絡線は一致しているため、三相4線式の交流電源13の場合においても、2次側基本電圧vf(t)が、電力変換装置3の2次側の各相で一致する。
 2次側基本電圧vf(t)が電力変換装置3の2次側の各相で一致することから、電源周波数fの3次調波成分3fの成分から見て電力変換装置3の2次側を単相2線式と見なすことができ、図9と同様の等価回路モデルで表すことができる。したがって、交流電源1が、三相4線式の交流電源13の場合においても、電圧測定部2aで測定された交流電源1の電圧v(t)と電流測定部2bで測定された電流i0(t)を用いることで、絶縁抵抗R0Lを算出することができる。算出方法は、三相3線式Δ結線の場合と同様である。
 絶縁抵抗算出部2cは、三相3線式Δ結線の場合と同様、図3の構成となる。ただし、交流電源13からの入力の違いにより、2次側基本電圧算出処理部2c1の構成が異なる。また、2次側基本電圧vf(t)の周波数が、電源周波数fの3次調波成分3fになることから2次側基本電流算出処理部2c2で算出する基本周波数成分も電源周波数fの3次調波成分3fの周波数成分となる。その他の各部については、三相3線式Δ結線の場合と同様であり、絶縁抵抗R0Lを算出することができる。
 三相4線式の場合の2次側基本電圧算出処理部2c1では、電力変換装置3の2次側における電源周波数fの3次調波成分3fを基本周波数とする2次側基本電圧vf(t)を算出する。具体的な方法としては、例えば、次のような方法がある。交流電源13から入力される電圧v(t)から正側電圧と負側電圧を生成し、正側電圧と負側電圧を平均した電圧波形から電源周波数fの3次調波成分3fの基本周波数成分を抽出する。電源周波数fの3次調波成分3fの基本周波数成分を抽出する方法は、電源周波数fの3次調波成分3fの基本周波数成分のみを抽出する周波数特性を持ったフィルタを使用する方法や、FFTによって電源周波数fの3次調波成分3fの基本周波数成分のみを抽出する方法がある。
 また、次のような方法によっても、2次側基本電圧vf(t)を算出することができる。2次側基本電圧vf(t)は、正側電圧と負側電圧を平均した電圧波形に対してフーリエ級数展開して得られた結果の電源周波数fの3次調波成分3fが基本周波数成分となる。入力されるR相の電圧vR(t)を式(8)、S相の電圧vS(t)及びT相の電圧vT(t)を、式(13)及び式(14)として、正側電圧と負側電圧を平均した電圧波形に対してフーリエ級数展開し、電源周波数fの3次調波成分3fの基本周波数成分を抽出すると式(15)となる。ここで、Vは、R相、S相及びT相の電圧の実効値である。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(15)より、2次側基本電圧vf(t)の周波数は、電源周波数fの3次調波成分3f、振幅は、測定されたR相(S相またはT相でも良い。)の電圧vR(t)の-0.207(小数点以下、第4位を四捨五入した値である。)倍となっていることがわかる。これらのことより、測定されたR相(S相またはT相でも良い。)の周波数を3倍し、その周波数から正弦波を生成、R相(S相またはT相でも良い。)の振幅と-0.207を正弦波に乗じて2次側基本電圧vf(t)を算出することができる。
 三相4線式の場合、2次側基本電流i0f(t)の周波数は、電源周波数fの3次調波成分3fの基本周波数成分となるため、2次側基本電流算出処理部2c2では、電流i0(t)から電源周波数fの3次調波成分3fの基本周波数成分を算出する。具体的には、2次側基本電圧vf(t)と同様に、電源周波数fの3次調波成分3fの基本周波数成分のみを抽出する周波数特性を持ったフィルタや、フーリエ変換によって電流i0(t)から電源周波数fの3次調波成分3fの基本周波数成分を取得することができる。
 したがって、本実施の形態では、交流電源が、三相3線式、単相2線式及び三相4線式に拘わらず、負荷に対して通電状態で、負荷を駆動する電力変換装置の2次側の対地絶縁抵抗を算出することができる。また、電力変換装置の1次側の電圧を測定することで、2次側の電圧を測定する場合よりも、電力変換装置のスイッチングノイズの影響を受けずに、正確にかつ容易に2次側の対地絶縁抵抗を算出することができる。
 このように、実施の形態1に係る絶縁抵抗測定装置によれば、交流電源の電圧、及び交流電源の零相電流と電力変換装置の2次側の零相電流のいずれか一方を測定するという簡単な方法により、通電状態で2次側の対地絶縁抵抗を算出するようにしているので、簡素な装置構成で、電力変換装置のスイッチングノイズの影響を受けずに対地絶縁抵抗を測定する装置が得られるといった効果がある。
 なお、上記実施の形態1の絶縁抵抗測定装置では、図1で示すように、電流測定部2bを電力変換装置3の1次側に設けているが、図20の実施の形態1の他の実施態様の絶縁抵抗測定装置で示すように、電流測定部2bを電力変換装置3の2次側に設ける場合であってもよく、上記実施の形態1での説明と同様の効果が得られる。
実施の形態2.
 図21は、実施の形態2に係る絶縁抵抗測定装置が電気機器に適用された場合の基本構成図を示すものである。図22は、実施の形態2に係る絶縁抵抗測定装置の構成を示すブロック図である。図23は、実施の形態2の基本構成図において、電力変換装置の内部で漏電が発生した場合の等価回路モデルである。図24は、実施の形態2において、2次側の絶縁抵抗を算出するフロー図である。実施の形態2に係る絶縁抵抗測定装置は、電力変換装置の内部で漏電が発生している場合の対地絶縁抵抗を算出するものである。
 実施の形態1に係る絶縁抵抗測定装置との違いは、図21に示すように、交流電源1の接地されていない、いずれか1相の負荷電流iz(t)を測定する負荷電流測定部2fと、測定された負荷電流から負荷が駆動されているかどうかを判定する負荷駆動状態判定部2gと、が設けられ、その判定結果が絶縁抵抗算出部9cに送られ、判定された負荷駆動時と非駆動時のそれぞれの絶縁抵抗を算出し、これらの絶縁抵抗を用いて、電力変換装置の2次側の絶縁抵抗を算出するようにしたものである。実施の形態2の絶縁抵抗測定装置の他の構成、動作は、実施の形態1の絶縁抵抗測定装置の場合と同様であるので、説明を省略する。なお、ここでは、負荷電流測定部2fは、電力変換装置3の1次側に接続されている。
 図23は、電力変換装置3の内部で漏電が発生した場合の等価回路モデルである。整流後の正側の対地間に絶縁抵抗R0S1及び静電容量C0S1が接続され、負側には絶縁抵抗R0S2及び静電容量C0S2が接続されている。絶縁抵抗測定装置23を用いることで、電力変換装置3の内部の対地間の絶縁抵抗R0S1と絶縁抵抗R0S2の並列の抵抗値である絶縁抵抗R0S及び、対地間の静電容量C0S1と静電容量C0S2の並列の容量値である静電容量C0Sを算出でき、電力変換装置3の2次側の絶縁抵抗値Ru,Rv,Rwの並列の抵抗値である絶縁抵抗R0Lと、静電容量値Cu,Cv,Cwの並列の容量値である静電容量C0Lを算出することができる。
 図21に示すように、電圧測定部2aは、交流電源1の各相の電圧を測定する。電流測定部2bは、零相変流器2baが全相を包括して接続され、接続された箇所以降の電流i0(t)を測定する。負荷電流測定部2fは、接地された相以外のいずれかの相に変流器2faが接続され、電力変換装置3の2次側に接続された負荷7における負荷電流iz(t)を測定する。負荷駆動状態判定部2gは、負荷電流測定部2fから出力された負荷電流iz(t)が、一定値以上である場合には負荷7が駆動していると判定し、一定値以下である場合には駆動していないと判定する。判定された負荷駆動状態に応じて、絶縁抵抗算出処理部9c5に負荷の駆動時の絶縁抵抗と非駆動時の絶縁抵抗をそれぞれ算出するよう指示を出す。絶縁抵抗算出処理部9c5は、駆動時の絶縁抵抗R0‘と非駆動時の絶縁抵抗R0Sから2次側の絶縁抵抗R0Lを算出する。なお、ここでは、変流器2faによって負荷電流を測定して、負荷駆動状態を判定しているが、電力変換装置3や負荷7から駆動状態の情報を取得できる場合は、その情報を使用してもよい。また、負荷が駆動している場合、電力変換装置3内のインバータ回路5によるスイッチング制御が行われている。そのため、電流測定部2bにより測定された電流i0(t)からインバータ回路5におけるスッチング周波数成分を取得し、その電流成分から駆動状態を判定することもできる。スッチング周波数成分を取得する方法は、例えば、電流i0(t)をフーリエ変換することで取得することができる。
 交流電源1が、三相3線式Δ結線でS相接地されている交流電源11である場合について、絶縁抵抗R0S、静電容量C0S、絶縁抵抗R0L及び静電容量C0Lを算出する原理について説明する。
 三相3線式Δ結線の場合の整流後の正側電圧と負側電圧の波形は、図4に示されている。図4から、正側電圧と負側電圧はどちらの波形の1周期も電源周波数fの1周期と一致することが分かる。ここで、正側電圧と負側電圧をフーリエ変換して得た電源周波数fの基本周波数成分は一致する。図25に、正側電圧における電源周波数fの基本周波数成分の波形、図26に、負側電圧における電源周波数fの基本周波数成分の波形を示す。図25の正側電圧、図26の負側電圧のいずれにおいても、それぞれの電源周波数fの基本周波数成分が一致していることがわかる。なお、直流成分は、除去されている。
 また、正側電圧と負側電圧の電源周波数fの基本周波数成分は、2次側基本電圧vf(t)とも一致することを説明する。2次側基本電圧vf(t)は、正側電圧と負側電圧の平均の電圧における電源周波数fの基本周波数成分である。言い換えると、2次側基本電圧vf(t)は、正側電圧の電源周波数fの基本周波数成分と負側電圧の電源周波数fの基本周波数成分の平均値である。ここで、正側電圧と負側電圧の電源周波数fの基本周波数成分が等しいため、正側電圧と負側電圧の電源周波数fの基本周波数成分は、平均しても同じ電圧となる。したがって、2次側基本電圧vf(t)は、正側電圧と負側電圧の電源周波数fの基本周波数成分の電圧と同じである。
 正側電圧及び負側電圧の電源周波数fの基本周波数成分と2次側基本電圧vf(t)が一致することから、2次側基本電圧vf(t)からみると電力変換装置3内の正側、負側及び電力変換装置3の2次側すべてを単相2線式と見なすことができる。図27は、交流電源8を2次側基本電圧vf(t)として、電力変換装置3の内部及び電力変換装置3の2次側をみた等価回路モデルである。なお、正側電圧及び負側電圧には直流成分が含まれているが、零相変流器2baでは、直流分は測定されないため考慮する必要はない。
 負荷が駆動していない場合(直流から三相の交流に変換するインバータ回路5が動作していない場合)は、電力変換装置3の2次側に電流は流れないため、図27において、対地の絶縁抵抗Ru,Rv,Rw及び静電容量Cu,Cv,Cwが接続されていない回路となる。したがって、負荷が駆動していない場合に、実施の形態1の算出方法と同様の方法を用いると、電力変換装置3内の対地の絶縁抵抗R0Sのみが算出されることがわかる。負荷が駆動している場合は、電力変換装置3内の絶縁抵抗R0Sと電力変換装置3の2次側の絶縁抵抗R0Lの並列値である絶縁抵抗R0‘が測定されることが分かる。電力変換装置3の2次側のみの絶縁抵抗R0Lは、算出された絶縁抵抗R0‘と絶縁抵抗R0Sから式(16)を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000016
 したがって、負荷の駆動状態を判定することで、負荷の駆動時には絶縁抵抗R0‘を、非駆動時には絶縁抵抗R0Sを算出することができ、その結果を用い、式(16)で絶縁抵抗R0Lを算出することができる。
 図22は、実施の形態2に係る絶縁抵抗測定装置23の構成を示すものである。絶縁抵抗算出部9cは、電圧測定部2aで測定された交流電源1の電圧v(t)から2次側基本電圧vf(t)を算出する2次側基本電圧算出処理部9c1と、電流測定部2bで測定された電流i0(t)から2次側基本電流i0f(t)を算出する2次側基本電流算出処理部9c2と、2次側基本電圧算出処理部9c1で算出された2次側基本電圧vf(t)のフェーザPvf(θ)を算出するフェーザ算出処理部9c3と、2次側基本電流算出処理部9c2で算出された2次側基本電流i0f(t)からフェーザPi0f(φ)を算出するフェーザ算出処理部9c4と、フェーザ算出処理部9c3で算出されたフェーザPvf(θ)及びフェーザ算出処理部9c4で算出されたフェーザPi0f(φ)とにより絶縁抵抗を算出する絶縁抵抗算出処理部9c5と、で構成され、実施の形態1の絶縁抵抗算出部2cと同じ構成となっている。しかし、絶縁抵抗算出部2cと異なる点は、絶縁抵抗算出処理部9c5では、負荷電流測定部2fで測定された負荷電流iz(t)により負荷の駆動状態を判定する負荷駆動状態判定部2gからの指令に基づき、負荷の駆動時の絶縁抵抗R0‘と非駆動時の絶縁抵抗R0Sを算出する。また、絶縁抵抗R0‘と絶縁抵抗R0Sを用いて、絶縁抵抗R0Lを算出する。なお、実施の形態1の絶縁抵抗算出処理部2c5においても、非駆動時には絶縁抵抗R0Sを算出することが可能である。
 次に、絶縁抵抗算出部9cで絶縁抵抗R0Lを算出する処理手順を、図22に示す絶縁抵抗測定装置23の構成図と図24に示すフロー図を用いて説明する。
 まず、ステップ1(S01)では、電圧測定部2aで交流電源1の電圧v(t)を測定する。続いて、2次側基本電圧算出処理部9c1において、電圧v(t)から2次側基本電圧vf(t)が算出され、さらに、フェーザ算出処理部9c3において、2次側基本電圧vf(t)のフェーザPvf(θ)を算出する。これと並行して、電流測定部2bで電流i0(t)を測定する。続いて、2次側基本電流算出処理部9c2において、電流i0(t)から2次側基本電流i0f(t)が算出され、さらに、フェーザ算出処理部9c4において、2次側基本電流i0f(t)のフェーザPi0f(φ)を算出する。
 ステップ2(S02)では、負荷駆動状態判定部2gにおいて、負荷電流測定部2fで測定された負荷電流iz(t)に基づき、負荷が駆動しているかどうかを判定する。負荷が駆動していれば、ステップ3(S03)に移行し、負荷が駆動していなければ、ステップ4(S04)に移行する。
 ステップ3(S03)では、絶縁抵抗算出処理部9c5において、フェーザPvf(θ)とフェーザPi0f(φ)から電力変換装置3の内部の絶縁抵抗R0Sと2次側の絶縁抵抗R0Lの並列抵抗値である絶縁抵抗R0‘を算出して、ステップ5(S05)に移行する。
 ステップ4(S04)では、絶縁抵抗算出処理部9c5において、フェーザPvf(θ)とフェーザPi0f(φ)から電力変換装置3の内部の絶縁抵抗R0Sのみを算出して、ステップ5(S05)に移行する。
 ステップ5(S05)では、ステップ3(S03)で算出された絶縁抵抗R0‘とステップ4(S04)で算出された絶縁抵抗R0Sから式(16)を用いて、絶縁抵抗R0Lを算出する。絶縁抵抗R0Sのみを算出したい場合には、ステップ4(S04)で取り出せばよい。
 次に、交流電源1が、単相2線式でS相接地されている交流電源12である場合について説明する。
 単相2線式の場合の整流後の正側電圧と負側電圧の波形は、図14に示した。図14より、正側と負側どちらの波形の1周期も電源周波数fの1周期と一致することが分かる。ここで、正側電圧と負側電圧をフーリエ変換して得た電源周波数fの基本周波数成分は一致する。図28、正側電圧における電源周波数fの基本周波数成分の波形、図29に、負側電圧における電源周波数fの基本周波数成分の波形を示す。図28の正側電圧と、図29の負側電圧のいずれにおいても、それぞれの電源周波数fの基本周波数成分が一致していることがわかる。なお、直流成分は、除去されている。
 単相2線式の場合においても、三相3線式Δ結線の場合と同様の理由で、正側電圧と負側電圧の電源周波数fの基本周波数成分は、電力変換装置3の2次側における2次側基本電圧vf(t)と一致している。
 したがって、電源周波数fの基本周波数成分からみると電力変換装置3内の正側、負側及び電力変換装置3の2次側すべてを単相2線式と見なすことができ、図27と同様の等価回路モデルで示すことができる。したがって、三相3線式Δ結線の場合と同様に負荷の駆動状態を判定することで、電力変換装置3内の絶縁抵抗R0S及び電力変換装置3の2次側の絶縁抵抗R0Lを算出することができる。
 次に、交流電源1が、三相4線式で中性点接地されている交流電源13である場合について説明する。
 三相4線式の場合の整流後の正側電圧と負側電圧の波形は、図18に示した。正側電圧と負側電圧をフーリエ変換すると、それぞれの電源周波数fの3次調波成分3fにおける基本周波数成分が一致する。図30に、正側電圧における電源周波数fの3次調波成分3fの波形を、図31に、負側電圧における電源周波数fの3次調波成分3fの波形を示す。なお、直流成分は除去されている。図30の正側電圧と、図31の負側電圧のいずれにおいても、それぞれの電源周波数fの3次調波成分3fの基本周波数成分が一致していることが分かる。
 三相4線式の場合においても、三相3線式Δ結線の場合と同様の理由で、正側電圧と負側電圧の電源周波数fの3次調波成分3fは、電力変換装置3の2次側における電源周波数fの3次調波成分3fの基本周波数成分である2次側基本電圧vf(t)と一致している。
 しがたって、電源周波数fの3次調波成分3fからみると電力変換装置3内の正側、負側及び電力変換装置3の2次側すべてを単相2線式と見なすことができ、図27と同様の等価回路モデルで示すことができる。したがって、三相3線式Δ結線の場合と同様に負荷の駆動状態を判定することで、電力変換装置3内の絶縁抵抗R0S及び電力変換装置3の2次側の絶縁抵抗R0Lを測定することができる。
 このように、実施の形態2に係る絶縁抵抗測定装置によれば、実施の形態1と同様の効果を有するとともに、負荷の駆動状態を判定することで、電力変換装置内の絶縁抵抗を算出することができるとともに、電力変換装置の2次側の絶縁抵抗を算出できるという効果がある。
実施の形態3.
 図32は、実施の形態3に係る絶縁抵抗測定装置が電気機器に適用された場合の基本構成図を示すものである。実施の形態3に係る絶縁抵抗測定装置は、電力変換装置に複数の負荷が接続された構成において、各負荷における絶縁抵抗を算出するものである。
 実施の形態1に係る絶縁抵抗測定装置との違いは、実施の形態3の絶縁抵抗測定装置24では、一つの交流電源1と一つの電力変換装置3で複数の負荷71,72が駆動される場合で、複数の負荷71,72に対応して、電力変換装置3の2次側にそれぞれ設けられた電流測定部2b1,2b2と、電流測定部2b1,2b2を選択する電流選択部2hと、を備えたものである。実施の形態3の絶縁抵抗測定装置の他の構成、動作は、実施の形態1の絶縁抵抗測定装置の場合と同様であるので、説明を省略する。
 電流測定部2b1,2b2は、零相変流器2ba1,2ba2が電力変換装置3の2次側に接続されている各負荷71,72の全相を包括して接続され、接続された箇所以降の電流i0A(t),i0B(t)を測定する。例えば、一つの負荷71に着目してみたとき、全体の構成は、実施の形態1と同じとなるため、実施の形態1と同様の方法で絶縁抵抗R0L1を測定することができる。複数の負荷が接続されている場合においても、各負荷71,72は、並列に接続されているため、電力変換装置3の2次側の電圧は、各負荷71,72で等しい。したがって、各負荷71,72において、2次側基本電圧vf(t)が等しくなる。よって、電力変換装置3の1次側の電圧から生成された2次側基本電圧vf(t)と各負荷71,72において測定された電流i0A(t),i0B(t)を用いて、各負荷71,72における負荷側回路61,62の絶縁抵抗R0L1,R0L2を実施の形態1と同様の方法を用いて算出することができる。
 電流選択部2hによって絶縁抵抗の算出対象となる負荷71(または、72)を選択し、選択された負荷71(または、72)において、電流測定部2b1(または、2b2)によって測定された電流i0A(t)(または、i0B(t))を絶縁抵抗算出部2cに入力する。絶縁抵抗算出部2c、表示部2d及び通報部2eは、実施の形態1と同様の構成となる。
 なお、交流電源1に対応している相線式は、実施の形態1の場合と同様、一相が接地された三相3線式、単相2線式及び三相4線式である。
 図32では、負荷が2つの例を示したが3つ以上接続される場合においても同様にそれぞれの負荷に対して電流i0(t)を測定し、絶縁抵抗R0Lを算出することができる。
 このように、実施の形態3に係る絶縁抵抗測定装置によれば、実施の形態1と同様の効果を有するとともに、電力変換装置に複数の負荷が接続された場合においても、複数の負荷に対応した電力変換装置の2次側の絶縁抵抗を算出できるという効果がある。
実施の形態4.
 図33は、実施の形態4に係る絶縁抵抗測定装置が電気機器に適用された場合の基本構成図を示すものである。実施の形態4に係る絶縁抵抗測定装置は、複数の電力変換装置が接続された構成において、各電力変換装置の2次側における絶縁抵抗を算出するものである。
 実施の形態1に係る絶縁抵抗測定装置との違いは、実施の形態4の絶縁抵抗測定装置25では、一つの交流電源1で複数の電力変換装置31,32により、それぞれの負荷71,72が駆動される場合で、複数の電力変換装置31,32に対応して、電力変換装置31,32の1次側にそれぞれ設けられた電流測定部2b1,2b2と、電流測定部2b1,2b2を選択する電流選択部2hと、を備えたものである。実施の形態4の絶縁抵抗測定装置の他の構成、動作は、実施の形態1の絶縁抵抗測定装置の場合と同様であるので、説明を省略する。
 電流測定部2b1,2b2は、零相変流器2ba1,2ba2が各電力変換装置31,32の1次側の全相を包括して接続され、接続された箇所以降の電流i0A(t),i0B(t)を測定することができる。例えば、一つの電力変換装置31に着目してみたとき、全体の構成は実施の形態1と同じとなるため、実施の形態1と同様の方法で絶縁抵抗R0L1を測定することができる。また、複数の負荷71,72が接続されている場合は、実施の形態3と同様の構成となるため、電流測定部2b1,2b2を各負荷71,72に接続することで、各負荷71,72における絶縁抵抗R0L1,R0L2を測定することができる。複数の電力変換装置31,32が接続された場合においても、各電力変換装置31,32に入力される交流電源1の電圧は等しいため、2次側基本電圧vf(t)は、各電力変換装置31,32の2次側で等しくなる。したがって、電力変換装置31,32の1次側の電圧v(t)から算出された2次側基本電圧vf(t)と各電力変換装置31,32において測定された電流i0A(t),i0B(t)を用いて、各電力変換装置31,32における絶縁抵抗R0L1,R0L2を実施の形態1と同様の方法を用いて算出することができる。
 実施の形態3と同様に、電流選択部2hによって絶縁抵抗の算出対象となる電力変換装置31または32を選択し、選択された電力変換装置31または32において、電流測定部2b1,2b2によって測定された電流i0A(t),i0B(t)を絶縁抵抗算出部2cに出力する。絶縁抵抗算出部2c、表示部2d及び通報部2eは、実施の形態1と同様の構成となる。
 図33では、電力変換装置が2つの例を示したが3つ以上接続される場合においても同様にそれぞれの電力変換装置に対して電流i0(t)を測定し、絶縁抵抗R0Lを算出することができる。
 なお、交流電源1に対応している相線式は、実施の形態1の場合と同様、一相が接地された三相3線式、単相2線式及び三相4線式である。
 また、本実施の形態では、零相変流器2ba1,2ba2を各電力変換装置31,32の1次側に設けた構成で示したが、実施の形態1と同様に、零相変流器2ba1,2ba2を各電力変換装置31,32の2次側に設けても、絶縁抵抗R0L1,R0L2を実施の形態1と同様に算出することができる。
 このように、実施の形態4に係る絶縁抵抗測定装置によれば、実施の形態1と同様の効果を有するとともに、複数の電力変換装置にそれぞれ負荷が接続された場合においても、複数の電力変換装置の2次側の絶縁抵抗を算出できるという効果がある。
実施の形態5.
 図34は、実施の形態5に係る絶縁抵抗測定装置が電気機器に適用された場合の基本構成図を示すものである。実施の形態5に係る絶縁抵抗測定装置は、複数の電力変換装置が接続された構成において、電力変換装置内部で漏電が発生している場合の各電力変換装置内部の絶縁抵抗及び各電力変換装置の2次側における絶縁抵抗を算出するものである。
 実施の形態4に係る絶縁抵抗測定装置との違いは、実施の形態5の絶縁抵抗測定装置26では、一つの交流電源1で複数の電力変換装置31,32により、それぞれの負荷71,72が駆動される場合で、複数の電力変換装置31,32に対応して、電力変換装置31,32の1次側にそれぞれ設けられた電流測定部2b1,2b2と、電流測定部2b1,2b2を選択する電流選択部2hと、電力変換装置31,32の1次側にそれぞれ設けられた負荷電流測定部2f1,2f2と、測定された負荷電流izA(t),izB(t)から負荷が駆動されているかどうかを判定するとともに負荷電流測定部2f1,2f2を選択する負荷駆動状態判定部2gと、を備えたものである。実施の形態5の絶縁抵抗測定装置の他の構成、動作は、実施の形態4の絶縁抵抗測定装置の場合と同様であるので、説明を省略する。
 例えば、一つの電力変換装置31に着目してみたとき、実施の形態2と同様の構成となり、電力変換装置31の内部の縁抵抗及び電力変換装置31の2次側の絶縁抵抗を算出することができる。複数の電力変換装置31,32が接続された場合においても、各電力変換装置31,32に入力される交流電源1の電圧は等しいため、実施の形態2の場合と同様に、電力変換装置31または32の内部の正側電圧及び負側電圧の電源周波数fの基本周波数成分(交流電源1が、三相4線式の場合は、電源周波数fの3次調波成分3f)が、2次側基本電圧vf(t)と等しくなる。したがって、交流電源1において測定された電圧から生成された2次側基本電圧vf(t)と各電力変換装置31,32において測定された電流i0A(t),i0B(t)を用いて負荷71,72の駆動状態によって、各電力変換装置31,32の内部の絶縁抵抗R0SA,R0SB及び各電力変換装置31,32の2次側の絶縁抵抗R0L1,R0L2を実施の形態2と同様の方法を用いて算出することができる。
 実施の形態4の場合と同様に、絶縁抵抗の算出対象を電流選択部2hによって選択し、選択された電流i0(t)を絶縁抵抗算出部2cに出力する。また、負荷駆動状態判定部2gによって、絶縁抵抗の算出対象の負荷71または72の負荷駆動状態を絶縁抵抗算出部2cに出力する。絶縁抵抗算出部2c、表示部2d及び通報部2eは、実施の形態2と同様の構成となる。
 このように、実施の形態5に係る絶縁抵抗測定装置によれば、実施の形態2及び4と同様の効果を有するとともに、複数の電力変換装置にそれぞれ負荷が接続された場合においても、負荷の駆動状態を判定することで、複数の電力変換装置内部の絶縁抵抗及び電力変換装置の2次側の絶縁抵抗を算出できるという効果がある。
 また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 また、図中、同一符号は、同一または相当部分を示す。
 1,11,12,13 交流電源、2,21,22,23,24,25,26 絶縁抵抗測定装置、2a 電圧測定部、2b,2b1,2b2 電流測定部、2ba,2ba1,2ba2 零相変流器、2c,9c 絶縁抵抗算出部、2d 表示部、2e 通報部、2f,2f1,2f2 負荷電流測定部、2fa,2fa1,2fa2 変流器、2g 負荷駆動状態判定部、2h 電流選択部、2c1,9c1 2次側基本電圧算出処理部、2c2,9c2 2次側基本電流算出処理部、2c3,2c4,9c3,9c4 フェーザ算出処理部、2c5,9c5 絶縁抵抗算出処理部、3,31,32 電力変換装置、4,41,42 整流回路、5,51,52 インバータ回路、6,61,62 負荷側回路、7,71,72 負荷、8 交流電源。

Claims (8)

  1.  負荷に交流電力を出力する電力変換装置に接続された交流電源の各相の対地電圧を測定する電圧測定部と、
     前記交流電源の零相電流と前記電力変換装置の2次側の零相電流のいずれか一方を測定する電流測定部と、
     前記電力変換装置により前記各相の対地電圧が全波整流され、前記全波整流された後の最低次の周波数成分を基本周波数成分とする基本電圧を算出する基本電圧算出処理部と、
     前記零相電流から前記基本周波数成分とする基本電流を算出する基本電流算出処理部と、
     前記基本電圧と前記基本電流とから前記電力変換装置の2次側における絶縁抵抗を算出する絶縁抵抗算出部と、を備えたことを特徴とする絶縁抵抗測定装置。
  2.  前記交流電源は、いずれか1相が接地された三相3線式あるいは単相2線式であって、前記基本電圧は、前記交流電源の周波数を基本周波数成分とするものであることを特徴とする請求項1に記載の絶縁抵抗測定装置。
  3.  前記交流電源は、中性点が接地された三相4線式であって、前記基本電圧は、前記交流電源の周波数の3倍を基本周波数成分とするものであることを特徴とする請求項1に記載の絶縁抵抗測定装置。
  4.  前記交流電源の接地されていない、いずれか1相の負荷電流を測定する負荷電流測定部と、前記負荷電流から負荷の駆動状態を判定する負荷駆動状態判定部と、を備え、前記負荷駆動状態判定部からの指令により前記負荷の駆動時と非駆動時の前記零相電流を測定して、前記絶縁抵抗を算出することを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁抵抗測定装置。
  5.  前記電力変換装置に接続された前記負荷が複数である場合に、前記電力変換装置の2次側の零相電流を測定する複数の前記電流測定部と、前記複数の電流測定部のいずれかの電流を選択する電流選択部を備え、複数の前記絶縁抵抗を算出することを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁抵抗測定装置。
  6.  前記電力変換装置が複数であり、前記電力変換装置のそれぞれに前記負荷が接続されている場合に、前記複数の電力変換装置に対応した前記交流電源の零相電流又は前記複数の電力変換装置の2次側の零相電流を測定する複数の前記電流測定部と、前記複数の電流測定部のいずれか1つの電流を選択する電流選択部と、を備え、複数の前記絶縁抵抗を算出することを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁抵抗測定装置。
  7.  前記電力変換装置が複数であり、前記電力変換装置のそれぞれに前記負荷が接続されている場合に、前記複数の電力変換装置に対応した前記交流電源の零相電流を測定する複数の前記電流測定部と、前記複数の電流測定部のいずれかの電流を選択する電流選択部と、前記複数の電力変換装置に対応した前記交流電源の接地されていない、いずれか1相の負荷電流を測定する複数の負荷電流測定部と、前記複数の負荷電流から前記複数の負荷の駆動状態を判定する負荷駆動状態判定部と、を備え、前記負荷駆動状態判定部からの指令により前記複数の負荷の駆動時と非駆動時の前記零相電流を測定して、複数の前記絶縁抵抗を算出することを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁抵抗測定装置。
  8.  前記絶縁抵抗の結果を表示する表示部及び前記絶縁抵抗の結果に基づき外部に通報する通報部の少なくとも一方を備えたことを特徴とする請求項1から請求項7のいずれか1項に記載の絶縁抵抗測定装置。
PCT/JP2016/050531 2016-01-08 2016-01-08 絶縁抵抗測定装置 WO2017119125A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017560012A JP6416416B2 (ja) 2016-01-08 2016-01-08 絶縁抵抗測定装置
CN201680077731.3A CN108474818B (zh) 2016-01-08 2016-01-08 绝缘电阻测定装置
KR1020187014556A KR20180102542A (ko) 2016-01-08 2016-01-08 절연 저항 측정 장치
PCT/JP2016/050531 WO2017119125A1 (ja) 2016-01-08 2016-01-08 絶縁抵抗測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050531 WO2017119125A1 (ja) 2016-01-08 2016-01-08 絶縁抵抗測定装置

Publications (1)

Publication Number Publication Date
WO2017119125A1 true WO2017119125A1 (ja) 2017-07-13

Family

ID=59273418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050531 WO2017119125A1 (ja) 2016-01-08 2016-01-08 絶縁抵抗測定装置

Country Status (4)

Country Link
JP (1) JP6416416B2 (ja)
KR (1) KR20180102542A (ja)
CN (1) CN108474818B (ja)
WO (1) WO2017119125A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726877A (zh) * 2018-07-17 2020-01-24 本德尔有限两合公司 用于确定未接地的电源系统中的总绝缘电阻的划分和总系统泄漏电容的划分的方法和设备
JP2021004733A (ja) * 2019-06-25 2021-01-14 タナシン電機株式会社 漏洩電流検出装置及び漏洩電流検出方法
TWI731599B (zh) * 2019-05-10 2021-06-21 日商日立產機系統股份有限公司 電力轉換裝置、使用電力轉換裝置之系統及其診斷方法
EP3879285A4 (en) * 2018-11-13 2021-12-15 Shenzhen VMAX New Energy Co.,Ltd. INSULATION DETECTION CIRCUIT OF A VEHICLE MOUNTED BIDIRECTIONAL CHARGER AND DETECTION METHOD FOR IT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375077B (zh) * 2018-11-28 2024-04-05 国网河南省电力公司南阳供电公司 一种电气设备绝缘参数速测装置与方法
KR102373529B1 (ko) 2020-06-12 2022-03-10 이무균 양면태양광모듈 배면 발전장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153913A (ja) * 2010-01-27 2011-08-11 Patokkusu Japan Kk 電気機器おける漏洩電流測定装置及び測定方法
JP5770903B1 (ja) * 2014-09-26 2015-08-26 タナシン電機株式会社 漏洩電流算出装置及び漏洩電流算出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141568A (en) * 1980-04-04 1981-11-05 Toyo Commun Equip Co Ltd Method for measuring insulation resistance and floating capacity to ground of single-phase 3-wire type electric circuit
JP4167872B2 (ja) * 2001-10-04 2008-10-22 株式会社日立産機システム 漏れ電流の監視装置及びその監視システム
CN2938123Y (zh) * 2006-08-21 2007-08-22 西安科技大学 电网绝缘阻抗检测装置
JP5140012B2 (ja) * 2009-01-23 2013-02-06 三菱電機株式会社 漏電テスト装置及びこれを備えた漏電遮断器、回路遮断器、漏電監視装置
KR101279193B1 (ko) * 2009-03-05 2013-06-26 미쓰비시덴키 가부시키가이샤 절연 열화 검출 장치
JP2011220788A (ja) * 2010-04-08 2011-11-04 Midori Anzen Co Ltd 絶縁監視装置及び絶縁抵抗の演算方法
DE112011101326B4 (de) * 2010-04-14 2019-04-04 Mitsubishi Electric Corporation Isolierungsbeeinträchtigungs-Diagnosevorrichtung
JP5705102B2 (ja) * 2011-12-21 2015-04-22 三菱電機株式会社 絶縁劣化診断装置
CN204515022U (zh) * 2015-04-14 2015-07-29 国网辽宁省电力有限公司抚顺供电公司 抗干扰输电线路高压绝缘电阻测试装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153913A (ja) * 2010-01-27 2011-08-11 Patokkusu Japan Kk 電気機器おける漏洩電流測定装置及び測定方法
JP5770903B1 (ja) * 2014-09-26 2015-08-26 タナシン電機株式会社 漏洩電流算出装置及び漏洩電流算出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726877A (zh) * 2018-07-17 2020-01-24 本德尔有限两合公司 用于确定未接地的电源系统中的总绝缘电阻的划分和总系统泄漏电容的划分的方法和设备
CN110726877B (zh) * 2018-07-17 2022-05-10 本德尔有限两合公司 确定总绝缘电阻和总系统泄漏电容的划分的方法和设备
EP3879285A4 (en) * 2018-11-13 2021-12-15 Shenzhen VMAX New Energy Co.,Ltd. INSULATION DETECTION CIRCUIT OF A VEHICLE MOUNTED BIDIRECTIONAL CHARGER AND DETECTION METHOD FOR IT
TWI731599B (zh) * 2019-05-10 2021-06-21 日商日立產機系統股份有限公司 電力轉換裝置、使用電力轉換裝置之系統及其診斷方法
JP2021004733A (ja) * 2019-06-25 2021-01-14 タナシン電機株式会社 漏洩電流検出装置及び漏洩電流検出方法

Also Published As

Publication number Publication date
JPWO2017119125A1 (ja) 2018-04-05
KR20180102542A (ko) 2018-09-17
CN108474818A (zh) 2018-08-31
JP6416416B2 (ja) 2018-10-31
CN108474818B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
JP6416416B2 (ja) 絶縁抵抗測定装置
US8924170B2 (en) Method and system for detecting a failed rectifier in an AC/DC converter
JP6497553B2 (ja) 交流−直流変換装置
US8854846B2 (en) Method and apparatus for determining a fault current portion in a differential current
US9651592B2 (en) Impedance detector apparatus and method
EP3116117B1 (en) Inverter testing apparatus
JP5530769B2 (ja) 直流回路の漏電検出装置
CN104124876A (zh) 用于有源前端滤波电容器劣化检测的方法和装置
EP3352364A1 (en) Inverter substrate, method for determining connection sequence, and method for determining open phase
US20200003820A1 (en) Leakage current calculation device and leakage current calculation method
RU2652087C1 (ru) Преобразователь частоты для испытания трансформаторов (варианты)
WO2023032182A1 (ja) 電動機監視装置および電動機監視方法
CN112366956B (zh) 确定变频器的整流器级输出电流和/或电网侧电流的方法
KR102274269B1 (ko) 쇼트된 다이오드들의 검출
JP2014044140A (ja) 絶縁抵抗測定方法および装置
JP6583952B1 (ja) 漏洩電流検出装置及び漏洩電流検出方法
JP6887057B1 (ja) 電力変換装置及び欠相検知装置
Dasika et al. An on-line fault detection and a post-fault strategy to improve the reliability of matrix converters
JP6590387B1 (ja) 漏洩電流検出装置及び対地漏洩電流検出方法
RU163767U1 (ru) Измерительный преобразователь трехфазного переменного напряжения в постоянное
WO2022239432A1 (ja) 絶縁抵抗算出装置および絶縁抵抗算出方法
RU2314630C1 (ru) Устройство для измерения трехфазного напряжения
CN109768585B (zh) 一种交直流系统及其解耦方法、保护设备
JPH0547074B2 (ja)
JPH0634678A (ja) 多相電力計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560012

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187014556

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883628

Country of ref document: EP

Kind code of ref document: A1