WO2017118321A1 - Anti-pd-l1 antibodies and uses thereof - Google Patents

Anti-pd-l1 antibodies and uses thereof Download PDF

Info

Publication number
WO2017118321A1
WO2017118321A1 PCT/CN2016/112428 CN2016112428W WO2017118321A1 WO 2017118321 A1 WO2017118321 A1 WO 2017118321A1 CN 2016112428 W CN2016112428 W CN 2016112428W WO 2017118321 A1 WO2017118321 A1 WO 2017118321A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antigen
cancer
binding fragment
chain variable
Prior art date
Application number
PCT/CN2016/112428
Other languages
French (fr)
Inventor
Lile LIU
Xinxiu YANG
Haishan LUO
Zhengrong SHUAI
Hu Liu
Shaoping HU
Xiaolan SUN
Hongzhuan GU
Qing DUAN
Tatchi Teddy YANG
Original Assignee
Harbour Biomed Limited
Lile LIU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbour Biomed Limited, Lile LIU filed Critical Harbour Biomed Limited
Priority to US16/067,817 priority Critical patent/US10889648B2/en
Priority to CN201680076656.9A priority patent/CN108699146B/en
Priority to JP2018535895A priority patent/JP6779299B2/en
Priority to EP16883446.3A priority patent/EP3400243A4/en
Publication of WO2017118321A1 publication Critical patent/WO2017118321A1/en
Priority to HK18114733.3A priority patent/HK1255604A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70521CD28, CD152

Definitions

  • This application contains a sequence listing, which is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file name “Sequence Listing File” , creation date of December 12, 2016 and having a size of about 39.1kB.
  • the sequence listing submitted via EFS-Web is part of the specification and is herein incorporated by reference in its entirety.
  • the invention relates to monoclonal anti-PD-L1 antibodies, nucleic acids and expression vectors encoding the antibodies, recombinant cells containing the vectors, and compositions comprising the antibodies. Methods of making the antibodies, and methods of using the antibodies to treat diseases including cancer and autoimmune diseases are also provided.
  • Tumor cells are able to evade the immune system by “editing” host immunity in the tumor microenvironment in a variety of ways.
  • One way in which tumors carry out this so-called “cancer immune escape” is by upregulating the expression of immune checkpoint proteins, which are key regulators of the immune system, thus suppressing the immune response.
  • One such immunosuppressive co-signal is mediated by the PD-1 receptor and its ligand PD-L1.
  • PD-1 Programmed Cell Death Protein 1 or CD279 is a type I transmembrane protein that is one of the major immune checkpoint molecules (Blank et al., 2005, Cancer Immunotherapy, 54: 307-314) .
  • PD-1 is primarily expressed on activated T cells, and it interacts with the ligands PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC or CD273) to induce an inhibitory signal resulting in reduced T cell proliferation, cytokine production, and cytotoxic activity (Freeman et al., 2000, J. Exp. Med., 192: 1027-34) .
  • PD-L1 (Programmed Cell Death 1 Ligand) is a type I transmembrane protein that comprises an extracellular Ig-V like domain, an Ig-C like domain, a transmembrane domain and an intracellular C-terminus domain.
  • PD-L1 is expressed on many cell types, including T-cells, B-cells, endothelial, epithelial, and antigen presenting cells, on cells of lung, liver and heart tissues, and on several types of tumor cells.
  • PD-L2 is narrowly expressed on professional antigen presenting cells, such as dendritic cells and macrophages. (Dong H, Zhu G, Tamada K, Chen L. Nature Med. 1999; 5: 1365–1369. )
  • TILs tumor-infiltrating lymphocytes
  • Blocking of the PD-1/PD-L1 interaction can activate the immune system and enhance anti-tumor immune responses, and it has been demonstrated that in multiple syngeneic mouse tumor models, blockade of PD-L1 or its receptor PD-1 promotes antitumor activity (Hirano et al., 2005, Cancer Res., 65: 1089-96) .
  • the interaction between PD-1 and PD-L1 is an attractive target for cancer immunotherapy.
  • HIV-specific CD8+ T cell function is impaired, expression of cytokines and effector molecules is reduced, and the proliferation ability of the T cells is decreased.
  • PD-1 expression in HIV-specific CD8+ T cells in HIV-infected individuals is highly upregulated, suggesting that blocking the PD-1/PD-L1 pathway provides a potential treatment for chronic viral infection and AIDS treatment. (Bowers NL, Helton ES, Huijbregts RPH, et al. PLoS Pathog. 2014 March; 10 (3) : e1003993) .
  • therapeutic agents that block the PD-1/PD-L1 pathway can provide a new treatment approach for various cancers, viral infections such as HIV infections, T-cell depletion-related conditions, and other immune diseases.
  • PD-1 also interacts with PD-L2, which is expressed in the lung and kidney, to provide a unique negative signal that prevents autoimmune responses.
  • PD-L2 which is expressed in the lung and kidney
  • anti-PD-L1 antibodies do not affect the PD-1/PD-L2 interaction, and their use could therefore minimize immune-related adverse events.
  • Cancer immunotherapy a recent breakthrough in cancer treatment, employs a patient’s own immune system to attack tumor cells.
  • Inhibitors of immune checkpoint proteins have the potential to treat a variety of tumor types, such as metastatic melanoma, lung cancer, breast cancer, renal cell carcinoma, etc.
  • Recent studies using cancer immunotherapy approaches have shown promising results, especially in the case of metastatic carcinomas (Weinstock and McDermott, 2015, Ther Adv Urol., 7 (6) : 365-77) .
  • cancer immunotherapy has shown great potential in the treatment of blood cancers, including Hodgkin's lymphoma, multiple myeloma, bone marrow dysplasia syndrome, non-Hodgkin's lymphoma, etc.
  • Immune checkpoint inhibitors can be used in combination with targeted therapy or conventional radiotherapy and chemotherapy, and such combinatorial therapy may be effective in the treatment of many types of cancer.
  • Clinical trials of anti-PD-L1 monoclonal antibodies have been initiated by Genentech/Roche, Pfizer/Merck, Serono and MedImmune.
  • TECENTRIQ TM Humanized anti-PD-L1 mAb from Roche/Genentech, has been approved for treatment of locally advanced or metastatic urothelial carcinoma and non-small cell lung cancer (NSCLC) .
  • NSCLC non-small cell lung cancer
  • the invention satisfies this need by providing monoclonal antibodies that specifically bind PD-L1 with high affinity and induce the secretion of IFN- ⁇ and IL-2 by immune cells, as measured in both a mixed lymphocyte reaction and a T lymphocyte stimulation assay.
  • the fully human anti-PD-L1 antibodies of the invention have a comparable affinity to PD-L1 as Atezolizumab ( Roche-Genentech) , a humanized IgG1 anti-PD-L1 mAb.
  • the antibodies demonstrate comparable characteristics to Atezolizumab, but are predicted to have fewer immunogenic adverse side effects in humans than Atezolizumab due to the fact that they are fully human, rather than simply humanized mAbs.
  • the invention relates to isolated monoclonal antibodies or antigen-binding fragments thereof that bind PD-L1.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
  • the antibody or antigen-binding fragment thereof binds PD-L1, preferably binds specifically to human PD-L1.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
  • the isolated monoclonal antibody or antigen-binding fragment thereof of the invention is a human/rat chimeric.
  • the isolated monoclonal antibody or antigen-binding fragment thereof of the invention is human.
  • the isolated monoclonal antibody or antigen-binding fragment thereof of the invention further comprises a constant region, preferably a human heavy chain IgG4 constant region, more preferably a human heavy chain IgG4 constant region having one or more mutations, such as a S228P mutation, and a human antibody light chain kappa constant region.
  • a constant region preferably a human heavy chain IgG4 constant region, more preferably a human heavy chain IgG4 constant region having one or more mutations, such as a S228P mutation, and a human antibody light chain kappa constant region.
  • the invention relates to an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • the invention in another general aspect, relates to a vector comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • the invention in another general aspect, relates to a host cell comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • the invention in another general aspect, relates to a pharmaceutical composition, comprising an isolated monoclonal antibody or antigen-binding fragment thereof of the invention and a pharmaceutically acceptable carrier.
  • the invention relates to a method of blocking the binding of PD-L1 to PD-1 and/or to B7.1, or a method of augmenting secretion of IFN- ⁇ and IL-2, in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the invention in another general aspect, relates to a method of treating a disease, disorder or condition, preferably an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • a disease, disorder or condition preferably an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the invention in another general aspect, relates to a method of treating a hyperproliferative disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the hyperproliferative disease can be a non-malignant disease, including but not limited to, atherosclerosis, benign hyperplasia, and benign prostatic hypertrophy.
  • the hyperproliferative disease can also be a tumor, or a malignant disease.
  • the tumor can be selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
  • a solid tumor a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
  • the invention in another general aspect, relates to a method of producing a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment under conditions to produce the monoclonal antibody or antigen-binding fragment thereof, and recovering the antibody or antigen-binding fragment thereof from the cell or cell culture.
  • the invention in another general aspect, relates to a method of producing a pharmaceutical composition comprising a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising combining the monoclonal antibody or antigen-binding fragment thereof with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
  • Figure 1 shows the binding activity of biotin-labeled PD-L1-hFc protein to its receptor PD-1-hFc;
  • Figure 2 shows the flow cytometry profile of HEK293 cells stably transfected with PD-L1 protein
  • Figure 3 shows the ELISA measurement of serum antibody titers of H2L2 transgenic mice after immunization with PD-L1 protein, where 1681-1685 represent the mouse ID numbers;
  • Figure 4A and Figure 4B show the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to human PD-L1-hFc protein, as measured by ELISA;
  • Figure 5 shows the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to cyno monkey PD-L1-hFc protein, as measured by ELISA;
  • Figure 6 shows the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to PD-L1 or PD-L2, as measured by ELISA;
  • Figure 7A and Figure 7B show the cell-based binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-hPD-L1, as measured by flow cytometry;
  • Figure 8A and Figure 8B show the cell-based binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-cPD-L1, as measured by flow cytometry;
  • Figure 9A and Figure 9B show the inhibition of binding of PD-L1 protein to its receptor PD-1 by chimeric anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
  • Figure 10A and Figure 10B show the inhibition of binding of PD-L1 protein to its ligand B7.1 by chimeric anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
  • Figure 11 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 12 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 13 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention onIL-2 secretion in a mixed lymphocyte reaction using PBMC’s from donor 1;
  • Figure 14 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 1;
  • Figure 15 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 2;
  • Figure 16 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 3;
  • Figure 17 shows the effect of chimeric anti-PD-L1 antibody according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 4;
  • Figure 18 shows the effect of chimeric anti-PD-L1 antibody according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 5;
  • Figure 19 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 6;
  • Figure 20 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 7;
  • Figure 21 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 6;
  • Figure 22 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 7;
  • Figure 23 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 8;
  • Figure 24 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 9;
  • Figure 25 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 8;
  • Figure 26 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 9;
  • Figure 27A and Figure 27B show the binding to human PD-L1 protein by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by ELISA;
  • Figure 28A and Figure 28B show the binding to cyno PD-L1 protein by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by ELISA;
  • Figure 29 shows the cell-based binding activity of fully human anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-hPD-L1, as measured by flow cytometry;
  • Figure 30 shows the cell-based binding activity of fully human anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-cPD-L1, as measured by flow cytometry;
  • Figure31A and Figure 31B show the inhibition of binding of PD-L1 protein to its receptor PD-1 by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
  • Figure 32A and Figure 32B show the inhibition of binding of PD-L1 protein to its ligand B7.1 by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
  • Figure 33 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 34 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 35 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 36 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 37 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 38 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 39 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 40 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 41 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 42 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a mixed lymphocyte reaction assay using PBMC’s;
  • Figure 43 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 44 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 45 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 46 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 47 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN- ⁇ secretion in a T cell stimulation assay using PBMC’s;
  • Figure 48 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on Antibody-Dependent Cellular Cytotoxicity (ADCC) ;
  • Figure 49 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on Complement-Dependent Cytotoxicity
  • Figure 50 shows the thermostability of fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by Differential Scanning Calorimetry (DSC) ;
  • Figure 51 shows the freeze/thaw stability of fully human anti-PD-L1 antibodies according to embodiments of the invention.
  • Figure 52 shows the solubility of fully human anti-PD-L1 antibodies according to embodiments of the invention.
  • any numerical value such as a concentration or a concentration range described herein, are to be understood as being modified in all instances by the term “about. ”
  • a numerical value typically includes ⁇ 10%of the recited value.
  • a concentration of 1 mg/mL includes 0.9 mg/mL to 1.1 mg/mL.
  • a concentration range of 1%to 10% (w/v) includes 0.9% (w/v) to 11% (w/v) .
  • the use of a numerical range expressly includes all possible subranges, all individual numerical values within that range, including integers within such ranges and fractions of the values unless the context clearly indicates otherwise.
  • the invention generally relates to isolated anti-PD-L1 antibodies, nucleic acids and expression vectors encoding the antibodies, recombinant cells containing the vectors, and compositions comprising the antibodies. Methods of making the antibodies, and methods of using the antibodies to treat diseases including cancer and autoimmune diseases are also provided.
  • the antibodies of the invention possess one or more desirable functional properties, including but not limited to high-affinity binding to PD-L1, high specificity to PD-L1, the ability to block the binding of PD-L1 to its binding partners, PD-1 and B7.1, and the ability to stimulate secretion of the cytokines IFN- ⁇ and IL-2.
  • the invention relates to isolated monoclonal antibodies or antigen-binding fragments thereof that bind PD-L1.
  • antibody is used in a broad sense and includes immunoglobulin or antibody molecules including human, humanized, composite and chimeric antibodies and antibody fragments that are monoclonal or polyclonal. In general, antibodies are proteins or peptide chains that exhibit binding specificity to a specific antigen. Antibody structures are well known. Immunoglobulins can be assigned to five major classes (i.e., IgA, IgD, IgE, IgG and IgM) , depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4.
  • the antibodies of the invention can be of any of the five major classes or corresponding sub-classes.
  • the antibodies of the invention are IgG1, IgG2, IgG3 or IgG4.
  • Antibody light chains of vertebrate species can be assigned to one of two clearly distinct types, namely kappa and lambda, based on the amino acid sequences of their constant domains.
  • the antibodies of the invention can contain a kappa or lambda light chain constant domain.
  • the antibodies of the invention include heavy and/or light chain constant regions from rat or human antibodies.
  • antibodies contain an antigen-binding region that is made up of a light chain variable region and a heavy chain variable region, each of which contains three domains (i.e., CDR1, CDR2, and CDR3) .
  • the light chain variable region domains are alternatively referred to as LCDR1, LCDR2 and LCRD3, and the heavy chain variable region domains are alternatively referred to as HCDR1, HCRD2 and HCDR3.
  • an “isolated antibody” refers to an antibody which is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to PD-L1 is substantially free of antibodies that do not bind to PD-L1) .
  • an isolated antibody is substantially free of other cellular material and/or chemicals.
  • the term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.
  • the monoclonal antibodies of the invention can be made by the hybridoma method, phage display technology, single lymphocyte gene cloning technology, or by recombinant DNA methods.
  • the monoclonal antibodies can be produced by a hybridoma which includes a B cell obtained from a transgenic nonhuman animal, such as a transgenic mouse or rat, having a genome comprising a human heavy chain transgene and a light chain transgene.
  • the term “antigen-binding fragment” refers to an antibody fragment such as, for example, a diabody, a Fab, a Fab', a F (ab') 2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2 , a bispecific dsFv (dsFv-dsFv') , a disulfide stabilized diabody (ds diabody) , a single-chain antibody molecule (scFv) , a single domain antibody (sdab) an scFv dimer (bivalent diabody) , a multispecific antibody formed from a portion of an antibody comprising one or more CDRs, a camelized single domain antibody, a nanobody, a domain antibody, a bivalent domain antibody, or any other antibody fragment that binds to an antigen but does not comprise a complete antibody structure.
  • an antibody fragment such as, for example,
  • an antigen-binding fragment is capable of binding to the same antigen to which the parent antibody or a parent antibody fragment binds.
  • the antigen-binding fragment comprises a light chain variable region, a light chain constant region, and an Fd segment of the constant region of the heavy chain.
  • the antigen-binding fragment comprises Fab and F (ab’) .
  • single-chain antibody refers to a conventional single-chain antibody in the field, which comprises a heavy chain variable region and a light chain variable region connected by a short peptide of about 15 to about 20 amino acids.
  • single domain antibody refers to a conventional single domain antibody in the field, which comprises a heavy chain variable region and a heavy chain constant region or which comprises only a heavy chain variable region.
  • human antibody refers to an antibody produced by a human or an antibody having an amino acid sequence corresponding to an antibody produced by a human made using any technique known in the art. This definition of a human antibody includes intact or full-length antibodies, fragments thereof, and/or antibodies comprising at least one human heavy and/or light chain polypeptide.
  • humanized antibody refers to a non-human antibody that is modified to increase the sequence homology to that of a human antibody, such that the antigen-binding properties of the antibody are retained, but its antigenicity in the human body is reduced.
  • chimeric antibody refers to an antibody wherein the amino acid sequence of the immunoglobulin molecule is derived from two or more species.
  • the variable region of both the light and heavy chains often corresponds to the variable region of an antibody derived from one species of mammal (e.g., mouse, rat, rabbit, etc. ) having the desired specificity, affinity, and capability, while the constant regions correspond to the sequences of an antibody derived from another species of mammal (e.g., human) to avoid eliciting an immune response in that species.
  • PD-L1 refers to the Programmed Cell Death 1 Ligand protein, a type I transmembrane receptor that is expressed on many cell types, including T-cells, B-cells, endothelial, epithelial, and antigen presenting cells, on cells of lung, liver and heart tissues, and whose expression is highly up-regulated on several types of tumor cells.
  • the amino acid sequence of a human PD-L1 is represented in GenBank Accession No. NP_054862.1. Two binding partners for PD-L1 have been identified, PD-1 and B7.1.
  • an antibody that “specifically binds to PD-L1” refers to an antibody that binds to PD-L1, preferably human PD-L1, with a KD of 1 ⁇ 10 -7 M or less, preferably 1 ⁇ 10 -8 M or less, more preferably 1 ⁇ 10 -9 M or less, or 1 ⁇ 10 -10 M or less.
  • KD refers to the dissociation constant, which is obtained from the ratio of Kd to Ka (i.e., Kd/Ka) and is expressed as a molar concentration (M) . KD values for antibodies can be determined using methods in the art in view of the present disclosure.
  • the KD of an antibody can be determined by using surface plasmon resonance, such as by using a biosensor system, e.g., a system, or by using bio-layer interferometry technology, such as a Octet RED96 system.
  • a biosensor system e.g., a system
  • bio-layer interferometry technology such as a Octet RED96 system.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
  • the antibody or antigen-binding fragment thereof binds PD-L1, preferably specifically binds to human PD-L1.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
  • the isolated monoclonal antibody or antigen-binding fragment thereof of the invention comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53, respectively.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising:
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 1, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 5.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 1; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 5.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 9, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 13.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 9; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 13.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 17, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 21.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 17; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 21.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 25; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 29.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 33, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 37.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 33; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 37.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 41, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 45.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 41; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 45.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 53.
  • the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 49; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 53.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, wherein the antibody or antigen-binding fragment thereof is chimeric.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, wherein the antibody or antigen-binding fragment thereof is human.
  • the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising a constant region, preferably a human heavy chain IgG4 constant region, more preferably a human heavy chain IgG4 constant region having a S228P mutation (SEQ ID NO: 75) , and a human antibody light chain constant region, preferably a human light chain kappa constant region (SEQ ID NO: 77) .
  • the invention in another general aspect, relates to an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • the coding sequence of a protein can be changed (e.g., replaced, deleted, inserted, etc. ) without changing the amino acid sequence of the protein.
  • nucleic acid sequences encoding monoclonal antibodies or antigen-binding fragments thereof of the invention can be altered without changing the amino acid sequences of the proteins.
  • the invention in another general aspect, relates to a vector comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • Any vector known to those skilled in the art in view of the present disclosure can be used, such as a plasmid, a cosmid, a phage vector or a viral vector.
  • the vector is a recombinant expression vector such as a plasmid.
  • the vector can include any element to establish a conventional function of an expression vector, for example, a promoter, ribosome binding element, terminator, enhancer, selection marker, and origin of replication.
  • the promoter can be a constitutive, inducible or repressible promoter.
  • a number of expression vectors capable of delivering nucleic acids to a cell are known in the art and can be used herein for production of an antibody or antigen-binding fragment thereof in the cell.
  • Conventional cloning techniques or artificial gene synthesis can be used to generate a recombinant expression vector according to embodiments of the invention.
  • the invention in another general aspect, relates to a host cell comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • a host cell comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • Any host cell known to those skilled in the art in view of the present disclosure can be used for recombinant expression of antibodies or antigen-binding fragments thereof of the invention.
  • the host cells are E. coli TG1 or BL21 cells (for expression of, e.g., an scFv or Fab antibody) or CHO-K1 cells (for expression of, e.g., a full-length IgG antibody) .
  • the recombinant expression vector is transformed into host cells by conventional methods such as chemical transfection, heat shock, or electroporation, where it is stably integrated into the host cell genome such that the recombinant nucleic acid is effectively expressed.
  • the invention in another general aspect, relates to a method of producing a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment thereof under conditions to produce a monoclonal antibody or antigen-binding fragment thereof of the invention, and recovering the antibody or antigen-binding fragment thereof from the cell or cell culture (e.g., from the supernatant) .
  • Expressed antibodies or antigen-binding fragments thereof can be harvested from the cells and purified according to conventional techniques known in the art and as described herein.
  • the invention in another general aspect, relates to a pharmaceutical composition, comprising an isolated monoclonal antibody or antigen-binding fragment thereof of the invention and a pharmaceutically acceptable carrier.
  • the term “carrier” refers to any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, oil, lipid, lipid containing vesicle, microsphere, liposomal encapsulation, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient or diluent will depend on the route of administration for a particular application.
  • the term “pharmaceutically acceptable carrier” refers to a non-toxic material that does not interfere with the effectiveness of a composition according to the invention or the biological activity of a composition according to the invention. According to particular embodiments, in view of the present disclosure, any pharmaceutically acceptable carrier suitable for use in an antibody pharmaceutical composition can be used in the invention.
  • the invention in another general aspect, relates to a method of blocking the binding of PD-L1 to PD-1 or to B7.1, or of augmenting secretion of IFN- ⁇ and IL-2 in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the functional activity of antibodies and antigen-binding fragments thereof that bind PD-L1 can be characterized by methods known in the art and as described herein.
  • Methods for characterizing antibodies and antigen-binding fragments thereof that bind PD-L1 include, but are not limited to, affinity and specificity assays including Biacore, ELISA, and FACS analysis; receptor ligand binding assays to detect blocking of the binding of PD-L1 to PD-1 and/orB7.1; assays to detect induction of lymphocytic cytokine production by the blocking of the binding of PD-L1 to PD-1 and/orB7.1; cell cytotoxicity assays to detect the presence of antibody-dependent cell-mediated cytotoxicity (ADCC) , and complement dependent cytotoxicity (CDC) activity of the antibodies; experiments to detect the inhibition of tumor growth in mouse tumor models; etc.
  • the methods for characterizing antibodies and antigen-binding fragments thereof that bind PD-L1 include those described in Examples 2-12 below.
  • the invention relates to a method of treating an infectious disease or a graft versus host disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the invention relates to a method of treating a tumor in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
  • the term “subject” refers to an animal, and preferably a mammal.
  • the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, cow, pig, horse, goat, sheep, cat, dog, rat, rabbit, guinea pig or mouse) or a primate (e.g., a monkey, chimpanzee, or human) .
  • a non-primate e.g., a camel, donkey, zebra, cow, pig, horse, goat, sheep, cat, dog, rat, rabbit, guinea pig or mouse
  • a primate e.g., a monkey, chimpanzee, or human
  • the subject is a human.
  • the pharmaceutical composition comprises a therapeutically effective amount of the anti-PD-L1 antibody or antigen-binding fragment thereof.
  • therapeutically effective amount refers to an amount of an active ingredient or component that elicits the desired biological or medicinal response in a subject.
  • a therapeutically effective amount can be determined empirically and in a routine manner, in relation to the stated purpose.
  • a therapeutically effective amount means an amount of the anti-PD-L1 antibody or antigen-binding fragment thereof that stimulates an immune response in a subject in need thereof. Also as used herein with reference to anti-PD-L1 antibodies or antigen-binding fragments thereof, a therapeutically effective amount means an amount of the anti-PD-L1 antibody or antigen-binding fragment thereof that results in treatment of a disease, disorder, or condition; prevents or slows the progression of the disease, disorder, or condition; or reduces or completely alleviates symptoms associated with the immune disease, disorder, or condition.
  • the disease, disorder or condition to be treated is a hyperproliferative disease, an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease.
  • the disease, disorder or condition to be treated is an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease.
  • the disease, disorder or condition to be treated is a non-malignant hyperproliferative disease, including but not limited to, atherosclerosis, benign hyperplasia, benign prostatic hypertrophy.
  • the disease, disorder or condition to be treated is a tumor, or a malignant hyperproliferative disease, preferably a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
  • a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma
  • a therapeutically effective amount refers to the amount of therapy which is sufficient to achieve one, two, three, four, or more of the following effects: (i) reduce or ameliorate the severity of the disease, disorder or condition to be treated or a symptom associated therewith; (ii) reduce the duration of the disease, disorder or condition to be treated, or a symptom associated therewith; (iii) prevent the progression of the disease, disorder or condition to be treated, or a symptom associated therewith; (iv) cause regression of the disease, disorder or condition to be treated, or a symptom associated therewith; (v) prevent the development or onset of the disease, disorder or condition to be treated, or a symptom associated therewith; (vi) prevent the recurrence of the disease, disorder or condition to be treated, or a symptom associated therewith; (vii) reduce hospitalization of a subject having the disease, disorder or condition to be treated, or a symptom associated therewith; (viii) reduce hospitalization length of a subject having the disease, disorder or
  • the therapeutically effective amount or dosage can vary according to various factors, such as the disease, disorder or condition to be treated, the means of administration, the target site, the physiological state of the subject (including, e.g., age, body weight, health) , whether the subject is a human or an animal, other medications administered, and whether the treatment is prophylactic or therapeutic. Treatment dosages are optimally titrated to optimize safety and efficacy.
  • compositions described herein are formulated to be suitable for the intended route of administration to a subject.
  • the compositions described herein can be formulated to be suitable for intravenous, subcutaneous, or intramuscular administration.
  • the terms “treat, ” “treating, ” and “treatment” are all intended to refer to an amelioration or reversal of at least one measurable physical parameter related to a cancer, an inflammatory disease, disorder or condition, an immune disease, disorder or condition, an autoimmune disease, disorder or condition, or an infectious disease, disorder or condition, which is not necessarily discernible in the subject, but can be discernible in the subject.
  • the terms “treat, ” “treating, ” and “treatment, ” can also refer to causing regression, preventing the progression, or at least slowing down the progression of the disease, disorder, or condition.
  • “treat, ” “treating, ” and “treatment” refer to an alleviation, prevention of the development or onset, or reduction in the duration of one or more symptoms associated with the disease, disorder, or condition, such as a tumor or more preferably a cancer.
  • “treat, ” “treating, ” and “treatment” refer to prevention of the recurrence of the disease, disorder, or condition.
  • “treat, ” “treating, ” and “treatment” refer to an increase in the survival of a subject having the disease, disorder, or condition.
  • “treat, ” “treating, ” and “treatment” refer to elimination of the disease, disorder, or condition in the subject.
  • a composition used in the treatment of a cancer can be used in combination with another treatment including, but not limited to, a chemotherapy, an anti-CD20 mAb, an anti-CTLA-4 antibody, an antiangiogenic agent, a radiation therapy, other immune-oncology drug, a targeted therapy, an anti-PD-L1 antibody or other anticancer drugs.
  • the use of the term “in combination” does not restrict the order in which therapies are administered to a subject.
  • a first therapy (e.g., a composition described herein) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 16 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before) , concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 16 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy to a subject.
  • a second therapy e.g., a composition described herein
  • the invention in another general aspect, relates to a method of producing a pharmaceutical composition comprising a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising combining a monoclonal antibody or antigen-binding fragment thereof with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
  • the invention provides also the following non-limiting embodiments.
  • Embodiment 1 is an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
  • Embodiment 2 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 1, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
  • Embodiment 3 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 2, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53, respectively.
  • Embodiment 4 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 3, comprising:
  • Embodiment 5 is the isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 4, wherein the antibody or antigen-binding fragment thereof is chimeric.
  • Embodiment 6 is isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 4, wherein the antibody or antigen-binding fragment thereof is human.
  • Embodiment 7 is the isolated antibody or antigen-binding fragment of Embodiment 5 or 6, comprising a human heavy chain IgG4 constant region with a S228P mutation, and a human antibody light chain kappa constant region.
  • Embodiment 8 is the isolated antibody or antigen-binding fragment of any of Embodiments 1 to 7, wherein the antibody or antigen-binding fragment binds to a human PD-L1 with a K D of 5 ⁇ 10 -9 M or less, preferably a K D of 1 ⁇ 10 -9 M or lessor 1 ⁇ 10 -10 M or less, wherein the K D is measured by surface plasmon resonance analysis, such as by using a Biacore system, or by a bio-layer interferometry technology, such as by using a Octet RED96 system.
  • Embodiment 9 is an isolated nucleic acid encoding the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8.
  • Embodiment 10 is a vector comprising the isolated nucleic acid of Embodiment 9.
  • Embodiment 11 is a host cell comprising the nucleic acid of Embodiment 10.
  • Embodiment 12 is a pharmaceutical composition, comprising the isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8and a pharmaceutically acceptable carrier.
  • Embodiment 13 is a method of blocking binding of PD-L1 to PD-1 and/or B7.1, or augmenting secretion of IFN- ⁇ and IL-2 in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12.
  • Embodiment 14 is a method of treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12.
  • Embodiment 15 is the method of Embodiment 14, further comprising administering to the subject an additional agent for treating the infectious disease, inflammatory disease, immune disease, autoimmune disease, or graft versus host disease in the subject in need thereof.
  • Embodiment 16 is a method of treating a hyperproliferative disease in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12,
  • Embodiment 17 is the method of Embodiment 16, wherein the hyperproliferative disease is a non-malignant disease, preferably selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy.
  • the hyperproliferative disease is a non-malignant disease, preferably selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy.
  • Embodiment 18 is the method of Embodiment 16, wherein the hyperproliferative disease is a tumor, or a malignant disease, preferably, the tumor is selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
  • the hyperproliferative disease is a tumor, or a malignant disease
  • the tumor is selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver
  • Embodiment 19 is the method of any of Embodiments 16-18, further comprising administering to the subject an additional agent for treating the hyperproliferative disease in the subject in need thereof.
  • Embodiment 20 is a method of producing the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment under conditions to produce the monoclonal antibody or antigen-binding fragment, and recovering the antibody or antigen-binding fragment from the cell or cell culture.
  • Embodiment 21 is a method of producing a pharmaceutical composition comprising the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8, comprising combining the monoclonal antibody or antigen-binding fragment with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
  • Embodiment 22 is an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for use in treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof.
  • Embodiment 23 is an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for use in treating a hyperproliferative disease, such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy, or a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer, in a subject in need thereof.
  • a hyperproliferative disease such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hyper
  • Embodiment 24 is an use of an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for manufacturing a pharmaceutical composition in treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof.
  • Embodiment 25 is an use of an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8for manufacturing a pharmaceutical composition in treating a hyperproliferative disease, such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy, or a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer in a subject in need thereof.
  • a hyperproliferative disease such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasi
  • Human PD-L1 protein was used as an immunogen to generate anti-PD-L1 antibodies.
  • the uses of human immunoglobulin transgenic mouse technology for the development and preparation of fully human antibodies was first described by Abgenix (xeno mouse and Medarex (HuMab "mouse” ) ; Lonberg et al., 1994, Nature 368: 856-859; Lonberg and Huszar, 1995, Internal Rev. Immunol. 13: 65-93; Harding and Lonberg, 1995, Ann. N. Y. Acad. Sci. 764: 536-546) .
  • Antibodies with high affinity (K D ⁇ 1*10 -9 M) to PD-L1 were obtained by carrying out pilot antibody production, purification and validation.
  • the antibodies which are specific for PD-L1 and do not cross react with other immune checkpoints such as PD-L2, are able to block the binding of PD-L1 to PD-1 and to B7.1.
  • the amino acid sequences of the heavy and light chain variable regions of the generated anti-PD-L1 antibodies were determined using standard molecular biology methods and are summarized in Table 1.
  • the heavy chain and light chain variable regions of the anti-PD-L1 antibodies listed in Table 1 are encoded by the nucleic acid sequences summarized in Table 2.
  • Fully human versions of the anti-PD-L1 antibodies were generated.
  • the fully human anti-PD-L1 antibodies bound to the extracellular domain of human PD-L1 with high affinity (K D ⁇ 1*10 -9 M) , and blocked the binding of PD-L1 to its binding partners, PD-1 and B7.1.
  • the anti-PD-L1 antibodies do not exhibit non-specific binding to human PD-L2.
  • the biological activities of the anti-PD-L1 antibodies were evaluated by mixed lymphocyte and T cell stimulation assays, in which they increased secretion of the IFN- ⁇ and IL-2 cytokines.
  • the anti-PD-L1 antibodies can be used to suppress PD-1-mediated signaling pathways that negatively-regulate immune responses, and to therefore enhance tumor-specific immune responses, either as a monotherapy or in combination with anti-PD-1 monoclonal antibodies or other anticancer drugs, such as a cancer immunotherapy, particularly for patients having PD-L1 positive tumors.
  • the anti-PD-L1 antibodies can be used for the treatment of cancers and autoimmune diseases.
  • step 1 Preparation of Immunogen A, PD-L1 ECD -hFc protein (also referred to as PD-L1-hFc herein)
  • the coding sequence of the human PD-L1 extracellular domain (PD-L1 ECD ; SEQ ID NOs: 71 and 78) , corresponding to amino acids Phe19-Thr239 of SEQ ID NO: 72, was cloned along with the coding sequence of human IgG Fc fragment (hFc) into a pCpC vector (Invitrogen, #V044-50) using standard molecular biology cloning techniques (Sambrook and Russell, 1989, Molecular cloning: a laboratory manual, New York : Cold Spring Harbor Laboratory Press, 2nd ed. ) .
  • HEK293 cells (Invitrogen) were transiently transfected using polyethylenimine (PEI, Polysciences) with the plasmid and expanded in FreeStyle 293 expression medium (Invitrogen) at 37°C. After 4 days of expansion, the culture medium was collected and centrifuged to remove cell components. The culture supernatant, which contained the recombinant PD-L1 ECD -hFc, was subjected to Protein A chromatography (Mabselect, GE Healthcare) .
  • PEI polyethylenimine
  • FreeStyle 293 expression medium Invitrogen
  • UV absorption A280nm was monitored with a UV detector, and the samples were washed with PBS (pH 7.2) until the UV A280nm absorption returned to baseline levels, at which point the PD-L1 ECD -hFc fusion protein was eluted from the Protein A affinity column with 0.1M glycine hydrochloride (pH2.5) .
  • the sample was dialyzed with PBS phosphate buffer (pH 7.2) at 4°C overnight. After dialysis, the purified PD-L1 immunogen was passed through a 0.22 micron sterile filter, aliquoted and stored at -80°C.
  • PD-1 ECD PD-1 extracellular domain
  • Purified PD-L1 ECD -hFc (also referred to as PD-L1-hFc herein) was biotinylated by mixing and incubating the protein with biotin (Sigma S3295) .
  • the sample To characterize the PD-L1 ECD -hFc immunogen, the sample’s protein concentration and purity were determined, and the immunogen’s molecular weight and biological activity were determined.
  • the biological activity of the PD-L1 ECD -hFc immunogen was determined by ELISA.
  • Recombinant PD-1 ECD -hFc protein was diluted in PBS to a concentration of 1 ⁇ g/mL, and 100 ⁇ L of the diluted PD-1 ECD -hFc protein sample were added per well to ELISA microplates, which were incubated overnight at 4°C to coat the plates with the recombinant protein.
  • the plates were then blocked with ELISA blocking solution (containing 1%BSA, pH7.4 PBS buffer, w/v) at 37°C for two hours and then incubated with serial dilutions of the biotinylated PD-L1 ECD -hFc protein or a control protein (biotinylated non-PD-L1 ECD -hFc) for 1 hour at 37°C.
  • ELISA blocking solution containing 1%BSA, pH7.4 PBS buffer, w/v
  • Figure 1 and Table 3 show the concentration-dependent binding of the biotinylated PD-L1 ECD -hFc to purified PD-1 ECD -hFc fusion protein. Binding to PD-1 ECD -hFc was observed with biotinylated PD-L1 ECD -hFc, but not with the control protein that does not contain the sequence of PD-L1 ECD .
  • step 2 Preparation of Immunogen B, HEK293 cells over expressing hPD-L1
  • the nucleotide sequence encoding human PD-L1 was subcloned into a pIRES vector (Clontech) , and the plasmid was prepared.
  • HEK293 and CHO-K1 cells were transiently transfected with the plasmid using X-treme GENE HP DNA Transfection Reagent (Roche, Cat #06 366 236 001) , and transformants were selected in DMEM culture media containing 0.5g/mL antibiotics and 10% (w/w) fetal bovine serum (FBS) for 2 weeks.
  • a limited dilution into a 96-well culture plate was carried out, and the plate was incubated at 37°C with 5%(v/v) CO 2 for approximately 2 weeks. After selection, monoclones were expanded in 6-well plates, and the expanded clones were screened by flow cytometry using commercially available anti-PD-L1 antibodies (R&D Systems) . Clones exhibiting higher growth rates and higher fluorescence intensity as measured by FACS were further expanded and cryospreserved in liquid nitrogen.
  • Figure 2 shows the flow cytometry profile of the HEK293 cells stably transfected with the recombinant hPD-L1 protein.
  • the percentage of FACS-positive cells is shown in Table 4 as an indication of the expression levels of hPD-L1 protein.
  • the coding sequence of full length human PD-L1 protein was subcloned into a pcDNA3.1 vector (Invitrogen) , and the resulting plasmid was coated onto a 1.0um colloidal gold bullet (Bio-RAD) for subsequent immunization using a Helios gene gun (Bio-rad No. 165-2431) , following the instructions of the Helios gene gun data sheet.
  • step 4 Hybridoma cell fusion and antibody screening
  • Human Ig Fc does not interact with the mouse Fc receptor, so immune responses triggered in mice by hFc-containing immunogens are weak, resulting in low efficiency generation of monoclonal antibodies.
  • Harbour H2L2 transgenic mice were generated by introducing the gene encoding the human immunoglobulin (Ig) variable region and the gene encoding the rat Ig constant region into the mouse genome, such that the mice contained a chimeric Ig comprising hV-rC, while expression of the mouse Ig was disabled (WO 2010/070263 Al) .
  • Harbour H2L2 transgenic mice are able to produce comparable immune responses and antibody titers to wild type mice (e.g., Balb/c) .
  • the antibody titer and specificity in serum were determined by ELISA and FACS analysis, and the results are shown in Figure 3 and Table 5.
  • Table 5 shows that serum from mice immunized with PD-L1 ECD -hFc exhibited different levels of binding to Immunogen A. The highest serum dilution was about one million. The blank control was 1% (w/w) BSA.
  • the OD450nm values shown in Table 5 are the serum titer values from 7 days after the third boost, as determined by ELISA.
  • HEK293 cells were stably transfected with the pIRES plasmid encoding full length hPD-L1 (see Example 2, step 2) ) using X-treme gene HP DNA Transfection reagent (Roche, #06 366 236 001) . Cells were cultured in T-75 culture flasks.
  • the media was aspirated, and the cells were washed twice with DMEM medium (Invitrogen) and treated with non-enzymatic cell dissociation buffer (Invitrogen) at 37°C until the cells were detached from the culture flask.
  • the cells were collected and washed twice with DMEM medium, and cell counts were determined and adjusted to 2 x 10 7 cells/mL using PBS buffer (pH7.2) .
  • Mice were injected with 0.5mL of cell suspension for each immunization. Two weeks after the first immunization, a boost was administered, and subsequent boosts were administered 3 weeks apart. Blood samples were collected one week after immunization.
  • the antibody titer and specificity in serum were determined by flow cytometry. After the second boost, the serum titer was over 1: 1000, as determined by flow cytometry.
  • mice with specific immune responses against hPD-L1 were selected for fusion and were given a final boost by intraperitoneal injection of 100 ⁇ g of purified PD-L1 ECD -hFc (for mice immunized with Immunogen A or Immunogen C) or HEK293 cells stably transfected with hPD-L1 (for mice immunized with Immunogen B) .
  • the mice were sacrificed, and their splenocytes were collected.
  • NH 4 OH was added to the splenocyte samples to a final concentration of 1% (w/w) to lyse red blood cells in the sample.
  • the samples were centrifuged at 1000 rpm and washed three times with DMEM culture media. The viability of the splenocytes was determined, and viable splenocytes were then fused with mouse myeloma cells SP2/0 (ATCC) at a ratio of 5: 1 by the high efficiency electric fusion method (see Methods in Enzymology, Vol. 220) .
  • Fused cells were re-suspended in DMEM media containing 20%FBS and 1x hypoxanthine-aminopterin-thymidine (HAT) medium (w/w) , and the concentration was adjusted to 10 5 cells/200 ⁇ L. 200 ⁇ L of fused cells were added to each well of 96-well plate, which was incubated at 37°C, 5%CO 2 .14 days after cell fusion, hybridoma supernatants were collected and screened by ELISA and Acumen (microplate cell assay) .
  • HAT hypoxanthine-aminopterin-thymidine
  • Clones with an OD450nm greater than 1.0 by ELISA and an MFI value greater than 100 by Acumen were expanded in a 24-well plate containing DMEM with 10% (w/w) heat-inactivated FBS at 37°C, 5% (v /v) CO 2 .
  • Supernatants were collected after 3 days of culturing.
  • the antibody isotypes were determined, and their ability to bind to recombinant PD-L1 ECD protein and PD-L1-expressing cells was determined by ELISA and flow cytometry (see Example 3) .
  • a receptor ligand binding assay was performed to determine the blocking activity of the hybridoma supernatant (see Examples4-5) .
  • clones with OD450nm values greater than 1.0 by the ELISA binding assay, MFI values greater than 50 by the FACS binding assay, and inhibition rates greater than 60%by the receptor ligand binding assay were selected and subcloned. Subcloning was carried out by limited dilution in a 96-well plate with DMEM media containing 10% (v/v) FBS at 37°C and 5% (v/v) CO 2 . After 10 days of culturing, the supernatants were collected and preliminarily screened by ELISA and Acumen. Positive clones were expanded in a 24-well plate and cultured for 3 days. Supernatants were collected.
  • ELISA and FACS binding assays were performed to determine the binding activity, and receptor ligand binding assays were performed to assess the biological activity.
  • the selection criteria was as follows: OD450 nm > 1.0 by ELISA, MFI value > 50 by FACS, and inhibition rate > 60%by receptor ligand binding assay. Clones that met the selection criteria were expanded in DMEM media containing 10%(w/w) FBS at 37°C, 5% (v/v) CO 2 and frozen in liquid nitrogen so that the hybridoma cells could be used for subsequent antibody production and purification.
  • the antibody concentrations from the hybridoma cells were low, about 1-10 ⁇ g/mL, and there was a large variation in antibody concentrations.
  • the FBS and the components of the culture medium can interfere with the analysis. Therefore, it was necessary to perform small scale antibody production and purification (1-5 mg) .
  • Hybridoma cells from Example 2 were cultured in T-75 culture flasks using Hybridoma serum free medium (Invitrogen) , and passaged for 3 generations. Cells were transferred to 2L culture flasks when the hybridoma cells were in good condition. 500mL of production media was added to each culture flask, and the cell density was adjusted to 10 5 cells/mL. The culture flasks were placed onto a rotary incubator at 37°C with a rotating speed of 3 cycles per minute. Hybridoma cells were cultured for 14 days, after which the supernatant was collected and the cells were removed. The supernatants were then filtered through 0.45 micron filtration. The culture supernatants were then ready for purification or storage at -30°C.
  • Hybridoma serum free medium Invitrogen
  • Monoclonal antibodies were purified by passing the hybridoma culture supernatants through 2mL Protein G columns (GE Healthcare) . Protein G columns were first equilibrated with PBS buffer (pH7.2) , and the hybridoma culture supernatants were then applied to the equilibrated Protein G columns with a constant flow rate of 3mL/minute. The columns were then washed with 4 volumes of PBS buffer. The chimeric anti-PD-L1 antibodies were then eluted with elution buffer (0.1M acetate buffer, pH2.5) , and the UV absorbance of the eluates were monitored using a UV detector (A280 UV absorption peak) . 10%of 1.0M Tris-HCL buffer was added to the eluates to neutralize the pH, and the samples were sterile-filtered by passing them through 0.22 micron filters. Sterile-filtered purified chimeric anti-PD-L1 antibodies were obtained.
  • PBS buffer pH7.2
  • UV absorbance of the eluates were monitored using
  • the concentration of purified chimeric anti-PD-L1 antibodies was determined by UV absorbance (A280/1.4) , and the purity and endotoxin level (Lonza kit) were measured. The results of the analyses are shown in Table 6.
  • the purified chimeric anti-PD-L1 antibodies had endotoxin concentrations less than 1.0 EU/mg.
  • the binding of purified anti-PD-L1 antibodies from Example 2 to recombinant human PD-L1 ECD -hFc protein, cyno PD-L1 ECD -hFc protein and other PD-L1 family-related immune checkpoint protein PD-L2 was analyzed by ELISA to determine the specificity of the antibodies.
  • cyno PD-L1 ECD -hFc protein obtained using the method for preparing Immunogen A; see Example 2, step 1) , comprising the amino acid sequence of the extracellular domain of cyno PD-L1, which corresponds to amino acids Phe19-Thr239 of Uniprot database protein G7PSE7) , and other immune checkpoint proteins (PD-L2 and NC-Fc) (R&D Systems) were diluted to 1 ⁇ g/mL in PBS. 100 ⁇ L of the diluted recombinant proteins were added to each well of 96-well plate. The plates were sealed with plastic film and incubated at 4°C overnight.
  • the plates were washed twice with wash buffer (PBS + 0.01% (v/v) Tween20) , and incubated with blocking buffer (PBS + 0.01% (v/v) Tween20 + 1% (w/w) BSA) at room temperature for 2 hours.
  • the blocking buffer was aspirated away, and 100 ⁇ L of purified anti-PD-L1 antibodies were added to each well and incubated for 2 hours at 37°C.
  • the plates were washed three times with wash buffer (PBS + 0.01% (v/v) Tween20) .
  • HRP-conjugated secondary antibody (Sigma) was added to each well and incubated for 2 hours at 37°C.
  • CHO-K1 cells were stably transfected with a pIRES plasmid containing the nucleic acid sequence encoding full length human PD-L1 (see Example 2, step 2) to generate CHO-K1 cells stably expressing human PD-L1 (herein referred to as CHO-K1-hPD-L1 cells) .
  • Other CHO-K1 were stably transfected with a pIRES plasmid containing the nucleic acid sequence encoding full length cyno PD-L1 to generate CHO-K1 cells stably expressing cyno PD-L1 (herein referred to as CHO-K1-cPD-L1 cells) .
  • CHO-K1-hPD-L1 and CHO-K1-cPD-L1 cells were cultured and expanded in T-75 culture flasks to 90%confluence.
  • the culture media was aspirated, and the cells were washed twice with HBSS (Hanks Balanced Salt Solution, Invitrogen) .
  • the cells were treated with enzyme-free cell dissociation solution (Versene solution, Invitrogen) and collected.
  • the cells were then washed twice with HBSS, cell counts were determined, and cells were resuspended with HBSS at 2 x 10 6 cells/mL.
  • Goat serum was added to the cell suspension to a final concentration of 1%, and the cells were blocked for 30 minutes on ice and then washed twice with HBSS.
  • the cells were collected after centrifugation and resuspended in FACS buffer (HBSS + 1%BSA, v/v) at 2 x 10 6 cells/mL. 100 ⁇ L of the cell suspension were then added to each well of 96-well plate. 100 ⁇ L of purified anti-PD-L1 antibodies from Example 2 were added to each well of the 96-well plate and incubated for 2 hours on ice. Cells were washed twice with FACS buffer, and 100 ⁇ L of Alexa 488-labeled secondary antibody (Invitrogen) were added to the 96-well plate and incubated for 1 hour on ice.
  • FACS buffer HBSS + 1%BSA, v/v
  • the samples were washed three times with FACS buffer, and 100 ⁇ L fixation buffer (4%paraformaldehyde v/v) were added to each well and incubated for 10 minutes.
  • the cells were then washed twice with FACS buffer and resuspended in 100 ⁇ L FACS buffer.
  • the mean fluorescence intensity (MFI) was determined using FACS Calibur (BD) , and the results are shown in Figures 7-8 and in Tables 10-11.
  • the IgG control was human IgG, and the values in the tables are the mean fluorescence intensity of the cell population.
  • Dissociation constants were determined by Octed red 96 (Fortiebio) . The detailed operation and methods were followed according to the specifications of the instrument provided by the manufacturer. Briefly, a streptavidin sensor (SA sensor, Fortiebio) was used for the affinity determination. Biotinylated PD-L1 ECD -hFc (Immunogen A) was diluted to 10 ⁇ g/mL in PBS buffer (pH7.4) containing 0.1% (w/w) BSA and 0.02% (v/v) Tween20 and incubated with the streptavidin sensor. Five different concentrations of anti-PD-L1 antibody were incubated with the Immunogen A-loaded streptavidin sensor at 30°C for 3 minutes.
  • SA sensor Stiebio
  • the reaction mixture was further incubated in PBS buffer (pH7.4) containing 0.1% (v/w) BSA and 0.02% (v/v) Tween20 at 30°C for 5 minutes.
  • PBS buffer pH7.4
  • the association and dissociation signals of anti-PD-L1 antibodies to Immunogen A were recorded in real time using Octet Red 96.
  • the affinity, association and dissociation constants were determined using Octet User software, and the results are shown in Table 12.
  • Example 4 Determination of the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1
  • Protein-based receptor ligand binding assays were performed to determine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1.
  • Biotinylated recombinant PD-1 ECD and B7.1 ECD proteins were prepared as described for biotinylated recombinant PD-L1 ECD -hFc in Example 2.
  • the extracellular domain of PD-1 corresponds to amino acids Leu25-Glu167 of Uniprot database protein Q15116
  • the extracellular domain of B7.1 corresponds to amino acids Val35 -Asn242 of Uniprot database protein NP_005182.
  • Purified PD-L1 ECD -hFc (Example 2) was diluted with PBS to a final concentration of 1.0 ⁇ g/mL, and 100 ⁇ L diluted PD-L1 ECD -hFc were added to each well of a 96-well plate that was then sealed with plastic film and incubated at 4°C overnight. The plate was washed twice with wash buffer (PBS + 0.01% (v/v) Tween 20) and incubated with blocking buffer (PBS + 0.01% (v/v) BSA + 1%Tween 20 (w/w) ) at room temperature for 2 hours.
  • wash buffer PBS + 0.01% (v/v) Tween 20
  • blocking buffer PBS + 0.01% (v/v) BSA + 1%Tween 20 (w/w)
  • the blocking buffer was aspirated, and 50 ⁇ L purified anti-PD-L1 antibodies from Example 2 were added to each well of 96-well plate. 100 ⁇ L of biotinylated recombinant PD-1 ECD or B7.1 ECD protein were added to each well, mixed, and incubated at 37°C for 2 hours. The plate was washed three times with wash buffer (PBS + 0.01% (v/v) Tween 20) . 100 ⁇ L HRP-conjugated streptavidin (Sigma) were then added to each well and incubated at 37°C for 2 hours. The plate was then washed three times with wash buffer, and 100 ⁇ L TMB substrate were added to each well.
  • wash buffer PBS + 0.01% (v/v) Tween 20
  • HRP-conjugated streptavidin Sigma
  • Example 5 PBMC stimulation assay to examine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1
  • a T cell stimulation assay was performed to examine the effect of the anti-PD-L1 antibodies on T cell stimulation by their blocking of the binding of PD-L1 to its binding partners PD-1 and B7.1.
  • step 1 Isolation of peripheral blood mononuclear cells (PBMCs) from whole blood by a Ficoll gradient.
  • PBMCs peripheral blood mononuclear cells
  • the supernatant was discarded, and the lymphocytes were resuspended with 10mL PBS buffer.
  • the lymphocytes were washed with PBS three times to remove blood platelets.
  • the lymphocyte suspension was then resuspended with 10mL RPMI1640 culture medium (Invitrogen) containing 10%FBS.
  • step 2 PBMC stimulation test
  • pIRES-puro-PD-L1 pIRES-puro-PD-L1
  • OKT3 scFv was fused to the C-terminus of mouse CD8a (amino acids 113-220 of NCBI accession No: NP -1074579.1) and subcloned into pIRES-OS8 (see Sambrook and Russell, Id. ) .
  • pIRES-puro-PD-L1 and pIRES-OS8 were co-transfected to CHO-K1 and Hep3Bcells following the preparation method in Example 2 to generate the stable cell lines CHO-K1-PD-L1/OS8 and Hep3B-PD-L1/OS8. The cells were used to stimulate T lymphocytes. Before the experiments, CHO-K1-PD-L1/OS8 and Hep3B-PD-L1/OS8 cells were treated with 10 ⁇ g/mL mitomycin at 37°C for 3 hours.
  • PBMC containing 5 x 10 4 cells
  • test antibody solution was then added to the 96-well plate and incubated for 15 minutes at room temperature.
  • 50 ⁇ L of 5 x 10 3 CHO-K1-PD-L1/OS8 or Hep3B-PD-L1/OS8 were added to each well and cultured at 37°C, 5%CO 2 for 72 hours. The supernatants were collected and stored at -20°C until analysis.
  • step 3 Detection of interferon gamma (IFN- ⁇ ) secretion by ELISA
  • IFN-gamma Quantikine ELISA Kit Human IFN-gamma Quantikine ELISA Kit (R&D Systems SIF50) , following the manufacturer-provided operating instructions and kit reagents. Briefly, the IFN- ⁇ polyclonal antibodies were coated onto the ELISA microplates, and 400 ⁇ L of culture supernatant as well as the standard were added to each well and incubated at room temperature for 2 hours. The plates were washed 4 times with wash buffer, followed by the addition of HRP-conjugated anti-human IFN- ⁇ antibodies, and incubated at room temperature for 2 hours.
  • the absorbance at 450nm was determined using an ELISA plate reader, and the results, shown in Figure 11 -12and in Table 13, demonstrate that the anti-PD-L1 antibodies analyzed by the PBMC lymphocyte stimulation test can increase IFN- ⁇ secretion.
  • the IgG control is human IgG, and the values listed in the table are the IFN- ⁇ concentrations in the culture supernatant (pg/mL) .
  • Example 6 Mixed lymphocyte reaction assay to examine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.
  • step 1 Isolation and culture of dendritic cells from human CD14+ cells
  • Ficoll Paque Plus (GE Healthcare) was used to isolate PBMCs from whole blood, following the manufacturer-provided instructions. The protocol was the same as that described in Example 5A, step 1.
  • PBMCs were resuspended in RPMI 1640 complete medium containing 10%FBS, and the cell concentration was adjusted to 1 x 10 5 cells/mL.
  • the cells were cultured in T-75 culture flasks at 37°C, 5% (v/v) CO 2 for 2 hours.
  • the culture supernatant and non-adhered cells were transferred to a new T-75 culture flask, and the original T-75 culture flask was replenished with new RPMI 1640 complete culture medium supplemented with 10%FBS and incubated at 37°C and 5% (v/v) CO 2 for 2 hours.
  • the culture supernatant and non-adhered cells were removed, and the adherent cells were replenished with RPMI 1640 culture media containing 10%FBS and incubated at 37°C, 5% (v/v) CO 2 for 18 hours.
  • the culture supernatant and non-adhered cells were removed, and the adherent cells were replenished with RPMI 1640 complete culture media supplemented with 500U/mL recombinant human GM-CSF (PEPROTECH) and 500U/mL recombinant human interleukin IL-4 (PEPROTECH) and cultured for 4 days.
  • the culture media was replenished with complete RPMI 1640 media supplemented with GM-CSF and IL-4, and the cells were cultured for an additional 2 days.
  • the culture medium was then replaced with RPMI 1640 complete media with 1 ⁇ g/mL LPS and incubated for 18 hours.
  • Dendritic cells were then collected by adding PBS containing EDTA and centrifuging at 300g for 5 minutes. The supernatant was aspirated, and the cells were washed once more with PBS.
  • the collected human CD14+ dendritic cells were resuspended in RPMI 1640 complete media, and the cell counts were determined.
  • step 2 Isolation and purification of human CD4+ T cells.
  • Human CD4+ T cells were isolated and purified from PBMCs using a MagCellect TM human CD4 + T Cell Isolation Kit (R&D Systems) , following the manufacturer-provided instructions.
  • step 3 Mixed lymphocyte reaction
  • Purified CD4+ cells from different healthy volunteers were co-cultured with dendritic cells in 96-well plates. The cell densities were adjusted to 10 5 cells per 80 ⁇ L. 10 5 purified CD4+ T cells and 2 x 10 4 dendritic cells were added to each well of a 96-cell plate, purified anti-PD-L1 antibodies from Example 2 were added to the appropriate wells in the plate, and the plates were incubated at 37°C in a 5%CO 2 incubator. The supernatants were collected at day 3 for IL-2 measurement and at day 5 for IFN ⁇ measurement, and the cytokine levels were determined.
  • step 4 Measurement of IFN- ⁇ and IL-2 levels in supernatant by ELISA
  • Quantification of the levels of IFN- ⁇ or IL-2 in the supernatants collected in the previous step was carried out using Human IFN-gamma Quantikine ELISA Kit (R&D Systems SIF50) and Human IL-2 Quantikine ELISA Kit D2050 (R&D Systems S2050) , respectively, following the manufacturer-provided operating instructions and kit reagents.
  • IL-2 results for IL-2, shown in Figures 14, 21-22, 25-26and in Tables 14-19, show that the IL-2 level increased with an increase in anti-PD-L1 antibody concentrations.
  • the IgG control is human IgG, and the values listed in Tables 14-19 are the IL-2 concentration (pg/mL) in the culture supernatants.
  • PBMC donor 0, 1, 2, etc. refer to blood donor ID.
  • IFN- ⁇ shown in Figures 13, 15-20, 23-24 and in Tables 20-27, show that the IFN- ⁇ level increased with an increase in anti-PD-L1 antibody concentrations.
  • the IgG control is human IgG, and the values listed in Tables 19-26 are the IFN- ⁇ concentration (pg/mL) in the culture supernatants.
  • RNA isolation After the supernatants from the hybridoma subclones obtained from Example 2 were characterized (i.e., validation and determination of bioactivity, Examples 3-5) , 5x10 7 hybridoma cells were collected by centrifugation. 1mL Trizol was added to the cell pellets, mixed and transferred to 1.5mL centrifuge tubes, and incubated at room temperature for 5 minutes. 0.2mL chloroform was added to the samples and vortexed for 15 seconds. After standing for 2 minutes, the mixtures were centrifuged at 12000g at 4°C for 5 minutes.
  • Reverse transcription and PCR 1 ⁇ g of RNA and reverse transcriptase were added to a reaction mixture of a final volume of 20 ⁇ L, and the mixture was incubated at 42°C for 60 minutes and then at 70°C for 10 minutes to terminate the reaction.
  • a 50 ⁇ L PCR reaction mixture was prepared, containing 1 ⁇ L cDNA, 25 pmol of each primer, 1 ⁇ L DNA polymerase, 250 ⁇ mol dNTPs, and the buffer system.
  • the PCR program settings were as follows: denaturation at 95°C for 3 minutes, 35 cycles of denaturation (95°C for 30 seconds) , annealing (55°C for 30 seconds) and elongation (72°C for 35 seconds) , followed by a final extension at 72°C for 5 minutes to obtain the PCR product.
  • the commercially available reverse transcription kit used was PrimeScript RT Master Mix (Takara, RR036)
  • the commercially available Q5 ultra-fidelity polymerase PCR kit was from NEB (M0492) .
  • 5 ⁇ L ligation product was added to 100 ⁇ L competent cells (Ecos 101competent cells, Yeastern, FYE607) , which were incubated on ice for 5 minutes, heat shocked at 42°C for 1 minute and incubated on ice again for 1 minute. Cells were recovered by adding 650 ⁇ L SOC medium without antibiotics and incubating at 37°C in a shaking incubator for 30 minutes at 200 rpm. 200 ⁇ L of each bacterial culture were spread onto an LB agar plate containing antibiotics at 37°C overnight. The next day, PCR reactions were set up using the T vector primers M13F and M13R. Pipette tips were used to pick bacterial colonies and were dipped into PCR reaction mixture and pipetted up and down.
  • step 1 Plasmid construction and preparation: Sequences of the anti-PD-L1 antibody heavy and light chain variable regions were obtained according to Example 6.
  • the anti-PD-L1 antibodies’heavy chain variable region sequences were subcloned into expression vectors containing a signal peptide and a human heavy chain IgG4 constant region with a S228P mutation.
  • the anti-PD-L1 antibodies’light chain variable region sequences were subcloned into expression vectors containing a signal peptide and a human antibody light chain kappa constant region.
  • the recombinant plasmids were verified and confirmed by sequencing (the sequencing method was the same as in Example 6) .
  • Alkaline lysis was performed using a reagent kit (MACHEREY-NAGEL) to improve the purity and quality of the recombinant plasmids, and the plasmids were filtered through 0.22uM filters (Millpore) . The purified plasmids were used for transfection.
  • a reagent kit (MACHEREY-NAGEL) to improve the purity and quality of the recombinant plasmids, and the plasmids were filtered through 0.22uM filters (Millpore) .
  • the purified plasmids were used for transfection.
  • step 2 Transfection: HEK293E cells (Invitrogen) were cultured in FreeStyle 293 medium (Invitrogen) at 37°C, 130RPM, 8%CO 2 (v/v) . HEK293E cells were adjusted to 1-1.5x10 6 /mL cell density for transfection. 10% (v/v) F68 (Invitrogen) was added to the FreeStyle 293 medium to a final concentration of 0.1% (v/v) , as Medium A. 5mL of Medium A and 200 ⁇ g/mL PEI (Sigma) were mixed to generate Medium B. 5mL of Medium A and 100 ⁇ g/mL recombinant plasmid from step 1 were mixed to generate Medium C.
  • step 3 Antibody purification: Protein A columns (GE) were washed with 0.1M NaOH for 30 minutes or with 5 bed volumes of 0.5M NaOH to get rid of endotoxin. Columns that had not been used in a longtime were soaked in 1M NaOH for at least 1 hour, washed with endotoxin-free water to a neutral pH, and washed with 10 bed volumes of 1%Triton X100. The columns were then equilibrated with 5 bed volumes of PBS (PBS phosphate buffer, pH7.2) . The filtered supernatants from step 2 were loaded onto the columns, and the flow through was collected, if necessary.
  • PBS PBS phosphate buffer, pH7.2
  • the columns were washed with 5 bed volume of PBS and then eluted with 5 bed volumes of 0.1M Glycine-HCl pH3.0.
  • the eluates containing anti-PD-L1 antibodies were neutralized with 0.5 bed volumes of 1M Tris-HCl (NaCl 1.5M) pH8.5.
  • the human anti-PD-L1 antibodies were dialyzed in 1X PBS for 4 hours, to avoid endotoxin contamination. After dialysis, the anti-PD-L1 antibody concentrations were determined by spectrophotometry or a reagent kit, the purities of the antibodies were determined by HPLC-SEC, and the contents of endotoxin were determined by an endotoxin test kit (Lonza) .
  • Figures 27-52 The fully human anti-PD-L1 antibodies were characterized, and the results are shown in Figures 27-52, and in Tables 28-46.
  • Figures 27-28and Tables 28-29 show the binding of the fully human anti-PD-L1 antibodies to human and cyno PD-L1-ECD by ELISA.
  • Figures 29-30 and Tables 30-31 show the binding of the fully human anti-PD-L1 antibodies to CHOK1 cells expressing human and cyno PD-L1 by FACS.
  • Figures 31-32 show that the fully human anti-PD-L1 antibodies block the binding of PD-L1 to its binding partners PD-1 and B7.1.
  • Figures 33-42and Tables 32-41 show fully human anti-PD-L1 antibodies increase IFN- ⁇ and IL-2 release in a mixed lymphocyte reaction.
  • Figures 43-47 and Tables 42-46 show fully human anti-PD-L1 antibodies increase IFN- ⁇ and IL-2 release in a T cell stimulation assay.
  • Anti-human Fc IgG was immobilized on flow cells 1 and 2: HBS-EP+ (10mM HEPES, 150mM NaCl, 3mM EDTA, 0.05%P20, pH 7.4) was used as running buffer, and the immobilization of anti-human Fc IgG was carried out using the immobilization wizard template.
  • Flow cells 1 and 2 of a Series S CM5 sensor chip were activated with freshly-mixed 50mmol/L NHS and 200mmol/L EDC.
  • 20 ⁇ g/mL of anti-human Fc IgG diluted in 10mM NaAC (pH 4.5) was injected into the activated flow cells 1 and 2. The remaining active coupling sites were blocked with 1M ethanolamine.
  • Recombinant His-tagged hPD-L1 ECD protein was diluted to 50nM, followed by four 2-fold serial dilutions with HBS-EP+ buffer.
  • the His-tagged hPD-L1 ECD protein concentrations were 0nM, 3.125nM, 6.25nM, 12.5nM, 25nM and 50nM.
  • K D measurements were carried out with HBS-EP+ as the running buffer.
  • Each antibody was injected over the CM5 sensor flow cell 2 with a flow rate of 10 ⁇ L/min to reach response 230 RU.
  • Prepared His-tagged hPD-L1 ECD protein was then injected over flow cells 1 and 2, at a flow rate of 30 ⁇ L/min for 180sec.
  • Buffer flow was maintained for 400 seconds for dissociation measurements (30 ⁇ L/min) .
  • 10mM glycine-HCl pH 1.5 was injected for 20 seconds (30 ⁇ L/min) .
  • Flow cell 1 was used as reference flow cell. The above steps were repeated for each concentration of serially-diluted His-tagged PD-L1 ECD protein.
  • the K D value for each antibody was evaluated using Biacore T200 evaluation software 1.0, and the data was fit with a 1: 1 binding model. The results are shown in Table 47.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • samples of PD-L1-expressing HCC827 cells were adjusted to a concentration of 12.5 ⁇ 10 4 cells/mL with ADCC medium (without phenol red) .
  • 40 ⁇ L of cell suspensions (1 ⁇ 10 4 viable cells) were added to each well of a v-bottom 96-well plate.
  • 20 ⁇ L of antibody were serially diluted in ADCC medium (without phenol red) and added to each well in triplicate. The plate was incubated at 22-25°C for 30 minutes.
  • NK92 cells stably transfected with Fc ⁇ RIII158V were adjusted with ADCC medium (without phenol red) so that by adding 40 ⁇ L of NK92 cells stably transfected with Fc ⁇ RIII158V to the target cells, the ratio of effector to target cells was 1: 1.
  • the plate was then incubated at 37°C for 4 hours. After 4 hours incubation, 100 ⁇ L substrate from CytoTox 96 kit (Promega) were added to each well. For maximum cell lysis control, 2 ⁇ L of lysis solution (CytoTox-ONETM kit, Promega) was added 10 minutes before the addition of 100 ⁇ L substrate from CytoTox 96 kit.
  • HCC827 cells were adjusted to 1.25 ⁇ 10 6 cells/mL with cell culture medium. To a flat-bottom 96-well white plate, 40 ⁇ L/well of cells were added. 40 ⁇ L/well of fully human anti-PD-L1 antibody, serially diluted in CDC medium, were added to each well in duplicate. The plates were incubated in the hood for 30 minutes. Commercially available purified human complement (Quidel, cat #042637) was added to the plates containing cells at 20 ⁇ L/well to a final concentration of 20%. The plates were incubated at 37°C for 20 hours. The Celltiter-glo luminescent cell viability kit (Promega, No.
  • Fully human anti-PD-L1 antibodies were adjusted to 1mg/mL and a final volume of about 700 ⁇ L with sample buffer.
  • the parameters were set up as follows (VP-DSC) : Starting Temperature 30°C; Final Temperature 100°C; Scan rate 50°C/hour; Number of Rescans 0; PreScan Thermostat 3 min; PostScan Thermostat 0 min; Post Cycle Thermostat 25°C; Filtering Period 25 seconds; Feedback Mode/Gain None; Cell Refill Parameters 35°C.
  • the resulting protein-buffer thermograms were processed by subtracting a corresponding buffer–buffer scan and subsequently fitting a baseline to the trace. The Tms were recorded at each peak maxima observed in the thermograms using Origin TM 7.0 software. The results are shown in Figure 50.
  • the freeze/thaw stabilities of the fully human anti-PD-L1 antibodies were characterized as follows. A 100 ⁇ L aliquot from the frozen stocks of each anti-PD-L1 antibody was thawed at room temperature. Once fully thawed, the samples were then rapidly frozen in the -80°C freezer and kept at -80°C for at least two hours before being thawed again at room temperature. The samples went through three identical freeze/thaw cycles. Visual inspection was used to check for precipitation. 20 ⁇ L aliquots were removed from the samples for size-exclusion chromatography (SEC) analysis after three freeze/thaw cycles.
  • SEC size-exclusion chromatography
  • the solubility of the fully human anti-PD-L1 antibodies was characterized by concentrating 10mg IgG using centrifugal filters (Amicon Ultra-0.5mL 30K) at 14000g at 4°C down to >100mg/mL. 2mL or more of IgG was added into the centrifugal filters and concentrated at 14000g at 4°C.
  • the setting time of centrifuging was 2 min, 3 min, 5 min, 8 min, 15 min, and 20 min, and each time 20 ⁇ L were aliquoted to a collection tube to measure the concentration with a nanodrop at A280. The centrifugation was finished when the concentration reached 100mg/mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Transplantation (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Anti-PD-L1 antibodies and antigen-binding fragments thereof are described. Also described are nucleic acids encoding the antibodies, compositions comprising the antibodies, and methods of producing the antibodies and using the antibodies for treating or preventing diseases such as cancer, infectious diseases and autoimmune diseases.

Description

ANTI-PD-L1 ANTIBODIES AND USES THEREOF
CROSS REFERENCE TO RELATED APPLICATIONS
This application is entitled to priority pursuant to Chinese Patent Application No. 201610003723.6, filed January 4, 2016, the disclosure of which is incorporated by reference herein in its entirety.
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
This application contains a sequence listing, which is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file name “Sequence Listing File” , creation date of December 12, 2016 and having a size of about 39.1kB. The sequence listing submitted via EFS-Web is part of the specification and is herein incorporated by reference in its entirety.
FIELD OF THE INVENTION
The invention relates to monoclonal anti-PD-L1 antibodies, nucleic acids and expression vectors encoding the antibodies, recombinant cells containing the vectors, and compositions comprising the antibodies. Methods of making the antibodies, and methods of using the antibodies to treat diseases including cancer and autoimmune diseases are also provided.
BACKGROUND OF THE INVENTION
Tumor cells are able to evade the immune system by “editing” host immunity in the tumor microenvironment in a variety of ways. One way in which tumors carry out this so-called “cancer immune escape” is by upregulating the expression of immune checkpoint proteins, which are key regulators of the immune system, thus suppressing the immune response. One such immunosuppressive co-signal is mediated by the PD-1 receptor and its ligand PD-L1.
PD-1 (Programmed Cell Death Protein 1 or CD279) is a type I transmembrane protein that is one of the major immune checkpoint molecules (Blank et al., 2005, Cancer Immunotherapy, 54: 307-314) . PD-1 is primarily expressed on activated T cells, and it interacts with the ligands PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC or CD273) to induce an inhibitory signal resulting in reduced T cell proliferation, cytokine production, and cytotoxic activity (Freeman et al., 2000, J. Exp. Med., 192: 1027-34) .
PD-L1 (Programmed Cell Death 1 Ligand) is a type I transmembrane protein that comprises an extracellular Ig-V like domain, an Ig-C like domain, a transmembrane domain and an intracellular C-terminus domain. PD-L1 is expressed on many cell types, including T-cells, B-cells, endothelial, epithelial, and antigen presenting cells, on cells of lung, liver and heart tissues, and on several types of tumor cells. In contrast, PD-L2 is narrowly expressed on professional antigen presenting cells, such as dendritic cells and macrophages. (Dong H, Zhu G, Tamada K, Chen L. Nature Med. 1999; 5: 1365–1369. )
The interaction between PD-1 and PD-L1 is critical for modulating the immune response, and it is the predominant mechanism by which PD-L1-expressing tumor cells escape from immune surveillance (Zippelius et al., 2015, Cancer Immunol Res., 3 (3) : 236-44) . Persistent expression of PD-1 by T cells is highly indicative of an exhausted phenotype, noted by a decrease in effector function. This phenotype has been observed in various types of tumor-infiltrating lymphocytes (TILs) and linked to poor prognosis and tumor recurrence (Wherry, 2011, Nat. Immunol., 12: 492-99; Sheng Yao 2013 Nat Rev Drug Discov. 2013 12 (2) : 130–146) .
Blocking of the PD-1/PD-L1 interaction can activate the immune system and enhance anti-tumor immune responses, and it has been demonstrated that in multiple syngeneic mouse tumor models, blockade of PD-L1 or its receptor PD-1 promotes antitumor activity (Hirano et al., 2005, Cancer Res., 65: 1089-96) . Thus, the interaction between PD-1 and PD-L1 is an attractive target for cancer immunotherapy.
Additionally, in chronic viral infections such as HIV, HIV-specific CD8+ T cell function is impaired, expression of cytokines and effector molecules is reduced, and the proliferation ability of the T cells is decreased. Studies have shown that PD-1 expression in HIV-specific CD8+ T cells in HIV-infected individuals is highly upregulated, suggesting that blocking the PD-1/PD-L1 pathway provides a potential treatment for chronic viral infection and AIDS treatment. (Bowers NL, Helton ES, Huijbregts RPH, et al. PLoS Pathog. 2014 March; 10 (3) : e1003993) .
Thus, therapeutic agents that block the PD-1/PD-L1 pathway can provide a new treatment approach for various cancers, viral infections such as HIV infections, T-cell depletion-related conditions, and other immune diseases.
PD-1 also interacts with PD-L2, which is expressed in the lung and kidney, to provide a unique negative signal that prevents autoimmune responses. Thus, use of an anti-PD-1 antibody to block the PD-1/PD-L1 pathway, which could also disrupt the PD-1/PD-L2 interaction, could prevent the PD-1/PD-L2-based inhibition of autoimmune responses. Therefore, use of an anti-PD-1 antibody could potentially result in autoimmune related pneumonia or nephritis. However, anti-PD-L1 antibodies do not affect the PD-1/PD-L2 interaction, and their use could therefore minimize immune-related adverse events.
Cancer immunotherapy, a recent breakthrough in cancer treatment, employs a patient’s own immune system to attack tumor cells. Inhibitors of immune checkpoint proteins have the potential to treat a variety of tumor types, such as metastatic melanoma, lung cancer, breast cancer, renal cell carcinoma, etc. Recent studies using cancer immunotherapy approaches have shown promising results, especially in the case of metastatic carcinomas (Weinstock and McDermott, 2015, Ther Adv Urol., 7 (6) : 365-77) . In addition, cancer immunotherapy has shown great potential in the treatment of blood cancers, including Hodgkin's lymphoma, multiple myeloma, bone marrow dysplasia syndrome, non-Hodgkin's lymphoma, etc. (Zou and Chen L, 2008, Nat Rev Immunol., 8 (6) : 467-77) . Side effects caused by immune checkpoint inhibitors are negligible, reversible and manageable, and an effective immune checkpoint inhibitor may substantially improve the overall survival of cancer patients. Immune checkpoint inhibitors can be used in combination with targeted therapy or conventional radiotherapy and chemotherapy, and such combinatorial therapy may be effective in the treatment of many types of cancer. Clinical trials of anti-PD-L1 monoclonal antibodies have been initiated by Genentech/Roche, Pfizer/Merck, Serono and MedImmune.
Humanized anti-PD-L1 mAb
Figure PCTCN2016112428-appb-000001
from Roche/Genentech, has been approved for treatment of locally advanced or metastatic urothelial carcinoma and non-small cell lung cancer (NSCLC) . In a clinical study of patients having advanced or metastatic urothelial carcinoma disease progression following neoadjuvant or adjuvant platinum-containing therapy, TECENTRIQTM shrank tumors (objective response rate, ORR) in 22%of people. However, more than 2%of patients experienced Grade 3-4 adverse reactions, and three patients experienced either sepsis, pneumonitis or intestinal obstruction, which led to death. TECENTRIQTM was discontinued for adverse reactions in 3.2%of the patients.
Thus, despite the progress, there is a need in the art for more effective therapeutics comprising anti-PD-L1 antibodies that effectively inhibit the PD-1/PD-L1 signaling activity while causing minimal adverse side effects in humans.
BRIEF SUMMARY OF THE INVENTION
The invention satisfies this need by providing monoclonal antibodies that specifically bind PD-L1 with high affinity and induce the secretion of IFN-γ and IL-2 by immune cells, as measured in both a mixed lymphocyte reaction and a T lymphocyte stimulation assay. In particular, the fully human anti-PD-L1 antibodies of the invention have a comparable affinity to PD-L1 as Atezolizumab (
Figure PCTCN2016112428-appb-000002
Roche-Genentech) , a humanized IgG1 anti-PD-L1 mAb. Additionally, the antibodies demonstrate comparable characteristics to Atezolizumab, but are predicted to have fewer immunogenic adverse side effects in humans than Atezolizumab due to the fact that they are fully human, rather than simply humanized mAbs.
In one general aspect, the invention relates to isolated monoclonal antibodies or antigen-binding fragments thereof that bind PD-L1.
According to a particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
(1) SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively;
(2) SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively;
(3) SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively;
(4) SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively;
(5) SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively;
(6) SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively; or
(7) SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively;
wherein the antibody or antigen-binding fragment thereof binds PD-L1, preferably binds specifically to human PD-L1.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
According to one embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof of the invention is a human/rat chimeric.
According to another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof of the invention is human.
According to yet another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof of the invention further comprises a constant region, preferably a human heavy chain IgG4 constant region, more preferably a human heavy chain IgG4 constant region having one or more mutations, such as a S228P mutation, and a human antibody light chain kappa constant region.
In another general aspect, the invention relates to an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
In another general aspect, the invention relates to a vector comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
In another general aspect, the invention relates to a host cell comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention.
In another general aspect, the invention relates to a pharmaceutical composition, comprising an isolated monoclonal antibody or antigen-binding fragment thereof of the invention and a pharmaceutically acceptable carrier.
In another general aspect, the invention relates to a method of blocking the binding of PD-L1 to PD-1 and/or to B7.1, or a method of augmenting secretion of IFN-γ and IL-2, in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
In another general aspect, the invention relates to a method of treating a disease, disorder or condition, preferably an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
In another general aspect, the invention relates to a method of treating a hyperproliferative disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention. The hyperproliferative disease can be a non-malignant disease, including but not limited to, atherosclerosis, benign hyperplasia, and benign prostatic hypertrophy. The hyperproliferative disease can also be a tumor, or a malignant  disease. The tumor can be selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
In another general aspect, the invention relates to a method of producing a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment under conditions to produce the monoclonal antibody or antigen-binding fragment thereof, and recovering the antibody or antigen-binding fragment thereof from the cell or cell culture.
In another general aspect, the invention relates to a method of producing a pharmaceutical composition comprising a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising combining the monoclonal antibody or antigen-binding fragment thereof with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
Other aspects, features and advantages of the invention will be apparent from the following disclosure, including the detailed description of the invention and its preferred embodiments and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. It should be understood that the invention is not limited to the precise embodiments shown in the drawings.
In the drawings:
Figure 1 shows the binding activity of biotin-labeled PD-L1-hFc protein to its receptor PD-1-hFc;
Figure 2shows the flow cytometry profile of HEK293 cells stably transfected with PD-L1 protein;
Figure 3 shows the ELISA measurement of serum antibody titers of H2L2 transgenic mice after immunization with PD-L1 protein, where 1681-1685 represent the mouse ID numbers;
Figure 4A and Figure 4B show the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to human PD-L1-hFc protein, as measured by ELISA;
Figure 5 shows the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to cyno monkey PD-L1-hFc protein, as measured by ELISA;
Figure 6 shows the binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to PD-L1 or PD-L2, as measured by ELISA;
Figure 7A and Figure 7B show the cell-based binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-hPD-L1, as measured by flow cytometry;
Figure 8A and Figure 8B show the cell-based binding activity of chimeric anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-cPD-L1, as measured by flow cytometry;
Figure 9A and Figure 9B show the inhibition of binding of PD-L1 protein to its receptor PD-1 by chimeric anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
Figure 10A and Figure 10B show the inhibition of binding of PD-L1 protein to its ligand B7.1 by chimeric anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
Figure 11 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 12 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 13 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention onIL-2 secretion in a mixed lymphocyte reaction using PBMC’s from donor 1;
Figure 14 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 1;
Figure 15 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 2;
Figure 16 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 3;
Figure 17 shows the effect of chimeric anti-PD-L1 antibody according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 4;
Figure 18 shows the effect of chimeric anti-PD-L1 antibody according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 5;
Figure 19 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 6;
Figure 20 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 7;
Figure 21 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 6;
Figure 22 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 7;
Figure 23 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 8;
Figure 24 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 9;
Figure 25 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 8;
Figure 26 shows the effect of chimeric anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s from donor 9;
Figure 27A and Figure 27B show the binding to human PD-L1 protein by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by ELISA;
Figure 28A and Figure 28B show the binding to cyno PD-L1 protein by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by ELISA;
Figure 29 shows the cell-based binding activity of fully human anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-hPD-L1, as measured by flow cytometry;
Figure 30 shows the cell-based binding activity of fully human anti-PD-L1 antibodies according to embodiments of the invention to CHO-K1-cPD-L1, as measured by flow cytometry;
Figure31A and Figure 31B show the inhibition of binding of PD-L1 protein to its receptor PD-1 by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
Figure 32A and Figure 32B show the inhibition of binding of PD-L1 protein to its ligand B7.1 by fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by a protein-based receptor ligand blocking assay;
Figure 33 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 34 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 35 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 36 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 37 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 38 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IL-2 secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 39 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 40 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 41 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 42 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a mixed lymphocyte reaction assay using PBMC’s;
Figure 43 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 44 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 45 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 46 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 47 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on IFN-γ secretion in a T cell stimulation assay using PBMC’s;
Figure 48 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on Antibody-Dependent Cellular Cytotoxicity (ADCC) ;
Figure 49 shows the effect of fully human anti-PD-L1 antibodies according to embodiments of the invention on Complement-Dependent Cytotoxicity;
Figure 50 shows the thermostability of fully human anti-PD-L1 antibodies according to embodiments of the invention, as measured by Differential Scanning Calorimetry (DSC) ;
Figure 51 shows the freeze/thaw stability of fully human anti-PD-L1 antibodies according to embodiments of the invention; and
Figure 52 shows the solubility of fully human anti-PD-L1 antibodies according to embodiments of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Various publications, articles and patents are cited or described in the background and throughout the specification; each of these references is herein incorporated by reference in its entirety. Discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is for the purpose of providing context for the invention. Such discussion is not an admission that any or all of these matters form part of the prior art with respect to any inventions disclosed or claimed.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning commonly understood to one of ordinary skill in the art to which this invention pertains. Otherwise, certain terms used herein have the meanings as set in the specification. All patents, published patent applications and publications cited herein are incorporated by reference as if set forth fully herein. It must be noted that as used herein and in the appended claims, the singular forms “a, ” “an, ” and “the” include plural reference unless the context clearly dictates otherwise.
Unless otherwise stated, any numerical value, such as a concentration or a concentration range described herein, are to be understood as being modified in all instances by the term “about. ” Thus, a numerical value typically includes ± 10%of the recited value. For example, a concentration of 1 mg/mL includes 0.9 mg/mL to 1.1 mg/mL. Likewise, a concentration range of 1%to 10% (w/v) includes 0.9% (w/v) to 11% (w/v) . As used herein, the use of a numerical range expressly includes all possible subranges, all individual numerical values within that range, including integers within such ranges and fractions of the values unless the context clearly indicates otherwise.
The invention generally relates to isolated anti-PD-L1 antibodies, nucleic acids and expression vectors encoding the antibodies, recombinant cells containing the vectors, and compositions comprising the antibodies. Methods of making the antibodies, and methods of using the antibodies to treat diseases including cancer and autoimmune diseases are also provided. The antibodies of the invention possess one or more desirable functional properties, including but not limited to high-affinity binding to PD-L1, high specificity to PD-L1, the ability to block the binding of PD-L1 to its binding partners, PD-1 and B7.1, and the ability to stimulate secretion of the cytokines IFN-γ and IL-2.
In a general aspect, the invention relates to isolated monoclonal antibodies or antigen-binding fragments thereof that bind PD-L1.
As used herein, the term “antibody” is used in a broad sense and includes immunoglobulin or antibody molecules including human, humanized, composite and chimeric antibodies and antibody fragments that are monoclonal or polyclonal. In general, antibodies are proteins or peptide chains that exhibit binding specificity to a specific antigen. Antibody structures are well known. Immunoglobulins can be assigned to five major classes (i.e., IgA, IgD, IgE, IgG and IgM) , depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. Accordingly, the antibodies of the invention can be of any of the five major classes or corresponding sub-classes. Preferably, the antibodies of the invention are IgG1, IgG2, IgG3 or IgG4. Antibody light chains of vertebrate species can be assigned to one of two clearly distinct types, namely kappa and lambda, based on the amino acid sequences of their constant domains. Accordingly, the antibodies of the invention can contain a kappa or lambda light chain constant domain. According to particular embodiments, the antibodies of the invention include heavy and/or light chain constant regions from rat or human antibodies. In addition to the heavy and light constant domains, antibodies contain an antigen-binding region that is made up of a light chain variable region and a heavy chain variable region, each of which contains three domains (i.e., CDR1, CDR2, and CDR3) . The light chain variable region domains are alternatively referred to as LCDR1, LCDR2 and LCRD3, and the heavy chain variable region domains are alternatively referred to as HCDR1, HCRD2 and HCDR3.
As used herein, the term an “isolated antibody” refers to an antibody which is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to PD-L1 is substantially free of antibodies that do not bind to PD-L1) . In addition, an isolated antibody is substantially free of other cellular material and/or chemicals.
As used herein, the term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. The monoclonal antibodies of the invention can be made by the hybridoma method, phage display technology, single lymphocyte gene cloning  technology, or by recombinant DNA methods. For example, the monoclonal antibodies can be produced by a hybridoma which includes a B cell obtained from a transgenic nonhuman animal, such as a transgenic mouse or rat, having a genome comprising a human heavy chain transgene and a light chain transgene.
As used herein, the term “antigen-binding fragment” refers to an antibody fragment such as, for example, a diabody, a Fab, a Fab', a F (ab') 2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2, a bispecific dsFv (dsFv-dsFv') , a disulfide stabilized diabody (ds diabody) , a single-chain antibody molecule (scFv) , a single domain antibody (sdab) an scFv dimer (bivalent diabody) , a multispecific antibody formed from a portion of an antibody comprising one or more CDRs, a camelized single domain antibody, a nanobody, a domain antibody, a bivalent domain antibody, or any other antibody fragment that binds to an antigen but does not comprise a complete antibody structure. An antigen-binding fragment is capable of binding to the same antigen to which the parent antibody or a parent antibody fragment binds. According to particular embodiments, the antigen-binding fragment comprises a light chain variable region, a light chain constant region, and an Fd segment of the constant region of the heavy chain. According to other particular embodiments, the antigen-binding fragment comprises Fab and F (ab’) .
As used herein, the term “single-chain antibody” refers to a conventional single-chain antibody in the field, which comprises a heavy chain variable region and a light chain variable region connected by a short peptide of about 15 to about 20 amino acids. As used herein, the term “single domain antibody” refers to a conventional single domain antibody in the field, which comprises a heavy chain variable region and a heavy chain constant region or which comprises only a heavy chain variable region.
As used herein, the term “human antibody” refers to an antibody produced by a human or an antibody having an amino acid sequence corresponding to an antibody produced by a human made using any technique known in the art. This definition of a human antibody includes intact or full-length antibodies, fragments thereof, and/or antibodies comprising at least one human heavy and/or light chain polypeptide.
As used herein, the term “humanized antibody” refers to a non-human antibody that is modified to increase the sequence homology to that of a human antibody, such that the antigen-binding properties of the antibody are retained, but its antigenicity in the human body is reduced.
As used herein, the term “chimeric antibody” refers to an antibody wherein the amino acid sequence of the immunoglobulin molecule is derived from two or more species. The variable region of both the light and heavy chains often corresponds to the variable region of an antibody derived from one species of mammal (e.g., mouse, rat, rabbit, etc. ) having the desired specificity, affinity, and capability, while the constant regions correspond to the sequences of an antibody derived from another species of mammal (e.g., human) to avoid eliciting an immune response in that species.
As used herein, the term “PD-L1” refers to the Programmed Cell Death 1 Ligand protein, a type I transmembrane receptor that is expressed on many cell types, including T-cells, B-cells, endothelial, epithelial, and antigen presenting cells, on cells of lung, liver and heart tissues, and whose expression is highly up-regulated on several types of tumor cells. The amino acid sequence of a human PD-L1 is represented in GenBank Accession No. NP_054862.1. Two binding partners for PD-L1 have been identified, PD-1 and B7.1.
As used herein, an antibody that “specifically binds to PD-L1” refers to an antibody that binds to PD-L1, preferably human PD-L1, with a KD of 1×10-7M or less, preferably 1×10-8M or less, more preferably 1×10-9 M or less, or 1×10-10 M or less. The term “KD” refers to the dissociation constant, which is obtained from the ratio of Kd to Ka (i.e., Kd/Ka) and is expressed as a molar concentration (M) . KD values for antibodies can be determined using methods in the art in view of the present disclosure. For example, the KD of an antibody can be determined by using surface plasmon resonance, such as by using a biosensor system, e.g., a
Figure PCTCN2016112428-appb-000003
system, or by using bio-layer interferometry technology, such as a Octet RED96 system.
The smaller the value of the KD of an antibody, the higher affinity that the antibody binds to a target antigen.
According to a particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
(1) SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively;
(2) SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively;
(3) SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively;
(4) SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively;
(5) SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively;
(6) SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively; or
(7) SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively;
wherein the antibody or antigen-binding fragment thereof binds PD-L1, preferably specifically binds to human PD-L1.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof of the invention comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53, respectively.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising:
a. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 25, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 29;
b. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 1, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 5;
c. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 9, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 13;
d. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 17, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 21;
e. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 33, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 37;
f. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 41, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 45; or
g. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 49, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 53.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 1, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 5. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof  comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 1; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 5.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 9, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 13. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 9; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 13.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 17, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 21. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 17; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 21.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 25; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 29.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 33, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 37. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 33; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 37.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 41, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 45. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof  comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 41; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 45.
In one embodiment, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof, comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively. In another embodiment, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 53. Preferably, the isolated monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 49; and a light chain variable region having the polypeptide sequence of SEQ ID NO: 53.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, wherein the antibody or antigen-binding fragment thereof is chimeric.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, wherein the antibody or antigen-binding fragment thereof is human.
According to another particular aspect, the invention relates to an isolated monoclonal antibody or antigen-binding fragment thereof of the invention, comprising a constant region, preferably a human heavy chain IgG4 constant region, more preferably a human heavy chain IgG4 constant region having a S228P mutation (SEQ ID NO: 75) , and a human antibody light chain constant region, preferably a human light chain kappa constant region (SEQ ID NO: 77) .
In another general aspect, the invention relates to an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention. It will be appreciated by those skilled in the art that the coding sequence of a protein can be changed (e.g., replaced, deleted, inserted, etc. ) without changing the amino acid sequence of the protein. Accordingly, it will be understood by those skilled in the art that nucleic acid sequences encoding monoclonal antibodies or antigen-binding fragments thereof of the invention can be altered without changing the amino acid sequences of the proteins.
In another general aspect, the invention relates to a vector comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention. Any vector known to those skilled in the art in view of the present disclosure can be used, such as a plasmid, a cosmid, a phage vector or a viral vector. In some embodiments, the vector is a recombinant expression vector such as a plasmid. The vector can include any element to establish a conventional function of an expression vector, for example, a promoter, ribosome binding element, terminator, enhancer, selection marker, and origin of replication. The promoter can be a constitutive, inducible or repressible promoter. A number of expression vectors capable of delivering nucleic acids to a cell are known in the art and can be used herein for production of an antibody or antigen-binding fragment thereof in the cell. Conventional cloning techniques or artificial gene synthesis can be used to generate a recombinant expression vector according to embodiments of the invention.
In another general aspect, the invention relates to a host cell comprising an isolated nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention. Any host cell known to those skilled in the art in view of the present disclosure can be used for recombinant expression of antibodies or antigen-binding fragments thereof of the invention. In some embodiments, the host cells are E. coli TG1 or BL21 cells (for expression of, e.g., an scFv or Fab antibody) or CHO-K1 cells (for expression of, e.g., a full-length IgG antibody) . According to particular embodiments, the recombinant expression vector is transformed into host cells by conventional methods such as chemical transfection, heat shock, or electroporation, where it is stably integrated into the host cell genome such that the recombinant nucleic acid is effectively expressed.
In another general aspect, the invention relates to a method of producing a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment thereof under conditions to produce a monoclonal antibody or antigen-binding fragment thereof of the invention, and recovering the antibody or antigen-binding fragment thereof from the cell or cell culture (e.g., from the supernatant) . Expressed antibodies or antigen-binding fragments thereof can be harvested from the cells and purified according to conventional techniques known in the art and as described herein.
In another general aspect, the invention relates to a pharmaceutical composition, comprising an isolated monoclonal antibody or antigen-binding fragment thereof of the invention and a pharmaceutically acceptable carrier.
As used herein, the term “carrier” refers to any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, oil, lipid, lipid containing vesicle, microsphere, liposomal encapsulation, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient or diluent will depend on the route of administration for a particular application. As used herein, the term “pharmaceutically acceptable carrier” refers to a non-toxic material that does not interfere with the effectiveness of a composition according to the invention or the biological activity of a composition according to the invention. According to particular embodiments, in view of the present disclosure, any pharmaceutically acceptable carrier suitable for use in an antibody pharmaceutical composition can be used in the invention.
In another general aspect, the invention relates to a method of blocking the binding of PD-L1 to PD-1 or to B7.1, or of augmenting secretion of IFN-γ and IL-2 in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
The functional activity of antibodies and antigen-binding fragments thereof that bind PD-L1 can be characterized by methods known in the art and as described herein. Methods for characterizing antibodies and antigen-binding fragments thereof that bind PD-L1 include, but are not limited to, affinity and specificity assays including Biacore, ELISA, and FACS analysis; receptor ligand binding assays to detect blocking of the binding of PD-L1 to PD-1 and/orB7.1; assays to detect induction of lymphocytic cytokine production by the blocking of the binding of PD-L1 to PD-1 and/orB7.1; cell cytotoxicity assays to detect the presence of antibody-dependent cell-mediated cytotoxicity (ADCC) , and complement dependent cytotoxicity (CDC) activity of the antibodies; experiments to detect the inhibition of tumor growth in mouse tumor models; etc. According to particular embodiments, the methods for characterizing antibodies and antigen-binding fragments thereof that bind PD-L1 include those described in Examples 2-12 below.
In another general aspect, the invention relates to a method of treating an infectious disease or a graft versus host disease in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention. In another general aspect, the invention relates to a method of treating a tumor in a subject in need thereof, comprising administering to the subject a pharmaceutical composition of the invention.
As used herein, the term “subject” refers to an animal, and preferably a mammal. According to particular embodiments, the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, cow, pig, horse, goat, sheep, cat, dog, rat, rabbit, guinea pig or mouse) or a primate (e.g., a monkey, chimpanzee, or human) . In particular embodiments, the subject is a human.
According to embodiments of the invention, the pharmaceutical composition comprises a therapeutically effective amount of the anti-PD-L1 antibody or antigen-binding fragment thereof. As used herein, the term “therapeutically effective amount” refers to an amount of an active ingredient or component that elicits the desired biological or medicinal response in a subject. A therapeutically effective amount can be determined empirically and in a routine manner, in relation to the stated purpose.
As used herein with reference to anti-PD-L1 antibodies or antigen-binding fragments thereof, a therapeutically effective amount means an amount of the anti-PD-L1 antibody or antigen-binding fragment thereof that stimulates an immune response in a subject in need thereof. Also as used herein with reference to anti-PD-L1  antibodies or antigen-binding fragments thereof, a therapeutically effective amount means an amount of the anti-PD-L1 antibody or antigen-binding fragment thereof that results in treatment of a disease, disorder, or condition; prevents or slows the progression of the disease, disorder, or condition; or reduces or completely alleviates symptoms associated with the immune disease, disorder, or condition.
According to particular embodiments, the disease, disorder or condition to be treated is a hyperproliferative disease, an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease. According to more particular embodiments, the disease, disorder or condition to be treated is an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease. According to more particular embodiments, the disease, disorder or condition to be treated is a non-malignant hyperproliferative disease, including but not limited to, atherosclerosis, benign hyperplasia, benign prostatic hypertrophy. According to other particular embodiments, the disease, disorder or condition to be treated is a tumor, or a malignant hyperproliferative disease, preferably a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
According to particular embodiments, a therapeutically effective amount refers to the amount of therapy which is sufficient to achieve one, two, three, four, or more of the following effects: (i) reduce or ameliorate the severity of the disease, disorder or condition to be treated or a symptom associated therewith; (ii) reduce the duration of the disease, disorder or condition to be treated, or a symptom associated therewith; (iii) prevent the progression of the disease, disorder or condition to be treated, or a symptom associated therewith; (iv) cause regression of the disease, disorder or condition to be treated, or a symptom associated therewith; (v) prevent the development or onset of the disease, disorder or condition to be treated, or a symptom associated therewith; (vi) prevent the recurrence of the disease, disorder or condition to be treated, or a symptom associated therewith; (vii) reduce hospitalization of a subject having the disease, disorder or condition to be treated, or a symptom associated therewith; (viii) reduce hospitalization length of a subject having the disease, disorder or condition to be treated, or a symptom associated therewith; (ix) increase the survival of a subject with the disease, disorder or condition to be treated, or a symptom associated therewith; (xi) inhibit or reduce the disease, disorder or condition to be treated, or a symptom associated therewith in a subject; and/or (xii) enhance or improve the prophylactic or therapeutic effect (s) of another therapy.
The therapeutically effective amount or dosage can vary according to various factors, such as the disease, disorder or condition to be treated, the means of administration, the target site, the physiological state of the subject (including, e.g., age, body weight, health) , whether the subject is a human or an animal, other medications administered, and whether the treatment is prophylactic or therapeutic. Treatment dosages are optimally titrated to optimize safety and efficacy.
According to particular embodiments, the compositions described herein are formulated to be suitable for the intended route of administration to a subject. For example, the compositions described herein can be formulated to be suitable for intravenous, subcutaneous, or intramuscular administration.
As used herein, the terms “treat, ” “treating, ” and “treatment” are all intended to refer to an amelioration or reversal of at least one measurable physical parameter related to a cancer, an inflammatory disease, disorder or condition, an immune disease, disorder or condition, an autoimmune disease, disorder or condition, or an infectious disease, disorder or condition, which is not necessarily discernible in the subject, but can be discernible in the subject. The terms “treat, ” “treating, ” and “treatment, ” can also refer to causing regression, preventing the progression, or at least slowing down the progression of the disease, disorder, or condition. In a particular embodiment, “treat, ” “treating, ” and “treatment” refer to an alleviation, prevention of the development or onset, or reduction in the duration of one or more symptoms associated with the disease, disorder, or condition, such as a tumor or more preferably a  cancer. In a particular embodiment, “treat, ” “treating, ” and “treatment” refer to prevention of the recurrence of the disease, disorder, or condition. In a particular embodiment, “treat, ” “treating, ” and “treatment” refer to an increase in the survival of a subject having the disease, disorder, or condition. In a particular embodiment, “treat, ” “treating, ” and “treatment” refer to elimination of the disease, disorder, or condition in the subject.
According to particular embodiments, a composition used in the treatment of a cancer, an inflammatory disease, disorder or condition, an immune disease, disorder or condition, an autoimmune disease, disorder or condition, or an infectious disease, disorder or condition can be used in combination with another treatment including, but not limited to, a chemotherapy, an anti-CD20 mAb, an anti-CTLA-4 antibody, an antiangiogenic agent, a radiation therapy, other immune-oncology drug, a targeted therapy, an anti-PD-L1 antibody or other anticancer drugs.
As used herein, the term “in combination, ” in the context of the administration of two or more therapies to a subject, refers to the use of more than one therapy. The use of the term “in combination” does not restrict the order in which therapies are administered to a subject. For example, a first therapy (e.g., a composition described herein) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 16 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before) , concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 16 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy to a subject.
In another general aspect, the invention relates to a method of producing a pharmaceutical composition comprising a monoclonal antibody or antigen-binding fragment thereof of the invention, comprising combining a monoclonal antibody or antigen-binding fragment thereof with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
EMBODIMENTS
The invention provides also the following non-limiting embodiments.
Embodiment 1 is an isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
(1) SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively;
(2) SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively;
(3) SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively;
(4) SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively;
(5) SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively;
(6) SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively; or
(7) SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively;
wherein the antibody or antigen-binding fragment thereof binds PD-L1.
Embodiment 2 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 1, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
Embodiment 3 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 2, comprising a heavy chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, and a light chain variable region having a polypeptide sequence at least 80%, preferably at least 85%or 90%, or more preferably at least 95%, identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53, respectively.
Embodiment 4 is the isolated monoclonal antibody or antigen-binding fragment of Embodiment 3, comprising:
(a) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 25, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 29;
(b) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 1, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 5;
(c) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 9, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 13;
(d) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 17, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 21;
(e) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 33, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 37;
(f) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 41, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 45; or
(g) a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 49, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 53.
Embodiment 5 is the isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 4, wherein the antibody or antigen-binding fragment thereof is chimeric.
Embodiment 6 is isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 4, wherein the antibody or antigen-binding fragment thereof is human.
Embodiment 7 is the isolated antibody or antigen-binding fragment of Embodiment 5 or 6, comprising a human heavy chain IgG4 constant region with a S228P mutation, and a human antibody light chain kappa constant region.
Embodiment 8 is the isolated antibody or antigen-binding fragment of any of Embodiments 1 to 7, wherein the antibody or antigen-binding fragment binds to a human PD-L1 with a KD of 5×10-9 M or less, preferably a KD of 1×10-9 M or lessor 1×10-10 M or less, wherein the KD is measured by surface plasmon resonance analysis, such as by using a Biacore system, or by a bio-layer interferometry technology, such as by using a Octet RED96 system.
Embodiment 9 is an isolated nucleic acid encoding the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8.
Embodiment 10 is a vector comprising the isolated nucleic acid of Embodiment 9.
Embodiment 11 is a host cell comprising the nucleic acid of Embodiment 10.
Embodiment 12 is a pharmaceutical composition, comprising the isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8and a pharmaceutically acceptable carrier.
Embodiment 13 is a method of blocking binding of PD-L1 to PD-1 and/or B7.1, or augmenting secretion of IFN-γ and IL-2 in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12.
Embodiment 14 is a method of treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12.
Embodiment 15 is the method of Embodiment 14, further comprising administering to the subject an additional agent for treating the infectious disease, inflammatory disease, immune disease, autoimmune disease, or graft versus host disease in the subject in need thereof.
Embodiment 16 is a method of treating a hyperproliferative disease in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of Embodiment 12,
Embodiment 17 is the method of Embodiment 16, wherein the hyperproliferative disease is a non-malignant disease, preferably selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy.
Embodiment 18 is the method of Embodiment 16, wherein the hyperproliferative disease is a tumor, or a malignant disease, preferably, the tumor is selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
Embodiment 19 is the method of any of Embodiments 16-18, further comprising administering to the subject an additional agent for treating the hyperproliferative disease in the subject in need thereof.
Embodiment 20 is a method of producing the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment under conditions to produce the monoclonal antibody or antigen-binding fragment, and recovering the antibody or antigen-binding fragment from the cell or cell culture.
Embodiment 21 is a method of producing a pharmaceutical composition comprising the monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8, comprising combining the monoclonal antibody or antigen-binding fragment with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
Embodiment 22 is an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for use in treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof.
Embodiment 23 is an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for use in treating a hyperproliferative disease, such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy, or a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer, in a subject in need thereof.
Embodiment 24 is an use of an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8 for manufacturing a pharmaceutical composition in treating an infectious disease, an inflammatory disease, an immune disease, an autoimmune disease, or a graft versus host disease in a subject in need thereof.
Embodiment 25is an use of an isolated monoclonal antibody or antigen-binding fragment of any of Embodiments 1 to 8for manufacturing a pharmaceutical composition in treating a hyperproliferative disease, such as a non-malignant disease selected from the group consisting of atherosclerosis, benign hyperplasia and benign prostatic hypertrophy, or a tumor selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, biliary cancer, brain cancer, breast cancer, colon cancer, esophageal cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer in a subject in need thereof.
EXAMPLES
The following examples of the invention are to further illustrate the nature of the invention. It should be understood that the following examples do not limit the invention and that the scope of the invention is to be determined by the appended claims.
Example 1 –Generation of anti-PD-L1 antibodies
Human PD-L1 protein was used as an immunogen to generate anti-PD-L1 antibodies. The uses of human immunoglobulin transgenic mouse technology for the development and preparation of fully human antibodies was first described by Abgenix (xeno mouse and Medarex (HuMab "mouse" ) ; Lonberg et al., 1994, Nature 368: 856-859; Lonberg and Huszar, 1995, Internal Rev. Immunol. 13: 65-93; Harding and Lonberg, 1995, Ann. N. Y. Acad. Sci. 764: 536-546) .
Antibodies with high affinity (KD< 1*10-9M) to PD-L1 were obtained by carrying out pilot antibody production, purification and validation. The antibodies, which are specific for PD-L1 and do not cross react with other immune checkpoints such as PD-L2, are able to block the binding of PD-L1 to PD-1 and to B7.1. The amino acid sequences of the heavy and light chain variable regions of the generated anti-PD-L1 antibodies were determined using standard molecular biology methods and are summarized in Table 1.
Table 1. SEQ ID NOs of the amino acid sequences of the heavy chain variable regions, HCDRs, light chain variable regions and LCDRs of chimeric anti-PD-L1 antibodies of the invention
Figure PCTCN2016112428-appb-000004
The heavy chain and light chain variable regions of the anti-PD-L1 antibodies listed in Table 1 are encoded by the nucleic acid sequences summarized in Table 2.
Table 2. SEQ ID NOs of the nucleic acid sequences of the heavy chain and light chain variable regions of chimeric anti-PD-L1 antibodies of the invention
Figure PCTCN2016112428-appb-000005
Figure PCTCN2016112428-appb-000006
Fully human versions of the anti-PD-L1 antibodies were generated. The fully human anti-PD-L1 antibodies bound to the extracellular domain of human PD-L1 with high affinity (KD< 1*10-9M) , and blocked the binding of PD-L1 to its binding partners, PD-1 and B7.1. The anti-PD-L1 antibodies do not exhibit non-specific binding to human PD-L2. The biological activities of the anti-PD-L1 antibodies were evaluated by mixed lymphocyte and T cell stimulation assays, in which they increased secretion of the IFN-γ and IL-2 cytokines. While not wishing to be bound by theory, it is believed that the anti-PD-L1 antibodies can be used to suppress PD-1-mediated signaling pathways that negatively-regulate immune responses, and to therefore enhance tumor-specific immune responses, either as a monotherapy or in combination with anti-PD-1 monoclonal antibodies or other anticancer drugs, such as a cancer immunotherapy, particularly for patients having PD-L1 positive tumors. The anti-PD-L1 antibodies can be used for the treatment of cancers and autoimmune diseases.
Example 2 –Preparation of anti-PD-L1 antibodies
(step 1) Preparation of Immunogen A, PD-L1ECD-hFc protein (also referred to as PD-L1-hFc herein) 
The coding sequence of the human PD-L1 extracellular domain (PD-L1ECD  SEQ ID NOs: 71 and 78) , corresponding to amino acids Phe19-Thr239 of SEQ ID NO: 72, was cloned along with the coding sequence of human IgG Fc fragment (hFc) into a pCpC vector (Invitrogen, #V044-50) using standard molecular biology cloning techniques (Sambrook and Russell, 1989, Molecular cloning: a laboratory manual, New York : Cold Spring Harbor Laboratory Press, 2nd ed. ) . HEK293 cells (Invitrogen) were transiently transfected using polyethylenimine (PEI, Polysciences) with the plasmid and expanded in FreeStyle 293 expression medium (Invitrogen) at 37℃. After 4 days of expansion, the culture medium was collected and centrifuged to remove cell components. The culture supernatant, which contained the recombinant PD-L1ECD-hFc, was subjected to Protein A chromatography (Mabselect, GE Healthcare) . The ultraviolet (UV) absorption (A280nm) was monitored with a UV detector, and the samples were washed with PBS (pH 7.2) until the UV A280nm absorption returned to baseline levels, at which point the PD-L1ECD-hFc fusion protein was eluted from the Protein A affinity column with 0.1M glycine hydrochloride (pH2.5) . The sample was dialyzed with PBS phosphate buffer (pH 7.2) at 4℃ overnight. After dialysis, the purified PD-L1 immunogen was passed through a 0.22 micron sterile filter, aliquoted and stored at -80℃.
Recombinant human PD-1 extracellular domain (PD-1ECD) (corresponding to amino acids Leu25-Glu167 of Uniprot database protein Q15116) fused to hFc was prepared in the same way that the PD-L1ECD-hFc recombinant protein was prepared above.
Purified PD-L1ECD-hFc (also referred to as PD-L1-hFc herein) was biotinylated by mixing and incubating the protein with biotin (Sigma S3295) .
To characterize the PD-L1ECD-hFc immunogen, the sample’s protein concentration and purity were determined, and the immunogen’s molecular weight and biological activity were determined.
The biological activity of the PD-L1ECD-hFc immunogen was determined by ELISA. Recombinant PD-1ECD-hFc protein was diluted in PBS to a concentration of 1 μg/mL, and 100μL of the diluted PD-1ECD-hFc protein sample were added per well to ELISA microplates, which were incubated overnight at 4℃ to coat the plates with the recombinant protein. The plates were then blocked with ELISA blocking solution (containing 1%BSA, pH7.4 PBS buffer, w/v) at 37℃ for two hours and then incubated with serial dilutions of the biotinylated PD-L1ECD-hFc protein or a control protein (biotinylated non-PD-L1ECD-hFc) for 1 hour at 37℃. Horseradish peroxidase (HRP) conjugated streptavidin (Sigma B2438) was added, and the plates were incubated at room temperature for 30 minutes. 100μL of tetramethylbenzidine (TMB) were added, and the plates were incubated at room temperature for 15 minutes. 50μL of 1N HCl were added to terminate the reaction, and the OD450nm was determined by an ELISA plate reader.
Figure 1 and Table 3 show the concentration-dependent binding of the biotinylated PD-L1ECD-hFc to purified PD-1ECD-hFc fusion protein. Binding to PD-1ECD-hFc was observed with biotinylated PD-L1ECD-hFc, but not with the control protein that does not contain the sequence of PD-L1ECD.
Table 3. Binding activities of biotinylated PD-L1ECD-hFc with its receptor PD-1ECD-hFc
Figure PCTCN2016112428-appb-000007
(step 2) Preparation of Immunogen B, HEK293 cells over expressing hPD-L1
The nucleotide sequence encoding human PD-L1 (SEQ ID NO: 73) was subcloned into a pIRES vector (Clontech) , and the plasmid was prepared. HEK293 and CHO-K1 cells (Invitrogen) were transiently transfected with the plasmid using X-treme GENE HP DNA Transfection Reagent (Roche, Cat #06 366 236 001) , and transformants were selected in DMEM culture media containing 0.5g/mL antibiotics and 10% (w/w) fetal bovine serum (FBS) for 2 weeks. A limited dilution into a 96-well culture plate was carried out, and the plate was incubated at 37℃ with 5%(v/v) CO2 for approximately 2 weeks. After selection, monoclones were expanded in 6-well plates, and the expanded clones were screened by flow cytometry using commercially available anti-PD-L1 antibodies (R&D Systems) . Clones exhibiting higher growth rates and higher fluorescence intensity as measured by FACS were further expanded and cryospreserved in liquid nitrogen.
Figure 2 shows the flow cytometry profile of the HEK293 cells stably transfected with the recombinant hPD-L1 protein. The percentage of FACS-positive cells is shown in Table 4 as an indication of the expression levels of hPD-L1 protein.
Table 4. hPD-L1 expression levels of recombinant HEK293 clones, as determined by FACS
Figure PCTCN2016112428-appb-000009
(step 3) Preparation of Immunogen C, hPD-L1expressing construct
The coding sequence of full length human PD-L1 protein (SEQ ID NO: 73) was subcloned into a pcDNA3.1 vector (Invitrogen) , and the resulting plasmid was coated onto a 1.0um colloidal gold bullet (Bio-RAD) for subsequent immunization using a Helios gene gun (Bio-rad No. 165-2431) , following the instructions of the Helios gene gun data sheet.
(step 4) Hybridoma cell fusion and antibody screening
Human Ig Fc does not interact with the mouse Fc receptor, so immune responses triggered in mice by hFc-containing immunogens are weak, resulting in low efficiency generation of monoclonal antibodies. Harbour H2L2 transgenic mice were generated by introducing the gene encoding the human immunoglobulin (Ig) variable region and the gene encoding the rat Ig constant region into the mouse genome, such that the mice contained a chimeric Ig comprising hV-rC, while expression of the mouse Ig was disabled (WO 2010/070263 Al) . Harbour H2L2 transgenic mice are able to produce comparable immune responses and antibody titers to wild type mice (e.g., Balb/c) .
(part 4A) 6-8 week old Harbour H2L2 transgenic mice (Beijing Weitong Lihua) were immunized with Immunogen A, and the mice were kept under Specific Pathogen Free (SPF) conditions. In the first immunization, 50μg of Immunogen A was injected into the abdominal cavity of each mouse along with 0.25mL Complete Freund’s Adjuvant (CFA) . To enhance the immune response, 50μg of Immunogen A was injected into the abdominal cavity of each mouse along with 0.25 Incomplete Freund’s Adjuvant (IFA) two weeks after the first immunization, and subsequent boosts were administered 3 weeks apart. Blood samples were collected one week after immunization. The antibody titer and specificity in serum were determined by ELISA and FACS analysis, and the results are shown in Figure 3 and Table 5. Table 5 shows that serum from mice immunized with PD-L1ECD-hFc exhibited different levels of binding to Immunogen A. The highest serum dilution was about one million. The blank control was 1% (w/w) BSA. The OD450nm values shown in Table 5 are the serum titer values from 7 days after the third boost, as determined by ELISA.
Table 5. Serum titers of Harbour H2L2 transgenic mice immunized with hPD-L1ECD-hFc fusion protein, as determined by ELISA
Figure PCTCN2016112428-appb-000010
Figure PCTCN2016112428-appb-000011
(part 4B) 6-8 week old Harbour H2L2 transgenic mice (Beijing Weitong Lihua) were immunized with Immunogen B, and the mice were kept under SPF conditions. HEK293 cells were stably transfected with the pIRES plasmid encoding full length hPD-L1 (see Example 2, step 2) ) using X-treme gene HP DNA Transfection reagent (Roche, #06 366 236 001) . Cells were cultured in T-75 culture flasks. When the cells reached 90%confluence, the media was aspirated, and the cells were washed twice with DMEM medium (Invitrogen) and treated with non-enzymatic cell dissociation buffer (Invitrogen) at 37℃ until the cells were detached from the culture flask. The cells were collected and washed twice with DMEM medium, and cell counts were determined and adjusted to 2 x 107 cells/mL using PBS buffer (pH7.2) . Mice were injected with 0.5mL of cell suspension for each immunization. Two weeks after the first immunization, a boost was administered, and subsequent boosts were administered 3 weeks apart. Blood samples were collected one week after immunization. The antibody titer and specificity in serum were determined by flow cytometry. After the second boost, the serum titer was over 1: 1000, as determined by flow cytometry.
(part 4C) 6-8 week old Harbour H2L2 transgenic mice (Beijing Weitong Lihua) were immunized with Immunogen C, and the mice were kept under SPF conditions. All mice were immunized with the Helios gene gun 4 times, with 4 shots per immunization. Each shot contained 1μg cDNA. Two weeks after the first immunization, a boost was administered, and subsequent boosts were administered 3 weeks apart. Blood samples were collected one week after immunization, and the serum titer was determined by ELISA and FACS. The serum titer after the second boost was 1: 1000, as determined by flow cytometry, and over 1: 10, 000, as determined by ELISA.
Usually serum titers from mice immunized with immunogens A –C could reach 1: 1000 as determined by FACS after the third boost.
Prior to the completion of steps 4A-C above, mice with specific immune responses against hPD-L1 were selected for fusion and were given a final boost by intraperitoneal injection of 100μg of purified PD-L1ECD-hFc (for mice immunized with Immunogen A or Immunogen C) or HEK293 cells stably transfected with hPD-L1 (for mice immunized with Immunogen B) . Five days later, the mice were sacrificed, and their splenocytes were collected. NH4OH was added to the splenocyte samples to a final concentration of 1% (w/w) to lyse red blood cells in the sample. The samples were centrifuged at 1000 rpm and washed three times with DMEM culture media. The viability of the splenocytes was determined, and viable splenocytes were then fused with mouse myeloma cells SP2/0 (ATCC) at a ratio of 5: 1 by the high efficiency electric fusion method (see Methods in Enzymology, Vol. 220) .
Fused cells were re-suspended in DMEM media containing 20%FBS and 1x hypoxanthine-aminopterin-thymidine (HAT) medium (w/w) , and the concentration was adjusted to 105 cells/200μL. 200μL of fused cells were added to each well of 96-well plate, which was incubated at 37℃, 5%CO2.14 days after cell fusion, hybridoma supernatants were collected and screened by ELISA and Acumen (microplate cell assay) . Clones with an OD450nm greater than 1.0 by ELISA and an MFI value greater than 100 by Acumen were expanded in a 24-well plate containing DMEM with 10% (w/w) heat-inactivated FBS at 37℃, 5% (v /v) CO2. Supernatants were collected after 3 days of culturing. The antibody isotypes were determined, and their ability to bind to recombinant PD-L1ECD protein and PD-L1-expressing cells was determined by ELISA and flow cytometry (see Example 3) . A receptor ligand binding assay was performed to determine the blocking activity of the hybridoma supernatant (see Examples4-5) .
Based on the 24-well plate screening results, clones with OD450nm values greater than 1.0 by the ELISA binding assay, MFI values greater than 50 by the FACS binding assay, and inhibition rates greater than 60%by the receptor ligand binding assay were selected and subcloned. Subcloning was carried out by limited dilution in a 96-well plate with DMEM media containing 10% (v/v) FBS at 37℃ and 5% (v/v) CO2. After 10 days of culturing, the  supernatants were collected and preliminarily screened by ELISA and Acumen. Positive clones were expanded in a 24-well plate and cultured for 3 days. Supernatants were collected. ELISA and FACS binding assays were performed to determine the binding activity, and receptor ligand binding assays were performed to assess the biological activity. The selection criteria was as follows: OD450 nm > 1.0 by ELISA, MFI value > 50 by FACS, and inhibition rate > 60%by receptor ligand binding assay. Clones that met the selection criteria were expanded in DMEM media containing 10%(w/w) FBS at 37℃, 5% (v/v) CO2 and frozen in liquid nitrogen so that the hybridoma cells could be used for subsequent antibody production and purification.
(step 5) Production and purification of lead candidate antibodies
The antibody concentrations from the hybridoma cells were low, about 1-10 μg/mL, and there was a large variation in antibody concentrations. In addition, the FBS and the components of the culture medium can interfere with the analysis. Therefore, it was necessary to perform small scale antibody production and purification (1-5 mg) .
Hybridoma cells from Example 2 (part 4) were cultured in T-75 culture flasks using Hybridoma serum free medium (Invitrogen) , and passaged for 3 generations. Cells were transferred to 2L culture flasks when the hybridoma cells were in good condition. 500mL of production media was added to each culture flask, and the cell density was adjusted to 105 cells/mL. The culture flasks were placed onto a rotary incubator at 37℃ with a rotating speed of 3 cycles per minute. Hybridoma cells were cultured for 14 days, after which the supernatant was collected and the cells were removed. The supernatants were then filtered through 0.45 micron filtration. The culture supernatants were then ready for purification or storage at -30℃.
Monoclonal antibodies were purified by passing the hybridoma culture supernatants through 2mL Protein G columns (GE Healthcare) . Protein G columns were first equilibrated with PBS buffer (pH7.2) , and the hybridoma culture supernatants were then applied to the equilibrated Protein G columns with a constant flow rate of 3mL/minute. The columns were then washed with 4 volumes of PBS buffer. The chimeric anti-PD-L1 antibodies were then eluted with elution buffer (0.1M acetate buffer, pH2.5) , and the UV absorbance of the eluates were monitored using a UV detector (A280 UV absorption peak) . 10%of 1.0M Tris-HCL buffer was added to the eluates to neutralize the pH, and the samples were sterile-filtered by passing them through 0.22 micron filters. Sterile-filtered purified chimeric anti-PD-L1 antibodies were obtained.
The concentration of purified chimeric anti-PD-L1 antibodies was determined by UV absorbance (A280/1.4) , and the purity and endotoxin level (Lonza kit) were measured. The results of the analyses are shown in Table 6. The purified chimeric anti-PD-L1 antibodies had endotoxin concentrations less than 1.0 EU/mg.
Table 6. Quality Control analysis of Purified Chimeric PD-L1 mAbs from Hybridoma
Figure PCTCN2016112428-appb-000012
Example 3 –Characterization of lead candidate antibodies
(part A) Detection of the binding of anti-PD-L1 antibodies to recombinant PD-L1ECD-hFc protein by ELISA
The binding of purified anti-PD-L1 antibodies from Example 2 to recombinant human PD-L1ECD-hFc protein, cyno PD-L1ECD-hFc protein and other PD-L1 family-related immune checkpoint protein PD-L2 was analyzed by ELISA to determine the specificity of the antibodies.
Purified Immunogen A (hPD-L1ECD-hFc protein) from Example 2, cyno PD-L1ECD-hFc protein (prepared using the method for preparing Immunogen A; see Example 2, step 1) , comprising the amino acid sequence of the extracellular domain of cyno PD-L1, which corresponds to amino acids Phe19-Thr239 of Uniprot database protein G7PSE7) , and other immune checkpoint proteins (PD-L2 and NC-Fc) (R&D Systems) were diluted to 1 μg/mL in PBS. 100μL of the diluted recombinant proteins were added to each well of 96-well plate. The plates were sealed with plastic film and incubated at 4℃ overnight. The plates were washed twice with wash buffer (PBS + 0.01% (v/v) Tween20) , and incubated with blocking buffer (PBS + 0.01% (v/v) Tween20 + 1% (w/w) BSA) at room temperature for 2 hours. The blocking buffer was aspirated away, and 100μL of purified anti-PD-L1 antibodies were added to each well and incubated for 2 hours at 37℃. The plates were washed three times with wash buffer (PBS + 0.01% (v/v) Tween20) . HRP-conjugated secondary antibody (Sigma) was added to each well and incubated for 2 hours at 37℃. After the plates were washed three times with wash buffer, 100μL TMB substrate were added to each well, and the plates were incubated for 30 minutes at room temperature. 100μL stop solution (0.1N HCl) was added to each well to stop the reaction. The absorbance at 450nm was measured with an ELISA plate reader (384plus SpectraMax, Molecular Devices) . The results are shown in Figures 4-6 and in Tables 7-9. The IgG control was human IgG.
Table 7. Binding activities of chimeric anti-PD-L1 mAbs to human PD-L1ECD-hFc, as measured by ELISA
Figure PCTCN2016112428-appb-000013
Figure PCTCN2016112428-appb-000014
Table 8. Binding activities of chimeric anti-PD-L1 mAbs to Cyno Monkey PD-L1ECD-hFc, as measured by ELISA
Figure PCTCN2016112428-appb-000015
Figure PCTCN2016112428-appb-000016
Table 9. Binding activities of chimeric anti-PD-L1 mAbs to PD-L1 and PD-L2, as measured by ELISA
Figure PCTCN2016112428-appb-000017
(part B) Detection of the binding of anti-PD-L1 antibodies to cells expressing PD-L1 by flow cytometry
CHO-K1 cells were stably transfected with a pIRES plasmid containing the nucleic acid sequence encoding full length human PD-L1 (see Example 2, step 2) to generate CHO-K1 cells stably expressing human PD-L1 (herein referred to as CHO-K1-hPD-L1 cells) . Other CHO-K1 were stably transfected with a pIRES plasmid containing the nucleic acid sequence encoding full length cyno PD-L1 to generate CHO-K1 cells stably expressing cyno PD-L1 (herein referred to as CHO-K1-cPD-L1 cells) . CHO-K1-hPD-L1 and CHO-K1-cPD-L1 cells were cultured and expanded in T-75 culture flasks to 90%confluence. The culture media was aspirated, and the cells were washed twice with HBSS (Hanks Balanced Salt Solution, Invitrogen) . The cells were treated with enzyme-free cell dissociation solution (Versene solution, Invitrogen) and collected. The cells were then washed twice with HBSS, cell counts were determined, and cells were resuspended with HBSS at 2 x 106 cells/mL. Goat serum was added to the cell suspension to a final concentration of 1%, and the cells were blocked for 30 minutes on ice and then washed twice with HBSS. The cells were collected after centrifugation and resuspended in FACS buffer (HBSS + 1%BSA, v/v) at 2 x 106 cells/mL. 100μL of the cell suspension were then added to each well of 96-well plate. 100μL of purified anti-PD-L1 antibodies from Example 2 were added to each well of the 96-well plate and incubated for 2 hours on ice. Cells were washed twice with FACS buffer, and 100μL of Alexa 488-labeled secondary antibody (Invitrogen) were added to the 96-well plate and incubated for 1 hour on ice. The samples were washed three times with FACS buffer, and 100μL fixation buffer (4%paraformaldehyde v/v) were added to each well and incubated for 10 minutes. The cells were then washed twice with FACS buffer and resuspended in 100μL FACS buffer. The mean fluorescence intensity (MFI) was determined using FACS Calibur (BD) , and the results are shown in Figures 7-8 and in Tables 10-11. The IgG control was human IgG, and the values in the tables are the mean fluorescence intensity of the cell population.
Table 10. Binding activities of chimeric anti-PD-L1 mAbs to CHO-K1-hPD-L1, as determined by FACS
Figure PCTCN2016112428-appb-000018
Figure PCTCN2016112428-appb-000019
Table 11. Binding activities of chimeric anti-PD-L1 mAbs to CHO-K1-cPD-L1, as determined by FACS
Figure PCTCN2016112428-appb-000020
Figure PCTCN2016112428-appb-000021
(part C) Binding affinity and Dissociation constant of anti-PD-L1 antibodies
Dissociation constants were determined by Octed red 96 (Fortiebio) . The detailed operation and methods were followed according to the specifications of the instrument provided by the manufacturer. Briefly, a streptavidin sensor (SA sensor, Fortiebio) was used for the affinity determination. Biotinylated PD-L1ECD-hFc (Immunogen A) was diluted to 10 μg/mL in PBS buffer (pH7.4) containing 0.1% (w/w) BSA and 0.02% (v/v) Tween20 and incubated with the streptavidin sensor. Five different concentrations of anti-PD-L1 antibody were incubated with the Immunogen A-loaded streptavidin sensor at 30℃ for 3 minutes. The reaction mixture was further incubated in PBS buffer (pH7.4) containing 0.1% (v/w) BSA and 0.02% (v/v) Tween20 at 30℃ for 5 minutes. The association and dissociation signals of anti-PD-L1 antibodies to Immunogen A were recorded in real time using Octet Red 96. The affinity, association and dissociation constants were determined using Octet User software, and the results are shown in Table 12.
Table 12. Binding kinetics and affinities of chimeric anti-PD-L1 mAbs to human PD-L1ECD-hFc protein, as determined by Octet Red 96
Clone ID KD (nM) ka (1/Ms) kd (1/s)
78B2D7 1.37E-10 8.40E+05 1.15E-04
78A11F6 1.48E-10 2.45E+05 3.64E-05
105C5D7 2.45E-10 1.50E+06 3.68E-04
73D3G2 <1.0E-12 3.98E+05 <1.0E-07
73G11B3 1.16E-10 3.41E+05 3.95E-05
127D2F3 <1.0E-12 3.68E+05 <1.0E-07
192D9E7 5.19E-11 5.06E+05 2.63E-05
Example 4 –Determination of the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1
Protein-based receptor ligand binding assays were performed to determine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1. 
Biotinylated recombinant PD-1ECD and B7.1ECD proteins were prepared as described for biotinylated recombinant PD-L1ECD-hFc in Example 2. The extracellular domain of PD-1 corresponds to amino acids Leu25-Glu167 of Uniprot database protein Q15116, and the extracellular domain of B7.1 corresponds to amino acids Val35 -Asn242 of Uniprot database protein NP_005182. 
Purified PD-L1ECD-hFc (Example 2) was diluted with PBS to a final concentration of 1.0 μg/mL, and 100μL diluted PD-L1ECD-hFc were added to each well of a 96-well plate that was then sealed with plastic film and incubated at 4℃ overnight. The plate was washed twice with wash buffer (PBS + 0.01% (v/v) Tween 20) and incubated with blocking buffer (PBS + 0.01% (v/v) BSA + 1%Tween 20 (w/w) ) at room temperature for 2 hours. The blocking buffer was aspirated, and 50μL purified anti-PD-L1 antibodies from Example 2 were added to each well of 96-well plate. 100μL of biotinylated recombinant PD-1ECD or B7.1ECD protein were added to each well, mixed, and incubated at 37℃ for 2 hours. The plate was washed three times with wash buffer (PBS + 0.01% (v/v) Tween 20) . 100μL HRP-conjugated streptavidin (Sigma) were then added to each well and incubated at 37℃ for 2 hours. The plate was then washed three times with wash buffer, and 100μL TMB substrate were added to each well. After 30 minutes of incubation at room temperature, the reaction was stopped by adding 100μL stop solution (0.1N HCl) . The absorbance at OD450nm was measured with an ELISA plate reader (384plus SpectraMax, Molecular Devices) . The results, shown in Figures 9-10, demonstrate that the anti-PD-L1 antibodies can block the binding of PD-L1 to its binding partners, PD-1 and B7.1.
Example 5 –PBMC stimulation assay to examine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.1
(A) A T cell stimulation assay was performed to examine the effect of the anti-PD-L1 antibodies on T cell stimulation by their blocking of the binding of PD-L1 to its binding partners PD-1 and B7.1.
(step 1) Isolation of peripheral blood mononuclear cells (PBMCs) from whole blood by a Ficoll gradient. 
Whole blood was diluted with PBS at a ratio of 1: 1 (v/v) and gently added on top of Ficoll solution (GE Healthcare) using a sterile pipette. The volume ratio of Ficoll to diluted whole blood was 3: 4. The samples were centrifuged at 400g at 20℃ for 30 minutes. Three layers of solution were formed after centrifugation, with the upper layer being plasma, and the middle milk white layer being mononuclear cells. A sterile pipette was used to collect the mononuclear cells from the middle layer and transfer them to a new centrifugal tube. Three times the sample volume of PBS was added, and the samples were centrifuged at 100g at room temperature for 10 minutes. The supernatant was discarded, and the lymphocytes were resuspended with 10mL PBS buffer. The lymphocytes were washed with PBS three times to remove blood platelets. The lymphocyte suspension was then resuspended with 10mL RPMI1640 culture medium (Invitrogen) containing 10%FBS.
(step 2) PBMC stimulation test
Constructs encoding full-length PD-L1 protein were generated by subcloning PD-L1 nucleotide sequence into pIRES plasmid (pIRES-puro-PD-L1) . To anchor anti-CD3 (OKT3) (see Kipriyanov et al., 1997, Peds. 10: 445-453) into the cell membrane, OKT3 scFv was fused to the C-terminus of mouse CD8a (amino acids 113-220 of NCBI  accession No: NP -1074579.1) and subcloned into pIRES-OS8 (see Sambrook and Russell, Id. ) . pIRES-puro-PD-L1 and pIRES-OS8 were co-transfected to CHO-K1 and Hep3Bcells following the preparation method in Example 2 to generate the stable cell lines CHO-K1-PD-L1/OS8 and Hep3B-PD-L1/OS8. The cells were used to stimulate T lymphocytes. Before the experiments, CHO-K1-PD-L1/OS8 and Hep3B-PD-L1/OS8 cells were treated with 10 μg/mL mitomycin at 37℃ for 3 hours.
100μL PBMC (containing 5 x 104 cells) were added to the wells of a 96-well plate, and the test antibody solution was then added to the 96-well plate and incubated for 15 minutes at room temperature. 50μL of 5 x 103 CHO-K1-PD-L1/OS8 or Hep3B-PD-L1/OS8 were added to each well and cultured at 37℃, 5%CO2 for 72 hours. The supernatants were collected and stored at -20℃ until analysis.
(step 3) Detection of interferon gamma (IFN-γ) secretion by ELISA
Quantification of the levels of IFN-γ in culture supernatant was carried out using Human IFN-gamma Quantikine ELISA Kit (R&D Systems SIF50) , following the manufacturer-provided operating instructions and kit reagents. Briefly, the IFN-γ polyclonal antibodies were coated onto the ELISA microplates, and 400μL of culture supernatant as well as the standard were added to each well and incubated at room temperature for 2 hours. The plates were washed 4 times with wash buffer, followed by the addition of HRP-conjugated anti-human IFN-γ antibodies, and incubated at room temperature for 2 hours. After washes, a chromogenic substrate was added and incubated in the dark at room temperature for 30 minutes, and the reaction was terminated by the addition of a stop solution. The absorbance at 450nm was determined using an ELISA plate reader, and the results, shown in Figure 11 -12and in Table 13, demonstrate that the anti-PD-L1 antibodies analyzed by the PBMC lymphocyte stimulation test can increase IFN-γsecretion. The IgG control is human IgG, and the values listed in the table are the IFN-γ concentrations in the culture supernatant (pg/mL) .
Table13. Chimeric anti-PD-L1 mAbs induce IFN-γ release from stimulated PBMCs
Figure PCTCN2016112428-appb-000022
Figure PCTCN2016112428-appb-000023
Example 6 –Mixed lymphocyte reaction assay to examine the ability of the anti-PD-L1 antibodies to block the binding of PD-L1 to its binding partners PD-1 and B7.
(B) A mixed lymphocyte reaction was performed to examine the impact of the anti-PD-L1 antibodies on T cell stimulation by their blocking of the binding of PD-L1 to its binding partners PD-1 and B7.1.
(step 1) Isolation and culture of dendritic cells from human CD14+ cells
Ficoll Paque Plus (GE Healthcare) was used to isolate PBMCs from whole blood, following the manufacturer-provided instructions. The protocol was the same as that described in Example 5A, step 1.
PBMCs were resuspended in RPMI 1640 complete medium containing 10%FBS, and the cell concentration was adjusted to 1 x 105 cells/mL. The cells were cultured in T-75 culture flasks at 37℃, 5% (v/v) CO2 for 2 hours. The culture supernatant and non-adhered cells were transferred to a new T-75 culture flask, and the original T-75 culture flask was replenished with new RPMI 1640 complete culture medium supplemented with 10%FBS and incubated at 37℃ and 5% (v/v) CO2 for 2 hours. The culture supernatant and non-adhered cells were removed, and the adherent cells were replenished with RPMI 1640 culture media containing 10%FBS and incubated at 37℃, 5% (v/v) CO2 for 18 hours. The culture supernatant and non-adhered cells were removed, and the adherent cells were replenished with RPMI 1640 complete culture media supplemented with 500U/mL recombinant human GM-CSF (PEPROTECH) and 500U/mL recombinant human interleukin IL-4 (PEPROTECH) and cultured for 4 days. After 4 days, the culture media was replenished with complete RPMI 1640 media supplemented with GM-CSF and IL-4, and the cells were cultured for an additional 2 days. The culture medium was then replaced with RPMI 1640 complete media with 1 μg/mL LPS and incubated for 18 hours. Dendritic cells were then collected by adding PBS containing EDTA and centrifuging at 300g for 5 minutes. The supernatant was aspirated, and the cells were washed once more with PBS. The collected human CD14+ dendritic cells were resuspended in RPMI 1640 complete media, and the cell counts were determined.
(step 2) Isolation and purification of human CD4+ T cells.
Human CD4+ T cells were isolated and purified from PBMCs using a MagCellectTM human CD4 + T Cell Isolation Kit (R&D Systems) , following the manufacturer-provided instructions.
(step 3) Mixed lymphocyte reaction
Purified CD4+ cells from different healthy volunteers were co-cultured with dendritic cells in 96-well plates. The cell densities were adjusted to 105 cells per 80μL. 105 purified CD4+ T cells and 2 x 104 dendritic cells were added to each well of a 96-cell plate, purified anti-PD-L1 antibodies from Example 2 were added to the appropriate wells in the plate, and the plates were incubated at 37℃ in a 5%CO2 incubator. The supernatants were collected at day 3 for IL-2 measurement and at day 5 for IFNγ measurement, and the cytokine levels were determined.
(step 4) Measurement of IFN-γ and IL-2 levels in supernatant by ELISA
Quantification of the levels of IFN-γ or IL-2 in the supernatants collected in the previous step was carried out using Human IFN-gamma Quantikine ELISA Kit (R&D Systems SIF50) and Human IL-2 Quantikine ELISA Kit D2050 (R&D Systems S2050) , respectively, following the manufacturer-provided operating instructions and kit reagents.
The results for IL-2, shown in Figures 14, 21-22, 25-26and in Tables 14-19, show that the IL-2 level increased with an increase in anti-PD-L1 antibody concentrations. The IgG control is human IgG, and the values listed in Tables 14-19 are the IL-2 concentration (pg/mL) in the culture supernatants.  PBMC donor  0, 1, 2, etc. refer to blood donor ID.
Table 14. Chimeric anti-PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor 0)
Figure PCTCN2016112428-appb-000024
Table 15. Chimeric anti-PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor 2)
Figure PCTCN2016112428-appb-000025
Table 16. Chimeric PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor 1)
Figure PCTCN2016112428-appb-000026
Table 17. Chimeric PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor 2)
Figure PCTCN2016112428-appb-000027
Table 18. Chimeric PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor1)
Figure PCTCN2016112428-appb-000028
Table 19. Chimeric PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay (PBMC donor 2)
Figure PCTCN2016112428-appb-000029
The results for IFN-γ, shown in Figures 13, 15-20, 23-24 and in Tables 20-27, show that the IFN-γ level increased with an increase in anti-PD-L1 antibody concentrations. The IgG control is human IgG, and the values listed in Tables 19-26 are the IFN-γ concentration (pg/mL) in the culture supernatants.
Table 20. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000030
Table21. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000031
Table 22. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000032
Table 23. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000033
Table 24. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000034
Figure PCTCN2016112428-appb-000035
Table 25. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000036
Table 26. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000037
Table 27. Chimeric PD-L1 mAbs induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000038
Example 7 –Determination of the amino acid sequences in the variable regions of the anti-PD-L1 antibodies
Total RNA isolation: After the supernatants from the hybridoma subclones obtained from Example 2 were characterized (i.e., validation and determination of bioactivity, Examples 3-5) , 5x107 hybridoma cells were collected by centrifugation. 1mL Trizol was added to the cell pellets, mixed and transferred to 1.5mL centrifuge tubes, and incubated at room temperature for 5 minutes. 0.2mL chloroform was added to the samples and vortexed for 15 seconds. After standing for 2 minutes, the mixtures were centrifuged at 12000g at 4℃ for 5 minutes. The supernatants were collected and transferred to new 1.5mL centrifuge tubes, 0.5mL isopropyl alcohol was added and mixed gently, and the samples were incubated at room temperature for 10 minutes. The samples were centrifuged at 12000g at 4℃for 15 minutes. The supernatants were aspirated, and the precipitates were washed with 1mL 75% (v/v) ethanol. The mixtures were centrifuged at 12000g at 4℃ for 5 minutes, the supernatants were decanted, and the precipitates were air-dried. Total RNA was obtained by adding DEPC-treated water to the precipitates (55℃ water bath for 10 minutes) .
Reverse transcription and PCR: 1μg of RNA and reverse transcriptase were added to a reaction mixture of a final volume of 20μL, and the mixture was incubated at 42℃ for 60 minutes and then at 70℃ for 10 minutes to terminate the reaction. A 50μL PCR reaction mixture was prepared, containing 1μL cDNA, 25 pmol of each primer,  1μL DNA polymerase, 250μmol dNTPs, and the buffer system. The PCR program settings were as follows: denaturation at 95℃ for 3 minutes, 35 cycles of denaturation (95℃ for 30 seconds) , annealing (55℃ for 30 seconds) and elongation (72℃ for 35 seconds) , followed by a final extension at 72℃ for 5 minutes to obtain the PCR product. The commercially available reverse transcription kit used was PrimeScript RT Master Mix (Takara, RR036) , and the commercially available Q5 ultra-fidelity polymerase PCR kit was from NEB (M0492) .
Cloning and sequencing: 5μL PCR products were examined by agarose gel electrophoresis, and the samples were recovered from the agarose gel using NucleoSpin Gel &PCR Clean-up kit (MACHEREY-NAGEL, 740609) . Ligation reaction: To a 50ng sample, 50ng T vector, 0.5μL ligase, and 1μL buffer were added and brought to a final volume of 10μL with water. The reaction mixture was incubated at 16℃ for 30 minutes using the T4 DNA Ligase (NEB, M0402) . 5μL ligation product was added to 100μL competent cells (Ecos 101competent cells, Yeastern, FYE607) , which were incubated on ice for 5 minutes, heat shocked at 42℃ for 1 minute and incubated on ice again for 1 minute. Cells were recovered by adding 650μL SOC medium without antibiotics and incubating at 37℃ in a shaking incubator for 30 minutes at 200 rpm. 200μL of each bacterial culture were spread onto an LB agar plate containing antibiotics at 37℃ overnight. The next day, PCR reactions were set up using the T vector primers M13F and M13R. Pipette tips were used to pick bacterial colonies and were dipped into PCR reaction mixture and pipetted up and down. Half of the reaction mixture was transferred to an LB agar plate containing 100nM ampicillin. After the PCR reactions, 5μL of the PCR products were removed and examined by agarose gel electrophoresis, and positive samples were sent for sequencing and analysis (Kabat, 1991, “Sequences of proteins of objective interest, ” the NIH, Bethesda, MD) . The sequencing results are shown in Tables 1-2.
Example 8 –Conversion, expression and purification of fully human anti-PD-L1 antibody
(step 1) Plasmid construction and preparation: Sequences of the anti-PD-L1 antibody heavy and light chain variable regions were obtained according to Example 6. The anti-PD-L1 antibodies’heavy chain variable region sequences were subcloned into expression vectors containing a signal peptide and a human heavy chain IgG4 constant region with a S228P mutation. The anti-PD-L1 antibodies’light chain variable region sequences were subcloned into expression vectors containing a signal peptide and a human antibody light chain kappa constant region. The recombinant plasmids were verified and confirmed by sequencing (the sequencing method was the same as in Example 6) . Alkaline lysis was performed using a reagent kit (MACHEREY-NAGEL) to improve the purity and quality of the recombinant plasmids, and the plasmids were filtered through 0.22uM filters (Millpore) . The purified plasmids were used for transfection.
(step 2) Transfection: HEK293E cells (Invitrogen) were cultured in FreeStyle 293 medium (Invitrogen) at 37℃, 130RPM, 8%CO2 (v/v) . HEK293E cells were adjusted to 1-1.5x106/mL cell density for transfection. 10% (v/v) F68 (Invitrogen) was added to the FreeStyle 293 medium to a final concentration of 0.1% (v/v) , as Medium A. 5mL of Medium A and 200 μg/mL PEI (Sigma) were mixed to generate Medium B. 5mL of Medium A and 100 μg/mL recombinant plasmid from step 1 were mixed to generate Medium C. After 5 minutes of incubation, Medium B and Medium C were mixed and incubated for 15 minutes to generate Mixture D. 10mL of Mixture D were slowly added to 100mL HEK293E cells with continuous stirring to avoid local accumulation of PEI. HEK293E cells were incubated overnight while shaking. The next day, peptone was added to a final concentration of 0.5% (w/v) . On about day 5-7, the antibodies’titers were determined. On about day 6-7, the HEK293E cultures were centrifuged (30 minutes, 3500RPM) , and the supernatants were collected and filtered through 0.22uM filters for purification.
(step 3) Antibody purification: Protein A columns (GE) were washed with 0.1M NaOH for 30 minutes or with 5 bed volumes of 0.5M NaOH to get rid of endotoxin. Columns that had not been used in a longtime were soaked in 1M NaOH for at least 1 hour, washed with endotoxin-free water to a neutral pH, and washed with 10 bed volumes of 1%Triton X100. The columns were then equilibrated with 5 bed volumes of PBS (PBS phosphate buffer, pH7.2) . The filtered supernatants from step 2 were loaded onto the columns, and the flow through was collected, if necessary.  The columns were washed with 5 bed volume of PBS and then eluted with 5 bed volumes of 0.1M Glycine-HCl pH3.0. The eluates containing anti-PD-L1 antibodies were neutralized with 0.5 bed volumes of 1M Tris-HCl (NaCl 1.5M) pH8.5. The human anti-PD-L1 antibodies were dialyzed in 1X PBS for 4 hours, to avoid endotoxin contamination. After dialysis, the anti-PD-L1 antibody concentrations were determined by spectrophotometry or a reagent kit, the purities of the antibodies were determined by HPLC-SEC, and the contents of endotoxin were determined by an endotoxin test kit (Lonza) . The fully human anti-PD-L1 antibodies were characterized, and the results are shown in Figures 27-52, and in Tables 28-46. Figures 27-28and Tables 28-29show the binding of the fully human anti-PD-L1 antibodies to human and cyno PD-L1-ECD by ELISA. Figures 29-30 and Tables 30-31 show the binding of the fully human anti-PD-L1 antibodies to CHOK1 cells expressing human and cyno PD-L1 by FACS. Figures 31-32 show that the fully human anti-PD-L1 antibodies block the binding of PD-L1 to its binding partners PD-1 and B7.1. Figures 33-42and Tables 32-41show fully human anti-PD-L1 antibodies increase IFN-γ and IL-2 release in a mixed lymphocyte reaction. Figures 43-47 and Tables 42-46 show fully human anti-PD-L1 antibodies increase IFN-γ and IL-2 release in a T cell stimulation assay.
Table 28. Binding activities of fully human anti-PD-L1 mAbs to human PD-L1ECD-hFc, as measured by ELISA
Figure PCTCN2016112428-appb-000039
Figure PCTCN2016112428-appb-000040
Table 29. Binding activities of fully human anti-PD-L1 mAbs to cyno PD-L1ECD-hFc, as measured by ELISA
Figure PCTCN2016112428-appb-000041
Figure PCTCN2016112428-appb-000042
Figure PCTCN2016112428-appb-000043
Table 30. Binding activities of fully human anti-PD-L1 mAbs to CHOK1-hPD-L1 as measured by FACS
Figure PCTCN2016112428-appb-000044
Table 31. Binding activities of fully human anti-PD-L1 mAbs to CHO-K1-cPD-L1, as determined by FACS
Figure PCTCN2016112428-appb-000045
Table 32. Fully human PD-L1 mAbs induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000046
Table 33. Fully human PD-L1 mAb induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000047
Table 34. Fully human PD-L1 mAb induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000048
Table 35. Fully human PD-L1 mAb induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000049
Table 36. Fully human PD-L1 mAb induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000050
Table 37. Fully human PD-L1 mAb induce IL-2 release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000051
Table 38. Fully human PD-L1 mAb induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000052
Figure PCTCN2016112428-appb-000053
Table 39. Fully human PD-L1 mAb induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000054
Table 40. Fully human PD-L1 mAb induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000055
Table 41. Fully human PD-L1 mAb induce IFN-γ release, as determined by a mixed lymphocyte reaction assay
Figure PCTCN2016112428-appb-000056
Table 42. Fully human PD-L1 mAb induce IFN-γ release, as determined by a T cell stimulation assay
Figure PCTCN2016112428-appb-000057
Table 43. Fully human PD-L1 mAb induce IFN-γ release, as determined by a T cell stimulation assay
Figure PCTCN2016112428-appb-000058
Figure PCTCN2016112428-appb-000059
Table 44. Fully human PD-L1 mAb induce IFN-γ release, as determined by a T cell stimulation assay
Figure PCTCN2016112428-appb-000060
Table 45. Fully human PD-L1 mAb induce IFN-γ release, as determined by a T cell stimulation assay
Figure PCTCN2016112428-appb-000061
Table 46. Fully human PD-L1 mAb induce IFN-γ release, as determined by a T cell stimulation assay
Figure PCTCN2016112428-appb-000062
Example 9 –Determination of binding and dissociation constants by Biacore
Anti-human Fc IgG was immobilized on flow cells 1 and 2: HBS-EP+ (10mM HEPES, 150mM NaCl, 3mM EDTA, 0.05%P20, pH 7.4) was used as running buffer, and the immobilization of anti-human Fc IgG was carried out using the immobilization wizard template.  Flow cells  1 and 2 of a Series S CM5 sensor chip were activated with freshly-mixed 50mmol/L NHS and 200mmol/L EDC. 20 μg/mL of anti-human Fc IgG diluted in 10mM NaAC (pH 4.5) was injected into the activated  flow cells  1 and 2. The remaining active coupling sites were blocked with 1M ethanolamine.
Recombinant His-tagged hPD-L1 ECD protein was diluted to 50nM, followed by four 2-fold serial dilutions with HBS-EP+ buffer. The His-tagged hPD-L1 ECD protein concentrations were 0nM, 3.125nM, 6.25nM, 12.5nM, 25nM and 50nM. KD measurements were carried out with HBS-EP+ as the running buffer. Each antibody was injected over the CM5 sensor flow cell 2 with a flow rate of 10 μL/min to reach response 230 RU. Prepared His-tagged hPD-L1 ECD protein was then injected over  flow cells  1 and 2, at a flow rate of 30μL/min for 180sec. Buffer flow was maintained for 400 seconds for dissociation measurements (30μL/min) . To remove the tested antibody from the surface, 10mM glycine-HCl pH 1.5 was injected for 20 seconds (30μL/min) . Flow cell 1 was used as reference flow cell. The above steps were repeated for each concentration of serially-diluted His-tagged PD-L1ECD protein. The KD  value for each antibody was evaluated using Biacore T200 evaluation software 1.0, and the data was fit with a 1: 1 binding model. The results are shown in Table 47.
Table 47. Binding kinetics and affinities of fully human anti-PD-L1 mAbs to His-tagged human PD-L1 ECD protein, as determined by Biacore
Clone ID KD (M) ka (1/Ms) kd (1/s)
78A11F6 6.430E-10 7.336E+5 4.717E-4
73D3G2 5.358E-10 1.414E+6 7.573E-4
Example 10 –ADCC and CDC Effector Function Analysis
To confirm the presumed absence of effector function of fully human anti-PD-L1 antibodies, antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were performed. 
For the ADCC assay, samples of PD-L1-expressing HCC827 cells were adjusted to a concentration of 12.5 × 104 cells/mL with ADCC medium (without phenol red) . 40μL of cell suspensions (1 × 104 viable cells) were added to each well of a v-bottom 96-well plate. 20μL of antibody were serially diluted in ADCC medium (without phenol red) and added to each well in triplicate. The plate was incubated at 22-25℃ for 30 minutes. NK92 cells stably transfected with FcγRⅢ158V were adjusted with ADCC medium (without phenol red) so that by adding 40μL of NK92 cells stably transfected with FcγRⅢ158V to the target cells, the ratio of effector to target cells was 1: 1. The plate was then incubated at 37℃ for 4 hours. After 4 hours incubation, 100μL substrate from CytoTox 96 kit (Promega) were added to each well. For maximum cell lysis control, 2μL of lysis solution (CytoTox-ONETM kit, Promega) was added 10 minutes before the addition of 100μL substrate from CytoTox 96 kit. The plate was incubated at room temperature for 10 minutes, and 50μL of stop solution were then added to each well and mixed for 30 seconds. The absorbance at 560/590nm was measured, and the 1%lysis values were calculated using GraphPad Prism 5.0. The results, shown in Figure 48, show that the positive control anti-EGFR antibody induced ADCC in HCC827 cells, but the fully human anti-PD-L1 antibodies had no ADCC effect onHCC827 cells. 
For the CDC assay, HCC827 cells were adjusted to 1.25 × 106 cells/mL with cell culture medium. To a flat-bottom 96-well white plate, 40μL/well of cells were added. 40μL/well of fully human anti-PD-L1 antibody, serially diluted in CDC medium, were added to each well in duplicate. The plates were incubated in the hood for 30 minutes. Commercially available purified human complement (Quidel, cat #042637) was added to the plates containing cells at 20μL/well to a final concentration of 20%. The plates were incubated at 37℃ for 20 hours. The Celltiter-glo luminescent cell viability kit (Promega, No. G7573) was used to test cell viability according to the manufacture-provided protocol. The plates were shaken on a microplate shaker for 2 minutes at a speed of 200 and then incubated at room temperature for 10 minutes. The luminescence signal was read with Envision. For data analysis, the %cytotoxicity was calculated using GraphPad Prism 5.0. The results, shown in Figure 49, show that the positive control anti-EGFR antibody induced CDC in HCC827 cells, but the fully human anti-PD-L1 antibodies had no CDC effect onHCC827cells.
Example 11 –Antibody thermostability, measured by differential scanning calorimetry (DSC) 
Fully human anti-PD-L1 antibodies were adjusted to 1mg/mL and a final volume of about 700μL with sample buffer. The parameters were set up as follows (VP-DSC) : Starting Temperature 30℃; Final Temperature 100℃; Scan rate 50℃/hour; Number of Rescans 0; PreScan Thermostat 3 min; PostScan Thermostat 0 min; Post Cycle Thermostat 25℃; Filtering Period 25 seconds; Feedback Mode/Gain None; Cell Refill Parameters 35℃. The resulting protein-buffer thermograms were processed by subtracting a corresponding buffer–buffer scan and subsequently fitting a baseline to the trace. The Tms were recorded at each peak maxima observed in the thermograms using OriginTM 7.0 software. The results are shown in Figure 50.
Example 12 –Antibody freeze/thaw stability
The freeze/thaw stabilities of the fully human anti-PD-L1 antibodies were characterized as follows. A 100μL aliquot from the frozen stocks of each anti-PD-L1 antibody was thawed at room temperature. Once fully thawed, the samples were then rapidly frozen in the -80℃ freezer and kept at -80℃ for at least two hours before being thawed again at room temperature. The samples went through three identical freeze/thaw cycles. Visual inspection was used to check for precipitation. 20μL aliquots were removed from the samples for size-exclusion chromatography (SEC) analysis after three freeze/thaw cycles. The stability of the fully human anti-PD-L1 antibodies before and after the freeze/thaw cycles were analyzed by HPLC-SEC characterization. The results, shown in Figure 51, demonstrated that after three freeze/thaw cycles, monomer IgGs accounted for more than 95%of each of the anti-PD-L1 antibodies tested.
Example 13 –Antibody solubility
The solubility of the fully human anti-PD-L1 antibodies was characterized by concentrating 10mg IgG using centrifugal filters (Amicon Ultra-0.5mL 30K) at 14000g at 4℃ down to >100mg/mL. 2mL or more of IgG was added into the centrifugal filters and concentrated at 14000g at 4℃. The setting time of centrifuging was 2 min, 3 min, 5 min, 8 min, 15 min, and 20 min, and each time 20μL were aliquoted to a collection tube to measure the concentration with a nanodrop at A280. The centrifugation was finished when the concentration reached 100mg/mL. For HPLC-SEC characterization, 6μL of concentrated samples were injected into an HPLC-SEC column, and the percentages of monomers and aggregates were determined based on the peak area. The results, shown in Figure 52, demonstrated that all of the fully human anti-PD-L1 antibodies tested had a solubility over 100mg/mL and that monomer IgGs were higher than 95%for all of the anti-PD-L1 antibodies tested.
While the invention has been described in detail, and with reference to specific embodiments thereof, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.
REFERENCES
Blank et al., 2005, Cancer Immunotherapy, 54: 307-314
Bowers NL, Helton ES, Huijbregts RPH, et al. PLoS Pathog. 2014 March; 10 (3) : e100399
Dong H, Zhu G, Tamada K, Chen L. Nature Med. 1999; 5: 1365–1369
Freeman et al., 2000, J. Exp. Med., 192: 1027-34
Harding and Lonberg, 1995, Ann. N.Y. Acad. Sci. 764: 536-546
Hirano et al., 2005, Cancer Res., 65: 1089-96
Kabat, 1991, “Sequences of proteins of objective interest, ” the NIH, Bethesda, MD
Kipriyanov et al., 1997, Peds. 10: 445-453
Lonberg and Huszar, 1995, Internal Rev. Immunol. 13: 65-93
Lonberg et al., 1994, Nature 368: 856-859
Sambrook and Russell, 1989, Molecular cloning: a laboratory manual, New York : Cold Spring Harbor Laboratory Press, 2nd ed.
Sheng Yao 2013 Nat Rev Drug Discov. 2013 12 (2) : 130–146
Weinstock and McDermott, 2015, Ther Adv Urol., 7 (6) : 365-77
Wherry, 2011, Nat. Immunol., 12: 492-99
Zippelius et al., 2015, Cancer Immunol Res. ; 3 (3) : 236-44
Zou and Chen L, 2008, Nat Rev Immunol., 8 (6) : 467-77

Claims (15)

  1. An isolated monoclonal antibody or antigen-binding fragment thereof comprising LCDR1, LCDR2, LCDR3, HCDR1, HCDR2 and HCDR3, having the polypeptide sequences of:
    (1) SEQ ID NOs: 30, 31, 32, 26, 27, and 28, respectively
    (2) SEQ ID NOs: 6, 7, 8, 2, 3, and 4, respectively;
    (3) SEQ ID NOs: 14, 15, 16, 10, 11, and 12, respectively;
    (4) SEQ ID NOs: 22, 23, 24, 18, 19, and 20, respectively;
    (5) SEQ ID NOs: 38, 39, 40, 34, 35, and 36, respectively;
    (6) SEQ ID NOs: 46, 47, 48, 42, 43, and 44, respectively; or
    (7) SEQ ID NOs: 54, 55, 56, 50, 51, and 52, respectively;
    wherein the antibody or antigen-binding fragment thereof binds PD-L1.
  2. The isolated monoclonal antibody or antigen-binding fragment of claim 1, comprising a heavy chain variable region having a polypeptide sequence at least 95% identical to SEQ ID NO: 25, 1, 9, 17, 33, 41 or 49, or a light chain variable region having a polypeptide sequence at least 95% identical to SEQ ID NO: 29, 5, 13, 21, 37, 45 or 53.
  3. The isolated monoclonal antibody or antigen-binding fragment of claim 1 or 2, comprising:
    a. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 25, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 29;
    b. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 1, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 5;
    c. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 9, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 13;
    d. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 17, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 21;
    e. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 33, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 37;
    f. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 41, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 45; or
    g. a heavy chain variable region having the polypeptide sequence of SEQ ID NO: 49, and a light chain variable region having the polypeptide sequence of SEQ ID NO: 53.
  4. The isolated monoclonal antibody or antigen-binding fragment of any of claims 1 to 3, wherein the antibody or antigen-binding fragment thereof is chimeric.
  5. The isolated monoclonal antibody or antigen-binding fragment of any of claims 1 to 3, wherein the antibody or antigen-binding fragment thereof is human.
  6. The isolated monoclonal antibody or antigen-binding fragment of claim 4 or 5, comprising a human heavy chain IgG4 constant region having a S228P mutation, and a human antibody light chain kappa constant region.
  7. An isolated nucleic acid encoding the monoclonal antibody or antigen-binding fragment of any of claims 1 to 6.
  8. A vector comprising the isolated nucleic acid of claim 7.
  9. A host cell comprising the nucleic acid of claim 8.
  10. A pharmaceutical composition, comprising the isolated monoclonal antibody or antigen-binding fragment of any of claims 1 to 6 and a pharmaceutically acceptable carrier.
  11. A method of blocking binding of PD-L1 to PD-1 and/or B7.1, or augmenting secretion of IFN-γ and IL-2 in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of claim 10.
  12. A method of treating an infectious disease or a graft versus host disease in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of claim 10.
  13. A method of treating a tumor in a subject in need thereof, comprising administering to the subject the pharmaceutical composition of claim 10, wherein the tumor is selected from the group consisting of a solid tumor, a hematologic cancer, bladder cancer, brain cancer, breast cancer, colon cancer, gastric cancer, glioma, head cancer, leukemia, liver cancer, lung cancer, lymphoma, myeloma, neck cancer, ovarian cancer, melanoma, pancreatic cancer, renal cancer, salivary cancer, stomach cancer, thymic epithelial cancer, and thyroid cancer.
  14. A method of producing the monoclonal antibody or antigen-binding fragment of any of claims 1 to 6, comprising culturing a cell comprising a nucleic acid encoding the monoclonal antibody or antigen-binding fragment under conditions to produce the monoclonal antibody or antigen-binding fragment, and recovering the antibody or antigen-binding fragment from the cell or cell culture.
  15. A method of producing a pharmaceutical composition comprising the monoclonal antibody or antigen-binding fragment of any of claims 1 to 6, comprising combining the monoclonal antibody or antigen-binding fragment with a pharmaceutically acceptable carrier to obtain the pharmaceutical composition.
PCT/CN2016/112428 2016-01-04 2016-12-27 Anti-pd-l1 antibodies and uses thereof WO2017118321A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/067,817 US10889648B2 (en) 2016-01-04 2016-12-27 Anti-PD-L1 antibodies and uses thereof
CN201680076656.9A CN108699146B (en) 2016-01-04 2016-12-27 anti-PD-L1 antibodies and uses thereof
JP2018535895A JP6779299B2 (en) 2016-01-04 2016-12-27 Anti-PD-L1 antibody and its use
EP16883446.3A EP3400243A4 (en) 2016-01-04 2016-12-27 Anti-pd-l1 antibodies and uses thereof
HK18114733.3A HK1255604A1 (en) 2016-01-04 2018-11-19 Anti-pd-l1 antibodies and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610003723.6 2016-01-04
CN201610003723.6A CN106939047B (en) 2016-01-04 2016-01-04 PD-L1 antibody and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2017118321A1 true WO2017118321A1 (en) 2017-07-13

Family

ID=59273286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112428 WO2017118321A1 (en) 2016-01-04 2016-12-27 Anti-pd-l1 antibodies and uses thereof

Country Status (6)

Country Link
US (1) US10889648B2 (en)
EP (1) EP3400243A4 (en)
JP (1) JP6779299B2 (en)
CN (2) CN106939047B (en)
HK (1) HK1255604A1 (en)
WO (1) WO2017118321A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374881A (en) * 2018-07-18 2019-02-22 益善生物技术股份有限公司 PD-L1 antibody, composition and kit
EP3470429A1 (en) * 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting pdl1 and methods of use thereof
WO2019072869A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting pdl1 and methods of use thereof
WO2019185029A1 (en) * 2018-03-29 2019-10-03 I-Mab Anti-pd-l1 antibodies and uses thereof
CN110372793A (en) * 2019-03-21 2019-10-25 南京东极医药科技有限公司 The nano antibody of PD-L1 and its clinical application
CN110684844A (en) * 2019-06-27 2020-01-14 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) Application of p.P476S mutation of RBPJL gene as PD-1 antibody medication guide marker
WO2020014419A3 (en) * 2018-07-11 2020-02-20 Momenta Pharmaceuticals Inc Compositions and methods related to engineered fc-antigen binding domain constructs targeted to pd-l1
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
KR20200061408A (en) * 2017-12-27 2020-06-02 이노벤트 바이오로직스 (쑤저우) 컴퍼니, 리미티드 Anti-PD-L1 antibodies and uses thereof
WO2020140088A1 (en) * 2018-12-27 2020-07-02 Gigagen, Inc. Anti-pd-1 binding proteins and methods of use thereof
WO2020140090A1 (en) * 2018-12-27 2020-07-02 Gigagen, Inc. Anti-pd-l1 binding proteins and methods of use thereof
WO2020146865A1 (en) * 2019-01-11 2020-07-16 The Wistar Institute Of Anatomy And Biology Dna monoclonal antibodies targeting pd-1 for the treatment and prevention of cancer
WO2020216379A1 (en) * 2019-04-26 2020-10-29 I-Mab Human pd-l1 antibodies
WO2021088904A1 (en) * 2019-11-08 2021-05-14 先声生物医药科技有限公司 Anti-human programmed cell death ligand-1 (pd-l1) antibody and use thereof
EP3694545A4 (en) * 2017-10-11 2021-12-01 Board Of Regents, The University Of Texas System Human pd-l1 antibodies and methods of use therefor
CN114829400A (en) * 2019-07-15 2022-07-29 卡佩拉生物科学有限公司 anti-PD-L1 antibodies
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
EP4032908A4 (en) * 2019-10-21 2023-11-08 HC Biopharma (Shanghai) Co., Ltd Anti-pd-l1 antibody and pharmaceutical use thereof
US11976128B2 (en) 2018-03-23 2024-05-07 Board Of Regents, The University Of Texas System Human PD-L2 antibodies and methods of use therefor
US11981705B2 (en) 2020-01-10 2024-05-14 The Brigham And Women's Hospital, Inc. Methods and compositions for delivery of immunotherapy agents across the blood-brain barrier to treat brain cancer
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298697B (en) * 2017-08-24 2019-05-24 张灏 Human PD-L1 protein Y123Site phosphorylation antibody and preparation method and application thereof
US11673954B2 (en) 2017-11-17 2023-06-13 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against PD-L1
CN111344305B (en) * 2017-11-27 2022-09-16 山东博安生物技术股份有限公司 Antibodies against PD-L1 and uses thereof
WO2019129136A1 (en) * 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-pd-l1 antibody and uses thereof
CN110144010B9 (en) * 2018-02-14 2021-01-05 上海洛启生物医药技术有限公司 Blocking type PD-L1 camel source single domain antibody and application thereof
CN113121698B (en) * 2018-04-09 2022-11-01 原启生物科技(上海)有限责任公司 anti-PD-L1 antibodies and uses thereof
SG11202010011RA (en) 2018-04-17 2020-11-27 Celldex Therapeutics Inc Anti-cd27 and anti-pd-l1 antibodies and bispecific constructs
US11976123B2 (en) 2018-04-20 2024-05-07 Lyvgen Biopharma Holdings Limited Anti-CD40 antibodies and uses thereof
CN110713543B (en) * 2018-07-11 2023-03-14 上海交通大学医学院附属仁济医院 Polypeptide for inhibiting PD-L1 palmitoylation modification and expression and application thereof
WO2020029274A1 (en) * 2018-08-10 2020-02-13 苏州奥特铭医药科技有限公司 Preparation method for attenuated baculovirus and application thereof
CN112996818B (en) 2018-09-28 2022-06-21 礼进生物医药科技(上海)有限公司 anti-CD 40 binding molecules with engineered Fc domains and therapeutic uses thereof
CN111234017B (en) * 2018-11-28 2022-09-09 优迈生物科技(连云港)有限公司 Anti-human PD-L1 antibody and antigen binding fragment thereof, preparation method and application
JP7302010B2 (en) * 2019-04-11 2023-07-03 スクリップス コリア アンチボディ インスティチュート ANTIBODY AGAINST PROGRAMMED CELL DEATH PROTEIN LIGAND-1 (PD-L1) AND USE THEREOF
JP7297090B2 (en) * 2019-06-10 2023-06-23 山東博安生物技術股▲ふん▼有限公司 Bifunctional fusion proteins for PDL1 and TGFβ and uses thereof
CN110330566A (en) * 2019-06-11 2019-10-15 南京华岩生物技术有限公司 A kind of immunoglobulin that the bispecific with dual variable domains combines
TWI832013B (en) * 2019-09-30 2024-02-11 大陸商諾納生物(蘇州)有限公司 An anti-pd-l1 antigen binding protein and application thereof
CN112574314A (en) * 2019-09-30 2021-03-30 和铂医药(苏州)有限公司 Fusion protein and application thereof
CN112759647B (en) * 2019-10-21 2024-03-26 上海宏成药业有限公司 anti-PD-L1 antibody and pharmaceutical application thereof
CN113372449B (en) * 2020-03-10 2022-09-27 中国科学院微生物研究所 Non-erythrocyte agglutination anti-PD-L1/CD 47 bispecific antibody and application thereof in anti-tumor treatment
CN112684182B (en) * 2020-12-15 2022-06-28 上海大学 Immunosensor system for detecting PD-L1 in non-disease diagnosis
JP2024518844A (en) * 2021-05-20 2024-05-07 ダイアンサス セラピューティクス オプコ, インコーポレイテッド Antibodies that bind to C1s and uses thereof
CN115947793B (en) * 2021-08-13 2023-09-26 中国人民解放军总医院 PD-L1 targeted ultrahigh affinity small protein and application thereof
WO2023215560A1 (en) 2022-05-05 2023-11-09 Atoosa Corporation Tumor cell/immune cell multivalent receptor engager – bio-nanoparticle (timre-bnp)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246071A1 (en) * 2004-12-21 2006-11-02 Larry Green Antibodies directed to angiopoietin-2 and uses thereof
US20080160035A1 (en) * 2006-10-02 2008-07-03 Sean Stevens High affinity human antibodies to human IL-4 receptor
US20120058906A1 (en) * 2008-11-07 2012-03-08 Vaughn Smider Combinatorial antibody libraries and uses thereof
WO2012130831A1 (en) * 2011-03-29 2012-10-04 Roche Glycart Ag Antibody fc variants
US20130034559A1 (en) * 2009-11-24 2013-02-07 Medlmmune Limited Targeted Binding Agents Against B7-H1
WO2015036499A1 (en) * 2013-09-11 2015-03-19 Medimmune Limited Anti-b7-h1 antibodies for treating tumors
US20150203580A1 (en) * 2014-01-23 2015-07-23 Regeneron Pharmaceuticals, Inc. Human Antibodies to PD-L1

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006265108C1 (en) * 2005-07-01 2013-01-17 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to programmed death ligand 1 (PD-L1)
PE20120341A1 (en) * 2008-12-09 2012-04-24 Genentech Inc ANTI-PD-L1 ANTIBODIES AND ITS USE TO IMPROVE T-CELL FUNCTION
AU2012344260B2 (en) * 2011-11-28 2017-09-07 Merck Patent Gmbh Anti-PD-L1 antibodies and uses thereof
CN115093480A (en) * 2012-05-31 2022-09-23 索伦托药业有限公司 Antigen binding proteins that bind to PD-L1
BR112015007672A2 (en) * 2012-10-04 2017-08-08 Dana Farber Cancer Inst Inc human monoclonal anti-pd-l1 antibodies and methods of use
RU2701378C2 (en) * 2013-03-15 2019-09-26 Дженентек, Инк. Biomarkers and methods of treating associated with pd-1 and pd-l1 conditions
CN105175544B (en) * 2015-10-20 2021-04-09 安徽瀚海博兴生物技术有限公司 anti-PD-1 humanized monoclonal antibody and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246071A1 (en) * 2004-12-21 2006-11-02 Larry Green Antibodies directed to angiopoietin-2 and uses thereof
US20080160035A1 (en) * 2006-10-02 2008-07-03 Sean Stevens High affinity human antibodies to human IL-4 receptor
US20120058906A1 (en) * 2008-11-07 2012-03-08 Vaughn Smider Combinatorial antibody libraries and uses thereof
US20130034559A1 (en) * 2009-11-24 2013-02-07 Medlmmune Limited Targeted Binding Agents Against B7-H1
WO2012130831A1 (en) * 2011-03-29 2012-10-04 Roche Glycart Ag Antibody fc variants
WO2015036499A1 (en) * 2013-09-11 2015-03-19 Medimmune Limited Anti-b7-h1 antibodies for treating tumors
US20150203580A1 (en) * 2014-01-23 2015-07-23 Regeneron Pharmaceuticals, Inc. Human Antibodies to PD-L1

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3400243A4 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
US11773175B2 (en) 2014-03-04 2023-10-03 Kymab Limited Antibodies, uses and methods
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
EP3470429A1 (en) * 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting pdl1 and methods of use thereof
WO2019072869A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting pdl1 and methods of use thereof
JP2021501569A (en) * 2017-10-10 2021-01-21 ヌマブ セラピューティックス アーゲー Antibodies targeting PDL1 and methods using them
CN111225926A (en) * 2017-10-10 2020-06-02 努玛治疗有限公司 Antibodies targeting PDL1 and methods of use thereof
EP3694545A4 (en) * 2017-10-11 2021-12-01 Board Of Regents, The University Of Texas System Human pd-l1 antibodies and methods of use therefor
US11525002B2 (en) 2017-10-11 2022-12-13 Board Of Regents, The University Of Texas System Human PD-L1 antibodies and methods of use therefor
EP4116327A1 (en) * 2017-10-11 2023-01-11 Board Of Regents, The University Of Texas System Human pd-l1 antibodies and methods of use therefor
KR20200061408A (en) * 2017-12-27 2020-06-02 이노벤트 바이오로직스 (쑤저우) 컴퍼니, 리미티드 Anti-PD-L1 antibodies and uses thereof
KR102384845B1 (en) 2017-12-27 2022-04-08 이노벤트 바이오로직스 (쑤저우) 컴퍼니, 리미티드 Anti-PD-L1 antibodies and uses thereof
EP3733704A4 (en) * 2017-12-27 2021-12-29 Innovent Biologics (Suzhou) Co., Ltd. Anti-pd-l1 antibody and uses thereof
US11976128B2 (en) 2018-03-23 2024-05-07 Board Of Regents, The University Of Texas System Human PD-L2 antibodies and methods of use therefor
US11220546B2 (en) 2018-03-29 2022-01-11 I-Mab Biopharma Us Limited Anti-PD-L1 antibodies and uses thereof
CN110891975B (en) * 2018-03-29 2023-11-10 天境生物科技(上海)有限公司 anti-PD-L1 antibodies and uses thereof
CN110891975A (en) * 2018-03-29 2020-03-17 天境生物科技(上海)有限公司 anti-PD-L1 antibodies and uses thereof
WO2019185029A1 (en) * 2018-03-29 2019-10-03 I-Mab Anti-pd-l1 antibodies and uses thereof
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
WO2020014419A3 (en) * 2018-07-11 2020-02-20 Momenta Pharmaceuticals Inc Compositions and methods related to engineered fc-antigen binding domain constructs targeted to pd-l1
CN109374881A (en) * 2018-07-18 2019-02-22 益善生物技术股份有限公司 PD-L1 antibody, composition and kit
CN113544146A (en) * 2018-12-27 2021-10-22 吉加根公司 anti-PD-1 binding proteins and methods of use thereof
WO2020140090A1 (en) * 2018-12-27 2020-07-02 Gigagen, Inc. Anti-pd-l1 binding proteins and methods of use thereof
WO2020140088A1 (en) * 2018-12-27 2020-07-02 Gigagen, Inc. Anti-pd-1 binding proteins and methods of use thereof
CN113543800A (en) * 2019-01-11 2021-10-22 威斯塔解剖学和生物学研究所 DNA monoclonal antibodies targeting PD-1 for treatment and prevention of cancer
WO2020146865A1 (en) * 2019-01-11 2020-07-16 The Wistar Institute Of Anatomy And Biology Dna monoclonal antibodies targeting pd-1 for the treatment and prevention of cancer
CN110372793B (en) * 2019-03-21 2022-09-06 南京东极医药科技有限公司 Nano antibody of PD-L1 and clinical application thereof
CN110372793A (en) * 2019-03-21 2019-10-25 南京东极医药科技有限公司 The nano antibody of PD-L1 and its clinical application
WO2020216379A1 (en) * 2019-04-26 2020-10-29 I-Mab Human pd-l1 antibodies
IL281397A (en) * 2019-04-26 2021-04-29 I Mab Biopharma Us Ltd Human pd-l1 antibodies
US11208486B2 (en) 2019-04-26 2021-12-28 I-Mab Biopharma Us Limited Human PD-L1 antibodies
AU2020261961B2 (en) * 2019-04-26 2022-07-07 I-Mab Biopharma Co., Ltd. Human PD-L1 antibodies
CN110684844A (en) * 2019-06-27 2020-01-14 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) Application of p.P476S mutation of RBPJL gene as PD-1 antibody medication guide marker
CN114829400A (en) * 2019-07-15 2022-07-29 卡佩拉生物科学有限公司 anti-PD-L1 antibodies
CN114829400B (en) * 2019-07-15 2024-05-17 森特萨制药(英国)有限公司 Anti-PD-L1 antibodies
EP4032908A4 (en) * 2019-10-21 2023-11-08 HC Biopharma (Shanghai) Co., Ltd Anti-pd-l1 antibody and pharmaceutical use thereof
WO2021088904A1 (en) * 2019-11-08 2021-05-14 先声生物医药科技有限公司 Anti-human programmed cell death ligand-1 (pd-l1) antibody and use thereof
US11981705B2 (en) 2020-01-10 2024-05-14 The Brigham And Women's Hospital, Inc. Methods and compositions for delivery of immunotherapy agents across the blood-brain barrier to treat brain cancer

Also Published As

Publication number Publication date
HK1255604A1 (en) 2019-08-23
CN106939047B (en) 2021-08-31
JP6779299B2 (en) 2020-11-04
CN106939047A (en) 2017-07-11
CN108699146B (en) 2021-12-03
EP3400243A4 (en) 2019-09-25
US10889648B2 (en) 2021-01-12
JP2019503687A (en) 2019-02-14
US20190010233A1 (en) 2019-01-10
CN108699146A (en) 2018-10-23
EP3400243A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US10889648B2 (en) Anti-PD-L1 antibodies and uses thereof
US10973915B2 (en) Anti-PD-1 antibodies and uses thereof
KR102422411B1 (en) PD-L1-Specific Antibodies and methods of using the same
JP6976322B2 (en) New anti-CTLA4 antibody
EP3936526A1 (en) Bifunctional fusion protein and pharmaceutical use thereof
CN107428839A (en) For CD3 ε and BCMA bispecific antibody
JP2021526012A (en) Antibodies targeting CTLA-4, their preparation methods and uses
CN111196854A (en) OX40 antibody and preparation method and application thereof
CA3068932A1 (en) Bispecific anti pd1-anti tim3 antibodies
JP2022523929A (en) Antibodies that bind to human LAG-3, their production methods and uses
KR20230028708A (en) Anti-b7-h4/anti-4-1bb bispecific antibodies and use thereof
WO2021100022A1 (en) Anti-pd-l1/anti-b7-h3 multispecific antibodies and uses thereof
CN110343178B (en) Anti-human LAG-3 monoclonal antibody and application thereof
EP4154910A1 (en) Binding protein having h2l2 and hcab structures
CN117751143A (en) anti-PVRIG/anti-TIGIT bispecific antibodies and uses
CN116234559A (en) anti-CD 22 single domain antibodies and therapeutic constructs
CN114573704B (en) PD-1/CTLA-4 binding protein and medical application thereof
TWI835166B (en) Specific binding protein targeting pd-1 and ox40 and application thereof
TWI833227B (en) Specific binding protein targeting pd-l1 and cd73 and application thereof
CN114761434B (en) PD-1 antibody and preparation method and application thereof
WO2022262749A1 (en) Specific binding protein targeting pd1 and/or ox40
CN111704668B (en) anti-CCR 4 antibodies and their use in treating cancer
CN116284406A (en) PD-1 binding protein and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883446

Country of ref document: EP

Effective date: 20180806