WO2017116020A1 - Magnesium alloy having excellent mechanical properties and corrosion resistance, and method for manufacturing same - Google Patents

Magnesium alloy having excellent mechanical properties and corrosion resistance, and method for manufacturing same Download PDF

Info

Publication number
WO2017116020A1
WO2017116020A1 PCT/KR2016/013959 KR2016013959W WO2017116020A1 WO 2017116020 A1 WO2017116020 A1 WO 2017116020A1 KR 2016013959 W KR2016013959 W KR 2016013959W WO 2017116020 A1 WO2017116020 A1 WO 2017116020A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
magnesium alloy
magnesium
parts
corrosion resistance
Prior art date
Application number
PCT/KR2016/013959
Other languages
French (fr)
Korean (ko)
Inventor
임창동
유봉선
김하식
김영민
문병기
배준호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to CN201680074714.4A priority Critical patent/CN108431261A/en
Priority to US16/066,003 priority patent/US10947609B2/en
Priority to JP2018531123A priority patent/JP6710280B2/en
Priority to EP16881972.0A priority patent/EP3399060B1/en
Priority claimed from KR1020160161445A external-priority patent/KR101933589B1/en
Publication of WO2017116020A1 publication Critical patent/WO2017116020A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/06Making sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a magnesium alloy excellent in mechanical properties and corrosion resistance and a method for producing the same, and more particularly to a magnesium alloy improved corrosion resistance and a method for producing the same without deterioration of mechanical properties.
  • Magnesium (Mg) which is a lightweight metal, or an alloy containing magnesium as its main component, has excellent specific strength, dimensional stability, machinability, and vibration absorption, and has recently been used in transportation equipment, home appliances, and medical devices such as automobiles, railways, aircraft, and ships. It can be applied to various fields that require lightweight and biodegradation characteristics such as, household goods. Therefore, it is spotlighted as a core material of the industry.
  • magnesium has low corrosion resistance with strong chemical activity.
  • Korean Patent No. 036099 describes a method for improving the corrosion resistance of an Al-containing magnesium alloy produced by the die casting method, wherein the method is characterized by improving the corrosion resistance by changing heat treatment conditions. have.
  • Another object of the present invention is to provide a method for economically producing a magnesium alloy having improved corrosion resistance without deteriorating mechanical properties.
  • the magnesium alloy is increased Fe solid solution
  • a magnesium alloy having excellent mechanical properties and corrosion resistance, which is reduced in corrosiveness.
  • the scandium may include 0.05 parts by weight to 0.5 parts by weight.
  • the corrosion rate may be 0.5 mm / y or less when immersed for 72 hours in 3.5 wt% saline.
  • the yield strength may be 80 to 120 MPa
  • the tensile strength is 160 to 180 MPa
  • the elongation may be 6 to 13%.
  • based on 100 parts by weight of the magnesium alloy 0.5 to 7.0 parts by weight of zinc may be further included.
  • the yield strength may be 120 to 190 MPa
  • the tensile strength is 210 to 310 MPa
  • the elongation may be 20 to 30%.
  • magnesium alloy based on 100 parts by weight of magnesium alloy, it may further include 2.5 to 10 parts by weight of tin.
  • the yield strength may be 130 to 280MPa, tensile strength is 210 to 310MPa, elongation may be 5 to 17%.
  • magnesium alloy based on 100 parts by weight of magnesium alloy, it may further include 2 to 10 parts by weight of aluminum.
  • the yield strength may be 130 to 200 MPa
  • the tensile strength is 230 to 320 MPa
  • the elongation may be 10 to 25%.
  • the composition may further include a composition selected from Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, and Mg-Zn-Al-Sn.
  • the method comprises: casting a magnesium alloy containing scandium from 0.001 part by weight to 1.0 part by weight with respect to 100 parts by weight of magnesium alloy, the balance being magnesium and inevitable impurities; Homogenizing the cast magnesium alloy; And preheating and extruding the homogenized magnesium alloy, the magnesium alloy is provided with a method of producing a magnesium alloy excellent in mechanical properties and corrosion resistance that the Fe solid solution is increased and the corrosion resistance is reduced.
  • the corrosion resistance of the magnesium alloy can be improved by adding scandium, which can not only suppress the micro-galvanic corrosion between the matrix and the impurity, but also simultaneously improve the passivation properties of the film formed on the surface without deteriorating the mechanical properties.
  • Magnesium alloy having excellent mechanical properties and corrosion resistance according to the present invention can be usefully used in various fields requiring lightweight and biodegradable properties such as automobiles, railways, aircraft, ships, transportation equipment, home appliances, medical equipment, household goods, etc. have.
  • Magnesium alloy excellent mechanical properties and corrosion resistance according to the present invention can be usefully used in the field of medical devices in contact with the body, such as implants such as stents and plates.
  • 1 is a graph showing the corrosion rate through the results of the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
  • FIG. 2 is a photograph showing the external characteristics of the magnesium alloy after the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
  • Figure 3 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
  • Figure 4 is a graph showing the corrosion rate according to the scandium content of the magnesium-zinc alloy in accordance with an embodiment of the present invention.
  • 5 to 8 are photographs showing the external characteristics of the magnesium-zinc alloy after an immersion test according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the mechanical characteristics (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the corrosion rate according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
  • 11 to 14 are photographs showing the external characteristics of the magnesium-tin alloy after an immersion test according to the scandium content of the magnesium-tin alloy according to one embodiment of the present invention.
  • 16 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
  • 17 to 19 are graphs showing external characteristics of the magnesium-aluminum alloy after an immersion test according to the scandium content of the magnesium-aluminum alloy according to one embodiment of the present invention.
  • 20 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
  • FIG. 21 is a graph showing the amount of iron (Fe) dissolved in a magnesium alloy containing scandium according to an embodiment of the present invention.
  • 22 is a flowchart illustrating a method of manufacturing a magnesium alloy according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the magnesium alloy is increased Fe solid solution
  • a magnesium alloy having excellent mechanical properties and corrosion resistance, which is reduced in corrosiveness.
  • a method of controlling the content of impurities or increasing the corrosion potential of the magnesium matrix is applied.
  • the method of controlling the alloy manufacturing process to continuously generate a second phase in the form of a network (network) that can act as an obstacle to corrosion is also applied.
  • these methods are not only able to effectively control micro-galvanic corrosion between matrix and impurities, but also lead to degradation of mechanical properties.
  • the present invention provides scandium (Sc) to magnesium alloys that exhibit a dual effect that not only suppresses micro-galvanic corrosion between matrix and impurities, but also simultaneously improves the passivation properties of the film formed on the surface without deteriorating mechanical properties. It is a technique to add.
  • the present invention does not reduce the content of impurities present in magnesium and magnesium alloys by physical or chemical methods, but changes the electrochemical properties of the impurities through the addition of trace elements and at the same time the passive properties of the film formed on the surface. By improving, corrosion resistance is improved.
  • FIG. 1 is a graph showing the corrosion rate through the results of the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
  • Figure 2 is a photograph showing the external characteristics of the magnesium alloy after the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
  • FIG. 1 and FIG. 2 it shows very improved corrosion resistance compared to pure magnesium.
  • a commercial material level of purity 99.9% based on Pure Mg
  • high purity material 99.99% based on Pure Mg
  • the scandium is 0.001 to 1.0 parts by weight, 0.05 to 0.25 parts by weight, 0.001 to 0.1 parts by weight, 0.05 to 0.5 parts by weight, or 0.05 to 0.1 parts by weight based on 100 parts by weight of magnesium alloy It may include, but is not limited to 0.05 to 0.5 parts by weight is suitable.
  • the content of scandium is less than 0.001, the content of scandium is too small to obtain an effect of improving corrosion resistance, and when the content of scandium is more than 1.0, corrosiveness may be increased.
  • the corrosion rate may be 0.5 mm / y or less when immersed for 72 hours in 3.5 wt% saline.
  • the yield strength may be 80 to 120 MPa
  • the tensile strength is 160 to 180 MPa
  • the elongation may be 6 to 13%.
  • Figure 3 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention. According to Figure 3 it can be seen that the yield strength and tensile strength increases as the content of scandium increases. This means that the mechanical strength increases with increasing scandium content. As shown in the graph, the magnesium alloy of the present invention can be improved in corrosion resistance without lowering the mechanical properties.
  • the magnesium alloy may include impurities which are inevitably mixed in the raw material or manufacturing process of the alloy, and preferably, 0.001 to 0.007 parts by weight of iron and 0.001 to 0.002 parts by weight of silicon based on 100 parts by weight of the magnesium alloy.
  • Calcium contained in the magnesium alloy may help to increase the strength of the alloy by precipitation strengthening and solid solution strengthening, and when the calcium content is less than 0.005, the precipitation strengthening effect may be insignificant. Can be promoted.
  • Manganese contained in the magnesium alloy helps to enhance the strength of the alloy by solid solution strengthening, and forms a compound containing manganese and impurities in the alloy, thereby improving the corrosion resistance of the magnesium alloy, manganese content of 0.003 weight If the amount is less than the effect is insignificant, there is no effect, if it is more than 0.012 parts by weight of the manganese fraction is too high may promote galvanic corrosion.
  • based on 100 parts by weight of the magnesium alloy 0.5 to 7.0 parts by weight of zinc may be further included.
  • the scandium is 0.001 to 0.5 parts by weight, 0.05 to 0.25 parts by weight, 0.05 to 0.1 parts by weight, 0.001 to 0.25 parts by weight, 0.001 to 0.1 based on 100 parts by weight of magnesium of the magnesium-zinc alloy It may be included in parts by weight or 0.01 to 0.5 parts by weight, but is not limited to 0.05 to 0.25 parts by weight is suitable.
  • the content of scandium is less than 0.001, the content of scandium is too small to obtain the effect of improving corrosion resistance, and when the content of scandium is more than 0.5, corrosiveness may increase.
  • Figure 4 is a graph showing the corrosion rate according to the scandium content of the magnesium-zinc alloy in accordance with an embodiment of the present invention.
  • 5 to 8 are photographs showing the external characteristics of the magnesium-zinc alloy after an immersion test according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
  • the yield strength may be 120 to 190 MPa
  • the tensile strength is 210 to 310 MPa
  • the elongation may be 20 to 30%.
  • FIG. 9 is a graph showing the mechanical characteristics (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
  • the yield strength and the tensile strength increase as the scandium content increases regardless of the zinc content.
  • the zinc content is included in an amount of 2 parts by weight or less based on 100 parts by weight of the magnesium alloy, the elongation also increases as the content of scandium increases. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
  • magnesium alloy based on 100 parts by weight of magnesium alloy, it may further include 2.5 to 10 parts by weight of tin.
  • the scandium is 0.001 to 0.5 parts by weight, 0.05 to 0.25 parts by weight, 0.05 to 0.1 parts by weight, 0.001 to 0.1 parts by weight, 0.001 to 0.25 to 100 parts by weight of magnesium of the magnesium-tin alloy It may be included in parts by weight, or 0.01 to 0.5 parts by weight, but is not limited to 0.05 to 0.1 parts by weight is suitable.
  • the content of scandium is less than 0.001, the content of scandium is too small to obtain the effect of improving corrosion resistance, and when the content of scandium is more than 0.5, corrosiveness may increase.
  • FIG. 10 is a graph showing the corrosion rate according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
  • 11 to 14 are photographs showing the external characteristics of the magnesium-tin alloy after an immersion test according to the scandium content of the magnesium-tin alloy according to one embodiment of the present invention.
  • the yield strength may be 130 to 280MPa, tensile strength is 210 to 310MPa, elongation may be 5 to 17%.
  • the yield strength and the tensile strength increase as the scandium content increases from 0.001 to 0.25 parts by weight, regardless of the tin content. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
  • magnesium alloy based on 100 parts by weight of magnesium alloy, it may further include 2 to 10 parts by weight of aluminum.
  • the scandium may include 0.001 to 1.0 parts by weight, 0.05 to 1.0 parts by weight, 0.001 to 0.5 parts by weight, or 0.01 to 1.0 parts by weight based on 100 parts by weight of magnesium of the magnesium-aluminum alloy.
  • 0.05 to 1.0 parts by weight is suitable.
  • the content of scandium is less than 0.001, the content of scandium is too small to obtain an effect of improving corrosion resistance, and when the content of scandium is more than 1.0, corrosiveness may be increased.
  • 16 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
  • 17 to 19 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
  • the yield strength may be 130 to 200 MPa
  • the tensile strength is 230 to 320 MPa
  • the elongation may be 10 to 25%.
  • 20 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
  • the yield strength and tensile strength increase as the scandium content increases from 0.001 to 1.0 regardless of the aluminum content. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
  • FIG. 21 is a graph showing the amount of iron (Fe) dissolved in a magnesium alloy containing scandium according to an embodiment of the present invention.
  • the iron solution of the present invention means the amount of iron component that can be dissolved in magnesium metal.
  • Heavy metal elements such as iron
  • the present invention is to provide a magnesium alloy having high mechanical strength while improving the solid solution of iron in magnesium.
  • the case of containing scandium may have a relatively high iron solubility regardless of the type and content of zinc, tin, and aluminum contained in comparison with the case where it does not.
  • the scandium-containing alloy may be selected from Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, and Mg-Zn-Al-Sn.
  • containing scandium it may have a relatively high iron solubility regardless of the type and content of the containing component selected from one or more of zinc, tin, and aluminum as compared to when it does not.
  • the method comprises: casting a magnesium alloy containing scandium from 0.001 part by weight to 1.0 part by weight with respect to 100 parts by weight of magnesium alloy, the balance being magnesium and inevitable impurities; Homogenizing the cast magnesium alloy; And preheating and extruding the homogenized magnesium alloy, the magnesium alloy is provided with a method of producing a magnesium alloy excellent in mechanical properties and corrosion resistance that the Fe solid solution is increased and the corrosion resistance is reduced.
  • 22 is a flowchart illustrating a method of manufacturing a magnesium alloy according to an embodiment of the present invention.
  • the casting step may be cast at 650 to 800 °C. Although not limited thereto, casting may not be performed properly when the casting temperature is lower than 650 ° C or higher than 800 ° C.
  • the casting, homogenizing and extruding may be performed by known techniques. For example, it may be performed by sand casting, sheet casting, die casting or a combination thereof. Detailed methods are described in the Examples below.
  • Sc was added to pure Mg (99.9%) to prepare a magnesium alloy according to the present invention, and Sc was added in the form of Mg-2Sc mother alloy. At this time, Mg-2Sc mother alloy was added so that Sc is included as 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0 wt% in pure Mg.
  • extrusion was performed to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
  • AZ61 alloy is a commercial magnesium alloy prepared for use as a comparative example.
  • the prepared billet was subjected to homogenization treatment at 500 ° C. for 24 hours, and then processed into a billet having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length.
  • the billet thus processed was preheated at 350 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
  • the composition of the magnesium-zinc alloy is shown in Table 2 below.
  • Example 2 Mg-1Zn 1.02 - 0.003 - 0.007 bal.
  • Example 7 Mg-1Zn-0.001Sc 0.96 0.001 0.017 - 0.009 bal.
  • Example 8 Mg-1Zn-0.01Sc 1.02 0.007 0.003 - 0.009 bal.
  • Example 9 Mg-1Zn-0.1Sc 1.01 0.102 0.018 - 0.007 bal.
  • Example 10 Mg-1Zn-1.0Sc 0.98 0.868 0.025 - 0.012 bal. Comparative Example 3 Mg-2Zn 1.82 - 0.004 - 0.007 bal.
  • Example 11 Mg-2Zn-0.001Sc 1.86 - 0.007 - 0.019 bal.
  • Example 12 Mg-2Zn-0.01Sc 2.00 0.007 0.010 - 0.007 bal.
  • Example 13 Mg-2Zn-0.1Sc 2.12 0.084 0.063 - 0.007 bal.
  • Example 14 Mg-2Zn-1.0Sc 2.01 0.844 0.138 - 0.076 bal. Comparative Example 4 Mg-4Zn 3.65 - 0.008 0.009 0.005 bal.
  • Example 15 Mg-4Zn-0.001Sc 4.10 - 0.004 0.021 0.003 bal.
  • Example 16 Mg-4Zn-0.01Sc 4.03 0.006 0.003 - 0.003 bal.
  • Example 17 Mg-4Zn-0.1Sc 4.02 0.089 0.005 0.012 0.010 bal.
  • Example 18 Mg-4Zn-1.0Sc 4.13 0.79 0.003 0.036 0.004 bal. Comparative Example 5 Mg-6Zn 5.59 - 0.009 0.008 0.004 bal.
  • Example 19 Mg-6Zn-0.001Sc 5.58 0.001 0.001 0.042 0.004 bal.
  • Example 20 Mg-6Zn-0.01Sc 6.23 0.006 0.004 0.081 0.007 bal.
  • Example 21 Mg-6Zn-0.1Sc 6.36 0.089 0.004 0.053 0.008 bal.
  • Example 22 Mg-6Zn-1.0Sc 6.29 0.80 0.009 0.085 0.007 bal.
  • the raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
  • the billets thus prepared were homogenized at 400 ° C. for 24 hours and then processed into billets having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length.
  • the billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
  • the composition of the magnesium-tin alloy is shown in Table 3 below.
  • Example 6 Mg-3Sn 2.84 - 0.007 0.13 0.014 bal.
  • Example 23 Mg-3Sn-0.001Sc 2.84 - 0.002 0.02 0.005 bal.
  • Example 24 Mg-3Sn-0.01Sc 2.76 0.007 0.001 0.02 0.006 bal.
  • Example 25 Mg-3Sn-0.1Sc 2.80 0.08 0.002 0.02 0.007 bal.
  • Example 26 Mg-3Sn-1.0Sc 2.86 0.62 0.002 0.008 0.008 bal.
  • Comparative Example 7 Mg-5Sn 4.68 - 0.003 0.03 0.005 bal.
  • Example 27 Mg-5Sn-0.001Sc 4.87 - 0.001 0.02 0.005 bal.
  • Example 28 Mg-5Sn-0.01Sc 4.73 0.006 0.002 0.012 0.006 bal.
  • Example 29 Mg-5Sn-0.1Sc 4.80 0.09 0.002 0.010 0.006 bal.
  • Example 30 Mg-5Sn-1.0Sc 4.93 0.58 0.002 0.011 0.008 bal. Comparative Example 8 Mg-6Sn 5.48 - 0.002 0.02 0.006 bal.
  • Example 31 Mg-6Sn-0.001Sc 5.77 0.001 0.003 0.02 0.006 bal.
  • Example 32 Mg-6Sn-0.01Sc 5.70 0.009 0.001 0.005 0.007 bal.
  • Example 33 Mg-6Sn-0.1Sc 5.82 0.09 0.003 0.008 0.008 bal.
  • Example 34 Mg-6Sn-1.0Sc 4.01 0.25 0.002 0.001 0.006 bal. Comparative Example 9 Mg-8Sn 7.59 - 0.001 0.04 0.005 bal.
  • Example 35 Mg-8Sn-0.001Sc 7.77 0.001 0.002 0.05 0.006 bal.
  • Example 36 Mg-8Sn-0.01Sc 7.84 - 0.001 0.02 0.007 bal.
  • Example 37 Mg-8Sn-0.1Sc 7.93 0.09 0.002 0.011 0.007 bal.
  • Example 38 Mg-8Sn-1.0Sc 6.97 0.69 0.037 0.003 0.004 bal.
  • the raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
  • the billet thus prepared was homogenized at 500 ° C. for 24 hours and then processed into a billet in the form of a circular cylinder having a diameter of 78 mm and a length of 140 to 160 mm.
  • the billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
  • Al and Sc were added to pure Mg (99.9%) to prepare a magnesium-aluminum alloy according to the present invention, Al was added in the form of pure Al pellets having a purity of 99.9%, and Sc was in the form of Mg-2Sc mother alloy. Was added. At this time, pure Al was added to Al to be included in 3, 6, 9% by weight of Al, Mg-2Sc mother alloy was added to include Sc in 0.001, 0.01, 0.1, 1.0% by weight.
  • the composition of the magnesium-aluminum alloy is shown in Table 4 below.
  • Example 10 Mg-3Al 2.91 - - 0.10 0.007 bal.
  • Example 39 Mg-3Al-0.001Sc 2.86 0.001 - 0.05 0.007 bal.
  • Example 40 Mg-3Al-0.01Sc 2.88 0.007 0.002 0.05 0.016 bal.
  • Example 41 Mg-3Al-0.1Sc 2.73 0.099 0.003 0.02 0.054 bal.
  • Example 42 Mg-3Al-1.0Sc 2.36 0.24 0.007 0.05 0.044 bal.
  • Comparative Example 11 Mg-6Al 5.85 0.005 0.01 0.002 bal.
  • Example 43 Mg-6Al-0.001Sc 5.55 0.001 0.003 - 0.004 bal.
  • Example 44 Mg-6Al-0.01Sc 5.81 0.01 0.007 0.009 0.003 bal.
  • Example 45 Mg-6Al-0.1Sc 5.91 0.07 0.003 0.004 0.004 bal.
  • Example 46 Mg-6Al-1.0Sc 5.72 0.17 0.009 - 0.014 bal. Comparative Example 12 Mg-9Al 8.40 - 0.007 0.04 0.036 bal.
  • Example 47 Mg-9Al-0.001Sc 8.84 0.001 0.015 0.05 0.008 bal.
  • Example 48 Mg-9Al-0.01Sc 8.64 0.009 0.002 0.02 0.018 bal.
  • Example 49 Mg-9Al-0.1Sc 8.78 0.086 0.001 - 0.009 bal.
  • Example 50 Mg-9Al-1.0Sc 8.90 0.64 - - 0.017 bal.
  • the raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
  • the billets thus prepared were homogenized at 400 ° C. for 24 hours and then processed into billets having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length.
  • the billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
  • the specimen was immersed in a 3.5 wt% NaCl solution (25 ° C.) for 72 hours, and the weight change before and after immersion was measured and converted into a corrosion rate.
  • Pure magnesium has a corrosion rate of 18 mm / y, whereas magnesium with 0.001% by weight of scandium (Mg-0.001Sc) is 2mm / y and magnesium with 0.01% by weight of scandium (Mg-0.01Sc) is 1.7mm / y.
  • magnesium containing 0.05 wt% scandium is 0.25mm / y
  • magnesium containing 0.1 wt% scandium is 0.1mm / y
  • 0.25 wt% magnesium is 0.25mm / y
  • magnesium containing 0.5% by weight of scandium is 0.5mm / y
  • magnesium containing 1.0% by weight of scandium is 0.5mm / y
  • AZ61 was found to be 0.8 mm / y (see Figure 1).
  • the corrosion rate of the magnesium-zinc alloy containing 1 part by weight, 2 parts by weight, 4 parts by weight, and 6 parts by weight of zinc was analyzed, and it contained 0.001, 0.01, 0.1 parts by weight of scandium regardless of the zinc content.
  • the corrosion rate was 8.75 mm / y or less, which was lower than that of the magnesium-zinc alloy ( see FIG. 4) .
  • the corrosion rate was significantly lower.
  • Corrosion rate of magnesium-tin alloy containing 3 parts by weight, 5 parts by weight, 6 parts by weight, and 8 parts by weight of tin was analyzed, and the corrosion rate when 0.001, 0.01, and 0.1 parts by weight of scandium was included regardless of the tin content.
  • the corrosion rate of the magnesium-aluminum alloy containing 3 parts by weight, 6 parts by weight, and 9 parts by weight of aluminum was analyzed. It was found to be significantly lower than the corrosion rate of the magnesium-aluminum alloy below mm / y (see FIG. 16) . Particularly, when 0.1 parts by weight of scandium was included, the corrosion rate was significantly lower.
  • magnesium containing scandium showed better corrosion resistance than pure magnesium, and in particular, it was confirmed that the corrosion resistance was superior to that of the prior art at 0.05 to 0.5% by weight.
  • a commercial material level of purity 99.9% based on Pure Mg
  • high purity material 99.99% based on Pure Mg
  • magnesium containing scandium exhibited better mechanical properties and corrosion resistance than pure magnesium, and in particular, 0.05 to 0.5 parts by weight showed better corrosion resistance than the prior art. According to the present invention, corrosion resistance can be remarkably improved for magnesium not containing scandium.

Abstract

The present invention provides a magnesium alloy having excellent mechanical properties and corrosion resistance, and a method for manufacturing the same, the magnesium alloy containing 0.001 parts by weight to 1.0 part by weight of scandium with respect to 100 parts by weight of the magnesium alloy and the remainder being magnesium and unavoidable impurities, and the magnesium alloy having an increased Fe solid solubility limit and decreased corrosiveness. The present invention can improve the corrosion resistance of a magnesium alloy by adding scandium which can improve the passive state properties of a coating formed on the surface as well as inhibit micro-galvanic corrosion between a matrix and impurities without deterioration of the mechanical properties. Accordingly, the present invention provides a magnesium alloy which can be usefully utilized in various fields, such as transportation vehicles like automobiles, railways, airplanes, vessels, etc., household appliances, medical devices, daily necessities, etc. for which weight reduction and biodegradability are required and, in particular, provides a magnesium alloy which can be usefully utilized in the field of medical devices like implants, such as a stent and a plate, which come into contact with the body.

Description

기계적 특성 및 내식성이 우수한 마그네슘 합금 및 이의 제조방법 Magnesium alloy excellent in mechanical properties and corrosion resistance and its manufacturing method
본 발명은 기계적 특성 및 내식성이 우수한 마그네슘 합금 및 이의 제조방법에 관한 것으로, 더욱 상세하게 기계적 특성의 저하 없이 내식성이 향상된 마그네슘 합금 및 이의 제조방법에 관한 것이다.The present invention relates to a magnesium alloy excellent in mechanical properties and corrosion resistance and a method for producing the same, and more particularly to a magnesium alloy improved corrosion resistance and a method for producing the same without deterioration of mechanical properties.
경량 금속인 마그네슘(Mg) 또는 마그네슘을 주성분으로 포함하는 합금은 비강도, 치수안정성, 기계가공성, 진동 흡수성 등이 우수하여, 최근 자동차, 철도, 항공기, 선박 등의 수송기기, 가전기기, 의료기기, 생활용품 등 경량화 및 생체분해특성이 요구되는 다양한 분야에 적용 가능하다. 따라서, 산업의 핵심 소재로 각광받고 있다.Magnesium (Mg), which is a lightweight metal, or an alloy containing magnesium as its main component, has excellent specific strength, dimensional stability, machinability, and vibration absorption, and has recently been used in transportation equipment, home appliances, and medical devices such as automobiles, railways, aircraft, and ships. It can be applied to various fields that require lightweight and biodegradation characteristics such as, household goods. Therefore, it is spotlighted as a core material of the industry.
그러나, 마그네슘은 강한 화학적 활성으로 낮은 내식성을 가진다. However, magnesium has low corrosion resistance with strong chemical activity.
종래 기술은 Fe, Ni, Cu 등의 불순물들이 마그네슘 합금의 내식성에 미치는 악영향을 최소화하기 위하여, 여러 단계의 정련과정을 통해 불순물의 함량을 감소시키는 방법을 적용하고 있다.In order to minimize the adverse effects of impurities such as Fe, Ni and Cu on the corrosion resistance of magnesium alloy, the prior art applies a method of reducing the content of impurities through various steps of refining.
그러나 경제적 측면으로 고려할 때, 정련을 통한 불순물 함량 제어에는 한계가 있어 일정 수준 이상으로 내식성을 향상시키기가 곤란한 문제점이 있다. However, considering the economic aspect, there is a limit in controlling the impurity content through refining, so that it is difficult to improve the corrosion resistance to a certain level or more.
본 발명의 배경이 되는 기술로는 대한민국 특허 제036099호에 다이캐스팅법으로 제조한 Al 함유 마그네슘 합금의 내식성을 향상시키는 방법에 있어서, 열처리 조건을 변화시켜 내식성을 향상시키는 것을 특징으로 하는 방법이 기재되어있다.As a background technology of the present invention, Korean Patent No. 036099 describes a method for improving the corrosion resistance of an Al-containing magnesium alloy produced by the die casting method, wherein the method is characterized by improving the corrosion resistance by changing heat treatment conditions. have.
본 발명의 목적은 기계적 특성의 저하 없이 내식성이 향상된 마그네슘 합금을 제공하는 것이다.It is an object of the present invention to provide a magnesium alloy with improved corrosion resistance without degrading mechanical properties.
본 발명의 다른 목적은 기계적 특성의 저하 없이 내식성이 향상된 마그네슘 합금을 경제적으로 제조할 수 있는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for economically producing a magnesium alloy having improved corrosion resistance without deteriorating mechanical properties.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 측면에 따르면, 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고, 나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금이고, 상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는, 기계적 특성 및 내식성이 우수한 마그네슘 합금이 제공된다.According to an aspect of the present invention, with respect to 100 parts by weight of magnesium alloy, scandium in an amount of 0.001 to 1.0 parts by weight, the remainder is a magnesium alloy composed of magnesium and unavoidable impurities, the magnesium alloy is increased Fe solid solution There is provided a magnesium alloy having excellent mechanical properties and corrosion resistance, which is reduced in corrosiveness.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 0.05 중량부 내지 0.5 중량부로 포함할 수 있다.According to an embodiment of the present invention, the scandium may include 0.05 parts by weight to 0.5 parts by weight.
본 발명의 일 실시예에 따르면, 3.5 wt% 염수로 72시간 침지 시 부식속도가 0.5 mm/y 이하일 수 있다.According to an embodiment of the present invention, the corrosion rate may be 0.5 mm / y or less when immersed for 72 hours in 3.5 wt% saline.
본 발명의 일 실시예에 따르면, 항복강도가 80 내지 120MPa이고, 인장강도가 160 내지 180MPa이고, 연신율이 6 내지 13%일 수 있다.According to an embodiment of the present invention, the yield strength may be 80 to 120 MPa, the tensile strength is 160 to 180 MPa, and the elongation may be 6 to 13%.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대해 0.001 내지 0.007 중량부의 철; 0.001 내지 0.002 중량부의 규소; 0.005 내지 0.015 중량부의 칼슘; 및 0.003 내지 0.012 중량부의 망간을 더 포함할 수 있다.According to one embodiment of the invention, 0.001 to 0.007 parts by weight of iron relative to 100 parts by weight of magnesium alloy; 0.001 to 0.002 parts by weight of silicon; 0.005 to 0.015 parts by weight of calcium; And 0.003 to 0.012 parts by weight of manganese.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 0.5 내지 7.0 중량부의 아연을 더 포함할 수 있다.According to an embodiment of the present invention, based on 100 parts by weight of the magnesium alloy, 0.5 to 7.0 parts by weight of zinc may be further included.
본 발명의 일 실시예에 따르면, 항복강도가 120 내지 190MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 20 내지 30%일 수 있다.According to an embodiment of the present invention, the yield strength may be 120 to 190 MPa, the tensile strength is 210 to 310 MPa, and the elongation may be 20 to 30%.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 2.5 내지 10 중량부의 주석을 더 포함할 수 있다.According to one embodiment of the invention, based on 100 parts by weight of magnesium alloy, it may further include 2.5 to 10 parts by weight of tin.
본 발명의 일 실시예에 따르면, 항복강도가 130 내지 280MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 5 내지 17%일 수 있다.According to one embodiment of the present invention, the yield strength may be 130 to 280MPa, tensile strength is 210 to 310MPa, elongation may be 5 to 17%.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 2 내지 10 중량부의 알루미늄을 더 포함할 수 있다.According to one embodiment of the present invention, based on 100 parts by weight of magnesium alloy, it may further include 2 to 10 parts by weight of aluminum.
본 발명의 일 실시예에 따르면, 항복강도가 130 내지 200MPa이고, 인장강도가 230 내지 320MPa이고, 연신율이 10 내지 25%일 수 있다.According to an embodiment of the present invention, the yield strength may be 130 to 200 MPa, the tensile strength is 230 to 320 MPa, and the elongation may be 10 to 25%.
본 발명의 일 실시예에 따르면, Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, 및 Mg-Zn-Al-Sn에서 선택되는 조성을 더 포함할 수 있다.According to an embodiment of the present invention, the composition may further include a composition selected from Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, and Mg-Zn-Al-Sn.
본 발명의 다른 측면에 따르면, 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고, 나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금을 주조하는 단계; 상기 주조된 마그네슘 합금을 균질화하는 단계; 및 상기 균질화된 마그네슘 합금을 예열한 후 압출하는 단계를 포함하는, 상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는 것인 기계적 특성 및 내식성이 우수한 마그네슘 합금의 제조방법이 제공된다.According to another aspect of the present invention, the method comprises: casting a magnesium alloy containing scandium from 0.001 part by weight to 1.0 part by weight with respect to 100 parts by weight of magnesium alloy, the balance being magnesium and inevitable impurities; Homogenizing the cast magnesium alloy; And preheating and extruding the homogenized magnesium alloy, the magnesium alloy is provided with a method of producing a magnesium alloy excellent in mechanical properties and corrosion resistance that the Fe solid solution is increased and the corrosion resistance is reduced.
본 발명의 일 실시예에 의하면, 기계적 특성 저하 없이 내식성이 향상된 마그네슘 합금 및 이의 제조방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a magnesium alloy and a method for manufacturing the same having improved corrosion resistance without deteriorating mechanical properties.
본 발명에 의하면 기계적 특성 저하 없이 기지와 불순물 간의 미소 갈바닉 부식을 억제할 뿐만 아니라 표면에 형성되는 피막의 부동태 특성을 동시에 향상시킬 수 있는 스칸듐을 첨가하여 마그네슘 합금의 내식성을 향상시킬 수 있다.According to the present invention, the corrosion resistance of the magnesium alloy can be improved by adding scandium, which can not only suppress the micro-galvanic corrosion between the matrix and the impurity, but also simultaneously improve the passivation properties of the film formed on the surface without deteriorating the mechanical properties.
본 발명에 의한 기계적 특성 및 내식성이 우수한 마그네슘 합금은 자동차, 철도, 항공기, 선박 등의 수송기기, 가전기기, 의료기기, 생활용품 등 경량화 및 생체분해특성이 요구되는 다양한 분야에 유용하게 활용될 수 있다.Magnesium alloy having excellent mechanical properties and corrosion resistance according to the present invention can be usefully used in various fields requiring lightweight and biodegradable properties such as automobiles, railways, aircraft, ships, transportation equipment, home appliances, medical equipment, household goods, etc. have.
본 발명에 의한 기계적 특성 및 내식성이 우수한 마그네슘 합금은 스텐트 및 플레이트 등의 임플란트와 같은 신체와 접촉하는 의료장치 분야에 유용하게 활용될 수 있다.Magnesium alloy excellent mechanical properties and corrosion resistance according to the present invention can be usefully used in the field of medical devices in contact with the body, such as implants such as stents and plates.
도 1은 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 침지실험(immersion test) 결과를 통해 부식속도를 보여주는 그래프이다.1 is a graph showing the corrosion rate through the results of the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘 합금의 외부 특징을 보여주는 사진이다.Figure 2 is a photograph showing the external characteristics of the magnesium alloy after the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.Figure 3 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.Figure 4 is a graph showing the corrosion rate according to the scandium content of the magnesium-zinc alloy in accordance with an embodiment of the present invention.
도 5 내지 도 8은 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘-아연 합금의 외부 특징을 보여주는 사진이다.5 to 8 are photographs showing the external characteristics of the magnesium-zinc alloy after an immersion test according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 기계적 특징(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.9 is a graph showing the mechanical characteristics (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.10 is a graph showing the corrosion rate according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
도 11 내지 도 14는 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘-주석 합금의 외부 특징을 보여주는 사진이다.11 to 14 are photographs showing the external characteristics of the magnesium-tin alloy after an immersion test according to the scandium content of the magnesium-tin alloy according to one embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.15 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.16 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
도 17 내지 도 19는 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘-알루미늄 합금의 외부 특징을 보여주는 그래프이다.17 to 19 are graphs showing external characteristics of the magnesium-aluminum alloy after an immersion test according to the scandium content of the magnesium-aluminum alloy according to one embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.20 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따라 마그네슘 합금의 스칸듐 함유 여부에 대한 철(Fe) 고용한 함량을 나타내는 그래프이다.FIG. 21 is a graph showing the amount of iron (Fe) dissolved in a magnesium alloy containing scandium according to an embodiment of the present invention.
도 22는 본 발명의 일 실시예에 따른 마그네슘 합금의 제조방법을 설명하기 위한 순서도이다.22 is a flowchart illustrating a method of manufacturing a magnesium alloy according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms 'comprise' or 'have' are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하, 본 발명의 일 실시예에 따른 내식성이 우수한 마그네슘 합금 및 이의 제조방법을 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, a magnesium alloy excellent in corrosion resistance and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the same or corresponding components are the same reference numerals. And duplicate description thereof will be omitted.
본 발명의 일 측면에 따르면, 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고, 나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금이고, 상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는, 기계적 특성 및 내식성이 우수한 마그네슘 합금이 제공된다.According to an aspect of the present invention, with respect to 100 parts by weight of magnesium alloy, scandium in an amount of 0.001 to 1.0 parts by weight, the remainder is a magnesium alloy composed of magnesium and unavoidable impurities, the magnesium alloy is increased Fe solid solution There is provided a magnesium alloy having excellent mechanical properties and corrosion resistance, which is reduced in corrosiveness.
일반적으로 마그네슘 합금의 내식성을 향상시키기 위해서는 불순물의 함량을 제어하거나 마그네슘 기지의 부식전위를 증가시키는 방법 등이 적용된다. 또한, 합금 제조공정을 제어하여 부식의 장애물 역할을 할 수 있는 제2상을 네트워크(network) 형태로 연속적으로 생성시키는 방법도 적용된다. 그러나 이러한 방법들은 기지와 불순물과의 미소 갈바닉 부식을 효과적으로 제어할 수 없을 뿐만 아니라 기계적 특성의 저하를 동반하게 된다. In general, to improve the corrosion resistance of the magnesium alloy, a method of controlling the content of impurities or increasing the corrosion potential of the magnesium matrix is applied. In addition, the method of controlling the alloy manufacturing process to continuously generate a second phase in the form of a network (network) that can act as an obstacle to corrosion is also applied. However, these methods are not only able to effectively control micro-galvanic corrosion between matrix and impurities, but also lead to degradation of mechanical properties.
본 발명은 기계적 특성의 저하 없이 기지와 불순물 간의 미소 갈바닉 부식을 억제할 뿐만 아니라 표면에 형성되는 피막의 부동태 특성을 동시에 향상시킬 수 있는 이중효과(dual effect)를 나타내는 마그네슘 합금에 스칸듐(Sc)을 첨가하는 기술이다. The present invention provides scandium (Sc) to magnesium alloys that exhibit a dual effect that not only suppresses micro-galvanic corrosion between matrix and impurities, but also simultaneously improves the passivation properties of the film formed on the surface without deteriorating mechanical properties. It is a technique to add.
즉, 본 발명은 마그네슘 및 마그네슘 합금 내에 존재하는 불순물의 함량을 물리적 또는 화학적인 방법으로 감소시키는 것이 아니라 미량원소 첨가를 통해 불순물의 전기화학적 특성을 변화시킴과 동시에 표면에 형성되는 피막의 부동태 특성을 향상시킴으로써 내식성을 향상시킨다.That is, the present invention does not reduce the content of impurities present in magnesium and magnesium alloys by physical or chemical methods, but changes the electrochemical properties of the impurities through the addition of trace elements and at the same time the passive properties of the film formed on the surface. By improving, corrosion resistance is improved.
도 1은 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 침지실험(immersion test) 결과를 통해 부식속도를 보여주는 그래프이다. 도 2는 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘 합금의 외부 특징을 보여주는 사진이다.1 is a graph showing the corrosion rate through the results of the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention. Figure 2 is a photograph showing the external characteristics of the magnesium alloy after the immersion test (immersion test) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention.
상기 도 1 및 도 2에 나타난 바와 같이, 순수한 마그네슘과 비교하여 매우 향상된 내식성을 보인다. As shown in FIG. 1 and FIG. 2, it shows very improved corrosion resistance compared to pure magnesium.
본 발명에 의하면, 상업용 소재 수준의 순도(Pure Mg 기준 99.9%)를 가지는 상용 마그네슘 대비 40% 이상, 고순도 소재(Pure Mg 기준 99.99%, 제조비용은 상용소재 대비 100배) 대비 20% 이상 내식성을 향상시킬 수 있다.According to the present invention, corrosion resistance of at least 40% compared to commercial magnesium having a commercial material level of purity (99.9% based on Pure Mg) and at least 20% compared to high purity material (99.99% based on Pure Mg, manufacturing costs 100 times higher than that of commercial materials). Can be improved.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 마그네슘 합금 100 중량부에 대해 0.001 중량부 내지 1.0 중량부, 0.05 내지 0.25 중량부, 0.001 내지 0.1 중량부, 0.05 내지 0.5 중량부, 또는 0.05 내지 0.1 중량부로 포함할 수 있고, 이에 한정되는 것은 아니나 0.05 내지 0.5 중량부가 적합하다. 상기 스칸듐의 함량이 0.001 미만인 경우, 스칸듐의 함량이 너무 적어서 내부식성 향상의 효과를 얻기에 어렵고, 스칸듐의 함량이 1.0 초과인 경우, 오히려 부식성이 증가할 수 있다.According to one embodiment of the present invention, the scandium is 0.001 to 1.0 parts by weight, 0.05 to 0.25 parts by weight, 0.001 to 0.1 parts by weight, 0.05 to 0.5 parts by weight, or 0.05 to 0.1 parts by weight based on 100 parts by weight of magnesium alloy It may include, but is not limited to 0.05 to 0.5 parts by weight is suitable. When the content of scandium is less than 0.001, the content of scandium is too small to obtain an effect of improving corrosion resistance, and when the content of scandium is more than 1.0, corrosiveness may be increased.
본 발명의 일 실시예에 따르면, 3.5 wt% 염수로 72시간 침지 시 부식속도가 0.5 mm/y 이하일 수 있다.According to an embodiment of the present invention, the corrosion rate may be 0.5 mm / y or less when immersed for 72 hours in 3.5 wt% saline.
본 발명의 일 실시예에 따르면, 항복강도가 80 내지 120MPa이고, 인장강도가 160 내지 180MPa이고, 연신율이 6 내지 13%일 수 있다.According to an embodiment of the present invention, the yield strength may be 80 to 120 MPa, the tensile strength is 160 to 180 MPa, and the elongation may be 6 to 13%.
도 3은 본 발명의 일 실시예에 따라 순수 마그네슘(Pure Magnesium)의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다. 도 3에 따르면 스칸듐의 함량이 증가함에 따라 항복강도 및 인장강도가 증가하는 것을 확인할 수 있다. 이는 스칸듐의 함량이 증가함에 따라 기계적 강도가 증가하는 것을 의미한다. 상기 그래프에 나타난 바와 같이, 본 발명의 마그네슘 합금은 기계적 특성이 저하되지 않고 내식성이 향상될 수 있다.Figure 3 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of pure magnesium (Pure Magnesium) according to an embodiment of the present invention. According to Figure 3 it can be seen that the yield strength and tensile strength increases as the content of scandium increases. This means that the mechanical strength increases with increasing scandium content. As shown in the graph, the magnesium alloy of the present invention can be improved in corrosion resistance without lowering the mechanical properties.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대해 0.001 내지 0.007 중량부의 철; 0.001 내지 0.002 중량부의 규소; 0.005 내지 0.015 중량부의 칼슘; 및 0.003 내지 0.012 중량부의 망간을 더 포함할 수 있다.According to one embodiment of the invention, 0.001 to 0.007 parts by weight of iron relative to 100 parts by weight of magnesium alloy; 0.001 to 0.002 parts by weight of silicon; 0.005 to 0.015 parts by weight of calcium; And 0.003 to 0.012 parts by weight of manganese.
상기 마그네슘 합금에는 합금의 원료 또는 제조 과정에서 불가피하게 혼입되는 불순물을 포함할 수 있고, 마그네슘 합금 100 중량부에 대하여, 0.001 내지 0.007 중량부의 철, 0.001 내지 0.002 중량부의 규소를 포함하는 것이 바람직하다.The magnesium alloy may include impurities which are inevitably mixed in the raw material or manufacturing process of the alloy, and preferably, 0.001 to 0.007 parts by weight of iron and 0.001 to 0.002 parts by weight of silicon based on 100 parts by weight of the magnesium alloy.
상기 마그네슘 합금에 함유되는 칼슘은 석출강화 및 고용강화로 합금의 강도증진에 도움이 되고 칼슘의 함량이 0.005 미만일 경우 석출강화 효과가 미미할 수 있고, 0.015 초과일 경우 칼슘의 분율이 너무 높아서 갈바닉 부식이 촉진될 수 있다.Calcium contained in the magnesium alloy may help to increase the strength of the alloy by precipitation strengthening and solid solution strengthening, and when the calcium content is less than 0.005, the precipitation strengthening effect may be insignificant. Can be promoted.
상기 마그네슘 합금에 함유되는 망간은 고용강화로 합금의 강도 증진에 도움이 되고 합금 내 망간과 불순물이 함유된 화합물을 형성함으로써, 마그네슘 합금의 내부식성을 향상하는 효과를 가지며, 망간의 함량이 0.003 중량부 미만일 경우 그 효과가 미미하여 영향이 없으며, 0.012 중량부 초과일 경우 망간의 분율이 너무 높아서 갈바닉 부식이 촉진될 수 있다.Manganese contained in the magnesium alloy helps to enhance the strength of the alloy by solid solution strengthening, and forms a compound containing manganese and impurities in the alloy, thereby improving the corrosion resistance of the magnesium alloy, manganese content of 0.003 weight If the amount is less than the effect is insignificant, there is no effect, if it is more than 0.012 parts by weight of the manganese fraction is too high may promote galvanic corrosion.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 0.5 내지 7.0 중량부의 아연을 더 포함할 수 있다.According to an embodiment of the present invention, based on 100 parts by weight of the magnesium alloy, 0.5 to 7.0 parts by weight of zinc may be further included.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 마그네슘-아연 합금의 마그네슘 100 중량부에 대해 0.001 내지 0.5 중량부, 0.05 내지 0.25 중량부, 0.05 내지 0.1 중량부, 0.001 내지 0.25 중량부, 0.001 내지 0.1 중량부 또는 0.01 내지 0.5 중량부로 포함할 수 있고, 이에 한정되는 것은 아니나 0.05 내지 0.25 중량부가 적합하다. 상기 스칸듐의 함량이 0.001 미만인 경우, 스칸듐의 함량이 너무 적어서 내부식성 향상의 효과를 얻기에 어렵고, 스칸듐의 함량이 0.5 초과인 경우, 오히려 부식성이 증가할 수 있다.According to one embodiment of the present invention, the scandium is 0.001 to 0.5 parts by weight, 0.05 to 0.25 parts by weight, 0.05 to 0.1 parts by weight, 0.001 to 0.25 parts by weight, 0.001 to 0.1 based on 100 parts by weight of magnesium of the magnesium-zinc alloy It may be included in parts by weight or 0.01 to 0.5 parts by weight, but is not limited to 0.05 to 0.25 parts by weight is suitable. When the content of scandium is less than 0.001, the content of scandium is too small to obtain the effect of improving corrosion resistance, and when the content of scandium is more than 0.5, corrosiveness may increase.
도 4는 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.Figure 4 is a graph showing the corrosion rate according to the scandium content of the magnesium-zinc alloy in accordance with an embodiment of the present invention.
도 5 내지 도 8은 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘-아연 합금의 외부 특징을 보여주는 사진이다.5 to 8 are photographs showing the external characteristics of the magnesium-zinc alloy after an immersion test according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
도 4 내지 도 8에 따르면, 아연의 함량이 증가함에 따라 마그네슘-아연 합금의 부식속도가 증가하는 것을 알 수 있고, 아연의 함량에 관계없이 마그네슘 합금 100 중량부에 대해 스칸듐을 0.001 중량부 내지 0.5 중량부로 포함하는 경우 부식속도가 감소한다. 4 to 8, it can be seen that the corrosion rate of the magnesium-zinc alloy increases as the zinc content is increased, and scandium is 0.001 to 0.5 parts by weight based on 100 parts by weight of the magnesium alloy regardless of the zinc content. If included in parts by weight, the corrosion rate is reduced.
본 발명의 일 실시예에 따르면, 항복강도가 120 내지 190MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 20 내지 30%일 수 있다.According to an embodiment of the present invention, the yield strength may be 120 to 190 MPa, the tensile strength is 210 to 310 MPa, and the elongation may be 20 to 30%.
도 9는 본 발명의 일 실시예에 따라 마그네슘-아연 합금의 스칸듐 함유량에 따른 기계적 특징(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.9 is a graph showing the mechanical characteristics (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-zinc alloy according to an embodiment of the present invention.
도 9에 따르면 아연의 함량과 관계없이 스칸듐의 함량이 증가함에 따라 항복강도 및 인장강도가 증가한다. 또한, 아연의 함량이 마그네슘 합금 100 중량부에 대해 2 중량부 이하로 포함하는 경우 스칸듐의 함량이 증가함에 따라 연신율도 증가한다. 따라서 본 발명의 마그네슘 합금은 기계적 특성 및 내식성이 동시에 향상될 수 있다.According to FIG. 9, the yield strength and the tensile strength increase as the scandium content increases regardless of the zinc content. In addition, when the zinc content is included in an amount of 2 parts by weight or less based on 100 parts by weight of the magnesium alloy, the elongation also increases as the content of scandium increases. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 2.5 내지 10 중량부의 주석을 더 포함할 수 있다.According to one embodiment of the invention, based on 100 parts by weight of magnesium alloy, it may further include 2.5 to 10 parts by weight of tin.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 마그네슘-주석 합금의 마그네슘 100 중량부에 대해 0.001 내지 0.5 중량부, 0.05 내지 0.25 중량부, 0.05 내지 0.1 중량부, 0.001 내지 0.1 중량부, 0.001 내지 0.25 중량부, 또는 0.01 내지 0.5 중량부로 포함할 수 있고, 이에 한정되는 것은 아니나 0.05 내지 0.1 중량부가 적합하다. 상기 스칸듐의 함량이 0.001 미만인 경우, 스칸듐의 함량이 너무 적어서 내부식성 향상의 효과를 얻기에 어렵고, 스칸듐의 함량이 0.5 초과인 경우, 오히려 부식성이 증가할 수 있다.According to one embodiment of the invention, the scandium is 0.001 to 0.5 parts by weight, 0.05 to 0.25 parts by weight, 0.05 to 0.1 parts by weight, 0.001 to 0.1 parts by weight, 0.001 to 0.25 to 100 parts by weight of magnesium of the magnesium-tin alloy It may be included in parts by weight, or 0.01 to 0.5 parts by weight, but is not limited to 0.05 to 0.1 parts by weight is suitable. When the content of scandium is less than 0.001, the content of scandium is too small to obtain the effect of improving corrosion resistance, and when the content of scandium is more than 0.5, corrosiveness may increase.
도 10은 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.10 is a graph showing the corrosion rate according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
도 11 내지 도 14는 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 침지실험(immersion test) 후 마그네슘-주석 합금의 외부 특징을 보여주는 사진이다.11 to 14 are photographs showing the external characteristics of the magnesium-tin alloy after an immersion test according to the scandium content of the magnesium-tin alloy according to one embodiment of the present invention.
도 10 내지 도 14에 따르면, 주석의 함량이 증가함에 따라 마그네슘-주석 합금의 부식속도가 증가하는 것을 알 수 있고, 주석의 함량에 관계없이 스칸듐을 0.001 내지 0.5 중량부로 포함하는 경우 부식속도가 감소한다.10 to 14, it can be seen that the corrosion rate of the magnesium-tin alloy increases as the tin content increases, and the corrosion rate decreases when the scandium is included in an amount of 0.001 to 0.5 parts by weight, regardless of the tin content. do.
본 발명의 일 실시예에 따르면, 항복강도가 130 내지 280MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 5 내지 17%일 수 있다.According to one embodiment of the present invention, the yield strength may be 130 to 280MPa, tensile strength is 210 to 310MPa, elongation may be 5 to 17%.
도 15는 본 발명의 일 실시예에 따라 마그네슘-주석 합금의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.15 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-tin alloy according to an embodiment of the present invention.
도 15에 따르면, 주석의 함량과 관계없이 스칸듐의 함량이 0.001 내지 0.25 중량부로 증가함에 따라 항복강도 및 인장강도가 증가한다. 따라서 본 발명의 마그네슘 합금은 기계적 특성 및 내식성이 동시에 향상될 수 있다.According to FIG. 15, the yield strength and the tensile strength increase as the scandium content increases from 0.001 to 0.25 parts by weight, regardless of the tin content. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
본 발명의 일 실시예에 따르면, 마그네슘 합금 100 중량부에 대하여, 2 내지 10 중량부의 알루미늄을 더 포함할 수 있다.According to one embodiment of the present invention, based on 100 parts by weight of magnesium alloy, it may further include 2 to 10 parts by weight of aluminum.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 마그네슘-알루미늄 합금의 마그네슘 100 중량부에 대해 0.001 내지 1.0 중량부, 0.05 내지 1.0 중량부, 0.001 내지 0.5 중량부, 또는 0.01 내지 1.0 중량부로 포함할 수 있고, 이에 한정되는 것은 아니나 0.05 내지 1.0 중량부가 적합하다. 상기 스칸듐의 함량이 0.001 미만인 경우, 스칸듐의 함량이 너무 적어서 내부식성 향상의 효과를 얻기에 어렵고, 스칸듐의 함량이 1.0 초과인 경우, 오히려 부식성이 증가할 수 있다.According to one embodiment of the present invention, the scandium may include 0.001 to 1.0 parts by weight, 0.05 to 1.0 parts by weight, 0.001 to 0.5 parts by weight, or 0.01 to 1.0 parts by weight based on 100 parts by weight of magnesium of the magnesium-aluminum alloy. Although not limited thereto, 0.05 to 1.0 parts by weight is suitable. When the content of scandium is less than 0.001, the content of scandium is too small to obtain an effect of improving corrosion resistance, and when the content of scandium is more than 1.0, corrosiveness may be increased.
도 16은 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.16 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
도 17 내지 도 19는 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 부식속도를 보여주는 그래프이다.17 to 19 is a graph showing the corrosion rate according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
도 16 내지 도 19에 따르면, 알루미늄의 함량이 증가함에 따라 마그네슘-알루미늄 합금의 부식속도가 증가하는 것을 알 수 있고, 알루미늄의 함량에 관계없이 스칸듐을 0.001 내지 0.25로 포함하는 경우 부식속도가 감소한다.16 to 19, it can be seen that the corrosion rate of the magnesium-aluminum alloy increases as the aluminum content increases, and the corrosion rate decreases when the scandium is included as 0.001 to 0.25 regardless of the aluminum content. .
본 발명의 일 실시예에 따르면, 항복강도가 130 내지 200MPa이고, 인장강도가 230 내지 320MPa이고, 연신율이 10 내지 25%일 수 있다.According to an embodiment of the present invention, the yield strength may be 130 to 200 MPa, the tensile strength is 230 to 320 MPa, and the elongation may be 10 to 25%.
도 20은 본 발명의 일 실시예에 따라 마그네슘-알루미늄 합금의 스칸듐 함유량에 따른 기계적 특성(항복강도, 인장강도, 연신율)을 보여주는 그래프이다.20 is a graph showing the mechanical properties (yield strength, tensile strength, elongation) according to the scandium content of the magnesium-aluminum alloy according to an embodiment of the present invention.
도 20에 따르면, 알루미늄의 함량과 관계없이 스칸듐의 함량이 0.001 내지 1.0으로 증가함에 따라 항복강도 및 인장강도가 증가한다. 따라서 본 발명의 마그네슘 합금은 기계적 특성 및 내식성이 동시에 향상될 수 있다.According to FIG. 20, the yield strength and tensile strength increase as the scandium content increases from 0.001 to 1.0 regardless of the aluminum content. Therefore, the magnesium alloy of the present invention can be improved at the same time mechanical properties and corrosion resistance.
도 21은 본 발명의 일 실시예에 따라 마그네슘 합금의 스칸듐 함유 여부에 대한 철(Fe) 고용한 함량을 나타내는 그래프이다.FIG. 21 is a graph showing the amount of iron (Fe) dissolved in a magnesium alloy containing scandium according to an embodiment of the present invention.
본 발명의 상기 철 고용한은 마그네슘 금속에 고용될 수 있는 철 성분의 양을 의미한다.The iron solution of the present invention means the amount of iron component that can be dissolved in magnesium metal.
철과 같은 중금속 원소는 마그네슘의 내식성을 감소시키는 불순물로 그 함량을 엄격하게 제한하고 있다. 따라서 본 발명에서는 마그네슘 내 철의 고용한을 높여 내식성이 우수하면서도 기계적 강도가 높은 마그네슘 합금을 제공하고자 한다.Heavy metal elements, such as iron, are an impurity that reduces the corrosion resistance of magnesium, and its content is strictly limited. Therefore, the present invention is to provide a magnesium alloy having high mechanical strength while improving the solid solution of iron in magnesium.
도 21에 따르면, 스칸듐을 함유한 경우 그렇지 않았을 때와 비교하여 아연, 주석, 알루미늄의 함유 성분 종류 및 함유량에 무관하게 상대적으로 높은 철 고용한을 가질 수 있다.According to FIG. 21, the case of containing scandium may have a relatively high iron solubility regardless of the type and content of zinc, tin, and aluminum contained in comparison with the case where it does not.
본 발명의 일 실시예에 따르면, 상기 스칸듐을 함유하는 합금은 Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, 및 Mg-Zn-Al-Sn에서 선택될 수 있다. According to one embodiment of the present invention, the scandium-containing alloy may be selected from Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, and Mg-Zn-Al-Sn.
스칸듐을 함유한 경우 그렇지 않았을 때와 비교하여 상기 아연, 주석, 알루미늄 중에서 1종 이상 선택되는 함유 성분 종류 및 함유량에 무관하게 상대적으로 높은 철 고용한을 가질 수 있다.In the case of containing scandium, it may have a relatively high iron solubility regardless of the type and content of the containing component selected from one or more of zinc, tin, and aluminum as compared to when it does not.
본 발명의 다른 측면에 따르면, 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고, 나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금을 주조하는 단계; 상기 주조된 마그네슘 합금을 균질화하는 단계; 및 상기 균질화된 마그네슘 합금을 예열한 후 압출하는 단계를 포함하는, 상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는 것인 기계적 특성 및 내식성이 우수한 마그네슘 합금의 제조방법이 제공된다.According to another aspect of the present invention, the method comprises: casting a magnesium alloy containing scandium from 0.001 part by weight to 1.0 part by weight with respect to 100 parts by weight of magnesium alloy, the balance being magnesium and inevitable impurities; Homogenizing the cast magnesium alloy; And preheating and extruding the homogenized magnesium alloy, the magnesium alloy is provided with a method of producing a magnesium alloy excellent in mechanical properties and corrosion resistance that the Fe solid solution is increased and the corrosion resistance is reduced.
도 22는 본 발명의 일 실시예에 따른 마그네슘 합금의 제조방법을 설명하기 위한 순서도이다.22 is a flowchart illustrating a method of manufacturing a magnesium alloy according to an embodiment of the present invention.
본 발명의 일 실시예에 따르면, 상기 주조하는 단계는 650 내지 800℃에서 주조할 수 있다. 이에 한정되는 것은 아니나, 주조 온도가 650℃ 미만이거나 800℃를 초과하면 주조가 적절하게 이루어질 수 없을 수 있다. According to one embodiment of the invention, the casting step may be cast at 650 to 800 ℃. Although not limited thereto, casting may not be performed properly when the casting temperature is lower than 650 ° C or higher than 800 ° C.
상기 주조하는 단계, 균질화하는 단계 및 압출하는 단계는 공지의 기술에 의해서 이루어질 수 있다. 예를 들어 사형주조, 박판주조, 다이캐스팅 또는 이들의 조합에 의해 수행될 수 있다. 상세한 방법은 하기 실시예에 기재되어 있다.The casting, homogenizing and extruding may be performed by known techniques. For example, it may be performed by sand casting, sheet casting, die casting or a combination thereof. Detailed methods are described in the Examples below.
이하, 본 발명의 실시예에 대해 더욱 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the Example of this invention is described in detail. However, the following examples are only preferred embodiments of the present invention and the present invention is not limited by the following examples.
실시예 및 비교예 Examples and Comparative Examples
마그네슘 합금 1의 제조Preparation of Magnesium Alloy 1
본 발명에 따른 마그네슘 합금을 제조하기 위하여 순수 Mg(99.9%)에 Sc를 첨가하였으며, Sc는 Mg-2Sc 모합금 형태로 첨가하였다. 이때 순수한 Mg에 Sc가 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0 중량%로 포함되도록 Mg-2Sc 모합금을 첨가하였다.Sc was added to pure Mg (99.9%) to prepare a magnesium alloy according to the present invention, and Sc was added in the form of Mg-2Sc mother alloy. At this time, Mg-2Sc mother alloy was added so that Sc is included as 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0 wt% in pure Mg.
700℃에서 원형 실린더 형태로 빌렛을 주조한 후 500℃에서 24시간 동안 균질화 처리를 하였다. After casting the billet in the form of a circular cylinder at 700 ℃ was homogenized for 24 hours at 500 ℃.
350℃에서 3시간 예열한 후 압출을 하여 두께 6mm, 폭 28mm의 판상의 압출재를 제조하였다.After preheating at 350 ° C. for 3 hours, extrusion was performed to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
AZ61 합금은 상용 마그네슘합금으로 비교예로 사용하기 위해 제조한 합금이다.AZ61 alloy is a commercial magnesium alloy prepared for use as a comparative example.
[[ wt%wt% ]] ScSc FeFe SiSi CaCa MnMn MgMg
비교예Comparative example 1 One MgMg -- 0.0020.002 0.0190.019 0.0060.006 0.0100.010 BalBal ..
실시예Example 1 One Mg-Mg- 0.001Sc0.001Sc 0.0010.001 0.0050.005 0.0010.001 0.0070.007 0.0050.005 BalBal ..
실시예Example 2 2 Mg-Mg- 0.01Sc0.01Sc 0.0010.001 0.0050.005 0.0010.001 0.0070.007 0.0050.005 BalBal ..
실시예Example 3 3 Mg-Mg- 0.1Sc0.1Sc 0.0500.050 0.0010.001 0.0100.010 0.0130.013 0.0070.007 BalBal ..
실시예Example 4 4 Mg-Mg- 0.25Sc0.25Sc 0.1600.160 0.0010.001 0.0100.010 0.0100.010 0.0070.007 BalBal ..
실시예Example 5 5 Mg-Mg- 0.5Sc0.5Sc 0.3000.300 0.0010.001 0.0110.011 0.0080.008 0.0070.007 BalBal ..
실시예Example 6 6 Mg-Mg- 1.0Sc1.0Sc 0.6700.670 0.0030.003 0.0110.011 0.0080.008 0.0090.009 BalBal ..
상기 제조한 빌렛에 대해 500℃에서 24시간 동안 균질화처리를 행한 후 지름 78mm, 길이 140~160mm의 원형 실린더 형태의 빌렛으로 가공하였다. 이와 같이 가공한 빌렛을 350℃에서 3시간 동안 예열한 후 1.0mm/s의 램속도로 압출을 행하여 두께 6mm, 폭 28mm의 판상 압출재를 제조하였다. The prepared billet was subjected to homogenization treatment at 500 ° C. for 24 hours, and then processed into a billet having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length. The billet thus processed was preheated at 350 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
마그네슘-아연 합금의 제조Preparation of Magnesium-Zinc Alloy
본 발명에 따른 마그네슘-아연 합금을 제조하기 위하여 순수 Mg(99.9%)에 Zn과 Sc를 첨가하였으며, Zn는 99.9%의 순도를 갖는 순수한 Zn 펠렛 형태로 첨가하였으며, Sc는 Mg-2Sc 모합금 형태로 첨가하였다. 이때 순수한 Mg에 Zn이 1, 2, 4, 6 중량%로 포함되도록 순수한 Zn을 첨가하였으며, Sc가 0.001, 0.01, 0.1, 1.0 중량%로 포함되도록 Mg-2Sc 모합금을 첨가하였다.In order to prepare a magnesium-zinc alloy according to the present invention, Zn and Sc were added to pure Mg (99.9%), Zn was added in the form of pure Zn pellets having a purity of 99.9%, and Sc was in the form of Mg-2Sc mother alloy. Was added. At this time, pure Zn was added so that Zn was contained in 1, 2, 4, 6 wt% to pure Mg, and Mg-2Sc mother alloy was added so that Sc contained 0.001, 0.01, 0.1, 1.0 wt%.
상기 마그네슘-아연 합금의 조성은 하기 표 2와 같다.The composition of the magnesium-zinc alloy is shown in Table 2 below.
ZnZn ScSc FeFe SiSi CaCa MgMg
비교예 2Comparative Example 2 Mg-1ZnMg-1Zn 1.021.02 -- 0.0030.003 -- 0.0070.007 bal.bal.
실시예 7Example 7 Mg-1Zn-0.001ScMg-1Zn-0.001Sc 0.960.96 0.0010.001 0.0170.017 -- 0.0090.009 bal.bal.
실시예 8Example 8 Mg-1Zn-0.01ScMg-1Zn-0.01Sc 1.021.02 0.0070.007 0.0030.003 -- 0.0090.009 bal.bal.
실시예 9Example 9 Mg-1Zn-0.1ScMg-1Zn-0.1Sc 1.011.01 0.1020.102 0.0180.018 -- 0.0070.007 bal.bal.
실시예 10Example 10 Mg-1Zn-1.0ScMg-1Zn-1.0Sc 0.980.98 0.8680.868 0.0250.025 -- 0.0120.012 bal.bal.
비교예 3Comparative Example 3 Mg-2ZnMg-2Zn 1.821.82 -- 0.0040.004 -- 0.0070.007 bal.bal.
실시예 11Example 11 Mg-2Zn-0.001ScMg-2Zn-0.001Sc 1.861.86 -- 0.0070.007 -- 0.0190.019 bal.bal.
실시예 12Example 12 Mg-2Zn-0.01ScMg-2Zn-0.01Sc 2.002.00 0.0070.007 0.0100.010 -- 0.0070.007 bal.bal.
실시예 13Example 13 Mg-2Zn-0.1ScMg-2Zn-0.1Sc 2.122.12 0.0840.084 0.0630.063 -- 0.0070.007 bal.bal.
실시예 14Example 14 Mg-2Zn-1.0ScMg-2Zn-1.0Sc 2.012.01 0.8440.844 0.1380.138 -- 0.0760.076 bal.bal.
비교예 4Comparative Example 4 Mg-4ZnMg-4Zn 3.653.65 -- 0.0080.008 0.0090.009 0.0050.005 bal.bal.
실시예 15Example 15 Mg-4Zn-0.001ScMg-4Zn-0.001Sc 4.104.10 -- 0.0040.004 0.0210.021 0.0030.003 bal.bal.
실시예 16Example 16 Mg-4Zn-0.01ScMg-4Zn-0.01Sc 4.034.03 0.0060.006 0.0030.003 -- 0.0030.003 bal.bal.
실시예 17Example 17 Mg-4Zn-0.1ScMg-4Zn-0.1Sc 4.024.02 0.0890.089 0.0050.005 0.0120.012 0.0100.010 bal.bal.
실시예 18Example 18 Mg-4Zn-1.0ScMg-4Zn-1.0Sc 4.134.13 0.790.79 0.0030.003 0.0360.036 0.0040.004 bal.bal.
비교예 5Comparative Example 5 Mg-6ZnMg-6Zn 5.595.59 -- 0.0090.009 0.0080.008 0.0040.004 bal.bal.
실시예 19Example 19 Mg-6Zn-0.001ScMg-6Zn-0.001Sc 5.585.58 0.0010.001 0.0010.001 0.0420.042 0.0040.004 bal.bal.
실시예 20Example 20 Mg-6Zn-0.01ScMg-6Zn-0.01Sc 6.236.23 0.0060.006 0.0040.004 0.0810.081 0.0070.007 bal.bal.
실시예 21Example 21 Mg-6Zn-0.1ScMg-6Zn-0.1Sc 6.366.36 0.0890.089 0.0040.004 0.0530.053 0.0080.008 bal.bal.
실시예 22Example 22 Mg-6Zn-1.0ScMg-6Zn-1.0Sc 6.296.29 0.800.80 0.0090.009 0.0850.085 0.0070.007 bal.bal.
이와 같이 준비한 원료 물질을 탄소 도가니에 장입하고 유도 용해로를 이용하여 700℃ 이상으로 가열하여 용해한 후 서서히 냉각시켜 용탕의 온도가 700℃에 도달하였을 때 200℃로 예열된 원형 실린더 형태의 금형에 주입하여 빌렛을 제조하였다.The raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
이와 같이 제조한 빌렛에 대해 400℃에서 24시간 동안 균질화처리를 행한 후 지름 78mm, 길이 140~160mm의 원형 실린더 형태의 빌렛으로 가공하였다. 이와 같이 가공한 빌렛을 300℃에서 3시간 동안 예열한 후 1.0mm/s의 램속도로 압출을 행하여 두께 6mm, 폭 28mm의 판상 압출재를 제조하였다.The billets thus prepared were homogenized at 400 ° C. for 24 hours and then processed into billets having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length. The billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
마그네슘-주석 합금의 제조Preparation of Magnesium-Tin Alloy
본 발명에 따른 마그네슘-주석 합금을 제조하기 위하여 순수 Mg(99.9%)에 Sn과 Sc를 첨가하였으며, Sn은 99.9%의 순도를 갖는 순수한 Sn 펠렛 형태로 첨가하였으며, Sc는 Mg-2Sc 모합금 형태로 첨가하였다. 이때 순수한 Mg에 Sn이 3, 5, 6, 8 중량%로 포함되도록 순수한 Sn을 첨가하였으며, Sc가 0.001, 0.01, 0.1, 1.0 중량%로 포함되도록 Mg-2Sc 모합금을 첨가하였다.To prepare a magnesium-tin alloy according to the present invention, Sn and Sc were added to pure Mg (99.9%), Sn was added in the form of pure Sn pellets having a purity of 99.9%, and Sc was in the form of Mg-2Sc master alloy. Was added. At this time, pure Sn was added pure Sn to include 3, 5, 6, 8% by weight of Sn, and Mg-2Sc mother alloy was added so that Sc contained 0.001, 0.01, 0.1, 1.0% by weight.
상기 마그네슘-주석 합금의 조성은 하기 표 3과 같다.The composition of the magnesium-tin alloy is shown in Table 3 below.
SnSn ScSc FeFe SiSi CaCa MgMg
비교예 6Comparative Example 6 Mg-3SnMg-3Sn 2.842.84 -- 0.0070.007 0.130.13 0.0140.014 bal.bal.
실시예 23Example 23 Mg-3Sn-0.001ScMg-3Sn-0.001Sc 2.842.84 -- 0.0020.002 0.020.02 0.0050.005 bal.bal.
실시예 24Example 24 Mg-3Sn-0.01ScMg-3Sn-0.01Sc 2.762.76 0.0070.007 0.0010.001 0.020.02 0.0060.006 bal.bal.
실시예 25Example 25 Mg-3Sn-0.1ScMg-3Sn-0.1Sc 2.802.80 0.080.08 0.0020.002 0.020.02 0.0070.007 bal.bal.
실시예 26Example 26 Mg-3Sn-1.0ScMg-3Sn-1.0Sc 2.862.86 0.620.62 0.0020.002 0.0080.008 0.0080.008 bal.bal.
비교예 7Comparative Example 7 Mg-5SnMg-5Sn 4.684.68 -- 0.0030.003 0.030.03 0.0050.005 bal.bal.
실시예Example 27 27 Mg-5Sn-0.001ScMg-5Sn-0.001Sc 4.874.87 -- 0.0010.001 0.020.02 0.0050.005 bal.bal.
실시예 28Example 28 Mg-5Sn-0.01ScMg-5Sn-0.01Sc 4.734.73 0.0060.006 0.0020.002 0.0120.012 0.0060.006 bal.bal.
실시예 29Example 29 Mg-5Sn-0.1ScMg-5Sn-0.1Sc 4.804.80 0.090.09 0.0020.002 0.0100.010 0.0060.006 bal.bal.
실시예 30Example 30 Mg-5Sn-1.0ScMg-5Sn-1.0Sc 4.934.93 0.580.58 0.0020.002 0.0110.011 0.0080.008 bal.bal.
비교예 8Comparative Example 8 Mg-6SnMg-6Sn 5.485.48 -- 0.0020.002 0.020.02 0.0060.006 bal.bal.
실시예 31Example 31 Mg-6Sn-0.001ScMg-6Sn-0.001Sc 5.775.77 0.0010.001 0.0030.003 0.020.02 0.0060.006 bal.bal.
실시예 32Example 32 Mg-6Sn-0.01ScMg-6Sn-0.01Sc 5.705.70 0.0090.009 0.0010.001 0.0050.005 0.0070.007 bal.bal.
실시예 33Example 33 Mg-6Sn-0.1ScMg-6Sn-0.1Sc 5.825.82 0.090.09 0.0030.003 0.0080.008 0.0080.008 bal.bal.
실시예 34Example 34 Mg-6Sn-1.0ScMg-6Sn-1.0Sc 4.014.01 0.250.25 0.0020.002 0.0010.001 0.0060.006 bal.bal.
비교예 9Comparative Example 9 Mg-8SnMg-8Sn 7.597.59 -- 0.0010.001 0.040.04 0.0050.005 bal.bal.
실시예 35Example 35 Mg-8Sn-0.001ScMg-8Sn-0.001Sc 7.777.77 0.0010.001 0.0020.002 0.050.05 0.0060.006 bal.bal.
실시예 36Example 36 Mg-8Sn-0.01ScMg-8Sn-0.01Sc 7.847.84 -- 0.0010.001 0.020.02 0.0070.007 bal.bal.
실시예 37Example 37 Mg-8Sn-0.1ScMg-8Sn-0.1Sc 7.937.93 0.090.09 0.0020.002 0.0110.011 0.0070.007 bal.bal.
실시예 38Example 38 Mg-8Sn-1.0ScMg-8Sn-1.0Sc 6.976.97 0.690.69 0.0370.037 0.0030.003 0.0040.004 bal.bal.
이와 같이 준비한 원료 물질을 탄소 도가니에 장입하고 유도 용해로를 이용하여 700℃ 이상으로 가열하여 용해한 후 서서히 냉각시켜 용탕의 온도가 700℃에 도달하였을 때 200℃로 예열된 원형 실린더 형태의 금형에 주입하여 빌렛을 제조하였다.The raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
이와 같이 제조한 빌렛에 대해 500℃에서 24시간 동안 균질화처리를 행한 후 지름 78mm, 길이 140~160mm의 원형 실린더 형태의 빌렛으로 가공하였다. 이와 같이 가공한 빌렛을 300℃에서 3시간 동안 예열한 후 1.0mm/s의 램속도로 압출을 행하여 두께 6mm, 폭 28mm의 판상 압출재를 제조하였다.The billet thus prepared was homogenized at 500 ° C. for 24 hours and then processed into a billet in the form of a circular cylinder having a diameter of 78 mm and a length of 140 to 160 mm. The billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
마그네슘-알루미늄 합금의 제조Preparation of Magnesium-Aluminum Alloy
본 발명에 따른 마그네슘-알루미늄 합금을 제조하기 위하여 순수 Mg(99.9%)에 Al과 Sc를 첨가하였으며, Al은 99.9%의 순도를 갖는 순수한 Al 펠렛 형태로 첨가하였으며, Sc는 Mg-2Sc 모합금 형태로 첨가하였다. 이때 순수한 Mg에 Al이 3, 6, 9 중량%로 포함되도록 순수한 Al을 첨가하였으며, Sc가 0.001, 0.01, 0.1, 1.0 중량%로 포함되도록 Mg-2Sc 모합금을 첨가하였다. Al and Sc were added to pure Mg (99.9%) to prepare a magnesium-aluminum alloy according to the present invention, Al was added in the form of pure Al pellets having a purity of 99.9%, and Sc was in the form of Mg-2Sc mother alloy. Was added. At this time, pure Al was added to Al to be included in 3, 6, 9% by weight of Al, Mg-2Sc mother alloy was added to include Sc in 0.001, 0.01, 0.1, 1.0% by weight.
상기 마그네슘-알루미늄 합금의 조성은 하기 표 4와 같다.The composition of the magnesium-aluminum alloy is shown in Table 4 below.
AlAl ScSc FeFe SiSi CaCa MgMg
비교예 10Comparative Example 10 Mg-3AlMg-3Al 2.912.91 -- -- 0.100.10 0.0070.007 bal.bal.
실시예 39Example 39 Mg-3Al-0.001ScMg-3Al-0.001Sc 2.862.86 0.0010.001 -- 0.050.05 0.0070.007 bal.bal.
실시예 40Example 40 Mg-3Al-0.01ScMg-3Al-0.01Sc 2.882.88 0.0070.007 0.0020.002 0.050.05 0.0160.016 bal.bal.
실시예 41Example 41 Mg-3Al-0.1ScMg-3Al-0.1Sc 2.732.73 0.0990.099 0.0030.003 0.020.02 0.0540.054 bal.bal.
실시예 42Example 42 Mg-3Al-1.0ScMg-3Al-1.0Sc 2.362.36 0.240.24 0.0070.007 0.050.05 0.0440.044 bal.bal.
비교예 11Comparative Example 11 Mg-6AlMg-6Al 5.855.85 0.0050.005 0.010.01 0.0020.002 bal.bal.
실시예 43Example 43 Mg-6Al-0.001ScMg-6Al-0.001Sc 5.555.55 0.0010.001 0.0030.003 -- 0.0040.004 bal.bal.
실시예 44Example 44 Mg-6Al-0.01ScMg-6Al-0.01Sc 5.815.81 0.010.01 0.0070.007 0.0090.009 0.0030.003 bal.bal.
실시예 45Example 45 Mg-6Al-0.1ScMg-6Al-0.1Sc 5.915.91 0.070.07 0.0030.003 0.0040.004 0.0040.004 bal.bal.
실시예 46Example 46 Mg-6Al-1.0ScMg-6Al-1.0Sc 5.725.72 0.170.17 0.0090.009 -- 0.0140.014 bal.bal.
비교예 12Comparative Example 12 Mg-9AlMg-9Al 8.408.40 -- 0.0070.007 0.040.04 0.0360.036 bal.bal.
실시예 47Example 47 Mg-9Al-0.001ScMg-9Al-0.001Sc 8.848.84 0.0010.001 0.0150.015 0.050.05 0.0080.008 bal.bal.
실시예 48Example 48 Mg-9Al-0.01ScMg-9Al-0.01Sc 8.648.64 0.0090.009 0.0020.002 0.020.02 0.0180.018 bal.bal.
실시예 49Example 49 Mg-9Al-0.1ScMg-9Al-0.1Sc 8.788.78 0.0860.086 0.0010.001 -- 0.0090.009 bal.bal.
실시예 50Example 50 Mg-9Al-1.0ScMg-9Al-1.0Sc 8.908.90 0.640.64 -- -- 0.0170.017 bal.bal.
이와 같이 준비한 원료 물질을 탄소 도가니에 장입하고 유도 용해로를 이용하여 700℃ 이상으로 가열하여 용해한 후 서서히 냉각시켜 용탕의 온도가 700℃에 도달하였을 때 200℃로 예열된 원형 실린더 형태의 금형에 주입하여 빌렛을 제조하였다.The raw material thus prepared is charged to a carbon crucible, heated to 700 ° C. or more using an induction melting furnace, dissolved, and then gradually cooled. Billets were prepared.
이와 같이 제조한 빌렛에 대해 400℃에서 24시간 동안 균질화처리를 행한 후 지름 78mm, 길이 140~160mm의 원형 실린더 형태의 빌렛으로 가공하였다. 이와 같이 가공한 빌렛을 300℃에서 3시간 동안 예열한 후 1.0mm/s의 램속도로 압출을 행하여 두께 6mm, 폭 28mm의 판상 압출재를 제조하였다.The billets thus prepared were homogenized at 400 ° C. for 24 hours and then processed into billets having a circular cylinder shape of 78 mm in diameter and 140 to 160 mm in length. The billet thus processed was preheated at 300 ° C. for 3 hours and then extruded at a ram speed of 1.0 mm / s to prepare a plate-shaped extruded material having a thickness of 6 mm and a width of 28 mm.
실험예 1: 내식성 실험Experimental Example 1: Corrosion Resistance Experiment
상기 본 발명에 따라 제조된 마그네슘 합금의 내식성을 평가하기 위해 다음과 같이 침지실험(immersion test)을 행하였다.In order to evaluate the corrosion resistance of the magnesium alloy prepared according to the present invention, an immersion test was conducted as follows.
침지실험은 3.5wt% NaCl 용액(25℃) 내에 시험편을 72시간 동안 침지한 후 침지 전후의 무게변화를 측정하여 부식속도로 환산하였다.In the immersion test, the specimen was immersed in a 3.5 wt% NaCl solution (25 ° C.) for 72 hours, and the weight change before and after immersion was measured and converted into a corrosion rate.
이때 부식속도는 하기 식을 사용하여 계산하였다.At this time, the corrosion rate was calculated using the following equation.
Figure PCTKR2016013959-appb-I000001
Figure PCTKR2016013959-appb-I000001
실험 결과Experiment result
(1) 침지 실험(1) immersion experiment
순수한 마그네슘은 부식속도가 18mm/y인 것에 반해, 0.001 중량%의 스칸듐을 포함한 마그네슘(Mg-0.001Sc)은 2mm/y, 0.01 중량%의 스칸듐을 포함한 마그네슘 (Mg-0.01Sc)은 1.7mm/y, 0.05 중량%의 스칸듐을 포함한 마그네슘(Mg-0.05Sc)은 0.25mm/y, 0.1 중량%의 스칸듐을 포함한 마그네슘(Mg-0.1Sc)은 0.1mm/y, 0.25 중량%의 스칸듐을 포함한 마그네슘(Mg-0.25Sc)은 0.25mm/y, 0.5 중량%의 스칸듐을 포함한 마그네슘(Mg-0.5Sc)은 0.5mm/y, 1.0 중량%의 스칸듐을 포함한 마그네슘(Mg-1.0Sc)은 0.5mm/y, AZ61은 0.8mm/y로 나타났다(도 1 참조).Pure magnesium has a corrosion rate of 18 mm / y, whereas magnesium with 0.001% by weight of scandium (Mg-0.001Sc) is 2mm / y and magnesium with 0.01% by weight of scandium (Mg-0.01Sc) is 1.7mm / y. y, magnesium containing 0.05 wt% scandium (Mg-0.05Sc) is 0.25mm / y, magnesium containing 0.1 wt% scandium (Mg-0.1Sc) is 0.1mm / y, 0.25 wt% magnesium (Mg-0.25Sc) is 0.25mm / y, magnesium containing 0.5% by weight of scandium (Mg-0.5Sc) is 0.5mm / y, magnesium containing 1.0% by weight of scandium (Mg-1.0Sc) is 0.5mm / y, AZ61 was found to be 0.8 mm / y (see Figure 1).
순수한 마그네슘과 비교하여 매우 향상된 내식성을 보이고 있으며, 특히 0.05 내지 1.0 중량%의 스칸듐을 포함한 마그네슘은 종래의 기술인 AZ61보다 우수한 내식성을 보였다.Compared with pure magnesium, it shows much improved corrosion resistance, especially magnesium containing 0.05 to 1.0% by weight of scandium showed better corrosion resistance than the conventional technology AZ61.
또한, 아연을 1중량부, 2중량부, 4중량부, 6중량부로 포함하는 마그네슘-아연합금의 부식속도를 분석하였고, 아연의 함량에 관계없이 0.001, 0.01, 0.1 중량부의 스칸듐을 포함하는 경우 부식속도가 8.75mm/y 이하로 마그네슘-아연 합금의 부식속도에 비해 낮은 것으로 나타났다(도 4 참조). 특히 0.1 중량부의 스칸듐을 포함하는 경우 현저히 낮은 부식속도를 보였다.In addition, the corrosion rate of the magnesium-zinc alloy containing 1 part by weight, 2 parts by weight, 4 parts by weight, and 6 parts by weight of zinc was analyzed, and it contained 0.001, 0.01, 0.1 parts by weight of scandium regardless of the zinc content. The corrosion rate was 8.75 mm / y or less, which was lower than that of the magnesium-zinc alloy ( see FIG. 4) . Particularly, when 0.1 parts by weight of scandium was included, the corrosion rate was significantly lower.
주석을 3중량부, 5중량부, 6중량부, 8중량부로 포함하는 마그네슘-주석합금의 부식속도를 분석하였고, 주석의 함량에 관계없이 0.001, 0.01, 0.1 중량부의 스칸듐을 포함하는 경우 부식속도가 7.20mm/y 이하로 마그네슘-주석 합금의 부식속도에 비해 현저히 낮은 것으로 나타났다(도 10 참조). Corrosion rate of magnesium-tin alloy containing 3 parts by weight, 5 parts by weight, 6 parts by weight, and 8 parts by weight of tin was analyzed, and the corrosion rate when 0.001, 0.01, and 0.1 parts by weight of scandium was included regardless of the tin content. Was significantly lower than the corrosion rate of the magnesium-tin alloy below 7.20 mm / y ( see Figure 10).
그리고, 알루미늄을 3중량부, 6중량부, 9중량부로 포함하는 마그네슘-알루미늄 합금의 부식속도를 분석하였고, 알루미늄의 함량에 관계없이 0.001, 0.01, 0.1 중량부의 스칸듐을 포함하는 경우 부식속도가 8.84mm/y 이하로 마그네슘-알루미늄 합금의 부식속도에 비해 현저히 낮은 것으로 나타났다(도 16 참조). 특히 0.1 중량부의 스칸듐을 포함하는 경우 현저히 낮은 부식속도를 보였다.In addition, the corrosion rate of the magnesium-aluminum alloy containing 3 parts by weight, 6 parts by weight, and 9 parts by weight of aluminum was analyzed. It was found to be significantly lower than the corrosion rate of the magnesium-aluminum alloy below mm / y (see FIG. 16) . Particularly, when 0.1 parts by weight of scandium was included, the corrosion rate was significantly lower.
상기의 실험 결과에 의하면, 스칸듐을 포함한 마그네슘이 순수한 마그네슘보다 우수한 내식성을 보이는 것을 확인할 수 있고, 특히 0.05 내지 0.5 중량%에서 종래의 기술보다도 우수한 내식성을 나타내는 것을 확인할 수 있었다.According to the above experimental results, it was confirmed that magnesium containing scandium showed better corrosion resistance than pure magnesium, and in particular, it was confirmed that the corrosion resistance was superior to that of the prior art at 0.05 to 0.5% by weight.
본 발명에 의하면, 상업용 소재 수준의 순도(Pure Mg 기준 99.9%)를 가지는 상용 마그네슘 대비 40% 이상, 고순도 소재(Pure Mg 기준 99.99%, 제조비용은 상용소재 대비 100배) 대비 20% 이상 내식성을 향상시킬 수 있다.According to the present invention, corrosion resistance of at least 40% compared to commercial magnesium having a commercial material level of purity (99.9% based on Pure Mg) and at least 20% compared to high purity material (99.99% based on Pure Mg, manufacturing costs 100 times higher than that of commercial materials). Can be improved.
(2) 기계적 특성 실험(2) mechanical property test
순수한 마그네슘과 비교하여 0.001, 0.01, 0.1, 1.0 중량부의 스칸듐을 포함할 경우 인장강도 및 항복강도가 향상되는 경향을 보인다(도 3).Compared with pure magnesium, when the 0.001, 0.01, 0.1, 1.0 parts by weight of scandium is included, the tensile and yield strengths tend to be improved ( FIG. 3 ).
이를 하기 표 5에 구체적으로 나타내었다.This is shown in Table 5 in detail.
  YS (MPa) YS (MPa) UTS (MPa) UTS (MPa) EL (%) EL (%)
비교예 1Comparative Example 1 Pure Mg Pure Mg 85.7 85.7 169 169 12.4 12.4
실시예 1Example 1 Mg-0.001Sc Mg-0.001Sc 80.3 80.3 165 165 12.8 12.8
실시예 2Example 2 Mg-0.01Sc Mg-0.01Sc 81.8 81.8 169 169 15.5 15.5
실시예 3Example 3 Mg-0.1Sc Mg-0.1Sc 112.2 112.2 177 177 6.8 6.8
실시예 4Example 4 Mg-0.25ScMg-0.25Sc 118.7118.7 182182 12.312.3
실시예 5Example 5 Mg-0.5ScMg-0.5Sc 125.6125.6 195195 12.112.1
실시예 6Example 6 Mg-1.0Sc Mg-1.0Sc 131.9 131.9 204 204 14.1 14.1
또한, 마그네슘-아연 합금의 경우, 아연의 함량에 관계없이 스칸듐의 함량이 증가할수록 인장강도 및 항복강도가 향상되는 경향을 보인다(도 9).In addition, in the case of magnesium-zinc alloy, the tensile strength and the yield strength tend to be improved as the content of scandium increases regardless of the zinc content ( FIG. 9 ).
이를 하기 표 6에 구체적으로 나타내었다.This is shown in Table 6 in detail.
Corr. Rate (mm/y) Corr. Rate (mm / y) YS (MPa) YS (MPa) UTS (MPa) UTS (MPa) E.L. (%) E.L. (%)
비교예 2Comparative Example 2 Mg-1Zn Mg-1Zn 1.04 1.04 131 131 217 217 23.8 23.8
실시예 7Example 7 Mg-1Zn-0.001Sc Mg-1Zn-0.001Sc 0.67 0.67 130 130 217 217 22.8 22.8
실시예 8Example 8 Mg-1Zn-0.01Sc Mg-1Zn-0.01Sc 0.550.55 137 137 218 218 22.7 22.7
실시예 9Example 9 Mg-1Zn-0.1Sc Mg-1Zn-0.1Sc 0.65 0.65 171 171 240 240 26.2 26.2
실시예 10Example 10 Mg-1Zn-1.0Sc Mg-1Zn-1.0Sc 7.82 7.82 236 236 276 276 15.2 15.2
비교예 3Comparative Example 3 Mg-2Zn Mg-2Zn 2.36 2.36 126126 223223 24.6 24.6
실시예 11Example 11 Mg-2Zn-0.001Sc Mg-2Zn-0.001Sc 2.04 2.04 126 126 223 223 24.0 24.0
실시예 12Example 12 Mg-2Zn-0.01Sc Mg-2Zn-0.01Sc 1.92 1.92 131 131 223223 24.3 24.3
실시예 13Example 13 Mg-2Zn-0.1Sc Mg-2Zn-0.1Sc 1.36 1.36 159 159 246 246 27.9 27.9
실시예Example 14 14 Mg-2Zn-1.0Sc Mg-2Zn-1.0Sc 2.98 2.98 252 252 268 268 12.9 12.9
비교예 4Comparative Example 4 Mg-4Zn Mg-4Zn 7.39 7.39 126 126 248 248 26.6 26.6
실시예 15Example 15 Mg-4Zn-0.001Sc Mg-4Zn-0.001Sc 6.58 6.58 127 127 247 247 26.526.5
실시예 16Example 16 Mg-4Zn-0.01Sc Mg-4Zn-0.01Sc 5.76 5.76 127 127 249 249 24.0 24.0
실시예 17Example 17 Mg-4Zn-0.1Sc Mg-4Zn-0.1Sc 2.77 2.77 148 148 250 250 20.3 20.3
실시예 18Example 18 Mg-4Zn-1.0Sc Mg-4Zn-1.0Sc 7.2 7.2 253 253 309 309 17.3 17.3
비교예 5Comparative Example 5 Mg-6Zn Mg-6Zn 9.24 9.24 189 189 291 291 24.3 24.3
실시예 19Example 19 Mg-6Zn-0.001Sc Mg-6Zn-0.001Sc 8.75 8.75 160 160 286 286 29.1 29.1
실시예 20Example 20 Mg-6Zn-0.01Sc Mg-6Zn-0.01Sc 7.96 7.96 180 180 296 296 23.4 23.4
실시예 21Example 21 Mg-6Zn-0.1Sc Mg-6Zn-0.1Sc 4.23 4.23 186 186 300 300 29.3 29.3
실시예 22Example 22 Mg-6Zn-1.0Sc Mg-6Zn-1.0Sc 9.63 9.63 257 257 326 326 16.6 16.6
또한, 마그네슘-주석 합금의 경우, 주석의 함량에 관계없이 스칸듐의 함량이 증가할수록 인장강도 및 항복강도가 향상되는 경향을 보인다(도 15).In addition, in the case of magnesium-tin alloy, the tensile strength and the yield strength tend to be improved as the content of scandium increases regardless of the tin content (FIG. 15) .
이를 하기 표 7에 구체적으로 나타내었다.This is shown in Table 7 in detail.
Corr. Rate (mm/y) Corr. Rate (mm / y) YS (MPa) YS (MPa) UTS (MPa) UTS (MPa) E.L. (%) E.L. (%)
비교예 6Comparative Example 6 Mg-3Sn Mg-3Sn 3.21 3.21 142 142 224 224 12.6 12.6
실시예 23Example 23 Mg-3Sn-0.001Sc Mg-3Sn-0.001Sc 2.69 2.69 135 135 220 220 15 15
실시예 24Example 24 Mg-3Sn-0.01Sc Mg-3Sn-0.01Sc 2.292.29 133 133 222 222 11.3 11.3
실시예 25Example 25 Mg-3Sn-0.1Sc Mg-3Sn-0.1Sc 2.34 2.34 153 153 231 231 11.1 11.1
실시예 26Example 26 Mg-3Sn-1.0Sc Mg-3Sn-1.0Sc 25.2 25.2 183 183 252 252 11.5 11.5
비교예 7Comparative Example 7 Mg-5Sn Mg-5Sn 8.8 8.8 167167 231231 7.3 7.3
실시예 27Example 27 Mg-5Sn-0.001Sc Mg-5Sn-0.001Sc 3.68 3.68 161 161 226 226 7.2 7.2
실시예 28Example 28 Mg-5Sn-0.01Sc Mg-5Sn-0.01Sc 3.91 3.91 158 158 226226 7.6 7.6
실시예 29Example 29 Mg-5Sn-0.1Sc Mg-5Sn-0.1Sc 3.79 3.79 212 212 276 276 11.1 11.1
실시예 30Example 30 Mg-5Sn-1.0Sc Mg-5Sn-1.0Sc 110 110 188 188 258 258 12.1 12.1
비교예 8Comparative Example 8 Mg-6Sn Mg-6Sn 10.8 10.8 175 175 236 236 7.2 7.2
실시예 31Example 31 Mg-6Sn-0.001Sc Mg-6Sn-0.001Sc 4.94 4.94 170 170 232 232 6.56.5
실시예 32Example 32 Mg-6Sn-0.01Sc Mg-6Sn-0.01Sc 5.43 5.43 166 166 230 230 7.6 7.6
실시예 33Example 33 Mg-6Sn-0.1Sc Mg-6Sn-0.1Sc 4.98 4.98 250 250 292 292 5.7 5.7
실시예 34Example 34 Mg-6Sn-1.0Sc Mg-6Sn-1.0Sc 43.2 43.2 192 192 261 261 11.4 11.4
비교예 9Comparative Example 9 Mg-8Sn Mg-8Sn 12.9 12.9 194 194 249 249 6.6 6.6
실시예 35Example 35 Mg-8Sn-0.001Sc Mg-8Sn-0.001Sc 6.64 6.64 195 195 251 251 6.7 6.7
실시예 36Example 36 Mg-8Sn-0.01Sc Mg-8Sn-0.01Sc 7.20 7.20 194 194 251 251 7.9 7.9
실시예 37Example 37 Mg-8Sn-0.1Sc Mg-8Sn-0.1Sc 6.84 6.84 272 272 307 307 5.2 5.2
실시예 38Example 38 Mg-8Sn-1.0Sc Mg-8Sn-1.0Sc 92.5 92.5 244 244 286 286 6 6
또한, 마그네슘-알루미늄 합금의 경우, 아연의 함량에 관계없이 스칸듐의 함량이 증가할수록 인장강도 및 항복강도가 향상되는 경향을 보인다(도 20).In addition, in the case of magnesium-aluminum alloy, the tensile strength and the yield strength tend to be improved as the content of scandium increases regardless of the zinc content ( FIG. 20 ).
이를 하기 표 8에 구체적으로 나타내었다.This is specifically shown in Table 8 below.
Corr. Rate (mm/y) Corr. Rate (mm / y) YS (MPa) YS (MPa) UTS (MPa) UTS (MPa) E.L. (%) E.L. (%)
비교예 10Comparative Example 10 Mg-3Al Mg-3Al 42.8 42.8 136 136 237 237 22.1 22.1
실시예 39Example 39 Mg-3Al-0.001Sc Mg-3Al-0.001Sc 8.1 8.1 138 138 238 238 23.8 23.8
실시예 40Example 40 Mg-3Al-0.01Sc Mg-3Al-0.01Sc 1.831.83 141 141 239 239 22.5 22.5
실시예 41Example 41 Mg-3Al-0.1Sc Mg-3Al-0.1Sc 0.3 0.3 147 147 245 245 23.2 23.2
실시예 42Example 42 Mg-3Al-1.0Sc Mg-3Al-1.0Sc 20.5 20.5 151 151 236 236 13.5 13.5
비교예 11Comparative Example 11 Mg-6Al Mg-6Al 43.9 43.9 151151 274274 16.8 16.8
실시예 43Example 43 Mg-6Al-0.001Sc Mg-6Al-0.001Sc 6.49 6.49 147 147 276 276 19.5 19.5
실시예 44Example 44 Mg-6Al-0.01Sc Mg-6Al-0.01Sc 0.74 0.74 152 152 277277 16.9 16.9
실시예 45Example 45 Mg-6Al-0.1Sc Mg-6Al-0.1Sc 0.15 0.15 154 154 275 275 15.8 15.8
실시예 46Example 46 Mg-6Al-1.0Sc Mg-6Al-1.0Sc 16.6 16.6 150 150 270 270 17.7 17.7
비교예 12Comparative Example 12 Mg-9Al Mg-9Al 46.7 46.7 192 192 312 312 10.5 10.5
실시예 47Example 47 Mg-9Al-0.001Sc Mg-9Al-0.001Sc 8.84 8.84 194 194 310 310 10.1 10.1
실시예 48Example 48 Mg-9Al-0.01Sc Mg-9Al-0.01Sc 2.29 2.29 193 193 313 313 10.1 10.1
실시예 49Example 49 Mg-9Al-0.1Sc Mg-9Al-0.1Sc 0.64 0.64 193 193 317 317 11.0 11.0
실시예 50Example 50 Mg-9Al-1.0Sc Mg-9Al-1.0Sc 26.3 26.3 180 180 303 303 11.7 11.7
상기와 실험 결과에 의하면, 스칸듐을 포함한 마그네슘이 순수한 마그네슘보다 우수한 기계적 특성 및 내식성을 보이는 것을 확인할 수 있고, 특히 0.05 내지 0.5 중량부에서 종래의 기술보다도 우수한 내식성을 나타내는 것을 확인할 수 있었다. 본 발명에 의하면, 스칸듐을 포함하지 않은 마그네슘에 대해 현저하게 내식성을 향상시킬 수 있다.According to the above and the experimental results, it can be seen that magnesium containing scandium exhibited better mechanical properties and corrosion resistance than pure magnesium, and in particular, 0.05 to 0.5 parts by weight showed better corrosion resistance than the prior art. According to the present invention, corrosion resistance can be remarkably improved for magnesium not containing scandium.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면, 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리 범위내에 포함된다고 할 것이다.As mentioned above, although an embodiment of the present invention has been described, those of ordinary skill in the art may add, change, delete, or eliminate the elements within the scope of the present invention described in the claims. The present invention may be variously modified and changed by addition, etc., which will also be included within the scope of the present invention.

Claims (13)

  1. 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고,100 parts by weight of magnesium alloy, including scandium from 0.001 part by weight to 1.0 part by weight,
    나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금이고,The rest is a magnesium alloy composed of magnesium and inevitable impurities,
    상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는, 기계적 특성 및 내식성이 우수한 마그네슘 합금.The magnesium alloy is a magnesium alloy excellent in mechanical properties and corrosion resistance, the Fe solid solution is increased and the corrosion resistance is reduced.
  2. 제1항에 있어서, 상기 스칸듐을 0.05 중량부 내지 0.5 중량부로 포함하는, 기계적 특성 및 내식성이 우수한 마그네슘 합금.The magnesium alloy of claim 1, wherein the scandium is contained in an amount of 0.05 parts by weight to 0.5 parts by weight.
  3. 제1항에 있어서, The method of claim 1,
    3.5 wt% 염수로 72시간 침지 시 부식속도가 0.5 mm/y 이하인 기계적 특성 및 내식성이 우수한 마그네슘 합금.Magnesium alloy with excellent mechanical properties and corrosion resistance with corrosion rate of 0.5 mm / y or less when immersed in 3.5 wt% brine for 72 hours.
  4. 제1항에 있어서,The method of claim 1,
    항복강도가 80 내지 120MPa이고, 인장강도가 160 내지 180MPa이고, 연신율이 6 내지 13%인 기계적 특성 및 내식성이 우수한 마그네슘 합금.Magnesium alloy having excellent mechanical properties and corrosion resistance, having a yield strength of 80 to 120 MPa, a tensile strength of 160 to 180 MPa, and an elongation of 6 to 13%.
  5. 제1항에 있어서, The method of claim 1,
    마그네슘 합금 100 중량부에 대해 About 100 parts by weight of magnesium alloy
    0.001 내지 0.007 중량부의 철; 0.001 to 0.007 parts by weight of iron;
    0.001 내지 0.002 중량부의 규소;0.001 to 0.002 parts by weight of silicon;
    0.005 내지 0.015 중량부의 칼슘; 및 0.005 to 0.015 parts by weight of calcium; And
    0.003 내지 0.012 중량부의 망간을 더 포함하는, 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy excellent in mechanical properties and corrosion resistance, further comprising 0.003 to 0.012 parts by weight of manganese.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    마그네슘 합금 100 중량부에 대하여, 0.5 내지 7.0 중량부의 아연을 더 포함하는, 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy excellent in mechanical properties and corrosion resistance, further comprising 0.5 to 7.0 parts by weight of zinc, based on 100 parts by weight of the magnesium alloy.
  7. 제6항에 있어서,The method of claim 6,
    항복강도가 120 내지 190MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 20 내지 30%인, 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy having excellent mechanical properties and corrosion resistance, having a yield strength of 120 to 190 MPa, a tensile strength of 210 to 310 MPa, and an elongation of 20 to 30%.
  8. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    마그네슘 합금 100 중량부에 대하여, 2.5 내지 10 중량부의 주석을 더 포함하는, 마그네슘 합금인 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy having excellent mechanical properties and corrosion resistance, which is a magnesium alloy, further comprising 2.5 to 10 parts by weight of tin, based on 100 parts by weight of the magnesium alloy.
  9. 제8항에 있어서,The method of claim 8,
    항복강도가 130 내지 280MPa이고, 인장강도가 210 내지 310MPa이고, 연신율이 5 내지 17%인, 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy having excellent mechanical properties and corrosion resistance, having a yield strength of 130 to 280 MPa, a tensile strength of 210 to 310 MPa, and an elongation of 5 to 17%.
  10. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    마그네슘 합금 100 중량부에 대하여, 2 내지 10 중량부의 알루미늄을 더 포함하는 마그네슘 합금인 기계적 특성 및 내식성이 우수한 마그네슘 합금.A magnesium alloy having excellent mechanical properties and corrosion resistance, which is a magnesium alloy further containing 2 to 10 parts by weight of aluminum, based on 100 parts by weight of the magnesium alloy.
  11. 제10항에 있어서,The method of claim 10,
    항복강도가 130 내지 200MPa이고, 인장강도가 230 내지 320MPa이고, 연신율이 10 내지 25%인, 기계적 특성 및 내식성이 우수한 마그네슘 합금. A magnesium alloy having excellent mechanical properties and corrosion resistance, having a yield strength of 130 to 200 MPa, a tensile strength of 230 to 320 MPa, and an elongation of 10 to 25%.
  12. 제1항 내지 제5항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
    Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, 및 Mg-Zn-Al-Sn에서 선택되는 조성을 더 포함하는, 기계적 특성 및 내식성이 우수한 마그네슘 합금. A magnesium alloy excellent in mechanical properties and corrosion resistance, further comprising a composition selected from Mg-Zn-Al, Mg-Zn-Sn, Mg-Al-Sn, and Mg-Zn-Al-Sn.
  13. 마그네슘 합금 100 중량부에 대하여, 스칸듐을 0.001 중량부 내지 1.0 중량부로 포함하고, 나머지는 마그네슘과 불가피한 불순물로 구성된 마그네슘 합금을 주조하는 단계; Casting a magnesium alloy comprising scandium from 0.001 part by weight to 1.0 part by weight with respect to 100 parts by weight of magnesium alloy, the balance being magnesium and inevitable impurities;
    상기 주조된 마그네슘 합금을 균질화하는 단계; 및Homogenizing the cast magnesium alloy; And
    상기 균질화된 마그네슘 합금을 예열한 후 압출하는 단계를 포함하는,Preheating and extruding the homogenized magnesium alloy,
    상기 마그네슘 합금은 Fe 고용한이 증가되고 부식성이 감소되는 것인 기계적 특성 및 내식성이 우수한 마그네슘 합금의 제조방법.The magnesium alloy is a method of producing a magnesium alloy excellent in mechanical properties and corrosion resistance that the Fe solid solution is increased and the corrosion resistance is reduced.
PCT/KR2016/013959 2015-12-28 2016-11-30 Magnesium alloy having excellent mechanical properties and corrosion resistance, and method for manufacturing same WO2017116020A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680074714.4A CN108431261A (en) 2015-12-28 2016-11-30 Magnesium alloy and its manufacturing method with excellent mechanical performance and corrosion resistance
US16/066,003 US10947609B2 (en) 2015-12-28 2016-11-30 Magnesium alloy having excellent mechanical properties and corrosion resistance and method for manufacturing the same
JP2018531123A JP6710280B2 (en) 2015-12-28 2016-11-30 Magnesium alloy having excellent mechanical properties and corrosion resistance and method for producing the same
EP16881972.0A EP3399060B1 (en) 2015-12-28 2016-11-30 Method for manufacturing magnesium alloy having excellent mechanical properties and corrosion resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150187878 2015-12-28
KR10-2015-0187878 2015-12-28
KR1020160161445A KR101933589B1 (en) 2015-12-28 2016-11-30 Magnesium Alloys having improved mechanical properties and corrosion resistance and method for manufacturing the same
KR10-2016-0161445 2016-11-30

Publications (1)

Publication Number Publication Date
WO2017116020A1 true WO2017116020A1 (en) 2017-07-06

Family

ID=59224922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013959 WO2017116020A1 (en) 2015-12-28 2016-11-30 Magnesium alloy having excellent mechanical properties and corrosion resistance, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017116020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121611A (en) * 2022-11-23 2023-05-16 重庆大学 High-corrosion-resistance high-strength and high-toughness Mg-Zn-Sc-Al magnesium alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035646A (en) * 2004-04-06 2004-04-29 김강형 Manufacturing method and high formability magnesium alloy wrought product
KR20090085049A (en) * 2006-10-06 2009-08-06 아사히 테크 가부시끼가이샤 Corrosion-resistant member and method for producing the same
KR20100053480A (en) * 2007-05-28 2010-05-20 아크로슈타크 코포레이션 비브이아이 Magnesium-based alloy
KR20110031629A (en) * 2009-09-21 2011-03-29 한국생산기술연구원 Magnesium mother alloy, manufacturing method thereof, metal alloy using the same, and metal alloy manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035646A (en) * 2004-04-06 2004-04-29 김강형 Manufacturing method and high formability magnesium alloy wrought product
KR20090085049A (en) * 2006-10-06 2009-08-06 아사히 테크 가부시끼가이샤 Corrosion-resistant member and method for producing the same
KR20100053480A (en) * 2007-05-28 2010-05-20 아크로슈타크 코포레이션 비브이아이 Magnesium-based alloy
KR20110031629A (en) * 2009-09-21 2011-03-29 한국생산기술연구원 Magnesium mother alloy, manufacturing method thereof, metal alloy using the same, and metal alloy manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO, D. H. ET AL.: "Characterization and Preparation of Mg-Al-Zn Alloys with Minor Sc", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 484, 3 May 2009 (2009-05-03), pages 416 - 421, XP026586462 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121611A (en) * 2022-11-23 2023-05-16 重庆大学 High-corrosion-resistance high-strength and high-toughness Mg-Zn-Sc-Al magnesium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2016104880A1 (en) Hpf molding member having excellent delamination resistance and manufacturing method therefor
WO2017111525A1 (en) Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2015099221A1 (en) Steel sheet having high strength and low density and method of manufacturing same
WO2013147407A1 (en) (100)[ovw] non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
WO2015023012A1 (en) Ultrahigh-strength steel sheet and manufacturing method therefor
WO2017222342A1 (en) Clad steel plate having excellent strength and formability, and production method therefor
WO2017222189A1 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2016105064A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016104881A1 (en) Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same
WO2016105062A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2015099459A1 (en) Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor
WO2018056792A1 (en) Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same
WO2019103539A1 (en) Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor
WO2012053813A2 (en) Aluminum alloy having improved oxidation resistance, corrosion resistance, or fatigue resistance, and die-cast material and extruded material produced from the aluminum alloy
WO2016104837A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2017111322A1 (en) Super strength hot-rolled steel sheet excellent ductility and manufacturing therefor
WO2017116020A1 (en) Magnesium alloy having excellent mechanical properties and corrosion resistance, and method for manufacturing same
WO2019124927A1 (en) Aluminum alloy-plated steel sheet having excellent resistance to welding liquation brittleness and excellent plating adhesion
WO2018117675A1 (en) Cold rolled steel sheet having excellent processability, and manufacturing method therefor
WO2016104838A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881972

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881972

Country of ref document: EP

Effective date: 20180730