WO2017111087A1 - Monofluorophosphate ester salt, method for producing same, and fluorine ion-releasing composition - Google Patents

Monofluorophosphate ester salt, method for producing same, and fluorine ion-releasing composition Download PDF

Info

Publication number
WO2017111087A1
WO2017111087A1 PCT/JP2016/088497 JP2016088497W WO2017111087A1 WO 2017111087 A1 WO2017111087 A1 WO 2017111087A1 JP 2016088497 W JP2016088497 W JP 2016088497W WO 2017111087 A1 WO2017111087 A1 WO 2017111087A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
monofluorophosphate
ions
ester salt
group
Prior art date
Application number
PCT/JP2016/088497
Other languages
French (fr)
Japanese (ja)
Inventor
紀敬 坂口
静郁 桂
雅士 山本
西田 哲郎
Original Assignee
ステラケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社 filed Critical ステラケミファ株式会社
Publication of WO2017111087A1 publication Critical patent/WO2017111087A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/69Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing fluorine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/16Fluorine compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/14Esters of phosphoric acids containing P(=O)-halide groups

Definitions

  • the present invention relates to a monofluorophosphate ester salt excellent in sustained release of fluorine ions, a production method thereof, and a fluoride ion releasing composition.
  • fluorine-releasing compound capable of releasing fluorine ions examples include those contained in oral compositions and dental compositions.
  • fluorine releasing compound used in the oral composition examples include SnF 2 , NaF, and Na 2 PO 3 F (MFP: sodium monofluorophosphate) (see Patent Document 1 below). These fluorine-releasing compounds are known to be formulated for the purpose of preventing dental caries, which is one of oral diseases.
  • fluorine-releasing compound used in the dental composition examples include, for example, a dental composition having fluorine ion-releasing properties and X-ray contrast properties disclosed in Patent Document 2 below, and Patent Document 3 below.
  • the fluorine ion releasing substance currently disclosed is mentioned.
  • These fluorine-releasing compounds are used in composite resins and glass ionomer cements as so-called fillings for the purpose of repairing defects such as teeth.
  • the present invention has been made in view of the above problems, and its object is to provide a monofluorophosphate ester salt capable of continuously releasing fluorine ions in a significant release amount, a method for producing the same, and fluorine ion releasing properties. It is to provide a composition.
  • the monofluorophosphate ester salt exhibits a function of continuously releasing a certain amount of fluorine ions by a reaction via a specific enzyme. As a result, the present invention has been completed.
  • the monofluorophosphate ester salt according to the present invention is characterized by being represented by the following chemical formula (1) in order to solve the above problems.
  • M n + is hydrogen ion, alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion and onium.
  • R 1 represents any one selected from the group consisting of ions, wherein R 1 is a hydrocarbon group having 1 to 20 carbon atoms, or a range having 1 to 20 carbon atoms, and is a halogen atom, heteroatom or Represents a hydrocarbon group having at least one of saturated bonds, wherein n represents a valence.
  • the alkali metal ion is preferably any one selected from the group consisting of lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion.
  • the alkaline earth metal ion is preferably any one selected from the group consisting of magnesium ion, calcium ion, strontium ion, and barium ion.
  • the transition metal ion is any one selected from the group consisting of manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, and vanadium ions.
  • One type is preferable.
  • the rare earth element ion is scandium ion, yttrium ion, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium. It is preferably any one selected from the group consisting of ions, holmium ions, erbium ions, thulium ions, ytterbium ions, and lutetium ions.
  • the onium ions are ammonium ions, primary ammonium ions, secondary ammonium ions, tertiary ammonium ions, quaternary ammonium ions, quaternary phosphonium ions and sulfonium ions. It is preferably any one selected from the group consisting of
  • the method for producing a monofluorophosphate ester salt according to the present invention is obtained by fluorinating a monohalophosphate diester represented by the following chemical formula (2) and represented by the following chemical formula (3).
  • M n + is an alkali metal ion, alkaline earth metal ions, transition metal ions, rare earth ions
  • X 1 represents any one selected from the group consisting of zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion and onium ion
  • X 2 is any one of F, Cl, Br or I.
  • R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a carbon group having 1 to 20 carbon atoms, and having a halogen atom, a hetero atom or an unsaturated bond. Represents a hydrocarbon group having at least one of them, X 1 represents a halogen atom other than F.
  • R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms, and at least one of a halogen atom, a hetero atom and an unsaturated bond
  • M n + is from hydrogen, alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth element ions, zinc ions, aluminum ions, gallium ions, indium ions, germanium ions, tin ions, lead ions and onium ions.
  • R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a range of 1 to 20 carbon atoms, which is a halogen atom, a hetero atom, or an unsaturated bond. A hydrocarbon group having at least one of the above, wherein n represents a valence.
  • the fluorine ion-releasing composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
  • the oral composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
  • the dental composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
  • the monofluorophosphate ester salt represented by the chemical formula (1) can release fluorine ions by a reaction via a specific enzyme, for example, phosphatase. Moreover, according to the monofluorophosphate ester salt having the above-described configuration, it is possible to continuously release fluorine ions in a constant amount, and to have sustained release properties such as excellent sustained release properties.
  • the fluoride ion-releasing composition of the present invention contains the monofluorophosphate ester salt, so that the fluoride ion can be continuously released by a reaction via a specific enzyme such as the phosphatase. And has a sustained release property such as efficient release of fluorine ions in a constant amount and excellent sustained release.
  • the monofluorophosphate ester salt of the present embodiment is represented by the following chemical formula (1) and has a sustained release property of fluorine ions.
  • the monofluorophosphate ester salt exhibits a function of releasing fluoride ions by a reaction via a specific enzyme, specifically, phosphatase.
  • it has a sustained release property such as excellent release over time because it releases fluorine ions continuously over a long period of time and releases it in a constant amount.
  • the sustained release of fluorine ions is the release of fluorine ions from a monofluorophosphate ester salt, and is a conventional fluorine ion releasing compound (for example, SnF 2 , NaF, Na 2 PO 3 F, etc.). Compared with, it means a release that occurs over a long period of time when a significant amount of release can be obtained.
  • the sustained release of fluoride ions is preferably a release that occurs over a period of at least 4 hours, at least 8 hours, or at least 24 hours.
  • the sustained release of fluorine ions has a relatively constant or variable release rate.
  • the sustained release of fluoride ions can be a continuous release. The continuity of fluorine ion release and the release amount can be controlled by the type and amount of the phosphatase and the mode of use.
  • the sustained release of fluorine ions means that the amount of fluorine ions released from the monofluorophosphate ester salt is constant (a constant amount). For example, it means that a more uniform fluorine ion release amount can be obtained as compared with conventional fluorine ion releasing compounds (for example, SnF 2 , NaF, Na 2 PO 3 F, etc.).
  • phosphatase examples include alkaline phosphatase, acid phosphatase, glucose-1-phosphatase, and protein phosphatase. Of these, acid phosphatase is preferred in the present embodiment.
  • M n + is hydrogen ion, alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead. It represents any one selected from the group consisting of ions and onium ions.
  • the alkali metal ion is not particularly limited and includes lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion and the like. Of these alkali metal ions, potassium ions can impart a pain relieving effect on dentin hypersensitivity to monofluorophosphate esters.
  • alkaline earth metal ions examples include magnesium ions, calcium ions, strontium ions, barium ions and the like.
  • the transition metal ion is not particularly limited, and examples thereof include manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, vanadium ions, and the like.
  • copper ions and silver ions can further impart antibacterial activity to the monofluorophosphate ester salt. This antibacterial activity is effective against periodontal bacteria such as P. gingivalis (Porphyromonas gingivalis) and F. nucleatum (Fusobacterium nucleatum), and caries such as S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus). It is effective.
  • the rare earth element ion is not particularly limited, and for example, scandium ion, yttrium ion, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium ion, holmium Ions, erbium ions, thulium ions, ytterbium ions, lutetium ions, and the like.
  • metal ion species include zinc ions, aluminum ions, gallium ions, indium ions, germanium ions, tin ions, lead ions, and the like. Of these metal ions, tin ions can further impart antibacterial activity to the monofluorophosphate ester salt.
  • the target for which this antibacterial activity is effective is the aforementioned periodontal disease bacteria and caries.
  • the onium ion is not particularly limited, and ammonium ion (NH 4+ ), primary ammonium ion, secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion, quaternary phosphonium ion, sulfonium ion, etc. Is mentioned.
  • the onium ion can further impart antibacterial activity to the monofluorophosphate ester salt.
  • the target for which this antibacterial activity is effective is the aforementioned periodontal disease bacteria and caries.
  • the primary ammonium ion is not particularly limited, and examples thereof include methylammonium ion, ethylammonium ion, propylammonium ion, and isopropylammonium ion.
  • the secondary ammonium ion is not particularly limited, and for example, dimethylammonium ion, diethylammonium ion, dipropylammonium ion, dibutylammonium ion, ethylmethylammonium ion, methylpropylammonium ion, methylbutylammonium ion, propylbutylammonium Ion, diisopropylammonium ion and the like.
  • the tertiary ammonium ion is not particularly limited, and examples thereof include trimethylammonium ion, triethylammonium ion, tripropylammonium ammonium ion, tributylammonium ion, ethyldimethylammonium ion, diethylmethylammonium ion, triisopropylammonium ion, dimethylisopropyl.
  • the quaternary ammonium forming the quaternary ammonium ion is not particularly limited, and examples thereof include aliphatic quaternary ammoniums, imidazoliums, pyridiniums, pyrazoliums, and pyridaziniums.
  • the aliphatic quaternary ammoniums are not particularly limited, and examples thereof include tetraethylammonium, tetrapropylammonium, tetraisopropylammonium, trimethylethylammonium, dimethyldiethylammonium, methyltriethylammonium, trimethylpropylammonium, trimethylisopropylammonium, tetra Butylammonium, trimethylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, 1-ethyl-1-methyl-pyrrolidinium, 1-butyl-1-methylpyrrolidinium, 1-ethyl-1-methyl-piperidinium, 1-butyl- 1-methylpiperidinium, octyltrimethylammonium, hexadecyltrimethylammonium, hexade Le (2-hydroxyethyl) dimethyl ammonium, allyl
  • the imidazoliums are not particularly limited. For example, 1,3 dimethyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-n-propyl-3-methylimidazolium, 1-n-butyl-3 -Methylimidazolium, 1-n-hexyl-3-methylimidazolium and the like.
  • the pyridiniums are not particularly limited, and examples thereof include 1-methylpyridinium, 1-ethylpyridinium, 1-n-propylpyridinium, 1-hexylpyridinium, cetylpyridinium and the like.
  • the pyrazoliums are not particularly limited. For example, 1,2-dimethylpyrazolium, 1-methyl-2-ethylpyrazolium, 1-propyl-2-methylpyrazolium, 1-methyl-2-butyl Pyrazolium, 1-methylpyrazolium, 3-methylpyrazolium, 4-methylpyrazolium, 4-iodopyrazolium, 4-bromopyrazolium, 4-iodo3-methylpyrazolium, 4 -Bromo-3-methylpyrazolium, 3-trifluoromethylpyrazolium.
  • the pyridaziniums are not particularly limited, and for example, 1-methylpyridazinium, 1-ethylpyridazinium, 1-propylpyridazinium, 1-butylpyridazinium, 3-methylpyridazinium Ni, 4-methylpyridazinium, 3-methoxypyridazinium, 3,6-dichloropyridazinium, 3,6-dichloro-4-methylpyridazinium, 3-chloro-6-methylpyri Examples include dazinium and 3-chloro-6-methoxypyridazinium.
  • the quaternary phosphonium forming the quaternary phosphonium ion is not particularly limited, and examples thereof include benzyltriphenylphosphonium, tetraethylphosphonium, and tetraphenylphosphonium.
  • the sulfonium forming the sulfonium ion is not particularly limited, and examples thereof include trimethylsulfonium, triphenylsulfonium, triethylsulfonium, and the like.
  • lithium, sodium ion, potassium, magnesium, calcium, tin, tetraalkylammonium ion, alkylimidazolium ion, alkylpyrrolidinium ion, alkylpyridinium ion Is preferred.
  • R 1 represents a hydrocarbon group or a hydrocarbon group having at least one of a halogen atom, a hetero atom, or an unsaturated bond (hereinafter referred to as “hydrocarbon group having a halogen atom”). .)
  • the hydrocarbon group has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms.
  • the hydrocarbon group having a halogen atom or the like has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • the hydrocarbon group or a hydrocarbon group having a halogen atom or the like is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • Cyclic alkyl groups such as cyclopentyl group, cyclohexyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl Group, 1,2-dichloroethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2 , 2,2-tribromoethyl group, 2,2,2-trichloroethyl group, 2,2,2-trifluoroethyl group, hexafluoro -2-chain halogen-containing alkyl groups such as 2-propyl group, cyclic halogen-
  • the halogen atom means a fluorine, chlorine, bromine or iodine atom.
  • the hydrocarbon group having a halogen atom means that part or all of the hydrogen in the hydrocarbon group may be substituted with any of these halogen atoms.
  • a hetero atom means atoms, such as oxygen, nitrogen, or sulfur.
  • the hydrocarbon group having a hetero atom means that part or all of hydrogen and carbon in the hydrocarbon group may be substituted with any of these hetero atoms.
  • hydrocarbon group having a hetero atom examples include a 2-methoxyethyl group, a 2- (2-methoxyethoxy) ethyl group, and a 2- (2- (2-methoxyethoxy) ethoxy) ethyl group.
  • n a valence.
  • M is a monovalent cation
  • n 1, when it is a divalent cation
  • n 2
  • n 3
  • monofluorophosphate ester salt represented by the chemical formula (1) examples include, for example, methyl sodium monofluorophosphate, ethyl sodium monofluorophosphate, propyl sodium monofluorophosphate, monofluorophosphate (2 , 2,2-trichloroethyl) sodium phosphate, sodium monofluorophosphate (2,2,2-trichloroethyl), sodium monofluorophosphate (1,1,1,3,3,3-hexachloroisopropyl), Sodium monofluorophosphate (2,2,2-trifluoroethyl), sodium monofluorophosphate (1,1,1,3,3,3-hexafluoroisopropyl), monofluorophosphate (2-methoxyethyl) Sodium, monofluorophosphate (2- (2-methoxyethoxy) ethyl) sodium , Sodium monofluorophosphate (2- (2-methoxyethoxy) ethoxy) ethyl), sodium monofluorophosphat
  • the method for producing a monofluorophosphate ester salt according to the present embodiment includes a step A in which a monohalophosphate diester is fluorinated to produce a monofluorophosphate diester, and the monofluorophosphate diester is reacted with a halide. And at least a step B of producing a monofluorophosphate ester salt.
  • the monohalophosphate diester used as a raw material in the step A is represented by the following chemical formula (2).
  • R 1 is the same as R 1 in Formula (1), it is as previously described. Furthermore, the R 2 in the chemical formula (2) is the same as R 1 in the chemical formula (1). Therefore, R 2 is selected from the functional group group listed in the description of R 1 . However, R 1 and R 2 may be the same type or different from each other.
  • X 1 represents a halogen atom other than the fluorine atom F.
  • Fluorination of the monohalophosphoric acid diester by fluorination treatment can be performed, for example, by contacting potassium fluoride or the like as a fluorinating agent in an organic solvent. Thereby, a reaction as shown in the following chemical reaction formula (4) occurs, and a monofluorophosphoric acid diester can be generated.
  • the reaction start temperature when the monohalophosphate diester and the fluorinating agent start the reaction in a non-aqueous solvent (in an organic solvent) is not particularly limited as long as the reaction proceeds, and is appropriately set according to the reaction species. do it. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity. By setting the reaction start temperature to 0 ° C. or higher, it is possible to prevent the reaction rate from being significantly attenuated. Moreover, the energy loss by using excess energy can be suppressed by making reaction start temperature into 200 degrees C or less.
  • the method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the monohalophosphate diester and the fluorinating agent may be ice-cooled or the like. Can be performed. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
  • an aprotic solvent is preferable as the solvent used when the monohalophosphoric acid diester and the fluorinating agent are reacted in a non-aqueous solvent.
  • an aprotic solvent By using an aprotic solvent, inhibition of the fluorination reaction can be prevented.
  • the monohalophosphate diester and the protic solvent may cause a halogen exchange reaction.
  • the hydrogen element in the protic solvent and the fluorine anion of the fluorinating agent significantly reduce the fluorination ability due to the influence of hydrogen bonding.
  • monohalo phosphoric acid diester can also be used as a solvent.
  • the aprotic solvent is not particularly limited, and examples thereof include nitriles, esters, ketones, ethers, and halogenated hydrocarbons.
  • the nitriles are not particularly limited, and examples thereof include acetonitrile and propionitrile.
  • the esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate.
  • the ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • the ethers are not particularly limited, and examples thereof include diethyl ether, tetrahydrofuran, and ethylene glycol.
  • the halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform.
  • Still other aprotic solvents include, for example, nitromethane, nitroethane, dimethylformamide and the like. These aprotic solvents can be used alone or in combination of two or more.
  • the fluorinating agent used in the reaction between the monohalophosphate diester and the fluorinating agent is not particularly limited, and examples thereof include alkali metal fluorides, alkaline earth metal fluorides, onium fluorides and the like.
  • the alkali metal fluoride is not particularly limited, and examples thereof include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, and cesium fluoride.
  • the alkaline earth metal fluoride is not particularly limited, and examples thereof include beryllium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride.
  • the onium fluoride is not particularly limited, and examples thereof include triethylamine trihydrofluoride, triethylamine pentahydrofluoride, viridine hydrofluoride, and tetrabutylammonium fluoride. These fluorinating agents can be used alone or in combination of two or more.
  • the step B is a step of producing a monofluorophosphate ester salt represented by the chemical formula (1) by reacting a monofluorophosphate diester with the halide.
  • the halide has a chemical formula M n + X 2 n (where M n + is an alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, It represents any one selected from the group consisting of tin ion, lead ion and onium ion, X 2 represents a halogen atom of F, Cl, Br or I.
  • the n represents a valence. It is represented by
  • n + in the halide is as described above, detailed description thereof is omitted.
  • said n in a halide represents a valence similarly to the case of the said General formula (1).
  • the reaction between the monofluorophosphoric diester and the halide in Step B is as represented by the following chemical reaction formulas (5) and (6).
  • the halogen of the halide nucleophilically attacks R 2 of the monofluorophosphate ester, whereby the monofluorophosphate ester anion containing R 1 is eliminated, and the alkyl halide represented by R 2 X 2 is released. Generate. Further, it is presumed that the monofluorophosphate ester salt is formed by the elimination of the monofluorophosphate ester anion to form a salt with a halide counter cation.
  • R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond.
  • R 2 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond.
  • the leaving ability of the monofluorophosphate ester anion represented by the chemical formula (7) or (8), which is a leaving group, is roughly estimated from the pKa value of each proton body, for example.
  • the monofluorophosphate anion represented by the chemical formula (7) is represented by the proton form of the monofluorophosphate ester anion, that is, the pKa value of the monofluorophosphate ester is represented by the chemical formula (8). It is preferably smaller than the proton body.
  • the pKa value can be estimated from, for example, Bordwell pKa Table. Alternatively, it can be presumed that those having an electron withdrawing group in the leaving group have high leaving ability.
  • the amount of the halide and monofluorophosphate diester used as long as the desired compound is obtained.
  • the monofluorophosphoric diester is 0.5 to 5 equivalents, preferably 0.9 to 4 equivalents, more preferably 0.95 to 3.3 equivalents per 1 equivalent of halide. is there.
  • the reaction start temperature when the halide and monofluorophosphoric acid diester start the reaction in another non-aqueous solvent is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Good. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity.
  • the method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the halide and monofluorophosphoric acid diester is cooled with ice or the like. Can be done. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
  • the reaction time when the halide and monofluorophosphoric diester are reacted in another non-aqueous solvent is not particularly limited, and may be set as appropriate according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
  • the monofluorophosphoric diester can be used as a reaction solvent in addition to the other non-aqueous solvent.
  • the reaction start temperature at which the halide and monofluorophosphoric acid diester start the reaction is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Usually, it is in the range of 0 ° C. to 200 ° C., and from the viewpoint of reactivity, 20 ° C. to 150 ° C. is preferable, and 40 ° C. to 120 ° C. is more preferable.
  • the reaction time is not particularly limited, and may be appropriately set according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
  • the other non-aqueous solvent is not particularly limited as long as it does not hinder the reaction with other reactants and products.
  • Specific examples include alcohols, nitriles, esters, ketones, ethers, halogenated hydrocarbons and the like. These can be used alone or in combination of two or more.
  • the alcohols are not particularly limited, and examples thereof include methanol, ethanol, propanol, butanol, isopropyl alcohol, pentanol, hexanol, heptanol, octanol, 2-iodoethanol, 2-bromoethanol, 2-chloroethanol, 2- Fluoroethanol, 1,2-diiodoethanol, 1,2-dibromoethanol, 1,2-dichloroethanol, 1,2-difluoroethanol, 2,2-diiodoethanol, 2,2-dibromoethanol, 2,2 -Dichloroethanol, 2,2-difluoroethanol, 2,2,2-tribromoethanol, 2,2,2-trichloroethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3 3-hexafluoro-2-propanol etc. It is below. These can be used alone or in combination of two or more.
  • nitriles are not particularly limited, and examples thereof include acetonitrile and propionitryl. These can be used alone or in combination of two or more.
  • esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate. These can be used alone or in combination of two or more.
  • the ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. These can be used alone or in combination of two or more.
  • the ethers are not particularly limited, and examples include diethyl ether, tetrahydrofuran, dimethoxyethane, and the like. These can be used alone or in combination of two or more.
  • the halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform. These can be used alone or in combination of two or more.
  • non-aqueous solvent examples include nitromethane, nitroethane, dimethylformamide and the like.
  • the amount of the other non-aqueous solvent (organic solvent) to be used is preferably 1 or more times, more preferably 1 to 200 times, and more preferably 1 to 100 times based on the weight of the monofluorophosphoric acid diester. A double amount is more preferable, and a 1-fold to 50-fold amount is particularly preferable.
  • the upper limit of the amount of the organic solvent used is not particularly limited, but excessive use of the organic solvent relative to the monofluorophosphoric acid diester requires more energy when distilling it off, which is industrially disadvantageous. It may become. Accordingly, the upper limit of the amount of the organic solvent used is preferably set as appropriate according to the reaction species.
  • the order of addition of the halide and monofluorophosphoric acid diester is not particularly limited. Moreover, when using monofluorophosphoric diester as a reaction solvent, the addition order of a halide and monofluorophosphoric diester is not specifically limited.
  • the monofluorophosphoric acid ester salt obtained by the method of the present embodiment is obtained by performing cation exchange using solubility or cation exchange using an ion exchange resin or the like to obtain a monofluorophosphorus having a desired different cation. Acid ester salts can also be produced.
  • the monofluorophosphate ester can also be produced by reacting the monofluorophosphate ester salt obtained by the method of the present embodiment with Arrhenius acid such as sulfuric acid or hydrochloric acid.
  • a monofluorophosphate ester can also be obtained by performing proton exchange using an ion exchange resin.
  • a monofluorophosphate ester salt can also be produced by reacting the monofluorophosphate obtained by these methods with a halide or hydroxide.
  • a step of purifying the monofluorophosphate ester salt may be performed immediately after the step of generating the monofluorophosphate ester salt. Further, immediately after the step of producing a monofluorophosphate ester salt having another kind of cation, purification can be performed by cation exchange with respect to the monofluorophosphate ester salt. Furthermore, the purification can be performed immediately after the monofluorophosphate ester is reacted with the halide to produce a monofluorophosphate ester salt. It does not specifically limit as a purification method, For example, the method by operation, such as distillation and drying, The method using adsorption agents, such as activated carbon or an ion exchange resin, etc. are employable. By performing these purifications, the purity of the monofluorophosphate ester salt can be increased.
  • the monofluorophosphate ester salt of the present embodiment is used as an additive for imparting sustained release of fluoride ions, for example, in fluoride ion releasing compositions such as oral compositions and dental compositions. Can do.
  • the monofluorophosphate ester salt as the fluorine releasing compound includes at least one kind, and two or more kinds can be used in combination.
  • the monofluorophosphoric acid ester salt of the present embodiment is, for example, coated with a specific substance such as phosphatase without coating the particle surface with a specific substance such as polysiloxane and controlling the release rate of fluoride ions.
  • a specific substance such as phosphatase
  • a specific substance such as polysiloxane
  • Examples of the oral composition include a dentifrice composition for preventing caries.
  • Examples of the dental composition include dental coating agents, dental fillers such as dental composite resins and glass ionomer cements, dental adhesives, and dental cements.
  • fluoride ions such as sodium fluoride, tin fluoride, potassium fluoride, sodium monofluorophosphate, sodium fluorosilicate, ammonium fluorosilicate, amine fluoride, ammonium fluoride, etc.
  • a component serving as a supply source may be added and used together with the monofluorophosphate ester salt of the present embodiment. In this case, the addition amount of these components can be appropriately set as necessary.
  • the addition amount of the monofluorophosphate ester salt is preferably 50 ppm to 10000 ppm, more preferably 50 ppm to 5000 ppm, more preferably, based on the fluorine in the molecule and based on the total amount of the fluorine ion-releasing composition. 100 ppm to 2000 ppm.
  • the addition amount 50 ppm or more it is possible to maintain the amount of fluorine ions to be released.
  • the additive amount is 10000 ppm or less, when applied to the oral composition additive, fluorosis due to excessive intake of fluorine can be suppressed, and the dental composition additive can be used as an additive. When applied, it is possible to prevent a decrease in handleability as a dental material.
  • the raw material diethyl chlorophosphate was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and two peaks of chloride ion and diethyl phosphate anion were detected.
  • ion chromatography manufactured by Metrohm, model number: IC-850
  • two peaks of fluoride ion and diethyl phosphate anion were detected, and the peak of chloride ion disappeared cleanly. Thereby, it was confirmed that diethyl monofluorophosphate was produced.
  • the obtained colorless and transparent liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one peak was detected at the same detection time as that of the lithium ethylfluorophosphate. In addition, sulfate ions were not detected. This confirmed that the obtained colorless and transparent liquid was ethyl monofluorophosphate.
  • Example 1 ⁇ Synthesis of sodium monofluorophosphate ethyl> 1.9 g of sodium iodide and 10 g of acetonitrile were placed in a 50 mL eggplant flask containing a stirring bar, and 2.0 g of the above-mentioned diethyl monofluorophosphate was further added. Thereafter, the solution in the eggplant flask was heated and refluxed at 120 ° C. for 3 hours under a nitrogen stream. Furthermore, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 1.5 g of a white solid.
  • Example 2 Synthesis of ethyl lithium monofluorophosphate> To a 100 mL eggplant flask containing a stirrer, 1.1 g of lithium chloride and 20.0 g of diethyl monofluorophosphate were added. Thereafter, the solution in the eggplant flask was heated and refluxed at 120 ° C. for 1.5 hours under a nitrogen stream. Furthermore, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 3.0 g of a white solid.
  • Example 4 ⁇ Synthesis of ethyl magnesium monofluorophosphate> Into a 50 mL eggplant flask containing a stir bar, 0.6 g of anhydrous magnesium chloride and 5 g of acetonitrile were added, and then 2.0 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 to 150 ° C. for 7 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate unreacted magnesium chloride and the filtrate. Subsequently, 1.7 g of a white solid was obtained by distilling off the solvent in the filtrate under reduced pressure.
  • Example 5 ⁇ Synthesis of ethyl calcium monofluorophosphate> To a 50 mL eggplant flask containing a stir bar, 0.7 g of anhydrous calcium chloride and 10 g of acetonitrile were added, and then 2.0 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 ° C. to 150 ° C. for 14 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate unreacted calcium chloride and the filtrate. Subsequently, 0.6 g of a white solid was obtained by distilling off the solvent in the filtrate under reduced pressure.
  • Example 7 ⁇ Synthesis of ethyl copper monofluorophosphate> To a 50 mL eggplant flask containing a stirrer, 0.4 g of copper (II) hydroxide and 5 g of acetonitrile were charged. Subsequently, 1.0 g of the ethyl monofluorophosphate was added little by little while stirring the solution in the eggplant flask. Thereafter, the solution in the eggplant flask was stirred at room temperature for 1 hour. Furthermore, the precipitate and the filtrate were separated by filtering the solution in the eggplant flask under reduced pressure. Subsequently, the solvent in the filtrate was distilled off under reduced pressure to obtain 1.2 g of a blue-green solid.
  • Example 8 ⁇ Synthesis of ethyl 1-ethyl-3-methylimidazolium monofluorophosphate> To a 50 mL eggplant flask containing a stir bar, 1.1 g of 1-ethyl-3-methylimidazolium chloride was charged, and then 1.0 g of diethyl monofluorophosphate was charged. Thereafter, the solution in the eggplant flask was heated at 110 ° C. to 120 ° C. for 3 hours with stirring to obtain 1.4 g of a yellow transparent oily liquid.
  • Example 9 ⁇ Synthesis of ethyl 1-ethylpyridinium monofluorophosphate> A 50 mL eggplant flask containing a stir bar was charged with 1.8 g of 1-ethylpyridinium bromide and 10 g of acetonitrile, and then 1.5 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 ° C. to 150 ° C. for 15 hours under a nitrogen stream.
  • the solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and vacuum dried at room temperature to obtain 1.2 g of a colorless and transparent oily liquid. .
  • the solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and then vacuum dried at room temperature to obtain 4.9 g of a colorless and transparent oily liquid. .
  • Example 12 ⁇ Synthesis of ethyl octyltrimethylammonium monofluorophosphate> 4.4 g of octyltrimethylammonium bromide and 20 g of acetonitrile were added to a 50 mL eggplant flask containing a stir bar, and then 5.4 g of the above diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 to 120 ° C. for 15 hours under a nitrogen stream.
  • the solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and vacuum dried at room temperature to obtain 4.2 g of a colorless and transparent oily liquid. .
  • the solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a colorless and transparent oily liquid.
  • the mixture was recrystallized with acetone under cooling at ⁇ 20 ° C., decanted from the solvent, and then vacuum dried at room temperature to obtain 1.7 g of a white solid.
  • Comparative Example 1 sodium fluoride (manufactured by Stella Chemifa Co., Ltd.) was used as a compound that imparts fluorine release properties.
  • Sample aqueous solutions were prepared using the monofluorophosphate ester salts obtained in Examples 1 to 19, sodium fluoride of Comparative Example 1, and sodium monofluorophosphate of Comparative Example 2, respectively.
  • the abundance of all fluorine atoms in each sample aqueous solution was 1000 ppm.
  • a 0.1% acid phosphatase phosphate buffer solution was prepared using acid phosphatase (3.3 U / mg) and 0.1 M phosphate buffer solution (pH 7) (manufactured by Wako Pure Chemical Industries, Ltd.).

Abstract

[Problem] To provide: a monofluorophosphate ester salt capable of the sustained release of fluorine ions at a significant amount of release; a method for producing the monofluorophosphate ester salt; and a fluorine ion-releasing composition. [Solution] The monofluorophosphate ester salt of the present invention is characterized by being represented by chemical formula (1). (Mn+ represents any one species selected from the group consisting of a hydrogen ion, alkali metal ion, alkaline-earth metal ion, transition metal ion, rare-earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion, and onium ion. R1 represents a hydrocarbon group that has 1 to 20 carbons or a hydrocarbon group that has 1 to 20 carbons and that has at least one of any of a halogen atom, a heteroatom, and an unsaturated bond. n represents the valence.)

Description

モノフルオロリン酸エステル塩、その製造方法及びフッ素イオン放出性組成物Monofluorophosphate ester salt, process for producing the same, and fluorine ion releasing composition
 本発明は、フッ素イオンの持続放出性に優れたモノフルオロリン酸エステル塩、その製造方法及びフッ素イオン放出性組成物に関する。 The present invention relates to a monofluorophosphate ester salt excellent in sustained release of fluorine ions, a production method thereof, and a fluoride ion releasing composition.
 フッ素イオンの放出が可能なフッ素放出性化合物としては、例えば、口腔用組成物や歯科用組成物に含有させるものが挙げられる。 Examples of the fluorine-releasing compound capable of releasing fluorine ions include those contained in oral compositions and dental compositions.
 前記口腔用組成物に用いられるフッ素放出性化合物としては、例えば、SnF、NaF、NaPOF(MFP:モノフルオロリン酸ナトリウム)が挙げられる(下記特許文献1参照)。これらのフッ素放出性化合物は、口腔疾患のひとつである齲蝕予防を目的に配合することが知られている。 Examples of the fluorine releasing compound used in the oral composition include SnF 2 , NaF, and Na 2 PO 3 F (MFP: sodium monofluorophosphate) (see Patent Document 1 below). These fluorine-releasing compounds are known to be formulated for the purpose of preventing dental caries, which is one of oral diseases.
 また、歯科用組成物に用いられるフッ素放出性化合物としては、例えば、下記特許文献2に開示されている、フッ素イオン放出性及びX線造影性を有する歯科用組成物や、下記特許文献3に開示されているフッ素イオン放出性物質が挙げられる。これらのフッ素放出性化合物は、歯牙等の欠損を修復する目的で、所謂詰め物として、コンポジットレジンやグラスアイオノマーセメントに用いられている。 Examples of the fluorine-releasing compound used in the dental composition include, for example, a dental composition having fluorine ion-releasing properties and X-ray contrast properties disclosed in Patent Document 2 below, and Patent Document 3 below. The fluorine ion releasing substance currently disclosed is mentioned. These fluorine-releasing compounds are used in composite resins and glass ionomer cements as so-called fillings for the purpose of repairing defects such as teeth.
 しかし、従来のフッ素放出性化合物は、持続的に一定量のフッ素イオンを放出させることが難しく、当該フッ素イオンを有意な量で長期にわたって一定量で放出させる性質、所謂徐放性の向上が望まれている。 However, it is difficult for conventional fluorine-releasing compounds to release a certain amount of fluorine ions continuously, and it is hoped that the property of releasing the fluorine ions in a certain amount over a long period of time, that is, so-called sustained release is improved. It is rare.
特開2003-128530号公報JP 2003-128530 A 特開2004-67597号公報JP 2004-67597 A 特開2003-81731号公報JP 2003-81731 A
 本発明は前記問題点に鑑みなされたものであり、その目的は、フッ素イオンを有意な放出量で持続して放出させることが可能なモノフルオロリン酸エステル塩、その製造方法及びフッ素イオン放出性組成物を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a monofluorophosphate ester salt capable of continuously releasing fluorine ions in a significant release amount, a method for producing the same, and fluorine ion releasing properties. It is to provide a composition.
 本願発明者等は、前記従来の問題点を解決すべく検討した結果、モノフルオロリン酸エステル塩が特定の酵素を介した反応により、フッ素イオンを一定量で持続して放出させる機能を発現させることが可能なことを見出して、本発明を完成させるに至った。 The inventors of the present application have studied to solve the conventional problems, and as a result, the monofluorophosphate ester salt exhibits a function of continuously releasing a certain amount of fluorine ions by a reaction via a specific enzyme. As a result, the present invention has been completed.
 すなわち、本発明に係るモノフルオロリン酸エステル塩は、前記の課題を解決する為に、下記化学式(1)で表されることを特徴とする。 That is, the monofluorophosphate ester salt according to the present invention is characterized by being represented by the following chemical formula (1) in order to solve the above problems.
Figure JPOXMLDOC01-appb-C000005
(但し、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
Figure JPOXMLDOC01-appb-C000005
(However, M n + is hydrogen ion, alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion and onium. R 1 represents any one selected from the group consisting of ions, wherein R 1 is a hydrocarbon group having 1 to 20 carbon atoms, or a range having 1 to 20 carbon atoms, and is a halogen atom, heteroatom or Represents a hydrocarbon group having at least one of saturated bonds, wherein n represents a valence.)
 前記の構成に於いては、前記アルカリ金属イオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン及びセシウムイオンからなる群より選ばれる何れか1種であることが好ましい。 In the above configuration, the alkali metal ion is preferably any one selected from the group consisting of lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion.
 また、前記の構成に於いては、前記アルカリ土類金属イオンが、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン及びバリウムイオンからなる群より選ばれる何れか1種であることが好ましい。 In the above-described configuration, the alkaline earth metal ion is preferably any one selected from the group consisting of magnesium ion, calcium ion, strontium ion, and barium ion.
 また、前記の構成に於いては、前記遷移金属イオンが、マンガンイオン、コバルトイオン、ニッケルイオン、クロムイオン、銅イオン、銀イオン、モリブデンイオン、タングステンイオン及びバナジウムイオンからなる群より選ばれる何れか1種であることが好ましい。 Further, in the above configuration, the transition metal ion is any one selected from the group consisting of manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, and vanadium ions. One type is preferable.
 また、前記の構成に於いては、前記希土類元素イオンが、スカンジウムイオン、イットリウムイオン、ランタンイオン、セリウムイオン、プラセオジムイオン、ネオジムイオン、プロメチウムイオン、サマリウムイオン、ユウロピウムイオン、ガドリニウムイオン、テルビウムイオン、ジスプロシウムイオン、ホルミウムイオン、エルビウムイオン、ツリウムイオン及びイッテルビウムイオン及びルテチウムイオンからなる群より選ばれる何れか1種であることが好ましい。 In the above structure, the rare earth element ion is scandium ion, yttrium ion, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium. It is preferably any one selected from the group consisting of ions, holmium ions, erbium ions, thulium ions, ytterbium ions, and lutetium ions.
 また、前記の構成に於いては、前記オニウムイオンが、アンモニウムイオン、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオン、第4級ホスホニウムイオン及びスルホニウムイオンからなる群より選ばれる何れか1種であることが好ましい。 In the above structure, the onium ions are ammonium ions, primary ammonium ions, secondary ammonium ions, tertiary ammonium ions, quaternary ammonium ions, quaternary phosphonium ions and sulfonium ions. It is preferably any one selected from the group consisting of
 本発明に係るモノフルオロリン酸エステル塩の製造方法は、前記の課題を解決する為に、下記化学式(2)で表されるモノハロリン酸ジエステルをフッ素化処理して、下記化学式(3)で表されるモノフルオロリン酸ジエステルを生成する工程と、前記モノフルオロリン酸ジエステルと、Mn+n(前記Mn+は、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記XはF、Cl、Br又はIの何れかのハロゲン原子を表す。前記nは価数を表す。)を反応させることにより、下記化学式(1)で表されるモノフルオロリン酸エステル塩を生成する工程とを含むことを特徴とする。 In order to solve the above-mentioned problem, the method for producing a monofluorophosphate ester salt according to the present invention is obtained by fluorinating a monohalophosphate diester represented by the following chemical formula (2) and represented by the following chemical formula (3). generating a monofluorophosphate diester, and the monofluorophosphate diester, M n + X 2 n (wherein M n + is an alkali metal ion, alkaline earth metal ions, transition metal ions, rare earth ions, X 1 represents any one selected from the group consisting of zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion and onium ion, wherein X 2 is any one of F, Cl, Br or I. (Wherein n represents a valence) is reacted to form a molecule represented by the following chemical formula (1). Characterized by comprising a step of generating a fluoro phosphate salt.
Figure JPOXMLDOC01-appb-C000006
(但し、前記R及びRは相互に独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。XはF以外のハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000006
(However, R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a carbon group having 1 to 20 carbon atoms, and having a halogen atom, a hetero atom or an unsaturated bond. Represents a hydrocarbon group having at least one of them, X 1 represents a halogen atom other than F.)
Figure JPOXMLDOC01-appb-C000007
(前記R及びRは相互に独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms, and at least one of a halogen atom, a hetero atom and an unsaturated bond) Represents a hydrocarbon group having one.)
Figure JPOXMLDOC01-appb-C000008
(但し、前記Mn+は水素、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
Figure JPOXMLDOC01-appb-C000008
(However, said M n + is from hydrogen, alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth element ions, zinc ions, aluminum ions, gallium ions, indium ions, germanium ions, tin ions, lead ions and onium ions. And R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a range of 1 to 20 carbon atoms, which is a halogen atom, a hetero atom, or an unsaturated bond. A hydrocarbon group having at least one of the above, wherein n represents a valence.)
 本発明に係るフッ素イオン放出性組成物は、前記の課題を解決する為に、モノフルオロリン酸エステル塩を含むことを特徴とする。 The fluorine ion-releasing composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
 本発明に係る口腔用組成物は、前記の課題を解決する為に、モノフルオロリン酸エステル塩を含むことを特徴とする。 The oral composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
 本発明に係る歯科用組成物は、前記の課題を解決する為に、モノフルオロリン酸エステル塩を含むことを特徴とする。 The dental composition according to the present invention is characterized by containing a monofluorophosphate ester salt in order to solve the above-mentioned problems.
 本発明によれば、前記化学式(1)で表されるモノフルオロリン酸エステル塩は、特定の酵素、例えば、ホスファターゼを介した反応により、フッ素イオンを放出させることができる。また、前記構成のモノフルオロリン酸エステル塩によれば、フッ素イオンの放出を一定量で持続的に行うことができ、徐放性に優れるなどの持続放出性を有している。 According to the present invention, the monofluorophosphate ester salt represented by the chemical formula (1) can release fluorine ions by a reaction via a specific enzyme, for example, phosphatase. Moreover, according to the monofluorophosphate ester salt having the above-described configuration, it is possible to continuously release fluorine ions in a constant amount, and to have sustained release properties such as excellent sustained release properties.
 さらに、本発明のフッ素イオン放出性組成物は、前記モノフルオロリン酸エステル塩を含有することで、前記ホスファターゼなどの特定の酵素を介した反応により、当該フッ素イオンを持続的に放出させることができ、かつ、フッ素イオンを一定量で効率良く放出させ、徐放性に優れるなどの持続放出性を有している。 Furthermore, the fluoride ion-releasing composition of the present invention contains the monofluorophosphate ester salt, so that the fluoride ion can be continuously released by a reaction via a specific enzyme such as the phosphatase. And has a sustained release property such as efficient release of fluorine ions in a constant amount and excellent sustained release.
(モノフルオロリン酸エステル塩)
 先ず、本実施の形態に係るモノフルオロリン酸エステル塩について、以下に説明する。
 本実施の形態のモノフルオロリン酸エステル塩は、下記化学式(1)で表されるものであり、フッ素イオンの持続放出性を有している。前記モノフルオロリン酸エステル塩は、特定の酵素、具体的には、ホスファターゼを介した反応により、フッ素イオンの放出機能が発現する。また、フッ素イオンの放出を長期間にわたって持続的に行い、また一定量で放出するので徐放性に優れるなどの持続放出性を有している。
(Monofluorophosphate ester salt)
First, the monofluorophosphate ester salt according to the present embodiment will be described below.
The monofluorophosphate ester salt of the present embodiment is represented by the following chemical formula (1) and has a sustained release property of fluorine ions. The monofluorophosphate ester salt exhibits a function of releasing fluoride ions by a reaction via a specific enzyme, specifically, phosphatase. In addition, it has a sustained release property such as excellent release over time because it releases fluorine ions continuously over a long period of time and releases it in a constant amount.
 ここで、フッ素イオンの持続放出性とは、モノフルオロリン酸エステル塩からのフッ素イオンの放出であって、従来のフッ素イオン放出性化合物(例えば、SnF、NaF、NaPOF等)と比較して、有意な放出量を得ることができる期間が長期にわたって起こる放出を意味する。フッ素イオンの持続放出性は、少なくとも4時間以上、少なくとも8時間以上、又は少なくとも24時間の期間にわたって起こる放出であることが好ましい。 Here, the sustained release of fluorine ions is the release of fluorine ions from a monofluorophosphate ester salt, and is a conventional fluorine ion releasing compound (for example, SnF 2 , NaF, Na 2 PO 3 F, etc.). Compared with, it means a release that occurs over a long period of time when a significant amount of release can be obtained. The sustained release of fluoride ions is preferably a release that occurs over a period of at least 4 hours, at least 8 hours, or at least 24 hours.
 また、フッ素イオンの持続放出性は、相対的に一定、又は変化する放出速度を有する。さらに、フッ素イオンの持続放出性は、継続的な放出であり得る。フッ素イオンの放出の継続性及び放出量は、前記ホスファターゼの種類や量、使用態様により制御することができる。 Also, the sustained release of fluorine ions has a relatively constant or variable release rate. Furthermore, the sustained release of fluoride ions can be a continuous release. The continuity of fluorine ion release and the release amount can be controlled by the type and amount of the phosphatase and the mode of use.
 また、フッ素イオンの徐放性とは、モノフルオロリン酸エステル塩から持続的に放出されるフッ素イオンの放出量が一定(一定量)であることを意味する。例えば、従来のフッ素イオン放出性化合物(例えば、SnF、NaF、NaPOF等)と比較して、より均一なフッ素イオン放出量を得ることができることを意味する。 The sustained release of fluorine ions means that the amount of fluorine ions released from the monofluorophosphate ester salt is constant (a constant amount). For example, it means that a more uniform fluorine ion release amount can be obtained as compared with conventional fluorine ion releasing compounds (for example, SnF 2 , NaF, Na 2 PO 3 F, etc.).
 フッ素イオンの一定の濃度での均一な放出(徐放性)は、下記式で定義されるS(%)により評価可能である。例えば、S(%)が50%に近い値の場合、フッ素イオンの放出は、一定時間の経過後においても一定量であることを示しており、徐放性に優れていることを意味している。
 S(%)=(A-A)/(A-A)×100(式中、Aは0時間のときのフッ素イオン濃度を表し、Aはt時間経過後のフッ素イオン濃度を表し、Aはt時間経過後のフッ素イオン濃度を表す。但し、2t=tである。)
Uniform release (sustained release property) of fluorine ions at a constant concentration can be evaluated by S (%) defined by the following formula. For example, when S (%) is a value close to 50%, it indicates that the release of fluorine ions is a constant amount even after a lapse of a certain time, which means that the sustained release property is excellent. Yes.
S (%) = (A 1 −A 0 ) / (A 2 −A 0 ) × 100 (where A 0 represents the fluorine ion concentration at 0 hour, and A 1 represents fluorine after elapse of t 1 hour. (I 2 represents the ion concentration, and A 2 represents the fluorine ion concentration after elapse of t 2 hours, where 2t 1 = t 2 )
 前記ホスファターゼとしては、例えば、アルカリホスファターゼ、酸性ホスファターゼ、グルコース-1-ホスファターゼ、タンパク質ホスファターゼ等が挙げられる。これらのうち、本実施の形態に於いては、酸性ホスファターゼが好ましい。 Examples of the phosphatase include alkaline phosphatase, acid phosphatase, glucose-1-phosphatase, and protein phosphatase. Of these, acid phosphatase is preferred in the present embodiment.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 前記化学式(1)において、前記Mn+は水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。 In the chemical formula (1), M n + is hydrogen ion, alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead. It represents any one selected from the group consisting of ions and onium ions.
 前記アルカリ金属イオンとしては特に限定されず、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。これらのアルカリ金属イオンのうち、カリウムイオンは、モノフルオロリン酸エステル塩に対し、象牙質知覚過敏症に対する疼痛緩和効果を付与することができる。 The alkali metal ion is not particularly limited and includes lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion and the like. Of these alkali metal ions, potassium ions can impart a pain relieving effect on dentin hypersensitivity to monofluorophosphate esters.
 前記アルカリ土類金属イオンとしては、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。 Examples of the alkaline earth metal ions include magnesium ions, calcium ions, strontium ions, barium ions and the like.
 前記遷移金属イオンとしては特に限定されず、例えば、マンガンイオン、コバルトイオン、ニッケルイオン、クロムイオン、銅イオン、銀イオン、モリブデンイオン、タングステンイオン、バナジウムイオン等が挙げられる。これらの遷移金属イオンのうち、銅イオン及び銀イオンは、モノフルオロリン酸エステル塩に対し、さらに抗菌活性を付与することができる。この抗菌活性は、P.gingivalis(ポルフィロモナス ジンジバリス)やF.nucleatum(フソバクテリウム ヌクレアタム)等の歯周病菌、S.mutans(ストレプトコッカス ミュータンス)やS.sobrinus(ストレプトコッカス ソブリナス)等の虫歯菌に対し有効なものである。 The transition metal ion is not particularly limited, and examples thereof include manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, vanadium ions, and the like. Of these transition metal ions, copper ions and silver ions can further impart antibacterial activity to the monofluorophosphate ester salt. This antibacterial activity is effective against periodontal bacteria such as P. gingivalis (Porphyromonas gingivalis) and F. nucleatum (Fusobacterium nucleatum), and caries such as S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus). It is effective.
 前記希土類元素イオンとしては特に限定されず、例えば、スカンジウムイオン、イットリウムイオン、ランタンイオン、セリウムイオン、プラセオジムイオン、ネオジムイオン、プロメチウムイオン、サマリウムイオン、ユウロピウムイオン、ガドリニウムイオン、テルビウムイオン、ジスプロシウムイオン、ホルミウムイオン、エルビウムイオン、ツリウムイオン、イッテルビウムイオン、ルテチウムイオン等が挙げられる。 The rare earth element ion is not particularly limited, and for example, scandium ion, yttrium ion, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium ion, holmium Ions, erbium ions, thulium ions, ytterbium ions, lutetium ions, and the like.
 前記以外の金属イオン種としては、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン等が挙げられる。これらの金属イオンのうち、スズイオンは、モノフルオロリン酸エステル塩に対し、さらに抗菌活性を付与することができる。この抗菌活性が有効となる対象は、前述の歯周病菌や虫歯菌である。 Other metal ion species include zinc ions, aluminum ions, gallium ions, indium ions, germanium ions, tin ions, lead ions, and the like. Of these metal ions, tin ions can further impart antibacterial activity to the monofluorophosphate ester salt. The target for which this antibacterial activity is effective is the aforementioned periodontal disease bacteria and caries.
 前記オニウムイオンとしては特に限定されず、アンモニウムイオン(NH4+)、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオン、第4級ホスホニウムイオン、スルホニウムイオン等が挙げられる。尚、オニウムイオンは、モノフルオロリン酸エステル塩に対し、さらに抗菌活性を付与することができる。この抗菌活性が有効となる対象は、前述の歯周病菌や虫歯菌である。 The onium ion is not particularly limited, and ammonium ion (NH 4+ ), primary ammonium ion, secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion, quaternary phosphonium ion, sulfonium ion, etc. Is mentioned. The onium ion can further impart antibacterial activity to the monofluorophosphate ester salt. The target for which this antibacterial activity is effective is the aforementioned periodontal disease bacteria and caries.
 前記第1級アンモニウムイオンとしては特に限定されず、例えば、メチルアンモニウムイオン、エチルアンモニウムイオン、プロピルアンモニウムイオン、イソプロピルアンモニウムイオン等が挙げられる。 The primary ammonium ion is not particularly limited, and examples thereof include methylammonium ion, ethylammonium ion, propylammonium ion, and isopropylammonium ion.
 前記第2級アンモニウムイオンとしては特に限定されず、例えば、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、ジプロピルアンモニウムイオン、ジブチルアンモニウムイオン、エチルメチルアンモニウムイオン、メチルプロピルアンモニウムイオン、メチルブチルアンモニウムイオン、プロピルブチルアンモニウムイオン、ジイソプロピルアンモニウムイオン等が挙げられる。 The secondary ammonium ion is not particularly limited, and for example, dimethylammonium ion, diethylammonium ion, dipropylammonium ion, dibutylammonium ion, ethylmethylammonium ion, methylpropylammonium ion, methylbutylammonium ion, propylbutylammonium Ion, diisopropylammonium ion and the like.
 前記第3級アンモニウムイオンとしては特に限定されず、例えば、トリメチルアンモニウムイオン、トリエチルアンモニウムイオン、トリプロピルアンモニウムアンモニウムイオン、トリブチルアンモニウムイオン、エチルジメチルアンモニウムイオン、ジエチルメチルアンモニウムイオン、トリイソプロピルアンモニウムイオン、ジメチルイソプロピルアンモニウムイオン、ジエチルイソプロピルアンモニウムイオン、ジメチルプロピルアンモニウムイオン、ブチルジメチルアンモニウムイオン、1-メチルピロリジニウムイオン、1-エチルピロリジニウムイオン、1-プロピルピロリジニウムイオン、1-ブチルプロピルピロリジニウムイオン、1-メチルイミダゾリウムイオン、1-エチルイミダゾリウムイオン、1-プロピルイミダゾリウムイオン、1-ブチルイミダゾリウムイオン、ピラゾリウムイオン、1-メチルピラゾリウムイオン、1-エチルピラゾリウムイオン、1-プロピルピラゾリウムイオン、1-ブチルピラゾリウムイオン、ピリジニウムイオン等が挙げられる。 The tertiary ammonium ion is not particularly limited, and examples thereof include trimethylammonium ion, triethylammonium ion, tripropylammonium ammonium ion, tributylammonium ion, ethyldimethylammonium ion, diethylmethylammonium ion, triisopropylammonium ion, dimethylisopropyl. Ammonium ion, diethylisopropylammonium ion, dimethylpropylammonium ion, butyldimethylammonium ion, 1-methylpyrrolidinium ion, 1-ethylpyrrolidinium ion, 1-propylpyrrolidinium ion, 1-butylpropylpyrrolidinium ion, 1-methyl Imidazolium ion, 1-ethylimidazolium ion, 1-propyli Dazo potassium ion, 1-butyl imidazolium ion, pyrazolium ion, 1-methyl pyrazolium ion, 1-ethyl pyrazolium ion, 1-propyl pyrazolium ion, 1-butyl pyrazolium ion, pyridinium ion, and the like.
 前記第4級アンモニウムイオンをなす第4級アンモニウムとしては特に限定されず、例えば、脂肪族4級アンモニウム類、イミダゾリウム類、ピリジニウム類、ピラゾリウム類、ピリダジニウム類等が挙げられる。 The quaternary ammonium forming the quaternary ammonium ion is not particularly limited, and examples thereof include aliphatic quaternary ammoniums, imidazoliums, pyridiniums, pyrazoliums, and pyridaziniums.
 さらに、前記脂肪族4級アンモニウム類としては特に限定されず、例えば、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトライソプロピルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、メチルトリエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルイソプロピルアンモニウム、テトラブチルアンモニウム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメチルヘキシルアンモニウム、1-エチル-1-メチル-ピロリジニウム、1-ブチル-1-メチルピロリジニウム、1-エチル-1-メチル-ピペリジニウム、1-ブチル-1-メチルピペリジニウム、オクチルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウム、アリルヘキサデシルジメチルアンモニウム等が挙げられる。 Further, the aliphatic quaternary ammoniums are not particularly limited, and examples thereof include tetraethylammonium, tetrapropylammonium, tetraisopropylammonium, trimethylethylammonium, dimethyldiethylammonium, methyltriethylammonium, trimethylpropylammonium, trimethylisopropylammonium, tetra Butylammonium, trimethylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, 1-ethyl-1-methyl-pyrrolidinium, 1-butyl-1-methylpyrrolidinium, 1-ethyl-1-methyl-piperidinium, 1-butyl- 1-methylpiperidinium, octyltrimethylammonium, hexadecyltrimethylammonium, hexade Le (2-hydroxyethyl) dimethyl ammonium, allyl hexadecyl dimethyl ammonium and the like.
 前記イミダゾリウム類としては特に限定されず、例えば、1,3ジメチル-イミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-n-プロピル-3-メチルイミダゾリウム、1-n-ブチル-3-メチルイミダゾリウム、1-n-ヘキシル-3-メチルイミダゾリウム等が挙げられる。 The imidazoliums are not particularly limited. For example, 1,3 dimethyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-n-propyl-3-methylimidazolium, 1-n-butyl-3 -Methylimidazolium, 1-n-hexyl-3-methylimidazolium and the like.
 前記ピリジニウム類としては特に限定されず、例えば、1-メチルピリジニウム、1-エチルピリジニウム、1-n-プロピルピリジニウム、1-ヘキシルピリジニウム、セチルピリジニウム等が挙げられる。 The pyridiniums are not particularly limited, and examples thereof include 1-methylpyridinium, 1-ethylpyridinium, 1-n-propylpyridinium, 1-hexylpyridinium, cetylpyridinium and the like.
 前記ピラゾリウム類としては特に限定されず、例えば、1,2-ジメチルピラゾリウム、1-メチル-2-エチルピラゾリウム、1-プロピル-2-メチルピラゾリウム、1-メチル-2-ブチルピラゾリウム、1-メチルピラゾリウム、3-メチルピラゾリウム、4-メチルピラゾリウム、4-ヨードピラゾリウム、4-ブロモピラゾリウム、4-ヨードー3-メチルピラゾリウム、4-ブロモー3-メチルピラゾリウム、3-トリフルオロメチルピラゾリウムが挙げられる。 The pyrazoliums are not particularly limited. For example, 1,2-dimethylpyrazolium, 1-methyl-2-ethylpyrazolium, 1-propyl-2-methylpyrazolium, 1-methyl-2-butyl Pyrazolium, 1-methylpyrazolium, 3-methylpyrazolium, 4-methylpyrazolium, 4-iodopyrazolium, 4-bromopyrazolium, 4-iodo3-methylpyrazolium, 4 -Bromo-3-methylpyrazolium, 3-trifluoromethylpyrazolium.
 前記ピリダジニウム類としては特に限定されず、例えば、1-メチルピリダジニウム、1-エチルピリダジニウム、1-プロピルピリダジニウム、1-ブチルピリダジニウム、3-メチルピリダジニウム、4-メチルピリダジニウム、3-メトキシピリダジニウム、3,6-ジクロロピリダジニウム、3,6-ジクロ-4-メチルピリダジニウム、3-クロロ-6-メチルピリダジニウム、3-クロロ-6-メトキシピリダジニウムが挙げられる。 The pyridaziniums are not particularly limited, and for example, 1-methylpyridazinium, 1-ethylpyridazinium, 1-propylpyridazinium, 1-butylpyridazinium, 3-methylpyridazinium Ni, 4-methylpyridazinium, 3-methoxypyridazinium, 3,6-dichloropyridazinium, 3,6-dichloro-4-methylpyridazinium, 3-chloro-6-methylpyri Examples include dazinium and 3-chloro-6-methoxypyridazinium.
 前記第4級ホスホニウムイオンをなす第4級ホスホニウムとしては特に限定されず、例えば、ベンジルトリフェニルホスホニウム、テトラエチルホスホニウム、テトラフェニルホスホニウム等が挙げられる。 The quaternary phosphonium forming the quaternary phosphonium ion is not particularly limited, and examples thereof include benzyltriphenylphosphonium, tetraethylphosphonium, and tetraphenylphosphonium.
 前記スルホニウムイオンをなすスルホニウムとしては特に限定されず、例えば、トリメチルスルホニウム、トリフェニルスルホニウム、トリエチルスルホニウム等が挙げられる。 The sulfonium forming the sulfonium ion is not particularly limited, and examples thereof include trimethylsulfonium, triphenylsulfonium, triethylsulfonium, and the like.
 前記Mn+の例示として列挙したもののうち、入手容易性の観点からは、リチウム、ナトリウムイオン、カリウム、マグネシウム、カルシウム、スズ、テトラアルキルアンモニウムイオン、アルキルイミダゾリウムイオン、アルキルピロリジニウムイオン、アルキルピリジニウムイオンが好ましい。 Among those listed above as examples of M n + , from the viewpoint of availability, lithium, sodium ion, potassium, magnesium, calcium, tin, tetraalkylammonium ion, alkylimidazolium ion, alkylpyrrolidinium ion, alkylpyridinium ion Is preferred.
 前記化学式(1)において、前記Rは、炭化水素基、又はハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基(以下、「ハロゲン原子等を有する炭化水素基」という。)を表す。前記炭化水素基の炭素数は1~20であり、好ましくは1~10である。また、ハロゲン原子等を有する炭化水素基の炭素数は1~20であり、好ましくは1~10、より好ましくは1~4である。また、不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく1~3の範囲が特に好ましい。 In the chemical formula (1), R 1 represents a hydrocarbon group or a hydrocarbon group having at least one of a halogen atom, a hetero atom, or an unsaturated bond (hereinafter referred to as “hydrocarbon group having a halogen atom”). .) The hydrocarbon group has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. The hydrocarbon group having a halogen atom or the like has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms. The number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
 前記炭化水素基又はハロゲン原子等を有する炭化水素基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、ヘキサフルオロー2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、1-ナフチル基、2-ナフチル基、3-アミノ-2-ナフチル基等のナフチル基等が挙げられる。 The hydrocarbon group or a hydrocarbon group having a halogen atom or the like is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. Cyclic alkyl groups, cyclic alkyl groups such as cyclopentyl group, cyclohexyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl Group, 1,2-dichloroethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2 , 2,2-tribromoethyl group, 2,2,2-trichloroethyl group, 2,2,2-trifluoroethyl group, hexafluoro -2-chain halogen-containing alkyl groups such as 2-propyl group, cyclic halogen-containing alkyl groups such as 2-iodocyclohexyl group, 2-bromocyclohexyl group, 2-chlorocyclohexyl group, 2-fluorocyclohexyl group, 2-propenyl group, Chain alkenyl groups such as isopropenyl group, 2-butenyl group and 3-butenyl group, cyclic alkenyl groups such as 2-cyclopentenyl group, 2-cyclohexenyl group and 3-cyclohexenyl group, 2-propynyl group, 1- Chain alkynyl groups such as butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, phenyl group, 3-methoxyphenyl group, 4- Phenyl group such as methoxyphenyl group, 3,5-dimethoxyphenyl group, 4-phenoxyphenyl group, 2-iodine Phenyl group, 2-bromophenyl group, 2-chlorophenyl group, 2-fluorophenyl group, 3-iodophenyl group, 3-bromophenyl group, 3-chlorophenyl group, 3-fluorophenyl group, 4-iodophenyl group, 4 -Including bromophenyl group, 4-chlorophenyl group, 4-fluorophenyl group, 3,5-diiodophenyl group, 3,5-dibromophenyl group, 3,5-dichlorophenyl group, 3,5-difluorophenyl group, etc. And naphthyl groups such as a halogenphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a 3-amino-2-naphthyl group.
 尚、前記ハロゲン原子とは、フッ素、塩素、臭素又はヨウ素の原子を意味する。ハロゲン原子を有する炭化水素基とは、当該炭化水素基中の水素の一部又は全部がこれらのハロゲン原子の何れかで置換されていてもよいことを意味する。また、ヘテロ原子とは、酸素、窒素又は硫黄等の原子を意味する。ヘテロ原子を有する炭化水素基とは、当該炭化水素基中の水素及び炭素の一部又は全部がこれらのヘテロ原子の何れかで置換されていてもよいことを意味する。 The halogen atom means a fluorine, chlorine, bromine or iodine atom. The hydrocarbon group having a halogen atom means that part or all of the hydrogen in the hydrocarbon group may be substituted with any of these halogen atoms. Moreover, a hetero atom means atoms, such as oxygen, nitrogen, or sulfur. The hydrocarbon group having a hetero atom means that part or all of hydrogen and carbon in the hydrocarbon group may be substituted with any of these hetero atoms.
 前記ヘテロ原子を有する炭化水素基としては、具体的には、例えば、2-メトキシエチル基、2-(2-メトキシエトキシ)エチル基、2-(2-(2-メトキシエトキシ)エトキシ)エチル基、2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル基、2-エトキシエチル等が挙げられる。 Specific examples of the hydrocarbon group having a hetero atom include a 2-methoxyethyl group, a 2- (2-methoxyethoxy) ethyl group, and a 2- (2- (2-methoxyethoxy) ethoxy) ethyl group. 2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ethyl group, 2-ethoxyethyl and the like.
 尚、前記化学式(1)に於いて、前記nは価数を表す。例えば、前記Mが1価のカチオンである場合はn=1であり、2価のカチオンである場合はn=2であり、3価のカチオンである場合はn=3である。 In the chemical formula (1), n represents a valence. For example, when M is a monovalent cation, n = 1, when it is a divalent cation, n = 2, and when it is a trivalent cation, n = 3.
 前記化学式(1)で表されるモノフルオロリン酸エステル塩の具体例としては、例えば、モノフルオロリン酸メチルナトリウム、モノフルオロリン酸エチルナトリウム、モノフルオロリン酸プロピルナトリウム、モノフルオロリン酸(2,2,2-トリクロロエチル)リン酸ナトリウム、モノフルオロリン酸(2,2,2-トリクロロエチル)ナトリウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)ナトリウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)ナトリウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)ナトリウム、モノフルオロリン酸(2-メトキシエチル)ナトリウム、モノフルオロリン酸(2-(2-メトキシエトキシ)エチル)ナトリウム、モノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)ナトリウム、モノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)ナトリウム、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸メチル、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸エチル、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリクロロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリクロロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-メトキシエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-メトキシエトキシ)エチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸メチル、トリエチルメチルアンモニウムモノフルオロリン酸エチル、トリエチルメチルアンモニウムモノフルオロリン酸プロピル、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリクロロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリクロロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-メトキシエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-メトキシエトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)、モノフルオロリン酸メチルリチウム、モノフルオロリン酸エチルリチウム、モノフルオロリン酸ブチルリチウム、モノフルオロリン酸(2-エトキシエチル)リチウム、モノフルオロリン酸エチルカリウム、モノフルオロリン酸エチルマグネシウム、モノフルオロリン酸エチルカルシウム、モノフルオロリン酸エチル銀、モノフルオロリン酸エチル銅、モノフルオロリン酸イソプロピルリチウム、モノフルオロリン酸(2,2,2-トリクロロエチル)リン酸リチウム、モノフルオロリン酸(2,2,2-トリクロロエチル)リチウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)リチウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)リチウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)リチウム、モノフルオロリン酸(2-メトキシエチル)リチウム、モノフルオロリン酸(2-(2-メトキシエトキシ)エチル)リチウム、モノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)リチウム、モノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)リチウム、1-エチルピリジニウムモノフルオロリン酸エチル、1-ヘキシルピリジニウムモノフルオロリン酸エチル、セチルピリジニウムモノフルオロリン酸エチル、オクチルトリメチルアンモニウムモノフルオロリン酸エチル、ヘキサデシルトリメチルアンモニウムモノフルオロリン酸エチル、ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムモノフルオロリン酸エチル、アリルヘキサデシルジメチルアンモニウムモノフルオロリン酸エチル等が挙げられる。 Specific examples of the monofluorophosphate ester salt represented by the chemical formula (1) include, for example, methyl sodium monofluorophosphate, ethyl sodium monofluorophosphate, propyl sodium monofluorophosphate, monofluorophosphate (2 , 2,2-trichloroethyl) sodium phosphate, sodium monofluorophosphate (2,2,2-trichloroethyl), sodium monofluorophosphate (1,1,1,3,3,3-hexachloroisopropyl), Sodium monofluorophosphate (2,2,2-trifluoroethyl), sodium monofluorophosphate (1,1,1,3,3,3-hexafluoroisopropyl), monofluorophosphate (2-methoxyethyl) Sodium, monofluorophosphate (2- (2-methoxyethoxy) ethyl) sodium , Sodium monofluorophosphate (2- (2- (2-methoxyethoxy) ethoxy) ethyl), sodium monofluorophosphate (2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ethyl) 1-ethyl-3-methylimidazolium monofluorophosphate, 1-ethyl-3-methylimidazolium monofluorophosphate, 1-ethyl-3-methylimidazolium monofluorophosphate (2,2,2 -Trichloroethyl), 1-ethyl-3-methylimidazolium monofluorophosphoric acid (2,2,2-trichloroethyl), 1-ethyl-3-methylimidazolium monofluorophosphoric acid (1,1,1,3 , 3,3-hexachloroisopropyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2,2,2- Trifluoroethyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2,2,2-trifluoroethyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2,2,2- Trifluoroethyl), 1-ethyl-3-methylimidazolium monofluorophosphoric acid (1,1,1,3,3,3-hexafluoroisopropyl), 1-ethyl-3-methylimidazolium monofluorophosphoric acid ( 2-methoxyethyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2- (2-methoxyethoxy) ethyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2- (2- (2-methoxyethoxy) ethoxy) ethyl), 1-ethyl-3-methylimidazolium monofluorophosphate (2- (2- (2- ( 2-methoxyethoxy) ethoxy) ethoxy) ethyl), methyl triethylmethylammonium monofluorophosphate, ethyl triethylmethylammonium monofluorophosphate, propyl triethylmethylammonium monofluorophosphate, triethylmethylammonium monofluorophosphate (2,2 , 2-trichloroethyl), triethylmethylammonium monofluorophosphate (2,2,2-trichloroethyl), triethylmethylammonium monofluorophosphate (1,1,1,3,3,3-hexachloroisopropyl), triethyl Methylammonium monofluorophosphate (2,2,2-trifluoroethyl), triethylmethylammonium monofluorophosphate (2,2,2-trifluoroethyl), triethylmethylammonium Monofluorophosphoric acid (2,2,2-trifluoroethyl), triethylmethylammonium monofluorophosphoric acid (1,1,1,3,3,3-hexafluoroisopropyl), triethylmethylammonium monofluorophosphoric acid (2 -Methoxyethyl), triethylmethylammonium monofluorophosphate (2- (2-methoxyethoxy) ethyl), triethylmethylammonium monofluorophosphate (2- (2- (2-methoxyethoxy) ethoxy) ethyl), triethylmethyl Ammonium monofluorophosphate (2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ethyl), methyl lithium monofluorophosphate, ethyl lithium monofluorophosphate, butyl lithium monofluorophosphate, monofluoro Phosphoric acid (2-ethoxy Ethyl) lithium, ethyl potassium monofluorophosphate, ethyl magnesium monofluorophosphate, ethyl calcium monofluorophosphate, ethyl silver monofluorophosphate, ethyl copper monofluorophosphate, isopropyl lithium monofluorophosphate, monofluorophosphoric acid (2,2,2-trichloroethyl) lithium phosphate, monofluorophosphate (2,2,2-trichloroethyl) lithium, monofluorophosphate (1,1,1,3,3,3-hexachloroisopropyl) Lithium, lithium monofluorophosphate (2,2,2-trifluoroethyl), lithium monofluorophosphate (1,1,1,3,3,3-hexafluoroisopropyl), monofluorophosphate (2-methoxy) Ethyl) lithium, monofluorophosphoric acid (2- (2-methoxyethoxy) B) ethyl) lithium, monofluorophosphate (2- (2- (2-methoxyethoxy) ethoxy) ethyl) lithium, monofluorophosphate (2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ) Ethyl) lithium, ethyl 1-ethylpyridinium monofluorophosphate, ethyl 1-hexylpyridinium monofluorophosphate, ethyl cetylpyridinium monofluorophosphate, ethyl octyltrimethylammonium monofluorophosphate, hexadecyltrimethylammonium monofluorophosphate Examples include ethyl, ethyl hexadecyl (2-hydroxyethyl) dimethylammonium monofluorophosphate, and ethyl allylhexadecyldimethylammonium monofluorophosphate.
(モノフルオロリン酸エステル塩の製造方法)
 次に、本実施の形態に係るモノフルオロリン酸エステル塩の製造方法について、以下に説明する。
(Method for producing monofluorophosphate ester salt)
Next, the manufacturing method of the monofluorophosphate ester salt which concerns on this Embodiment is demonstrated below.
 本実施の形態のモノフルオロリン酸エステル塩の製造方法は、モノハロリン酸ジエステルをフッ素化処理して、モノフルオロリン酸ジエステルを生成する工程Aと、当該モノフルオロリン酸ジエステルとハロゲン化物を反応させ、モノフルオロリン酸エステル塩を生成する工程Bとを少なくとも含む。 The method for producing a monofluorophosphate ester salt according to the present embodiment includes a step A in which a monohalophosphate diester is fluorinated to produce a monofluorophosphate diester, and the monofluorophosphate diester is reacted with a halide. And at least a step B of producing a monofluorophosphate ester salt.
 前記工程Aで原料として使用するモノハロリン酸ジエステルは、下記化学式(2)で表されるものである。 The monohalophosphate diester used as a raw material in the step A is represented by the following chemical formula (2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記化学式(2)において、前記Rは、前記化学式(1)中のRと同様であり、すでに説明した通りである。さらに、前記化学式(2)における前記Rは、前記化学式(1)中のRと同様である。従って、前記Rとしては、前記Rの説明で列挙した官能基群から選ばれる。但し、RとRは同種でもよく、相互に異なっていてもよい。前記Xは、フッ素原子F以外のハロゲン原子を表す。 In the above formula (2), wherein R 1 is the same as R 1 in Formula (1), it is as previously described. Furthermore, the R 2 in the chemical formula (2) is the same as R 1 in the chemical formula (1). Therefore, R 2 is selected from the functional group group listed in the description of R 1 . However, R 1 and R 2 may be the same type or different from each other. X 1 represents a halogen atom other than the fluorine atom F.
 前記モノハロリン酸ジエステルのフッ素化処理によるフッ素化は、例えば、フッ素化剤としてフッ化カリウム等を有機溶媒中で接触させることにより行うことができる。これにより、下記化学反応式(4)で示されるような反応が起こり、モノフルオロリン酸ジエステルを生成することができる。 Fluorination of the monohalophosphoric acid diester by fluorination treatment can be performed, for example, by contacting potassium fluoride or the like as a fluorinating agent in an organic solvent. Thereby, a reaction as shown in the following chemical reaction formula (4) occurs, and a monofluorophosphoric acid diester can be generated.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記モノハロリン酸ジエステルとフッ素化剤が、非水溶媒下(有機溶媒中)で反応を開始する際の反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20~150℃が好ましく、40℃~120℃がより好ましい。反応開始温度を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。また、反応開始温度を200℃以下にすることにより、過剰なエネルギーを使用することによるエネルギーロスを抑制することができる。反応開始温度の調整方法としては特に限定されず、前記温度範囲内となる様に冷却して制御する場合には、前記モノハロリン酸ジエステルとフッ素化剤が投入された反応容器を氷冷等することにより行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等することにより行うことができる。 The reaction start temperature when the monohalophosphate diester and the fluorinating agent start the reaction in a non-aqueous solvent (in an organic solvent) is not particularly limited as long as the reaction proceeds, and is appropriately set according to the reaction species. do it. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity. By setting the reaction start temperature to 0 ° C. or higher, it is possible to prevent the reaction rate from being significantly attenuated. Moreover, the energy loss by using excess energy can be suppressed by making reaction start temperature into 200 degrees C or less. The method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the monohalophosphate diester and the fluorinating agent may be ice-cooled or the like. Can be performed. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
 前記モノハロリン酸ジエステルとフッ素化剤を非水溶媒下で反応させる際に用いられる溶媒としては、非プロトン性溶媒が好ましい。非プロトン性溶媒を用いることで当該フッ素化反応の阻害を防ぐことができる。プロトン性溶媒を用いた場合、モノハロリン酸ジエステルとプロトン性溶媒がハロゲン交換反応を引き起こしてしまう場合がある。また、このような求核フッ素化反応を行う場合、プロトン性溶媒中の水素元素とフッ素化剤のフッ素アニオンが水素結合による影響で著しくフッ素化能を低下させる。また、モノハロリン酸ジエステルを溶媒として用いることもできる。 As the solvent used when the monohalophosphoric acid diester and the fluorinating agent are reacted in a non-aqueous solvent, an aprotic solvent is preferable. By using an aprotic solvent, inhibition of the fluorination reaction can be prevented. When a protic solvent is used, the monohalophosphate diester and the protic solvent may cause a halogen exchange reaction. Further, when such a nucleophilic fluorination reaction is performed, the hydrogen element in the protic solvent and the fluorine anion of the fluorinating agent significantly reduce the fluorination ability due to the influence of hydrogen bonding. Moreover, monohalo phosphoric acid diester can also be used as a solvent.
 前記非プロトン性溶媒としては特に限定されず、例えば、ニトリル類、エステル類、ケトン類、エーテル類、ハロゲン化炭化水素類等が挙げられる。 The aprotic solvent is not particularly limited, and examples thereof include nitriles, esters, ketones, ethers, and halogenated hydrocarbons.
 前記ニトリル類としては特に限定されず、例えば、アセトニトリル、プロピオニトリル等が挙げられる。前記エステル類としては特に限定されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸エチル、酢酸メチル、酢酸ブチル等が挙げられる。前記ケトン類としては特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。前記エーテル類としては特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、エチレングリコール等が挙げられる。前記ハロゲン化炭化水素としては特に限定されず、例えば、ジクロロメタン、クロロホルム等が挙げられる。さらにその他の非プロトン性溶媒としては、例えば、ニトロメタン、ニトロエタン、ジメチルホルムアミド等が挙げられる。これらの非プロトン性溶媒は一種単独で、又は二種以上を併用することができる。 The nitriles are not particularly limited, and examples thereof include acetonitrile and propionitrile. The esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate. The ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. The ethers are not particularly limited, and examples thereof include diethyl ether, tetrahydrofuran, and ethylene glycol. The halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform. Still other aprotic solvents include, for example, nitromethane, nitroethane, dimethylformamide and the like. These aprotic solvents can be used alone or in combination of two or more.
 前記モノハロリン酸ジエステルとフッ素化剤との反応で用いられるフッ素化剤としては特に限定されず、例えば、アルカリ金属フッ化物、アルカリ土類金属フッ化物、オニウムフルオロライド等が挙げられる。 The fluorinating agent used in the reaction between the monohalophosphate diester and the fluorinating agent is not particularly limited, and examples thereof include alkali metal fluorides, alkaline earth metal fluorides, onium fluorides and the like.
 前記アルカリ金属フッ化物としては特に限定されず、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化セシウム等が挙げられる。また、前記アルカリ土類金属フッ化物としては特に限定されず、例えば、フッ化ベリリウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム等が挙げられる。オニウムフルオロライドとしては特に限定されず、例えば、トリエチルアミン三フッ化水素酸塩、トリエチルアミン五フッ化水素酸塩、ビリジンフッ化水素酸塩、テトラブチルアンモニウムフルオライド等が挙げられる。これらのフッ素化剤は、一種単独で、又は二種類以上を併用することができる。 The alkali metal fluoride is not particularly limited, and examples thereof include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, and cesium fluoride. The alkaline earth metal fluoride is not particularly limited, and examples thereof include beryllium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride. The onium fluoride is not particularly limited, and examples thereof include triethylamine trihydrofluoride, triethylamine pentahydrofluoride, viridine hydrofluoride, and tetrabutylammonium fluoride. These fluorinating agents can be used alone or in combination of two or more.
 前記工程Bは、モノフルオロリン酸ジエステルと前記ハロゲン化物とを反応させることにより、前記化学式(1)で表されるモノフルオロリン酸エステル塩を生成する工程である。 The step B is a step of producing a monofluorophosphate ester salt represented by the chemical formula (1) by reacting a monofluorophosphate diester with the halide.
 前記ハロゲン化物は、化学式Mn+n(前記Mn+は、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Xは、F、Cl、Br又はIの何れかのハロゲン原子を表す。前記nは価数を表す。)で表される。 The halide has a chemical formula M n + X 2 n (where M n + is an alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, It represents any one selected from the group consisting of tin ion, lead ion and onium ion, X 2 represents a halogen atom of F, Cl, Br or I. The n represents a valence.) It is represented by
 ここで、ハロゲン化物における前記Mn+は、すでに説明した通りであるので、詳細な説明は省略する。また、ハロゲン化物における前記nは、前記一般式(1)の場合と同様、価数を表す。 Here, since M n + in the halide is as described above, detailed description thereof is omitted. Moreover, said n in a halide represents a valence similarly to the case of the said General formula (1).
 工程Bにおけるモノフルオロリン酸ジエステルとハロゲン化物との反応は、下記化学反応式(5)及び(6)で表される通りである。 The reaction between the monofluorophosphoric diester and the halide in Step B is as represented by the following chemical reaction formulas (5) and (6).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 すなわち、ハロゲン化物のハロゲンがモノフルオロリン酸エステルのRに求核攻撃し、これにより、Rを含むモノフルオロリン酸エステルアニオンが脱離し、Rで表されるハロゲン化アルキルが生成する。さらに、脱離したモノフルオロリン酸エステルアニオンがハロゲン化物の対カチオンと塩を形成することにより、モノフルオロリン酸エステル塩が生成すると推測される。 That is, the halogen of the halide nucleophilically attacks R 2 of the monofluorophosphate ester, whereby the monofluorophosphate ester anion containing R 1 is eliminated, and the alkyl halide represented by R 2 X 2 is released. Generate. Further, it is presumed that the monofluorophosphate ester salt is formed by the elimination of the monofluorophosphate ester anion to form a salt with a halide counter cation.
 ここで、前記ハロゲン化物とモノフルオロリン酸ジエステルを反応させる際には、以下の化学式でそれぞれ表される、2つの脱離基が生じ得る。 Here, when the halide and monofluorophosphoric diester are reacted, two leaving groups represented by the following chemical formulas can be generated.
Figure JPOXMLDOC01-appb-C000013
(前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000014
(前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000013
(The R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond. To express.)
Figure JPOXMLDOC01-appb-C000014
(R 2 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond. To express.)
 そして、前記ハロゲン化物とモノフルオロリン酸ジエステルを反応させ、モノフルオロリン酸エステル塩を製造する場合、RとRが異種のときには、化学式(7)で表されるモノフルオロリン酸エステルアニオンの脱離能が、化学式(8)で表されるモノフルオロリン酸エステルアニオンの脱離能よりも高いことを要する。これにより、Rを含む、本実施の形態のモノフルオロリン酸エステル塩を得ることができる。 When the halide and monofluorophosphoric acid diester are reacted to produce a monofluorophosphoric acid ester salt, when R 1 and R 2 are different from each other, the monofluorophosphoric acid ester anion represented by the chemical formula (7) Is required to be higher than that of the monofluorophosphate ester anion represented by the chemical formula (8). Thus, including R 1, monofluorophosphate ester salts of the present embodiment can be obtained.
 脱離基であり、かつ、前記化学式(7)又は(8)で表されるモノフルオロリン酸エステルアニオンの脱離能は、例えば、それぞれのプロトン体のpKa値により、おおよそ推測される。具体的には、前記化学式(7)で表されるモノフルオロリン酸エステルアニオンのプロトン体、すなわちモノフルオロリン酸エステルのpKa値が、前記化学式(8)で表されるモノフルオロリン酸エステルアニオンのプロトン体よりも小さい方が好ましい。pKa値は、例えば、Bordwell pKa Table等から見積もることができる。あるいは、脱離基に電子求引基を含むようなものは脱離能が高いと推定することができる。 The leaving ability of the monofluorophosphate ester anion represented by the chemical formula (7) or (8), which is a leaving group, is roughly estimated from the pKa value of each proton body, for example. Specifically, the monofluorophosphate anion represented by the chemical formula (7) is represented by the proton form of the monofluorophosphate ester anion, that is, the pKa value of the monofluorophosphate ester is represented by the chemical formula (8). It is preferably smaller than the proton body. The pKa value can be estimated from, for example, Bordwell pKa Table. Alternatively, it can be presumed that those having an electron withdrawing group in the leaving group have high leaving ability.
 前記ハロゲン化物とモノフルオロリン酸ジエステルを他の非水溶媒下で反応させ、モノフルオロリン酸エステル塩を製造する場合、当該所望の化合物が得られる限りハロゲン化物とモノフルオロリン酸ジエステルの使用量は、特に限定されない。通常は、ハロゲン化物1当量に対してモノフルオロリン酸ジエステルが、0.5当量~5当量であり、好ましくは0.9当量~4当量、より好ましくは0.95当量~3.3当量である。モノフルオロリン酸ジエステルの使用量を0.5当量以上にすることにより、ハロゲン化物とモノフルオロリン酸ジエステルとの反応性が悪化するのを防止し、未反応の水酸化物が残存するのを抑制することができる。その結果、モノフルオロリン酸エステル塩の純度の低下を抑制することができる。尚、当該モノフルオロリン酸ジエステルの使用量が5等量より大きいと、これを留去する際に必要以上の製造時間とエネルギーが必要となり、工業的に不利となる場合がある。 When producing the monofluorophosphate ester salt by reacting the halide with the monofluorophosphate diester in another non-aqueous solvent, the amount of the halide and monofluorophosphate diester used as long as the desired compound is obtained. Is not particularly limited. Usually, the monofluorophosphoric diester is 0.5 to 5 equivalents, preferably 0.9 to 4 equivalents, more preferably 0.95 to 3.3 equivalents per 1 equivalent of halide. is there. By making the amount of monofluorophosphoric acid diester used 0.5 equivalents or more, it is possible to prevent the reactivity between the halide and the monofluorophosphoric acid diester from deteriorating, and to keep unreacted hydroxide remaining. Can be suppressed. As a result, a decrease in the purity of the monofluorophosphate ester salt can be suppressed. In addition, when the usage-amount of the said monofluoro phosphoric acid diester is larger than 5 equivalents, when distilling this off, the manufacturing time and energy more than needed are needed, and it may become industrially disadvantageous.
 前記ハロゲン化物とモノフルオロリン酸ジエステルが、他の非水溶媒下で反応を開始する際の反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20~150℃が好ましく、40℃~120℃がより好ましい。反応開始温度を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。また、反応開始温度を200℃以下にすることにより、過剰なエネルギーを使用することによるエネルギーロスを抑制することができる。反応開始温度の調整方法としては特に限定されず、前記温度範囲内となる様に冷却して制御する場合には、前記ハロゲン化物とモノフルオロリン酸ジエステルが投入された反応容器を氷冷等することにより行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等することにより行うことができる。 The reaction start temperature when the halide and monofluorophosphoric acid diester start the reaction in another non-aqueous solvent is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Good. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity. By setting the reaction start temperature to 0 ° C. or higher, it is possible to prevent the reaction rate from being significantly attenuated. Moreover, the energy loss by using excess energy can be suppressed by making reaction start temperature into 200 degrees C or less. The method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the halide and monofluorophosphoric acid diester is cooled with ice or the like. Can be done. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
 前記ハロゲン化物とモノフルオロリン酸ジエステルを、他の非水溶媒下で反応させる際の反応時間は特に限定されず、反応種に応じて適宜設定すればよい。通常は、30分~20時間の範囲内であり、工業的生産の観点からは30分~15時間が好ましく、30分~10時間がより好ましい。 The reaction time when the halide and monofluorophosphoric diester are reacted in another non-aqueous solvent is not particularly limited, and may be set as appropriate according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
 前記ハロゲン化物とモノフルオロリン酸ジエステルとの反応においては、反応溶媒として、前記他の非水溶媒のほかに当該モノフルオロリン酸ジエステルを用いることができる。この場合、前記ハロゲン化物とモノフルオロリン酸ジエステルが反応を開始する反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20℃~150℃が好ましく、40℃~120℃がより好ましい。また、反応時間も特に限定されず、反応種に応じて適宜設定すればよい。通常は、30分~20時間の範囲内であり、工業的生産の観点からは30分~15時間が好ましく、30分~10時間がより好ましい。 In the reaction between the halide and the monofluorophosphoric diester, the monofluorophosphoric diester can be used as a reaction solvent in addition to the other non-aqueous solvent. In this case, the reaction start temperature at which the halide and monofluorophosphoric acid diester start the reaction is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Usually, it is in the range of 0 ° C. to 200 ° C., and from the viewpoint of reactivity, 20 ° C. to 150 ° C. is preferable, and 40 ° C. to 120 ° C. is more preferable. Further, the reaction time is not particularly limited, and may be appropriately set according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
 前記他の非水溶媒(有機溶媒)としては、他の反応物や生成物と反応するような支障が生じない限り、特に限定されない。具体的には、例えば、アルコール類、ニトリル類、エステル類、ケトン類、エーテル類、ハロゲン化炭化水素類等が挙げられる。これらは、一種単独で、又は二種類以上を使用することができる。 The other non-aqueous solvent (organic solvent) is not particularly limited as long as it does not hinder the reaction with other reactants and products. Specific examples include alcohols, nitriles, esters, ketones, ethers, halogenated hydrocarbons and the like. These can be used alone or in combination of two or more.
 前記アルコール類としては、特に限定されず、例えば、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2-ヨードエタノール、2-ブロモエタノール、2-クロロエタノール、2-フルオロエタノール、1,2-ジヨードエタノール、1,2-ジブロモエタノール、1,2-ジクロロエタノール、1,2-ジフルオロエタノール、2,2-ジヨードエタノール、2,2-ジブロモエタノール、2,2-ジクロロエタノール、2,2-ジフルオロエタノール、2,2,2-トリブロモエタノール、2,2,2-トリクロロエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールなどが挙げられる。これらは、一種単独で、又は二種類以上を使用することができる。 The alcohols are not particularly limited, and examples thereof include methanol, ethanol, propanol, butanol, isopropyl alcohol, pentanol, hexanol, heptanol, octanol, 2-iodoethanol, 2-bromoethanol, 2-chloroethanol, 2- Fluoroethanol, 1,2-diiodoethanol, 1,2-dibromoethanol, 1,2-dichloroethanol, 1,2-difluoroethanol, 2,2-diiodoethanol, 2,2-dibromoethanol, 2,2 -Dichloroethanol, 2,2-difluoroethanol, 2,2,2-tribromoethanol, 2,2,2-trichloroethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3 3-hexafluoro-2-propanol etc. It is below. These can be used alone or in combination of two or more.
 前記ニトリル類としては特に限定されず、例えば、アセトニトリル、プロピオ二トリル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。 The nitriles are not particularly limited, and examples thereof include acetonitrile and propionitryl. These can be used alone or in combination of two or more.
 前記エステル類としては特に限定されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸エチル、酢酸メチル、酢酸ブチル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。 The esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate. These can be used alone or in combination of two or more.
 前記ケトン類としては特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。 The ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. These can be used alone or in combination of two or more.
 前記エーテル類としては特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。 The ethers are not particularly limited, and examples include diethyl ether, tetrahydrofuran, dimethoxyethane, and the like. These can be used alone or in combination of two or more.
 前記ハロゲン化炭化水素としは特に限定されず、例えば、ジクロロメタン、クロロホルム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。 The halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform. These can be used alone or in combination of two or more.
 また、前記他の非水溶媒(有機溶媒)のその他の例として、ニトロメタン、ニトロエタン、ジメチルホルムアミド等も挙げられる。 Also, other examples of the other non-aqueous solvent (organic solvent) include nitromethane, nitroethane, dimethylformamide and the like.
 前記他の非水溶媒(有機溶媒)の使用量は、前記モノフルオロリン酸ジエステルに対し、質量基準で1倍量以上が好ましく、1倍量~200倍量がより好ましく、1倍量~100倍量がさらに好ましく、1倍量~50倍量が特に好ましい。有機溶媒の使用量を1倍量以上にすることにより、リン酸トリエステルと水酸化物との反応性が悪化するのを防止し、リン酸ジエステル塩の収率やその純度の低下を抑制することができる。尚、有機溶媒の使用量の上限については特に限定されないが、モノフルオロリン酸ジエステルに対し過剰に有機溶媒を用いると、これを留去する際に必要以上のエネルギーが必要となり、工業的に不利となる場合がある。従って、有機溶媒の使用量の上限については、反応種に応じて適宜設定するのが好ましい。 The amount of the other non-aqueous solvent (organic solvent) to be used is preferably 1 or more times, more preferably 1 to 200 times, and more preferably 1 to 100 times based on the weight of the monofluorophosphoric acid diester. A double amount is more preferable, and a 1-fold to 50-fold amount is particularly preferable. By making the amount of the organic solvent used more than 1 time, the reactivity of the phosphate triester and hydroxide is prevented from deteriorating, and the decrease in the yield and purity of the phosphate diester salt is suppressed. be able to. The upper limit of the amount of the organic solvent used is not particularly limited, but excessive use of the organic solvent relative to the monofluorophosphoric acid diester requires more energy when distilling it off, which is industrially disadvantageous. It may become. Accordingly, the upper limit of the amount of the organic solvent used is preferably set as appropriate according to the reaction species.
 反応溶媒として有機溶媒を用いる場合、ハロゲン化物及びモノフルオロリン酸ジエステルの添加順序は、特に限定されない。また、反応溶媒としてモノフルオロリン酸ジエステルを用いる場合、ハロゲン化物及びモノフルオロリン酸ジエステルの添加順序は、特に限定されない。 When an organic solvent is used as the reaction solvent, the order of addition of the halide and monofluorophosphoric acid diester is not particularly limited. Moreover, when using monofluorophosphoric diester as a reaction solvent, the addition order of a halide and monofluorophosphoric diester is not specifically limited.
 本実施の形態の方法で得られたモノフルオロリン酸エステル塩は、溶解度を利用したカチオン交換、又はイオン交換樹脂等を用いたカチオン交換を行うことにより、所望の別種のカチオンを有するモノフルオロリン酸エステル塩を製造することもできる。 The monofluorophosphoric acid ester salt obtained by the method of the present embodiment is obtained by performing cation exchange using solubility or cation exchange using an ion exchange resin or the like to obtain a monofluorophosphorus having a desired different cation. Acid ester salts can also be produced.
 また、本実施の形態の方法で得られたモノフルオロリン酸エステル塩を、硫酸又は塩酸等のアレニウス酸と反応させることで、モノフルオロリン酸エステルを製造することもできる。また、イオン交換樹脂を用いてプロトン交換を行うことでも、モノフルオロリン酸エステルを得ることができる。さらに、これらの方法で得られたモノフルオロリン酸エステルを、ハロゲン化物又は水酸化物と反応させることで、モノフルオロリン酸エステル塩を製造することもできる。 In addition, the monofluorophosphate ester can also be produced by reacting the monofluorophosphate ester salt obtained by the method of the present embodiment with Arrhenius acid such as sulfuric acid or hydrochloric acid. A monofluorophosphate ester can also be obtained by performing proton exchange using an ion exchange resin. Furthermore, a monofluorophosphate ester salt can also be produced by reacting the monofluorophosphate obtained by these methods with a halide or hydroxide.
 尚、本実施の形態においては、モノフルオロリン酸エステル塩を生成する工程の直後に、当該モノフルオロリン酸エステル塩を精製する工程を行ってもよい。また、別種のカチオンを有するモノフルオロリン酸エステル塩を製造する工程の直後においても、モノフルオロリン酸エステル塩に対しカチオン交換を行うことにより、精製を行うことができる。さらに、前記モノフルオロリン酸エステルを前記ハロゲン化物と反応させてモノフルオロリン酸エステル塩を生成した直後においても、精製を行うことができる。精製方法としては特に限定されず、例えば、蒸留、乾燥等の操作による方法や、活性炭又はイオン交換樹脂等の吸着剤等を使用する方法を採用することができる。これらの精製を行うことにより、モノフルオロリン酸エステル塩の純度を高めることができる。 In the present embodiment, a step of purifying the monofluorophosphate ester salt may be performed immediately after the step of generating the monofluorophosphate ester salt. Further, immediately after the step of producing a monofluorophosphate ester salt having another kind of cation, purification can be performed by cation exchange with respect to the monofluorophosphate ester salt. Furthermore, the purification can be performed immediately after the monofluorophosphate ester is reacted with the halide to produce a monofluorophosphate ester salt. It does not specifically limit as a purification method, For example, the method by operation, such as distillation and drying, The method using adsorption agents, such as activated carbon or an ion exchange resin, etc. are employable. By performing these purifications, the purity of the monofluorophosphate ester salt can be increased.
(フッ素イオン放出性組成物)
 本実施の形態のモノフルオロリン酸エステル塩は、例えば、口腔用組成物や歯科用組成物等のフッ素イオン放出性組成物において、フッ素イオンの持続放出性を付与するための添加剤として用いることができる。この場合、フッ素放出性化合物としてのモノフルオロリン酸エステル塩は、少なくとも一種類を含む構成となり、2種以上を併用することもできる。
(Fluorine ion releasing composition)
The monofluorophosphate ester salt of the present embodiment is used as an additive for imparting sustained release of fluoride ions, for example, in fluoride ion releasing compositions such as oral compositions and dental compositions. Can do. In this case, the monofluorophosphate ester salt as the fluorine releasing compound includes at least one kind, and two or more kinds can be used in combination.
 本実施の形態のモノフルオロリン酸エステル塩は、例えば、その粒子表面を、ポリシロキサン等の特定の物質で被覆してフッ素イオンの放出速度を制御しなくても、特定の酵素、例えば、ホスファターゼを介した反応により、有意な放出量のフッ素イオンを長期にわたって持続的に放出させることができる。その結果、長期間にわたって歯質に高い抗齲蝕性を付与する口腔用組成物又は歯科用組成物等を可能にする。 The monofluorophosphoric acid ester salt of the present embodiment is, for example, coated with a specific substance such as phosphatase without coating the particle surface with a specific substance such as polysiloxane and controlling the release rate of fluoride ions. Through the reaction via a significant release amount of fluorine ions can be continuously released over a long period of time. As a result, an oral composition or a dental composition that imparts high anti-cariogenic properties to the tooth over a long period of time is made possible.
 前記口腔用組成物としては、例えば、齲蝕予防のための歯磨き剤組成物等が挙げられる。また、前記歯科用組成物としては、例えば、歯科用塗布剤、歯科用コンポジットレジンやグラスアイオノマーセメント等の歯科用充填材、歯科用接着材、歯科用セメント等が挙げられる。 Examples of the oral composition include a dentifrice composition for preventing caries. Examples of the dental composition include dental coating agents, dental fillers such as dental composite resins and glass ionomer cements, dental adhesives, and dental cements.
 尚、歯磨き剤組成物においては、その他、フッ化ナトリウム、フッ化スズ、フッ化カリウム、モノフルオロリン酸ナトリウム、フルオロケイ酸ナトリウム、フルオロケイ酸アンモニウム、アミンフッ化物、フッ化アンモニウム等のフッ素イオンの供給源となる成分を添加し、本実施の形態のモノフルオロリン酸エステル塩と併用することもできる。この場合、これらの成分の添加量は、適宜必要に応じて設定することができる。 In the dentifrice composition, other fluoride ions such as sodium fluoride, tin fluoride, potassium fluoride, sodium monofluorophosphate, sodium fluorosilicate, ammonium fluorosilicate, amine fluoride, ammonium fluoride, etc. A component serving as a supply source may be added and used together with the monofluorophosphate ester salt of the present embodiment. In this case, the addition amount of these components can be appropriately set as necessary.
 モノフルオロリン酸エステル塩の添加量は、分子内のフッ素を基準とし、フッ素イオン放出性組成物の全量に対して、50ppm~10000ppmが好ましく、よりこのましくは50ppm~5000ppm、さらに好ましくは、100ppm~2000ppmである。前記添加量を50ppm以上にすることにより、放出させるフッ素イオンの量の維持が図れる。その一方、前記添加量を10000ppm以下にすることにより、口腔用組成物の添加剤に適用する場合には、フッ素の過剰摂取によるフッ素症を抑制することができ、歯科用組成物の添加剤に適用する場合には、歯科材料としての取り扱い性の低下を防止することができる。 The addition amount of the monofluorophosphate ester salt is preferably 50 ppm to 10000 ppm, more preferably 50 ppm to 5000 ppm, more preferably, based on the fluorine in the molecule and based on the total amount of the fluorine ion-releasing composition. 100 ppm to 2000 ppm. By making the addition amount 50 ppm or more, it is possible to maintain the amount of fluorine ions to be released. On the other hand, when the additive amount is 10000 ppm or less, when applied to the oral composition additive, fluorosis due to excessive intake of fluorine can be suppressed, and the dental composition additive can be used as an additive. When applied, it is possible to prevent a decrease in handleability as a dental material.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定するものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples do not limit the scope of the present invention only to those unless otherwise limited.
 (モノフルオロリン酸エステル塩の前駆体合成)
 <モノフルオロリン酸ジエチルの合成>
 撹拌子を入れた300mLのナスフラスコに、フッ化カリウム33.7gとアセトニトリル150gを入れ、さらにクロロリン酸ジエチル〈東京化成工業(株)製〉50.3gを加えた。続いて、窒素気流下、100℃で7時間加熱還流を行った。その後、ナスフラスコ中の溶液を室温まで放冷し、吸引ろ過により過剰のフッ化カリウム及び析出した塩化カリウムを除去した。エバポレーターにより得られたろ液中の溶媒を留去し、目的物であるモノフルオロリン酸エステル塩として、淡黄色透明液体のモノフルオロリン酸ジエチル42gを得た。
(Precursor synthesis of monofluorophosphate ester salt)
<Synthesis of diethyl monofluorophosphate>
To a 300 mL eggplant flask containing a stir bar, 33.7 g of potassium fluoride and 150 g of acetonitrile were added, and further 50.3 g of diethyl chlorophosphate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Subsequently, the mixture was heated and refluxed at 100 ° C. for 7 hours under a nitrogen stream. Thereafter, the solution in the eggplant flask was allowed to cool to room temperature, and excess potassium fluoride and precipitated potassium chloride were removed by suction filtration. The solvent in the filtrate obtained by the evaporator was distilled off to obtain 42 g of diethyl monofluorophosphate as a light yellow transparent liquid as a target monofluorophosphate ester salt.
 原料であるクロロリン酸ジエチルを、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、塩化物イオンとジエチルリン酸アニオンの二つのピークが検出された。また、得られた淡黄色透明液体についてもアニオン分析を行ったところ、フッ化物イオンとジエチルリン酸アニオンの二つのピークが検出され、塩化物イオンのピークはきれいに消失していた。これにより、モノフルオロリン酸ジエチルが生成していることを確認した。さらに、得られた淡黄色透明液体をLC/MS(Waters社製)にて正イオン分析を行ったところ、m/z=157.1にマスピークが見られた。これは、モノフルオロリン酸ジエチルの分子量とほぼ一致しており、得られた淡黄色透明液体がモノフルオロリン酸ジエチルであることを確認した。 The raw material diethyl chlorophosphate was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and two peaks of chloride ion and diethyl phosphate anion were detected. In addition, when the obtained pale yellow transparent liquid was subjected to anion analysis, two peaks of fluoride ion and diethyl phosphate anion were detected, and the peak of chloride ion disappeared cleanly. Thereby, it was confirmed that diethyl monofluorophosphate was produced. Further, when the obtained pale yellow transparent liquid was subjected to positive ion analysis with LC / MS (manufactured by Waters), a mass peak was observed at m / z = 157.1. This almost coincided with the molecular weight of diethyl monofluorophosphate, and it was confirmed that the obtained pale yellow transparent liquid was diethyl monofluorophosphate.
 <モノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに前記エチルフルオロリン酸リチウム13.7gとジエチルエーテル50gを投入した。続いて、ナスフラスコ中の溶液を撹拌しながら、硫酸4.0gを少しずつ投入した。その後、常温で1時間撹拌を行った。さらに、減圧濾過を行い、白色沈殿物とろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、無色透明の液体であるモノフルオロリン酸エチル9.6gを得た。
<Synthesis of ethyl monofluorophosphate>
Into a 50 mL eggplant flask containing a stir bar, 13.7 g of the lithium ethylfluorophosphate and 50 g of diethyl ether were charged. Subsequently, while stirring the solution in the eggplant flask, 4.0 g of sulfuric acid was added little by little. Then, it stirred at normal temperature for 1 hour. Further, filtration under reduced pressure was performed to separate the white precipitate and the filtrate. Then, 9.6 g of ethyl monofluorophosphate which is a colorless and transparent liquid was obtained by distilling off the solvent in the filtrate under reduced pressure.
 得られた無色透明の液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記エチルフルオロリン酸リチウムと同様の検出時間でピークが一本検出され、また、硫酸イオンは検出されなかった。これにより、得られた無色透明の液体がモノフルオロリン酸エチルであることを確認した。 The obtained colorless and transparent liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one peak was detected at the same detection time as that of the lithium ethylfluorophosphate. In addition, sulfate ions were not detected. This confirmed that the obtained colorless and transparent liquid was ethyl monofluorophosphate.
 (実施例1)
 <モノフルオロリン酸エチルナトリウムの合成>
 撹拌子を入れた50mLのナスフラスコにヨウ化ナトリウム1.9gとアセトニトリル10gを入れ、さらに前記モノフルオロリン酸ジエチル2.0gを加えた。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下、120℃で3時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過によりろ別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体1.5gを得た。
Example 1
<Synthesis of sodium monofluorophosphate ethyl>
1.9 g of sodium iodide and 10 g of acetonitrile were placed in a 50 mL eggplant flask containing a stirring bar, and 2.0 g of the above-mentioned diethyl monofluorophosphate was further added. Thereafter, the solution in the eggplant flask was heated and refluxed at 120 ° C. for 3 hours under a nitrogen stream. Furthermore, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 1.5 g of a white solid.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。また、イオンクロマトグラフィー〈ダイオネクス社製、型番:ICS-1500〉にてカチオン分析を行ったところ、ナトリウムイオンのピークが検出された。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=126.9にマスピークが見られた。これは、モノフルオロリン酸エチルアニオンの分子量とほぼ一致しており、得られた白色固体がモノフルオロリン酸エチルナトリウムであることを確認した。
<Analysis>
The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Further, when cation analysis was performed by ion chromatography (model number: ICS-1500, manufactured by Dionex), a sodium ion peak was detected. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 16.9. This almost coincided with the molecular weight of the ethyl monofluorophosphate anion, and it was confirmed that the obtained white solid was sodium sodium monofluorophosphate.
 (実施例2)
 <モノフルオロリン酸エチルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに塩化リチウム1.1gと前記モノフルオロリン酸ジエチル20.0gを加えた。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下120℃で1.5時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過によりろ別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体3.0gを得た。
(Example 2)
<Synthesis of ethyl lithium monofluorophosphate>
To a 100 mL eggplant flask containing a stirrer, 1.1 g of lithium chloride and 20.0 g of diethyl monofluorophosphate were added. Thereafter, the solution in the eggplant flask was heated and refluxed at 120 ° C. for 1.5 hours under a nitrogen stream. Furthermore, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 3.0 g of a white solid.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。また、イオンクロマトグラフィー〈ダイオネクス社製、型番:ICS-1500〉にてカチオン分析を行ったところ、リチウムイオンのピークが検出された。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=126.9にマスピークが見られた。これは、モノフルオロリン酸エチルアニオンの分子量とほぼ一致しており、得られた白色固体がモノフルオロリン酸エチルナトリウムであることを確認した。
<Analysis>
The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Further, when cation analysis was performed by ion chromatography (model number: ICS-1500, manufactured by Dionex), a lithium ion peak was detected. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 16.9. This almost coincided with the molecular weight of the ethyl monofluorophosphate anion, and it was confirmed that the obtained white solid was sodium sodium monofluorophosphate.
 (実施例3)
 <モノフルオロリン酸エチルカリウムの合成>
 撹拌子を入れた50mLのナスフラスコにヨウ化カリウム2.1gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル3.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下140℃~150℃で13時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体2.0gを得た。
(Example 3)
<Synthesis of ethyl potassium monofluorophosphate>
To a 50 mL eggplant flask containing a stirrer, 2.1 g of potassium iodide and 20 g of acetonitrile were added, and then 3.0 g of the above-mentioned diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 ° C. to 150 ° C. for 13 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 2.0 g of a white solid.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記モノフルオロリン酸エチルリチウムと同様の検出時間で新規のピークが一本検出された。これにより、生成した新規アニオンはエチルフルオロリン酸アニオンであり、得られた白色固体がモノフルオロリン酸エチルカリウムであることを確認した。
<Analysis>
The resulting white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850). As a result, a single new peak was detected with the same detection time as that of the lithium lithium monofluorophosphate. It was done. Thereby, the produced | generated novel anion was an ethyl fluorophosphate anion, and it confirmed that the obtained white solid was ethyl potassium monofluorophosphate.
 (実施例4)
 <モノフルオロリン酸エチルマグネシウムの合成>
 撹拌子を入れた50mLのナスフラスコに塩化マグネシウム無水0.6gとアセトニトリル5gを投入し、続いて前記モノフルオロリン酸ジエチル2.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下140℃~150℃で7時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧濾過を行うことにより未反応の塩化マグネシウムとろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、白色固体1.7gを得た。
Example 4
<Synthesis of ethyl magnesium monofluorophosphate>
Into a 50 mL eggplant flask containing a stir bar, 0.6 g of anhydrous magnesium chloride and 5 g of acetonitrile were added, and then 2.0 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 to 150 ° C. for 7 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate unreacted magnesium chloride and the filtrate. Subsequently, 1.7 g of a white solid was obtained by distilling off the solvent in the filtrate under reduced pressure.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記モノフルオロリン酸エチルリチウムと同様の検出時間で新規のピークが一本検出された。これにより、生成した新規アニオンがモノフルオロリン酸エチルアニオンであり、得られた白色固体がモノフルオロリン酸エチルマグネシウムであることを確認した。
<Analysis>
The resulting white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850). As a result, a single new peak was detected with the same detection time as that of the lithium lithium monofluorophosphate. It was done. This confirmed that the produced new anion was an ethyl monofluorophosphate anion and the resulting white solid was ethyl magnesium monofluorophosphate.
 (実施例5)
 <モノフルオロリン酸エチルカルシウムの合成>
 撹拌子を入れた50mLのナスフラスコに塩化カルシウム無水0.7gとアセトニトリル10gを投入し、続いて前記モノフルオロリン酸ジエチル2.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下140℃~150℃で14時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧濾過を行うことにより未反応の塩化カルシウムとろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、白色固体0.6gを得た。
(Example 5)
<Synthesis of ethyl calcium monofluorophosphate>
To a 50 mL eggplant flask containing a stir bar, 0.7 g of anhydrous calcium chloride and 10 g of acetonitrile were added, and then 2.0 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 ° C. to 150 ° C. for 14 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate unreacted calcium chloride and the filtrate. Subsequently, 0.6 g of a white solid was obtained by distilling off the solvent in the filtrate under reduced pressure.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記エチルフルオロリン酸リチウムと同様の検出時間で新規のピークが一本検出された。これにより、生成した新規アニオンがモノフルオロリン酸エチルアニオンであり、得られた白色固体がモノフルオロリン酸エチルカルシウムであることを確認した。
<Analysis>
The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850). As a result, one new peak was detected with the same detection time as that of the lithium ethylfluorophosphate. It was. Thus, it was confirmed that the generated new anion was an ethyl monofluorophosphate anion, and the obtained white solid was ethyl calcium monofluorophosphate.
 (実施例6)
 <モノフルオロリン酸エチル銀の合成>
 撹拌子を入れた50mLのナスフラスコに炭酸銀(I)1.1gと水10gを投入した。続いて、ナスフラスコ中の溶液を撹拌しながら、前記モノフルオロリン酸エチル1.0gを少しずつ投入した。その後、常温で2時間撹拌を行った。さらに、ナスフラスコ中の溶液の減圧濾過を行うことにより沈殿物とろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、白色固体1.6gを得た。
(Example 6)
<Synthesis of ethyl silver monofluorophosphate>
1.1 g of silver carbonate (I) and 10 g of water were put into a 50 mL eggplant flask containing a stirring bar. Subsequently, 1.0 g of the ethyl monofluorophosphate was added little by little while stirring the solution in the eggplant flask. Then, it stirred at normal temperature for 2 hours. Furthermore, the precipitate and the filtrate were separated by filtering the solution in the eggplant flask under reduced pressure. Subsequently, 1.6 g of a white solid was obtained by distilling off the solvent in the filtrate under reduced pressure.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記モノフルオロリン酸エチルリチウムと同様の検出時間でピークが一本検出された。また、沈殿滴定の一つであるフォルハルト法を用いて銀イオンの定量を行ったところ(容量分析用標準液:0.1M チオシアン酸アンモニウム溶液、指示薬:硫酸アンモニウム鉄(III)、滴定温度:室温)、43質量%であった。この測定値は、モノフルオロリン酸エチル銀における銀イオン含有量の理論値(46質量%)に近く、得られた白色固体がモノフルオロリン酸エチル銀であることを確認した。
<Analysis>
The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one peak was detected at the same detection time as that of the above-described ethyl lithium monofluorophosphate. . In addition, silver ions were quantified using the Forhardt method, which is one of precipitation titrations (standard solution for volumetric analysis: 0.1 M ammonium thiocyanate solution, indicator: ammonium iron (III) sulfate, titration temperature: room temperature) 43% by mass. This measured value was close to the theoretical value (46% by mass) of silver ion content in ethyl silver monofluorophosphate, and it was confirmed that the obtained white solid was silver silver monofluorophosphate.
 (実施例7)
 <モノフルオロリン酸エチル銅の合成>
 撹拌子を入れた50mLのナスフラスコに水酸化銅(II)0.4gとアセトニトリル5gを投入した。続いて、ナスフラスコ中の溶液を撹拌しながら、前記モノフルオロリン酸エチル1.0gを少しずつ投入した。その後、常温で1時間、ナスフラスコ中の溶液の撹拌を行った。さらに、ナスフラスコ中の溶液の減圧濾過を行うことにより沈殿物とろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、青緑色の固体1.2gを得た。
(Example 7)
<Synthesis of ethyl copper monofluorophosphate>
To a 50 mL eggplant flask containing a stirrer, 0.4 g of copper (II) hydroxide and 5 g of acetonitrile were charged. Subsequently, 1.0 g of the ethyl monofluorophosphate was added little by little while stirring the solution in the eggplant flask. Thereafter, the solution in the eggplant flask was stirred at room temperature for 1 hour. Furthermore, the precipitate and the filtrate were separated by filtering the solution in the eggplant flask under reduced pressure. Subsequently, the solvent in the filtrate was distilled off under reduced pressure to obtain 1.2 g of a blue-green solid.
 <分析>
 得られた青緑色の固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記モノフルオロリン酸エチルリチウムと同様の検出時間でピークが一本検出された。また、沈殿滴定の一つであるヨウ素滴定法を用いて銅イオンの定量を行ったところ(容量分析用標準液:0.1M チオ硫酸ナトリウム溶液、滴定温度:室温)、20質量%であった。この測定値は、エチルフルオロリン酸銅における銅イオン含有量の理論値(20質量%)にほぼ一致しており、得られた青緑色固体がエチルフルオロリン酸銅であることを確認した。
<Analysis>
The obtained blue-green solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850). It was done. Further, when copper ion was quantified by using iodine titration method which is one of precipitation titration (standard solution for volumetric analysis: 0.1 M sodium thiosulfate solution, titration temperature: room temperature), it was 20% by mass. . This measured value almost coincided with the theoretical value (20% by mass) of copper ion content in copper ethyl fluorophosphate, and it was confirmed that the obtained blue-green solid was copper ethyl fluorophosphate.
 (実施例8)
 <1-エチル-3-メチルイミダゾリウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに1-エチル-3-メチルイミダゾリウムクロリド1.1gを投入し、続いて前記モノフルオロリン酸ジエチル1.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら110℃~120℃で3時間加熱を行うことにより、黄色透明のオイル状液体である1.4gを得た。
(Example 8)
<Synthesis of ethyl 1-ethyl-3-methylimidazolium monofluorophosphate>
To a 50 mL eggplant flask containing a stir bar, 1.1 g of 1-ethyl-3-methylimidazolium chloride was charged, and then 1.0 g of diethyl monofluorophosphate was charged. Thereafter, the solution in the eggplant flask was heated at 110 ° C. to 120 ° C. for 3 hours with stirring to obtain 1.4 g of a yellow transparent oily liquid.
 <分析>
 得られた黄色透明のオイル状液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた黄色透明のオイル状液体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=126.9にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=111.1にマスピークが見られた。これは、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸エチルのアニオンとカチオンのそれぞれの分子量とほぼ一致し、得られた黄色透明のオイル状液体が1-エチル-3-メチルイミダゾリウムモノフルオロリン酸エチルであることを確認した。
<Analysis>
The obtained yellow transparent oily liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained yellow transparent oily liquid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 16.9. Similarly, when positive ion analysis was performed, a mass peak was observed at m / z = 111.1. This is almost the same as the molecular weights of the anion and cation of ethyl 1-ethyl-3-methylimidazolium monofluorophosphate, and the obtained yellow transparent oily liquid is 1-ethyl-3-methylimidazolium mono It was confirmed to be ethyl fluorophosphate.
 (実施例9)
 <1-エチルピリジニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに1-エチルピリジニウムブロミド1.8gとアセトニトリル10gを投入し、続いて前記モノフルオロリン酸ジエチル1.5gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下140℃~150℃で15時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、ヘキサンで洗浄後、常温で真空乾燥することにより、無色透明のオイル状液体1.2gを得た。
Example 9
<Synthesis of ethyl 1-ethylpyridinium monofluorophosphate>
A 50 mL eggplant flask containing a stir bar was charged with 1.8 g of 1-ethylpyridinium bromide and 10 g of acetonitrile, and then 1.5 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 ° C. to 150 ° C. for 15 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and vacuum dried at room temperature to obtain 1.2 g of a colorless and transparent oily liquid. .
 <分析>
 得られた無色透明のオイル状液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記エチルフルオロリン酸リチウムと同様の検出時間で新規のピークが一本検出された。これにより、生成した新規アニオンはモノフルオロリン酸エチルアニオンであり、得られた無色透明のオイル状液体が1-エチルピリジニウムモノフルオロリン酸エチルであることを確認した。
<Analysis>
The obtained colorless and transparent oily liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, Model No .: IC-850). As a result, a new peak was detected with the same detection time as that of the lithium ethylfluorophosphate. One was detected. As a result, it was confirmed that the produced new anion was an ethyl monofluorophosphate anion, and the obtained colorless and transparent oily liquid was ethyl 1-ethylpyridinium monofluorophosphate.
 (実施例10)
 <1-ヘキシルピリジニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに1-ヘキシルピリジニウムブロミド4.2gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル5.4gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で15時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、ヘキサンで洗浄後、常温で真空乾燥することにより、無色透明のオイル状液体4.9gを得た。
(Example 10)
<Synthesis of ethyl 1-hexylpyridinium monofluorophosphate>
To a 50 mL eggplant flask containing a stir bar, 4.2 g of 1-hexylpyridinium bromide and 20 g of acetonitrile were added, followed by 5.4 g of diethyl monofluorophosphate. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 to 120 ° C. for 15 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and then vacuum dried at room temperature to obtain 4.9 g of a colorless and transparent oily liquid. .
 <分析>
 得られた無色透明のオイル状液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた無色透明のオイル状液体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=127.0にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=164.1にマスピークが見られた。これは、1-ヘキシルピリジニウムモノフルオロリン酸エチルのアニオンとカチオンのそれぞれの分子量とほぼ一致し、得られた無色透明のオイル状液体が1-ヘキシルピリジニウムモノフルオロリン酸エチルであることを確認した。
<Analysis>
The obtained colorless and transparent oily liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Further, when the obtained colorless and transparent oily liquid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 127.0. Further, when positive ion analysis was performed in the same manner, a mass peak was observed at m / z = 164.1. This was almost the same as the molecular weight of each anion and cation of ethyl 1-hexylpyridinium monofluorophosphate, and it was confirmed that the obtained colorless and transparent oily liquid was ethyl 1-hexylpyridinium monofluorophosphate. .
 (実施例11)
 <セチルピリジニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコにセチルピリジニウムクロリド無水4.4gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル2.7gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下140℃~150℃で7時間加熱還流を行った。さらに、ナスフラスコ中の溶液を-10℃まで冷却し、溶液中の析出物を減圧濾過で濾別し、白色固体3.2gを得た。
(Example 11)
<Synthesis of ethyl cetylpyridinium monofluorophosphate>
4.4 g of anhydrous cetylpyridinium chloride and 20 g of acetonitrile were charged into a 50 mL eggplant flask containing a stir bar, and then 2.7 g of diethyl monofluorophosphate was charged. Thereafter, the solution in the eggplant flask was heated and refluxed at 140 to 150 ° C. for 7 hours under a nitrogen stream. Further, the solution in the eggplant flask was cooled to −10 ° C., and the precipitate in the solution was separated by filtration under reduced pressure to obtain 3.2 g of a white solid.
 <分析>
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記モノフルオロリン酸エチルリチウムと同様の検出時間で新規のピークが一本検出された。これにより、生成した新規アニオンがモノフルオロリン酸エチルアニオンであり、得られた白色固体がセチルピリジニウムモノフルオロリン酸エチルであることを確認した。
<Analysis>
The resulting white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850). As a result, a single new peak was detected with the same detection time as that of the lithium lithium monofluorophosphate. It was done. This confirmed that the produced new anion was an ethyl monofluorophosphate anion, and the resulting white solid was ethyl cetylpyridinium monofluorophosphate.
 (実施例12)
 <オクチルトリメチルアンモニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコにオクチルトリメチルアンモニウムブロミド4.4gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル5.4gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で15時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、ヘキサンで洗浄後、常温で真空乾燥することにより、無色透明のオイル状液体4.2gを得た。
Example 12
<Synthesis of ethyl octyltrimethylammonium monofluorophosphate>
4.4 g of octyltrimethylammonium bromide and 20 g of acetonitrile were added to a 50 mL eggplant flask containing a stir bar, and then 5.4 g of the above diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 to 120 ° C. for 15 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, the solvent in the solution was distilled off under reduced pressure, washed with hexane, and vacuum dried at room temperature to obtain 4.2 g of a colorless and transparent oily liquid. .
 <分析>
 得られた無色透明のオイル状液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた無色透明のオイル状液体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=127.0にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=172.3にマスピークが見られた。これは、オクチルトリメチルアンモニウムモノフルオロリン酸エチルのアニオンとカチオンのそれぞれの分子量とほぼ一致し、得られた無色透明のオイル状液体がオクチルトリメチルアンモニウムモノフルオロリン酸エチルであることを確認した。
<Analysis>
The obtained colorless and transparent oily liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Further, when the obtained colorless and transparent oily liquid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 127.0. Similarly, when positive ion analysis was performed, a mass peak was observed at m / z = 172.3. This almost coincided with the molecular weights of the anions and cations of ethyl octyltrimethylammonium monofluorophosphate, and the obtained colorless and transparent oily liquid was confirmed to be ethyl octyltrimethylammonium monofluorophosphate.
 (実施例13)
 <ヘキサデシルトリメチルアンモニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコにヘキサデシルトリメチルアンモニウムブロミド4.5gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル3.9gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で15時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、白色の固体を得た。アセトンで再結晶し、吸引ろ過で析出固体を回収後、常温で真空乾燥することにより、白色固体2.9gを得た。
(Example 13)
<Synthesis of ethyl hexadecyltrimethylammonium monofluorophosphate>
Into a 50 mL eggplant flask containing a stir bar, 4.5 g of hexadecyltrimethylammonium bromide and 20 g of acetonitrile were added, and then 3.9 g of diethyl monofluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 to 120 ° C. for 15 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a white solid. After recrystallizing with acetone and collecting the precipitated solid by suction filtration, 2.9 g of white solid was obtained by vacuum drying at room temperature.
 <分析>
 得られた白色の固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色の固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=127.0にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=284.6にマスピークが見られた。これは、ヘキサデシルトリメチルアンモニウムモノフルオロリン酸エチルのアニオンとカチオンのそれぞれの分子量とほぼ一致し、得られた無色透明のオイル状液体がヘキサデシルトリメチルアンモニウムエチルフルオロリン酸エチルであることを確認した。
<Analysis>
The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 127.0. Further, when positive ion analysis was performed in the same manner, a mass peak was observed at m / z = 284.6. This was almost the same as the molecular weight of each of the anion and cation of ethyl hexadecyltrimethylammonium monofluorophosphate, and it was confirmed that the resulting colorless and transparent oily liquid was ethyl hexadecyltrimethylammonium ethylfluorophosphate. .
 (実施例14)
 <ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムブロミドの合成>
 撹拌子を入れた50mLのナスフラスコにヘキサデシルジメチルアミン3.5gとアセトニトリル20gを投入し、続いて2-ブロモエタノール1.6gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下100℃で3時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、白色の固体を得た。アセトンで再結晶し、溶媒をデカントした後、常温で真空乾燥することにより、白色の固体であるヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムブロミド4.8gを得た。
(Example 14)
<Synthesis of hexadecyl (2-hydroxyethyl) dimethylammonium bromide>
A 50 mL eggplant flask containing a stir bar was charged with 3.5 g of hexadecyldimethylamine and 20 g of acetonitrile, followed by 1.6 g of 2-bromoethanol. Thereafter, the solution in the eggplant flask was heated to reflux at 100 ° C. for 3 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a white solid. Recrystallization from acetone, decantation of the solvent, and vacuum drying at room temperature gave 4.8 g of hexadecyl (2-hydroxyethyl) dimethylammonium bromide as a white solid.
 <ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに前記ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムブロミド3.8gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル3.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で3時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、白色の固体を得た。アセトンで再結晶し、溶媒をデカントした後、常温で真空乾燥することにより、白色固体2.8gを得た。
<Synthesis of hexadecyl (2-hydroxyethyl) dimethylammonium monofluorophosphate>
3.8 g of hexadecyl (2-hydroxyethyl) dimethylammonium bromide and 20 g of acetonitrile were charged into a 50 mL eggplant flask containing a stir bar, followed by 3.0 g of diethyl monofluorophosphate. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 ° C. to 120 ° C. for 3 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a white solid. After recrystallizing with acetone and decanting the solvent, 2.8 g of white solid was obtained by vacuum drying at room temperature.
 得られた白色の固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色の固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=127.0にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=314.6にマスピークが見られた。これは、ヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムエチルフルオロリン酸塩のアニオンとカチオンのそれぞれの分子量とほぼ一致し、得られた無色透明のオイル状液体がヘキサデシル(2-ヒドロキシエチル)ジメチルアンモニウムモノフルオロリン酸エチルであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 127.0. Similarly, when positive ion analysis was performed, a mass peak was observed at m / z = 314.6. This is almost the same as the molecular weight of each of the anions and cations of hexadecyl (2-hydroxyethyl) dimethylammonium ethylfluorophosphate, and the resulting colorless and transparent oily liquid is hexadecyl (2-hydroxyethyl) dimethylammonium mono It was confirmed to be ethyl fluorophosphate.
 (実施例15)
 <アリルヘキサデシルジメチルアンモニウムブロミドの合成>
 撹拌子を入れた50mLのナスフラスコにヘキサデシルジメチルアミン3.5gとアセトニトリル20gを投入し、続いてアリルブロミド1.6gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下60℃で3時間加熱還流を行った。ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、白色の固体を得た。アセトンで再結晶し、溶媒をデカントした後、常温で真空乾燥することにより、白色の固体であるアリルヘキサデシルジメチルアンモニウムブロミド4.4gを得た。
(Example 15)
<Synthesis of allyl hexadecyldimethylammonium bromide>
Into a 50 mL eggplant flask containing a stir bar, 3.5 g of hexadecyldimethylamine and 20 g of acetonitrile were added, followed by 1.6 g of allyl bromide. Thereafter, the solution in the eggplant flask was heated and refluxed at 60 ° C. for 3 hours under a nitrogen stream. The solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a white solid. After recrystallizing with acetone and decanting the solvent, 4.4 g of allylhexadecyldimethylammonium bromide as a white solid was obtained by vacuum drying at room temperature.
 <アリルヘキサデシルジメチルアンモニウムモノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに前記アリルヘキサデシルジメチルアンモニウムブロミド3.8gとアセトニトリル20gを投入し、続いて前記モノフルオロリン酸ジエチル3.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で3時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧下で当該溶液中の溶媒を留去し、無色透明のオイル状液体を得た。-20℃で冷却下、アセトンで再結晶し、溶媒をデカントした後、常温で真空乾燥することにより、白色固体1.7gを得た。
<Synthesis of ethyl allylhexadecyldimethylammonium monofluorophosphate>
Into a 50 mL eggplant flask containing a stir bar, 3.8 g of allyl hexadecyldimethylammonium bromide and 20 g of acetonitrile were added, followed by 3.0 g of diethyl monofluorophosphate. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 ° C. to 120 ° C. for 3 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off under reduced pressure to obtain a colorless and transparent oily liquid. The mixture was recrystallized with acetone under cooling at −20 ° C., decanted from the solvent, and then vacuum dried at room temperature to obtain 1.7 g of a white solid.
 得られた白色の固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色の固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=127.0にマスピークが見られた。また、同様に正イオン分析を行ったところ、m/z=310.6にマスピークが見られた。これにより、アリルヘキサデシルジメチルアンモニウムモノフルオロリン酸エチルのアニオンとカチオンのそれぞれの分子量がほぼ一致し、得られた無色透明のオイル状液体がアリルヘキサデシルジメチルアンモニウムモノフルオロリン酸エチルであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 127.0. Similarly, when positive ion analysis was performed, a mass peak was observed at m / z = 310.6. As a result, the molecular weights of the anions and cations of ethyl allylhexadecyldimethylammonium monofluorophosphate are almost the same, and the colorless and transparent oily liquid obtained is ethyl allylhexadecyldimethylammonium monofluorophosphate. confirmed.
 (実施例16) (Example 16)
 <フルオロリン酸ジメチルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム3.9gとアセトニトリル20gを投入し、続いて、クロロリン酸ジメチル6.5gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下80℃~100℃で2時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧濾過を行うことにより白色固体とろ液とを分離した。これにより、微黄色透明の液体であるフルオロリン酸ジメチルのアセトニトリル溶液を得た。
<Synthesis of dimethyl fluorophosphate>
To a 100 mL eggplant flask containing a stirrer, 3.9 g of potassium fluoride and 20 g of acetonitrile were added, followed by 6.5 g of dimethyl chlorophosphate. Thereafter, the solution in the eggplant flask was heated and refluxed at 80 ° C. to 100 ° C. for 2 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate the white solid and the filtrate. As a result, an acetonitrile solution of dimethyl fluorophosphate, which is a slightly yellow transparent liquid, was obtained.
 <モノフルオロリン酸メチルリチウムの合成>
 撹拌子を入れた50mLのナスフラスコに塩化リチウム無水1.0gを投入し、続いて前記フルオロリン酸ジメチルのアセトニトリル溶液を投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で4時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧下、40℃で当該溶液中の溶媒を留去することにより、白色固体2.1gを得た。
<Synthesis of methyl lithium monofluorophosphate>
To a 50 mL eggplant flask containing a stirrer, 1.0 g of anhydrous lithium chloride was added, and then the acetonitrile solution of dimethyl fluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 ° C. to 120 ° C. for 4 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature, and then the solvent in the solution was distilled off at 40 ° C. under reduced pressure to obtain 2.1 g of a white solid.
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=112.9にマスピークが見られた。これは、モノフルオロリン酸メチルアニオンの分子量とほぼ一致し、得られた白色固体が、モノフルオロリン酸メチルリチウムであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 12.9. This almost coincided with the molecular weight of the methyl monofluorophosphate anion, and it was confirmed that the obtained white solid was methyl lithium monofluorophosphate.
 (実施例17)
 <フルオロリン酸ジイソプロピルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム5.2gとアセトニトリル20gを投入し、続いて、クロロリン酸ジイソプロピル12.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下80℃~100℃で2時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧濾過を行うことにより白色固体とろ液とを分離した。続いて、減圧下、40℃でろ液中の溶媒を留去することにより、微黄色透明の液体であるフルオロリン酸ジイソプロピル10.0gを得た。
(Example 17)
<Synthesis of diisopropyl fluorophosphate>
To a 100 mL eggplant flask containing a stir bar, 5.2 g of potassium fluoride and 20 g of acetonitrile were added, and then 12.0 g of diisopropyl chlorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 80 ° C. to 100 ° C. for 2 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate the white solid and the filtrate. Subsequently, by distilling off the solvent in the filtrate at 40 ° C. under reduced pressure, 10.0 g of diisopropyl fluorophosphate, which is a slightly yellow transparent liquid, was obtained.
 <モノフルオロリン酸イソプロピルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに臭化リチウム無水1.2gとアセトニトリル20gを投入し、続いて、前記フルオロリン酸ジイソプロピル5.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で5時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体1.6gを得た。
<Synthesis of isopropyl lithium monofluorophosphate>
Anhydrous lithium bromide (1.2 g) and acetonitrile (20 g) were added to a 100 mL eggplant flask containing a stirrer, followed by the above-described diisopropyl fluorophosphate (5.0 g). Thereafter, the solution in the eggplant flask was heated and refluxed at 110 ° C. to 120 ° C. for 5 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 1.6 g of a white solid.
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=140.9にマスピークが見られた。これは、モノフルオロリン酸イソプロピルアニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸イソプロピルリチウムであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 140.9. This almost coincided with the molecular weight of the isopropyl monofluorophosphate anion, and it was confirmed that the obtained white solid was isopropyl lithium monofluorophosphate.
 (実施例18)
 <フルオロリン酸ジブチルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム4.4gとアセトニトリル20gを投入し、続いて、クロロリン酸ジブチル11.5gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下80℃~100℃で2時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、減圧濾過を行うことにより白色固体とろ液とを分離した。続いて、減圧下、40℃でろ液中の溶媒を留去することにより、微黄色透明の液体であるフルオロリン酸ジブチル6.8gを得た。
(Example 18)
<Synthesis of dibutyl fluorophosphate>
To a 100 mL eggplant flask containing a stir bar, 4.4 g of potassium fluoride and 20 g of acetonitrile were added, and then 11.5 g of dibutyl chlorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 80 ° C. to 100 ° C. for 2 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature and then filtered under reduced pressure to separate the white solid and the filtrate. Subsequently, the solvent in the filtrate was distilled off at 40 ° C. under reduced pressure to obtain 6.8 g of dibutyl fluorophosphate which was a slightly yellow transparent liquid.
 <モノフルオロリン酸ブチルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに臭化リチウム無水1.0gとアセトニトリル20gを投入し、続いて前記フルオロリン酸ジブチル5.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下110℃~120℃で3時間加熱還流を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体1.6gを得た。
<Synthesis of butyl lithium monofluorophosphate>
To a 100 mL eggplant flask containing a stir bar, 1.0 g of anhydrous lithium bromide and 20 g of acetonitrile were added, and then 5.0 g of the dibutyl fluorophosphate was added. Thereafter, the solution in the eggplant flask was heated and refluxed at 110 ° C. to 120 ° C. for 3 hours under a nitrogen stream. Further, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 1.6 g of a white solid.
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=155.0にマスピークが見られた。これは、モノフルオロリン酸ブチルアニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸ブチルリチウムであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 155.0. This almost coincided with the molecular weight of the butyl monofluorophosphate anion, and it was confirmed that the obtained white solid was butyl lithium monofluorophosphate.
 (実施例19)
 <フルオロリン酸ビス(2-エトキシエチル)の合成>
 撹拌子を入れた50mLのナスフラスコにフッ化カリウム1.5gとアセトニトリル16gを投入し、続いて、前記クロロリン酸ビス(2-エトキシエチル)4.6gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下50℃~60℃で2時間加熱を行った。さらに、前記溶液にシリカゲルを投入して撹拌を行い、減圧下、40℃で当該溶液中の溶媒を留去し、目的物を含む白色固体混合物を得た。ガラスフィルタ付のカラム管にシリカゲルを少量積み、得られた白色固体混合物を投入し、酢酸エチルで抽出(フラッシュカラム)を行った。減圧下、40℃で溶媒を留去することにより、無色透明の液体であるフルオロリン酸ビス(2-エトキシエチル)1.5gを得た。
(Example 19)
<Synthesis of bis (2-ethoxyethyl) fluorophosphate>
To a 50 mL eggplant flask containing a stir bar, 1.5 g of potassium fluoride and 16 g of acetonitrile were added, and subsequently, 4.6 g of the bis (2-ethoxyethyl) chlorophosphate was added. Thereafter, the solution in the eggplant flask was heated at 50 ° C. to 60 ° C. for 2 hours under a nitrogen stream while stirring. Furthermore, silica gel was added to the solution and stirred, and the solvent in the solution was distilled off at 40 ° C. under reduced pressure to obtain a white solid mixture containing the target product. A small amount of silica gel was loaded on a column tube equipped with a glass filter, and the resulting white solid mixture was added and extracted with ethyl acetate (flash column). The solvent was distilled off at 40 ° C. under reduced pressure to obtain 1.5 g of bis (2-ethoxyethyl) fluorophosphate, which is a colorless and transparent liquid.
 <モノフルオロリン酸(2-エトキシエチル)リチウムの合成>
 撹拌子を入れた50mLのナスフラスコに臭化リチウム無水0.2gとアセトニトリル10gを投入し、続いて前記フルオロリン酸ビス(2-エトキシエチル)1.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下50℃~60℃で4.5時間加熱を行った。さらに、ナスフラスコ中の溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体0.4gを得た。
<Synthesis of lithium monofluorophosphate (2-ethoxyethyl)>
Into a 50 mL eggplant flask containing a stir bar, 0.2 g of anhydrous lithium bromide and 10 g of acetonitrile were added, and then 1.0 g of the bis (2-ethoxyethyl) fluorophosphate was added. Thereafter, the solution in the eggplant flask was heated at 50 ° C. to 60 ° C. for 4.5 hours under a nitrogen stream while stirring. Further, the solution in the eggplant flask was allowed to cool to room temperature, and the precipitate in the solution was filtered off by vacuum filtration. Thereafter, the precipitate was dried at 130 ° C. under a nitrogen stream to obtain 0.4 g of a white solid.
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=170.9にマスピークが見られた。これは、モノフルオロリン酸(2-エトキシエチル)アニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸(エトキシエチル)リチウムであることを確認した。 The obtained white solid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one new peak was detected. This confirmed that a new anion was generated. Furthermore, when the obtained white solid was subjected to negative ion analysis by LC / MS (manufactured by Waters), a mass peak was observed at m / z = 170.9. This almost coincided with the molecular weight of the monofluorophosphate (2-ethoxyethyl) anion, and it was confirmed that the obtained white solid was lithium monofluorophosphate (ethoxyethyl).
 (比較例1)
 本比較例においては、フッ素放出性を付与する化合物としてフッ化ナトリウム((ステラケミファ(株)製)を用いた。
(Comparative Example 1)
In this comparative example, sodium fluoride (manufactured by Stella Chemifa Co., Ltd.) was used as a compound that imparts fluorine release properties.
 (比較例2)
 本比較例においては、フッ素放出性を付与する化合物として、モノフルオロリン酸ナトリウム(Strem Chemicals(株)製)を用いた。
(Comparative Example 2)
In this comparative example, sodium monofluorophosphate (manufactured by Strem Chemicals Co., Ltd.) was used as the compound that imparts fluorine release properties.
(フッ素イオンの徐放性の評価)
 実施例1~19でそれぞれ得られたモノフルオロリン酸エステル塩、比較例1のフッ化ナトリウム、及び比較例2のモノフルオロリン酸ナトリウムを用いて、サンプル水溶液をそれぞれ調製した。各サンプル水溶液中の全てのフッ素原子の存在量は、1000ppmとした。また、酸性ホスファターゼ(3.3U/mg)と0.1Mリン酸緩衝液(pH7)〈和光純薬製〉を用いて、0.1%酸性ホスファターゼリン酸緩衝液を調製した。 
(Evaluation of sustained release of fluoride ions)
Sample aqueous solutions were prepared using the monofluorophosphate ester salts obtained in Examples 1 to 19, sodium fluoride of Comparative Example 1, and sodium monofluorophosphate of Comparative Example 2, respectively. The abundance of all fluorine atoms in each sample aqueous solution was 1000 ppm. A 0.1% acid phosphatase phosphate buffer solution was prepared using acid phosphatase (3.3 U / mg) and 0.1 M phosphate buffer solution (pH 7) (manufactured by Wako Pure Chemical Industries, Ltd.).
続いて、20mLのバイアルにサンプル水溶液4.7gと0.1%酸性ホスファターゼリン酸緩衝液0.3gを入れ、評価サンプルを調製した。37℃の恒温槽に評価サンプルの入ったバイアルを入れ、8時間加温を行った。  Subsequently, 4.7 g of the sample aqueous solution and 0.3 g of 0.1% acid phosphatase phosphate buffer were placed in a 20 mL vial to prepare an evaluation sample. A vial containing the evaluation sample was placed in a 37 ° C. thermostat and heated for 8 hours. *
 その後、一定時間ごとにイオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にて評価サンプル中のフッ化物イオンの定量分析を行い、8時間後のフッ素イオン濃度をA8、4時間後のフッ素イオン濃度をA4、0時間のときのフッ素イオン濃度をAとし、下記式に従い、S(%)を算出した。結果を下記表1に示す。
 S(%)=(A-A)/(A-A)×100
Thereafter, the fluoride ion in the evaluation sample was quantitatively analyzed by ion chromatography (manufactured by Metrohm, Model No .: IC-850) at regular intervals, and the fluoride ion concentration after 8 hours was changed to A 8, 4 hours later. the fluoride ion concentration of fluorine ion concentration in the case of a 4, 0 hours and a 0, according to the following equation to calculate the S (%). The results are shown in Table 1 below.
S (%) = (A 4 −A 0 ) / (A 8 −A 0 ) × 100
 フッ素イオンの放出性及び徐放性については、前記Sの値が50%に近い程フッ素イオンが、8時間にわたり均一に放出され、徐放性が高いといえる。そして、下記表1に示す通り、各実施例については、S(%)がそれぞれ50%前後の値を示しており、フッ素イオンの徐放性に優れていることが確認された。その一方、比較例1及び2については、それぞれ99%、68%であり、8時間の経過後においては、何れもフッ素イオンの放出量が小さく、徐放性に劣っていることが確認された。 Regarding the release and sustained release of fluorine ions, the closer the value of S is to 50%, the more uniformly the fluorine ions are released over 8 hours and the higher the release. And as shown in following Table 1, about each Example, S (%) showed the value around 50%, respectively, and it was confirmed that it is excellent in the sustained release property of a fluorine ion. On the other hand, it was confirmed that Comparative Examples 1 and 2 were 99% and 68%, respectively, and after 8 hours, both released small amounts of fluorine ions and were inferior in sustained release. .
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Claims (18)

  1.  下記化学式(1)で表されるモノフルオロリン酸エステル塩。
    Figure JPOXMLDOC01-appb-C000001
    (但し、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
    A monofluorophosphate ester salt represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (However, M n + is hydrogen ion, alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, tin ion, lead ion and onium. R 1 represents any one selected from the group consisting of ions, wherein R 1 is a hydrocarbon group having 1 to 20 carbon atoms, or a range having 1 to 20 carbon atoms, and is a halogen atom, heteroatom or Represents a hydrocarbon group having at least one of saturated bonds, wherein n represents a valence.)
  2.  前記アルカリ金属イオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン及びセシウムイオンからなる群より選ばれる何れか1種である請求項1に記載のモノフルオロリン酸エステル塩。 The monofluorophosphate ester salt according to claim 1, wherein the alkali metal ion is any one selected from the group consisting of lithium ion, sodium ion, potassium ion, rubidium ion and cesium ion.
  3.  前記アルカリ土類金属イオンが、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン及びバリウムイオンからなる群より選ばれる何れか1種である請求項1又は2に記載のモノフルオロリン酸エステル塩。 The monofluorophosphate ester salt according to claim 1 or 2, wherein the alkaline earth metal ion is any one selected from the group consisting of magnesium ion, calcium ion, strontium ion and barium ion.
  4.  前記遷移金属イオンが、マンガンイオン、コバルトイオン、ニッケルイオン、クロムイオン、銅イオン、銀イオン、モリブデンイオン、タングステンイオン及びバナジウムイオンからなる群より選ばれる何れか1種である請求項1~3の何れか1項に記載のモノフルオロリン酸エステル塩。 The transition metal ion is any one selected from the group consisting of manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, and vanadium ions. The monofluorophosphoric acid ester salt of any one.
  5.  前記希土類元素イオンが、スカンジウムイオン、イットリウムイオン、ランタンイオン、セリウムイオン、プラセオジムイオン、ネオジムイオン、プロメチウムイオン、サマリウムイオン、ユウロピウムイオン、ガドリニウムイオン、テルビウムイオン、ジスプロシウムイオン、ホルミウムイオン、エルビウムイオン、ツリウムイオン及びイッテルビウムイオン及びルテチウムイオンからなる群より選ばれる何れか1種である請求項1~4の何れか1項に記載のモノフルオロリン酸エステル塩。 The rare earth element ion is scandium ion, yttrium ion, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium ion, holmium ion, erbium ion, thulium ion The monofluorophosphate ester salt according to any one of claims 1 to 4, which is any one selected from the group consisting of ytterbium ions and lutetium ions.
  6.  前記オニウムイオンが、アンモニウムイオン、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオン、第4級ホスホニウムイオン及びスルホニウムイオンからなる群より選ばれる何れか1種である請求項1~5の何れか1項に記載のモノフルオロリン酸エステル塩。 The onium ion is any one selected from the group consisting of ammonium ion, primary ammonium ion, secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion, quaternary phosphonium ion and sulfonium ion. The monofluorophosphate ester salt according to any one of claims 1 to 5, wherein
  7.  下記化学式(2)で表されるモノハロリン酸ジエステルをフッ素化処理して、下記化学式(3)で表されるモノフルオロリン酸ジエステルを生成する工程と、
     前記モノフルオロリン酸ジエステルと、Mn+n(前記Mn+は、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記XはF、Cl、Br又はIの何れかのハロゲン原子を表す。前記nは価数を表す。)を反応させることにより、下記化学式(1)で表されるモノフルオロリン酸エステル塩を生成する工程とを含むモノフルオロリン酸エステル塩の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (但し、前記R及びRは相互に独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。XはF以外のハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (前記R及びRは相互に独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (但し、前記Mn+は水素、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
    Fluorinating a monohalophosphate diester represented by the following chemical formula (2) to produce a monofluorophosphate diester represented by the following chemical formula (3);
    The monofluorophosphate diester and M n + X 2 n (where M n + is an alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium) It represents any one selected from the group consisting of ions, tin ions, lead ions, and onium ions, X 2 represents a halogen atom of F, Cl, Br, or I. The n represents a valence. ) To produce a monofluorophosphate ester salt represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (However, R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a carbon group having 1 to 20 carbon atoms, and having a halogen atom, a hetero atom or an unsaturated bond. Represents a hydrocarbon group having at least one of them, X 1 represents a halogen atom other than F.)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 and R 2 are independently of each other a hydrocarbon group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms, and at least one of a halogen atom, a hetero atom and an unsaturated bond) Represents a hydrocarbon group having one.)
    Figure JPOXMLDOC01-appb-C000004
    (However, said M n + is from hydrogen, alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth element ions, zinc ions, aluminum ions, gallium ions, indium ions, germanium ions, tin ions, lead ions and onium ions. And R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a range of 1 to 20 carbon atoms, which is a halogen atom, a hetero atom, or an unsaturated bond. A hydrocarbon group having at least one of the above, wherein n represents a valence.)
  8.  前記モノフルオロリン酸ジエステルを生成する工程における前記フッ素化処理は、前記モノハロリン酸ジエステルとフッ素化剤を非水溶媒中で接触させることにより行う請求項7に記載のモノフルオロリン酸エステル塩の製造方法。 The production of a monofluorophosphate ester salt according to claim 7, wherein the fluorination treatment in the step of producing the monofluorophosphate diester is performed by bringing the monohalophosphate diester and a fluorinating agent into contact with each other in a non-aqueous solvent. Method.
  9.  前記フッ素化剤として、アルカリ金属フッ化物、アルカリ土類金属フッ化物又はオニウムフルオロライド用いる請求項8に記載のモノフルオロリン酸エステル塩の製造方法。 The method for producing a monofluorophosphate ester salt according to claim 8, wherein an alkali metal fluoride, an alkaline earth metal fluoride or an onium fluoride is used as the fluorinating agent.
  10.  前記フッ素化処理の反応開始温度は、0℃~200℃の範囲内である請求項8又は9に記載のモノフルオロリン酸エステル塩の製造方法。 The method for producing a monofluorophosphate ester salt according to claim 8 or 9, wherein a reaction start temperature of the fluorination treatment is in a range of 0 ° C to 200 ° C.
  11.  前記非水溶媒として、ニトリル類、エステル類、ケトン類、エーテル類及びハロゲン化炭化水素類からなる群より選ばれる何れか1種の非プロトン性溶媒を用いる請求項8~10の何れか1項に記載のモノフルオロリン酸エステル塩の製造方法。 The any one of aprotic solvents selected from the group consisting of nitriles, esters, ketones, ethers and halogenated hydrocarbons is used as the non-aqueous solvent. A method for producing the monofluorophosphoric acid ester salt described in 1.
  12.  前記モノフルオロリン酸エステル塩を生成する工程は、1当量の前記Mn+nに対し、0.5当量~5当量の範囲内の前記モノフルオロリン酸ジエステルを他の非水溶媒中で反応させて行う請求項8~11の何れか1項に記載のモノフルオロリン酸エステル塩の製造方法。 In the step of producing the monofluorophosphate ester salt, the monofluorophosphate diester within a range of 0.5 to 5 equivalents in another non-aqueous solvent with respect to 1 equivalent of the M n + X 2 n. The method for producing a monofluorophosphate ester salt according to any one of claims 8 to 11, which is carried out by reaction.
  13.  前記モノフルオロリン酸エステル塩を生成する工程における前記モノフルオロリン酸ジエステルと前記Mn+nとの反応は、当該モノフルオロリン酸ジエステルを反応溶媒として行う請求項8~12の何れか1項に記載のモノフルオロリン酸エステル塩の製造方法。 The reaction of the monofluorophosphate diester with the M n + X 2 n in the step of producing the monofluorophosphate ester salt is carried out using the monofluorophosphate diester as a reaction solvent. A method for producing the monofluorophosphate ester salt according to the item.
  14.  前記モノフルオロリン酸エステル塩を生成する工程における前記モノフルオロリン酸ジエステルと前記Mn+nとの反応は他の非水溶媒中で行うものであり、
     前記他の非水溶媒としてアルコール類、ニトリル類、エステル類、ケトン類、エーテル類及びハロゲン化炭化水素類からなる群より選ばれる何れか1種を用いる請求項8~12の何れか1項に記載のモノフルオロリン酸エステル塩の製造方法。
    The reaction of the monofluorophosphate diester and the M n + X 2 n in the step of producing the monofluorophosphate ester salt is performed in another non-aqueous solvent,
    The method according to any one of claims 8 to 12, wherein any one selected from the group consisting of alcohols, nitriles, esters, ketones, ethers and halogenated hydrocarbons is used as the other non-aqueous solvent. A method for producing the monofluorophosphate ester salt described above.
  15.  前記モノフルオロリン酸ジエステルと、前記Mn+nの反応開始温度は0℃~200℃の範囲内であり、反応時間は30分~20時間の範囲内である請求項13又は14に記載のモノフルオロリン酸エステル塩の製造方法。 The reaction start temperature of the monofluorophosphoric diester and the M n + X 2 n is in the range of 0 ° C to 200 ° C, and the reaction time is in the range of 30 minutes to 20 hours. Of producing a monofluorophosphoric acid ester salt.
  16.  請求項1~6の何れか1項に記載のモノフルオロリン酸エステル塩を含むフッ素イオン放出性組成物。 A fluoride ion releasing composition comprising the monofluorophosphate ester salt according to any one of claims 1 to 6.
  17.  請求項1~6の何れか1項に記載のモノフルオロリン酸エステル塩を含む口腔用組成物。 An oral composition comprising the monofluorophosphate ester salt according to any one of claims 1 to 6.
  18.  請求項1~6の何れか1項に記載のモノフルオロリン酸エステル塩を含む歯科用組成物。
     
    A dental composition comprising the monofluorophosphate ester salt according to any one of claims 1 to 6.
PCT/JP2016/088497 2015-12-25 2016-12-22 Monofluorophosphate ester salt, method for producing same, and fluorine ion-releasing composition WO2017111087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-252845 2015-12-25
JP2015252845 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111087A1 true WO2017111087A1 (en) 2017-06-29

Family

ID=59090524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088497 WO2017111087A1 (en) 2015-12-25 2016-12-22 Monofluorophosphate ester salt, method for producing same, and fluorine ion-releasing composition

Country Status (2)

Country Link
JP (1) JP6925604B2 (en)
WO (1) WO2017111087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062682A (en) * 2020-08-31 2020-12-11 华南理工大学 Novel composite double quaternary ammonium salt manganese metal halide luminescent material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997504A (en) * 1971-04-01 1976-12-14 Plymale Richard W Composition and method for treating teeth
JP2008231026A (en) * 2007-03-20 2008-10-02 Gifu Univ Method for producing fluorinated phosphoric monoester salt and fluorinated phosphoric monoester salt
JP2013521337A (en) * 2010-03-05 2013-06-10 デュオフォス Intestinal brush border membrane sodium / phosphate co-transport arylfluorophosphate inhibitors
WO2016024496A1 (en) * 2014-08-11 2016-02-18 関東電化工業株式会社 Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107376A (en) * 1982-12-13 1984-06-21 株式会社 ユ−カリ光学研究所 Constellation learning apparatus
JP3422769B2 (en) * 2000-11-01 2003-06-30 松下電器産業株式会社 Electrolyte for non-aqueous battery and secondary battery using the same
IL158430A0 (en) * 2001-04-16 2004-05-12 Semorex Inc Selective covalent-binding compounds having therapeutic diagnostic and analytical applications
JP2009102283A (en) * 2007-10-25 2009-05-14 Lion Corp Oral composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997504A (en) * 1971-04-01 1976-12-14 Plymale Richard W Composition and method for treating teeth
JP2008231026A (en) * 2007-03-20 2008-10-02 Gifu Univ Method for producing fluorinated phosphoric monoester salt and fluorinated phosphoric monoester salt
JP2013521337A (en) * 2010-03-05 2013-06-10 デュオフォス Intestinal brush border membrane sodium / phosphate co-transport arylfluorophosphate inhibitors
WO2016024496A1 (en) * 2014-08-11 2016-02-18 関東電化工業株式会社 Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIPKIN, DAVID ET AL.: "The Action of hydrogen fluoride on nucleotides and other esters of phosphorus(V) acids", JOURNAL OF ORGANIC CHEMISTRY, vol. 34, no. 6, 1969, pages 1539 - 1547, XP055396810, ISSN: 0022-3263 *
REDDY, GADE S. ET AL.: "31P and 19F nuclear magnetic resonance studies of phosphorus- fluorine compounds, Zeitschrift fuer Naturforschung", TEIL B: ANORGANISCHE CHEMIE, ORGANISCHE CHEMIE, BIOCHEMIE, BIOPHYSIK, BIOLOGIE, vol. 25, no. 11, 1970, pages 1199 - 1214, ISSN: 0044-3174 *
STOELZER, C. ET AL.: "Infrared spectroscopic studies on fluorophosphorous compounds. II. Fluorophosphorous compound salts. The stretching vibration in the POO system and the structure of fluorothiophosphates on the bases of their infrared spectrum", ZEITSCHRIFT FUER ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 339, no. 1-2, 1965, pages 38 - 43, ISSN: 0044-2313 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062682A (en) * 2020-08-31 2020-12-11 华南理工大学 Novel composite double quaternary ammonium salt manganese metal halide luminescent material and preparation method and application thereof
CN112062682B (en) * 2020-08-31 2021-06-08 华南理工大学 Composite double quaternary ammonium salt manganese metal halide luminescent material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2017119690A (en) 2017-07-06
JP6925604B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
EP1711458B1 (en) Method for producing guanidinium salts
EP2814812B1 (en) Methods of producing sulfilimine compounds
WO2011085966A1 (en) Method for producing perfluoroalkyl cyanoborates or perfluoroalkyl cyanofluoroborates
JP5600876B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
DE1668429C3 (en) Process for the fluoroalkylation of nucleophilic compounds
EA020216B1 (en) Tricyanoborates, preparation thereof and use thereof as ionic liquid
DE102005025315A1 (en) Low viscosity ionic liquids
EP1768962B1 (en) Method for producing onium salts with a low chloride content
EP1824866B1 (en) Method for producing onium salts comprising dialkylphosphate anions, dialkylphosphinate anions or (o-alkyl)-alkyl anions or alkyl-phosphonate anions having a low halide content
EP2114965B1 (en) Compounds comprising organic fluorochloro phosphate anions
WO2015049034A1 (en) Perfluoroalkyl fluoro- or perfluoroalkyl chlorogermanates
JP6925604B2 (en) Monofluorophosphate ester salt, its production method and fluorine ion-releasing composition
EP3106465A1 (en) Method for preparing racemic or optically active glycerophosphoryl choline
EP2050754B1 (en) Method for manufacturing alkyl-methoxymethyl-trimethylsilanylmethyl amines
DE102012006896A1 (en) New perfluoroalkyl fluorosilicate salts useful e.g. as solvent or solvent additive, catalyst or phase transfer catalyst, electrolyte component, fluorosurfactant, heat carrier, release agent or extracting agent, plasticizer, and lubricant
JP2015166343A (en) Phosphoric diester salt production method, and phosphoric diester production method
WO2009119858A1 (en) Benzene compound, and use thereof for medical purposes
EP2545062B1 (en) Process for preparing tris(perfluoroalkyl)phosphine oxides
US8642778B2 (en) Ionic liquids
EP2513123B1 (en) Compounds with (perfluoralkyl)fluoro-hydrogenphosphate anions
EP4064407A1 (en) Composition, electrolytic solution material, and electrolytic solution
EP2058319A1 (en) Method for manufacturing perfluoralkylphosphines and their application as perfluoralkylisation reagents
JPH064652B2 (en) Phosphate ester
EP1685143B1 (en) Method for the production of mono(fluoroalkyl)phosphoranes, bis(fluoroalkyl)phosphoranes, and the corresponding acids and phosphates
EP2736913B1 (en) Method for producing bis(perfluoroalkyl)phosphinic acid anhydrides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878973

Country of ref document: EP

Kind code of ref document: A1