WO2017111078A1 - Polishing liquid for glass and polishing method - Google Patents

Polishing liquid for glass and polishing method Download PDF

Info

Publication number
WO2017111078A1
WO2017111078A1 PCT/JP2016/088481 JP2016088481W WO2017111078A1 WO 2017111078 A1 WO2017111078 A1 WO 2017111078A1 JP 2016088481 W JP2016088481 W JP 2016088481W WO 2017111078 A1 WO2017111078 A1 WO 2017111078A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass
hydrofluoric acid
polishing liquid
organic solvent
Prior art date
Application number
PCT/JP2016/088481
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 島田
晴香 西川
家田 智之
雄三 三好
Original Assignee
パナソニック株式会社
株式会社Nsc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 株式会社Nsc filed Critical パナソニック株式会社
Publication of WO2017111078A1 publication Critical patent/WO2017111078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present invention relates to a polishing liquid and a polishing method for polishing glass of liquid crystal screens and organic EL screens used for portable terminals, FPDs (flat panel displays) and the like.
  • Liquid crystal display devices and organic EL display devices are widely used in products such as mobile phones, smartphones, tablet PCs, and notebook computers. And these flat display devices mainly use glass as a base material. Hereinafter, these display devices are referred to as “glass display devices”.
  • a driving unit such as a liquid crystal, a TFT, or a light emitting layer is formed between two plate glasses serving as a base material.
  • the drive unit When the drive unit is formed, strength is required so that the glass does not break during handling. For this reason, the glass material is not soda glass used for window glass or the like, but aluminoborosilicate glass (aluminoborosilicate glass) mixed with boric acid and alumina. Further, the glass thickness is used to a certain extent.
  • the thick glass is heavy and inconvenient to carry. Therefore, after manufacturing the product, the glass is polished with an etching solution for glass to reduce the thickness.
  • the dimple is a recess having a diameter of about several ⁇ m to several hundred ⁇ m and a depth of several ⁇ m to several tens of ⁇ m.
  • the dimples on the display device may be noticeable depending on the image, which may cause a problem in product quality. Accordingly, dimple suppression after polishing is one of the technical problems in glass polishing.
  • Patent Document 1 in order to prevent pits and scratches at the 10 ⁇ m level from expanding to 100 ⁇ m or more by polishing, 30 to 60% by weight of hydrofluoric acid is contained as a polishing component, and inorganic substances such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc.
  • a technique for polishing is disclosed.
  • Patent Document 2 discloses a pre-polishing step in which a polishing solution containing 10 to 30% by weight of hydrofluoric acid and 20 to 50% by weight of sulfuric acid is brought into contact with the surface of the glass plate to pre-polish the glass plate surface at 1 ⁇ m / sec or more; After the pre-polishing step, a post-polishing step is provided in which a polishing liquid containing hydrofluoric acid is brought into contact with the glass plate surface to polish the glass plate surface at a polishing rate of 0.5 to 20 ⁇ m / min. A method for polishing a glass plate surface is disclosed.
  • Patent Document 3 discloses pre-polishing using 0.4 to 4% by weight hydrofluoric acid and 40 to 90% by weight sulfuric acid, and post-polishing using 2 to 30% by weight hydrofluoric acid.
  • the scratches generated on the glass plate as a base material are removed before they grow into dimples or are made difficult to grow (pre-polishing), and then the main polishing (after-polishing) Polishing).
  • pre-polishing pre-polishing
  • after-polishing main polishing Polishing
  • polishing liquid used for such pre-polishing has a composition with extremely strong acidity of hydrofluoric acid (hydrofluoric acid) and sulfuric acid. For this reason, in the detoxification process before discarding the polishing liquid used in the pre-polishing, inconveniences such as the generation of a large amount of sludge during the neutralization process have occurred. Accordingly, there has been a demand for a polishing liquid having a composition that is easier to handle while maintaining the effect of pre-polishing, which has been a technical problem.
  • the polishing liquid according to the present invention is a plate glass polishing liquid, and contains hydrofluoric acid and an organic solvent.
  • the polishing liquid according to the present invention has a composition of hydrofluoric acid and an organic solvent having a relative dielectric constant of 10 or more and less than 40, sulfuric acid is not used. Therefore, the acidity is weaker than the polishing liquid used for the conventional pre-polishing, and the amount of sludge generated during the neutralization treatment can be suppressed.
  • polishing liquid according to the present invention will be described below.
  • the following description demonstrates one form and one Example of this invention, and this invention is not limited to the following description. The following description can be modified without departing from the spirit of the present invention.
  • the polishing liquid according to the present invention is a polishing liquid used for pre-polishing when it is divided into pre-polishing and post-polishing when polishing a glass display device.
  • the object of polishing is glass that can be used for glass display devices.
  • An oxide glass containing an oxide as the main component can be suitably used.
  • glass mainly composed of aluminosilicate glass (alumina and silicon oxide) is preferable.
  • Aluminosilicate glass has high tensile strength and is preferable as a base material for glass display devices.
  • ⁇ Aluminosilicate glass can be made in various compositions by changing the type of element added.
  • Aluminoborosilicate glass aluminoborosilicate glass with B (boron) added to the main component and elements such as Mg (magnesium), Ca (calcium), Sr (strontium), and Ba (barium) added as auxiliary components ), And is particularly preferably used as a substrate of a glass display device.
  • Glass is handled in the form of plate glass. This is because the substrate of the glass display device is used. Therefore, although it is glass, glass that cannot be supplied as a plate glass, such as a semiconductor insulating film, is not an object of polishing.
  • the polishing liquid according to the present invention contains hydrofluoric acid (hydrofluoric acid) and an organic solvent.
  • the organic solvent is easier to handle and dispose of compared to sulfuric acid that has been conventionally used.
  • the hydrofluoric acid and the organic solvent are supplied as an anhydride or an aqueous solution.
  • hydrofluoric acid is considered to be in a two-stage equilibrium state as follows. HF ⁇ H + + F- (1) HF + F- ⁇ HF2- (2)
  • the form of fluorine in the hydrofluoric acid solution is HF, F-, HF2-, and among these, the component (hereinafter referred to as active species) that contributes to the etching of glass mainly composed of SiO2 is HF2-. And HF. Furthermore, it is generally known that among active species, HF2- contributes more to etching than HF.
  • the relative permittivity of the organic solvent depends on the relative permittivity of the organic solvent.
  • the lower the relative permittivity the higher the HF fraction and the lower the HF2- fraction. Therefore, in the present invention, as a result of the presence of the organic solvent having a relative dielectric constant of 10 or more and less than 40, the abundance ratio of the HF fraction and the HF2- fraction in the active species is controlled within a suitable range. Even if there is a scratch on the surface of the plate glass, it can be removed without growing into dimples. Then, it is considered that the glass surface of the glass display device can be etched by a predetermined thickness by post-polishing.
  • organic solvents examples include the following.
  • the numerical value in parentheses is the relative dielectric constant. t-butyl alcohol (12.5), benzyl alcohol (13.1), ethylene glycol monomethyl ether (16.9), 1-butanol (17.5), isobutyl alcohol (17.9), cyclohexanone (18.3) ), Ethyl methyl ketone (18.5), 2-propanol (19.9), 1-propanol (20.3), acetone (20.7), ethanol (24.6), methanol (32.7), Nitromethane (35.9), ethylene glycol (37.7), etc. are mentioned. Of these, ethanol is easy to handle and can be suitably used.
  • the front and back surfaces of a glass display device (non-processed product) formed using plate glass are polished with the polishing liquid according to the present invention, several tens of ⁇ m in terms of one side. It comprises a polishing step, and then a post-polishing step of several hundred ⁇ m after the main polishing. In the post-polishing step, the polishing liquid contains no organic solvent.
  • polishing liquid in order to examine whether or not the polishing liquid can be used as a pre-polishing liquid, it is necessary to examine whether the scratches grow on the dimples after pre-polishing by scratching the glass surface in advance.
  • an indentation is made on the surface of an object to be processed using a micro Vickers hardness meter also used in Patent Document 2. This indentation is a substitute for scratches.
  • the workpiece is aluminoborosilicate glass of 5 cm ⁇ 2.5 cm ⁇ 0.7 mm.
  • the indentation was made with a micro Vickers hardness tester under the conditions of an applied load of 500 g and an applied time of 5 seconds.
  • the resulting indentation was a quadrangular pyramidal dent with a diagonal of 38 ⁇ m and a depth of 3.5 ⁇ m. A total of four indentations were formed at the four corners of the workpiece.
  • Evaluation was performed by immersing the object to be processed with the impression in the object to be examined and then observing under a microscope, and whether or not a crack grew from the corner of the impression. That is, the crack generation rate was used as a guideline for evaluation.
  • the reason is that when no crack is generated by the pre-polishing process, only the indented part is enlarged by polishing (FIGS. 2 (e) and (f)), whereas when the crack is generated from the indented, the indented part In addition to the enlargement, the inside of the crack is also etched and enlarged (FIGS. 2B and 2C). Since the crack is generated from the lower portion of the indentation, the inside of the crack is etched to grow into a deep dimple.
  • hydrofluoric acid aqueous solution is a solution of hydrofluoric acid and water.
  • FIG. 1A shows a state in which the indentations 12 are still formed at the four corners of the workpiece 10. After being dipped in a polishing liquid for examination and polished on one side by 10 ⁇ m, if no indentation remains and no cracks are generated as before polishing, the crack generation rate was set to zero%.
  • FIG. 1B shows a case where crack growth is observed from two of the four indentations 12. In such a state, the crack occurrence rate was 50%.
  • the lines 14 and 16 in FIG.1 (b) mean the growth direction of a crack. Since the indentation 12 has a square shape, it is considered that cracks grow in the same way from the four corners, but there are cases where the cracks grow only in one direction.
  • Line 14 shows the case where cracks grow in the horizontal direction in the drawing, and line 16 shows the case where cracks grow in the vertical direction.
  • FIG. 1 (c) shows a case where crack growth is observed at three locations among the four indentations 12.
  • the crack generation rate was 75%.
  • FIG.1 (d) and FIG.1 (e) show the case where a crack grew from four indentations 12.
  • FIG. 1 (d) even when the crack generation direction is only one direction, it was determined that the crack grew, and the crack generation rate was set to 100%.
  • FIGS. 2 (d), 2 (e), and 2 (f) are for the comparative example 4, and FIGS. 2 (d), 2 (e), and 2 (f) are for the example. .
  • the lower right line of each photograph shows 100 ⁇ m. 2 (a) and 2 (d) show the case before polishing, and FIGS. 2 (b) and 2 (e) show the case where the thickness of 10 ⁇ m on one side of the workpiece is polished.
  • 2 (c) and FIG. 2 (f) show the case where the thickness of one side of the workpiece is polished by 20 ⁇ m. 2 (a), 2 (d), 2 (e), and 2 (f), the portion where the indentation remains is circled because the photograph is thin.
  • FIG. 2 (a) and Fig. 2 (d) show the case of indentation only.
  • a square whose diagonal is 38 ⁇ m is shown.
  • FIG. 2B and FIG. 2E are photographs in the case of polishing by a thickness of 10 ⁇ m on one side.
  • the indentation had cracks growing from four corners, resulting in a cross-shaped scratch. The crack had a length of about 90 ⁇ m.
  • the indentation did not spread. Since the polished thickness (10 ⁇ m) is larger than the depth of the indentation, if the indentation remains as it is, the indentation should not be reflected. However, the shape of the indentation remains. Therefore, although the crack did not spread around, it can be judged that the shape as it was was maintained in the depth direction. In such a state, it was determined that there was no crack growth.
  • FIG. 2 (c) and FIG. 2 (f) are photographs in the case of polishing by a thickness of 20 ⁇ m on one side.
  • Comparative Example 4 FIG. 2C
  • the cracks were further grown and the length was grown to about 110 ⁇ m. Further, while maintaining the cross-shaped shape, each line was thicker than in the case of FIG. That is, the crack spread not only in the four corner directions of the indentation but also in the direction of the side.
  • Comparative Example 1 is an organic solvent tetrahydrofuran (THF: relative permittivity 7.8)
  • Comparative Example 2 is an organic solvent acetic acid (relative permittivity 6.2)
  • Comparative Example 3 is propionic acid (relative permittivity 3).
  • Comparative Example 4 is a case of only hydrofluoric acid without an organic solvent. That is, Comparative Example 4 is a simple hydrofluoric acid aqueous solution.
  • the concentration of hydrofluoric acid was changed to 3 mass%, 5 mass%, 7 mass%, and 10 mass%, respectively.
  • the organic solvent was changed to 75% by mass, 70% by mass, 67% by mass, and 64% by mass depending on the concentration of hydrofluoric acid.
  • the rest is water. Moreover, all are mass ratios with respect to the whole polishing liquid.
  • a polishing liquid that combines hydrofluoric acid and an organic solvent can make the growth of cracks zero, and a polishing liquid that can suppress the generation of dimples can be obtained.
  • the polishing liquid of the present invention can be suitably used in a pre-polishing step when polishing plate glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Two-stage polishing of pre-polishing and post-polishing was conducted in the polishing of plate glass. A composition having extremely high acidity and containing hydrofluoric acid (hydrofluoric acid) and sulfuric acid is used as the polishing liquid used in conventional pre-polishing. Therefore, the need for a polishing liquid of a more manageable composition became a technical problem. A polishing liquid for plate glass wherein the polishing liquid is characterized by including hydrofluoric acid and an organic solvent having a relative dielectric constant of 10 to less than 40 makes it possible to conduct pre-polishing without causing scratches to grow and suppresses the amount of sludge generated during neutralization after use.

Description

ガラス用研磨液および研磨方法Polishing liquid for glass and polishing method
 本発明は、携帯端末やFPD(フラットパネルディスプレイ)等に用いられる液晶画面や有機EL画面のガラスを研磨する研磨液および研磨方法に関する。 The present invention relates to a polishing liquid and a polishing method for polishing glass of liquid crystal screens and organic EL screens used for portable terminals, FPDs (flat panel displays) and the like.
 液晶表示デバイスや有機EL表示デバイスは、携帯電話、スマートフォン、タブレット型PC、ノートパソコンといった製品に多用されている。そして、これらのフラット表示デバイスは、主としてガラスが基材として用いられる。以後これらの表示デバイスを「ガラス製表示デバイス」と呼ぶ。 Liquid crystal display devices and organic EL display devices are widely used in products such as mobile phones, smartphones, tablet PCs, and notebook computers. And these flat display devices mainly use glass as a base material. Hereinafter, these display devices are referred to as “glass display devices”.
 ガラス製表示デバイスは、基材となる2枚の板ガラスの間に、液晶とTFTや発光層といった、駆動部が形成される。駆動部が形成される際には、取扱いの際にガラスが割れないように、強度が必要とされる。このため、ガラスの材質としては、窓ガラスなどに用いられるソーダガラスではなく、ホウ酸とアルミナを混入させたアルミノホウケイ酸塩ガラス(アルミノボロシリケートガラス)が使用される。また、ガラス厚も、ある程度厚みのある状態のものが用いられる。 In a glass display device, a driving unit such as a liquid crystal, a TFT, or a light emitting layer is formed between two plate glasses serving as a base material. When the drive unit is formed, strength is required so that the glass does not break during handling. For this reason, the glass material is not soda glass used for window glass or the like, but aluminoborosilicate glass (aluminoborosilicate glass) mixed with boric acid and alumina. Further, the glass thickness is used to a certain extent.
 しかし、ガラス製表示デバイスの形状に形成された後は、厚みのあるガラスは重く、持ち運びに不便となる。そこで、製品に製造した後に、ガラス用のエッチング液で、ガラスを研磨し、厚みを薄くすることが行われている。 However, after being formed into the shape of a glass display device, the thick glass is heavy and inconvenient to carry. Therefore, after manufacturing the product, the glass is polished with an etching solution for glass to reduce the thickness.
 この研磨の際の課題の1つとして知られているのは、研磨後のガラスに凹み(以後「ディンプル」と呼ぶ。)が生じているというものである。ディンプルは、直径が数μmから数百μm程度で深さが数μmから数十μmの凹みである。表示デバイス上のディンプルは、画像によって目立つ場合があり、製品品質上問題となる場合がある。したがって、研磨後のディンプル抑制は、ガラス研磨においての技術的課題の1つとなっている。 It is known that one of the problems in this polishing is that a dent (hereinafter referred to as “dimple”) occurs in the polished glass. The dimple is a recess having a diameter of about several μm to several hundred μm and a depth of several μm to several tens of μm. The dimples on the display device may be noticeable depending on the image, which may cause a problem in product quality. Accordingly, dimple suppression after polishing is one of the technical problems in glass polishing.
 特許文献1では、10μmレベルのピットやキズが研磨によって100μm以上に拡大するのを防ぐため、30~60重量%のフッ酸を研磨成分として含有し、塩酸、硫酸、硝酸、リン酸等の無機酸、エステル系、フェノール系、アミド系、エーテル系、ノニオン系、アミン系等の界面活性剤から選ばれる1種または2種以上の添加剤を含む研磨液で、1μm/sec以上の研磨速度で研磨する技術が開示されている。 In Patent Document 1, in order to prevent pits and scratches at the 10 μm level from expanding to 100 μm or more by polishing, 30 to 60% by weight of hydrofluoric acid is contained as a polishing component, and inorganic substances such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc. A polishing liquid containing one or more additives selected from acid, ester, phenol, amide, ether, nonion, amine and other surfactants at a polishing rate of 1 μm / sec or more. A technique for polishing is disclosed.
 特許文献2には、フッ酸10~30重量%、硫酸20~50重量%含有する研磨液をガラス板表面に接触させて1μm/sec以上で前記ガラス板表面を前研磨する前研磨工程と、前記前研磨工程の後、フッ酸を含有する研磨液を前記ガラス板表面に接触させて前記ガラス板表面を研磨速度0.5~20μm/minで研磨する後研磨工程を備えることを特徴とするガラス板表面の研磨方法が開示されている。 Patent Document 2 discloses a pre-polishing step in which a polishing solution containing 10 to 30% by weight of hydrofluoric acid and 20 to 50% by weight of sulfuric acid is brought into contact with the surface of the glass plate to pre-polish the glass plate surface at 1 μm / sec or more; After the pre-polishing step, a post-polishing step is provided in which a polishing liquid containing hydrofluoric acid is brought into contact with the glass plate surface to polish the glass plate surface at a polishing rate of 0.5 to 20 μm / min. A method for polishing a glass plate surface is disclosed.
 特許文献3では、0.4~4重量%のフッ酸と40~90重量%の硫酸を用いた前研磨と、2~30重量%のフッ酸を用いたい後研磨について開示されている。 Patent Document 3 discloses pre-polishing using 0.4 to 4% by weight hydrofluoric acid and 40 to 90% by weight sulfuric acid, and post-polishing using 2 to 30% by weight hydrofluoric acid.
特開2003-226552号公報JP 2003-226552 A 特開2005-343742号公報JP 2005-343742 A 特開2007-297228号公報JP 2007-297228 A
 上記の先行技術文献によれば、まず、ディンプルは基材となる板ガラスに、それまでの工程で不可抗力的に生じたわずかなキズが、研磨というエッチングによって、成長することで発生すると結論付けられている。 According to the above-mentioned prior art documents, it was first concluded that the dimples were caused by the growth of slight scratches caused by force majeure in the plate glass as a base material by etching called polishing. Yes.
 そこで、ディンプルの抑制のための方針としては、基材となる板ガラスに生じているキズがディンプルに成長する前に、キズごと取り除く、若しくは成長しにくい形態とし(前研磨)、その後本研磨(後研磨)するというものである。特許文献2および3のように、研磨を多段に分けて行うのは、キズがディンプルに成長する前にキズごと取り除くような研磨は、研磨の厚み制御が容易でないからである。 Therefore, as a policy for suppressing dimples, the scratches generated on the glass plate as a base material are removed before they grow into dimples or are made difficult to grow (pre-polishing), and then the main polishing (after-polishing) Polishing). The reason why the polishing is performed in multiple stages as in Patent Documents 2 and 3 is that the polishing thickness control is not easy for polishing in which the scratches are removed before the scratches grow into dimples.
 このような研磨方法は、製造現場では効果的であり、現在も続けられていると考えられる。しかし、このような前研磨に用いられている研磨液は、フッ化水素酸(フッ酸)と硫酸という酸性度がきわめて強い組成が用いられている。このため前研磨にて使用した研磨液を廃棄する前の除害処理において、例えば中和処理時に大量の汚泥が発生する等の不都合が発生していた。そこで、前研磨の奏する効果を保持したまま、より扱いやすい組成の研磨液が求められており、技術的な課題となっていた。 Such a polishing method is effective at the manufacturing site and is considered to be continued even now. However, the polishing liquid used for such pre-polishing has a composition with extremely strong acidity of hydrofluoric acid (hydrofluoric acid) and sulfuric acid. For this reason, in the detoxification process before discarding the polishing liquid used in the pre-polishing, inconveniences such as the generation of a large amount of sludge during the neutralization process have occurred. Accordingly, there has been a demand for a polishing liquid having a composition that is easier to handle while maintaining the effect of pre-polishing, which has been a technical problem.
 本発明は、上記の課題に鑑みて想到されたものである。より具体的に本発明に係る研磨液は、板ガラスの研磨液であって、フッ化水素酸と有機溶媒を含むことを特徴とする。 The present invention has been conceived in view of the above problems. More specifically, the polishing liquid according to the present invention is a plate glass polishing liquid, and contains hydrofluoric acid and an organic solvent.
 本発明に係る研磨液は、フッ化水素酸と比誘電率が10以上40未満である有機溶媒という組成であるので、硫酸を使用しない。したがって、従来の前研磨に用いていた研磨液よりも酸性度が弱く、中和処理時の汚泥発生量を抑制できる等、取扱いや使用後の廃棄が行い易い。 Since the polishing liquid according to the present invention has a composition of hydrofluoric acid and an organic solvent having a relative dielectric constant of 10 or more and less than 40, sulfuric acid is not used. Therefore, the acidity is weaker than the polishing liquid used for the conventional pre-polishing, and the amount of sludge generated during the neutralization treatment can be suppressed.
圧痕の入れ方を示す図である。It is a figure which shows how to put indentation. 圧痕からクラックが成長する様子を例示する写真である。It is a photograph which illustrates a mode that a crack grows from an indentation.
 以下に本発明に係る研磨液について説明する。なお、以下の説明は本発明の一形態および一実施例について説明するのであり、本発明は以下の説明に限定されるものではない。以下の説明は、本発明の趣旨を逸脱しない限りにおいて、改変できる。 The polishing liquid according to the present invention will be described below. In addition, the following description demonstrates one form and one Example of this invention, and this invention is not limited to the following description. The following description can be modified without departing from the spirit of the present invention.
 本発明に係る研磨液は、ガラス製表示デバイスを研磨する際に前研磨と後研磨に分けて行う際の前研磨に用いる研磨液である。研磨の対象となるのは、ガラス製表示デバイスに用いることのできるガラスである。主成分には酸化物が含有される酸化物ガラスが好適に利用できる。中でもアルミノケイ酸ガラス(アルミナと酸化シリコン)を主成分とするガラスが好ましい。アルミノケイ酸ガラスは、引張強度が高く、ガラス製表示デバイスの基材として好ましい。 The polishing liquid according to the present invention is a polishing liquid used for pre-polishing when it is divided into pre-polishing and post-polishing when polishing a glass display device. The object of polishing is glass that can be used for glass display devices. An oxide glass containing an oxide as the main component can be suitably used. Of these, glass mainly composed of aluminosilicate glass (alumina and silicon oxide) is preferable. Aluminosilicate glass has high tensile strength and is preferable as a base material for glass display devices.
 アルミノケイ酸ガラスには、添加する元素の種類を変えることで、さまざまな組成のガラスができる。主成分にさらにB(ボロン)を加え、補助成分としてMg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)といった元素を加えたものをアルミノホウケイ酸塩ガラス(アルミノボロシリケートガラス)といい、ガラス製表示デバイスの基材としては、特に好適に利用される。 ¡Aluminosilicate glass can be made in various compositions by changing the type of element added. Aluminoborosilicate glass (aluminoborosilicate glass) with B (boron) added to the main component and elements such as Mg (magnesium), Ca (calcium), Sr (strontium), and Ba (barium) added as auxiliary components ), And is particularly preferably used as a substrate of a glass display device.
 ガラスは、板ガラスの状態で取り扱われる。ガラス表示デバイスの基材とするためである。したがって、ガラスとはいえ、半導体の絶縁膜といった、板ガラスとして供給できないガラスは研磨の利用の対象ではない。 Glass is handled in the form of plate glass. This is because the substrate of the glass display device is used. Therefore, although it is glass, glass that cannot be supplied as a plate glass, such as a semiconductor insulating film, is not an object of polishing.
 本発明に係る研磨液は、フッ化水素酸(フッ酸)と有機溶媒を含む。有機溶媒は、従来利用されていた硫酸と比較すると取扱いや廃棄の際の手間も容易になる。なお、フッ化水素酸や有機溶媒は、無水物、または水溶液として供給される。 The polishing liquid according to the present invention contains hydrofluoric acid (hydrofluoric acid) and an organic solvent. The organic solvent is easier to handle and dispose of compared to sulfuric acid that has been conventionally used. The hydrofluoric acid and the organic solvent are supplied as an anhydride or an aqueous solution.
 有機溶媒は後述する実施例で示すように、比誘電率が10以上のものが好適に利用できる。この理由はまだ不明である。しかし、一般にフッ化水素酸は、以下のような2段の平衡状態にあるとされる。
HF ⇔ H+ + F-   ・・・(1)
HF + F- ⇔ HF2-・・・(2)
As the organic solvent, those having a relative dielectric constant of 10 or more can be suitably used as shown in Examples described later. The reason for this is still unknown. However, in general, hydrofluoric acid is considered to be in a two-stage equilibrium state as follows.
HF ⇔ H + + F- (1)
HF + F- ⇔ HF2- (2)
 上記のように、フッ化水素酸溶液のフッ素の形態はHF、F-、HF2-であり、このうち、SiO2を主体とするガラスのエッチングに寄与する成分(以下、活性種)は、HF2-とHFである。さらに、活性種の中では、HF2-の方がHFよりもエッチングへの寄与度が高いことが一般的に知られている。 As described above, the form of fluorine in the hydrofluoric acid solution is HF, F-, HF2-, and among these, the component (hereinafter referred to as active species) that contributes to the etching of glass mainly composed of SiO2 is HF2-. And HF. Furthermore, it is generally known that among active species, HF2- contributes more to etching than HF.
 フッ化水素酸の溶液に有機溶媒を含む場合、(1)式の平衡が左にシフトするため、F-の生成が抑制され、結果、(2)において、HF2-の生成が低減される。つまり、有機溶媒を含むフッ化水素酸溶液は、有機溶媒を含まないものに比べて、HF画分が増加し、HF2-画分が低下することとなる。 When an organic solvent is contained in the hydrofluoric acid solution, the equilibrium of the formula (1) shifts to the left, so that the generation of F- is suppressed, and as a result, the generation of HF2- is reduced in (2). That is, in the hydrofluoric acid solution containing an organic solvent, the HF fraction increases and the HF2- fraction decreases compared to a solution containing no organic solvent.
 こういった傾向は、有機溶媒の比誘電率に依存しており、比誘電率が低いほど、HF画分が増加し、HF2-画分が低下することとなる。したがって、本発明においては、比誘電率が10以上40未満の有機溶媒が存在することで、活性種の中で、HF画分、HF2-画分の存在比が好適な範囲に制御された結果、板ガラスの表面にキズがあっても、ディンプルに成長することなく、取り去ることができる。そして、後研磨で所定の厚みだけガラス製表示デバイスのガラスの表面をエッチングすることができると考えられる。 These tendencies depend on the relative permittivity of the organic solvent. The lower the relative permittivity, the higher the HF fraction and the lower the HF2- fraction. Therefore, in the present invention, as a result of the presence of the organic solvent having a relative dielectric constant of 10 or more and less than 40, the abundance ratio of the HF fraction and the HF2- fraction in the active species is controlled within a suitable range. Even if there is a scratch on the surface of the plate glass, it can be removed without growing into dimples. Then, it is considered that the glass surface of the glass display device can be etched by a predetermined thickness by post-polishing.
 好適に利用できる有機溶媒としては、以下のようなものが例示される。なお、括弧内の数値は比誘電率である。t-ブチルアルコール(12.5)、ベンジルアルコール(13.1)、エチレングリコールモノメチルエーテル(16.9)、1-ブタノール(17.5)、イソブチルアルコール(17.9)、シクロヘキサノン(18.3)、エチルメチルケトン(18.5)、2-プロパノール(19.9)、1-プロパノール(20.3)、アセトン(20.7)、エタノール(24.6)、メタノール(32.7)、ニトロメタン(35.9)、エチレングリコール(37.7)等が挙げられる。中でも、エタノールは取扱いも容易であり、好適に利用することができる。 Examples of organic solvents that can be suitably used include the following. The numerical value in parentheses is the relative dielectric constant. t-butyl alcohol (12.5), benzyl alcohol (13.1), ethylene glycol monomethyl ether (16.9), 1-butanol (17.5), isobutyl alcohol (17.9), cyclohexanone (18.3) ), Ethyl methyl ketone (18.5), 2-propanol (19.9), 1-propanol (20.3), acetone (20.7), ethanol (24.6), methanol (32.7), Nitromethane (35.9), ethylene glycol (37.7), etc. are mentioned. Of these, ethanol is easy to handle and can be suitably used.
 本発明に係る研磨液を用いたガラス研磨方法は、板ガラスを使って形成されたガラス製表示デバイス(非処理物)の表裏を片面換算で数十μm、本発明に係る研磨液で研磨する前研磨工程と、その後片面換算で数百μm、本研磨する後研磨工程で構成される。なお、後研磨工程では、研磨液に有機溶媒は含まれない。 In the glass polishing method using the polishing liquid according to the present invention, the front and back surfaces of a glass display device (non-processed product) formed using plate glass are polished with the polishing liquid according to the present invention, several tens of μm in terms of one side. It comprises a polishing step, and then a post-polishing step of several hundred μm after the main polishing. In the post-polishing step, the polishing liquid contains no organic solvent.
 なお、前研磨工程と後研磨工程の間と、後研磨工程の後に被処理物を洗浄する洗浄工程を入れてもよい。研磨工程で用いた研磨液を次工程に持ち込まないためである。 In addition, you may put the washing process which wash | cleans a to-be-processed object between a pre-polishing process and a post-polishing process, and after a post-polishing process. This is because the polishing liquid used in the polishing step is not brought into the next step.
 以下に本発明に係る研磨液の効果を、実施例を示して説明する。本研磨後に発見されるディンプルは、取扱いの際に板ガラスの表面に付けられる微小のキズが成長したものと考えられている。実際、顕微鏡を用いた検査でなんのキズも見つからなかった部分からでも、本研磨後にディンプルが発見されることがある。 Hereinafter, the effects of the polishing liquid according to the present invention will be described with reference to examples. It is believed that the dimples discovered after this polishing have grown minute scratches attached to the surface of the plate glass during handling. In fact, dimples may be discovered after the final polishing even from a portion where no scratches were found by inspection using a microscope.
 したがって、前研磨液として使用できる研磨液か否かを検討するためには、予めガラス表面にキズを付けておき、前研磨後にキズがディンプルまで成長するか否かで検討する必要がある。 Therefore, in order to examine whether or not the polishing liquid can be used as a pre-polishing liquid, it is necessary to examine whether the scratches grow on the dimples after pre-polishing by scratching the glass surface in advance.
 そこで、研磨液の評価系として以下の方法をとった。まず、被処理物の表面に、特許文献2でも用いられているマイクロビッカース硬度計を使って圧痕をつける。この圧痕はキズの代用である。被処理物は、5cm×2.5cm×0.7mmのアルミノホウケイ酸塩ガラスである。 Therefore, the following method was used as an evaluation system for the polishing liquid. First, an indentation is made on the surface of an object to be processed using a micro Vickers hardness meter also used in Patent Document 2. This indentation is a substitute for scratches. The workpiece is aluminoborosilicate glass of 5 cm × 2.5 cm × 0.7 mm.
 圧痕は、マイクロビッカース硬度計で被処理物に印加荷重500g、印加時間5秒の条件でつけられた。できた圧痕は、対角線が38μmで深さが3.5μmの四角錘状の凹みとなった。圧痕は被処理物の四隅に合計4つ形成させた。 The indentation was made with a micro Vickers hardness tester under the conditions of an applied load of 500 g and an applied time of 5 seconds. The resulting indentation was a quadrangular pyramidal dent with a diagonal of 38 μm and a depth of 3.5 μm. A total of four indentations were formed at the four corners of the workpiece.
 次に検討用の研磨液に被処理物を一定時間浸漬させる。一定時間は、被処理物の片面が10μmまたは20μm研磨できるように調整した。なお、研磨液は40℃にした。 Next, immerse the workpiece in a polishing liquid for examination for a certain period of time. The fixed time was adjusted so that one side of the workpiece could be polished by 10 μm or 20 μm. The polishing liquid was 40 ° C.
 評価は、圧痕をつけた被処理物を検討用の被処理物に浸漬した後、顕微鏡観察し、圧痕の隅からクラックが成長したか否かで行った。つまり、クラック発生率を評価の指針とした。その理由として、前研磨処理により、クラックが発生しない場合は、圧痕部のみが研磨により拡大されていくのに対し(図2(e)(f))、圧痕からクラックが発生する場合、圧痕部の拡大に加え、クラック内部もエッチングされ拡大する(図2(b)(c))。クラックは、圧痕の下部から発生するため、クラック内部がエッチングされることにより、深いくぼみ(ディンプル)に成長する。 Evaluation was performed by immersing the object to be processed with the impression in the object to be examined and then observing under a microscope, and whether or not a crack grew from the corner of the impression. That is, the crack generation rate was used as a guideline for evaluation. The reason is that when no crack is generated by the pre-polishing process, only the indented part is enlarged by polishing (FIGS. 2 (e) and (f)), whereas when the crack is generated from the indented, the indented part In addition to the enlargement, the inside of the crack is also etched and enlarged (FIGS. 2B and 2C). Since the crack is generated from the lower portion of the indentation, the inside of the crack is etched to grow into a deep dimple.
 本発明に関する研磨(=前研磨の意味)を片面20μm実施した後、有機溶媒を含まないフッ酸水溶液にて後研磨を片面300μm実施した場合、前研磨にてクラックが発生しなかった場合の圧痕は消滅するが、クラックが発生した場合の圧痕は、直径100~200μmの巨大なディンプルに成長する。なお、「フッ酸水溶液」は、フッ化水素酸と水との溶液である。 After performing polishing (meaning pre-polishing) according to the present invention on one side of 20 μm, after performing post-polishing on a single side of 300 μm with a hydrofluoric acid aqueous solution not containing an organic solvent, indentation when no cracks are generated in the pre-polishing. Disappears, but when the crack is generated, the indentation grows into a huge dimple having a diameter of 100 to 200 μm. The “hydrofluoric acid aqueous solution” is a solution of hydrofluoric acid and water.
 図1に、クラックの発生率について説明する。図1(a)は被処理物10の四隅に圧痕12が形成されたままの状態を示す。検討用の研磨液に浸漬され、片面10μm研磨された後、研磨前のように圧痕だけが残り、クラックが発生してなければ、クラック発生率をゼロ%とした。 Fig. 1 explains the occurrence rate of cracks. FIG. 1A shows a state in which the indentations 12 are still formed at the four corners of the workpiece 10. After being dipped in a polishing liquid for examination and polished on one side by 10 μm, if no indentation remains and no cracks are generated as before polishing, the crack generation rate was set to zero%.
 図1(b)は4つの圧痕12のうち2つの圧痕12からクラックの成長が認められた場合である。このような状態は、クラック発生率を50%とした。なお、図1(b)中の線14、16はクラックの成長方向を意味する。圧痕12は、正方形をしているので、その四隅から同じようにクラックは成長すると考えられるが、一方向だけにクラックが成長する場合もある。線14は、図面で横方向にクラックが成長した場合を示し、線16は縦方向にクラックが成長した場合を示す。 FIG. 1B shows a case where crack growth is observed from two of the four indentations 12. In such a state, the crack occurrence rate was 50%. In addition, the lines 14 and 16 in FIG.1 (b) mean the growth direction of a crack. Since the indentation 12 has a square shape, it is considered that cracks grow in the same way from the four corners, but there are cases where the cracks grow only in one direction. Line 14 shows the case where cracks grow in the horizontal direction in the drawing, and line 16 shows the case where cracks grow in the vertical direction.
 図1(c)は、4つの圧痕12のうち、3箇所でクラックの成長が認められた場合である。クラック発生率は75%とした。また、図1(d)および図1(e)は、4箇所の圧痕12からクラックが成長した場合を示す。図1(d)で示すように、クラックの発生方向が一方向だけの場合であっても、クラックは成長したと判断し、クラック発生率は100%とした。 FIG. 1 (c) shows a case where crack growth is observed at three locations among the four indentations 12. The crack generation rate was 75%. Moreover, FIG.1 (d) and FIG.1 (e) show the case where a crack grew from four indentations 12. FIG. As shown in FIG. 1 (d), even when the crack generation direction is only one direction, it was determined that the crack grew, and the crack generation rate was set to 100%.
 <評価系の確認>
 まず、圧痕付き被処理物に対してフッ酸水溶液だけの場合(後述する比較例4)と、有機溶媒としてエタノールを用いた場合(後述する実施例)のクラックの成長程度を顕微鏡写真で示す。比較例4は、フッ酸水溶液は3質量%の場合のものである。また、実施例は3質量%のフッ酸水溶液と75質量%のエタノールの混合液(残りは水)の場合である。
<Confirmation of evaluation system>
First, the degree of growth of cracks in the case where only the hydrofluoric acid aqueous solution is used for the object to be indented (Comparative Example 4 described later) and the case where ethanol is used as the organic solvent (Example described later) are shown by micrographs. In Comparative Example 4, the aqueous hydrofluoric acid solution is 3% by mass. Moreover, an Example is a case of the liquid mixture (the remainder is water) of 3 mass% hydrofluoric acid aqueous solution and 75 mass% ethanol.
 図2(a)、図2(b)、図2(c)は比較例4の場合であり、図2(d)、図2(e)、図2(f)は実施例の場合である。各写真の右下のラインは100μmを示す。また、図2(a)と図2(d)は、研磨前の場合であり、図2(b)と図2(e)は被処理物の片面10μmの厚みだけ研磨した場合であり、図2(c)と図2(f)は被処理物の片面20μmの厚みだけ研磨した場合である。なお、図2(a)、図2(d)、図2(e)、図2(f)は写真の映りが薄いので、圧痕が残っている部分を丸で囲った。 2 (a), 2 (b), and 2 (c) are for the comparative example 4, and FIGS. 2 (d), 2 (e), and 2 (f) are for the example. . The lower right line of each photograph shows 100 μm. 2 (a) and 2 (d) show the case before polishing, and FIGS. 2 (b) and 2 (e) show the case where the thickness of 10 μm on one side of the workpiece is polished. 2 (c) and FIG. 2 (f) show the case where the thickness of one side of the workpiece is polished by 20 μm. 2 (a), 2 (d), 2 (e), and 2 (f), the portion where the indentation remains is circled because the photograph is thin.
 図2(a)と図2(d)は、圧痕だけの場合である。ここでは対角線の長さが38μmの正方形が映っている。図2(b)と図2(e)は片面10μmの厚み分だけ研磨した場合の写真である。比較例4(図2(b))の場合は、圧痕は四隅からクラックが成長し、十文字状のキズとなっていた。クラックは長さ約90μm程度になっていた。 Fig. 2 (a) and Fig. 2 (d) show the case of indentation only. Here, a square whose diagonal is 38 μm is shown. FIG. 2B and FIG. 2E are photographs in the case of polishing by a thickness of 10 μm on one side. In the case of Comparative Example 4 (FIG. 2B), the indentation had cracks growing from four corners, resulting in a cross-shaped scratch. The crack had a length of about 90 μm.
 一方、実施例の場合(図2(e))は、圧痕は広がっていなかった。研磨した厚み(10μm)は、圧痕の深さより大きいので、圧痕がそのままであれば、圧痕は映らないはずである。しかし、圧痕の形状は残っている。したがって、クラックが周囲に広がることは無かったが、深さ方向には、そのままの形状が維持されていたと判断できる。このような状態ではクラックの成長はないと判断した。 On the other hand, in the case of the example (FIG. 2E), the indentation did not spread. Since the polished thickness (10 μm) is larger than the depth of the indentation, if the indentation remains as it is, the indentation should not be reflected. However, the shape of the indentation remains. Therefore, although the crack did not spread around, it can be judged that the shape as it was was maintained in the depth direction. In such a state, it was determined that there was no crack growth.
 図2(c)と図2(f)は、片面20μmの厚み分だけ研磨した場合の写真である。比較例4(図2(c))では、クラックはさらに成長しており、長さは110μm程度に成長していた。また、十文字状の形状は維持されたまま、それぞれの線は、図2(b)の場合と比較し太っていた。すなわち、クラックは圧痕の四隅方向だけでなく、辺の方向にも広がっていた。 FIG. 2 (c) and FIG. 2 (f) are photographs in the case of polishing by a thickness of 20 μm on one side. In Comparative Example 4 (FIG. 2C), the cracks were further grown and the length was grown to about 110 μm. Further, while maintaining the cross-shaped shape, each line was thicker than in the case of FIG. That is, the crack spread not only in the four corner directions of the indentation but also in the direction of the side.
 一方、実施例(図2(f))では、研磨量が10μmの場合とほぼ同じ映像が映っており、クラックの成長は認められなかった。このように、片面10μmの状態でのクラックの成長の有無で、後研磨において、キズがディンプルに成長するか否かを評価できると判断した。 On the other hand, in the example (FIG. 2 (f)), almost the same image as that in the case where the polishing amount was 10 μm was shown, and no crack growth was observed. Thus, it was judged that whether or not scratches grow into dimples in post-polishing can be evaluated based on the presence or absence of crack growth in the state of 10 μm on one side.
 <実験結果>
 実施例の有機溶媒はエタノール(比誘電率24.5)である。比較例1は有機溶媒をテトラヒドロフラン(THF:比誘電率7.8)、比較例2は有機溶媒を酢酸(比誘電率6.2)、比較例3は有機溶媒をプロピオン酸(比誘電率3.4)、比較例4は有機溶媒がないフッ酸だけの場合である。つまり、比較例4は単なるフッ酸水溶液である。
<Experimental result>
The organic solvent of the example is ethanol (relative dielectric constant 24.5). Comparative Example 1 is an organic solvent tetrahydrofuran (THF: relative permittivity 7.8), Comparative Example 2 is an organic solvent acetic acid (relative permittivity 6.2), and Comparative Example 3 is propionic acid (relative permittivity 3). .4), Comparative Example 4 is a case of only hydrofluoric acid without an organic solvent. That is, Comparative Example 4 is a simple hydrofluoric acid aqueous solution.
 それぞれフッ酸の濃度を3質量%、5質量%、7質量%、10質量%と変化させた。一方、有機溶媒をフッ酸の濃度に応じて75質量%、70質量%、67質量%、64質量%と変化させた。残りは、水である。また、いずれも、研磨液全体に対する質量比率である。 The concentration of hydrofluoric acid was changed to 3 mass%, 5 mass%, 7 mass%, and 10 mass%, respectively. On the other hand, the organic solvent was changed to 75% by mass, 70% by mass, 67% by mass, and 64% by mass depending on the concentration of hydrofluoric acid. The rest is water. Moreover, all are mass ratios with respect to the whole polishing liquid.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照する。結局、クラック発生率は、ゼロ%か100%しかなかった。つまり、クラックは、発生する条件では必ず発生し、発生しない条件ではほぼ発生しないことがわかる。 Refer to Table 1. After all, the crack occurrence rate was only 0% or 100%. That is, it can be seen that cracks always occur under conditions where they occur, and hardly occur under conditions where they do not occur.
 表1を参照すると、比誘電率が10以上の有機溶媒であるエタノールとフッ酸を混合した研磨液(実施例)では、溶媒濃度が67質量%、フッ酸7質量%の条件までは、クラックの発生がゼロ%にできた。しかし、溶媒濃度が67質量%未満となり、フッ酸濃度が7質量%を超えると、クラックの発生率は、100%になった。 Referring to Table 1, in a polishing liquid (Example) in which ethanol and hydrofluoric acid, which are organic solvents having a relative dielectric constant of 10 or more, were mixed, cracking was performed up to a condition where the solvent concentration was 67 mass% and hydrofluoric acid was 7 mass%. Occurrence of zero was achieved. However, when the solvent concentration was less than 67% by mass and the hydrofluoric acid concentration exceeded 7% by mass, the occurrence rate of cracks was 100%.
 表1には掲載していないが、メタノール(ε=32.7)、アセトン(ε=20.6)、1-プロパノール(ε=20.3)、2-プロパノール(ε=19.9)についても、溶媒濃度が65質量%以上、フッ酸濃度が3~7質量%といった条件で、同様の結果を得ることができた。よって、本発明に係る研磨液では比誘電率が10以上40未満の有機溶媒を好適に使用することができる。 Although not listed in Table 1, methanol (ε = 32.7), acetone (ε = 20.6), 1-propanol (ε = 20.3), 2-propanol (ε = 19.9) However, similar results could be obtained under the conditions of a solvent concentration of 65% by mass or more and a hydrofluoric acid concentration of 3 to 7% by mass. Therefore, in the polishing liquid according to the present invention, an organic solvent having a relative dielectric constant of 10 or more and less than 40 can be suitably used.
 一方、有機溶媒の比誘電率が10より小さい有機溶媒であるTHF、酢酸、プロピオン酸では、有機溶媒の濃度によらず、クラックは常に発生した。 On the other hand, cracks always occurred in THF, acetic acid, and propionic acid, which are organic solvents having a relative dielectric constant of less than 10, regardless of the concentration of the organic solvent.
 なお、表1の実施例でクラック発生が0%になったものは、有機溶媒を含まないフッ酸水溶液で300μm程度の後研磨を行っても、ディンプルは発生しなかった。一方、表1の実施例および比較例でクラックが発生したものは、後研磨を行うと、クラックが直径100~200μm程度の巨大なディンプルに成長した。 In the examples shown in Table 1, when the occurrence of cracks was 0%, no dimples were generated even after post-polishing with a hydrofluoric acid aqueous solution containing no organic solvent at about 300 μm. On the other hand, when cracks occurred in the examples and comparative examples of Table 1, the cracks grew into huge dimples having a diameter of about 100 to 200 μm when post-polishing.
 以上のことより、フッ酸と有機溶媒を組み合わせた研磨液は、クラックの成長をゼロにすることができ、ディンプルの発生を抑制できる研磨液を得ることができる。 From the above, a polishing liquid that combines hydrofluoric acid and an organic solvent can make the growth of cracks zero, and a polishing liquid that can suppress the generation of dimples can be obtained.
 本発明の研磨液は板ガラスを研磨する際の前研磨工程で好適に利用することができる。 The polishing liquid of the present invention can be suitably used in a pre-polishing step when polishing plate glass.
10 被処理物(板ガラス)
12 圧痕
14、16 クラック
10 Object (sheet glass)
12 Indentation 14, 16 Crack

Claims (5)

  1.  板ガラスの研磨液であって、
     フッ化水素酸と比誘電率が10以上40未満である有機溶媒を含むことを特徴とする研磨液。
    Plate glass polishing liquid,
    A polishing liquid comprising hydrofluoric acid and an organic solvent having a relative dielectric constant of 10 or more and less than 40.
  2.  前記有機溶媒は、65質量%以上80質量%以下であることを特徴とする請求項1に記載された研磨液。 The polishing liquid according to claim 1, wherein the organic solvent is 65% by mass or more and 80% by mass or less.
  3.  前記板ガラスは、アルミノボロシリケートガラス(アルミノホウケイ酸塩ガラス)であることを特徴とする請求項1または2のいずれかの請求項に記載された研磨液。 The polishing liquid according to claim 1 or 2, wherein the plate glass is aluminoborosilicate glass (aluminoborosilicate glass).
  4.  前記有機溶媒はエタノールであることを特徴とする請求項1乃至3のいずれか1の請求項に記載された研磨液。 The polishing liquid according to any one of claims 1 to 3, wherein the organic solvent is ethanol.
  5.  板ガラスを研磨する方法であって、
     請求項1乃至4のいずれか1の請求項に記載された研磨液で前記板ガラスを前研磨をする工程と、
     有機溶媒を含まないフッ酸水溶液を含む研磨液で前記板ガラスをさらに研磨する工程を含む板ガラスの研磨方法。
    A method of polishing plate glass,
    Pre-polishing the plate glass with the polishing liquid according to any one of claims 1 to 4, and
    A method for polishing plate glass, comprising a step of further polishing the plate glass with a polishing liquid containing a hydrofluoric acid aqueous solution containing no organic solvent.
PCT/JP2016/088481 2015-12-24 2016-12-22 Polishing liquid for glass and polishing method WO2017111078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251229A JP2017114720A (en) 2015-12-24 2015-12-24 Polishing liquid for glass and polishing method
JP2015-251229 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017111078A1 true WO2017111078A1 (en) 2017-06-29

Family

ID=59090507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088481 WO2017111078A1 (en) 2015-12-24 2016-12-22 Polishing liquid for glass and polishing method

Country Status (3)

Country Link
JP (1) JP2017114720A (en)
TW (1) TW201739716A (en)
WO (1) WO2017111078A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS396945B1 (en) * 1961-09-09 1964-05-09
US5989450A (en) * 1996-08-26 1999-11-23 Lg Electronics Inc. Etchant for etching glass substrate
JP2000281383A (en) * 1999-03-30 2000-10-10 Seiko Epson Corp Etching liquid for glass, etching method and production of microlens substrate
JP2005343742A (en) * 2004-06-03 2005-12-15 Nishiyama Stainless Chem Kk Method for polishing glass plate surface, glass substrate for flat panel display, and flat panel display
JP2006338837A (en) * 2005-06-06 2006-12-14 Fuji Electric Device Technology Co Ltd Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
JP2007303974A (en) * 2006-05-11 2007-11-22 Univ Nihon Vibration sensor, method for manufacturing vibration sensor, pedometer, acceleration sensor and seismic detector
JP2009064514A (en) * 2007-09-06 2009-03-26 Fuji Electric Device Technology Co Ltd Glass substrate, method of manufacturing the same, and magnetic disk using glass substrate
JP2014084234A (en) * 2012-10-19 2014-05-12 Hoya Corp Glass substrate of cover glass for electronic apparatus and production method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS396945B1 (en) * 1961-09-09 1964-05-09
US5989450A (en) * 1996-08-26 1999-11-23 Lg Electronics Inc. Etchant for etching glass substrate
JP2000281383A (en) * 1999-03-30 2000-10-10 Seiko Epson Corp Etching liquid for glass, etching method and production of microlens substrate
JP2005343742A (en) * 2004-06-03 2005-12-15 Nishiyama Stainless Chem Kk Method for polishing glass plate surface, glass substrate for flat panel display, and flat panel display
JP2006338837A (en) * 2005-06-06 2006-12-14 Fuji Electric Device Technology Co Ltd Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
JP2007303974A (en) * 2006-05-11 2007-11-22 Univ Nihon Vibration sensor, method for manufacturing vibration sensor, pedometer, acceleration sensor and seismic detector
JP2009064514A (en) * 2007-09-06 2009-03-26 Fuji Electric Device Technology Co Ltd Glass substrate, method of manufacturing the same, and magnetic disk using glass substrate
JP2014084234A (en) * 2012-10-19 2014-05-12 Hoya Corp Glass substrate of cover glass for electronic apparatus and production method of the same

Also Published As

Publication number Publication date
JP2017114720A (en) 2017-06-29
TW201739716A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
TWI479012B (en) Etching and cleaning solution for glass in liquid crystal display device and etching method using the same
TWI659088B (en) Etching composition
CN109423291B (en) Etching solution for selectively removing silicon-germanium alloy from silicon-germanium/silicon stack in the manufacture of semiconductor devices
TWI429606B (en) The etching method of glass substrate
CN108585530A (en) A kind of glass etching liquid and preparation method thereof
KR101430290B1 (en) Method for etching alkali-free glass substrate and display device
JP2007201459A (en) Electronic display, cleaning for base material, and etching composition
WO2009072810A2 (en) Etchant composition for glass substrate
JP2007297228A (en) Method for manufacturing polished glass substrate
TW200922897A (en) Echant composition for glass constituting flat panel displays
WO2016082384A1 (en) Etching solution
KR20110032432A (en) Glass etchant
WO2017111078A1 (en) Polishing liquid for glass and polishing method
KR100677052B1 (en) Etching Composition for LCD Glass
JP3749909B2 (en) Method for polishing glass plate surface, glass substrate for flat panel display, and flat panel display
KR20120005374A (en) Cleaning composition for removing polyimide
CN109735397B (en) Wax and particle removing cleaning agent for L ED sapphire substrate, preparation method, application and cleaning method
US20230192536A1 (en) Textured glass articles and methods of making same
KR20100104360A (en) Etchant composition for thin film transistor
KR20140113116A (en) Composition for cleaning flat panel display and cleaning method using the same
WO2017111091A1 (en) Polishing liquid for glass and polishing method
KR20110056095A (en) Etching composition
WO2018062025A1 (en) Polishing liquid for glass, and polishing method
KR101750140B1 (en) Method for chamfering cutting plane of glass substrate
Byun et al. 59.4: A novel route for thinning of LCD glass substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878964

Country of ref document: EP

Kind code of ref document: A1