WO2017111043A1 - Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor - Google Patents

Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor Download PDF

Info

Publication number
WO2017111043A1
WO2017111043A1 PCT/JP2016/088416 JP2016088416W WO2017111043A1 WO 2017111043 A1 WO2017111043 A1 WO 2017111043A1 JP 2016088416 W JP2016088416 W JP 2016088416W WO 2017111043 A1 WO2017111043 A1 WO 2017111043A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
allophanate
isocyanate
polyurethane resin
forming composition
Prior art date
Application number
PCT/JP2016/088416
Other languages
French (fr)
Japanese (ja)
Inventor
太田太
池本満成
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015252102A external-priority patent/JP6631246B2/en
Priority claimed from JP2016185222A external-priority patent/JP6753240B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US16/063,691 priority Critical patent/US11225547B2/en
Priority to CN201680075280.XA priority patent/CN108431072B/en
Priority to EP16878929.5A priority patent/EP3395849A4/en
Publication of WO2017111043A1 publication Critical patent/WO2017111043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a polyurethane resin forming composition, a membrane sealing material for a module using a hollow or flat membrane separation membrane using the forming composition, diphenylmethane diisocyanate (hereinafter referred to as MDI) and an alcohol component.
  • MDI diphenylmethane diisocyanate
  • the present invention relates to a polyisocyanate composition containing derivatized allophanate groups and a method for producing the same.
  • Modules using hollow fibers or flat membranes as separation membranes are widely used in industrial fields such as water treatment and medical fields such as blood treatment.
  • the demand for water purifiers, artificial kidneys, artificial lungs and the like is extremely increasing.
  • polyurethane membranes with excellent flexibility, adhesiveness, and chemical resistance at room temperature are used as membrane sealing materials for bonding and fixing the ends of converged modules using hollow or flat membrane-like fiber separation membranes. It is widely known to use.
  • a polyurethane resin for example, as an isocyanate component, a polyurethane resin obtained by curing an isocyanate group-terminated prepolymer obtained from liquefied diphenylmethane diisocyanate and castor oil or castor oil derivative polyol with a polyol has been proposed. (For example, refer to Patent Document 1).
  • the polyurethane resin used in the conventional membrane sealing material for membrane modules has a problem that it is difficult to balance reactivity, low viscosity, and low temperature storage stability, and a solution is desired.
  • polyisocyanate group-terminated prepolymers containing allophanate groups derived from MDI and alcohol components have low viscosity, low precipitation of MDI monomers at low temperatures, and are easy to handle. Is useful and widely applied.
  • Known catalysts for generating allophanate groups from MDI and alcohol components include zinc acetylacetone, metal carboxylates such as zinc, lead, tin, copper, and cobalt, and hydrates thereof. It is a compound and is not preferred for medical and food applications.
  • Catalysts that do not contain metal compounds that form allophanate groups from isocyanate and alcohol components include, for example, N, N, N-trimethyl-N-2-hydroxypropylammonium hydroxide and N, N, N-trimethyl-N-2- Quaternary ammonium salts such as hydroxypropylammonium-2-ethylhexanoate are also known (see, for example, Patent Document 2), but these quaternary ammonium salts are useful for aliphatic and alicyclic isocyanates.
  • aromatic isocyanates such as MDI
  • the reaction is rapid and insoluble crystals tend to precipitate, and the catalyst is easily deactivated, making it difficult to put it to practical use.
  • a catalyst for generating an isocyanurate group from an isocyanate group a tertiary amine containing a phenolic hydroxyl group such as 2,4,6-tris (dimethylaminomethyl) phenol is known (see, for example, Patent Document 3).
  • a tertiary amine containing a phenolic hydroxyl group such as 2,4,6-tris (dimethylaminomethyl) phenol
  • the present invention has been made in view of the background art described above.
  • the first object of the present invention is to form a polyurethane resin-forming composition for fixing a hollow or flat membrane-like fiber separation membrane capable of providing a balance between reactivity and viscosity reduction and imparting low-temperature storage stability. Is to provide.
  • the second object of the present invention is to provide an MDI prepolymer containing no metal compound and having a high allophanate group content and a production method capable of easily controlling the reaction in the production.
  • an isocyanate group-containing compound (a1) represented by the following general formula (1) (hereinafter referred to as (a1) It was found that the above first problem can be solved by using a polyurethane resin-forming composition containing)), which is also referred to as a structure, and a metal catalyst is included when allophanating MDI with a tertiary amine catalyst.
  • the present inventors have found that the second problem can be solved by the manufacturing method and have completed the present invention.
  • R 1 represents a residue other than the active hydrogen group of the active hydrogen group-containing compound (b1), X represents an oxygen or sulfur atom, and R represents an unreacted isocyanate group of the isocyanate group-containing compound (a2).
  • M represents an integer of 1 or 2.
  • n represents an integer of 1 to 30, and when m is 2, n represents an integer of 1 to 15.
  • R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  • the present invention includes the following embodiments (1) to (16).
  • a polyurethane resin-forming composition containing an isocyanate component (A) and a polyol component (B), and an isocyanate group-containing compound represented by the following general formula (1) in the isocyanate component (A) An allophanate group-containing polyurethane resin-forming composition containing a1).
  • R 1 represents a residue other than the active hydrogen group of the active hydrogen group-containing compound (b1), X represents an oxygen or sulfur atom, and R represents an unreacted isocyanate group of the isocyanate group-containing compound (a2).
  • M represents an integer of 1 or 2.
  • n represents an integer of 1 to 30, and when m is 2, n represents an integer of 1 to 15.
  • the content of the isocyanate group-containing compound (a1) represented by the general formula (1) in the isocyanate component (A) is 20 to 90 peak area% in gel permeation chromatography measurement.
  • the allophanate group-containing polyurethane resin-forming composition as described in (1) or (2) above.
  • the isocyanate group-containing compound (a1) is an allophanate group-containing polyisocyanate composition which is a reaction product of diphenylmethane diisocyanate and an alcohol, and the molar ratio of allophanate groups to isocyanurate groups is 80:20 to 100: 0, comprising at least one selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by formula (2), and a tertiary amine catalyst as an allophanatization reaction aid, and a metal catalyst
  • the allophanate group-containing polyurethane resin-forming composition according to any one of (1) to (3) above, wherein the allophanate group-containing polyisocyanate composition does not contain any of the above.
  • R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  • a method for producing an allophanate group-containing polyurethane resin comprising reacting the isocyanate component (A) according to any one of (1) to (7) and a polyol component (B).
  • a sealing material comprising a cured product of the allophanate group-containing polyurethane resin-forming composition according to any one of (1) to (7) above.
  • An allophanate group-containing polyisocyanate composition which is a reaction product of diphenylmethane diisocyanate and alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0, and the carboxylic acid amide, sulfone It contains at least one selected from the group consisting of an acid amide and an active methylene compound represented by the general formula (2), and a tertiary amine catalyst as an allophanatization reaction aid, and does not contain a metal catalyst.
  • An allophanate group-containing polyisocyanate composition which is a reaction product of diphenylmethane diisocyanate and alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0, and the carboxylic acid amide, sulfone It contains at least one selected from the group consisting of an acid amide and an active methylene compound represented by the general formula (2), and a tert
  • R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  • R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  • the normal temperature in the present invention means ⁇ 5 ° C. to 45 ° C.
  • Embodiment 1 means for solving the first problem is referred to as Embodiment 1
  • Embodiment 2 means for solving the second problem is referred to as Embodiment 2.
  • the use of the polyurethane resin-forming composition of the present invention makes it possible in particular to improve reactivity, viscosity reduction, and low-temperature storage stability.
  • the polyurethane resin-forming composition according to the present invention is liquid at room temperature (for example, 25 ° C.). This excellent effect is very suitable for use as a binding material for medical and industrial fluid separation devices (ie, sealing materials for membrane modules) using the desired hollow fiber separation membrane or flat membrane separation membrane. can do.
  • a polyisocyanate composition containing an allophanate group which does not contain a metal compound and has a small amount of isocyanurate causing turbidity. It can be used suitably. Moreover, when obtaining the polyisocyanate composition containing the said allophanate group, since reaction can be controlled easily, it is very useful industrially.
  • the polyurethane resin-forming composition that solves the first problem of the present invention comprises an isocyanate component (A) and a polyol component (B).
  • an isocyanate component (A) an isocyanate group-containing compound (a2)
  • the isocyanate component (A) is represented by the general formula (1) obtained by reacting the isocyanate group-containing compound (a2) and the active hydrogen group-containing compound (b1) in the presence of the catalyst (C). Containing the isocyanate group-containing compound (a1).
  • the isocyanate group-containing compound (a2) in the present invention is not particularly limited, and any compound that contains two or more isocyanate groups in one molecule can be used.
  • Examples of the compound containing two or more isocyanate groups in one molecule include toluene diisocyanate, MDI, paraphenylene diisocyanate, metaphenylene diisocyanate, naphthalene-1,5-diisocyanate, triphenylmethane-4,4 ′, 4 ′′.
  • -Aromatic isocyanates such as triisocyanate, polyphenylene polymethylene polyisocyanate, hexamethylene diisocyanate, 1,10-decane diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and 1, 4-diisocyanate, isophorone diisocyanate, 2,4- and 2,6-hexahydrotoluylene diisocyanate, hexahydro-1,3- and -1,4-phenylene Isocyanurate-modified, biuret-modified, allophanate-modified, uretdione from aliphatic or alicyclic isocyanates such as isocyanate, perhydro-2,4'- and -4,4'-diphenylmethane diisocyanate, or a part of a series of these isocyanates Modification,
  • aromatic isocyanates are preferred from the viewpoints of being able to form a cured resin that is excellent in the working environment at the time of molding and has good physical properties (for example, mechanical strength such as hardness) required for a sealing material.
  • MDI is more preferable.
  • the active hydrogen group-containing compound (b1) a compound containing one or more active hydrogen groups in one molecule can be used. Monovalent or divalent ones are preferred from the standpoints of excellent workability, suitable physical properties required for the obtained membrane sealing material, and excellent membrane sealing material productivity. Trivalent or higher compounds are not preferred because the viscosity of the resulting isocyanate component (A) increases.
  • the active hydrogen group-containing compound (b1) preferably has 1 to 70 carbon atoms, and more preferably 3 to 30 carbon atoms.
  • Examples of the compound (b1) having a monovalent or divalent active hydrogen group include aliphatic, aromatic, and alicyclic alcohols, diols, and thiols.
  • aliphatic alcohol examples include methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol, stearyl alcohol and the like.
  • Examples of the aliphatic diol include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, 1,3-butanediol, and 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, methylpropanediol, 3-methyl-1,5-pentanediol and the like.
  • aromatic alcohol examples include benzyl alcohol, phenethyl alcohol, hydroxybenzyl alcohol, hydroxyphenethyl alcohol, methoxyphenylmethanol and the like.
  • aromatic diol examples include 1,4-benzenedimethanol and 2,3-naphthalenediethanol.
  • Examples of the alicyclic alcohol include cyclohexanol, methylcyclohexanol, dimethylcyclohexanol and the like.
  • Examples of the alicyclic diol include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, Examples include 1,4-cyclohexanediol, 4,4′-bicyclohexanol, 1,4-cyclohexanedimethanol and the like.
  • thiols examples include tridecyl mercaptopropionate, methoxybutyl mercaptopropionate, octyl mercaptopropionate, 3-mercaptobutyrate derivatives, 1,4-bis (mercaptomethyl) benzene, and the like.
  • aliphatic alcohols and aliphatic diols are preferable, and 2-propanol, 2-ethylhexanol, and tridecanol are particularly preferable from the viewpoint of obtaining more suitable physical properties required for the obtained membrane sealing material.
  • the monomer isocyanate content present in the isocyanate component (A) was determined from the peak area% (hereinafter also referred to as PA%) obtained by GPC measurement.
  • the monomer isocyanate content is preferably 10.0 to 70.0 PA% in the sample to be measured, more preferably 20.0 to 60.0 PA%, and the viewpoint that the molding processability is excellent in the production of the membrane sealing material Most preferably, it is present in the range of 30.0 to 50.0 PA%.
  • the isocyanate group content of the isocyanate component (A) is preferably 3 to 30% by mass, more preferably 5 to 28% by mass, and 10 to 26% by mass from the viewpoint of excellent molding processability in the production of the membrane sealing material. Most preferably.
  • the content of the (a1) structure in the isocyanate component (A) is determined from PA% obtained by GPC measurement, and is preferably 20 to 90 PA%, more preferably 30 to 80 PA%, and more preferably 50 to 70 PA% in the sample to be measured. Is most preferred.
  • the viscosity of the isocyanate component (A) is preferably 250 to 1500 mPa ⁇ s at 25 ° C. from the viewpoint of obtaining low viscosity and good moldability.
  • the polyol component (B) is not particularly limited, but any compound containing an active hydrogen group can be used.
  • a low molecular polyol, a polyether polyol, a polyester polyol, a polylactone polyol, a castor oil polyol, a polyolefin polyol, a hydroxyl group-containing amine compound, and the like can be given. These can be used alone or in combination of two or more. Among these, castor oil-based polyol is preferable because it is excellent in chemical resistance and elution resistance.
  • Examples of the low molecular polyol include divalent ones such as ethylene glycol, diethylene glycol, propylene glycol, 1,2-, 1,3- or 1,4-butanediol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 1,6-hexaneglycol, 1,8-octanediol, 1,10-decandiol, neopentylglycol, hydrogenated bisphenol A, etc.
  • Examples include methylolpropane, hexanetriol, pentaerythritol, and sorbitol.
  • the molecular weight of the low molecular polyol is preferably 50 to 200.
  • polyether polyols examples include adducts of the above low molecular polyols with alkylene oxides (alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, etc.), and ring-opening polymers of alkylene oxides.
  • alkylene oxides alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, etc.
  • ring-opening polymers of alkylene oxides examples include polypropylene glycol, polyethylene glycol, polytetramethylene ether glycol, and chipped ether that is a copolymer of ethylene oxide and propylene oxide.
  • the molecular weight of the polyether polyol is preferably 200 to 7000.
  • the molecular weight is more preferably 500 to 5,000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
  • Polyester acids include polycarboxylic acids (aliphatic saturated or unsaturated polycarboxylic acids such as azelaic acid, dodecanoic acid, maleic acid, fumaric acid, itaconic acid, ricinoleic acid, dimerized linoleic acid, and aromatic polycarboxylic acids.
  • examples thereof include a polyol obtained by condensation polymerization of phthalic acid, isophthalic acid, terephthalic acid) and a polyol (at least one selected from the group consisting of the above low-molecular polyol and polyether polyol).
  • the molecular weight of the polyester polyol is preferably 200 to 5,000.
  • the molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
  • Polylactone-based polyols include polymerization initiators such as glycols and triols, ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, and ⁇ -methyl- ⁇ -valerolactone.
  • Examples include polyols obtained by addition polymerization of at least one selected from the group consisting of organic metal compounds, metal chelate compounds, fatty acid metal acyl compounds and the like in the presence of a catalyst.
  • the molecular weight of the polylactone polyol is preferably 200 to 5,000.
  • the molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
  • the castor oil-based polyol a linear or branched polyester obtained by a reaction between a castor oil fatty acid and a polyol (at least one selected from the group consisting of the above low-molecular polyol and polyether polyol), for example, a diglyceride of castor oil fatty acid.
  • a polyol at least one selected from the group consisting of the above low-molecular polyol and polyether polyol
  • a diglyceride of castor oil fatty acid for example, a diglyceride of castor oil fatty acid.
  • the molecular weight of the castor oil-based polyol is preferably 300 to 4000.
  • the molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the
  • polystyrene-based polyol examples include polybutadiene-based polyol in which a hydroxyl group is introduced at the end of a copolymer of polybutadiene or butadiene and styrene or acrylonitrile.
  • polyether ester polyols obtained by addition reaction of an alkylene oxide such as ethylene oxide or propylene oxide with a polyester having at least one selected from the group consisting of a carboxyl group and a hydroxyl group at the terminal.
  • hydroxyl group-containing amine compound examples include amino alcohols as oxyalkylated derivatives of amino compounds.
  • amino alcohols include N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine, N, N, N ′, N, which are propylene oxide or ethylene oxide adducts of amino compounds such as ethylenediamine.
  • examples include '-tetrakis [2-hydroxyethyl] ethylenediamine, mono-, di- and triethanolamine, N-methyl-N, N'-diethanolamine, and the like. Of these, propylene oxide or ethylene oxide adducts of amino compounds such as ethylenediamine are preferred, and N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine is more preferred.
  • Use of N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine is effective in improving processability during molding and lowering the eluate.
  • the amount of the hydroxyl group-containing amine compound used is preferably in the range of 1 to 30% by mass, particularly preferably in the range of 5 to 25% by mass with respect to 100% by mass of the polyol component (B). . If the proportion in the polyol (B) is less than 1% by mass, the effect of the hydroxyl group-containing amine compound cannot be obtained, and if it exceeds 30% by mass, the reactivity becomes too high, the workability deteriorates and the filling property is impaired. Moreover, there is a possibility that the problem that the hardness of the obtained sealing material becomes too high may occur.
  • Catalyst (C) for example, any known catalyst that can promote the allophanatization reaction of the isocyanate group-containing compound (a2) and the active hydrogen group-containing compound (b1) is included.
  • the catalyst (C) for example, metal salts, quaternary ammonium salts, and tertiary amines.
  • metal salts such as zinc acetylacetonate (ZnAcAc), stannous octoate, and zinc octoate.
  • Quaternary ammonium salts include tetraalkylammonium such as N, N, N, N, -tetramethylammonium, N, N, N-trimethyl-N-octylammonium, and N- (2-hydroxyethyl) -N, N. , N, -trimethylammonium, N- (2-hydroxypropyl) -N, N, N, -trimethylammonium and other hydroxyalkyltrialkylammonium and chloride, bromide, hydroxide, formate, caproate, hexanoate, 2-ethyl This compound is a combination of counter ions such as hexanoate and monoalkyl carbonate.
  • Tertiary amines include N, N, N-benzyldimethylamine, N, N, N-dibenzylmethylamine, N, N, N-cyclohexyldimethylamine, N-methylmorpholine, N, N, N-tribenzyl Trialkylamines such as ruamine, N, N, N-tripropylamine, N, N, N-tributylamine, N, N, N-tripentylamine or N, N, N-trihexylamine and N, N, Polymethylpolyalkylenepolyamines such as N ′, N′-tetramethylethylenediamine, N, N, N ′, N ′, N ′′ -pentamethyldiethylenetriamine and 2- (N, N-dimethylamino) ethanol, 3- ( N, N-dimethylamino) propanol, 2- (N, N-dimethylamino) -1-methylpropanol, ⁇ 2- (N, N
  • the catalyst (C) is preferably 1 to 100 ppm, more preferably 10 to 50 ppm based on the mass of the isocyanate component (A). If it is less than 1 ppm, the reaction may not proceed. If it exceeds 100 ppm, the reaction may be fast and difficult to control.
  • the terminator (D) is used as a terminator for the allophanatization reaction.
  • the terminator (D) includes any known one that deactivates the catalyst (C).
  • the terminator (D) includes any known one that deactivates the catalyst (C).
  • the terminator (D) is preferably added in an amount equal to or greater than the number of moles of the catalyst (C), and is preferably added in an amount of 1.0 to 1.5 times.
  • the polyisocyanate composition containing an allophanate group that solves the second problem of the present invention is a reaction product of MDI and an alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0. And an allophanate group-containing polyisocyanate composition characterized by not containing a metal catalyst.
  • the reaction is rapid and difficult to control, and even if the reaction can be stopped at the desired reaction rate, the amount of isocyanurate produced is low. Because there are many, prepolymer tends to become cloudy.
  • E component used in the present invention may be any generally available MDI monomer.
  • the isomer of the MDI monomer is usually 0 to 5% by weight of 2,2'-MDI, 0 to 95% by weight of 2,4'-MDI, and 5 to 100% by weight of 4,4'-MDI.
  • the E component used in the present invention is preferably the above-mentioned MDI monomer.
  • polymethylene polyphenylene polyisocyanate which is polymeric MDI, is also used. Can be used.
  • the content of polymethylene polyphenylene polyisocyanate is preferably 0 to 50% by weight in the isocyanate component used. When it exceeds 50% by weight, the viscosity becomes too high, and insoluble matter is easily generated.
  • the (F) at least one alcohol component (hereinafter also referred to as “F component”) used in the present invention a compound containing a hydroxyl group having 1 to 2 number average functional groups, that is, a monool or a diol can be used.
  • a compound containing a phenolic hydroxyl group is not preferred because the isocyanurate group generation rate is increased and the viscosity is increased.
  • triol or higher polyol is not preferable because of its high viscosity.
  • Preferred monools for the F component used in the present invention include, for example, methanol, ethanol, propanol, 1- and 2-butanol, 1-pentanol, 1-hexanol, 2-methyl-1-pentanol, and 4-methyl.
  • polyalkylene glycol monoalkyl / aryl ethers which are oxyalkylene adducts using compounds containing phenolic hydroxyl groups such as phenol, cresol, xylenol, and nonylphenol as initiators, and mixtures thereof Is mentioned.
  • monocarboxylic acid ester of polyalkylene glycol, a mixture thereof, etc. are mentioned.
  • Preferred diols for the F component used in the present invention include, for example, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, Aliphatic glycols such as 1,5-pentanediol, 2,2′-dimethyl-1,3-propanediol, 1,6-hexanediol, 2-methyl-2-butyl-1,3-propanediol, and these glycols And polyalkylene glycols, which are oxyalkylene adducts having an initiator as the initiator, and mixtures thereof.
  • the (G) carboxylic acid amide used in the present invention at least one (hereinafter also referred to as “G component”) carboxylic acid amide selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by the above formula (2)
  • G component carboxylic acid amide selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by the above formula (2)
  • G sulfonic acid amide used in the present invention examples include methylsulfonamide, butylsulfonamide, t-butylsulfonamide, phenylsulfonamide, benzylsulfonamide, o-toluylsulfonamide, p-toluylsulfonamide, 3 -Aminophenylsulfonamide, 4-aminophenylsulfonamide and mixtures thereof.
  • Examples of the active methylene compound of G component used in the present invention include acetylacetone, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, 3,5-heptanedione, 3,5- Examples include heptanedione, 6-methyl-2,4-heptanedione, methyl acetoacetate, ethyl acetoacetate, methyl 3-oxopentanoate, malonic acid, dimethyl malonate, diethyl malonate, and mixtures thereof.
  • H component As the (H) tertiary amine (hereinafter also referred to as “H component”) used in the present invention, for example, trialkylamine, polymethylpolyalkylenepolyamine, tertiary aminoalcohol and the like can be used.
  • trialkylamine examples include N, N, N-benzyldimethylamine, N, N, N-dibenzylmethylamine, N, N, N-cyclohexyldimethylamine, N-methylmorpholine, N, N, N-tone.
  • examples include rebenzylamine, N, N, N-tripropylamine, N, N, N-tributylamine, N, N, N-tripentylamine or N, N, N-trihexylamine.
  • polymethylpolyalkylenepolyamine examples include N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N ′, N ′′ -pentamethyldiethylenetriamine and the like.
  • tertiary amino alcohols examples include 2- (dimethylamino) ethanol, 3- (dimethylamino) propanol, 2- (dimethylamino) -1-methylpropanol, 2- ⁇ 2- (dimethylamino) ethoxy ⁇ ethanol, 2 - ⁇ 2- (diethylamino) ethoxy ⁇ ethanol, 2-[ ⁇ 2- (dimethylamino) ethyl ⁇ methylamino] ethanol and the like.
  • tertiary amino alcohols are particularly preferred because of volatilization during the reaction and less elution when they become final resins.
  • the combined use of a quaternary ammonium salt is effective when the time until the reaction starts (hereinafter also referred to as “induction period”) becomes long.
  • Quaternary ammonium salts are useful for shortening the production time because the reaction starts within a few minutes after addition.
  • quaternary ammonium salt used in combination with the H component for example, a tetraalkylammonium, a compound in which a hydroxyalkyltrialkylammonium is combined with a counter ion, or the like can be used.
  • tetraalkylammonium examples include N, N, N, N, -tetramethylammonium, N, N, N-trimethyl-N-octylammonium and the like.
  • hydroxyalkyltrialkylammonium examples include N- (2-hydroxyethyl) -N, N, N-trimethylammonium, N- (2-hydroxypropyl) -N, N, N, -trimethylammonium and the like.
  • Examples of the counter ion combined with ammonium include chloride, bromide, hydroxide, formate, caproate, hexanoate, 2-ethylhexanoate, monoalkyl carbonate, and the like.
  • tetraalkylammonium is suitable as the counter ion, but as the counter ion to be combined, carboxylate and monoalkyl carbonate are preferable from the viewpoint of compatibility with MDI.
  • reaction is not controlled by the G component without using a tertiary amine and the quaternary ammonium salt alone is not effective because it deactivates during the reaction.
  • the G component used in the present invention can be added at any time from immediately before the urethanization reaction by the E component and the F component to immediately after the start of the allophanatization reaction. If the H component is added, the effect cannot be exerted, so the G component is added immediately before the urethanization reaction and after the completion of the urethanization reaction, immediately before the addition of the H component and until the allophanatization starts. Or it is preferable to add G component and H component simultaneously.
  • the amount of addition of the H component in the present invention is preferably 0.1 to 100 ppm with respect to the total amount of the E component and the F component, and particularly preferably 1 to 50 ppm, depending on its catalytic activity. If it is less than 0.1 ppm, the reaction may not proceed, and if it exceeds 100 ppm, the reaction may be fast and difficult to control.
  • the amount of G component used in the present invention is preferably about 0.1 to 50 times mol of H component, and if it is less than 0.1 times mol, the reaction becomes abrupt and cannot be controlled, and exceeds 50 times mol. If added, the reaction may hardly proceed.
  • the temperature at which the E component and the F component are allophanatized with the G component and the H component the higher the temperature, the more the allophanate group is produced and the lower the viscosity, but side reactions such as uretdioneization and carbodiimidization occur.
  • the reaction temperature is preferably 20 ° C. or more and 200 ° C. or less, and the production ratio of isocyanurate groups is suppressed to 20 mol% or less. In order to make it lower viscosity, 60 degreeC or more and 160 degrees C or less are preferable.
  • an acidic substance is suitable, for example, anhydrous hydrogen chloride, sulfuric acid, phosphoric acid, monoalkyl sulfate, alkyl sulfonic acid, alkyl benzene sulfone. Also included are acids, mono- or dialkyl phosphates, benzoyl chloride and Lewis acids. The amount added is preferably equivalent to or more, and preferably 1.0 to 1.5 times the molar equivalent of the number of moles of the tertiary amine or quaternary ammonium salt of the H component as the catalyst.
  • the catalyst (C) was added to this, heated to 90 ° C., the reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to reach 21.0%, the terminator (D) was placed. The reaction was stopped by adding a fixed amount to obtain an isocyanate component (A-1).
  • the isocyanate component (A-1) was light yellow and transparent, and its viscosity at 25 ° C. was 550 mPa ⁇ s.
  • a polyol component (B-1) was prepared by mixing 80 parts by mass of the polyol (b13) and 20 parts by mass of the polyol (b15).
  • Measuring device “HLC-8120 (trade name)” (manufactured by Tosoh Corporation) Column: Columns filled with three kinds of TSKgel G3000HXL, TSKgel G2000HXL, and TSKgel G1000HXL (all trade names, manufactured by Tosoh Corporation) as packing materials were connected in series, and measured at a column temperature of 40 ° C.
  • Detector RI (refractive index)
  • meter Eluent Tetrahydrofuran (THF) (Flow rate: 1 ml / min, 40 ° C.)
  • Calibration curve A calibration curve was obtained using the following grade polystyrene (TSK standard POLYSTYRENE).
  • a calibration curve was obtained from a chart obtained by detecting the refractive index difference using polystyrene as a standard substance.
  • the PA% of the peak near the peak top molecular weight (number average molecular weight) 230 indicating the monomer MDI, and (a1) structure
  • the PA% near the peak top molecular weight (number average molecular weight) 3800, 3360, 2600, 2000, 1260, 700 was determined.
  • the isocyanate components (A-1) to (A-4), (A-13) and (A-14) according to Production Examples 1 to 4, 13, and 14 shown in Tables 1 and 2 have a low viscosity. In addition, it has excellent low-temperature storage stability. In contrast, the isocyanate components (A-5) and (A-7) according to Production Example 5 and Production Example 7 have low viscosity but are inferior in low-temperature storage stability. In addition, the isocyanate components (A-9) to (A-12) according to Production Examples 9 to 12 are excellent in low-temperature storage stability but have a high viscosity.
  • the polyurethane resin-forming compositions according to Examples 1 to 6 all have a low initial mixing viscosity and a short pot life, so that the moldability is balanced.
  • the polyurethane resin-forming compositions according to Comparative Example 1 and Comparative Example 2 have a low initial mixing viscosity, but take a long time to form a membrane module because of their long pot life.
  • the polyurethane resin-forming compositions according to Comparative Examples 3 to 6 all have high mixing viscosities, there is a concern that the filling property at the time of membrane module molding is inferior and poor filling occurs.
  • the predetermined amount means each composition amount shown in Table 5.
  • Example 7 A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H1 diluted to 1% with polyB1 was immediately added.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained.
  • the properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
  • Example 8 A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. When an increase in the liquid temperature was confirmed about 15 minutes after addition of the catalyst H1, a predetermined amount of amide G1 diluted to 1% with polyF1 was added.
  • the reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to be 22.8%, a predetermined amount of catalyst poison J was added to stop the reaction.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, so that the prepolymer (P-1) which was the object of the present invention was obtained.
  • the properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
  • Example 9 A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature stabilized at 110 ° C., a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H2 diluted to 1% with polyF1 was immediately added.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained.
  • the properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
  • Example 10 A predetermined amount of isoE1 was added to a 1-liter four-necked flask, and the temperature was adjusted to 70 ° C. while stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added while stirring, and then a predetermined amount of catalyst H3 diluted to 1% with poly F1 was immediately added. Next, a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H2 diluted to 1% with polyF1 was immediately added, and the temperature was adjusted to 110 ° C.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained.
  • the properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
  • Example 11 A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F2 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF2 was added. When an increase in the liquid temperature was confirmed approximately 15 minutes after addition of the catalyst H1, a predetermined amount of amide G2 diluted to 1% with polyF2 was added.
  • the reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to be 13.8%, a predetermined amount of catalyst poison J was added to stop the reaction.
  • the synthesized prepolymer was a pale yellow transparent liquid at 25 ° C., and the amount of isocyanurate groups was small, so that the prepolymer (P-2) which was the object of the present invention was obtained.
  • the properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
  • Example 12 A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F3 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of methylene E3 diluted to 1% with polyF3 was added, and then a predetermined amount of catalyst H1 diluted to 1% with polyF3 was immediately added.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, so that the prepolymer (P-3) which was the object of the present invention was obtained.
  • Table 5 shows the properties and the molar ratio of each functional group, and FIG. 2 shows the transition of the NCO content during the reaction. The reaction was stable and control of the reaction was easy.
  • Example 13 A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F3 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of methylene G4 diluted to 1% with polyF3 was added, and then a predetermined amount of catalyst D1 diluted to 1% with polyF3 was immediately added.
  • the synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained.
  • Table 5 shows the properties and the molar ratio of each functional group, and FIG. 2 shows the transition of the NCO content during the reaction. The reaction was stable and control of the reaction was easy.
  • Comparative Example 7 A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. About 15 minutes after addition of the catalyst H1, the rise in the liquid temperature was confirmed, and the reaction was followed. However, the reaction temperature could not be controlled due to rapid exotherm, and the prepolymer which is the object of the present invention was not obtained because of gelation. It was. Therefore, it could not be used as a prepolymer that solves the first problem.
  • Comparative Example 8 A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. About 10 minutes after addition of catalyst H1, the rise in the liquid temperature could be confirmed, and the reaction was followed. However, the reaction temperature could not be controlled due to rapid exotherm, so when the internal temperature reached 124 ° C, catalyst poison J was removed.
  • the reaction was stopped by adding a predetermined amount.
  • the synthesized prepolymer was a pale yellow transparent liquid at room temperature, but the amount of isocyanurate groups was large and the prepolymer which was the object of the present invention was not obtained. From the viewpoint that the reaction cannot be controlled, it has been difficult to use it as a prepolymer that solves the first problem.

Abstract

[Problem] To provide a polyurethane resin-forming composition that is well-balanced between reactivity and low viscosity, is able to impart low-temperature storage stability, and fixes a hollow-shaped or flat membrane-shaped fiber separation membrane, and to provide an MDI prepolymer not containing a metal compound and having a high allophanate group content, and a production method in which a reaction can be easily controlled in the production thereof. [Solution] The problem is solved by using a polyurethane resin-forming composition containing a specific isocyanate group-containing compound in an isocyanate component, and by reacting an MDI in the presence of at least one selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound, without containing a metal catalyst, when the MDI is allophanatized with a tertiary amine catalyst.

Description

ポリウレタン樹脂形成性組成物、及び該形成性組成物を用いた中空状或いは平膜状繊維分離膜を用いたモジュール用膜シール材、並びにMDIから誘導されるアロファネート基含有ポリイソシアネート組成物及びその製造方法Polyurethane resin-forming composition, membrane sealing material for module using hollow or flat membrane-like fiber separation membrane using the forming composition, allophanate group-containing polyisocyanate composition derived from MDI, and production thereof Method
本発明は、ポリウレタン樹脂形成性組成物、及び該形成性組成物を用いた中空状或いは平膜状繊維分離膜を用いたモジュール用膜シール材、並びにジフェニルメタンジイソシアネート(以下MDIという)とアルコール成分から誘導されるアロファネート基を含有するポリイソシアネート組成物及びその製造方法に関する。 The present invention relates to a polyurethane resin forming composition, a membrane sealing material for a module using a hollow or flat membrane separation membrane using the forming composition, diphenylmethane diisocyanate (hereinafter referred to as MDI) and an alcohol component. The present invention relates to a polyisocyanate composition containing derivatized allophanate groups and a method for producing the same.
 中空糸或いは平膜を分離膜としたモジュールは、水処理等の産業分野、血液処理等の医療分野など多岐にわたって用いられている。特に、浄水器、人工腎臓、人工肺等の用途にあっては、その需要が極めて増大している。一般に、中空状或いは平膜状繊維分離膜を用いたモジュールを収束した端部を接着固定する膜シール材として、常温での可撓性、接着性、及び耐薬品性に優れているポリウレタン樹脂を用いることが広く知られている。 Modules using hollow fibers or flat membranes as separation membranes are widely used in industrial fields such as water treatment and medical fields such as blood treatment. In particular, the demand for water purifiers, artificial kidneys, artificial lungs and the like is extremely increasing. In general, polyurethane membranes with excellent flexibility, adhesiveness, and chemical resistance at room temperature are used as membrane sealing materials for bonding and fixing the ends of converged modules using hollow or flat membrane-like fiber separation membranes. It is widely known to use.
 このようなポリウレタン樹脂として、例えば、イソシアネート成分として、液状化ジフェニルメタンジイソシアネートとヒマシ油またはヒマシ油誘導体ポリオールとから得られたイソシアネート基末端プレポリマーをポリオールで硬化させて得られるポリウレタン樹脂が提案されている(例えば、特許文献1参照)。 As such a polyurethane resin, for example, as an isocyanate component, a polyurethane resin obtained by curing an isocyanate group-terminated prepolymer obtained from liquefied diphenylmethane diisocyanate and castor oil or castor oil derivative polyol with a polyol has been proposed. (For example, refer to Patent Document 1).
 しかしながら、このような用途に用いられるポリウレタン樹脂に対して、特に、分離膜として中空状繊維分離膜を用いる場合においては、膜モジュールの生産性を向上させるために、イソシアネート基末端プレポリマーやポリオールの低粘度化の要求が高まっている。 However, in the case of using a hollow fiber separation membrane as a separation membrane for the polyurethane resin used for such applications, in order to improve the productivity of the membrane module, an isocyanate group-terminated prepolymer or polyol is used. The demand for lower viscosity is increasing.
 さらに、従来の膜モジュール用膜シール材に用いられているポリウレタン樹脂では、反応性、低粘度化、低温貯蔵安定性のバランスをとることが難しいという問題があり、解決が望まれている。 Furthermore, the polyurethane resin used in the conventional membrane sealing material for membrane modules has a problem that it is difficult to balance reactivity, low viscosity, and low temperature storage stability, and a solution is desired.
 また、MDIとアルコール成分から誘導されるアロファネート基を含有するポリイソシアネート基末端プレポリマーは、低粘度かつ低温時におけるMDIモノマーの析出が少なく、取り扱いが容易であることから接着剤やフォーム等の分野において有用であり、広く応用されている。 In addition, polyisocyanate group-terminated prepolymers containing allophanate groups derived from MDI and alcohol components have low viscosity, low precipitation of MDI monomers at low temperatures, and are easy to handle. Is useful and widely applied.
 MDIとアルコール成分からアロファネート基を生成させる触媒としては、アセチルアセトン亜鉛や、亜鉛、鉛、錫、銅、コバルト等の金属カルボン酸塩、及びその水和物等が知られているが、いずれも金属化合物であり、医療や食品等の用途においては好ましくない。 Known catalysts for generating allophanate groups from MDI and alcohol components include zinc acetylacetone, metal carboxylates such as zinc, lead, tin, copper, and cobalt, and hydrates thereof. It is a compound and is not preferred for medical and food applications.
 イソシアネートとアルコール成分からアロファネート基を生成させる金属化合物を含まない触媒として、例えば、N,N,N-トリメチル-N-2-ヒドロキシプロピルアンモニウムヒドロキシド及びN,N,N-トリメチル-N-2-ヒドロキシプロピルアンモニウム-2-エチルヘキサノエート等の4級アンモニウム塩も知られているが(例えば、特許文献2参照)、これら4級アンモニウム塩は脂肪族や脂環族イソシアネートに対して有用であり、MDI等の芳香族イソシアネートに対しては反応が急激で不溶解性の結晶が析出しやすく、また、触媒が失活しやすく実用化は難しい。 Catalysts that do not contain metal compounds that form allophanate groups from isocyanate and alcohol components include, for example, N, N, N-trimethyl-N-2-hydroxypropylammonium hydroxide and N, N, N-trimethyl-N-2- Quaternary ammonium salts such as hydroxypropylammonium-2-ethylhexanoate are also known (see, for example, Patent Document 2), but these quaternary ammonium salts are useful for aliphatic and alicyclic isocyanates. For aromatic isocyanates such as MDI, the reaction is rapid and insoluble crystals tend to precipitate, and the catalyst is easily deactivated, making it difficult to put it to practical use.
 イソシアネート基からイソシアヌレート基を生成させる触媒として、2,4,6-トリス(ジメチルアミノメチル)フェノール等のフェノール性水酸基含有の3級アミンが知られており(例えば特許文献3参照)、この触媒はアルコール成分が存在すればアロファネート基も生成させることができるが、イソシアヌレート基の生成量が多くポリオールとの相溶性が悪くなるため、接着剤やフォーム用のウレタン樹脂として使用できる範囲は限定的となる。 As a catalyst for generating an isocyanurate group from an isocyanate group, a tertiary amine containing a phenolic hydroxyl group such as 2,4,6-tris (dimethylaminomethyl) phenol is known (see, for example, Patent Document 3). Can produce allophanate groups in the presence of an alcohol component, but because the amount of isocyanurate groups produced is large and the compatibility with polyols is poor, the range that can be used as urethane resins for adhesives and foams is limited. It becomes.
日本国特開昭53-98398号公報Japanese Unexamined Patent Publication No. 53-98398 日本国特開2011-99119号公報Japanese Unexamined Patent Publication No. 2011-99119 日本国特開2004-250662号公報Japanese Unexamined Patent Publication No. 2004-250662
 本発明は、前記した背景技術を鑑みてなされたものである。 The present invention has been made in view of the background art described above.
 本発明の第一の課題は、反応性、低粘度化のバランスが取れ、低温貯蔵安定性を付与することが可能な、中空状或いは平膜状繊維分離膜を固定するポリウレタン樹脂形成性組成物を提供することである。 The first object of the present invention is to form a polyurethane resin-forming composition for fixing a hollow or flat membrane-like fiber separation membrane capable of providing a balance between reactivity and viscosity reduction and imparting low-temperature storage stability. Is to provide.
 本発明の第二の課題は、金属化合物を含まず、アロファネート基含有量の高いMDIプレポリマー及びその製造において容易に反応を制御できる製造方法を提供することである。 The second object of the present invention is to provide an MDI prepolymer containing no metal compound and having a high allophanate group content and a production method capable of easily controlling the reaction in the production.
 本発明者らは上記一連の課題を解決するために鋭意検討を重ねた結果、イソシアネート成分(A)中に、下記一般式(1)で表されるイソシアネート基含有化合物(a1)(以下(a1)構造体とも言う)を含有するポリウレタン樹脂形成性組成物を用いることにより、上記第一の課題を解決できることを見出し、また、3級アミン触媒でMDIをアロファネート化させる際、金属触媒を含有せず、カルボン酸アミド、スルホン酸アミド、及び下記一般式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種の存在下で反応させたアロファネート基を含有するポリイソシアネート組成物、及びその製造方法により第二の課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies in order to solve the above-described series of problems, the present inventors have found that in the isocyanate component (A), an isocyanate group-containing compound (a1) represented by the following general formula (1) (hereinafter referred to as (a1) It was found that the above first problem can be solved by using a polyurethane resin-forming composition containing)), which is also referred to as a structure, and a metal catalyst is included when allophanating MDI with a tertiary amine catalyst. A polyisocyanate composition containing an allophanate group reacted in the presence of at least one selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by the following general formula (2): The present inventors have found that the second problem can be solved by the manufacturing method and have completed the present invention.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中Rは、活性水素基含有化合物(b1)の活性水素基以外の残基を表し、Xは酸素あるいは硫黄原子を表す。Rはイソシアネート基含有化合物(a2)の未反応のイソシアネート基を含む残基を表し、mは1又は2の整数を表す。mが1の場合にはnは1~30の整数を表し、mが2の場合にはnは1~15の整数を表す) (Wherein R 1 represents a residue other than the active hydrogen group of the active hydrogen group-containing compound (b1), X represents an oxygen or sulfur atom, and R represents an unreacted isocyanate group of the isocyanate group-containing compound (a2). M represents an integer of 1 or 2. When m is 1, n represents an integer of 1 to 30, and when m is 2, n represents an integer of 1 to 15. )
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される) (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
 すなわち、本発明は下記(1)~(16)の実施形態を含むものである。 That is, the present invention includes the following embodiments (1) to (16).
 (1)イソシアネート成分(A)と、ポリオール成分(B)を含むポリウレタン樹脂形成性組成物であって、イソシアネート成分(A)中に、下記一般式(1)で表されるイソシアネート基含有化合物(a1)を含有するアロファネート基含有ポリウレタン樹脂形成性組成物。 (1) A polyurethane resin-forming composition containing an isocyanate component (A) and a polyol component (B), and an isocyanate group-containing compound represented by the following general formula (1) in the isocyanate component (A) ( An allophanate group-containing polyurethane resin-forming composition containing a1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中Rは、活性水素基含有化合物(b1)の活性水素基以外の残基を表し、Xは酸素あるいは硫黄原子を表す。Rはイソシアネート基含有化合物(a2)の未反応のイソシアネート基を含む残基を表し、mは1又は2の整数を表す。mが1の場合にはnは1~30の整数を表し、mが2の場合にはnは1~15の整数を表す) (Wherein R 1 represents a residue other than the active hydrogen group of the active hydrogen group-containing compound (b1), X represents an oxygen or sulfur atom, and R represents an unreacted isocyanate group of the isocyanate group-containing compound (a2). M represents an integer of 1 or 2. When m is 1, n represents an integer of 1 to 30, and when m is 2, n represents an integer of 1 to 15. )
 (2)イソシアネート成分(A)が常温において液状であることを特徴とする上記(1)に記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (2) The allophanate group-containing polyurethane resin-forming composition as described in (1) above, wherein the isocyanate component (A) is liquid at normal temperature.
 (3)イソシアネート成分(A)中の一般式(1)で表わされるイソシアネート基含有化合物(a1)の含有量が、ゲルパーミエイションクロマトグラフィー測定において20~90ピークエリア%であることを特徴とする上記(1)又は(2)に記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (3) The content of the isocyanate group-containing compound (a1) represented by the general formula (1) in the isocyanate component (A) is 20 to 90 peak area% in gel permeation chromatography measurement. The allophanate group-containing polyurethane resin-forming composition as described in (1) or (2) above.
 (4)イソシアネート基含有化合物(a1)が、ジフェニルメタンジイソシアネートとアルコールとの反応生成物であるアロファネート基含有ポリイソシアネート組成物であって、アロファネート基とイソシアヌレート基のモル比が80:20~100:0であり、カルボン酸アミド、スルホン酸アミド、及び式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種と、3級アミン触媒とをアロファネート化反応助剤として含み、且つ金属触媒を含有しないアロファネート基含有ポリイソシアネート組成物であることを特徴とする、上記(1)乃至(3)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (4) The isocyanate group-containing compound (a1) is an allophanate group-containing polyisocyanate composition which is a reaction product of diphenylmethane diisocyanate and an alcohol, and the molar ratio of allophanate groups to isocyanurate groups is 80:20 to 100: 0, comprising at least one selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by formula (2), and a tertiary amine catalyst as an allophanatization reaction aid, and a metal catalyst The allophanate group-containing polyurethane resin-forming composition according to any one of (1) to (3) above, wherein the allophanate group-containing polyisocyanate composition does not contain any of the above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される) (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
 (5)イソシアネート基含有化合物(a2)が、イソシアネート基を2個以上有する芳香族イソシアネートであることを特徴とする上記(1)乃至(4)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (5) The allophanate group-containing polyurethane resin-forming property according to any one of (1) to (4) above, wherein the isocyanate group-containing compound (a2) is an aromatic isocyanate having two or more isocyanate groups. Composition.
 (6)イソシアネート基含有化合物(a2)が、ジフェニルメタンジイソシアネートであることを特徴とする上記(1)乃至(5)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (6) The allophanate group-containing polyurethane resin-forming composition as described in any one of (1) to (5) above, wherein the isocyanate group-containing compound (a2) is diphenylmethane diisocyanate.
 (7)活性水素基含有化合物(b1)が、炭素数が1~70のモノオール又はジオールであることを特徴とする上記(1)乃至(6)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 (7) The allophanate group-containing polyurethane resin according to any one of (1) to (6) above, wherein the active hydrogen group-containing compound (b1) is a monool or diol having 1 to 70 carbon atoms Formable composition.
 (8)上記(1)乃至(7)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物の膜モジュールのシール材としての使用。 (8) Use of the allophanate group-containing polyurethane resin-forming composition according to any one of (1) to (7) as a sealing material for a membrane module.
 (9)上記(1)乃至(7)のいずれかに記載のイソシアネート成分(A)とポリオール成分(B)とを反応させることを特徴とするアロファネート基含有ポリウレタン樹脂の製造方法。 (9) A method for producing an allophanate group-containing polyurethane resin comprising reacting the isocyanate component (A) according to any one of (1) to (7) and a polyol component (B).
 (10)上記(1)乃至(7)のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物の硬化物からなるシール材。 (10) A sealing material comprising a cured product of the allophanate group-containing polyurethane resin-forming composition according to any one of (1) to (7) above.
 (11)上記(10)に記載のシール材により封止されていることを特徴とする膜モジュール。 (11) A membrane module that is sealed with the sealing material described in (10) above.
 (12)ジフェニルメタンジイソシアネートとアルコールとの反応生成物であるアロファネート基含有ポリイソシアネート組成物であって、アロファネート基とイソシアヌレート基のモル比が80:20~100:0であり、カルボン酸アミド、スルホン酸アミド、及び一般式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種と、3級アミン触媒とをアロファネート化反応助剤として含み、且つ金属触媒を含有しないことを特徴とする、アロファネート基含有ポリイソシアネート組成物。 (12) An allophanate group-containing polyisocyanate composition, which is a reaction product of diphenylmethane diisocyanate and alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0, and the carboxylic acid amide, sulfone It contains at least one selected from the group consisting of an acid amide and an active methylene compound represented by the general formula (2), and a tertiary amine catalyst as an allophanatization reaction aid, and does not contain a metal catalyst. An allophanate group-containing polyisocyanate composition.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される) (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
 (13)(E)ジフェニルメタンジイソシアネートと
(F)少なくとも1つのアルコール成分を
(G)カルボン酸アミド及びスルホン酸アミド及び式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種の存在下
(H)触媒として3級アミンでアロファネート化させ
(J)触媒毒により反応を停止させることを特徴とする
アロファネート基含有ポリイソシアネート組成物の製造方法。
(13) In the presence of (E) diphenylmethane diisocyanate and (F) at least one alcohol component selected from the group consisting of (G) a carboxylic acid amide and a sulfonic acid amide and an active methylene compound represented by formula (2) (H) A method for producing an allophanate group-containing polyisocyanate composition, characterized in that allophanatization is carried out with a tertiary amine as a catalyst, and (J) the reaction is stopped by a catalyst poison.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される) (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
 (14)(F)触媒として3級アミンと4級アンモニウム塩を併用してアロファネート化することを特徴とする、上記(13)に記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 (14) The method for producing an allophanate group-containing polyisocyanate composition according to the above (13), wherein a tertiary amine and a quaternary ammonium salt are used in combination as the catalyst (F) to form an allophanate.
 (15)(F)触媒として金属触媒を含有しないことを特徴とする、上記(13)又は(14)に記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 (15) The method for producing an allophanate group-containing polyisocyanate composition according to (13) or (14) above, wherein the catalyst does not contain a metal catalyst as the (F) catalyst.
 (16)アロファネート基とイソシアヌレート基のモル比が80:20~100:0であることを特徴とする、上記(13)乃至(15)のいずれかに記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 (16) The allophanate group-containing polyisocyanate composition according to any one of (13) to (15) above, wherein the molar ratio of allophanate groups to isocyanurate groups is 80:20 to 100: 0. Production method.
 なお、本発明における常温とは、-5℃~45℃を意味する。 In addition, the normal temperature in the present invention means −5 ° C. to 45 ° C.
 また、本発明においては、第一の課題を解決する手段を実施形態1といい、第二の課題を解決する手段を実施形態2という。 In the present invention, means for solving the first problem is referred to as Embodiment 1, and means for solving the second problem is referred to as Embodiment 2.
 第一の効果として、本発明のポリウレタン樹脂形成性組成物を使用することにより、特に、反応性、低粘度化、及び低温貯蔵安定性を改善することが可能となった。併せて、本発明によるポリウレタン樹脂形成性組成物は常温(例えば25℃)において液状である。この優れた効果は、所望されている中空繊維分離膜または平膜状分離膜を用いた医療用、工業用流体分離装置の結束材(即ち、膜モジュール用のシール材)として、極めて好適に使用することができる。 As a first effect, the use of the polyurethane resin-forming composition of the present invention makes it possible in particular to improve reactivity, viscosity reduction, and low-temperature storage stability. In addition, the polyurethane resin-forming composition according to the present invention is liquid at room temperature (for example, 25 ° C.). This excellent effect is very suitable for use as a binding material for medical and industrial fluid separation devices (ie, sealing materials for membrane modules) using the desired hollow fiber separation membrane or flat membrane separation membrane. can do.
 第二の効果として、本発明によれば、金属化合物を含まず、濁りの原因となるイソシアヌレートが少ないアロファネート基を含有するポリイソシアネート組成物を得ることができ、第一の効果を得るために好適に用いることができる。また、当該アロファネート基を含有するポリイソシアネート組成物を得る際、容易に反応を制御できるため、産業上極めて有用である。 As a second effect, according to the present invention, it is possible to obtain a polyisocyanate composition containing an allophanate group which does not contain a metal compound and has a small amount of isocyanurate causing turbidity. It can be used suitably. Moreover, when obtaining the polyisocyanate composition containing the said allophanate group, since reaction can be controlled easily, it is very useful industrially.
実施例、比較例における反応途中のNCO含有量の推移を示す図である。It is a figure which shows transition of NCO content in the middle of reaction in an Example and a comparative example. 実施例における反応途中のNCO含有量の推移を示す図である。It is a figure which shows transition of NCO content in the middle of reaction in an Example.
 以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の第一の課題を解決するポリウレタン樹脂形成性組成物は、イソシアネート成分(A)、ポリオール成分(B)を含むものであり、該イソシアネート成分(A)として、イソシアネート基含有化合物(a2)と、活性水素基含有化合物(b1)とを触媒(C)の存在下で反応して得られる前記一般式(1)で表されるイソシアネート基含有化合物(a1)を含有することを特徴とする。 The polyurethane resin-forming composition that solves the first problem of the present invention comprises an isocyanate component (A) and a polyol component (B). As the isocyanate component (A), an isocyanate group-containing compound (a2) And an isocyanate group-containing compound (a1) represented by the general formula (1) obtained by reacting an active hydrogen group-containing compound (b1) in the presence of a catalyst (C). .
 <イソシアネート成分(A)>
 本発明においてイソシアネート成分(A)は、イソシアネート基含有化合物(a2)と、活性水素基含有化合物(b1)とを触媒(C)の存在下で反応して得られる前記一般式(1)で表されるイソシアネート基含有化合物(a1)を含有するものである。
<Isocyanate component (A)>
In the present invention, the isocyanate component (A) is represented by the general formula (1) obtained by reacting the isocyanate group-containing compound (a2) and the active hydrogen group-containing compound (b1) in the presence of the catalyst (C). Containing the isocyanate group-containing compound (a1).
 本発明におけるイソシアネート基含有化合物(a2)は特に限定されず、1分子中にイソシアネート基を2個以上含む化合物であれば、いずれも使用することが可能である。1分子中にイソシアネート基を2個以上含む化合物としては、例えば、トルエンジイソシアネート、MDI、パラフェニレンジイソシアネート、メタフェニレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリフェニルメタン-4,4’,4’’-トリイソシアネート、ポリフェニレンポリメチレンポリイソシアネートなどの芳香族イソシアネート、ヘキサメチレンジイソシアネート、1,10-デカンジイソシアネート、1,12-ドデカンジイソシアネート、シクロブタン-1,3-ジイソシアネート、シクロヘキサン-1,3-および1,4-ジイソシアネート、イソホロンジイソシアネート、2,4-および2,6-ヘキサヒドロトルイレンジイソシアネート、ヘキサヒドロ-1,3-および-1,4-フェニレンジイソシアネート、ペルヒドロ-2,4’-および-4,4’-ジフェニルメタンジイソシアネートなどの脂肪族系または脂環族系イソシアネート、あるいはこれら一連のイソシアネートの一部をイソシアヌレート変性、ビウレット変性、アロファネート変性、ウレトジオン変性、ウレトイミン変性、カルボジイミド変性、オキサゾリドン変性、アミド変性、イミド変性したもの等が挙げられ、これらは、単独または2種以上を併用することができる。 The isocyanate group-containing compound (a2) in the present invention is not particularly limited, and any compound that contains two or more isocyanate groups in one molecule can be used. Examples of the compound containing two or more isocyanate groups in one molecule include toluene diisocyanate, MDI, paraphenylene diisocyanate, metaphenylene diisocyanate, naphthalene-1,5-diisocyanate, triphenylmethane-4,4 ′, 4 ″. -Aromatic isocyanates such as triisocyanate, polyphenylene polymethylene polyisocyanate, hexamethylene diisocyanate, 1,10-decane diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and 1, 4-diisocyanate, isophorone diisocyanate, 2,4- and 2,6-hexahydrotoluylene diisocyanate, hexahydro-1,3- and -1,4-phenylene Isocyanurate-modified, biuret-modified, allophanate-modified, uretdione from aliphatic or alicyclic isocyanates such as isocyanate, perhydro-2,4'- and -4,4'-diphenylmethane diisocyanate, or a part of a series of these isocyanates Modification, uretoimine modification, carbodiimide modification, oxazolidone modification, amide modification, imide modification, etc. can be mentioned, and these can be used alone or in combination of two or more.
 これらのうち、成型時の作業環境に優れ、シール材に要求される物性(例えば、硬度などの機械的強度)が良好な硬化樹脂を形成することができるなどの観点から、芳香族イソシアネートが好ましく、MDIがより好ましい。 Of these, aromatic isocyanates are preferred from the viewpoints of being able to form a cured resin that is excellent in the working environment at the time of molding and has good physical properties (for example, mechanical strength such as hardness) required for a sealing material. MDI is more preferable.
 本発明においては、活性水素基含有化合物(b1)として、1分子中に1個以上の活性水素基を含有する化合物を使用することができる。作業性に優れ、得られる膜シール材に要求される物性として好適なものが得られ、且つ、膜シール材の生産性にも優れるなどの観点から、1価又は2価のものが好ましい。3価以上の化合物は、得られるイソシアネート成分(A)の粘度が高くなるため好ましくない。また、活性水素基含有化合物(b1)の炭素数は1~70が好ましく、3~30が更に好ましい。 In the present invention, as the active hydrogen group-containing compound (b1), a compound containing one or more active hydrogen groups in one molecule can be used. Monovalent or divalent ones are preferred from the standpoints of excellent workability, suitable physical properties required for the obtained membrane sealing material, and excellent membrane sealing material productivity. Trivalent or higher compounds are not preferred because the viscosity of the resulting isocyanate component (A) increases. The active hydrogen group-containing compound (b1) preferably has 1 to 70 carbon atoms, and more preferably 3 to 30 carbon atoms.
 1価又は2価の活性水素基を有する化合物(b1)としては、例えば脂肪族、芳香族、脂環族それぞれのアルコール、ジオール、チオール類等が挙げられる。 Examples of the compound (b1) having a monovalent or divalent active hydrogen group include aliphatic, aromatic, and alicyclic alcohols, diols, and thiols.
 脂肪族アルコールとしては、例えばメタノール、エタノール、プロピルアルコール、ブチルアルコール、アミルアルコール、ラウリルアルコール、ステアリルアルコール等が挙げられる。 Examples of the aliphatic alcohol include methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol, stearyl alcohol and the like.
 脂肪族ジオールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、メチルプロパンジオール、3-メチル-1,5-ペンタンジオール等が挙げられる。 Examples of the aliphatic diol include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, 1,3-butanediol, and 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, methylpropanediol, 3-methyl-1,5-pentanediol and the like.
 芳香族アルコールとしては、例えばベンジルアルコール、フェネチルアルコール、ヒドロキシベンジルアルコール、ヒドロキシフェネチルアルコール、メトキシフェニルメタノール等が挙げられる。 Examples of the aromatic alcohol include benzyl alcohol, phenethyl alcohol, hydroxybenzyl alcohol, hydroxyphenethyl alcohol, methoxyphenylmethanol and the like.
 芳香族ジオールとしては、1,4-ベンゼンジメタノール、2,3-ナフタレンジメタノール等が挙げられる。 Examples of the aromatic diol include 1,4-benzenedimethanol and 2,3-naphthalenediethanol.
 脂環族アルコールとしては、例えばシクロヘキサノール、メチルシクロヘキサノール、ジメチルシクロヘキサノール等が挙げられる。 Examples of the alicyclic alcohol include cyclohexanol, methylcyclohexanol, dimethylcyclohexanol and the like.
 脂環族ジオールとしては、例えば1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、3-メチル-1,2-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、4,4’-ビシクロヘキサノール、1,4-シクロヘキサンジメタノール等が挙げられる。 Examples of the alicyclic diol include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, Examples include 1,4-cyclohexanediol, 4,4′-bicyclohexanol, 1,4-cyclohexanedimethanol and the like.
 チオール類としては、例えばメルカプトプロピオン酸トリデシル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、3-メルカプトブチレート誘導体、1,4-ビス(メルカプトメチル)ベンゼン等が挙げられる。 Examples of the thiols include tridecyl mercaptopropionate, methoxybutyl mercaptopropionate, octyl mercaptopropionate, 3-mercaptobutyrate derivatives, 1,4-bis (mercaptomethyl) benzene, and the like.
 これらのうち、得られる膜シール材に要求される物性としてより好適なものが得られるなどの観点から脂肪族アルコールや脂肪族ジオールが好ましく、2-プロパノール、2-エチルヘキサノール、トリデカノールが特に好ましい。 Of these, aliphatic alcohols and aliphatic diols are preferable, and 2-propanol, 2-ethylhexanol, and tridecanol are particularly preferable from the viewpoint of obtaining more suitable physical properties required for the obtained membrane sealing material.
 イソシアネート成分(A)に存在するモノマーイソシアネート含有量は、GPC測定より得られるピークエリア%(以下PA%とも言う)から求めた。モノマーイソシアネート含有量は、測定対象試料中の10.0~70.0PA%が好ましく、20.0~60.0PA%がより好ましく、膜シール材の製造時に於いて成型加工性に優れるとの観点から30.0~50.0PA%の範囲で存在することが最も好ましい。 The monomer isocyanate content present in the isocyanate component (A) was determined from the peak area% (hereinafter also referred to as PA%) obtained by GPC measurement. The monomer isocyanate content is preferably 10.0 to 70.0 PA% in the sample to be measured, more preferably 20.0 to 60.0 PA%, and the viewpoint that the molding processability is excellent in the production of the membrane sealing material Most preferably, it is present in the range of 30.0 to 50.0 PA%.
 イソシアネート成分(A)のイソシアネート基含有量は3~30質量%が好ましく、5~28質量%がより好ましく、膜シール材の製造時に於いて成形加工性に優れるとの観点から10~26質量%であることが最も好ましい。 The isocyanate group content of the isocyanate component (A) is preferably 3 to 30% by mass, more preferably 5 to 28% by mass, and 10 to 26% by mass from the viewpoint of excellent molding processability in the production of the membrane sealing material. Most preferably.
 イソシアネート成分(A)中に含まれる前記一般式(1)で表わされる(a1)構造体は、13C-NMRを用いてその存在を確認した。
(1)測定装置:ECX400M(日本電子社製)
(2)測定温度:23℃
(3)試料濃度:0.1g/ml
(4)溶剤  :クロロホルム-d
(5)評価方法:(a1)構造体由来のシグナル(120ppm、152ppm、156ppm)より(a1)構造体の存在を確認した。
The presence of the (a1) structure represented by the general formula (1) contained in the isocyanate component (A) was confirmed using 13 C-NMR.
(1) Measuring device: ECX400M (manufactured by JEOL Ltd.)
(2) Measurement temperature: 23 ° C
(3) Sample concentration: 0.1 g / ml
(4) Solvent: Chloroform-d
(5) Evaluation method: (a1) The presence of the (a1) structure was confirmed from the signal derived from the structure (120 ppm, 152 ppm, 156 ppm).
 イソシアネート成分(A)中の(a1)構造体含有量は、GPC測定より得られるPA%から求め、測定対象試料中の20~90PA%が好ましく、30~80PA%がさらに好ましく、50~70PA%が最も好ましい。 The content of the (a1) structure in the isocyanate component (A) is determined from PA% obtained by GPC measurement, and is preferably 20 to 90 PA%, more preferably 30 to 80 PA%, and more preferably 50 to 70 PA% in the sample to be measured. Is most preferred.
 また、イソシアネート成分(A)の粘度は、低粘度で良好な成型性を得る観点から、25℃において250~1500mPa・sであることが好ましい。 Further, the viscosity of the isocyanate component (A) is preferably 250 to 1500 mPa · s at 25 ° C. from the viewpoint of obtaining low viscosity and good moldability.
 <ポリオール成分(B)>
 本発明においては、ポリオール成分(B)としては特に限定するものではないが、活性水素基を含有する化合物であれば、いずれも使用することができる。例えば、低分子ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリラクトン系ポリオール、ヒマシ油系ポリオール、ポリオレフィン系ポリオールや、水酸基含有アミン系化合物などが挙げられる。これらは、単独で又は2種類以上組み合わせて使用することができる。これらの中でもヒマシ油系ポリオールが、耐薬品性、耐溶出物性に優れるため好ましい。
<Polyol component (B)>
In the present invention, the polyol component (B) is not particularly limited, but any compound containing an active hydrogen group can be used. For example, a low molecular polyol, a polyether polyol, a polyester polyol, a polylactone polyol, a castor oil polyol, a polyolefin polyol, a hydroxyl group-containing amine compound, and the like can be given. These can be used alone or in combination of two or more. Among these, castor oil-based polyol is preferable because it is excellent in chemical resistance and elution resistance.
 低分子ポリオールとしては、例えば2価のもの、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、1,2-、1,3-または1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサングリコール、1,8-オクタンジオール、1,10-デカンジオ-ル、ネオペンチルグリコール、水添ビスフェノールAなど、また、3価以上のもの、例えばグリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、ソルビトールなどが挙げられる。低分子ポリオールの分子量は50~200が好ましい。 Examples of the low molecular polyol include divalent ones such as ethylene glycol, diethylene glycol, propylene glycol, 1,2-, 1,3- or 1,4-butanediol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 1,6-hexaneglycol, 1,8-octanediol, 1,10-decandiol, neopentylglycol, hydrogenated bisphenol A, etc. Examples include methylolpropane, hexanetriol, pentaerythritol, and sorbitol. The molecular weight of the low molecular polyol is preferably 50 to 200.
 ポリエーテル系ポリオールとしては、上記低分子ポリオールのアルキレンオキシド(炭素数2~4個のアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等)付加物、およびアルキレンオキサイドの開環重合物が挙げられ、具体的にはポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、またはエチレンオキサイドとプロピレンオキサイドの共重合物であるチップドエーテルなどが挙げられる。ポリエーテル系ポリオールの分子量は200~7000が好ましい。なお、膜シール材の製造時において成型加工性に優れるとの観点から、分子量は500~5000であることがさらに好ましい。 Examples of polyether polyols include adducts of the above low molecular polyols with alkylene oxides (alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, etc.), and ring-opening polymers of alkylene oxides. Specific examples include polypropylene glycol, polyethylene glycol, polytetramethylene ether glycol, and chipped ether that is a copolymer of ethylene oxide and propylene oxide. The molecular weight of the polyether polyol is preferably 200 to 7000. The molecular weight is more preferably 500 to 5,000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
 ポリエステル系ポリオールとしては、ポリカルボン酸(脂肪族飽和もしくは不飽和ポリカルボン酸、例えばアゼライン酸、ドデカン酸、マレイン酸、フマル酸、イタコン酸、リシノール酸、2量化リノール酸や、芳香族ポリカルボン酸、例えばフタル酸、イソフタル酸、テレフタル酸)とポリオール(上記低分子ポリオールとポリエーテルポリオールからなる群より選ばれる少なくとも1種)との縮合重合により得られるポリオール等が挙げられる。ポリエステル系ポリオールの分子量は200~5000が好ましい。なお、膜シール材の製造時において成型加工性に優れるとの観点から、分子量は500~3000であることがより好ましい。 Polyester acids include polycarboxylic acids (aliphatic saturated or unsaturated polycarboxylic acids such as azelaic acid, dodecanoic acid, maleic acid, fumaric acid, itaconic acid, ricinoleic acid, dimerized linoleic acid, and aromatic polycarboxylic acids. Examples thereof include a polyol obtained by condensation polymerization of phthalic acid, isophthalic acid, terephthalic acid) and a polyol (at least one selected from the group consisting of the above low-molecular polyol and polyether polyol). The molecular weight of the polyester polyol is preferably 200 to 5,000. The molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
 ポリラクトン系ポリオールとしては、グリコール類やトリオール類等の重合開始剤に、ε-カプロラクトン、α-メチル-ε-カプロラクトン、ε-メチル-ε-カプロラクトン等と、β-メチル-σ-バレロラクトン等からなる群より選ばれる少なくとも1種を有機金属化合物、金属キレート化合物、脂肪酸金属アシル化合物などの触媒の存在下で付加重合させたポリオールが挙げられる。ポリラクトン系ポリオールの分子量は200~5000が好ましい。なお、膜シール材の製造時において成型加工性に優れるとの観点から、分子量は500~3000であることがより好ましい。 Polylactone-based polyols include polymerization initiators such as glycols and triols, ε-caprolactone, α-methyl-ε-caprolactone, ε-methyl-ε-caprolactone, and β-methyl-σ-valerolactone. Examples include polyols obtained by addition polymerization of at least one selected from the group consisting of organic metal compounds, metal chelate compounds, fatty acid metal acyl compounds and the like in the presence of a catalyst. The molecular weight of the polylactone polyol is preferably 200 to 5,000. The molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
 ヒマシ油系ポリオールとしては、ヒマシ油脂肪酸とポリオール(上記低分子ポリオールとポリエーテルポリオールからなる群より選ばれる少なくとも1種)との反応により得られる線状または分岐状ポリエステル、例えばヒマシ油脂肪酸のジグリセライド、モノグリセライド、ヒマシ油脂肪酸とトリメチロールアルカンとのモノ、ジ又はトリエステル、ヒマシ油脂肪酸とポリプロピレングリコールとのモノ、ジ、又はトリエステルなどが挙げられる。ヒマシ油系ポリオールの分子量は300~4000が好ましい。なお、膜シール材の製造時において成型加工性に優れるとの観点から、分子量は500~3000であることがより好ましい。 As the castor oil-based polyol, a linear or branched polyester obtained by a reaction between a castor oil fatty acid and a polyol (at least one selected from the group consisting of the above low-molecular polyol and polyether polyol), for example, a diglyceride of castor oil fatty acid. Monoglyceride, mono-, di- or triester of castor oil fatty acid and trimethylol alkane, mono-, di-, or triester of castor oil fatty acid and polypropylene glycol. The molecular weight of the castor oil-based polyol is preferably 300 to 4000. The molecular weight is more preferably 500 to 3000 from the viewpoint of excellent molding processability during the production of the membrane sealing material.
 ポリオレフィン系ポリオールとしては、例えばポリブタジエンもしくはブタジエンとスチレンあるいはアクリロニトリルとの共重合体の末端に水酸基を導入したポリブタジエン系ポリオール等が挙げられる。 Examples of the polyolefin-based polyol include polybutadiene-based polyol in which a hydroxyl group is introduced at the end of a copolymer of polybutadiene or butadiene and styrene or acrylonitrile.
 その他、末端にカルボキシル基と水酸基からなる群より選ばれる少なくとも1種を有するポリエステルに、アルキレンオキシド、例えばエチレンオキサイド、プロピレンオキサイド等を付加反応させて得られるポリエーテルエステル系ポリオール等が挙げられる。 Other examples include polyether ester polyols obtained by addition reaction of an alkylene oxide such as ethylene oxide or propylene oxide with a polyester having at least one selected from the group consisting of a carboxyl group and a hydroxyl group at the terminal.
 水酸基含有アミン系化合物としては、例えば、アミノ化合物のオキシアルキル化誘導体等として、アミノアルコール等を挙げることができる。 Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds.
 アミノアルコールとしては、例えば、エチレンジアミン等のアミノ化合物のプロピレンオキサイドもしくはエチレンオキサイド付加物である、N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミン、N,N,N’,N’-テトラキス[2-ヒドロキシエチル]エチレンジアミン等、モノ、ジおよびトリエタノールアミン、N-メチル-N,N’-ジエタノールアミン等を挙げることができる。この中でエチレンジアミン等のアミノ化合物のプロピレンオキサイドもしくはエチレンオキサイド付加物が好ましく、N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミンがより好ましい。N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミンを使用することにより、成形時の加工性向上、溶出物の低下等に効果を奏する。 Examples of amino alcohols include N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine, N, N, N ′, N, which are propylene oxide or ethylene oxide adducts of amino compounds such as ethylenediamine. Examples include '-tetrakis [2-hydroxyethyl] ethylenediamine, mono-, di- and triethanolamine, N-methyl-N, N'-diethanolamine, and the like. Of these, propylene oxide or ethylene oxide adducts of amino compounds such as ethylenediamine are preferred, and N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine is more preferred. Use of N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine is effective in improving processability during molding and lowering the eluate.
 また、該水酸基含有アミン系化合物を使用する場合の配合量は、ポリオール成分(B)の100質量%に対して1~30質量%の範囲が好ましく、中でも5~25質量%の範囲が特に好ましい。ポリオール(B)中の割合が1質量%未満だと、水酸基含有アミン系化合物の効果を得られず、30質量%を超えると反応性が高くなり過ぎ、作業性が悪くなり充填性が損なわれ、また、得られるシール材の硬度が高くなり過ぎるといった問題が生じる恐れがある。 The amount of the hydroxyl group-containing amine compound used is preferably in the range of 1 to 30% by mass, particularly preferably in the range of 5 to 25% by mass with respect to 100% by mass of the polyol component (B). . If the proportion in the polyol (B) is less than 1% by mass, the effect of the hydroxyl group-containing amine compound cannot be obtained, and if it exceeds 30% by mass, the reactivity becomes too high, the workability deteriorates and the filling property is impaired. Moreover, there is a possibility that the problem that the hardness of the obtained sealing material becomes too high may occur.
 <触媒(C)>
 触媒(C)としては、例えばイソシアネート基含有化合物(a2)と活性水素基含有化合物(b1)とのアロファネート化反応を促進し得るあらゆる既知の触媒を含包する。例えば、金属塩、4級アンモニウム塩、3級アミンである。
<Catalyst (C)>
As the catalyst (C), for example, any known catalyst that can promote the allophanatization reaction of the isocyanate group-containing compound (a2) and the active hydrogen group-containing compound (b1) is included. For example, metal salts, quaternary ammonium salts, and tertiary amines.
 金属塩としては、亜鉛アセチルアセトネート(ZnAcAc)、オクタン酸第一錫、オクタン酸亜鉛などの金属塩である。 Examples of the metal salt include metal salts such as zinc acetylacetonate (ZnAcAc), stannous octoate, and zinc octoate.
 4級アンモニウム塩としては、N,N,N,N,-テトラメチルアンモニウム、N,N,N-トリメチル-N-オクチルアンモニウムなどのテトラアルキルアンモニウムやN-(2-ヒドロキシエチル)-N,N,N,-トリメチルアンモニウム、N-(2-ヒドロキシプロピル)-N,N,N,-トリメチルアンモニウムなどのヒドロキシアルキルトリアルキルアンモニウムとクロライド、ブロマイド、ヒドロキシド、フォーメート、カプロエート、ヘキサノエート、2-エチルヘキサノエート、モノアルキルカーボネートなどの対イオンを組み合わせた化合物である。 Quaternary ammonium salts include tetraalkylammonium such as N, N, N, N, -tetramethylammonium, N, N, N-trimethyl-N-octylammonium, and N- (2-hydroxyethyl) -N, N. , N, -trimethylammonium, N- (2-hydroxypropyl) -N, N, N, -trimethylammonium and other hydroxyalkyltrialkylammonium and chloride, bromide, hydroxide, formate, caproate, hexanoate, 2-ethyl This compound is a combination of counter ions such as hexanoate and monoalkyl carbonate.
 3級アミンとしては、N,N,N-ベンジルジメチルアミン、N,N,N-ジベンジルメチルアミン、N,N,N-シクロヘキシルジメチルアミン、N-メチルモルホリン、N,N,N-トリベンジルアミン、N,N,N-トリプロピルアミン、N,N,N-トリブチルアミン、N,N,N-トリペンチルアミンまたはN,N,N-トリヘキシルアミンなどのトリアルキルアミンやN,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’,N’’-ペンタメチルジエチレントリアミンなどのポリメチルポリアルキレンポリアミンおよび2-(N,N-ジメチルアミノ)エタノール、3-(N,N-ジメチルアミノ)プロパノール、2-(N,N-ジメチルアミノ)-1-メチルプロパノール、{2-(N,N-ジメチルアミノ)エトキシ}エタノール、{2-(N,N-ジエチルアミノ)エトキシ}エタノールなどの3級アミノアルコール等が挙げられる。 Tertiary amines include N, N, N-benzyldimethylamine, N, N, N-dibenzylmethylamine, N, N, N-cyclohexyldimethylamine, N-methylmorpholine, N, N, N-tribenzyl Trialkylamines such as ruamine, N, N, N-tripropylamine, N, N, N-tributylamine, N, N, N-tripentylamine or N, N, N-trihexylamine and N, N, Polymethylpolyalkylenepolyamines such as N ′, N′-tetramethylethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine and 2- (N, N-dimethylamino) ethanol, 3- ( N, N-dimethylamino) propanol, 2- (N, N-dimethylamino) -1-methylpropanol, {2- (N, N-dimethyl) Mino) ethoxy} ethanol, {2- (N, 3 amino alcohol such as N- diethylamino) ethoxy} ethanol.
 触媒(C)は、イソシアネート成分(A)の質量に対し1~100ppmが好ましく、10~50ppmがより好ましい。1ppm未満では反応が進まない恐れがあり、100ppmを超えると反応が速く制御が困難となる恐れがある。 The catalyst (C) is preferably 1 to 100 ppm, more preferably 10 to 50 ppm based on the mass of the isocyanate component (A). If it is less than 1 ppm, the reaction may not proceed. If it exceeds 100 ppm, the reaction may be fast and difficult to control.
 <停止剤(D)>
 本発明においては、アロファネート化反応の停止剤として停止剤(D)を用いる。停止剤(D)としては、触媒(C)を失活させるあらゆる既知のものを含包する。例えば、リン酸、ピロリン酸、メタリン酸、ポリリン酸などのリン酸酸性を示す化合物、リン酸、ピロリン酸、メタリン酸、ポリリン酸のモノアルキル或いはジアルキルエステル、モノクロロ酢酸などのハロゲン化酢酸、塩化ベンゾイル、塩酸、硫酸、硫酸エステル、イオン交換樹脂、キレート剤等が挙げられる。停止剤(D)は触媒(C)のモル数に対し、当量以上加えることが好ましく、1.0~1.5倍モル量添加することが好ましい。
<Stopper (D)>
In the present invention, the terminator (D) is used as a terminator for the allophanatization reaction. The terminator (D) includes any known one that deactivates the catalyst (C). For example, phosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid and other phosphoric acid compounds, phosphoric acid, pyrophosphoric acid, metaphosphoric acid, monoalkyl or dialkyl ester of polyphosphoric acid, halogenated acetic acid such as monochloroacetic acid, benzoyl chloride Hydrochloric acid, sulfuric acid, sulfuric ester, ion exchange resin, chelating agent and the like. The terminator (D) is preferably added in an amount equal to or greater than the number of moles of the catalyst (C), and is preferably added in an amount of 1.0 to 1.5 times.
 本発明の第二の課題を解決するアロファネート基を含有するポリイソシアネート組成物は、MDIとアルコールとの反応生成物であって、アロファネート基とイソシアヌレート基のモル比が80:20~100:0であり、且つ金属触媒を含有しないことを特徴とする、アロファネート基含有ポリイソシアネート組成物である。 The polyisocyanate composition containing an allophanate group that solves the second problem of the present invention is a reaction product of MDI and an alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0. And an allophanate group-containing polyisocyanate composition characterized by not containing a metal catalyst.
 アロファネート化触媒として(H)3級アミン触媒を使用した場合、その反応は急激であるため制御が困難であり、また、目的とする反応率で反応を停止できたとしてもイソシアヌレートの生成量が多いため、プレポリマーが濁りやすい。 When the (H) tertiary amine catalyst is used as the allophanatization catalyst, the reaction is rapid and difficult to control, and even if the reaction can be stopped at the desired reaction rate, the amount of isocyanurate produced is low. Because there are many, prepolymer tends to become cloudy.
 そこで、(G)カルボン酸アミド、スルホン酸アミド及び前記式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種の存在下で反応を行うことが有用となる。 Therefore, it is useful to perform the reaction in the presence of at least one selected from the group consisting of (G) carboxylic acid amides, sulfonic acid amides and active methylene compounds represented by the above formula (2).
 (G)カルボン酸アミド、スルホン酸アミド及び式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種の存在下(H)3級アミン触媒で反応させることにより、反応が緩やかに進行し、かつ、アロファネート化が選択的に進行するため、イソシアヌレート基含有量の少ないプレポリマーが得られ、その反応制御も容易となる。 (G) The reaction proceeds slowly by reacting with a tertiary amine catalyst in the presence of at least one selected from the group consisting of carboxylic acid amides, sulfonic acid amides and active methylene compounds represented by formula (2). In addition, since allophanatization proceeds selectively, a prepolymer with a low isocyanurate group content can be obtained, and the reaction control is facilitated.
 本発明において用いられる(E)MDI(以後「E成分」とも言う)には、一般に入手できるいずれのMDIモノマーも使用できる。そのMDIモノマーのアイソマーは通常2,2’-MDIが0~5重量%、2,4’-MDIが0~95重量%、4,4’-MDIが5~100重量%である。 (E) MDI (hereinafter also referred to as “E component”) used in the present invention may be any generally available MDI monomer. The isomer of the MDI monomer is usually 0 to 5% by weight of 2,2'-MDI, 0 to 95% by weight of 2,4'-MDI, and 5 to 100% by weight of 4,4'-MDI.
 より低粘度のプレポリマーを得るためには、本発明において用いられるE成分は、前述のMDIモノマーが好ましいが、ある程度の高粘度化も許容されるならポリメリックMDIである、ポリメチレンポリフェニレンポリイソシアネートも使用できる。 In order to obtain a prepolymer having a lower viscosity, the E component used in the present invention is preferably the above-mentioned MDI monomer. However, if a certain degree of increase in viscosity is allowed, polymethylene polyphenylene polyisocyanate, which is polymeric MDI, is also used. Can be used.
 その場合のポリメチレンポリフェニレンポリイソシアネートの含有量は、使用するイソシアネート成分中0~50重量%が好ましい。50重量%を超えると粘度が高くなりすぎ、不溶解物も生成しやすくなる。 In this case, the content of polymethylene polyphenylene polyisocyanate is preferably 0 to 50% by weight in the isocyanate component used. When it exceeds 50% by weight, the viscosity becomes too high, and insoluble matter is easily generated.
 本発明において用いられる(F)少なくとも1つのアルコール成分(以後「F成分」とも言う)には、数平均官能基数1~2個の水酸基を含有する化合物、即ちモノオール又はジオールが使用できるが、フェノール性水酸基を含有する化合物はイソシアヌレート基の生成割合が高くなることで、粘度が高くなるため好ましくない。また、トリオール以上のポリオールも粘度が高くなるため好ましくない。 As the (F) at least one alcohol component (hereinafter also referred to as “F component”) used in the present invention, a compound containing a hydroxyl group having 1 to 2 number average functional groups, that is, a monool or a diol can be used. A compound containing a phenolic hydroxyl group is not preferred because the isocyanurate group generation rate is increased and the viscosity is increased. Also, triol or higher polyol is not preferable because of its high viscosity.
 本発明において用いられる、F成分の好ましいモノオールとしては、例えばメタノール、エタノール、プロパノール、1-及び2-ブタノール、1-ペンタノール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、1-オクタノール、2-オクタノール、2-エチルヘキサノール、3,5-ジメチル-1-ヘキサノール、2,2,4-トリメチル-1-ペンタノール、1-ノナノール、2,6-ジメチル-4-ヘプタノール、1-デカノール、1-ウンデカノール、1-ドデカノール、1-トリデカノール、1-テトラデカノール、1-ペンタデカノール、1-ヘキサデカノール、1-ヘプタデカノール、1-オクタデカノール、1-ノナデカノール、1-エイコサノール、1-ヘキサコサノール、1-ヘプタトリコンタノール、1-オレイルアルコール、2-オクチルドデカノール等の脂肪族モノアルコール、及びこれらの混合物等が挙げられる。 Preferred monools for the F component used in the present invention include, for example, methanol, ethanol, propanol, 1- and 2-butanol, 1-pentanol, 1-hexanol, 2-methyl-1-pentanol, and 4-methyl. -2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 1-octanol, 2-octanol, 2-ethylhexanol, 3,5-dimethyl-1-hexanol, 2,2,4-trimethyl-1 -Pentanol, 1-nonanol, 2,6-dimethyl-4-heptanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecane 1-heptadecanol, 1-octadecanol, 1-nonadecanol 1-eicosanol, 1-hexacosanol, 1-hepta Tricon pentanol, 1-oleyl alcohol, 2-aliphatic monoalcohols, such as octyldodecanol, and mixtures thereof.
 また、これら脂肪族アルコールに加え、例えばフェノール、クレゾール、キシレノール、ノニルフェノール等のフェノール性水酸基を含有する化合物を開始剤としたオキシアルキレン付加物であるポリアルキレングリコールモノアルキル/アリールエーテル及びこれらの混合物等が挙げられる。また、ポリアルキレングリコールのモノカルボン酸エステル及びこれらの混合物等が挙げられる。 In addition to these aliphatic alcohols, for example, polyalkylene glycol monoalkyl / aryl ethers, which are oxyalkylene adducts using compounds containing phenolic hydroxyl groups such as phenol, cresol, xylenol, and nonylphenol as initiators, and mixtures thereof Is mentioned. Moreover, the monocarboxylic acid ester of polyalkylene glycol, a mixture thereof, etc. are mentioned.
 本発明において用いられる、F成分の好ましいジオールとしては、例えばエチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、2,2’-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、2-メチル-2-ブチル-1,3-プロパンジオール等の脂肪族グリコールやこれらグリコールを開始剤としたオキシアルキレン付加物であるポリアルキレングリコール及びこれらの混合物等が挙げられる。 Preferred diols for the F component used in the present invention include, for example, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, Aliphatic glycols such as 1,5-pentanediol, 2,2′-dimethyl-1,3-propanediol, 1,6-hexanediol, 2-methyl-2-butyl-1,3-propanediol, and these glycols And polyalkylene glycols, which are oxyalkylene adducts having an initiator as the initiator, and mixtures thereof.
 本発明において用いられる(G)カルボン酸アミド、スルホン酸アミド及び前記式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種(以後「G成分」とも言う)のカルボン酸アミドとしては、例えばホルムアミド、アセトアミド、プロピオン酸アミド、ブタン酸アミド、イソブタン酸アミド、ヘキサン酸アミド、オクタン酸アミド、2-エチルヘキサン酸アミド、オレイン酸アミド、ステアリン酸アミド、ベンズアミド、2-フェニルアセトアミド、4-メチルベンズアミド、2-アミノベンズアミド、3-アミノベンズアミド、4-アミノベンズアミド及びこれらの混合物等が挙げられる。 As the (G) carboxylic acid amide used in the present invention, at least one (hereinafter also referred to as “G component”) carboxylic acid amide selected from the group consisting of a carboxylic acid amide, a sulfonic acid amide, and an active methylene compound represented by the above formula (2) For example, formamide, acetamide, propionic acid amide, butanoic acid amide, isobutanoic acid amide, hexanoic acid amide, octanoic acid amide, 2-ethylhexanoic acid amide, oleic acid amide, stearic acid amide, benzamide, 2-phenylacetamide, 4- Examples thereof include methylbenzamide, 2-aminobenzamide, 3-aminobenzamide, 4-aminobenzamide, and mixtures thereof.
 本発明において用いられるG成分のスルホン酸アミドとしては、例えばメチルスルホンアミド、ブチルスルホンアミド、t-ブチルスルホンアミド、フェニルスルホンアミド、ベンジルスルホンアミド、o-トルイルスルホンアミド、p-トルイルスルホンアミド、3-アミノフェニルスルホンアミド、4-アミノフェニルスルホンアミド及びこれらの混合物等が挙げられる。 Examples of the G sulfonic acid amide used in the present invention include methylsulfonamide, butylsulfonamide, t-butylsulfonamide, phenylsulfonamide, benzylsulfonamide, o-toluylsulfonamide, p-toluylsulfonamide, 3 -Aminophenylsulfonamide, 4-aminophenylsulfonamide and mixtures thereof.
 本発明において用いられるG成分の活性メチレン化合物としては、例えばアセチルアセトン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン、3,5-ヘプタンジオン、3,5-ヘプタンジオン、6-メチル-2,4-ヘプタンジオン、アセト酢酸メチル、アセト酢酸エチル、3-オキソペンタン酸メチル、マロン酸、マロン酸ジメチル、マロン酸ジエチル及びこれらの混合物等が挙げられる。 Examples of the active methylene compound of G component used in the present invention include acetylacetone, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, 3,5-heptanedione, 3,5- Examples include heptanedione, 6-methyl-2,4-heptanedione, methyl acetoacetate, ethyl acetoacetate, methyl 3-oxopentanoate, malonic acid, dimethyl malonate, diethyl malonate, and mixtures thereof.
 本発明において用いられる(H)3級アミン(以後「H成分」とも言う)としては、例えばトリアルキルアミン、ポリメチルポリアルキレンポリアミン、3級アミノアルコール等が使用できる。 As the (H) tertiary amine (hereinafter also referred to as “H component”) used in the present invention, for example, trialkylamine, polymethylpolyalkylenepolyamine, tertiary aminoalcohol and the like can be used.
 トリアルキルアミンとしては、例えばN,N,N-ベンジルジメチルアミン、N,N,N-ジベンジルメチルアミン、N,N,N-シクロヘキシルジメチルアミン、N-メチルモルホリン、N,N,N-トリベンジルアミン、N,N,N-トリプロピルアミン、N,N,N-トリブチルアミン、N,N,N-トリペンチルアミン又はN,N,N-トリヘキシルアミン等が挙げられる。 Examples of the trialkylamine include N, N, N-benzyldimethylamine, N, N, N-dibenzylmethylamine, N, N, N-cyclohexyldimethylamine, N-methylmorpholine, N, N, N-tone. Examples include rebenzylamine, N, N, N-tripropylamine, N, N, N-tributylamine, N, N, N-tripentylamine or N, N, N-trihexylamine.
 ポリメチルポリアルキレンポリアミンとしては、例えばN,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’,N’’-ペンタメチルジエチレントリアミン等が挙げられる。 Examples of the polymethylpolyalkylenepolyamine include N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine and the like.
 3級アミノアルコールとしては、例えば2-(ジメチルアミノ)エタノール、3-(ジメチルアミノ)プロパノール、2-(ジメチルアミノ)-1-メチルプロパノール、2-{2-(ジメチルアミノ)エトキシ}エタノール、2-{2-(ジエチルアミノ)エトキシ}エタノール、2-[{2-(ジメチルアミノ)エチル}メチルアミノ]エタノール等が挙げられる。 Examples of tertiary amino alcohols include 2- (dimethylamino) ethanol, 3- (dimethylamino) propanol, 2- (dimethylamino) -1-methylpropanol, 2- {2- (dimethylamino) ethoxy} ethanol, 2 -{2- (diethylamino) ethoxy} ethanol, 2-[{2- (dimethylamino) ethyl} methylamino] ethanol and the like.
 これらのうち3級アミノアルコールは反応中の揮発や、最終的な樹脂になった際に、それ自体の溶出が少ないことから特に好ましい。 Of these, tertiary amino alcohols are particularly preferred because of volatilization during the reaction and less elution when they become final resins.
 H成分のみで反応させた場合、反応が開始されるまでの時間(以後「誘導期間」とも言う)が長くなる場合は、4級アンモニウム塩の併用が有効である。4級アンモニウム塩は添加後数分で反応が開始されるため、製造時間の短縮に有用である。 When the reaction is carried out using only the H component, the combined use of a quaternary ammonium salt is effective when the time until the reaction starts (hereinafter also referred to as “induction period”) becomes long. Quaternary ammonium salts are useful for shortening the production time because the reaction starts within a few minutes after addition.
 このH成分に併用する4級アンモニウム塩としては、例えばテトラアルキルアンモニウムや、ヒドロキシアルキルトリアルキルアンモニウムと対イオンを組み合わせた化合物等が使用できる。 As the quaternary ammonium salt used in combination with the H component, for example, a tetraalkylammonium, a compound in which a hydroxyalkyltrialkylammonium is combined with a counter ion, or the like can be used.
 テトラアルキルアンモニウムとしては、例えばN,N,N,N,-テトラメチルアンモニウム、N,N,N-トリメチル-N-オクチルアンモニウム等が挙げられる。 Examples of tetraalkylammonium include N, N, N, N, -tetramethylammonium, N, N, N-trimethyl-N-octylammonium and the like.
 ヒドロキシアルキルトリアルキルアンモニウムとしては、例えばN-(2-ヒドロキシエチル)-N,N,N-トリメチルアンモニウム、N-(2-ヒドロキシプロピル)-N,N,N,-トリメチルアンモニウム等が挙げられる。 Examples of hydroxyalkyltrialkylammonium include N- (2-hydroxyethyl) -N, N, N-trimethylammonium, N- (2-hydroxypropyl) -N, N, N, -trimethylammonium and the like.
 上記アンモニウムと組み合わせる対イオンとしては、例えばクロライド、ブロマイド、ヒドロキシド、フォーメート、カプロエート、ヘキサノエート、2-エチルヘキサノエート、モノアルキルカーボネート等が挙げられる。 Examples of the counter ion combined with ammonium include chloride, bromide, hydroxide, formate, caproate, hexanoate, 2-ethylhexanoate, monoalkyl carbonate, and the like.
 これらの中で、テトラアルキルアンモニウムとしてはいずれも好適であるが、組み合わせる対イオンとしては、MDIとの相溶性の観点からカルボキシレートやモノアルキルカーボネートが好ましい。 Of these, tetraalkylammonium is suitable as the counter ion, but as the counter ion to be combined, carboxylate and monoalkyl carbonate are preferable from the viewpoint of compatibility with MDI.
 なお、3級アミンを使用せず、4級アンモニウム塩だけではG成分で反応を制御できず、反応途中で失活するため有効ではない。 It should be noted that the reaction is not controlled by the G component without using a tertiary amine and the quaternary ammonium salt alone is not effective because it deactivates during the reaction.
 本発明において用いられるG成分は、E成分とF成分によるウレタン化反応の直前からアロファネート化反応の開始直後までの間のいずれにでも添加することができるが、G成分添加後、間をおいてH成分を添加すると、その効果が発揮できなくなるため、ウレタン化反応の直前からウレタン化反応完了後までの間においてH成分添加の直前からアロファネート化が開始されるまでの間にG成分を添加するか、又はG成分とH成分を同時に添加することが好ましい。 The G component used in the present invention can be added at any time from immediately before the urethanization reaction by the E component and the F component to immediately after the start of the allophanatization reaction. If the H component is added, the effect cannot be exerted, so the G component is added immediately before the urethanization reaction and after the completion of the urethanization reaction, immediately before the addition of the H component and until the allophanatization starts. Or it is preferable to add G component and H component simultaneously.
 本発明におけるH成分の添加量は、一般的にはE成分とF成分の総量に対し、0.1~100ppmが好ましく、その触媒活性にもよるが、1~50ppmが特に好ましい。0.1ppm未満では反応が進まない恐れがあり、100ppmを超えて添加すると反応が速く制御が困難となる恐れがある。 In general, the amount of addition of the H component in the present invention is preferably 0.1 to 100 ppm with respect to the total amount of the E component and the F component, and particularly preferably 1 to 50 ppm, depending on its catalytic activity. If it is less than 0.1 ppm, the reaction may not proceed, and if it exceeds 100 ppm, the reaction may be fast and difficult to control.
 また、本発明において用いられるG成分の添加量は、H成分の0.1~50倍モル程度が好ましく、0.1倍モル未満では反応が急激となり制御ができず、50倍モルを超えて添加すると反応がほとんど進まなくなる恐れがある。 Further, the amount of G component used in the present invention is preferably about 0.1 to 50 times mol of H component, and if it is less than 0.1 times mol, the reaction becomes abrupt and cannot be controlled, and exceeds 50 times mol. If added, the reaction may hardly proceed.
 E成分とF成分を、G成分及びH成分でアロファネート化を行う温度は、より高温であるほどアロファネート基の生成割合が高く低粘度になりやすいが、ウレトジオン化、カルボジイミド化等の副反応が起こりやすくなり、低温での反応ではイソシアヌレート基の生成量が多くなり粘度が高くなるため、その反応温度は20℃以上200℃以下が好ましく、イソシアヌレート基の生成割合を20モル%以下に抑え、より低粘度とするためには、60℃以上160℃以下が好ましい。 The temperature at which the E component and the F component are allophanatized with the G component and the H component, the higher the temperature, the more the allophanate group is produced and the lower the viscosity, but side reactions such as uretdioneization and carbodiimidization occur. In the reaction at a low temperature, the amount of isocyanurate groups produced is increased and the viscosity is increased. Therefore, the reaction temperature is preferably 20 ° C. or more and 200 ° C. or less, and the production ratio of isocyanurate groups is suppressed to 20 mol% or less. In order to make it lower viscosity, 60 degreeC or more and 160 degrees C or less are preferable.
 本発明において使用される(J)触媒毒(以後「J成分」とも言う)としては、酸性物質が適当であり、例えば無水塩化水素、硫酸、燐酸、モノアルキル硫酸エステル、アルキルスルホン酸、アルキルベンゼンスルホン酸、モノ又はジアルキル燐酸エステル、塩化ベンゾイルやルイス酸も含まれる。その添加量は触媒であるH成分の3級アミン又は4級アンモニウム塩のモル数に対し当量以上加えることが好ましく、1.0~1.5倍モル当量加えることが好ましい。 As the (J) catalyst poison (hereinafter also referred to as “J component”) used in the present invention, an acidic substance is suitable, for example, anhydrous hydrogen chloride, sulfuric acid, phosphoric acid, monoalkyl sulfate, alkyl sulfonic acid, alkyl benzene sulfone. Also included are acids, mono- or dialkyl phosphates, benzoyl chloride and Lewis acids. The amount added is preferably equivalent to or more, and preferably 1.0 to 1.5 times the molar equivalent of the number of moles of the tertiary amine or quaternary ammonium salt of the H component as the catalyst.
 以下に実施例および比較例を挙げて、本発明をさらに具体的に説明する。但し、本発明はこれらの例によって何ら限定して解釈されるものではない。なお、以下において「%」は特に断りのない限り「重量%」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not construed as being limited to these examples. In the following, “%” means “% by weight” unless otherwise specified.
 [実施形態1]
 以下の成分を実施例および比較例で使用した。
<イソシアネート(a11)>
4,4’-MDI、商品名「ミリオネートMT(東ソー社製)」、イソシアネート基含有量=33.6(質量%)
<イソシアネート(a12)>
2,4’-MDIおよび4,4’-MDIの混合物、商品名「ミリオネートNM(東ソー社製)」、イソシアネート基含有量=33.6(質量%)
<イソシアネート(a13)>
4,4’-MDIのカルボジイミド変性体、商品名「コロネートMX(東ソー社製)」、イソシアネート基含有量=29.1(質量%)
<イソシアネート(a14)>
4,4’-MDIのカルボジイミド変性体、商品名「ミリオネートMTL-C(東ソー社製)」、イソシアネート基含有量=28.6(質量%)
<ポリオール(b11)>
2-エチルヘキサノール、官能基数=1.0、分子量=130
<ポリオール(b12)>
イソトリデカノール、官能基数=1.0、分子量=200、水酸基価=275(mgKOH/g)
<ポリオール(b13)>
ヒマシ油、商品名「ヒマシ油LAV(伊藤製油社製)」、平均官能基数=2.7、水酸基価=160(mgKOH/g)、数平均分子量:1000
<ポリオール(b14)>
ポリプロピレングリコール、平均官能基数=2、水酸基価=110(mgKOH/g)、数平均分子量:1000
<ポリオール(b15)>
N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミン、官能基数=4.0、水酸基価=760(mgKOH/g)
<触媒(C)>
アセチルアセトン亜鉛
<停止剤(D)>
2-エチルヘキシルホスフェート(モノエステル:ジエステル=1:1モル)
[Embodiment 1]
The following components were used in the examples and comparative examples.
<Isocyanate (a11)>
4,4′-MDI, trade name “Millionate MT (manufactured by Tosoh Corporation)”, isocyanate group content = 33.6 (mass%)
<Isocyanate (a12)>
Mixture of 2,4′-MDI and 4,4′-MDI, trade name “Millionate NM (manufactured by Tosoh Corporation)”, isocyanate group content = 33.6 (mass%)
<Isocyanate (a13)>
Modified carbodiimide of 4,4′-MDI, trade name “Coronate MX (manufactured by Tosoh Corporation)”, isocyanate group content = 29.1 (mass%)
<Isocyanate (a14)>
Modified carbodiimide of 4,4′-MDI, trade name “Millionate MTL-C (manufactured by Tosoh Corporation)”, isocyanate group content = 28.6 (mass%)
<Polyol (b11)>
2-ethylhexanol, number of functional groups = 1.0, molecular weight = 130
<Polyol (b12)>
Isotridecanol, functional group number = 1.0, molecular weight = 200, hydroxyl value = 275 (mgKOH / g)
<Polyol (b13)>
Castor oil, trade name “castor oil LAV (manufactured by Ito Oil Co., Ltd.)”, average functional group number = 2.7, hydroxyl value = 160 (mgKOH / g), number average molecular weight: 1000
<Polyol (b14)>
Polypropylene glycol, average number of functional groups = 2, hydroxyl value = 110 (mgKOH / g), number average molecular weight: 1000
<Polyol (b15)>
N, N, N ′, N′-tetrakis [2-hydroxypropyl] ethylenediamine, functional group number = 4.0, hydroxyl value = 760 (mgKOH / g)
<Catalyst (C)>
Acetylacetone zinc <stopper (D)>
2-ethylhexyl phosphate (monoester: diester = 1: 1 mol)
 〔製造例1:イソシアネート成分(A-1)の製造〕
 温度計、攪拌機、窒素シール管、冷却管を備えた2Lサイズの4つ口フラスコの内部を窒素置換した。このフラスコにイソシアネート(a11)を871.9g仕込み、昇温および攪拌を開始した。温度が70℃に達したところで、ポリオール(b11)を128.1g添加し、窒素雰囲気下、90℃で1時間にわたり攪拌混合することによって反応させて、イソシアネート基末端プレポリマーを得た。これに触媒(C)を添加し、90℃に加熱し、内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量21.0%到達予測時点で停止剤(D)を所定量加え反応を停止し、イソシアネート成分(A-1)を得た。イソシアネート成分(A-1)は淡黄色透明であり、25℃における粘度は550mPa・sであった。
[Production Example 1: Production of isocyanate component (A-1)]
The inside of a 2 L four-necked flask equipped with a thermometer, a stirrer, a nitrogen seal tube, and a cooling tube was purged with nitrogen. Into this flask, 871.9 g of isocyanate (a11) was charged, and heating and stirring were started. When the temperature reached 70 ° C., 128.1 g of polyol (b11) was added and reacted by stirring and mixing at 90 ° C. for 1 hour under a nitrogen atmosphere to obtain an isocyanate group-terminated prepolymer. The catalyst (C) was added to this, heated to 90 ° C., the reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to reach 21.0%, the terminator (D) was placed. The reaction was stopped by adding a fixed amount to obtain an isocyanate component (A-1). The isocyanate component (A-1) was light yellow and transparent, and its viscosity at 25 ° C. was 550 mPa · s.
 〔製造例2~4、13、14:イソシアネート成分(A-2)~(A-4)、(A-13)、(A-14)の製造〕
 原料の組成を表1に記載の組成としたこと以外は製造例1と同様にして表1に示すイソシアネート成分(A-2)~(A-4)、(A-13)、(A-14)を得た。
[Production Examples 2 to 4, 13, and 14: Production of isocyanate components (A-2) to (A-4), (A-13), and (A-14)]
Isocyanate components (A-2) to (A-4), (A-13), (A-14) shown in Table 1 in the same manner as in Production Example 1, except that the composition of the raw material was changed to the composition shown in Table 1. )
 〔製造例5:イソシアネート成分(A-5)の製造〕
 温度計、攪拌機、窒素シール管、冷却管を備えた2Lサイズの4つ口フラスコの内部を窒素置換した。このフラスコに、イソシアネート(a11)を724.2g仕込み、昇温および攪拌を開始した。温度が50℃に達したところで、ポリオール(b13)を275.8g添加し、窒素雰囲気下、70℃で5時間にわたり攪拌混合することによって反応させて、イソシアネート基末端プレポリマー(A-5)を得た。イソシアネート成分(A-5)は淡黄色透明であり、NCO含有量は21.0%、25℃における粘度は480mPa・sであった。
[Production Example 5: Production of isocyanate component (A-5)]
The inside of a 2 L four-necked flask equipped with a thermometer, a stirrer, a nitrogen seal tube, and a cooling tube was purged with nitrogen. Into this flask, 724.2 g of isocyanate (a11) was charged, and heating and stirring were started. When the temperature reached 50 ° C., 275.8 g of polyol (b13) was added and reacted by stirring and mixing at 70 ° C. for 5 hours under a nitrogen atmosphere, whereby the isocyanate group-terminated prepolymer (A-5) was reacted. Obtained. The isocyanate component (A-5) was pale yellow and transparent, had an NCO content of 21.0% and a viscosity at 25 ° C. of 480 mPa · s.
 〔製造例6~12:イソシアネート成分(A-6)~(A-12)の製造〕
 原料の組成を表2に記載の組成としたこと以外は製造例5と同様にして表2に示すイソシアネート成分(A-6)~(A-12)を得た。
[Production Examples 6 to 12: Production of isocyanate components (A-6) to (A-12)]
Isocyanate components (A-6) to (A-12) shown in Table 2 were obtained in the same manner as in Production Example 5 except that the composition of the raw material was changed to the composition shown in Table 2.
 〔調製例1:ポリオール成分(B-1)の調製〕
 ポリオール(b13)80質量部、ポリオール(b15)20質量部を混合し、ポリオール成分(B-1)を調製した。
[Preparation Example 1: Preparation of polyol component (B-1)]
A polyol component (B-1) was prepared by mixing 80 parts by mass of the polyol (b13) and 20 parts by mass of the polyol (b15).
 <実施例1~4、比較例1~6>
 イソシアネート成分として「A-1」~「A-4」、「A-6」、「A-8」~「A-12」、「A-13」、「A-14」、ポリオール成分として「B-1」を、表3,4の組み合わせで、イソシアネート基/活性水素基=1.00(当量比)になるように混合して、ポリウレタン樹脂形成性組成物を得た。なお、「A-5」、「A-7」については、低温貯蔵安定性が悪く濁りや固形物が発生したため、「B-1」と混合した組成物としなかった。
<Examples 1 to 4, Comparative Examples 1 to 6>
“A-1” to “A-4”, “A-6”, “A-8” to “A-12”, “A-13”, “A-14” as the isocyanate component, and “B” as the polyol component −1 ”was mixed in the combinations of Tables 3 and 4 so that isocyanate group / active hydrogen group = 1.00 (equivalent ratio) to obtain a polyurethane resin-forming composition. In addition, “A-5” and “A-7” were not mixed with “B-1” because they were poor in low-temperature storage stability and generated turbidity and solids.
 <粘度測定>
 上記(A-1)~(A-14)の液温25℃における粘度は、B型回転粘度計を用いて測定した。
<Viscosity measurement>
The viscosities of the above (A-1) to (A-14) at a liquid temperature of 25 ° C. were measured using a B-type rotational viscometer.
 <モノマーMDI含有量および(a1)構造体含有量測定>
 上記(A-1)~(A-14)において、モノマーMDIの含有量(PA%)および(a1)構造体含有量(PA%)は、GPC測定により、下記の条件および方法により求めた。
<Monomer MDI Content and (a1) Structure Content Measurement>
In the above (A-1) to (A-14), the monomer MDI content (PA%) and (a1) structure content (PA%) were determined by GPC measurement under the following conditions and methods.
 〔測定条件〕
測定装置:「HLC-8120(商品名)」(東ソー社製)
カラム:充填剤として、TSKgel G3000HXL、TSKgel G2000HXL、TSKgel G1000HXL(いずれも商品名、東ソー社製)の3種をそれぞれ充填したカラムを直列に接続して、カラム温度40℃にて測定。
検出器:RI(屈折率)計
溶離液:テトラヒドロフラン(THF)(流量:1ml/min、40℃)
検量線:以下のグレードのポリスチレン(TSK standard POLYSTYRENE)を用いて、検量線を得た。F-2(1.81×104)F-1(1.02×104)A-5000(5.97×103)A-2500(2.63×103)A-500(Mw=6.82×102、5.78×102、4.74××102、3.70×102、2.66×102)トルエン(Mw=92)
サンプル:サンプル0.05gのTHF10ml溶液。
〔Measurement condition〕
Measuring device: “HLC-8120 (trade name)” (manufactured by Tosoh Corporation)
Column: Columns filled with three kinds of TSKgel G3000HXL, TSKgel G2000HXL, and TSKgel G1000HXL (all trade names, manufactured by Tosoh Corporation) as packing materials were connected in series, and measured at a column temperature of 40 ° C.
Detector: RI (refractive index) meter Eluent: Tetrahydrofuran (THF) (Flow rate: 1 ml / min, 40 ° C.)
Calibration curve: A calibration curve was obtained using the following grade polystyrene (TSK standard POLYSTYRENE). F-2 (1.81 × 104) F-1 (1.02 × 104) A-5000 (5.97 × 103) A-2500 (2.63 × 103) A-500 (Mw = 6.82 ×) 102, 5.78 × 102, 4.74 ×× 102, 3.70 × 102, 2.66 × 102) Toluene (Mw = 92)
Sample: 0.05 g sample in 10 ml THF.
 〔測定方法〕
 始めにポリスチレンを標準物質として、屈折率差により検出して得られたチャートから、検量線を得た。次に各サンプルについて、同じ検量線に基づき屈折率差により検出して得られたチャートから、モノマーMDIを示すピークトップ分子量(数平均分子量)230付近のピークのPA%、および(a1)構造体を示すピークトップ分子量(数平均分子量)3800,3360,2600,2000,1260,700付近のPA%を求めた。
〔Measuring method〕
First, a calibration curve was obtained from a chart obtained by detecting the refractive index difference using polystyrene as a standard substance. Next, for each sample, from the chart obtained by detecting the difference in refractive index based on the same calibration curve, the PA% of the peak near the peak top molecular weight (number average molecular weight) 230 indicating the monomer MDI, and (a1) structure The PA% near the peak top molecular weight (number average molecular weight) 3800, 3360, 2600, 2000, 1260, 700 was determined.
 <低温貯蔵安定性>
 上記(A-1)~(A-14)を0℃環境下、3ヶ月放置しサンプルの外観を確認した。淡黄色透明のものを「○」、濁り又は固形物の発生が見られるものを「×」とした。
<Low temperature storage stability>
The above (A-1) to (A-14) were left in a 0 ° C. environment for 3 months to confirm the appearance of the sample. A pale yellow transparent material was designated as “◯”, and a turbid or solid product was observed as “x”.
 <硬化物の硬度の評価>
 表3、4に示す組み合わせによるポリウレタン樹脂形成性組成物について、各々、減圧脱泡(10~20kPaで3分間)した後、ステンレス製金型(100mm×100mm×8mm)に流し込んだ。これを45℃で2日間静置キュアした後に脱型し、硬化物を得た。得られた硬化物について、25℃におけるショアD硬度を測定した。結果を表3、4に示す。なお、硬度の測定はJIS K 7312に準じて行った。
<Evaluation of hardness of cured product>
Each of the polyurethane resin-forming compositions having combinations shown in Tables 3 and 4 was degassed under reduced pressure (10 to 20 kPa for 3 minutes) and then poured into a stainless steel mold (100 mm × 100 mm × 8 mm). This was left to cure at 45 ° C. for 2 days and then demolded to obtain a cured product. About the obtained hardened | cured material, the Shore D hardness in 25 degreeC was measured. The results are shown in Tables 3 and 4. The hardness was measured according to JIS K 7312.
 <混合初期粘度の評価>
 表3、4に示す組み合わせによるポリウレタン樹脂形成性組成物について、各々、液温25℃、イソシアネート基/活性水素基=1.00(当量比)になるように主剤と硬化剤を均一混合して、ポリウレタン樹脂形成性組成物を得た段階における粘度を測定した。結果を表3、4に示す。
<Evaluation of initial mixing viscosity>
For the polyurethane resin-forming compositions having the combinations shown in Tables 3 and 4, the main agent and the curing agent were uniformly mixed so that the liquid temperature was 25 ° C. and the isocyanate group / active hydrogen group = 1.00 (equivalent ratio), respectively. The viscosity at the stage where the polyurethane resin-forming composition was obtained was measured. The results are shown in Tables 3 and 4.
 <反応性の評価>
 表3、4に示す組み合わせによるポリウレタン樹脂形成性組成物について、各々、液温25℃、イソシアネート基/活性水素基=1.00(当量比)になるように主剤と硬化剤を均一混合(主剤と硬化剤との合計=100g)した後、25℃雰囲気下で、回転粘度計(B型、4号ローター)を用いて粘度上昇を追跡し、主剤と硬化剤との混合を開始した時点から、組成物の粘度が50000mPa・sに到達するまでの時間をポットライフとし、反応性を評価した。結果を表3、4に示す。ポットライフは、成型性を考慮し、2.5分以上7分未満であれば良好とした。
<Evaluation of reactivity>
For the polyurethane resin-forming compositions having the combinations shown in Tables 3 and 4, the main agent and the curing agent are uniformly mixed so that the liquid temperature is 25 ° C. and the isocyanate group / active hydrogen group is 1.00 (equivalent ratio). And the curing agent = 100 g), and after increasing the viscosity using a rotational viscometer (B type, No. 4 rotor) in an atmosphere at 25 ° C., the mixing of the main agent and the curing agent was started. The time until the viscosity of the composition reached 50000 mPa · s was defined as the pot life, and the reactivity was evaluated. The results are shown in Tables 3 and 4. In consideration of moldability, the pot life was good if it was 2.5 minutes or more and less than 7 minutes.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表1、2に示す、製造例1~4、13、14に係るイソシアネート成分(A-1)~(A-4)、(A-13)、(A-14)は、低粘度でありかつ低温貯蔵安定性に優れる。これに対し、製造例5および製造例7に係るイソシアネート成分(A-5)及び(A-7)は、低粘度であるものの、低温貯蔵安定性に劣っている。また、製造例9~12に係るイソシアネート成分(A-9)~(A-12)は、低温貯蔵安定性は優れるものの、粘度が高い。 The isocyanate components (A-1) to (A-4), (A-13) and (A-14) according to Production Examples 1 to 4, 13, and 14 shown in Tables 1 and 2 have a low viscosity. In addition, it has excellent low-temperature storage stability. In contrast, the isocyanate components (A-5) and (A-7) according to Production Example 5 and Production Example 7 have low viscosity but are inferior in low-temperature storage stability. In addition, the isocyanate components (A-9) to (A-12) according to Production Examples 9 to 12 are excellent in low-temperature storage stability but have a high viscosity.
 上記表3、4に示すように、実施例1~6に係るポリウレタン樹脂形成性組成物は、何れも混合初期粘度が低く、ポットライフが短いことから成型性のバランスがとれている。これに対し比較例1および比較例2に係るポリウレタン樹脂形成性組成物は、混合初期粘度が低いものの、ポットライフが長いため、膜モジュールの成形に時間がかかる。また、比較例3~6に係るポリウレタン樹脂形成性組成物は、何れも混合粘度が高いため、膜モジュール成型時の充填性に劣り、充填不良を起こすことが懸念される。 As shown in Tables 3 and 4 above, the polyurethane resin-forming compositions according to Examples 1 to 6 all have a low initial mixing viscosity and a short pot life, so that the moldability is balanced. On the other hand, the polyurethane resin-forming compositions according to Comparative Example 1 and Comparative Example 2 have a low initial mixing viscosity, but take a long time to form a membrane module because of their long pot life. In addition, since the polyurethane resin-forming compositions according to Comparative Examples 3 to 6 all have high mixing viscosities, there is a concern that the filling property at the time of membrane module molding is inferior and poor filling occurs.
 [実施形態2]
 以下の成分を実施例及び比較例で使用した。
[Embodiment 2]
The following components were used in the examples and comparative examples.
 イソE1;ミリオネートNM(東ソー社製、アイソマー55.0%)
 イソE2;ミリオネートMT(東ソー社製、アイソマー1.0%)
 ポリF1;2-ブタノール(東京化成製)
 ポリF2;2-オクチルドデカノール(花王社製 商品名カルコール200GD)
 ポリF3;トリデカノール(KHネオケム社製)
 アミドG1;3-アミノフェニルスルホンアミド(東京化成製)
 アミドG2;2-アミノベンズアミド(東京化成製)
 メチレンG3;アセチルアセトン(東京化成製)
 メチレンG4;マロン酸ジエチル(東京化成製)
 触媒H1;2-[{2-(ジメチルアミノ)エチル}メチルアミノ]エタノール(東ソー社製 商品名TOYOCAT RX5)
 触媒H2;2-{2-(ジメチルアミノ)エトキシ}エタノール(東ソー社製 商品名TOYOCAT RX3)
 触媒H3;トリメチルオクチルアンモニウム蟻酸塩
 触媒毒J;塩化ベンゾイル(東京化成製)
IsoE1; Millionate NM (manufactured by Tosoh Corporation, isomer 55.0%)
IsoE2; Millionate MT (manufactured by Tosoh Corporation, isomer 1.0%)
Poly F1; 2-butanol (manufactured by Tokyo Chemical Industry)
Poly F2; 2-octyldodecanol (trade name Calcoal 200GD manufactured by Kao)
Poly F3; Tridecanol (manufactured by KH Neochem)
Amide G1; 3-aminophenylsulfonamide (manufactured by Tokyo Chemical Industry)
Amide G2; 2-aminobenzamide (manufactured by Tokyo Chemical Industry)
Methylene G3; acetylacetone (manufactured by Tokyo Chemical Industry)
Methylene G4; diethyl malonate (manufactured by Tokyo Chemical Industry)
Catalyst H1; 2-[{2- (dimethylamino) ethyl} methylamino] ethanol (trade name TOYOCAT RX5 manufactured by Tosoh Corporation)
Catalyst H2; 2- {2- (dimethylamino) ethoxy} ethanol (trade name TOYOCAT RX3 manufactured by Tosoh Corporation)
Catalyst H3; Trimethyloctylammonium formate Catalyst poison J; Benzoyl chloride (manufactured by Tokyo Chemical Industry)
 アロファネート基及びイソシアヌレート基の定量は13C-NMRを用いて行った。
(1)測定装置     :ECX400M(日本電子社製)
(2)測定温度     :23℃
(3)試料濃度     :0.1g/1mL
(4)溶剤       :クロロホルム-d
(5)カップリング   :なし
(6)パルス待ち時間  :2秒
(7)積算回数     :8000回
(8)評価方法     :下記に示す各官能基のカルボニルのシグナルの面積比から、各官能基のモル比を算出した。
・アロファネート基 ;151ppm,156ppm
・イソシアヌレート基;149ppm
Quantification of allophanate groups and isocyanurate groups was performed using 13 C-NMR.
(1) Measuring device: ECX400M (manufactured by JEOL Ltd.)
(2) Measurement temperature: 23 ° C
(3) Sample concentration: 0.1 g / 1 mL
(4) Solvent: Chloroform-d
(5) Coupling: None (6) Pulse waiting time: 2 seconds (7) Integration number: 8000 times (8) Evaluation method: From the area ratio of the carbonyl signal of each functional group shown below, the mole of each functional group The ratio was calculated.
・ Allophanate group: 151ppm, 156ppm
-Isocyanurate group: 149 ppm
 実施例及び比較例において所定量とは表5記載の各組成量をいう。 In Examples and Comparative Examples, the predetermined amount means each composition amount shown in Table 5.
 実施例7
 1リットル容の四口フラスコにイソE1を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF1を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF1で1%に希釈したアミドG1を所定量添加、次いで直ちにポリB1で1%に希釈した触媒H1を所定量添加した。触媒H1添加約20分後に液温の上昇が確認でき、その後内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が22.8%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマーが得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図1に示す。安定した反応性を示し、反応の制御は容易であった。
Example 7
A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H1 diluted to 1% with polyB1 was immediately added. About 20 minutes after addition of catalyst H1, the temperature of the liquid can be confirmed, and the reaction is followed while sampling the internal liquid and measuring the NCO content, and when the NCO content is predicted to be 22.8%, catalyst poison J Was added in a predetermined amount to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained. The properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
 実施例8
 1リットル容の四口フラスコにイソE2を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF1を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF1で1%に希釈した触媒H1を所定量添加した。触媒H1添加約15分後に液温の上昇が確認できた時点で、ポリF1で1%に希釈したアミドG1を所定量添加した。内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が22.8%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマー(P-1)が得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図1に示す。安定した反応性を示し、反応の制御は容易であった。
Example 8
A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. When an increase in the liquid temperature was confirmed about 15 minutes after addition of the catalyst H1, a predetermined amount of amide G1 diluted to 1% with polyF1 was added. The reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to be 22.8%, a predetermined amount of catalyst poison J was added to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, so that the prepolymer (P-1) which was the object of the present invention was obtained. The properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
 実施例9
 1リットル容の四口フラスコにイソE1を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF1を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF1で1%に希釈したアミドG1を所定量添加、次いで直ちにポリF1で1%に希釈した触媒H2を所定量添加した。触媒H2添加約80分後に液温の上昇が確認でき、その後内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が22.8%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマーが得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図1に示す。安定した反応性を示し、反応の制御は容易であった。
Example 9
A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature stabilized at 110 ° C., a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H2 diluted to 1% with polyF1 was immediately added. About 80 minutes after addition of catalyst H2, the temperature of the liquid can be confirmed, and the reaction is followed while sampling the internal liquid and measuring the NCO content, and when the NCO content is predicted to be 22.8%, catalyst poison J Was added in a predetermined amount to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained. The properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
 実施例10
 1リットル容の四口フラスコにイソE1を所定量加え、窒素気流下攪拌しながら70℃に温調した。次いで攪拌しながらポリF1を所定量加え、次いで直ちにポリF1で1%に希釈した触媒H3を所定量添加した。次いでポリF1で1%に希釈したアミドG1を所定量添加、次いで直ちにポリF1で1%に希釈した触媒H2を所定量添加し、110℃に温調した。触媒H3添加約15分後に液温の上昇が確認でき、その後内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が22.8%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマーが得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図1に示す。安定した反応性を示し、反応の制御は容易であった。
Example 10
A predetermined amount of isoE1 was added to a 1-liter four-necked flask, and the temperature was adjusted to 70 ° C. while stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added while stirring, and then a predetermined amount of catalyst H3 diluted to 1% with poly F1 was immediately added. Next, a predetermined amount of amide G1 diluted to 1% with polyF1 was added, and then a predetermined amount of catalyst H2 diluted to 1% with polyF1 was immediately added, and the temperature was adjusted to 110 ° C. About 15 minutes after the addition of catalyst H3, the rise in the liquid temperature can be confirmed, and the reaction is followed while sampling the internal liquid and measuring the NCO content, and when the NCO content is predicted to be 22.8%, catalyst poison J Was added in a predetermined amount to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained. The properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
 実施例11
 1リットル容の四口フラスコにイソE2を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF2を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF2で1%に希釈した触媒H1を所定量添加した。触媒H1添加約15分後に液温の上昇が確認できた時点で、ポリF2で1%に希釈したアミドG2を所定量添加した。内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が13.8%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは25℃において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマー(P-2)が得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図1に示す。安定した反応性を示し、反応の制御は容易であった。
Example 11
A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F2 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF2 was added. When an increase in the liquid temperature was confirmed approximately 15 minutes after addition of the catalyst H1, a predetermined amount of amide G2 diluted to 1% with polyF2 was added. The reaction was followed while sampling the internal solution and measuring the NCO content, and when the NCO content was predicted to be 13.8%, a predetermined amount of catalyst poison J was added to stop the reaction. The synthesized prepolymer was a pale yellow transparent liquid at 25 ° C., and the amount of isocyanurate groups was small, so that the prepolymer (P-2) which was the object of the present invention was obtained. The properties and the molar ratio of each functional group are shown in Table 5, and the transition of the NCO content during the reaction is shown in FIG. The reaction was stable and control of the reaction was easy.
 実施例12
 1リットル容の四口フラスコにイソE2を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF3を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF3で1%に希釈したメチレンE3を所定量添加、次いで直ちにポリF3で1%に希釈した触媒H1を所定量添加した。触媒H1添加約20分後に液温の上昇が確認でき、その後内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が16.1%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマー(P-3)が得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図2に示す。安定した反応性を示し、反応の制御は容易であった。
Example 12
A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F3 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of methylene E3 diluted to 1% with polyF3 was added, and then a predetermined amount of catalyst H1 diluted to 1% with polyF3 was immediately added. About 20 minutes after the addition of catalyst H1, the temperature of the liquid can be confirmed, and the reaction is followed while sampling the internal liquid and measuring the NCO content, and when the NCO content is predicted to be 16.1%, catalyst poison J Was added in a predetermined amount to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, so that the prepolymer (P-3) which was the object of the present invention was obtained. Table 5 shows the properties and the molar ratio of each functional group, and FIG. 2 shows the transition of the NCO content during the reaction. The reaction was stable and control of the reaction was easy.
 実施例13
 1リットル容の四口フラスコにイソE2を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF3を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF3で1%に希釈したメチレンG4を所定量添加、次いで直ちにポリF3で1%に希釈した触媒D1を所定量添加した。触媒H1添加約20分後に液温の上昇が確認でき、その後内液をサンプリングしNCO含有量を測定しながら反応を追い、NCO含有量が16.1%になると予測される時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体で、イソシアヌレート基の量が少なく、本発明の目的であるプレポリマーが得られた。その性状及び各官能基のモル比を表5に、反応途中のNCO含有量の推移を図2に示す。安定した反応性を示し、反応の制御は容易であった。
Example 13
A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F3 was added while stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of methylene G4 diluted to 1% with polyF3 was added, and then a predetermined amount of catalyst D1 diluted to 1% with polyF3 was immediately added. About 20 minutes after the addition of catalyst H1, the temperature of the liquid can be confirmed, and the reaction is followed while sampling the internal liquid and measuring the NCO content, and when the NCO content is predicted to be 16.1%, catalyst poison J Was added in a predetermined amount to stop the reaction. The synthesized prepolymer was a light yellow transparent liquid at room temperature, and the amount of isocyanurate groups was small, and the prepolymer which was the object of the present invention was obtained. Table 5 shows the properties and the molar ratio of each functional group, and FIG. 2 shows the transition of the NCO content during the reaction. The reaction was stable and control of the reaction was easy.
 比較例7
 1リットル容の四口フラスコにイソE2を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF1を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF1で1%に希釈した触媒H1を所定量添加した。触媒H1添加約15分後に液温の上昇が確認でき、その後反応を追おうとしたが、急激な発熱により反応温度の制御もできず、ゲル化したため本発明の目的であるプレポリマーは得られなかった。よって、第一の課題を解決するプレポリマーとして使用することはできなかった。
Comparative Example 7
A predetermined amount of isoE2 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. About 15 minutes after addition of the catalyst H1, the rise in the liquid temperature was confirmed, and the reaction was followed. However, the reaction temperature could not be controlled due to rapid exotherm, and the prepolymer which is the object of the present invention was not obtained because of gelation. It was. Therefore, it could not be used as a prepolymer that solves the first problem.
 比較例8
 1リットル容の四口フラスコにイソE1を所定量加え、窒素気流下攪拌しながら50℃に温調した。次いで攪拌しながらポリF1を所定量加え、ウレタン化反応の発熱が収まった後に110℃まで昇温した。内温が110℃で安定したところで、ポリF1で1%に希釈した触媒H1を所定量添加した。触媒H1添加約10分後に液温の上昇が確認でき、その後反応を追おうとしたが、急激な発熱により反応温度の制御もできなかったため、内温が124℃になった時点で触媒毒Jを所定量加え反応を停止させた。合成されたプレポリマーは常温において淡黄色透明液体であったが、イソシアヌレート基の量が多く本発明の目的であるプレポリマーは得られなかった。反応制御不能との観点から、第一の課題を解決するプレポリマーとして使用することは困難であった。
Comparative Example 8
A predetermined amount of isoE1 was added to a 1 liter four-necked flask, and the temperature was adjusted to 50 ° C. with stirring under a nitrogen stream. Next, a predetermined amount of poly F1 was added with stirring, and the temperature was raised to 110 ° C. after the exothermic reaction of the urethanization reaction had subsided. When the internal temperature was stabilized at 110 ° C., a predetermined amount of catalyst H1 diluted to 1% with polyF1 was added. About 10 minutes after addition of catalyst H1, the rise in the liquid temperature could be confirmed, and the reaction was followed. However, the reaction temperature could not be controlled due to rapid exotherm, so when the internal temperature reached 124 ° C, catalyst poison J was removed. The reaction was stopped by adding a predetermined amount. The synthesized prepolymer was a pale yellow transparent liquid at room temperature, but the amount of isocyanurate groups was large and the prepolymer which was the object of the present invention was not obtained. From the viewpoint that the reaction cannot be controlled, it has been difficult to use it as a prepolymer that solves the first problem.
 実施例14~16
 実施例1~4と同様に、イソシアネート成分として「P-1」、「P-2」、「P-3」、ポリオール成分として「B-1」を、表6の組み合わせで、イソシアネート基/活性水素基=1.00(当量比)となるように混合して、ポリウレタン樹脂形成性組成物を得た。本実施例によれば、実施形態2による容易に反応を制御できるアロファネート基含有ポリイソシアネート組成物を実施形態1のポリウレタン樹脂形成性組成物に適用することで、混合粘度とポットライフを満足することができると言える。
Examples 14 to 16
As in Examples 1 to 4, “P-1”, “P-2”, “P-3” as the isocyanate component, “B-1” as the polyol component, and the isocyanate group / activity in the combinations shown in Table 6 A polyurethane resin-forming composition was obtained by mixing so that hydrogen group = 1.00 (equivalent ratio). According to this example, by applying the allophanate group-containing polyisocyanate composition capable of easily controlling the reaction according to Embodiment 2 to the polyurethane resin-forming composition of Embodiment 1, the mixed viscosity and the pot life are satisfied. Can be said.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることはいわゆる当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2015年12月24日に出願された日本特許出願2015-252102号、2016年03月23日に出願された日本特許出願2016-58205号、2016年09月23日に出願された日本特許出願2016-185222号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Japanese Patent Application No. 2015-252102 filed on December 24, 2015, Japanese Patent Application No. 2016-58205 filed on Mar. 23, 2016, Japanese Patent Application filed on Sep. 23, 2016 The entire contents of the specification, claims, drawings and abstract of application 2016-185222 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.
 1.実施例7における反応時間とNCO含有量の推移
 2.実施例8における反応時間とNCO含有量の推移
 3.実施例9における反応時間とNCO含有量の推移
 4.実施例10における反応時間とNCO含有量の推移
 5.実施例11における反応時間とNCO含有量の推移
 6.比較例8における反応時間とNCO含有量の推移
 7.実施例12における反応時間とNCO含有量の推移
 8.実施例13における反応時間とNCO含有量の推移
1. 1. Transition of reaction time and NCO content in Example 7. 2. Transition of reaction time and NCO content in Example 8 3. Transition of reaction time and NCO content in Example 9 4. Transition of reaction time and NCO content in Example 10 5. Transition of reaction time and NCO content in Example 11 6. Transition of reaction time and NCO content in Comparative Example 8 7. Transition of reaction time and NCO content in Example 12 Transition of reaction time and NCO content in Example 13

Claims (16)

  1. イソシアネート成分(A)と、ポリオール成分(B)を含むポリウレタン樹脂形成性組成物であって、イソシアネート成分(A)中に、下記一般式(1)で表されるイソシアネート基含有化合物(a1)を含有するアロファネート基含有ポリウレタン樹脂形成性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中Rは、活性水素基含有化合物(b1)の活性水素基以外の残基を表し、Xは酸素あるいは硫黄原子を表す。Rはイソシアネート基含有化合物(a2)の未反応のイソシアネート基を含む残基を表し、mは1又は2の整数を表す。mが1の場合にはnは1~30の整数を表し、mが2の場合にはnは1~15の整数を表す)
    A polyurethane resin-forming composition containing an isocyanate component (A) and a polyol component (B), and an isocyanate group-containing compound (a1) represented by the following general formula (1) in the isocyanate component (A) An allophanate group-containing polyurethane resin-forming composition to be contained.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a residue other than the active hydrogen group of the active hydrogen group-containing compound (b1), X represents an oxygen or sulfur atom, and R represents an unreacted isocyanate group of the isocyanate group-containing compound (a2). M represents an integer of 1 or 2. When m is 1, n represents an integer of 1 to 30, and when m is 2, n represents an integer of 1 to 15. )
  2. イソシアネート成分(A)が常温において液状であることを特徴とする請求項1に記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 2. The allophanate group-containing polyurethane resin-forming composition according to claim 1, wherein the isocyanate component (A) is liquid at normal temperature.
  3. イソシアネート成分(A)中の一般式(1)で表わされるイソシアネート基含有化合物(a1)の含有量が、ゲルパーミエイションクロマトグラフィー測定において20~90ピークエリア%であることを特徴とする請求項1又は2に記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 The content of the isocyanate group-containing compound (a1) represented by the general formula (1) in the isocyanate component (A) is 20 to 90 peak area% in gel permeation chromatography measurement. 3. The allophanate group-containing polyurethane resin-forming composition according to 1 or 2.
  4. イソシアネート基含有化合物(a1)が、ジフェニルメタンジイソシアネートとアルコールとの反応生成物であるアロファネート基含有ポリイソシアネート組成物であって、アロファネート基とイソシアヌレート基のモル比が80:20~100:0であり、カルボン酸アミド、スルホン酸アミド、及び式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種と、3級アミン触媒とをアロファネート化反応助剤として含み、且つ金属触媒を含有しないアロファネート基含有ポリイソシアネート組成物であることを特徴とする、請求項1乃至3のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される)
    The isocyanate group-containing compound (a1) is an allophanate group-containing polyisocyanate composition that is a reaction product of diphenylmethane diisocyanate and an alcohol, and the molar ratio of allophanate groups to isocyanurate groups is 80:20 to 100: 0. , A carboxylic acid amide, a sulfonic acid amide, and at least one selected from the group consisting of active methylene compounds represented by the formula (2) and a tertiary amine catalyst as an allophanatization reaction aid and no metal catalyst 4. The allophanate group-containing polyurethane resin-forming composition according to claim 1, which is an allophanate group-containing polyisocyanate composition.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  5. イソシアネート基含有化合物(a2)が、イソシアネート基を2個以上有する芳香族イソシアネートであることを特徴とする請求項1乃至4のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 The allophanate group-containing polyurethane resin-forming composition according to any one of claims 1 to 4, wherein the isocyanate group-containing compound (a2) is an aromatic isocyanate having two or more isocyanate groups.
  6. イソシアネート基含有化合物(a2)が、ジフェニルメタンジイソシアネートであることを特徴とする請求項1乃至5のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 The allophanate group-containing polyurethane resin-forming composition according to any one of claims 1 to 5, wherein the isocyanate group-containing compound (a2) is diphenylmethane diisocyanate.
  7. 活性水素基含有化合物(b1)が、炭素数が1~70のモノオール又はジオールであることを特徴とする請求項1乃至6のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物。 7. The allophanate group-containing polyurethane resin-forming composition according to claim 1, wherein the active hydrogen group-containing compound (b1) is a monool or diol having 1 to 70 carbon atoms.
  8. 請求項1乃至7のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物の膜モジュールのシール材としての使用。 Use of the allophanate group-containing polyurethane resin-forming composition according to any one of claims 1 to 7 as a sealing material for a membrane module.
  9. 請求項1乃至7のいずれかに記載のイソシアネート成分(A)とポリオール成分(B)とを反応させることを特徴とするアロファネート基含有ポリウレタン樹脂の製造方法。 A method for producing an allophanate group-containing polyurethane resin, comprising reacting the isocyanate component (A) according to any one of claims 1 to 7 with a polyol component (B).
  10. 請求項1乃至7のいずれかに記載のアロファネート基含有ポリウレタン樹脂形成性組成物の硬化物からなるシール材。 A sealing material comprising a cured product of the allophanate group-containing polyurethane resin-forming composition according to claim 1.
  11. 請求項10に記載のシール材により封止されていることを特徴とする膜モジュール。 A membrane module sealed with the sealing material according to claim 10.
  12. ジフェニルメタンジイソシアネートとアルコールとの反応生成物であるアロファネート基含有ポリイソシアネート組成物であって、アロファネート基とイソシアヌレート基のモル比が80:20~100:0であり、カルボン酸アミド、スルホン酸アミド、及び一般式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種と、3級アミン触媒とをアロファネート化反応助剤として含み、且つ金属触媒を含有しないことを特徴とする、アロファネート基含有ポリイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される)
    An allophanate group-containing polyisocyanate composition that is a reaction product of diphenylmethane diisocyanate and alcohol, wherein the molar ratio of allophanate group to isocyanurate group is 80:20 to 100: 0, and carboxylic acid amide, sulfonic acid amide, And an allophanate group comprising at least one selected from the group consisting of active methylene compounds represented by the general formula (2) and a tertiary amine catalyst as an allophanatization reaction auxiliary agent and containing no metal catalyst. Containing polyisocyanate composition.
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  13. (E)ジフェニルメタンジイソシアネートと
    (F)少なくとも1つのアルコール成分を
    (G)カルボン酸アミド及びスルホン酸アミド及び式(2)で示される活性メチレン化合物からなる群より選ばれる少なくとも一種の存在下
    (H)触媒として3級アミンでアロファネート化させ
    (J)触媒毒により反応を停止させることを特徴とする
    アロファネート基含有ポリイソシアネート組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中Rは、H、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基およびアリール基のいずれかから選択され、式中RおよびRは各々独立してOH基、アルキル基、アルケニル基、シクロアルキル基、アリールアルキル基、アリール基、オキシアルキル基、オキシアルケニル基、オキシシクロアルキル基、オキシアリールアルキル基およびオキシアリール基のいずれかから選択される)
    (E) diphenylmethane diisocyanate and (F) at least one alcohol component in the presence of (G) at least one selected from the group consisting of carboxylic acid amides and sulfonic acid amides and active methylene compounds represented by formula (2) (H) A method for producing an allophanate group-containing polyisocyanate composition characterized in that the catalyst is allophanatized with a tertiary amine as a catalyst (J) and the reaction is stopped by a catalyst poison.
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 2 is selected from any one of H, an alkyl group, an alkenyl group, a cycloalkyl group, an arylalkyl group and an aryl group, wherein R 3 and R 4 are each independently an OH group, an alkyl group, An alkenyl group, a cycloalkyl group, an arylalkyl group, an aryl group, an oxyalkyl group, an oxyalkenyl group, an oxycycloalkyl group, an oxyarylalkyl group and an oxyaryl group)
  14. (F)触媒として3級アミンと4級アンモニウム塩を併用してアロファネート化することを特徴とする、請求項13に記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 The method for producing an allophanate group-containing polyisocyanate composition according to claim 13, wherein (F) a tertiary amine and a quaternary ammonium salt are used in combination as a catalyst to form an allophanate.
  15. (F)触媒として金属触媒を含有しないことを特徴とする、請求項13又は14に記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 (F) The manufacturing method of the allophanate group containing polyisocyanate composition of Claim 13 or 14 characterized by not containing a metal catalyst as a catalyst.
  16. アロファネート基とイソシアヌレート基のモル比が80:20~100:0であることを特徴とする、請求項13乃至15のいずれかに記載のアロファネート基含有ポリイソシアネート組成物の製造方法。 16. The method for producing an allophanate group-containing polyisocyanate composition according to claim 13, wherein the molar ratio of the allophanate group to the isocyanurate group is 80:20 to 100: 0.
PCT/JP2016/088416 2015-12-24 2016-12-22 Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor WO2017111043A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/063,691 US11225547B2 (en) 2015-12-24 2016-12-22 Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from MDI and production method therefor
CN201680075280.XA CN108431072B (en) 2015-12-24 2016-12-22 Polyurethane resin-forming composition, film sealing material using same, polyisocyanate composition, and method for producing same
EP16878929.5A EP3395849A4 (en) 2015-12-24 2016-12-22 Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015252102A JP6631246B2 (en) 2015-12-24 2015-12-24 Polyurethane resin forming composition for membrane sealing material, and membrane sealing material for module using hollow or flat membrane fiber separation membrane using the forming composition
JP2015-252102 2015-12-24
JP2016058205 2016-03-23
JP2016-058205 2016-03-23
JP2016-185222 2016-09-23
JP2016185222A JP6753240B2 (en) 2016-03-23 2016-09-23 Alofanate group-containing polyisocyanate composition derived from MDI and its production method

Publications (1)

Publication Number Publication Date
WO2017111043A1 true WO2017111043A1 (en) 2017-06-29

Family

ID=59090533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088416 WO2017111043A1 (en) 2015-12-24 2016-12-22 Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor

Country Status (1)

Country Link
WO (1) WO2017111043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056097A (en) * 2017-09-19 2019-04-11 東ソー株式会社 Polyurethane resin-formable composition, and seal material and membrane module using the formable composition
US11136481B2 (en) 2017-07-25 2021-10-05 Tosoh Corporation Polyurethane resin-formable composition for membrane seal material, and membrane seal material and membrane module using said composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224140A (en) * 1994-02-03 1995-08-22 Bayer Ag Polyisocyanate mixture which is liquid at temperature higher than 5 ×c
JPH09125001A (en) * 1995-09-18 1997-05-13 Bayer Ag Polyisocyanate based on diphenylmethane diisocyanate and containing allophanate group and blocked isocyanate group
JP2004263108A (en) * 2003-03-03 2004-09-24 Nippon Polyurethane Ind Co Ltd Urethane elastomer-forming composition and seal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224140A (en) * 1994-02-03 1995-08-22 Bayer Ag Polyisocyanate mixture which is liquid at temperature higher than 5 ×c
JPH09125001A (en) * 1995-09-18 1997-05-13 Bayer Ag Polyisocyanate based on diphenylmethane diisocyanate and containing allophanate group and blocked isocyanate group
JP2004263108A (en) * 2003-03-03 2004-09-24 Nippon Polyurethane Ind Co Ltd Urethane elastomer-forming composition and seal material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395849A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136481B2 (en) 2017-07-25 2021-10-05 Tosoh Corporation Polyurethane resin-formable composition for membrane seal material, and membrane seal material and membrane module using said composition
JP2019056097A (en) * 2017-09-19 2019-04-11 東ソー株式会社 Polyurethane resin-formable composition, and seal material and membrane module using the formable composition
JP7326700B2 (en) 2017-09-19 2023-08-16 東ソー株式会社 POLYURETHANE RESIN FORMABLE COMPOSITION AND SEALING MATERIAL AND MEMBRANE MODULE USING THE FORMABLE COMPOSITION

Similar Documents

Publication Publication Date Title
JP7095453B2 (en) Polyurethane resin-forming composition for membrane sealant, and membrane sealant and membrane module using the same.
US10941240B2 (en) Biorenewable high performance polyester polyols
JP2009030059A (en) Allophanate-modified diphenylmethane diisocyanates, prepolymers thereof and use thereof for producing polyurea and polyurethane
WO2019022103A1 (en) Polyurethane resin-formable composition for membrane seal material, and membrane seal material and membrane module using said composition
WO2017111043A1 (en) Polyurethane resin-forming composition, module membrane seal material using a hollow-shaped or flat membrane-shaped fiber separation membrane using said forming composition, and allophanate group-containing polyisocyanate composition derived from mdi and production method therefor
JP2009270053A (en) Polyurethane resin-forming composition, sealing material, and hollow fiber membrane module
JP5354475B2 (en) Polyurethane resin-forming composition, sealing material, and hollow fiber membrane module
JP7135279B2 (en) Polyurethane resin-forming composition for membrane sealing material, sealing material using the same, and hollow fiber membrane module
WO2008047562A1 (en) Base material for adhesive and method for producing adhesive
JP5489028B2 (en) Polyurethane resin-forming composition and sealing material
CN108431072B (en) Polyurethane resin-forming composition, film sealing material using same, polyisocyanate composition, and method for producing same
JP7069541B2 (en) Allophanate group-containing polyisocyanate composition
JP7286912B2 (en) Allophanate group-containing polyisocyanate prepolymer
JP5802330B2 (en) Polyurethane resin forming composition for sealing material of membrane module
JP6946699B2 (en) Polyisocyanate composition containing an allophanate modified product derived from MDI and a method for producing the same.
JP6705175B2 (en) Process for producing polyisocyanate prepolymer containing allophanate groups derived from MDI
WO2021015144A1 (en) Polyurethane resin-forming composition for membrane-sealing material, and membrane and membrane module using same
JP6631246B2 (en) Polyurethane resin forming composition for membrane sealing material, and membrane sealing material for module using hollow or flat membrane fiber separation membrane using the forming composition
JP2021115495A (en) Polyurethane resin formative composition for film seal material, and film seal material and film module using the same
JP6766336B2 (en) Polyurethane resin-forming composition, sealant and hollow fiber membrane module
TW201527349A (en) Production method for lactone polymer
TWI791737B (en) Polyurethane comprising formulations with isocyanate functionality
JP7334431B2 (en) Polyurethane resin-forming composition for membrane sealing material, and membrane sealing material and membrane module using the same
JP2021020135A (en) Formative composition of polyurethane resin for membrane seal material, and membrane seal material and membrane module using the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878929

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878929

Country of ref document: EP

Effective date: 20180724