WO2017109861A1 - 測定装置、測定システム及びセンサ情報の補正方法 - Google Patents

測定装置、測定システム及びセンサ情報の補正方法 Download PDF

Info

Publication number
WO2017109861A1
WO2017109861A1 PCT/JP2015/085858 JP2015085858W WO2017109861A1 WO 2017109861 A1 WO2017109861 A1 WO 2017109861A1 JP 2015085858 W JP2015085858 W JP 2015085858W WO 2017109861 A1 WO2017109861 A1 WO 2017109861A1
Authority
WO
WIPO (PCT)
Prior art keywords
attachment state
state amount
sensor
determination
correction coefficient
Prior art date
Application number
PCT/JP2015/085858
Other languages
English (en)
French (fr)
Inventor
鵜沼 宗利
藤原 淳輔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/085858 priority Critical patent/WO2017109861A1/ja
Publication of WO2017109861A1 publication Critical patent/WO2017109861A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates to a measuring apparatus, a measuring system, and a sensor information correction method.
  • Patent Document 1 discloses a determination device that detects the state of a sensor attached to a human body using an acceleration sensor and detects whether the sensor is displaced.
  • the determination device is fixed to the main body attached to the attachment surface, and measures the acceleration of the attachment surface based on the first measurement unit that measures acceleration in at least one direction and the acceleration measured by the first measurement unit in the first period.
  • a first calculation unit that calculates inclination information indicating inclination, a storage unit that stores inclination information calculated by the first calculation unit, inclination information stored by the storage unit, and inclination information newly calculated by the first calculation unit
  • the difference information indicates a difference of a predetermined value or more continuously for the second period, it is determined that the attachment state of the main body portion with respect to the attachment surface has changed.
  • an output unit that outputs information based on a result determined by the determination unit.
  • a method has been developed in which various sensors are attached to a device to detect the failure or abnormal state of the device.
  • Various workers are engaged in equipment for maintenance, repair, and cleaning. For this reason, an operator who works for the purpose of detecting a failure or abnormal state of the device works while paying attention to the sensor mounting state and the like, but other workers do not always pay sufficient attention. Therefore, the sensor mounting state may change in a state unexpected by the sensor installer.
  • Sensors installed for the purpose of detecting device failures and abnormal states often monitor trends in sensor information due to secular changes. Therefore, if the sensor mounting state changes, the sensor output information changes, leading to erroneous detection or misreporting.
  • Patent Document 1 describes a method for detecting a change in the sensor mounting state, and it is possible to detect a change in the sensor mounting state. However, after detection, the installer of the sensor must go to the site to correct the sensor mounting state to the position before the change.
  • the present invention is an invention for solving the above-described problems, and provides a measuring apparatus, a measuring system, and a method for correcting sensor information that can utilize sensor information when a change in the sensor mounting state is detected. With the goal.
  • the measuring apparatus of the present invention includes a storage unit that stores an attachment state amount calculated from sensor information as a reference attachment state amount when a sensor attached to the device is in a reference attachment state.
  • a sensor information acquisition unit that acquires sensor information of a sensor attached to the device, a driving information acquisition unit that acquires driving information of the device, and a detection section of the sensor mounting state based on the driving information and sensor information (for example, A detection section detection unit (for example, a mounting state detection section detection unit 23) that detects a mounting state determination section 79), a mounting state amount calculation unit that calculates a mounting state quantity from sensor information in the detection section, and a mounting state in the detection section
  • the amount of attachment is determined as the attachment state amount, and compared with the reference attachment state amount, the attachment state amount change detection unit that determines whether the determination attachment state amount has changed, and the determination attachment state amount is And a correction coefficient calculation unit that calculates a correction coefficient for correcting the determined attachment state amount to the reference attachment state amount and outputs the calculated correction
  • sensor information can be utilized when a change in the sensor mounting state is detected.
  • FIG. 1 It is a figure which shows the structure of the measurement system containing the measuring apparatus which concerns on this embodiment. It is a figure which shows the example of a block configuration of a measuring apparatus. It is a figure which shows the initial state of a sensor, and the position after the movement of a sensor. It is a figure which shows the gravity vector in a sensor coordinate system, (a) is an initial state, (b) is the state after a movement. It is a figure which shows the extraction area of the feature-value at the time of utilizing a gravity vector. It is a flowchart which shows the process of a reference
  • FIG. 1 is a diagram illustrating a configuration of a measurement system MS including a measurement apparatus 2 according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a block configuration of the measuring apparatus 2. The outline of the measuring apparatus 2 will be described.
  • the correction coefficient calculating unit 26 calculates a correction coefficient 34 to be corrected to the initial state. Specifically, when it is detected that the sensor 11 has been changed from the initial state, a correction coefficient 34 for obtaining a sensor output equivalent to the initial state is calculated.
  • the sensor information 31 acquired from the sensor 11 is corrected by the correction processing unit 27 using the correction coefficient 34. Thereby, even when the position of the sensor 11 is changed from the initial state, it can be handled as a value equivalent to the initial state after the correction process.
  • the sensor information after the correction process is used as input data of the post-processing unit 28 (for example, a device that detects a failure / abnormal state of the device 1).
  • the measuring device 2 includes a processing unit 20, a storage unit 30, an input unit 41, an output unit 42 (display unit), and a communication unit 43.
  • the processing unit 20 includes a sensor information acquisition unit 21, an operation information acquisition unit 22, an attachment state detection section detection unit 23, an attachment state amount calculation unit 24 (attachment state amount calculation unit), an attachment state amount change detection unit 25, and a correction coefficient calculation. Section 26, correction processing section 27, and post-processing section 28.
  • the storage unit 30 stores sensor information 31, operation information 32, a reference attachment state amount 33, a correction coefficient 34, and the like.
  • the sensor information acquisition unit 21 acquires sensor information of the sensor 11 to be diagnosed as to whether or not the mounting state has changed.
  • the driving information acquisition unit 22 acquires driving information of the device 1.
  • the attachment state detection section detection unit 23 detects whether the sensor 11 to be diagnosed is a reference attachment state section (reference attachment state section) or a sensor 11 attachment state determination section (attachment state determination section). Details of the reference attachment state section and the attachment state determination section will be described later.
  • the attachment state amount calculation unit 24 calculates the attachment state amount from the sensor information in the detected section, and stores the attachment state amount in the reference attachment state section as the reference attachment state amount 33 in the storage unit 30.
  • the attachment state quantity change detection unit 25 uses the attachment state quantity in the determination section as a judgment attachment state quantity and determines whether or not the judgment attachment state quantity has changed compared to the reference attachment state quantity 33.
  • the correction coefficient calculation unit 26 calculates a correction coefficient for correcting the determination attachment state amount to the reference attachment state amount when the determination attachment state amount has changed, and outputs the calculated correction coefficient to the output unit 42. To do. Specifically, when the sensor 11 is an acceleration sensor, the correction coefficient calculation unit 26 determines that the gravity direction vector of the reference attachment state amount and the determination attachment state amount is in a predetermined state of the device 1 (for example, a motor rotation stop state). The correction coefficient is obtained so as to be equal. Details will be described later (see FIGS. 3 to 5).
  • the correction coefficient calculation unit 26 projects the sensor information of the acceleration sensor in a predetermined state of the device 1 (for example, a constant motor rotation state) by projecting the vibration pattern in the xyz space onto the xz plane, the xy plane, and the yz plane. A pattern is obtained, the projection pattern is set as an attachment state quantity, and the correction coefficient is obtained so that the projection patterns of the reference attachment state quantity and the determined attachment state quantity are equal. Details will be described later (see FIGS. 8 and 9).
  • the correction processing unit 27 corrects the output signal of the sensor using the correction coefficient when a correction coefficient is obtained so that the determined attachment state quantity is substantially equal to the reference attachment state quantity.
  • the device 1 may be a vehicle, a windmill, a motor, or the like as an example of a device that detects a failure or abnormal state.
  • the measuring apparatus 2 of the present embodiment can be applied to the device 1 that detects a failure or abnormal state.
  • the present invention can be applied to various devices as long as it has a movable part and detects its vibration state to determine a failure / abnormal state or a device that uses current / voltage, electric field / magnetic field strength to determine.
  • the sensor information 31 of the sensor 11 and the operation information 32 of the device 1 for diagnosis are collected.
  • the sensor 11 include an acceleration sensor / speed sensor / displacement sensor that detects a vibration state, a current sensor that detects a current value, a voltage sensor that can be used as a diagnostic sensor, and a magnetic sensor / electric field / magnetic field sensor. can give.
  • the operation information 32 includes control information (motor control, engine control information, etc.) for controlling the device 1, sensing information (load status, power consumption, current, etc.) attached to grasp the operation state, etc. It is. If it is a vehicle, it may be collected from an in-vehicle network CAN (Controller Area Network) or the like, and if it is a manufacturing device, it may be collected from control information inside the device or an in-device network.
  • control information motor control, engine control information, etc.
  • sensing information load status, power consumption, current, etc.
  • the attachment state detection section detection unit 23 uses the collected sensor information 31 and the operation information 32 to use a reference attachment state section (for example, a reference attachment state section 78 in FIG. 7) or an attachment state determination section ( For example, it is determined whether the attachment state determination section 79 in FIG.
  • the reference attachment state section is a section in which the attachment state amount of the sensor 11 is registered with the state before the attachment state of the sensor 11 is changed as an initial state.
  • the attachment state determination section is a section for determining whether or not the sensor attachment state has changed. These sections differ in the optimum determination section depending on what is selected as a feature amount for determining whether or not the attachment state has changed. As an example, a method of using the gravity vector of the triaxial acceleration sensor will be described with reference to FIGS. Another feature amount will be described later in the second embodiment.
  • FIG. 3 is a diagram showing an initial state of the sensor 11 and a position after the sensor 11 is moved (after change).
  • FIG. 4 is a diagram showing a gravity vector in the sensor coordinate system, where (a) is an initial state, and (b) is a state after movement.
  • FIG. 3 shows an example of a triaxial acceleration sensor attached in a cylindrical shape as shown in FIG. This cylinder is a part of the device, and it is assumed that a failure or abnormal state of the device can be detected by detecting and analyzing the vibration state of the component in the three orthogonal axes directions.
  • the initial attachment position of the sensor 11 is a position 50, and the position where the sensor 11 is changed is a position 51.
  • the gravity vector 60 in the sensor coordinate system is a vector that faces the direction opposite to the positive direction of the z-axis.
  • the gravity vector 61 is a vector in a direction different from the opposite side of the positive direction of the z-axis.
  • this condition can be used only when the device 1 is stopped and there is no vibration. Therefore, the attachment state detection section detection unit 6 performs processing as shown in FIG.
  • FIG. 5 is a diagram showing a feature amount extraction section when a gravity vector is used.
  • the attachment state of the sensor 11 is changed when the main power supply of the device is turned off for safety. That is, the reference mounting state is stored before the main power of the device 1 is turned off, and the position of the sensor 11 may be changed when the power is turned on again. We think that section is necessary.
  • the sensor power supply 77 main power supply starts from the time 70 (the time when the vibration 76 becomes a predetermined value or less) when the motor power supply 75 is turned off and the vibration 76 disappears. ) Is the reference attachment state section 78.
  • the main power is turned on after the main power is turned off
  • maintenance of the device 1 is usually performed. For example, during regular maintenance such as overhaul, the worker stops the device 1. Further, when maintenance becomes large, the sensor 11 of the device 1 is removed once, and parts replacement and maintenance inside the machine are performed. Thereafter, the sensor 11 is returned to the original position. At this time, the sensor 11 may not return to the original position.
  • FIG. 6 is a flowchart showing the process of the reference attachment state section. This will be described with reference to FIG.
  • the attachment state detection section detection unit 23 receives the sensor information 31 and the operation information 32 of the device 1 (processing S30).
  • the information is the motor power supply 74 information, the vibration 76 information, and the sensor power supply 77 (main power supply) information shown in FIG. If the processing program is stopped at the same time as the main power is shut off, it may be interpreted that the processing is performed before the main power is shut off, or the processing is performed before the main power is turned on and the motor power is turned on. .
  • the attachment state detection section detection unit 23 determines whether it is a reference attachment state section (processing S31).
  • the determination processing is processing for determining whether or not the vehicle is in the section from time 70 to time 71 shown in FIG. If it is in the determination section (step S31, Yes), the attachment state quantity calculation unit 24 collects sensor information 31 to be diagnosed in the reference attachment state section (for example, the reference attachment state section 78) (process S32), and the process Proceed to S33. If it is not in the determination section (No at Step S31), the process returns to Step S30.
  • the attachment state quantity calculation unit 24 performs an attachment state quantity calculation process (process S33). Specifically, in the case of an example using a gravity vector as a feature amount, each component of the gravity vector in the sensor coordinate system is extracted. And the attachment state quantity calculation part 24 registers the reference
  • FIG. 7 is a flowchart showing the process of the attachment state determination section. This will be described with reference to FIG.
  • the attachment state detection section detection unit 23 receives the sensor information 31 and the operation information 32 of the device 1 (processing S40).
  • the attachment state detection section detection unit 23 determines whether or not it is an attachment state determination section (processing S41).
  • the determination process is a process for determining whether or not the vehicle is in the section from time 72 to time 73 shown in FIG. If it is in the determination section (step S41, Yes), the attachment state amount calculation unit 24 collects sensor information 31 to be diagnosed in the attachment state determination section (for example, the attachment state determination section 79) (process S42). Proceed to S43. If it is not in the determination section (step S31, No), the process returns to step S40.
  • the attachment state quantity calculation unit 24 performs an attachment state quantity calculation process (process S43). Specifically, in the case of an example using a gravity vector as a feature amount, each component of the gravity vector in the sensor coordinate system is extracted. Whether the attachment state quantity change detection unit 25 uses the attachment state quantity in the attachment state judgment section as a judgment attachment state quantity, and whether the judgment attachment state quantity changes compared to the reference attachment state quantity 33 stored in the storage unit 30. It is determined whether or not (processing S44). If the attachment state quantities match (No at Step S44), the attachment state quantity change detection unit 25 determines that there is no change in the attachment state of the sensor 11 when the main power is shut off, and ends the process.
  • the attachment state quantity change detection unit 25 first displays on the display device of the output unit 42 that there is a difference from the reference attachment state ( Process S45). By displaying the information, an administrator or the like can understand an unexpected change in the sensor mounting state and can be a trigger for confirming whether or not the mounting state has been changed with sufficient strength. In addition to being displayed on the screen, it can be left as log data.
  • the correction coefficient calculation unit 26 calculates a conversion parameter for converting the coordinates to the reference attachment state (processing S46).
  • the coordinate conversion parameter is processing for converting the three-axis acceleration data collected in the sensor coordinate system of FIG. 4B to the sensor coordinate system of FIG. 4A.
  • the gravity vector in FIG. 4 (b) can be converted by obtaining a rotation matrix for coordinate transformation from FIG. 4 (b) to FIG. 4 (a) using the gravity vector in FIG. 4 (a) as a reference vector and performing affine transformation. is there.
  • the correction coefficient calculation unit 26 determines whether or not there is a solution for the conversion parameter (process S47). If there is no solution (No in process S47), the correction coefficient calculation is performed as a sensor failure or geometric conversion inability. The unit 26 displays the information on the display device of the output unit 42 (processing S49), and ends the processing. On the other hand, if there is a solution for the conversion parameter (step S47, Yes), the conversion parameter correction coefficient 34 is registered in the storage unit 30 (step S48), and the process ends.
  • the correction processing unit 27 uses the correction coefficient 34 to output the output signal of the sensor when the correction coefficient 34 is obtained so that the determined attachment state quantity is substantially equal to the reference attachment state quantity. It can be corrected.
  • the reference attachment state section is determined before the main power supply immediately before the attachment state determination section is shut off.
  • the reference mounting state section may be performed when the product is first installed or immediately after periodic inspection.
  • sensor information equivalent to that before the state change can be collected by geometric conversion, so that it is not necessary to go to the site to correct the sensor state, and it is possible to collect sensor information in the sensor mounting state after the state change.
  • FIG. 6 and FIG. 7 have been described separately, but the present invention is not limited to this.
  • a process in which FIG. 6 and FIG. 7 are integrated will be described with reference to FIG.
  • FIG. 10 is a flowchart showing the integration process of the measurement apparatus 2. The same processes as those in FIG. 6 and FIG. As shown in FIG. 10, the process S31 and the process S41 are collectively referred to as a section determination (process S37).
  • the attachment state detection section detection unit 23 determines whether it is a reference attachment state section, an attachment state determination section, or a section in other cases. If it is a reference attachment state section, it will progress to processing S32. If it is an attachment state determination section, the process proceeds to step S42, and if it is any other section, the process returns to process S30.
  • Second Embodiment In the first embodiment, it has been described that the correction coefficient 34 is calculated based on the attachment state of the sensor 11 when the device is stopped. However, as a feature amount for determining whether or not the attachment state has changed, 3 during operation of the apparatus is used. An embodiment using an axial acceleration pattern will be described.
  • the gravity vector changes when it is moved in the axial direction or rotated around the axis in the direction of gravity. Does not happen.
  • measures are taken in such a case.
  • the processing is almost the same as that of the first embodiment, and only the description of the portion specialized for this embodiment will be given.
  • FIG. 8 is a diagram showing a projection plane of an acceleration pattern in the sensor coordinate system in the initial state, where (a) is an acceleration pattern 80 on the xz plane, (b) is an acceleration pattern 81 on the xy plane, and (c) is a yz plane. Is an acceleration pattern 82.
  • the vibration pattern in the three-dimensional space is the same, and the projected plane orientation changes depending on the orientation of the vibration sensor, so that the pattern of each projection plane looks different. . That is, even if the vibration pattern in the three-dimensional space is the same, the projection pattern on each plane at the initial position 50 is different from the projection pattern at the attachment position 51 of the sensor 11 after the change. The attachment state is determined using this difference. As an extraction section for determination, it is necessary that the device 1 has the same operating condition.
  • FIG. 9 is a diagram showing a feature amount extraction section when an acceleration pattern is used.
  • the reference attachment state section 98 is registered as a condition in which the rotation speed 94 and the load 95 before the sensor power source 97 is turned off are included in the section from time 90 to time 91.
  • the attachment state determination section 99 may be a section from time 92 to time 93 that is the same rotational speed 94 and load 95 as the section from time 90 to time 91.
  • a rotation matrix may be obtained using a condition that the vibration patterns in the three-dimensional space are the same.
  • the device 1 when using a vibration pattern, the device 1 does not need to be stopped, and the operating conditions of the device 1 may be the same.
  • the section from time 90 to time 91 in which the rotation speed 94 and the load 95 are predetermined values and the sensor power source 97 is in the ON state is the reference attachment state section 98. It is.
  • the attachment member of the sensor 11 may be loosened while the sensor power source 97 is turned on after the sensor power source 97 is turned off.
  • the section from time 92 to time 93 in which the sensor power source 97 is in the ON state and the same rotational speed 94 and load 95 in the reference attachment state section 98 is the attachment state determination section 99.
  • the equation parameters of the approximate ellipsoids 83, 84, and 85 including the point group of each plane are obtained as the feature parameters representing the characteristics of the point group by obtaining an optimal solution such as a solver.
  • the approximate ellipsoids 83, 84, and 85 in FIG. 8 indicate the shapes projected on each plane.
  • the characteristic parameter obtained in the reference attachment state section becomes the reference attachment state quantity, and the attachment state quantity calculation unit 24 registers it in the storage unit 30 as the reference attachment state quantity.
  • the attachment state amount change detection unit 25 compares the characteristic parameter (attachment state amount) obtained in the attachment state determination section (for example, the attachment state determination section 99 in FIG. 9) with the reference attachment state amount to determine abnormality (attachment). Determination of whether or not the state quantity has changed). If it is determined that there is an abnormality, the correction coefficient calculation unit 26 rotates the approximate ellipsoid about each axis (x, y, z axis) and obtains a rotation angle that minimizes the error (again, the solver). And the like, and an optimal rotation matrix of the x-axis, y-axis, and z-axis may be obtained.
  • This method obtains the conversion parameters from the vibration pattern of the equipment.
  • a gravity vector is used in the first embodiment.
  • the correction parameter cannot be obtained using only the gravity vector. This method can obtain the correction parameter even under such conditions.
  • the measuring apparatus 2 of this embodiment has the following as main processes. (1) Collect feature quantities that can be collected from the sensor in the initial state of the sensor. (2) Whether or not the sensor state has changed immediately after a section in which the sensor mounting state may be changed (for example, when the main power supply is OFF) is determined by comparing with the feature value of (1). (3) Based on the posture information in the initial state of the sensor and the posture information after the change, a coordinate conversion parameter for converting from the sensor coordinate system after the change to the sensor coordinate system in the initial state is calculated. Coordinate conversion is performed so that the collected sensor information is equivalent to that collected in the sensor coordinate system in the initial state.
  • the measuring apparatus 2 of the present embodiment it is detected that the mounting state of the sensor 11 has changed, and the sensor information collected in the posture state after the state change is equivalent to the sensor information before the state change by geometric transformation. Can be converted to If sensor information equivalent to that before the state change can be collected by geometric conversion, it is not necessary to go to the site to correct the sensor state, and sensor information can be collected in the sensor mounting state after the state change. Further, by performing the sensor information correction process in the correction processing unit 27, there is an effect of maintaining the abnormality detection performance of the device 1 even after the maintenance of the device 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

測定装置(2)は、運転情報及びセンサ情報に基づき、センサの基準取付状態の区間か、センサの取付状態の判定の区間かを検出する取付状態検出区間検出部(23)と、検出された区間におけるセンサ情報から取付状態量を算出し、基準取付状態の区間における取付状態量を基準取付状態量として記憶部に記憶する取付状態量算出部(24)と、判定の区間における取付状態量を判定取付状態量として、基準取付状態量と比較して判定取付状態量が変化しているか否かを判定する取付状態量変化検知部(25)と、判定取付状態量が変化している場合に、判定取付状態量を基準取付状態量に補正するための補正係数を算出し、該算出した補正係数を出力部に出力する補正係数算出部(26)と、を有する。

Description

測定装置、測定システム及びセンサ情報の補正方法
 本発明は、測定装置、測定システム及びセンサ情報の補正方法に関する。
 特許文献1には、人の体に取り付けたセンサの状態を、加速度センサを用いて検出しセンサがずれたか否かを検出する判定装置について開示されている。判定装置は、被取付面に取付けられる本体部に固定され、少なくとも1方向の加速度を計測する第1計測部と、第1計測部が第1期間に計測した加速度に基づいて、被取付面の傾斜を示す傾斜情報を算出する第1算出部と、第1算出部が算出した傾斜情報を記憶する記憶部と、記憶部が記憶した傾斜情報と、第1算出部が新たに算出した傾斜情報との相違を示す相違情報を算出する第2算出部と、相違情報が第2期間継続して所定値以上の相違を示した場合に、被取付面に対する本体部の取付状態が変化したと判定する判定部と、判定部が判定した結果に基づく情報を出力する出力部と、を有する。
特開2015-9127号公報
 機器に様々なセンサを取り付けて機器の故障や異常状態を検出する手法が開発されている。機器にはメンテナンス・修繕・清掃のために様々な作業員が携わっている。そのため、機器の故障や異常状態の検出を目的に作業を行う作業員は、センサの取付状態などに注意を払いながら作業を行うが、その他の作業員は、十分注意を払うとは限らない。そのため、センサの設置者が予期しない状態でセンサの取付状態が変化することが起こりえる。
 機器の故障や異常状態の検出を目的に取り付けられたセンサは、経年変化によるセンサ情報の傾向を監視する場合が多い。従って、センサの取付状態が変化するとセンサの出力情報に変化が生じ、検出誤報や失報を招くことになる。
 特許文献1では、センサの取付状態が変化したことを検出する手法について述べられており、センサの取付状態が変化したことは検出できる。しかしながら、検出後にはセンサの設置者などが現場に赴いてセンサの取付状態を、変更前の位置に修正しなければならない。
 本発明は、前記の課題を解決するための発明であって、センサの取付状態の変化を検知した際にセンサ情報を活かすことができる測定装置、測定システム及びセンサ情報の補正方法を提供することを目的とする。
 前記目的を達成するため、本発明の測定装置は、機器に取付けられたセンサが基準取付状態にあるときにセンサ情報から算出した取付状態量を、基準取付状態量として記憶している記憶部と、機器に取付けられたセンサのセンサ情報を取得するセンサ情報取得部と、機器の運転情報を取得する運転情報取得部と、運転情報及びセンサ情報に基づき、センサの取付状態の検出区間(例えば、取付状態判定区間79)を検出する検出区間検出部(例えば、取付状態検出区間検出部23)と、検出区間におけるセンサ情報から取付状態量を算出する取付状態量算出部と、検出区間における取付状態量を判定取付状態量として、基準取付状態量と比較して判定取付状態量が変化しているか否かを判定する取付状態量変化検知部と、判定取付状態量が変化している場合に、判定取付状態量を基準取付状態量に補正するための補正係数を算出し、該算出した補正係数を出力部に出力する補正係数算出部と、を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、センサの取付状態の変化を検知した際に、センサ情報を活かすことができる。
本実施形態に係る測定装置を含む測定システムの構成を示す図である。 測定装置のブロック構成の例を示す図である。 センサの初期状態とセンサの移動後の位置を示す図である。 センサ座標系における重力ベクトルを示す図であり、(a)は初期状態であり、(b)は移動後の状態である。 重力ベクトルを利用した場合の特徴量の抽出区間を示す図である。 基準取付状態区間の処理を示すフローチャートである。 取付状態判定区間の処理を示すフローチャートである。 初期状態のセンサ座標系における加速度パターンの投影平面を示す図であり、(a)はx-z平面における加速度パターン、(b)はx-y平面における加速度パターン、(c)はy-z平面の加速度パターンである。加速度パターンの投影形状を示す図である。 加速度パターンを利用する場合の特徴量の抽出区間を示す図である。 測定装置の統合処理を示すフローチャートである。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<<第1実施形態>>
 図1は、本実施形態に係る測定装置2を含む測定システムMSの構成を示す図である。図2は、測定装置2のブロック構成の例を示す図である。測定装置2の概要を説明すると、センサ11の取付状態が初期状態(基準取付状態)から変化したと検知した場合に、初期状態に補正する補正係数34を、補正係数算出部26が算出する。具体的には、センサ11の初期状態から変更されたと検知された場合に、初期状態と同等なセンサ出力を得るための補正係数34を算出する。その後、センサ11から取得したセンサ情報31は、補正処理部27で補正係数34を用いて補正処理を行う。これにより、センサ11の位置が初期状態より変更された場合でも、補正処理後に、初期状態と等価な値として扱うことができるようになる。補正処理後のセンサ情報は、後処理部28(例えば、機器1の故障・異常状態を検出する装置)の入力データとして利用する。
 測定装置2は、図2に示すように、処理部20、記憶部30、入力部41、出力部42(表示部)、通信部43を有している。処理部20は、センサ情報取得部21、運転情報取得部22、取付状態検出区間検出部23、取付状態量算出部24(取付状態量演算部)、取付状態量変化検知部25、補正係数算出部26、補正処理部27、後処理部28を有する。記憶部30には、センサ情報31、運転情報32、基準取付状態量33、補正係数34などが記憶されている。
 センサ情報取得部21は、取付状態が変化しているか否かの診断対象となるセンサ11のセンサ情報を取得する。運転情報取得部22は、機器1の運転情報を取得する。
 取付状態検出区間検出部23は、診断対象となるセンサ11の基準取付状態の区間(基準取付状態区間)か、センサ11の取付状態の判定の区間(取付状態判定区間)かを検出する。なお、基準取付状態区間、取付状態判定区間についての詳細は後記する。
 取付状態量算出部24は、検出された区間におけるセンサ情報から取付状態量を算出し、基準取付状態の区間における取付状態量を基準取付状態量33として記憶部30に記憶する。
 取付状態量変化検知部25は、判定の区間における取付状態量を判定取付状態量として、基準取付状態量33と比較して判定取付状態量が変化しているか否かを判定する。
 補正係数算出部26は、判定取付状態量が変化している場合に、判定取付状態量を基準取付状態量に補正するための補正係数を算出し、該算出した補正係数を出力部42に出力する。具体的には、センサ11が、加速度センサである場合、補正係数算出部26は、機器1の所定状態(例えばモータ回転停止状態)において、基準取付状態量及び判定取付状態量の重力方向ベクトルが等しくなるように補正係数を求める。詳細については後記する(図3~図5参照)。
 また、補正係数算出部26は、機器1の所定状態(例えばモータ回転一定状態)において、加速度センサでのセンサ情報を、xyz空間上の振動パターンをxz平面、xy平面、yz平面へ投影した投影パターンを求め、該投影パターンを取付状態量とし、基準取付状態量及び判定取付状態量の前記投影パターンが等しくなるように前記補正係数を求める。詳細については後記する(図8、図9参照)
 補正処理部27は、判定取付状態量が基準取付状態量と実質的に等しくなる補正係数が求められた場合に、補正係数を用いてセンサの出力信号を補正する。
 機器1は、故障や異常状態を検出する機器の一例として車両、風車、モータなどがあげられる。本実施形態の測定装置2は、故障や異常状態を検出する機器1に対して適用できる。例えば、可動部分がありその振動状態を検出して、故障・異常状態を判定する機器や、電流・電圧、電界・磁界の強さを用いて判定するものであれば様々な機器に応用できる。
 機器1からは、診断を行うためのセンサ11のセンサ情報31及び機器1の運転情報32を収集する。センサ11とは、振動の状態を検出する加速度センサ・速度センサ・変位センサ、電流の値を検出する電流センサ、その他診断センサとして利用可能な電圧センサ、磁気センサ・電界・磁界センサなどが一例としてあげられる。
 運転情報32とは、機器1を制御するための制御情報(モータ制御やエンジンの制御情報など)、運転の状態を把握するために取り付けられたセンシング情報(負荷状態や消費電量や電流など)などである。車両であれば車内ネットワークCAN(Controller Area Network)などから収集してもよいし、製造装置であれば機器内部の制御情報や装置内ネットワークなどから収集してもよい。
 取付状態検出区間検出部23は、前記したように、収集したセンサ情報31及び運転情報32を用いて、基準取付状態区間(例えば、図7の基準取付状態区間78)か、取付状態判定区間(例えば、図7の取付状態判定区間79)かの判定を行う。基準取付状態区間とは、センサ11の取付状態が変化する前の状態を初期状態として、センサ11の取り付け状態量を登録する区間である。取付状態判定区間とは、センサの取付状態が変化したか否かを判定する区間である。これらの区間は取り付け状態が変化したか否かを判定する特徴量として何を選択するかによって最適な判定区間が異なる。例として3軸加速度センサの重力ベクトルを利用する方法について、図3~図5を参照して説明する。別の特徴量に関しては後の第2実施形態で説明する。
 図3は、センサ11の初期状態とセンサ11の移動後(変更後)の位置を示す図である。図4は、センサ座標系における重力ベクトルを示す図であり、(a)は初期状態であり、(b)は移動後の状態である。図3に示すように円柱形状に取り付けた3軸加速度センサの例を示す。この円柱は、機器の一部の部品でありその部品の直交3軸方向の振動状態を検出・解析することにより機器の故障や異常状態が検出できるものとする。センサ11の最初の取り付け位置を位置50とし、センサ11が変更された位置を位置51とする。
 重力ベクトルを利用する場合、初期状態においては、図4(a)に示すように、センサ座標系における重力ベクトル60は、z軸の正方向と反対側の方向を向くベクトルとなっている。ところが変更後は、図4(b)に示すよう、重力ベクトル61は、z軸の正方向と反対側とは異なる方向のベクトルとなっている。しかし、この条件を利用できるのは機器1が停止しており振動が無い状態に限られる。そこで、取付状態検出区間検出部6では図5に示すような処理を行う。
 図5は、重力ベクトルを利用した場合の特徴量の抽出区間を示す図である。図5に、モータ電源75のON/OFF状態を表す波形、振動76の大きさ、センサ電源77のON/OFF状態(=機器1のメイン電源OFFの状態)を表す波形を示す。
 本処理では、センサ11の取り付け状態を変更するのは安全上機器のメイン電源をOFFにした場合に行われると仮定する。つまり、機器1のメイン電源が切られる前までに基準取付状態を記憶し、再度電源が入れられた場合にはセンサ11の位置が変更された可能性があるので、取付状態を判定するための区間が必要になると考える。
 さらに、重力ベクトルを利用する場合、機器1の稼働による振動があると重力ベクトルに誤差が生じるために機器1が停止している必要がある。そこで、図5でそのような条件を満足する区間は、モータ電源75がOFFとなり、かつ、振動76がなくなる時刻70(振動76が所定値以下になる時刻)、から、センサ電源77(メイン電源)がOFFになる時刻71の区間が基準取付状態区間78である。
 一方、メイン電源がOFFされてからメイン電源ONされている間に、通常、機器1のメンテナンスなどが実施される。例えば、オーバーホールなどの定期メンテナンス時に、作業員は機器1を停止する。さらに保守が大掛かりなものになると、機器1のセンサ11を一度はずして、部品交換、機械内部のメンテナンスを実施する。その後、センサ11を元の位置に戻す。このときに、センサ11が元の位置に戻っていないことがある。前記のような場合を想定して、センサ電源77がONした時刻72からモータ電源75がONする時刻73までの区間で、かつ、振動76がない区間(振動76が所定値以下になる区間)が取付状態判定区間79となる。
 図6は、基準取付状態区間の処理を示すフローチャートである。適宜図5参照して説明する。取付状態検出区間検出部23は、センサ情報31及び機器1の運転情報32を受理する(処理S30)。ここでは、図5に示す、モータ電源74の情報、振動76の情報及びセンサ電源77(メイン電源)の情報である。メイン電源の遮断と共に処理プログラムも停止してしまう場合、メイン電源が遮断する前までに処理を行う、或いはメイン電源が投入されモータ電源がONされる前までに処理を行うと解釈してもよい。
 取付状態検出区間検出部23は、基準取付状態区間であるか否かを判定する(処理S31)。判定処理は、図5に示す時刻70から時刻71までの区間に入っているか否かの処理である。判定区間に入っていれば(処理S31,Yes)、取付状態量算出部24は、基準取付状態区間(例えば、基準取付状態区間78)における診断するセンサ情報31を収集し(処理S32)、処理S33に進む。判定区間に入っていなければ(処理S31,No)、処理S30に戻る。
 次に、取付状態量算出部24は、取付状態量の演算処理を行う(処理S33)。具体的には、重力ベクトルを特徴量とする例の場合、センサ座標系における重力ベクトルの各成分を抽出する。そして、取付状態量算出部24は、基準取付状態量33を記憶部30に登録する(処理S34)。
 図7は、取付状態判定区間の処理を示すフローチャートである。適宜図5を参照して説明する。取付状態検出区間検出部23は、センサ情報31及び機器1の運転情報32を受理する(処理S40)。取付状態検出区間検出部23は、取付状態判定区間であるか否かを判定する(処理S41)。判定処理は、図5に示す時刻72から時刻73までの区間に入っているか否かの処理である。判定区間に入っていれば(処理S41,Yes)、取付状態量算出部24は、取付状態判定区間(例えば、取付状態判定区間79)における診断するセンサ情報31を収集し(処理S42)、処理S43に進む。判定区間に入っていなければ(処理S31,No)、処理S40に戻る。
 取付状態量算出部24は、取付状態量の演算処理を行う(処理S43)。具体的には、重力ベクトルを特徴量とする例の場合、センサ座標系における重力ベクトルの各成分を抽出する。取付状態量変化検知部25は、取付状態判定区間における取付状態量を判定取付状態量として、記憶部30に記憶されている基準取付状態量33と比較して判定取付状態量が変化しているか否かを判定する(処理S44)。取付状態量が一致していれば(処理S44,No)、取付状態量変化検知部25は、メイン電源の遮断時にセンサ11の取り付け状態の変更はないと判断して処理を終了する。
 取付状態量が一致していないと判定された場合(処理S44,Yes)、取付状態量変化検知部25は、先ず、基準取付状態と差異がある旨を出力部42の表示装置に表示する(処理S45)。表示することにより、管理者などは、予期せぬセンサ取り付け状態の変更が分かり、十分な強度で取付状態が変更されたか否かの確認を行うためのきっかけともなりうる。また、画面に表示する他にログデータとして残すことも可能である。
 補正係数算出部26は、基準取付状態に座標変換するための変換パラメータの算出を行う(処理S46)。座標変換パラメータとは、図4(b)のセンサ座標系で収集した3軸加速度データを図4(a)のセンサ座標系へ座標変換する処理である。図4(b)の重力ベクトルは、図4(a)の重力ベクトルを基準ベクトルとして図4(b)から図4(a)へ座標変換する回転行列を求めアフィン変換を行うことによる変換可能である。
 なお、基準となる重力ベクトルの大きさが異なり回転行列が求まらない場合が生じる。重力ベクトルの大きさは変化することは、本手法の精度範囲内では無いため、このような状態が生じるのはセンサ11の1軸以上が故障した場合である。
 よって、補正係数算出部26は、変換パラメータの解があるか否かを判定し(処理S47)、解がない場合(処理S47,No)、センサ故障や幾何学的変換不能として、補正係数算出部26は、出力部42の表示装置に表示し(処理S49)、処理を終了する。一方、変換パラメータの解がある場合(処理S47,Yes)、変換パラメータの補正係数34を記憶部30に登録し(処理S48)、処理を終了する。
 これにより、前記したように、補正処理部27は、判定取付状態量が基準取付状態量と実質的に等しくなる補正係数34が求められた場合に、補正係数34を用いてセンサの出力信号を補正することができる。
 なお、本実施形態で基準取付状態区間の判定を、取付状態判定区間を行う直前のメイン電源が遮断する前に行っている。基準取付状態区間としては、製品を最初に設置した時点や定期点検直後などに行ってもかまわない。
 本実施形態により幾何学的な変換により状態変化前と同等のセンサ情報が収集できるので現場に赴いてセンサ状態の修正は不要となり、状態変化後のセンサの取付状態でセンサ情報収集が可能になる。
 本実施形態の処理では、図6と図7とを分けて説明したが、これに限定されるわけではない。図6と図7とを統合した処理について、図10を参照して説明する。
 図10は、測定装置2の統合処理を示すフローチャートである。図6及び図7と同一処理には同一符号を付し重複する説明は省略する。図10に示すように、処理S31と処理S41とをまとめて、区間判定(処理S37)とする。
 処理S37において、取付状態検出区間検出部23は、基準取付状態区間か、取付状態判定区間か、あるいはその他の場合の区間であるかを判定する。基準取付状態区間であれば、処理S32に進み。取付状態判定区間であれば処理S42に進み、その他の区間であれば、処理S30に戻ることになる。
<<第2実施形態>>
 第1実施形態では、機器停止中のセンサ11の取付状態に基づいて補正係数34を算出することを説明したが、取付状態が変化したか否かを判定する特徴量として、装置稼働中の3軸加速度パターンを利用する実施形態について説明する。
 第2実施形態は、図3のセンサ11の位置50が円柱形状の頂点位置にある際に、軸方向に移動させた場合や重力に方向の軸周りに回転させた場合、重力ベクトルの変化が起こらない。そのような場合の対策を行う実施形態である。処理としては、第1実施形態とほぼ同等であり、本実施形態に特化した部分の説明だけを説明する。
 図8は、初期状態のセンサ座標系における加速度パターンの投影平面を示す図であり、(a)はx-z平面における加速度パターン80、(b)はx-y平面における加速度パターン81、(c)はy-z平面の加速度パターン82である。
 図3に示す円柱の3次元的な振動により3次元空間上の振動パターンとして生成され、その形状が各投影平面に投影され方向性のあるパターンが生成される。つまり機器1の運動条件が同じであれば3次元空間上の振動パターンは同一であり、振動センサの姿勢により投影される平面の姿勢も変化するため各投影平面のパターンも異なって見えることになる。つまり3次元空間上の振動パターンが同一でも初期の位置50の各平面への投影パターンと変更後のセンサ11の取り付けの位置51での投影パターンは異なることになる。この違いを利用して取付状態の判定を行う。判定のための抽出区間としては、機器1が同一の動作条件になることが必要である。
 図9は、加速度パターンを利用する場合の特徴量の抽出区間を示す図である。図9に、モータなどの回転機の回転速度94、負荷95の大きさ、振動96の大きさ、センサ電源97のON/OFF状態(=機器1のメイン電源OFFの状態)を表す波形を示す。これらの情報は、センサ情報31及び運転情報32から収集する。
 基準取付状態区間98は、センサ電源97がOFFになる前の回転速度94及び負荷95が時刻90から時刻91の区間に入っている条件として登録する。取付状態判定区間99は、時刻90から時刻91の区間と同じ回転速度94及び負荷95である時刻92から時刻93の区間とすればよい。座標変換のパラメータは、3次元空間上の振動パターンが同一であるとの条件を用いて回転行列を求めればよい。
 具体的に説明すると、振動パターンを利用する場合、機器1が停止している必要はなく、機器1の運転条件が同じであればよい。図9でそのような条件を満足するように、回転速度94および負荷95が所定の値であり、かつ、センサ電源97がON状態である、時刻90から時刻91の区間が基準取付状態区間98である。一方、センサ電源97がOFFされてからセンサ電源97がONされている間に、センサ11の取付部材などがゆるんだ場合がある。このときに、センサ電源97がON状態で、かつ、基準取付状態区間98での同一の回転速度94および負荷95である、時刻92から時刻93までの区間が取付状態判定区間99となる。
 図8の例では、各平面の点群が含まれる近似楕円体83,84,85の方程式パラメータを、ソルバなどの最適解を求め、点群の特徴を表わす特徴パラメータとする。なお、図8の近似楕円体83,84,85は、各平面に投影した形状を示している。
 基準取付状態区間(例えば、図9の基準取付状態区間98)において求めた特徴パラメータは、基準取付状態量となり、取付状態量算出部24は、基準取付状態量として記憶部30へ登録する。取付状態量変化検知部25は、取付状態判定区間(例えば、図9の取付状態判定区間99)において求めた特徴パラメータ(取付状態量)と基準取付状態量との比較を行い、異常判定(取付状態量が変化したか否かの判定)を行う。異常と判定された場合には、補正係数算出部26は、近似楕円体を各軸(x,y,z軸)で回転させ、最も誤差が少なくなるような回転角度を求める手法(ここでもソルバなどを使用してもよい)を用い、x軸、y軸、z軸の最適な回転行列を求めればよい。
 本手法は、機器の振動パターンより変換パラメータを求めている。第1実施形態では重力ベクトルを用いる例を説明したが、初期状態の位置50でz軸周りに回転移動させた場合、重力ベクトルのみでは補正パラメータを求めることはできない。本手法はこのような条件でも補正パラメータを求めることが可能になる。
 なお、第2実施形態は、第1実施形態で起こる課題の解決策として行っているが、第2実施形態では検出できなく、第1実施形態の手法では検出できる状態も存在する。従って、第1実施形態の判定手法と第2実施形態の判定手法を、並列に処理しどちらかで異常が発生した場合には異常状態であると判定してもかまわない。
 本実施形態の測定装置2は、主要処理として下記がある。
(1)センサの初期状態におけるセンサから収集できる特徴量を収集する。
(2)センサの取付状態が変更される可能性がある区間(例えば、メイン電源OFF時)の直後にセンサの状態が変化したか否かを前記(1)の特徴量と比較し判定する。
(3)センサの初期状態における姿勢情報と変更後の姿勢情報をもとに、変更後のセンサ座標系から初期状態のセンサ座標系へ変換する座標変換パラメータを算出し、現在のセンサ座標系で収集したセンサ情報を初期状態のセンサ座標系で収集したと同等になるように座標変換する。
 本実施形態の測定装置2によれば、センサ11の取付状態が変化したことを検出し、状態変化後の姿勢状態における収集したセンサ情報を、幾何学的変換により状態変化前と同等なセンサ情報に変換することできる。幾何学的な変換により状態変化前と同等のセンサ情報が収集できるのであれば、現場に赴いてセンサ状態の修正は不要となり、状態変化後のセンサの取付状態でセンサ情報収集が可能になる。また、補正処理部27でセンサ情報の補正処理を実施することにより、機器1のメンテナンス後も機器1の異常検知性能を保つ効果がある。
 1   機器
 2   測定装置
 11  センサ
 20  処理部
 21  センサ情報取得部
 22  運転情報取得部
 23  取付状態検出区間検出部(検出区間検出部、区間検出部)
 24  取付状態量算出部(取付状態量演算部)
 25  取付状態量変化検知部
 26  補正係数算出部
 27  補正処理部
 28  後処理部
 30  記憶部
 31  センサ情報
 32  運転情報
 33  基準取付状態量
 34  補正係数
 78,98  基準取付状態区間
 79,99  取付状態判定区間
 MS  測定システム

Claims (10)

  1.  機器に取付けられたセンサが基準取付状態にあるときにセンサ情報から算出した取付状態量を、基準取付状態量として記憶している記憶部と、
     前記機器に取付けられたセンサのセンサ情報を取得するセンサ情報取得部と、
     前記機器の運転情報を取得する運転情報取得部と、
     前記運転情報及び前記センサ情報に基づき、前記センサの取付状態の検出区間を検出する検出区間検出部と、
     前記検出区間における前記センサ情報から取付状態量を算出する取付状態量算出部と、
     前記検出区間における取付状態量を判定取付状態量として、前記基準取付状態量と比較して前記判定取付状態量が変化しているか否かを判定する取付状態量変化検知部と、
     前記判定取付状態量が変化している場合に、前記判定取付状態量を前記基準取付状態量に補正するための補正係数を算出し、該算出した補正係数を出力部に出力する補正係数算出部と、を有する
     ことを特徴とする測定装置。
  2.  前記測定装置は、さらに、
     前記判定取付状態量が前記基準取付状態量と等しくなる前記補正係数が求められた場合に、前記補正係数を用いて前記センサの出力信号を補正する補正処理部を有する
     ことを特徴とする請求項1に記載の測定装置。
  3.  前記取付状態量変化検知部は、前記判定取付状態量が前記基準取付状態量と等しくなる前記補正係数が求められない場合に、前記センサが異常である旨を前記出力部に出力する
     ことを特徴とする請求項1に記載の測定装置。
  4.  前記取付状態量変化検知部は、前記判定取付状態量と前記基準取付状態量との差が、所定値を超えた場合に、前記判定取付状態量が変化していると判定する
     ことを特徴とする請求項1に記載の測定装置。
  5.  前記検出区間検出部は、前記センサが基準取付状態の検出区間を検出し、
     前記取付状態量算出部で算出した取付状態量を、前記基準取付状態量として前記記憶部に記憶する
     ことを特徴とする請求項1に記載の測定装置。
  6.  前記センサは、加速度センサであり、
     前記補正係数算出部は、前記機器の所定状態において、前記基準取付状態量及び前記判定取付状態量の重力方向ベクトルが等しくなるように前記補正係数を求める
     ことを特徴とする請求項1に記載の測定装置。
  7.  前記センサは、加速度センサであり、
     前記補正係数算出部は、前記機器の所定状態において、前記加速度センサでのセンサ情報を、xyz空間上の振動パターンをxz平面、zy平面、yz平面へ投影した投影パターンを求め、該投影パターンを取付状態量とし、前記基準取付状態量及び前記判定取付状態量の前記投影パターンが等しくなるように前記補正係数を求める
     ことを特徴とする請求項1に記載の測定装置。
  8.  機器に取付けられたセンサからのセンサ情報を取得するセンサ情報取得部と、
     前記機器の運転情報を取得する運転情報取得部と、
     前記運転情報及びセンサ情報に基づき、前記センサの基準取付状態の区間か、前記センサの取付状態の判定の区間かを検出する区間検出部と、
     前記検出された区間における前記センサ情報から取付状態量を算出し、前記基準取付状態の区間における取付状態量を基準取付状態量として記憶部に記憶する取付状態量算出部と、
     前記判定の区間における取付状態量を判定取付状態量として、前記基準取付状態量と比較して前記判定取付状態量が変化しているか否かを判定する取付状態量変化検知部と、
     前記判定取付状態量が変化している場合に、前記判定取付状態量を前記基準取付状態量に補正するための補正係数を算出し、該算出した補正係数を出力部に出力する補正係数算出部と、を有する
     ことを特徴とする測定装置。
  9.  前記請求項1から請求項8に記載のいずれか1項に記載の測定装置と、
     前記機器に取り付けられるセンサと、を有する
     ことを特徴とする測定システム。
  10.  測定装置は、記憶部と処理部とを備え、
     前記記憶部には、機器に取付けられたセンサが基準取付状態にあるときにセンサ情報から算出した取付状態量を、基準取付状態量として記憶されており、
     前記処理部は、
     前記機器に取付けられたセンサからのセンサ情報を取得するセンサ情報取得処理と、
     前記機器の運転情報を取得する運転情報取得処理と、
     前記運転情報及びセンサ情報に基づき、前記センサの取付状態の検出区間を検出する検出区間検出処理と、
     前記検出区間における前記センサ情報から取付状態量を算出する取付状態量算出処理と、
     前記検出区間における取付状態量を判定取付状態量として、前記基準取付状態量と比較して前記判定取付状態量が変化しているか否かを判定する取付状態量変化検知処理と、
     前記判定取付状態量が変化している場合に、前記判定取付状態量を前記基準取付状態量に補正するための補正係数を算出する補正係数算出処理と、
     前記判定取付状態量が前記基準取付状態量と等しくなる前記補正係数が求められた場合に、前記補正係数を用いて前記センサの出力信号を補正する補正処理と、を含んで実行する
     ことを特徴とするセンサ情報の補正方法。
PCT/JP2015/085858 2015-12-22 2015-12-22 測定装置、測定システム及びセンサ情報の補正方法 WO2017109861A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085858 WO2017109861A1 (ja) 2015-12-22 2015-12-22 測定装置、測定システム及びセンサ情報の補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085858 WO2017109861A1 (ja) 2015-12-22 2015-12-22 測定装置、測定システム及びセンサ情報の補正方法

Publications (1)

Publication Number Publication Date
WO2017109861A1 true WO2017109861A1 (ja) 2017-06-29

Family

ID=59089695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085858 WO2017109861A1 (ja) 2015-12-22 2015-12-22 測定装置、測定システム及びセンサ情報の補正方法

Country Status (1)

Country Link
WO (1) WO2017109861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200240870A1 (en) * 2017-10-10 2020-07-30 Schenck Process Europe Gmbh Mobile device for detecting the state parameters and operating parameters of vibrating machines, vibrating machine equipped with such a device, and method for detecting the operating and state parameters of vibrating machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158696A (ja) * 1986-12-23 1988-07-01 株式会社東芝 監視装置
JPH09265316A (ja) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp プラント設備点検装置およびプラント設備点検システム
JP2006350707A (ja) * 2005-06-16 2006-12-28 Hitachi Ltd 検出手段の故障診断装置
JP2011145846A (ja) * 2010-01-14 2011-07-28 Hitachi Ltd 異常検知方法、異常検知システム、及び異常検知プログラム
WO2014102918A1 (ja) * 2012-12-26 2014-07-03 株式会社 日立製作所 機械異常診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158696A (ja) * 1986-12-23 1988-07-01 株式会社東芝 監視装置
JPH09265316A (ja) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp プラント設備点検装置およびプラント設備点検システム
JP2006350707A (ja) * 2005-06-16 2006-12-28 Hitachi Ltd 検出手段の故障診断装置
JP2011145846A (ja) * 2010-01-14 2011-07-28 Hitachi Ltd 異常検知方法、異常検知システム、及び異常検知プログラム
WO2014102918A1 (ja) * 2012-12-26 2014-07-03 株式会社 日立製作所 機械異常診断装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200240870A1 (en) * 2017-10-10 2020-07-30 Schenck Process Europe Gmbh Mobile device for detecting the state parameters and operating parameters of vibrating machines, vibrating machine equipped with such a device, and method for detecting the operating and state parameters of vibrating machines

Similar Documents

Publication Publication Date Title
US9937620B2 (en) Robot system having function to calculate position and orientation of sensor
US11052537B2 (en) Robot operation evaluation device, robot operation evaluating method, and robot system
KR101748559B1 (ko) 회전체 진단 장치 및 방법
JP5496008B2 (ja) 位置姿勢計測装置、位置姿勢計測方法、およびプログラム
Du et al. Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters
JP5618066B2 (ja) 力制御ロボットのキャリブレーション装置と方法
US11370131B2 (en) Abnormality detecting device and abnormality detecting method
JP2017142153A (ja) 寿命予測方法、寿命予測装置、および寿命予測システム
JP6120720B2 (ja) 周波数分析方法、及びこの周波数分析方法を用いた回転機器の診断方法
WO2006022201A1 (ja) ロボットの評価システム及び評価方法
US11951615B2 (en) Malfunction-type determination device and malfunction-type determination method
JPWO2019167171A6 (ja) 異常検出装置及び異常検出方法
US11045951B2 (en) Control system and method for controlling driven body
CN107636421A (zh) 用于运行惯性传感器和具有这种惯性传感器的车辆的方法以及这种车辆
CN114102587B (zh) 机器人控制方法、系统、电子设备和存储介质
WO2016121689A1 (ja) 不具合診断方法及び不具合診断システム
JP5284179B2 (ja) 作業判定システム及び作業判定方法並びに該作業判定方法を記録した記録媒体
WO2017109861A1 (ja) 測定装置、測定システム及びセンサ情報の補正方法
CN108027298A (zh) 一种用于异常检测的方法和装置
JP7110843B2 (ja) 異常判定装置及び異常判定方法
JP4538730B2 (ja) モータ制御装置
JP4833775B2 (ja) 振幅算出装置およびそれを備えるインピーダンス測定装置、ならびに振幅算出方法およびそれを備えるインピーダンス測定方法
US20220288773A1 (en) Safe operation of a multi-axis kinematic system
EP3601988B1 (en) Method for localizing assembly errors
JP6881673B2 (ja) 異常検出装置及び異常検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP