WO2017104267A1 - Polyurethane composition and sheet - Google Patents

Polyurethane composition and sheet Download PDF

Info

Publication number
WO2017104267A1
WO2017104267A1 PCT/JP2016/081534 JP2016081534W WO2017104267A1 WO 2017104267 A1 WO2017104267 A1 WO 2017104267A1 JP 2016081534 W JP2016081534 W JP 2016081534W WO 2017104267 A1 WO2017104267 A1 WO 2017104267A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyurethane
parts
sheet
polyurethane composition
Prior art date
Application number
PCT/JP2016/081534
Other languages
French (fr)
Japanese (ja)
Inventor
優紀 小松崎
友理 藤井
綱島 啓次
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017556398A priority Critical patent/JP6350764B2/en
Publication of WO2017104267A1 publication Critical patent/WO2017104267A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers

Definitions

  • the present invention relates to a polyurethane composition from which a sheet excellent in step following property, substrate adhesion, sheet holding property, and stain resistance can be obtained.
  • Silicon films having excellent heat resistance are widely used in heat conduction sheets, surface protection films, and the like used for electronic devices and electronic parts such as displays, LED lighting, transistors, and capacitors.
  • the sheet processing suitability required for the sheet for example, in the case of punching or slit processing, the cured product layer of the polyurethane composition is peeled off from the substrate by pressing of the processing blade, the paste powder of the cured product layer or Excellent base material adhesion that does not generate residue, and the cured product layer does not stick to the processing blade or the cured product layer protrudes from the end surface of the sheet, and the punched sheet and the sheet outer periphery remain bonded. It is required to have excellent sheet holding properties to prevent the above. Although improving the sheet processing suitability can reduce the number of cleanings of the processing blade and improve the yield and work efficiency, it is difficult to achieve both substrate adhesion and sheet retention. It was.
  • the problem to be solved by the present invention is to provide a polyurethane composition from which a sheet having excellent step following property, substrate adhesion, sheet retention, and stain resistance can be obtained.
  • the present invention provides a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups in an equivalent ratio [(a-1) / (a-2)] in the range of 0.7 to 100.
  • a polyurethane composition comprising a polyurethane (A) having a hydroxyl group, a crosslinking agent (B), and an organic solvent (C) using the contained polyol (a) as a raw material is provided.
  • this invention provides the sheet
  • the sheet formed from the polyurethane composition of the present invention is excellent in step followability, substrate adhesion, sheet retention, and stain resistance.
  • the polyurethane composition of the present invention comprises a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups in an equivalent ratio [(a-1) / (a-2)] of 0.7 to
  • a polyol (a) contained in a range of 100 is used as a raw material, and contains a polyurethane (A) having a hydroxyl group, a crosslinking agent (B), and an organic solvent (C).
  • a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups are used as raw materials, and their equivalent ratio [(a-1) / (a-2 )] Is in the range of 0.7 to 100.
  • the equivalent ratio is less than 0.7, the cohesive strength of the polyurethane itself is too high and / or the distance between crosslinks is too short, so that the flexibility and elongation of the sheet is insufficient, and the desired step following property is achieved. If the substrate adhesion is not obtained, and if it exceeds 100, the distance between crosslinks becomes too large, the sheet holding property cannot be obtained, or the adhesive residue or transfer due to the increase in adhesive force during the durability test And the desired stain resistance cannot be obtained.
  • the equivalence ratio is preferably in the range of 1 to 100, more preferably in the range of 1 to 80, since further excellent processability and stain resistance can be obtained.
  • the equivalent ratio is a normal equivalent ratio.
  • the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups are charged all at once, the polyurethane (A) is produced. Shows the equivalent ratio calculated from the functional group equivalent of the bifunctional polyol (a-1) / functional group equivalent of the compound (a-2) having three hydroxyl groups.
  • the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups are reacted stepwise, for example, first, the bifunctional polyol (a-1) and a polyisocyanate (a) described later are used.
  • the equivalent ratio calculated from each [NCO / OH] described later is shown.
  • polyurethane (A) examples include a polyol (a) containing the bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups and a polyisocyanate (a-3). ) And the reaction product can be used.
  • bifunctional polyol (a-1) examples include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, and polyoxypropylene.
  • Polyether diols such as polyoxytetramethylene glycol; polycarbonate diol, polyester diol, acrylic diol, polybutadiene diol, hydrogenated polybutadiene diol, and the like can be used. These bifunctional polyols may be used alone or in combination of two or more.
  • polyether diol in applications where transparency is required for the sheet, in order to suppress haze generation derived from the crystallinity of the polyol, it is relatively versatile, and from the viewpoint of easy selection of a low glass transition temperature product, polyether diol, It is preferable to use one or more polyols selected from the group consisting of polycarbonate diols and polyester diols.
  • the number average molecular weight of the bifunctional polyol (a-1) is preferably in the range of 100 to 20,000, more preferably in the range of 150 to 10,000, from the viewpoint of obtaining even better cohesion. preferable.
  • the number average molecular weight of the bifunctional polyol (a-1) is a value measured by the gel permeation chromatography (GPC) method under the following conditions.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • Examples of the compound (a-2) having three hydroxyl groups include propylene oxide adducts such as an adduct of glycerin and propylene oxide, an adduct of trimethylolpropane and propylene oxide; propylene using glycerin as an initiator.
  • the number average molecular weight of the compound (a-2) having three hydroxyl groups is in the range of 1,500 to 10,000 from the viewpoint of obtaining good flexibility, substrate adhesion, and sheet retention. It is preferably in the range of 2,000 to 5,000.
  • the number average molecular weight of the compound (a-2) having three hydroxyl groups is a value obtained by measurement in the same manner as in the bifunctional polyol (a-1).
  • the polyol (a) may be a compound having four or more hydroxyl groups or a so-called chain extension, if necessary.
  • An agent or the like may be used in combination.
  • polyisocyanate (a-3) examples include aromatic polyisocyanates such as xylylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4 Aliphatic or alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more.
  • both are reacted so that the molar ratio of the hydroxyl group of the polyol (a) is excessive with respect to the molar ratio of the isocyanate group of the polyisocyanate (a-3).
  • a method is mentioned.
  • the polyol (a) may be charged all at once or may be charged in two or more times while controlling the reaction.
  • the bifunctional polyol (a-1) and the polyisocyanate (a-3) are first added. And the like, and then a method of reacting the compound (a-2) having three hydroxyl groups may be used.
  • the molar ratio (NCO / OH) between the hydroxyl group of the polyol (a) and the isocyanate group of the polyisocyanate (a-3) is determined as follows. From the viewpoint of mechanical strength, the range is preferably from 0.3 to 0.99, and more preferably from 0.5 to 0.99.
  • the weight average molecular weight of the polyurethane (A) is preferably in the range of 10,000 to 700,000, and preferably in the range of 30,000 to 500,000 from the viewpoint that both flexibility and mechanical strength can be achieved at a high level. A range is more preferable.
  • the weight average molecular weight of the polyurethane (A) is a value measured in the same manner as the number average molecular weight of the bifunctional polyol (a-1).
  • the content of the hydroxyl group in the polyurethane (A) the crosslink density with the crosslinking agent (B) described later and the distance between crosslinks can be optimized, so that even better substrate adhesion and sheet retention can be obtained.
  • the range is preferably 0.005 to 0.3 mol / kg, more preferably 0.01 to 0.28 mol / kg, and particularly preferably 0.04 to 0.25 mol / kg.
  • content of the hydroxyl group in the said polyurethane (A) shows content of the hydroxyl group which occupies in the said raw material with respect to the total mass of each raw material which comprises the said polyurethane (A).
  • the content of the urethane bond in the polyurethane (A) the cohesive force can be controlled, and more excellent substrate adhesion, sheet retention, and stain resistance can be obtained.
  • the range is 0.2 to 10 mol / kg, more preferably 0.4 to 5 mol / kg, and particularly preferably 0.5 to 5 mol / kg.
  • content of the urethane bond in the said polyurethane (A) shows content of the urethane bond structure which occupies in the said raw material with respect to the total mass of each raw material which comprises the said polyurethane (A).
  • crosslinking agent (B) for example, a polyisocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, or the like can be used. These crosslinking agents may be used alone or in combination of two or more. Among these, by reacting with the hydroxyl group of the polyurethane (A) to form a three-dimensional crosslink, good mechanical strength, step following ability, substrate adhesion, sheet retention, and stain resistance can be obtained. From the viewpoint, it is preferable to use a polyisocyanate crosslinking agent.
  • polyisocyanate crosslinking agent examples include tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and xylylene diisocyanate; hexamethylene diisocyanate trimethylolpropane Adduct, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, trimethylolpropane adduct of xylylene diisocyanate, isocyanurate of hexamethylene diisocyanate, nurate of tolylene diisocyanate, isophorone di Isocyanurate of isocyanate, and the like can be used isocyanurate of xylylene
  • the amount of the crosslinking agent (B) used is 0. 0 parts by mass with respect to 100 parts by mass of the polyurethane (A) (solid content) from the viewpoint that the step following ability, the substrate adhesion and the sheet retention can be achieved at a high level.
  • the range is preferably from 01 to 20 parts by mass, more preferably from 0.05 to 15 parts by mass, and still more preferably from 0.1 to 10 parts by mass.
  • the organic solvent (C) is used for improving the production stability of the polyurethane (A) and the coating property of the polyurethane composition, and examples thereof include esters such as ethyl acetate, methyl acetate, and butyl acetate.
  • Solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone; Aliphatic hydrocarbon solvent such as heptane, hexane, cyclohexane, methylcyclohexane; Aromatic hydrocarbon solvent such as toluene, o-xylene, m-xylene, p-xylene Alcohol solvents such as methanol, ethanol, isopropyl alcohol, isobutanol, sec-butanol, and tertiary butanol can be used. These organic solvents may be used alone or in combination of two or more.
  • the amount of the organic solvent (C) used is preferably in the range of 20 to 200 parts by weight, preferably in the range of 40 to 180 parts by weight, based on 100 parts by weight of the polyurethane (A), from the viewpoint of coating properties. Is more preferable.
  • the polyurethane composition of the present invention contains the polyurethane (A), the crosslinking agent (B), and the organic solvent (C) as essential components, and further contains other additives as necessary. Also good.
  • additives examples include carbodiimide compounds, antioxidants, plasticizers, rust inhibitors, thixotropic agents, dispersants, sensitizers, urethanization catalysts, polymerization inhibitors, leveling agents, tackifiers, A foam stabilizer or the like can be used. These additives may be used alone or in combination of two or more. Among these, it is preferable to contain a carbodiimide compound from the viewpoint that much more excellent stain resistance can be obtained.
  • carbodiimide compound examples include N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, and N- [3- (dimethylamino) propyl].
  • carbodiimide compounds may be used alone or in combination of two or more. Among these, it is preferable to use a carbodiimide compound having an isocyanate group because it reacts with the hydroxyl group of the polyurethane (A) to obtain further excellent stain resistance.
  • carbodiimide compound examples include “Carbodilite V-02”, “Carbodilite V-02-L2”, “Carbodilite V-04”, “Carbodilite V-05”, “Carbodilite V-07”, “Carbodilite V-09”. “Carbodilite E-01”, “Carbodilite E-02”, “Carbodilite E-03A”, “Carbodilite E-04” (manufactured by Nisshinbo Chemical Co., Ltd.) and the like are commercially available.
  • the amount used in the case of using the carbodiimide compound is preferably in the range of 0.1 to 7 parts by mass with respect to 100 parts by mass of the polyurethane (A) from the viewpoint of obtaining further excellent stain resistance.
  • the range of 0.5 to 5 parts by mass is more preferable.
  • the crosslinking agent (B) is added to the mixture in which the polyurethane (A) is dissolved in the organic solvent (C).
  • the method of adding an agent and mixing is mentioned.
  • Examples of the method of forming a sheet from the polyurethane composition of the present invention include a method of applying the polyurethane composition onto a plastic substrate, and drying and curing.
  • plastic substrate examples include polyester such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polyolefin, polyacrylate, polyvinyl chloride, polyethylene, polypropylene ethylene vinyl alcohol, polyurethane, polyamide, and polyimide. Sheet or film can be used.
  • the surface of these plastic substrates may be subjected to mold release treatment, antistatic treatment, corona treatment and the like. Further, the thickness of the plastic substrate is, for example, in the range of 10 to 200 ⁇ m.
  • Examples of the method of applying the polyurethane composition to the plastic substrate include a coating method using a roll coater, a gravure coater, a reverse coater, a spray coater, an air knife coater, a die coater, or the like.
  • the thickness of the sheet after drying with the organic solvent (C) is, for example, in the range of 5 to 100 ⁇ m.
  • Examples of the method of drying the polyurethane composition after coating the polyurethane composition on the plastic substrate include a method of drying at 50 to 120 ° C. for 30 seconds to 30 minutes. Further, after drying, aging may be performed at a temperature of, for example, 30 ° C. to 50 ° C. in order to accelerate the curing reaction.
  • the polyurethane composition of the present invention has excellent step following ability, substrate adhesion, sheet retention, and contamination resistance. Therefore, the sheet
  • Example 1 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxypropylene glycol (number average molecular weight; 2,000, hereinafter abbreviated as “PPG2000”) 1,550 parts by mass, hexamethylene diisocyanate ( (Hereinafter abbreviated as “HDI”) is 165 parts by mass, dioctyltin dilaurate is 0.03 parts by mass, polyoxyethylene polyoxypropylene triol (number average molecular weight; 3,000, hereinafter abbreviated as “EOPO3000”).
  • PPG2000 polyoxypropylene glycol
  • HDI hexamethylene diisocyanate
  • EOPO3000 polyoxyethylene polyoxypropylene triol
  • Example 2 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 990 parts by mass of polyoxypropylene glycol (number average molecular weight; 2,000, hereinafter abbreviated as “PPG2000”), hexamethylene diisocyanate (hereinafter, , Abbreviated as “HDI”), 150 parts by mass of polyoxyethylene polyoxypropylene triol (number average molecular weight; 3,000, hereinafter abbreviated as “EOPO3000”), 1,460 parts by mass of dioctyltin dilaurate.
  • PPG2000 polyoxypropylene glycol
  • HDI hexamethylene diisocyanate
  • EOPO3000 polyoxyethylene polyoxypropylene triol
  • 1,460 parts by mass of dioctyltin dilaurate 1,460 parts by mass of dioctyltin dilaurate.
  • Nonvolatile content 60% by mass, viscosity: 4,100 mPa ⁇ s, hydroxyl group content 0.23 mol / kg, weight average molecular weight; 84,000, polyoxyalkylene content; 16.6 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 15/85, content of urethane bond :
  • a polyurethane (A-2) solution of 0.69 mol / kg was obtained.
  • HDI nurate hexamethylene diisocyanate
  • Example 3 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1760 parts by mass of polyoxypropylene glycol (number average molecular weight: 10,000, hereinafter abbreviated as “PPG10000”) and 40 parts by mass of HDI. Parts, 230 parts by mass of EOPO3000, 0.2 parts by mass of dioctyltin dilaurate and 1,095 parts by mass of ethyl acetate were charged into a separable flask and reacted by heating to 70 ° C.
  • PPG10000 polyoxypropylene glycol
  • the completion of the reaction was confirmed when the isocyanate group content was calculated from the charged amount by titration with dibutylamine and hydrochloric acid.
  • the nonvolatile content 65% by mass, viscosity: 12,000 mPa ⁇ s, hydroxyl group content
  • Amount 0.08 mol / kg, weight average molecular weight; 120,000, polyoxyalkylene content; 16.6 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 5/95, content of urethane bond :
  • a polyurethane (A-3) solution of 0.23 mol / kg was obtained.
  • Example 4 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,560 parts by mass of PPG 3000, 110 parts by mass of isophorone diisocyanate (hereinafter abbreviated as “IPDI”), 680 parts by mass of EOPO 3000, 0.03 parts by mass of dioctyltin dilaurate and 995 parts by mass of ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • IPDI isophorone diisocyanate
  • Example 5 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 200 parts by mass of polyoxypropylene glycol (number average molecular weight; 400, hereinafter abbreviated as “PPG400”), 85 parts by mass of HDI, and EOPO 3000 308 parts by mass, dioctyltin dilaurate 0.03 parts by mass and ethyl acetate in a separable flask and heated to 75 ° C.
  • PPG400 number average molecular weight
  • HDI high-dilaurate
  • EOPO 3000 3000
  • Example 6 1,015 mass parts of polyester diol (“MX2420” manufactured by DIC Corporation, number average molecular weight; 2000, hereinafter abbreviated as “PEs”) in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer.
  • PEs polyester diol
  • 105 parts by mass of HDI, 450 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • Example 7 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,202 parts by mass of polyoxypropylene glycol (number average molecular weight; 200, hereinafter abbreviated as “PPG200”), and HDI of 1,017. Part by mass, 163 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • PPG200 number average molecular weight
  • Example 8 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,002 parts by mass of PPG2000, 85 parts by mass of HDI, 18 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, ethyl acetate was charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 71% by mass; hydroxyl group content: 0.
  • a polyurethane (A-8) solution having a 007 mol / kg, a weight average molecular weight of 451,500, and a urethane bond content of 0.9 mol / kg was obtained.
  • a polyurethane (A-8) solution having a 007 mol / kg, a weight average molecular weight of 451,500, and a urethane bond content of 0.9 mol / kg was obtained.
  • 0.7 part by mass of HDI nurate as a crosslinking agent was added immediately before producing the sheet to obtain a polyurethane composition. Note that [(a-1) / (a-2)] is 55.7.
  • Example 9 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polycarbonate diol (“Duranate T5652” manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight; 2000, hereinafter abbreviated as “PC”) is 1,015. Part by mass, 105 parts by mass of HDI, 450 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • PC polycarbonate diol
  • Example 10 In Example 1, instead of 3.6 parts by mass of HDI nurate, the procedure was carried out except that the trimethylolpropane adduct of hexamethylene diisocyanate (hereinafter abbreviated as “HDI-TMP”) was changed to 4.7 parts by mass. A polyurethane composition was obtained in the same manner as in Example 1.
  • HDI-TMP trimethylolpropane adduct of hexamethylene diisocyanate
  • Example 11 In Example 6, instead of 3.6 parts by mass of HDI nurate, the trimethylolpropane adduct of toluene diisocyanate (hereinafter abbreviated as “TDI-TMP”) was changed to 4.7 parts by mass. 4 to obtain a polyurethane composition.
  • TDI-TMP trimethylolpropane adduct of toluene diisocyanate
  • Example 12 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxymethylene glycol (number average molecular weight; 1000, hereinafter abbreviated as “PTMG1000”) is 1,032 parts by mass, and HDI is 260 parts by mass. Then, 1820 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • PTMG1000 number average molecular weight
  • EOPO3000 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • Example 13 In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxyethylene glycol (number average molecular weight; 200, hereinafter abbreviated as “PEG200”) is 1,025 parts by mass, and HDI is 194 parts by mass. Then, 449 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C.
  • PEG200 number average molecular weight
  • HDI 194 parts by mass
  • Example 14 In Example 6, 1 part by mass of Nisshinbo Carbodiimide Compound “Carbodilite V-05” (hereinafter abbreviated as “V-05”) is added to 100 parts by mass of the nonvolatile content of polyurethane (A-6). A polyurethane composition was obtained in the same manner as in Example 6 except that.
  • a sheet obtained by cutting the sheet obtained in [Sheet Processing Method 1] into a size of 30 mm ⁇ 30 mm was used as a test piece.
  • the test piece was cut to a size of 20 mm ⁇ 20 mm and attached to a glass plate on which a polyethylene terephthalate (PET) film having a thickness of 25 ⁇ m was placed, and the gap between the PET film and the test piece was visually observed. Evaluation was performed as follows. “ ⁇ ”: No gap between the PET film and the test piece (complete tracking) “ ⁇ ”: A part of air enters between the PET film and the test piece, and the float is generated (partly following) "X”: Air exists around the PET film, and the test piece is floating (complete peeling)
  • [Contamination resistance evaluation method] A sheet obtained by cutting the sheet obtained in [Sheet Processing Method 2] into a size of 30 mm ⁇ 30 mm was used as a test piece, from which release PET was peeled off and attached to a glass plate. At that time, air bubbles were introduced between the sheet and the glass plate. The test piece was left for 72 hours at 60 ° C. and 90% humidity. Then, after leaving for 24 hours in an environment of 23 ° C., the sheet was peeled off from the glass plate by hand, irradiated with LED light from the lower part of the glass plate, and the contamination status was observed visually and with a microscope and evaluated as follows. did. “ ⁇ ”: There is no contamination on the glass plate.
  • the sheet formed from the polyurethane composition of the present invention has excellent step following ability, substrate adhesion, sheet retention, and stain resistance.
  • Comparative Example 1 is an embodiment in which the equivalent ratio of the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups is lower than the range defined in the present invention. The stain resistance was poor.
  • Comparative Example 2 is an embodiment in which the equivalent ratio of the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups exceeds the range specified in the present invention. Adhesion was poor.

Abstract

The problem to be solved by the present invention is to provide a polyurethane composition that gives sheets which are excellent in terms of conformability to rugged portions, adhesion to substrates, sheet retentivity, and nonfouling property. The present invention provides a polyurethane composition characterized by comprising (A) a hydroxylated polyurethane obtained using, as starting materials, (a) polyols comprising (a-1) a bifunctional polyol and (a-2) a compound having three hydroxy groups in an equivalent ratio, (a-1)/(a-2), of 0.7-100, (B) a crosslinking agent, and (C) an organic solvent. The present invention further provides a sheet characterized by having been formed from the polyurethane composition. The sheet formed from the polyurethane composition of the present invention is excellent in terms of conformability to rugged portions, adhesion to substrates, sheet retentivity, and nonfouling property.

Description

ポリウレタン組成物、及び、シートPolyurethane composition and sheet
 本発明は、段差追従性、基材密着性、シート保持性、及び耐汚染性に優れるシートが得られるポリウレタン組成物に関する。 The present invention relates to a polyurethane composition from which a sheet excellent in step following property, substrate adhesion, sheet holding property, and stain resistance can be obtained.
 ディスプレイ、LED照明、トランジスタ、コンデンサ等の電子機器や電子部品に使用される熱伝導シート、表面保護フィルム等では、耐熱性に優れるシリコンフィルムが広く利用されている。 Silicon films having excellent heat resistance are widely used in heat conduction sheets, surface protection films, and the like used for electronic devices and electronic parts such as displays, LED lighting, transistors, and capacitors.
 前記シリコンフィルムにおいては、耐熱性だけでなく、柔軟性、熱伝導性、微粘着性等、使用される用途に応じて様々な特性が必要となっており、要求特性の多様化が進んでいる。これに対し、樹脂設計により様々な要求に応じることができるポリウレタン組成物を用いた代替検討がなされ始めている(例えば、特許文献1を参照。)。 In the silicon film, not only heat resistance but also various properties such as flexibility, thermal conductivity, and slight adhesiveness are required depending on the application to be used, and diversification of required properties is progressing. . On the other hand, the alternative examination using the polyurethane composition which can respond to various request | requirements by resin design has begun (for example, refer patent document 1).
 その中でも、電子機器や電子部品等を被覆する用途においては、その表面の細かな段差にも追従できるような優れた段差追従性を有するシートを形成できるポリウレタン組成物の開発が望まれている。しかしながら、未だ所望の段差追従性が得られていないのが実情であった。 Among them, in applications for coating electronic devices, electronic parts, etc., it is desired to develop a polyurethane composition capable of forming a sheet having excellent step followability that can follow fine steps on its surface. However, the actual situation is that the desired step following ability has not yet been obtained.
 更に、電子機器や電子部品の製造に使用される際には、良好な加工適性も必要となる。ポリウレタン組成物により形成されたシートを、電子部品等の製造工程で使用する加工例を1つ挙げる。前記シートは、まず幅広のロールから所望の幅にスリット加工され、次いでその上に電子機器部品を仮固定し、各部品の形状に抜き加工等を行い、加工終了後に前記シートから各部品を分離する加工方法が挙げられる。 Furthermore, when used for the manufacture of electronic equipment and electronic parts, good processability is also required. One example of processing in which a sheet formed of a polyurethane composition is used in a manufacturing process of an electronic component or the like is given. The sheet is first slitted from a wide roll to a desired width, then electronic parts are temporarily fixed on the sheet, and each part is cut into a shape, and the parts are separated from the sheet after completion of processing. The processing method to do is mentioned.
 この際前記シートに求められるシート加工適性としては、例えば、抜き加工やスリット加工の際に、加工刃の押圧による基材からポリウレタン組成物の硬化物層が剥がれたり、硬化物層の糊粉やカスが発生しない優れた基材密着性と、加工刃に硬化物層が付着したりシートの端面へ硬化物層がはみ出すことがなく、抜き加工したシートとシート外周とが結合したままであることを防ぐ優れたシート保持性とが要求される。これらのシート加工適性を向上させることで、加工刃の洗浄回数を少なくすることができ、歩留まりや作業効率の向上につながるものの、基材密着性とシート保持性とを両立することは困難であった。 In this case, the sheet processing suitability required for the sheet, for example, in the case of punching or slit processing, the cured product layer of the polyurethane composition is peeled off from the substrate by pressing of the processing blade, the paste powder of the cured product layer or Excellent base material adhesion that does not generate residue, and the cured product layer does not stick to the processing blade or the cured product layer protrudes from the end surface of the sheet, and the punched sheet and the sheet outer periphery remain bonded. It is required to have excellent sheet holding properties to prevent the above. Although improving the sheet processing suitability can reduce the number of cleanings of the processing blade and improve the yield and work efficiency, it is difficult to achieve both substrate adhesion and sheet retention. It was.
特開2010-235734号公報JP 2010-235734 A
 本発明が解決しようとする課題は、段差追従性、基材密着性、シート保持性、及び耐汚染性に優れるシートが得られるポリウレタン組成物を提供することである。 The problem to be solved by the present invention is to provide a polyurethane composition from which a sheet having excellent step following property, substrate adhesion, sheet retention, and stain resistance can be obtained.
 本発明は、2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)とを当量比[(a-1)/(a-2)]で0.7~100の範囲で含有するポリオール(a)を原料とし、水酸基を有するポリウレタン(A)、架橋剤(B)、及び有機溶剤(C)を含有することを特徴とするポリウレタン組成物を提供するものである。また、本発明は、前記ポリウレタン組成物により形成されたことを特徴とするシートを提供するものである。 The present invention provides a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups in an equivalent ratio [(a-1) / (a-2)] in the range of 0.7 to 100. A polyurethane composition comprising a polyurethane (A) having a hydroxyl group, a crosslinking agent (B), and an organic solvent (C) using the contained polyol (a) as a raw material is provided. Moreover, this invention provides the sheet | seat characterized by formed with the said polyurethane composition.
 本発明のポリウレタン組成物より形成されたシートは、段差追従性、基材密着性、シート保持性、及び耐汚染性に優れるものである。 The sheet formed from the polyurethane composition of the present invention is excellent in step followability, substrate adhesion, sheet retention, and stain resistance.
 本発明のポリウレタン組成物は、2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)とを当量比[(a-1)/(a-2)]で0.7~100の範囲で含有するポリオール(a)を原料とし、水酸基を有するポリウレタン(A)、架橋剤(B)、及び有機溶剤(C)を含有するものである。 The polyurethane composition of the present invention comprises a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups in an equivalent ratio [(a-1) / (a-2)] of 0.7 to A polyol (a) contained in a range of 100 is used as a raw material, and contains a polyurethane (A) having a hydroxyl group, a crosslinking agent (B), and an organic solvent (C).
 前記ポリウレタン(A)としては、原料として、2官能ポリオール(a-1)及び3つの水酸基を有する化合物(a-2)を用い、かつそれらの当量比[(a-1)/(a-2)]が0.7~100の範囲であることが必須である。これにより、柔軟性と凝集力を適切な範囲で制御でき、架橋密度を制御できるため、段差追従性、基材密着性、シート保持性、及び耐汚染性に優れるシートが得られる。前記当量比が、0.7を下回る場合には、ポリウレタン自体の凝集力が高すぎる、及び/又は架橋間距離が短すぎるため、シートの柔軟性や伸度が不足し、所望の段差追従性や基材密着性が得られず、また100を超える場合には、架橋間距離が大きくなりすぎるため、シート保持性が得られない、又は、耐久試験時の粘着力上昇による糊残りや移染が発生し、所望の耐汚染性が得られない。前記当量比としては、より一層優れた加工適性及び耐汚染性が得られるため、1~100の範囲であることが好ましく、1~80の範囲がより好ましい。 As the polyurethane (A), a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups are used as raw materials, and their equivalent ratio [(a-1) / (a-2 )] Is in the range of 0.7 to 100. Thereby, since a softness | flexibility and cohesion force can be controlled in an appropriate range and a crosslinking density can be controlled, the sheet | seat excellent in level | step difference followability, base-material adhesiveness, sheet | seat retention, and stain resistance is obtained. If the equivalent ratio is less than 0.7, the cohesive strength of the polyurethane itself is too high and / or the distance between crosslinks is too short, so that the flexibility and elongation of the sheet is insufficient, and the desired step following property is achieved. If the substrate adhesion is not obtained, and if it exceeds 100, the distance between crosslinks becomes too large, the sheet holding property cannot be obtained, or the adhesive residue or transfer due to the increase in adhesive force during the durability test And the desired stain resistance cannot be obtained. The equivalence ratio is preferably in the range of 1 to 100, more preferably in the range of 1 to 80, since further excellent processability and stain resistance can be obtained.
 なお、前記当量比は、通常の当量比を示し、例えば、前記2官能ポリオール(a-1)及び3つの水酸基を有する化合物(a-2)を一括で仕込んでポリウレタン(A)を製造する場合には、2官能ポリオール(a-1)の官能基当量/3つの水酸基を有する化合物(a-2)のの官能基当量から算出される当量比を示す。また、前記2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)とを段階的に反応させる場合、例えば、まず2官能ポリオール(a-1)と後述するポリイソシアネート(a-3)とを反応させた後に、更に3つの水酸基を有する化合物(a-2)を反応させた場合には、後述するそれぞれの[NCO/OH]から算出される当量比を示す。 The equivalent ratio is a normal equivalent ratio. For example, when the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups are charged all at once, the polyurethane (A) is produced. Shows the equivalent ratio calculated from the functional group equivalent of the bifunctional polyol (a-1) / functional group equivalent of the compound (a-2) having three hydroxyl groups. When the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups are reacted stepwise, for example, first, the bifunctional polyol (a-1) and a polyisocyanate (a) described later are used. When the compound (a-2) having three hydroxyl groups is further reacted after reacting with -3), the equivalent ratio calculated from each [NCO / OH] described later is shown.
 前記ポリウレタン(A)としては、具体的には、例えば、前記2官能ポリオール(a-1)及び3つの水酸基を有する化合物(a-2)を含有するポリオール(a)とポリイソシアネート(a-3)との反応物を用いることができる。 Specific examples of the polyurethane (A) include a polyol (a) containing the bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups and a polyisocyanate (a-3). ) And the reaction product can be used.
 前記2官能ポリオール(a-1)としては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール、ポリオキシプロピレンポリオキシテトラメチレングリコール等のポリエーテルジオール;ポリカーボネートジオール、ポリエステルジオール、アクリルジオール、ポリブタジエンジオール、水添ポリブタジエンジオールなどを用いることができる。これらの2官能ポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、シートに透明性の求められる用途において、ポリオールの結晶性由来のヘイズ発生を抑制するために、比較的汎用であり、低ガラス転移温度品を選定しやすい点から、ポリエーテルジオール、ポリカーボネートジオール、及びポリエステルジオールからなる群より選ばれる1種以上のポリオールを用いることが好ましい。 Examples of the bifunctional polyol (a-1) include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, and polyoxypropylene. Polyether diols such as polyoxytetramethylene glycol; polycarbonate diol, polyester diol, acrylic diol, polybutadiene diol, hydrogenated polybutadiene diol, and the like can be used. These bifunctional polyols may be used alone or in combination of two or more. Among these, in applications where transparency is required for the sheet, in order to suppress haze generation derived from the crystallinity of the polyol, it is relatively versatile, and from the viewpoint of easy selection of a low glass transition temperature product, polyether diol, It is preferable to use one or more polyols selected from the group consisting of polycarbonate diols and polyester diols.
 前記2官能ポリオール(a-1)の数平均分子量としては、より一層優れた凝集力が得られる点から、100~20,000の範囲であることが好ましく、150~10,000の範囲がより好ましい。なお、前記2官能ポリオール(a-1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、以下の条件にて測定した値を示す。 The number average molecular weight of the bifunctional polyol (a-1) is preferably in the range of 100 to 20,000, more preferably in the range of 150 to 10,000, from the viewpoint of obtaining even better cohesion. preferable. The number average molecular weight of the bifunctional polyol (a-1) is a value measured by the gel permeation chromatography (GPC) method under the following conditions.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
 前記3つの水酸基を有する化合物(a-2)としては、例えば、グリセリンとプロピレンオキサイドとの付加物、トリメチロールプロパンとプロピレンオキサイドとの付加物等のプロピレンオキサイド付加物;グリセリンを開始剤として、プロピレンオキサイドを付加した後に、その末端にエチンオキサイドを更に付加したもの、グリセリンを開始剤として、プロピレンオキサイド及びエチレンオキサイドの混合物を付加したもの、トリメチロールプロパンを開始剤として、プロピレンオキサイドを付加した後に、その末端にエチンオキサイドを更に付加したもの、トリメチロールプロパンを開始剤として、プロピレンオキサイド及びエチレンオキサイドの混合物を付加したもの等のプロピレンオキサイド及びエチレンオキサイド付加物であるポリオキシエチレンポリオキシプロピレントリオールなどを用いることができる。これらの3つの水酸基を有する化合物は単独で用いても2種以上を併用してもよい。これらの中でも、ポリウレタン組成物に柔軟性を付与し、被着体へのより一層優れた濡れ性、基材密着性、及びシート保持性が得られ、ポリウレタンの親水性向上により、耐汚染性をより一層向上できる点から、前記ポリオキシエチレンポリオキシプロピレントリオールを用いることが好ましい。 Examples of the compound (a-2) having three hydroxyl groups include propylene oxide adducts such as an adduct of glycerin and propylene oxide, an adduct of trimethylolpropane and propylene oxide; propylene using glycerin as an initiator. After adding oxide, further added ethyne oxide at its end, added glycerin as an initiator, added a mixture of propylene oxide and ethylene oxide, after adding propylene oxide using trimethylolpropane as an initiator, Propylene oxide and ethylene oxide adducts such as those obtained by further adding ethyne oxide to the terminal, trimethylolpropane as an initiator, and a mixture of propylene oxide and ethylene oxide Etc. can be used that polyoxyethylene polyoxypropylene triol. These compounds having three hydroxyl groups may be used alone or in combination of two or more. Among these, flexibility is imparted to the polyurethane composition, and even better wettability to the adherend, adhesion to the substrate, and sheet retention are obtained. From the viewpoint of further improvement, it is preferable to use the polyoxyethylene polyoxypropylene triol.
 前記3つの水酸基を有する化合物(a-2)の数平均分子量としては、良好な柔軟性、基材密着性、及びシート保持性が得られる点から、1,500~10,000の範囲であることが好ましく、2,000~5,000の範囲であることがより好ましい。なお、前記3つの水酸基を有する化合物(a-2)の数平均分子量は、前記2官能ポリオール(a-1)と同様に測定して得られた値を示す。 The number average molecular weight of the compound (a-2) having three hydroxyl groups is in the range of 1,500 to 10,000 from the viewpoint of obtaining good flexibility, substrate adhesion, and sheet retention. It is preferably in the range of 2,000 to 5,000. The number average molecular weight of the compound (a-2) having three hydroxyl groups is a value obtained by measurement in the same manner as in the bifunctional polyol (a-1).
 前記ポリオール(a)には、前記2官能ポリオール(a-1)及び3つの水酸基を有する化合物(a-2)以外にも、必要に応じて、4つ以上の水酸基を有する化合物やいわゆる鎖伸長剤等を併用してもよい。 In addition to the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups, the polyol (a) may be a compound having four or more hydroxyl groups or a so-called chain extension, if necessary. An agent or the like may be used in combination.
 前記ポリイソシアネート(a-3)としては、例えば、キシリレンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。 Examples of the polyisocyanate (a-3) include aromatic polyisocyanates such as xylylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4 Aliphatic or alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more.
 前記ポリウレタン(A)の製造方法としては、例えば、ポリイソシアネート(a-3)が有するイソシアネート基のモル比に対し、ポリオール(a)が有する水酸基のモル比が過剰となるように両者を反応させる方法が挙げられる。なお、前記反応は、後述する有機溶媒(C)中で行ってもよい。また、ポリオール(a)は、一括で仕込んでも、反応を制御しながら2回以上に分けて仕込んでもよく、更には例えば、先に2官能ポリオール(a-1)とポリイソシアネート(a-3)とを反応させた後に、次いで3つの水酸基を有する化合物(a-2)を反応させる方法等を用いてもよい。いずれの場合であっても、前記ポリオール(a)が有する水酸基とポリイソシアネート(a-3)が有するイソシアネート基とのモル比(NCO/OH)としては、反応性制御の容易性及びシート化物の機械的強度の点から、0.3~0.99の範囲であることが好ましく、0.5~0.99の範囲であることがより好ましい。 As a method for producing the polyurethane (A), for example, both are reacted so that the molar ratio of the hydroxyl group of the polyol (a) is excessive with respect to the molar ratio of the isocyanate group of the polyisocyanate (a-3). A method is mentioned. In addition, you may perform the said reaction in the organic solvent (C) mentioned later. In addition, the polyol (a) may be charged all at once or may be charged in two or more times while controlling the reaction. Further, for example, the bifunctional polyol (a-1) and the polyisocyanate (a-3) are first added. And the like, and then a method of reacting the compound (a-2) having three hydroxyl groups may be used. In any case, the molar ratio (NCO / OH) between the hydroxyl group of the polyol (a) and the isocyanate group of the polyisocyanate (a-3) is determined as follows. From the viewpoint of mechanical strength, the range is preferably from 0.3 to 0.99, and more preferably from 0.5 to 0.99.
 前記ポリウレタン(A)の重量平均分子量としては、柔軟性及び機械的強度を高いレベルで両立できる点から、10,000~700,000の範囲であることが好ましく、30,000~500,000の範囲であることがより好ましい。なお、前記ポリウレタン(A)の重量平均分子量は、前記2官能ポリオール(a-1)の数平均分子量と同様に測定した値を示す。 The weight average molecular weight of the polyurethane (A) is preferably in the range of 10,000 to 700,000, and preferably in the range of 30,000 to 500,000 from the viewpoint that both flexibility and mechanical strength can be achieved at a high level. A range is more preferable. The weight average molecular weight of the polyurethane (A) is a value measured in the same manner as the number average molecular weight of the bifunctional polyol (a-1).
 前記ポリウレタン(A)中の水酸基の含有量としては、後述する架橋剤(B)との架橋密度や架橋間距離を最適化できるため、より一層優れた基材密着性及びシート保持性が得られる点から、0.005~0.3mol/kgの範囲であることが好ましく、0.01~0.28mol/kgの範囲がより好ましく、0.04~0.25mol/kgの範囲が特に好ましい。なお、前記ポリウレタン(A)中における水酸基の含有量は、前記ポリウレタン(A)を構成する各原料の合計質量に対する、前記原料中に占める水酸基の含有量を示す。 As the content of the hydroxyl group in the polyurethane (A), the crosslink density with the crosslinking agent (B) described later and the distance between crosslinks can be optimized, so that even better substrate adhesion and sheet retention can be obtained. From the viewpoint, the range is preferably 0.005 to 0.3 mol / kg, more preferably 0.01 to 0.28 mol / kg, and particularly preferably 0.04 to 0.25 mol / kg. In addition, content of the hydroxyl group in the said polyurethane (A) shows content of the hydroxyl group which occupies in the said raw material with respect to the total mass of each raw material which comprises the said polyurethane (A).
 前記ポリウレタン(A)中におけるウレタン結合の含有量としては、凝集力が制御でき、より一層優れた基材密着性、シート保持性、及び耐汚染性が得られる点から、0.2mol/kg以上であることが好ましく、0.2~10mol/kgの範囲がより好ましく、0.4~5mol/kgの範囲が更に好ましく、0.5~5mol/kgの範囲が特に好ましい。なお、前記ポリウレタン(A)中におけるウレタン結合の含有量は、前記ポリウレタン(A)を構成する各原料の合計質量に対する、前記原料中に占めるウレタン結合構造の含有量を示す。 As the content of the urethane bond in the polyurethane (A), the cohesive force can be controlled, and more excellent substrate adhesion, sheet retention, and stain resistance can be obtained. Preferably, the range is 0.2 to 10 mol / kg, more preferably 0.4 to 5 mol / kg, and particularly preferably 0.5 to 5 mol / kg. In addition, content of the urethane bond in the said polyurethane (A) shows content of the urethane bond structure which occupies in the said raw material with respect to the total mass of each raw material which comprises the said polyurethane (A).
 前記架橋剤(B)としては、例えば、ポリイソシアネート架橋剤、エポキシ架橋剤、メラミン架橋剤等を用いることができる。これらの架橋剤は単独で用いても2種以上を併用してもよい。これらの中でも、ポリウレタン(A)が有する水酸基と反応し、3次元架橋を形成することにより、良好な機械的強度、段差追従性、基材密着性、シート保持性、及び耐汚染性が得られる点から、ポリイソシアネート架橋剤を用いることが好ましい。 As the crosslinking agent (B), for example, a polyisocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, or the like can be used. These crosslinking agents may be used alone or in combination of two or more. Among these, by reacting with the hydroxyl group of the polyurethane (A) to form a three-dimensional crosslink, good mechanical strength, step following ability, substrate adhesion, sheet retention, and stain resistance can be obtained. From the viewpoint, it is preferable to use a polyisocyanate crosslinking agent.
 前記ポリイソシアネート架橋剤としては、トリレンジイソシアネート、クロロフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等のポリイソシアネート;ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、キシリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのイソシアヌレート体、トリレンジイソシアネートのヌレート体、イソホロンジイソシアネートのイソシアヌレート体、キシリレンジイソシアネートのイソシアヌレート体等を用いることができる。これらの架橋剤は単独で用いても2種以上を併用してもよい。 Examples of the polyisocyanate crosslinking agent include tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and xylylene diisocyanate; hexamethylene diisocyanate trimethylolpropane Adduct, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, trimethylolpropane adduct of xylylene diisocyanate, isocyanurate of hexamethylene diisocyanate, nurate of tolylene diisocyanate, isophorone di Isocyanurate of isocyanate, and the like can be used isocyanurate of xylylene diisocyanate. These crosslinking agents may be used alone or in combination of two or more.
 前記架橋剤(B)の使用量としては、段差追従性、基材密着性及びシート保持性を高いレベルで両立できる点から、前記ポリウレタン(A)(固形分)100質量部に対して0.01~20質量部の範囲であることが好ましく、0.05~15質量部の範囲がより好ましく、0.1~10質量部の範囲が更に好ましい。 The amount of the crosslinking agent (B) used is 0. 0 parts by mass with respect to 100 parts by mass of the polyurethane (A) (solid content) from the viewpoint that the step following ability, the substrate adhesion and the sheet retention can be achieved at a high level. The range is preferably from 01 to 20 parts by mass, more preferably from 0.05 to 15 parts by mass, and still more preferably from 0.1 to 10 parts by mass.
 前記有機溶剤(C)としては、ポリウレタン(A)の製造安定性やポリウレタン組成物の塗工性を向上するために使用されるものであり、例えば、酢酸エチル、酢酸メチル、酢酸ブチル等のエステル溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ヘプタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、o-キシレン、m-キシレン、p-キシレン等の芳香族炭化水素溶媒;メタノール、エタノール、イソプロピルアルコール、イソブタノール、sec-ブタノール、ターシャリーブタノール等のアルコール溶媒などを用いることができる。これらの有機溶媒は単独で用いても2種以上を併用してもよい。 The organic solvent (C) is used for improving the production stability of the polyurethane (A) and the coating property of the polyurethane composition, and examples thereof include esters such as ethyl acetate, methyl acetate, and butyl acetate. Solvent; Ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone; Aliphatic hydrocarbon solvent such as heptane, hexane, cyclohexane, methylcyclohexane; Aromatic hydrocarbon solvent such as toluene, o-xylene, m-xylene, p-xylene Alcohol solvents such as methanol, ethanol, isopropyl alcohol, isobutanol, sec-butanol, and tertiary butanol can be used. These organic solvents may be used alone or in combination of two or more.
 前記有機溶媒(C)の使用量としては、塗工性の点から、前記ポリウレタン(A)100質量部に対して20~200質量部の範囲であることが好ましく、40~180質量部の範囲がより好ましい。 The amount of the organic solvent (C) used is preferably in the range of 20 to 200 parts by weight, preferably in the range of 40 to 180 parts by weight, based on 100 parts by weight of the polyurethane (A), from the viewpoint of coating properties. Is more preferable.
 本発明のポリウレタン組成物としては、前記ポリウレタン(A)、架橋剤(B)、及び、有機溶剤(C)を必須成分として含有するが、必要に応じて、その他の添加剤を更に含有してもよい。 The polyurethane composition of the present invention contains the polyurethane (A), the crosslinking agent (B), and the organic solvent (C) as essential components, and further contains other additives as necessary. Also good.
 前記その他の添加剤としては、例えば、カルボジイミド化合物、酸化防止剤、可塑剤、防錆剤、チキソ付与剤、分散剤、増感剤、ウレタン化触媒、重合禁止剤、レベリング剤、粘着付与剤、整泡剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた耐汚染性が得られる点から、カルボジイミド化合物を含有することが好ましい。 Examples of other additives include carbodiimide compounds, antioxidants, plasticizers, rust inhibitors, thixotropic agents, dispersants, sensitizers, urethanization catalysts, polymerization inhibitors, leveling agents, tackifiers, A foam stabilizer or the like can be used. These additives may be used alone or in combination of two or more. Among these, it is preferable to contain a carbodiimide compound from the viewpoint that much more excellent stain resistance can be obtained.
 前記カルボジイミド化合物としては、例えば、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N'-エチルカルボジイミドメチオジド、N-tert-ブチル-N’-エチルカルボジイミド、N-シクロヘキシル-N’-(2-モルホリノエチル)カルボジイミドメソ-p-トルエンスルホネート、N,N’-ジ-tert-ブチルカルボジイミド、N,N’-ジ-p-トリルカルボジイミド等のカルボジイミド化合物;カルボジイミド化触媒の存在下でポリイソシアネートを公知の縮合反応により得られるポリカルボジイミド等を用いることができる。これらのカルボジイミド化合物は単独で用いても2種以上を併用してもよい。これらの中でも、ポリウレタン(A)の水酸基と反応し、より一層優れた耐汚染性が得られることから、イソシアネート基を有するカルボジイミド化合物を用いることが好ましい。 Examples of the carbodiimide compound include N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, and N- [3- (dimethylamino) propyl]. -N'-ethylcarbodiimide, N- [3- (dimethylamino) propyl] -N'-ethylcarbodiimide methiodide, N-tert-butyl-N'-ethylcarbodiimide, N-cyclohexyl-N '-(2- Carbodiimide compounds such as morpholinoethyl) carbodiimide meso-p-toluenesulfonate, N, N'-di-tert-butylcarbodiimide, N, N'-di-p-tolylcarbodiimide; polyisocyanates known in the presence of carbodiimidization catalysts Obtained by the condensation reaction Polycarbodiimide or the like can be used. These carbodiimide compounds may be used alone or in combination of two or more. Among these, it is preferable to use a carbodiimide compound having an isocyanate group because it reacts with the hydroxyl group of the polyurethane (A) to obtain further excellent stain resistance.
 前記カルボジイミド化合物としては、例えば、「カルボジライトV-02」、「カルボジライトV-02-L2」、「カルボジライトV-04」、「カルボジライトV-05」、「カルボジライトV-07」、「カルボジライトV-09」、「カルボジライトE-01」「カルボジライトE-02」、「カルボジライトE-03A」、「カルボジライトE-04」(以上、日清紡ケミカル株式会社製)等が市販品として入手することができる。 Examples of the carbodiimide compound include “Carbodilite V-02”, “Carbodilite V-02-L2”, “Carbodilite V-04”, “Carbodilite V-05”, “Carbodilite V-07”, “Carbodilite V-09”. "Carbodilite E-01", "Carbodilite E-02", "Carbodilite E-03A", "Carbodilite E-04" (manufactured by Nisshinbo Chemical Co., Ltd.) and the like are commercially available.
 前記カルボジイミド化合物を用いる場合の使用量としては、より一層優れた耐汚染性が得られる点から、前記ポリウレタン(A)100質量部に対して0.1~7質量部の範囲であることが好ましく、0.5~5質量部の範囲であることがより好ましい。 The amount used in the case of using the carbodiimide compound is preferably in the range of 0.1 to 7 parts by mass with respect to 100 parts by mass of the polyurethane (A) from the viewpoint of obtaining further excellent stain resistance. The range of 0.5 to 5 parts by mass is more preferable.
 本発明で用いるポリウレタン組成物の製造方法としては、例えば、前記有機溶媒(C)中に前記ポリウレタン(A)が溶解した混合物に、前記架橋剤(B)、更に必要に応じて前記その他の添加剤を添加し、混合する方法が挙げられる。 As a method for producing the polyurethane composition used in the present invention, for example, the crosslinking agent (B) is added to the mixture in which the polyurethane (A) is dissolved in the organic solvent (C). The method of adding an agent and mixing is mentioned.
 本発明のポリウレタン組成物によりシートを形成する方法としては、例えば、前記ポリウレタン組成物をプラスチック基材上に塗工し、乾燥・硬化させる方法が挙げられる。 Examples of the method of forming a sheet from the polyurethane composition of the present invention include a method of applying the polyurethane composition onto a plastic substrate, and drying and curing.
 前記プラスチック基材としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレー等のポリエステル、ポリオレフィン、ポリアクリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレンエチレンビニルアルコール、ポリウレタン、ポリアミド、ポリイミドなどを用いて得られるシート又はフィルムを使用することができる。これらのプラスチック基材の表面は、離型処理、帯電防止処理、コロナ処理等が施されていてもよい。また、これらの前記プラスチック基材の厚さとしては、例えば10~200μmの範囲である。 Examples of the plastic substrate include polyester such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polyolefin, polyacrylate, polyvinyl chloride, polyethylene, polypropylene ethylene vinyl alcohol, polyurethane, polyamide, and polyimide. Sheet or film can be used. The surface of these plastic substrates may be subjected to mold release treatment, antistatic treatment, corona treatment and the like. Further, the thickness of the plastic substrate is, for example, in the range of 10 to 200 μm.
 前記プラスチック基材に前記ポリウレタン組成物を塗工する方法としては、ロールコーター、グラビアコーター、リバースコーター、スプレーコーター、エアーナイフコーター、ダイコーター等による塗工方法が挙げられる。 Examples of the method of applying the polyurethane composition to the plastic substrate include a coating method using a roll coater, a gravure coater, a reverse coater, a spray coater, an air knife coater, a die coater, or the like.
 前記シートの有機溶剤(C)乾燥後の厚さとしては、例えば5~100μmの範囲である。 The thickness of the sheet after drying with the organic solvent (C) is, for example, in the range of 5 to 100 μm.
 前記プラスチック基材上にポリウレタン組成物を塗工した後、前記ポリウレタン組成物を乾燥させる方法としては、例えば50~120℃で30秒~30分間乾燥させる方法が挙げられる。また、乾燥後、硬化反応を促進する点から例えば30℃~50℃の温度でエージングを行っても良い。  Examples of the method of drying the polyurethane composition after coating the polyurethane composition on the plastic substrate include a method of drying at 50 to 120 ° C. for 30 seconds to 30 minutes. Further, after drying, aging may be performed at a temperature of, for example, 30 ° C. to 50 ° C. in order to accelerate the curing reaction.
 以上、本発明のポリウレタン組成物は優れた段差追従性、基材密着性、シート保持性、及び耐汚染性を有するものである。よって、前記ポリウレタン組成物から得られるシートは、熱伝導シート、表面保護シート、粗面接着シート等として好適に使用することができる。 As described above, the polyurethane composition of the present invention has excellent step following ability, substrate adhesion, sheet retention, and contamination resistance. Therefore, the sheet | seat obtained from the said polyurethane composition can be used conveniently as a heat conductive sheet, a surface protection sheet, a rough surface adhesive sheet, etc.
 以下、実施例を用いて本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail using examples.
[実施例1]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリオキシプロピレングリコール(数平均分子量;2,000、以下「PPG2000」と略記する。)1,550質量部、ヘキサメチレンジイソシアネート(以下、「HDI」と略記する。)を165質量部、ジオクチル錫ジラウレートを0.03質量部、ポリオキシエチレンポリオキシプロピレントリオール(数平均分子量;3,000、以下「EOPO3000」と略記する。)を800質量部、酢酸エチル1,540質量部をセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことを確認し、冷却して、不揮発分;62質量%、水酸基の含有量;0.16mol/kg、重量平均分子量;112,700、ポリオキシアルキレンの含有量;15.4mol/kg、オキシエチレン構造とオキシプロピレン構造とのモル比;9/102、ウレタン結合の含有量:0.78mol/kgのポリウレタン(A-1)溶液を得た。このポリウレタン(A-1)溶液100質量部に、シートを製造する直前に架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(以下、「HDIヌレート」と略記する。)を3.6質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、1.9である。
[Example 1]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxypropylene glycol (number average molecular weight; 2,000, hereinafter abbreviated as “PPG2000”) 1,550 parts by mass, hexamethylene diisocyanate ( (Hereinafter abbreviated as “HDI”) is 165 parts by mass, dioctyltin dilaurate is 0.03 parts by mass, polyoxyethylene polyoxypropylene triol (number average molecular weight; 3,000, hereinafter abbreviated as “EOPO3000”). 800 parts by mass and 1,540 parts by mass of ethyl acetate were charged into a separable flask and heated to 75 ° C. After confirming that the isocyanate group content became the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, the content was cooled and nonvolatile content: 62 mass%, hydroxyl group content: 0.16 mol / kg, Weight average molecular weight: 112,700, polyoxyalkylene content: 15.4 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 9/102, urethane bond content: 0.78 mol / kg polyurethane (A-1) A solution was obtained. To 100 parts by mass of this polyurethane (A-1) solution, 3.6 parts by mass of an isocyanurate body of hexamethylene diisocyanate (hereinafter abbreviated as “HDI nurate”) as a crosslinking agent was added immediately before producing the sheet. A polyurethane composition was obtained. [(A-1) / (a-2)] is 1.9.
[実施例2]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、ポリオキシプロピレングリコール(数平均分子量;2,000、以下「PPG2000」と略記する。)990質量部、ヘキサメチレンジイソシアネート(以下、「HDI」と略記する。)を150質量部、ポリオキシエチレンポリオキシプロピレントリオール(数平均分子量;3,000、以下「EOPO3000」と略記する。)を1,460質量部、ジオクチル錫ジラウレートを0.2質量部、酢酸エチル1,730質量部をセパラブルフラスコに仕込み、70℃まで加温し反応させた。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、不揮発分;60質量%、粘度:4,100mPa・s、水酸基の含有量;0.23mol/kg、重量平均分子量;84,000、ポリオキシアルキレンの含有量;16.6mol/kg、オキシエチレン構造とオキシプロピレン構造とのモル比;15/85、ウレタン結合の含有量:0.69mol/kgのポリウレタン(A-2)溶液を得た。ポリウレタン(A-2)溶液100質量部に対して、架橋剤としてヘキサメチレンジイソシアネートのヌレート体(以下、「HDIヌレート」と略記する。)をポリウレタン(A-2)の固形分に対して5質量部配合し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、0.7である。
[Example 2]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 990 parts by mass of polyoxypropylene glycol (number average molecular weight; 2,000, hereinafter abbreviated as “PPG2000”), hexamethylene diisocyanate (hereinafter, , Abbreviated as “HDI”), 150 parts by mass of polyoxyethylene polyoxypropylene triol (number average molecular weight; 3,000, hereinafter abbreviated as “EOPO3000”), 1,460 parts by mass of dioctyltin dilaurate. 0.2 parts by mass and 1,730 parts by mass of ethyl acetate were charged into a separable flask and heated to 70 ° C. for reaction. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid. Nonvolatile content: 60% by mass, viscosity: 4,100 mPa · s, hydroxyl group content 0.23 mol / kg, weight average molecular weight; 84,000, polyoxyalkylene content; 16.6 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 15/85, content of urethane bond : A polyurethane (A-2) solution of 0.69 mol / kg was obtained. 5 parts by mass of urelate of hexamethylene diisocyanate (hereinafter abbreviated as “HDI nurate”) as a crosslinking agent with respect to 100 parts by mass of the polyurethane (A-2) solution based on the solid content of the polyurethane (A-2). Partly blended to obtain a polyurethane composition. [(A-1) / (a-2)] is 0.7.
[実施例3]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、ポリオキシプロピレングリコール(数平均分子量:10,000、以下「PPG10000」と略記する。)を1760質量部、HDIを40質量部、EOPO3000を230質量部、ジオクチル錫ジラウレートを0.2質量部、酢酸エチル1,095質量部をセパラブルフラスコに仕込み、70℃まで加温し反応させた。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、不揮発分;65質量%、粘度:12,000mPa・s、水酸基の含有量;0.08mol/kg、重量平均分子量;120,000、ポリオキシアルキレンの含有量;16.6mol/kg、オキシエチレン構造とオキシプロピレン構造とのモル比;5/95、ウレタン結合の含有量:0.23mol/kgのポリウレタン(A-3)溶液を得た。ポリウレタン(A-3)溶液100質量部に対して、架橋剤としてHDIヌレートをポリウレタン(A-3)の固形分に対して10質量部配合し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、1.5である。
[Example 3]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1760 parts by mass of polyoxypropylene glycol (number average molecular weight: 10,000, hereinafter abbreviated as “PPG10000”) and 40 parts by mass of HDI. Parts, 230 parts by mass of EOPO3000, 0.2 parts by mass of dioctyltin dilaurate and 1,095 parts by mass of ethyl acetate were charged into a separable flask and reacted by heating to 70 ° C. The completion of the reaction was confirmed when the isocyanate group content was calculated from the charged amount by titration with dibutylamine and hydrochloric acid. The nonvolatile content: 65% by mass, viscosity: 12,000 mPa · s, hydroxyl group content Amount: 0.08 mol / kg, weight average molecular weight; 120,000, polyoxyalkylene content; 16.6 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 5/95, content of urethane bond : A polyurethane (A-3) solution of 0.23 mol / kg was obtained. 10 parts by mass of HDI nurate as a crosslinking agent was blended with 100 parts by mass of the polyurethane (A-3) solution based on the solid content of the polyurethane (A-3) to obtain a polyurethane composition. [(A-1) / (a-2)] is 1.5.
[実施例4]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にPPG3000を1,560質量部、イソホロンジイソシアネート(以下、「IPDI」と略記する。)を110質量部、EOPO3000を680質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチル995質量部をセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;72質量%、粘度;6,800mPa・s、水酸基の含有量;0.14mol/kg、重量平均分子量;46,000、ポリオキシアルキレンの含有量;15.4mol/kg、オキシエチレン構造とオキシプロピレン構造とのモル比;1/15、ウレタン結合の含有量:0.56mol/kgのポリウレタン(A-4)溶液を得た。このポリウレタン(A-4)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを3.3質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、1.5である。
[Example 4]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,560 parts by mass of PPG 3000, 110 parts by mass of isophorone diisocyanate (hereinafter abbreviated as “IPDI”), 680 parts by mass of EOPO 3000, 0.03 parts by mass of dioctyltin dilaurate and 995 parts by mass of ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by a titration method with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 72% by mass, viscosity: 6,800 mPa · s. , Hydroxyl content; 0.14 mol / kg, weight average molecular weight; 46,000, polyoxyalkylene content; 15.4 mol / kg, molar ratio of oxyethylene structure to oxypropylene structure; 1/15, urethane A polyurethane (A-4) solution having a bond content of 0.56 mol / kg was obtained. To 100 parts by mass of this polyurethane (A-4) solution, 3.3 parts by mass of HDI nurate as a crosslinking agent was added immediately before producing the sheet to obtain a polyurethane composition. [(A-1) / (a-2)] is 1.5.
[実施例5]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリオキシプロピレングリコール(数平均分子量;400、以下「PPG400」と略記する。)を200質量部、HDIを85質量部、EOPO3000を308質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;53質量%、水酸基の含有量;0.029mol/kg、重量平均分子量;109,000、ウレタン結合の含有量:3.3mol/kgのポリウレタン(A-5)溶液を得た。このポリウレタン(A-5)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを2.8質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、3.3である。
[Example 5]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 200 parts by mass of polyoxypropylene glycol (number average molecular weight; 400, hereinafter abbreviated as “PPG400”), 85 parts by mass of HDI, and EOPO 3000 308 parts by mass, dioctyltin dilaurate 0.03 parts by mass and ethyl acetate in a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 53% by mass; hydroxyl group content; A polyurethane (A-5) solution having 029 mol / kg, a weight average molecular weight of 109,000, and a urethane bond content of 3.3 mol / kg was obtained. To 100 parts by mass of this polyurethane (A-5) solution, 2.8 parts by mass of HDI nurate as a crosslinking agent was added immediately before producing the sheet to obtain a polyurethane composition. [(A-1) / (a-2)] is 3.3.
[実施例6]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリエステルジオール(DIC株式会社製「MX2420」、数平均分子量;2000、以下「PEs」と略記する。)を1,015質量部、HDIを105質量部、EOPO3000を450質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;44質量%、水酸基の含有量;0.12mol/kg、重量平均分子量;86,900、ウレタン結合の含有量:0.8mol/kgのポリウレタン(A-6)溶液を得た。このポリウレタン(A-6)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを1.6質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、2.3である。
[Example 6]
1,015 mass parts of polyester diol (“MX2420” manufactured by DIC Corporation, number average molecular weight; 2000, hereinafter abbreviated as “PEs”) in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer. In addition, 105 parts by mass of HDI, 450 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 44% by mass, hydroxyl group content; A polyurethane (A-6) solution having 12 mol / kg, weight average molecular weight; 86,900, and urethane bond content: 0.8 mol / kg was obtained. 1.6 parts by mass of HDI nurate as a crosslinking agent was added to 100 parts by mass of this polyurethane (A-6) solution immediately before producing the sheet to obtain a polyurethane composition. [(A-1) / (a-2)] is 2.3.
[実施例7]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリオキシプロピレングリコール(数平均分子量;200、以下「PPG200」と略記する。)を1,202質量部、HDIを1,017質量部、EOPO3000を163質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;64質量%、水酸基の含有量;0.029mol/kg、重量平均分子量;210,700、ウレタン結合の含有量:5.1mol/kgのポリウレタン(A-7)溶液を得た。このポリウレタン(A-7)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを0.7質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、73.7である。
[Example 7]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,202 parts by mass of polyoxypropylene glycol (number average molecular weight; 200, hereinafter abbreviated as “PPG200”), and HDI of 1,017. Part by mass, 163 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by a titration method with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 64% by mass, hydroxyl group content; A polyurethane (A-7) solution having 029 mol / kg, a weight average molecular weight of 210,700, and a urethane bond content of 5.1 mol / kg was obtained. To 100 parts by mass of this polyurethane (A-7) solution, 0.7 part by mass of HDI nurate as a crosslinking agent was added immediately before producing the sheet to obtain a polyurethane composition. Note that [(a-1) / (a-2)] is 73.7.
[実施例8]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にPPG2000を1,002質量部、HDIを85質量部、EOPO3000を18質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;71質量%、水酸基の含有量;0.007mol/kg、重量平均分子量;451,500、ウレタン結合の含有量:0.9mol/kgのポリウレタン(A-8)溶液を得た。このポリウレタン(A-8)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを0.7質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、55.7である。
[Example 8]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,002 parts by mass of PPG2000, 85 parts by mass of HDI, 18 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, ethyl acetate Was charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 71% by mass; hydroxyl group content: 0. A polyurethane (A-8) solution having a 007 mol / kg, a weight average molecular weight of 451,500, and a urethane bond content of 0.9 mol / kg was obtained. To 100 parts by mass of this polyurethane (A-8) solution, 0.7 part by mass of HDI nurate as a crosslinking agent was added immediately before producing the sheet to obtain a polyurethane composition. Note that [(a-1) / (a-2)] is 55.7.
[実施例9]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリカーボネートジオール(旭化成ケミカルズ株式会社製「デュラネートT5652」、数平均分子量;2000、以下「PC」と略記する。)を1,015質量部、HDIを105質量部、EOPO3000を450質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;49質量%、水酸基の含有量;0.12mol/kg、重量平均分子量;90,500、ウレタン結合の含有量:0.8mol/kgのポリウレタン(A-9)溶液を得た。このポリウレタン(A-9)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを1.6質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、2.3である。
[Example 9]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polycarbonate diol (“Duranate T5652” manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight; 2000, hereinafter abbreviated as “PC”) is 1,015. Part by mass, 105 parts by mass of HDI, 450 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 49% by mass; hydroxyl group content; A polyurethane (A-9) solution having 12 mol / kg, weight average molecular weight; 90,500, and urethane bond content: 0.8 mol / kg was obtained. 1.6 parts by mass of HDI nurate as a cross-linking agent was added to 100 parts by mass of this polyurethane (A-9) solution immediately before producing the sheet to obtain a polyurethane composition. [(A-1) / (a-2)] is 2.3.
[実施例10]
 実施例1において、HDIヌレート3.6質量部に代えて、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体(以下、「HDI-TMP」と略記する。)を4.7質量部に変更した以外は実施例1と同様にしてポリウレタン組成物を得た。
[Example 10]
In Example 1, instead of 3.6 parts by mass of HDI nurate, the procedure was carried out except that the trimethylolpropane adduct of hexamethylene diisocyanate (hereinafter abbreviated as “HDI-TMP”) was changed to 4.7 parts by mass. A polyurethane composition was obtained in the same manner as in Example 1.
[実施例11]
 実施例6において、HDIヌレート3.6質量部に代えて、トルエンジイソシアネートのトリメチロールプロパンアダクト体(以下、「TDI-TMP」と略記する。)を4.7質量部に変更した以外は実施例4と同様にしてポリウレタン組成物を得た。
[Example 11]
In Example 6, instead of 3.6 parts by mass of HDI nurate, the trimethylolpropane adduct of toluene diisocyanate (hereinafter abbreviated as “TDI-TMP”) was changed to 4.7 parts by mass. 4 to obtain a polyurethane composition.
[実施例12]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリオキシメチレングリコール(数平均分子量;1000、以下「PTMG1000」と略記する。)を1,032質量部、HDIを260質量部、EOPO3000を1820質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;44質量%、水酸基の含有量;0.11mol/kg、重量平均分子量;75,080、ウレタン結合の含有量:1.4mol/kgのポリウレタン(A-10)溶液を得た。このポリウレタン(A-10)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを1.5質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、1.1である。
[Example 12]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxymethylene glycol (number average molecular weight; 1000, hereinafter abbreviated as “PTMG1000”) is 1,032 parts by mass, and HDI is 260 parts by mass. Then, 1820 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content: 44% by mass, hydroxyl group content; A polyurethane (A-10) solution having 11 mol / kg, weight average molecular weight; 75,080, and urethane bond content: 1.4 mol / kg was obtained. Immediately before producing the sheet, 1.5 parts by mass of HDI nurate was added to 100 parts by mass of this polyurethane (A-10) solution to obtain a polyurethane composition. [(A-1) / (a-2)] is 1.1.
[実施例13]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にポリオキシエチレングリコール(数平均分子量;200、以下「PEG200」と略記する。)を1,025質量部、HDIを194質量部、EOPO3000を449質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;52質量%、水酸基の含有量;0.24mol/kg、重量平均分子量;36,200、ウレタン結合の含有量:1.0mol/kgのポリウレタン(A-11)溶液を得た。このポリウレタン(A-11)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを3.3質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、22.8である。
[Example 13]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polyoxyethylene glycol (number average molecular weight; 200, hereinafter abbreviated as “PEG200”) is 1,025 parts by mass, and HDI is 194 parts by mass. Then, 449 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, and ethyl acetate were charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content; 52% by mass; hydroxyl group content; A polyurethane (A-11) solution having a weight average molecular weight of 24 mol / kg, 36,200, and a urethane bond content of 1.0 mol / kg was obtained. To 100 parts by mass of this polyurethane (A-11) solution, 3.3 parts by mass of HDI nurate as a cross-linking agent was added immediately before manufacturing the sheet to obtain a polyurethane composition. [(A-1) / (a-2)] is 22.8.
[実施例14]
 実施例6において、ポリウレタン(A-6)の不揮発分100質量部に対して、日清紡株式会社カルボジイミド化合物「カルボジライトV-05」(以下、「V-05」と略記する。)を1質量部加えた以外は実施例6と同様にしてポリウレタン組成物を得た。
[Example 14]
In Example 6, 1 part by mass of Nisshinbo Carbodiimide Compound “Carbodilite V-05” (hereinafter abbreviated as “V-05”) is added to 100 parts by mass of the nonvolatile content of polyurethane (A-6). A polyurethane composition was obtained in the same manner as in Example 6 except that.
[比較例1]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にPPG3000を1,558質量部、HDIを152質量部、EOPO3000を1,641質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;76質量%、水酸基の含有量;0.23mol/kg、重量平均分子量;51,160、ウレタン結合の含有量:0.54mol/kgのポリウレタン(A’-1)溶液を得た。このポリウレタン(A’-1)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを5.6質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、0.6である。
[Comparative Example 1]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 1,558 parts by mass of PPG3000, 152 parts by mass of HDI, 1,641 parts by mass of EOPO3000, 0.03 parts by mass of dioctyltin dilaurate, Ethyl acetate was charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by a titration method with dibutylamine and hydrochloric acid, and the reaction was cooled to a non-volatile content; 76% by mass; hydroxyl group content; A polyurethane (A′-1) solution having 23 mol / kg, a weight average molecular weight of 51,160, and a urethane bond content of 0.54 mol / kg was obtained. To 100 parts by mass of the polyurethane (A′-1) solution, 5.6 parts by mass of HDI nurate as a crosslinking agent was added immediately before the production of the sheet to obtain a polyurethane composition. Note that [(a-1) / (a-2)] is 0.6.
[比較例2]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器にPPG2000を1,023質量部、HDIを84質量部、EOPO3000を10質量部、ジオクチル錫ジラウレートを0.03質量部、酢酸エチルをセパラブルフラスコに仕込み、75℃まで加温した。ジブチルアミンと塩酸による滴定法でイソシアネート基含有率が仕込み量から算出した含有率になったことにより反応の終了を確認し、冷却して、不揮発分;55質量%、水酸基の含有量;0.004mol/kg、重量平均分子量;207,220、ウレタン結合の含有量:0.92mol/kgのポリウレタン(A’-2)溶液を得た。このポリウレタン(A’-2)溶液100質量部に、シートを製造する直前に架橋剤としてHDIヌレートを8.1質量部添加し、ポリウレタン組成物を得た。なお、[(a-1)/(a-2)]は、102.3である。
[Comparative Example 2]
In a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube and thermometer, PPG2000 is 1,023 parts by mass, HDI is 84 parts by mass, EOPO3000 is 10 parts by mass, dioctyltin dilaurate is 0.03 parts by mass, ethyl acetate Was charged into a separable flask and heated to 75 ° C. The completion of the reaction was confirmed when the isocyanate group content reached the content calculated from the charged amount by titration with dibutylamine and hydrochloric acid, and the mixture was cooled and cooled to nonvolatile content; 55% by mass; hydroxyl group content; A polyurethane (A′-2) solution having 004 mol / kg, weight average molecular weight; 207,220, urethane bond content: 0.92 mol / kg was obtained. To 100 parts by mass of this polyurethane (A′-2) solution, 8.1 parts by mass of HDI nurate as a cross-linking agent was added immediately before manufacturing the sheet to obtain a polyurethane composition. Note that [(a-1) / (a-2)] is 102.3.
[シートの加工方法1]
 厚さ50μmの離型処理されたポリエチレンテレフタレートフィルムの表面に、実施例及び比較例で得られたポリウレタンを、乾燥後の膜厚が100μmとなるように塗工し、80℃で3分間乾燥させた。これに表面が離型処理された厚さ38μmのポリエチレンテレフタレートフィルムを貼り合せ、40℃で3日間養生することで、シートを得た。
[Sheet Processing Method 1]
The polyurethane obtained in Examples and Comparative Examples was applied to the surface of a polyethylene terephthalate film having a thickness of 50 μm which had been subjected to a release treatment so that the film thickness after drying would be 100 μm and dried at 80 ° C. for 3 minutes. It was. A 38 μm-thick polyethylene terephthalate film whose surface was subjected to a release treatment was bonded to this, and was cured at 40 ° C. for 3 days to obtain a sheet.
[シートの加工方法2]
 厚さ50μmのポリエチレンテレフタレートフィルムの表面に、実施例及び比較例で得られたポリウレタンを、乾燥後の膜厚が100μmとなるように塗工し、80℃で3分間乾燥させた。これに表面が離型処理された厚さ38μmのポリエチレンテレフタレートフィルムを貼り合せ、40℃で3日間養生することで、シートを得た。
[Sheet processing method 2]
The polyurethane obtained in Examples and Comparative Examples was applied to the surface of a 50 μm thick polyethylene terephthalate film so that the film thickness after drying was 100 μm, and dried at 80 ° C. for 3 minutes. A 38 μm-thick polyethylene terephthalate film whose surface was subjected to a release treatment was bonded to this, and was cured at 40 ° C. for 3 days to obtain a sheet.
[段差追従性の評価方法]
 [シートの加工方法1]にて得られたシートを30mm×30mmの大きさに裁断したものを試験片とした。この試験片を20mm×20mmの大きさに裁断した厚さ25μmのポリエチレンテレフタレート(PET)フィルムが上におかれたガラス板上に貼り付け、PETフィルム及び試験片の間の空隙を目視観察し、以下のように評価した。
 「◎」:PETフィルムと試験片との間に空隙がない(完全追従)
 「○」:PETフィルムと試験片との間に一部空気が入り、浮きが生じている(一部追従)
 「×」:PETフィルムの周りに空気があり、試験片が浮いている(完全剥離)
[Evaluation method of step following ability]
A sheet obtained by cutting the sheet obtained in [Sheet Processing Method 1] into a size of 30 mm × 30 mm was used as a test piece. The test piece was cut to a size of 20 mm × 20 mm and attached to a glass plate on which a polyethylene terephthalate (PET) film having a thickness of 25 μm was placed, and the gap between the PET film and the test piece was visually observed. Evaluation was performed as follows.
“◎”: No gap between the PET film and the test piece (complete tracking)
“◯”: A part of air enters between the PET film and the test piece, and the float is generated (partly following)
"X": Air exists around the PET film, and the test piece is floating (complete peeling)
[基材密着性の評価方法]
 [シートの加工方法2]にて得られたシートを30mm×30mmの大きさに裁断したものを試験片とした。試験片から離型PETフィルムを剥離し、これをポリウレタン層側からクロスカッターにてカットし、指で10回擦った際のポリウレタン層の粉の発生、及び脱落の有無を目視で観察し、以下のように評価した。
 「◎」:ポリウレタン層の粉の発生、及び脱落がない。
 「○」:ポリウレタン層が僅かに毛羽立つが、糊粉とび脱落はない。
 「△」: ポリウレタン層の粉が僅かに発生しているが、脱落はない。
 「×」:ポリウレタン層の粉が多く確認でき、脱落も確認される。
[Evaluation method of substrate adhesion]
A sheet obtained by cutting the sheet obtained in [Sheet Processing Method 2] into a size of 30 mm × 30 mm was used as a test piece. The release PET film was peeled from the test piece, this was cut with a cross cutter from the polyurethane layer side, and the generation of powder of the polyurethane layer when it was rubbed 10 times with a finger and the presence or absence of dropping were visually observed. It was evaluated as follows.
“◎”: There is no generation or loss of powder in the polyurethane layer.
“◯”: The polyurethane layer is slightly fuzzy, but there is no skipping of the glue powder.
“Δ”: A small amount of powder in the polyurethane layer was generated, but there was no dropout.
“×”: A large amount of powder of the polyurethane layer can be confirmed, and dropping is also confirmed.
[シート保持性の評価方法]
 [シートの加工方法2]にて得られたシートを100mm×150mmの大きさに裁断したものを試験片とした。PETフィルム側から、離型PETフィルムを切らずにPETフィルムとポリウレタン層のみを10mm幅100mm長さにて5mm間隔で4個ずつ40枚分、打抜き加工し、1回打抜毎に抜き刃にポリウレタン層が付着しているか確認した。続いて、1枚ごとにPETフィルム側から剥離し、きれいに切り離しができているか、及びポリウレタン層のはみだしがないか目視で観察し、以下のように評価した。
 「◎」:抜き刃にポリウレタンが全く付着しておらず、ポリウレタン層のはみだしなく切り離しができている。
 「○」:抜き刃にポリウレタンが付着するため刃の拭きとりが1~2回必要。ポリウレタン層のはみだしなく切り離しができている。
 「△」: 抜き刃にポリウレタンが付着するため刃の拭きとりが3~5回必要。ポリウレタン層は僅かに糊のはみだしが確認される。
 「×」:抜き刃の刃にポリウレタンが広く付着するため刃の拭きとりが6回以上必要。ポリウレタン層のはみだしが確認される、又はシートの切り離しができない。
[Evaluation method of sheet retention]
A sheet obtained by cutting the sheet obtained in [Sheet Processing Method 2] into a size of 100 mm × 150 mm was used as a test piece. From the PET film side, without cutting the release PET film, only PET film and polyurethane layer are punched by 40 pieces of 4 pieces at 5mm intervals with a width of 10mm and a length of 100mm. It was confirmed whether the polyurethane layer adhered. Then, it peeled from the PET film side for every sheet | seat, and visually observed whether it was able to cut | disconnect neatly and the polyurethane layer did not protrude, and evaluated as follows.
“◎”: No polyurethane adhered to the punching blade, and the polyurethane layer was separated without protruding.
“O”: Since polyurethane adheres to the punching blade, it is necessary to wipe the blade once or twice. The polyurethane layer can be separated without protruding.
“△”: Since polyurethane adheres to the cutting blade, it is necessary to wipe the blade 3 to 5 times. The polyurethane layer shows a slight amount of paste.
“×”: Since polyurethane adheres widely to the blade of the punching blade, it is necessary to wipe the blade six times or more. The overhang of the polyurethane layer is confirmed, or the sheet cannot be separated.
[耐汚染性の評価方法]
 [シートの加工方法2]にて得られたシートを30mm×30mmの大きさに裁断したものを試験片とし、これから離型PETを剥離し、ガラス板に貼り付けた。その時、シートとガラス板との間に気泡を入れるようにした。該試験片を60℃、湿度90%の条件下で72時間放置した。その後、23℃環境下で24時間放置した後に、ガラス板からシートを手で剥離し、ガラス板の下部よりLEDライトを照射し、汚染状況を目視、及び顕微鏡で観察して以下のように評価した。
 「◎」:ガラス板に汚染が全くない。
 「○」:ガラス板の一部に顕微鏡で汚染が確認される。(目視確認不可)
 「△」:ガラス板の一部に目視で汚染が確認される。
 「×」:ガラス板の全面に汚染、又はポリウレタン組成物の硬化物の脱落が確認される。
[Contamination resistance evaluation method]
A sheet obtained by cutting the sheet obtained in [Sheet Processing Method 2] into a size of 30 mm × 30 mm was used as a test piece, from which release PET was peeled off and attached to a glass plate. At that time, air bubbles were introduced between the sheet and the glass plate. The test piece was left for 72 hours at 60 ° C. and 90% humidity. Then, after leaving for 24 hours in an environment of 23 ° C., the sheet was peeled off from the glass plate by hand, irradiated with LED light from the lower part of the glass plate, and the contamination status was observed visually and with a microscope and evaluated as follows. did.
“◎”: There is no contamination on the glass plate.
“O”: Contamination is confirmed on a part of the glass plate with a microscope. (Not visible)
“Δ”: Contamination is visually confirmed on a part of the glass plate.
“X”: Contamination on the entire surface of the glass plate or falling off of the cured product of the polyurethane composition is confirmed.
[規則26に基づく補充 02.12.2016] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 02.12.2016]
Figure WO-DOC-TABLE-1
[規則26に基づく補充 02.12.2016] 
Figure WO-DOC-TABLE-2
[Supplement under rule 26 02.12.2016]
Figure WO-DOC-TABLE-2
 本発明のポリウレタン組成物により形成されたシートは、優れた段差追従性、基材密着性、シート保持性、及び耐汚染性を有することが分かった。 It was found that the sheet formed from the polyurethane composition of the present invention has excellent step following ability, substrate adhesion, sheet retention, and stain resistance.
 一方、比較例1は、2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)との当量比が本発明で規定する範囲を下回る態様であるが、段差追従性、及び耐汚染性が不良であった。 On the other hand, Comparative Example 1 is an embodiment in which the equivalent ratio of the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups is lower than the range defined in the present invention. The stain resistance was poor.
 比較例2は、2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)との当量比が本発明で規定する範囲を超える態様であるが、段差追従性、及び基材密着性が不良であった。 Comparative Example 2 is an embodiment in which the equivalent ratio of the bifunctional polyol (a-1) and the compound (a-2) having three hydroxyl groups exceeds the range specified in the present invention. Adhesion was poor.

Claims (5)

  1. 2官能ポリオール(a-1)と3つの水酸基を有する化合物(a-2)とを当量比[(a-1)/(a-2)]で0.7~100の範囲で含有するポリオール(a)を原料とし、水酸基を有するポリウレタン(A)、架橋剤(B)、及び有機溶剤(C)を含有することを特徴とするポリウレタン組成物。 A polyol containing a bifunctional polyol (a-1) and a compound (a-2) having three hydroxyl groups in an equivalent ratio [(a-1) / (a-2)] in the range of 0.7 to 100 ( A polyurethane composition comprising a) a raw material, a hydroxyl group-containing polyurethane (A), a crosslinking agent (B), and an organic solvent (C).
  2. 前記ポリウレタン(A)中の水酸基の含有量が、0.005~0.3mol/kgの範囲である請求項1記載のポリウレタン組成物。 The polyurethane composition according to claim 1, wherein the content of the hydroxyl group in the polyurethane (A) is in the range of 0.005 to 0.3 mol / kg.
  3. 前記ポリウレタン(A)中のウレタン結合の含有量が、0.2mol/kg以上である請求項1又は2記載のポリウレタン組成物。 The polyurethane composition according to claim 1 or 2, wherein the content of urethane bonds in the polyurethane (A) is 0.2 mol / kg or more.
  4. 前記3つの水酸基を有する化合物(a-2)が、ポリオキシエチレンポリオキシプロピレントリオールである請求項1~3のいずれか1項記載のポリウレタン組成物。 The polyurethane composition according to any one of claims 1 to 3, wherein the compound (a-2) having three hydroxyl groups is polyoxyethylene polyoxypropylene triol.
  5. 請求項1~4のいずれか1項記載のポリウレタン組成物により形成されたことを特徴とするシート。 A sheet formed of the polyurethane composition according to any one of claims 1 to 4.
PCT/JP2016/081534 2015-12-17 2016-10-25 Polyurethane composition and sheet WO2017104267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556398A JP6350764B2 (en) 2015-12-17 2016-10-25 Polyurethane composition and sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-246344 2015-12-17
JP2015246344 2015-12-17
JP2016078809 2016-04-11
JP2016-078809 2016-04-11
JP2016127583 2016-06-28
JP2016-127583 2016-06-28

Publications (1)

Publication Number Publication Date
WO2017104267A1 true WO2017104267A1 (en) 2017-06-22

Family

ID=59055926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081534 WO2017104267A1 (en) 2015-12-17 2016-10-25 Polyurethane composition and sheet

Country Status (3)

Country Link
JP (1) JP6350764B2 (en)
TW (1) TW201726808A (en)
WO (1) WO2017104267A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3931232A4 (en) 2019-02-25 2022-11-02 Henkel AG & Co. KGaA Thermal interface materials based on two-part polyurethanes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126342A (en) * 1993-10-21 1995-05-16 Saint Gobain Vitrage Production of polyurethane
JP2003221570A (en) * 2002-01-31 2003-08-08 Nooteepu Kogyo Kk Polyurethane adhesive composition and pressure- sensitive adhesive sheet using the same
JP2006124693A (en) * 2004-09-30 2006-05-18 Asahi Glass Co Ltd Method for producing urethane resin, and adhesive
JP2007169376A (en) * 2005-12-20 2007-07-05 Mitsubishi Chemicals Corp Antistatic polyurethane adhesive and method of manufacturing the same
JP2009275224A (en) * 2008-05-13 2009-11-26 Tesa Se Hotmelt process for producing chemically crosslinked polyurethane film
JP2012219128A (en) * 2011-04-05 2012-11-12 Konishi Co Ltd Curable silylated urethane resin, and method of manufacturing the same
WO2013018478A1 (en) * 2011-07-29 2013-02-07 Dic株式会社 Polyurethane film and processed film produced using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978884B2 (en) * 1998-08-31 2007-09-19 東洋インキ製造株式会社 Polyurethane pressure-sensitive adhesive composition and coated product using the composition
JP2000256630A (en) * 1999-03-08 2000-09-19 Toyo Ink Mfg Co Ltd Sheet or tape for surface protection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126342A (en) * 1993-10-21 1995-05-16 Saint Gobain Vitrage Production of polyurethane
JP2003221570A (en) * 2002-01-31 2003-08-08 Nooteepu Kogyo Kk Polyurethane adhesive composition and pressure- sensitive adhesive sheet using the same
JP2006124693A (en) * 2004-09-30 2006-05-18 Asahi Glass Co Ltd Method for producing urethane resin, and adhesive
JP2007169376A (en) * 2005-12-20 2007-07-05 Mitsubishi Chemicals Corp Antistatic polyurethane adhesive and method of manufacturing the same
JP2009275224A (en) * 2008-05-13 2009-11-26 Tesa Se Hotmelt process for producing chemically crosslinked polyurethane film
JP2012219128A (en) * 2011-04-05 2012-11-12 Konishi Co Ltd Curable silylated urethane resin, and method of manufacturing the same
WO2013018478A1 (en) * 2011-07-29 2013-02-07 Dic株式会社 Polyurethane film and processed film produced using same

Also Published As

Publication number Publication date
JP6350764B2 (en) 2018-07-04
TW201726808A (en) 2017-08-01
JPWO2017104267A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6891412B2 (en) Urethane-forming composition and urethane adhesive using it
CN107835845B (en) Adhesive composition and surface protective film
JP5935962B1 (en) Adhesive composition and adhesive sheet
JP5983904B1 (en) Adhesive tape, manufacturing method thereof, article and portable electronic terminal
JP5835525B1 (en) Adhesive composition and adhesive film
JP2016204468A (en) Urethane prepolymer, and two-liquid type urethane adhesive using the same
KR101577650B1 (en) Anti-Scattering Film
JP6350764B2 (en) Polyurethane composition and sheet
JP5935961B1 (en) Adhesive composition
JP6519687B1 (en) Pressure-sensitive adhesive, pressure-sensitive adhesive sheet, and method for producing hydroxyl terminated urethane prepolymer
CN110770313B (en) Release agent for reactive hot-melt resin
JP2017193656A (en) Adhesive tape, method for producing the same, article and portable electronic terminal
JP6032388B1 (en) Adhesive composition and surface protective film
TW202216943A (en) Adhesive composition and surface protective film
CN111936592B (en) Urethane adhesive and adhesive sheet
JP2017193609A (en) Adhesive composition and adhesive sheet
JP2024013935A (en) Polyol compositions, cured urethane products and urethane adhesives
CN112996875A (en) Adhesive composition and surface protective film
JP2018095807A (en) Adhesive composition, and adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875252

Country of ref document: EP

Kind code of ref document: A1