WO2017099543A1 - Hydrogen storage device using column-shaped hydrogen storage metal - Google Patents

Hydrogen storage device using column-shaped hydrogen storage metal Download PDF

Info

Publication number
WO2017099543A1
WO2017099543A1 PCT/KR2016/014498 KR2016014498W WO2017099543A1 WO 2017099543 A1 WO2017099543 A1 WO 2017099543A1 KR 2016014498 W KR2016014498 W KR 2016014498W WO 2017099543 A1 WO2017099543 A1 WO 2017099543A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
storage container
metal
hydrogen storage
storage
Prior art date
Application number
PCT/KR2016/014498
Other languages
French (fr)
Korean (ko)
Inventor
강현구
윤세훈
장민호
정동유
오윤희
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2017099543A1 publication Critical patent/WO2017099543A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen storage device, and more particularly, to a hydrogen storage device having increased storage and release efficiency and production safety of hydrogen.
  • hydrogen When used as an energy source, hydrogen can be produced using indefinite water as a raw material. After use, hydrogen is recycled back to water, and no pollutants are generated except for the generation of very small NOx during combustion.
  • hydrogen can be easily transported as a gas or a liquid, and is easily stored in various forms such as high pressure gas, liquid hydrogen, and metal hydride.
  • it has the advantage of being easy to use as fuel such as fuel or fuel cell by direct combustion. Therefore, hydrogen can be used in almost all fields used in current energy systems, such as general fuel vehicles, hydrogen airplanes, and fuel cells, from industrial basic materials, and thus, it is considered to be most suitable for future energy systems.
  • the fusion energy can be produced by the nuclear fusion reaction of tritium and deuterium hydrogen isotopes.
  • Tritium a raw material for the fusion reaction, is a radioactive hydrogen isotope and requires high safety techniques in its handling.
  • tritium is a sensitive radioactive material subject to import and export control between countries, it is important to store it safely and to measure and supply accurate inventory for efficient use.
  • tritium-related technology is a sensitive technology that controls import and export between countries, there are many limitations in technology transfer from developed countries, and even if technology is introduced from abroad, it is a supplier of technology in other fields or when exporting technology to a third country. Corresponds to a sensitive technology that needs to be approved.
  • a fusion reaction product such as helium and an unreacted hydrogen isotope generated in a fusion reactor such as Tokamak are separated into helium and pure hydrogen isotope in the palladium-silver alloy metal membrane device of the Tokamak exhaust treatment process.
  • the separated pure hydrogen isotope is separated into hard hydrogen, deuterium and tritium in an ultra low temperature distillation column, of which tritium is circulated back to the toka membrane through a storage process and a fuel injection system.
  • the hydrogen storage device is installed in the tritium storage process.
  • a conventional hydrogen storage material is deteriorated in the hydrogen storage performance due to oxidation in the air during the manufacturing process of the hydrogen storage device, and some of the fire risk due to rapid oxidation also exists. This threatens the manufacturing safety of the hydrogen storage device, or there is a problem leading to an increase in the manufacturing cost.
  • Patent Document 1 US Patent US 6,015,041
  • Hydrogen storage device in the form of a cylinder; A porous receiving member accommodated in an inner space of the storage container; A hydrogen storage metal having a columnar shape, the axial direction of the columnar shape being disposed parallel to the axial direction of the storage container, and accommodated inside the storage container while being surrounded by the porous receiving member; A hydrogen supply pipe connected in fluid communication with the storage container to supply hydrogen to the internal space of the storage container; A hydrogen discharge pipe connected in fluid communication with the storage container to discharge hydrogen in the storage container to a supply destination; And a heat supply source located inside or outside the storage container to supply heat to the internal space of the storage container.
  • the cylinder shape of the storage container means, ie, an empty cylindrical container which is deceived to have an inner space.
  • Hydrogen storage metals store and release hydrogen through occlusion and hernia.
  • occlusion refers to a reaction in which hydrogen reacts with a hydrogen storage metal to form a metal hydride
  • degassing refers to an endothermic reaction that absorbs heat to release hydrogen from a hydrogen storage metal formed of a metal hydride. Therefore, when storing hydrogen, the internal space of the storage container is cooled, and when the hydrogen is extracted, the internal space of the storage container is heated.
  • the porous receiving member may be a metal form, and the metal form may be made of any one selected from the group consisting of copper, nickel, and aluminum alloys.
  • the porous receiving member may have a cylindrical shape and may include a plurality of insertion holes penetrated through the porous receiving member along the axial direction of the storage container.
  • the columnar hydrogen storage metal may be inserted in all or part of the plurality of insertion holes.
  • the porous receiving member may be formed of two or more metal foams stacked and arranged along the axial direction of the storage container, and each metal foam may include an insertion hole.
  • the storage container includes a diaphragm having one end fixed to an inner surface of the storage vessel, the diaphragm having a longitudinal direction parallel to the axial direction of the storage vessel, and the two or more metal foams including a slit that engages the diaphragm. can do.
  • the heat source includes a cartridge heater having a predetermined length, and part or all of the length of the cartridge heater may be inserted into one or more insertion holes of the plurality of insertion holes.
  • the heat supply source may further include an external heater installed on the outer surface of the storage container to surround the outer surface of the storage container.
  • the hydrogen storage device may further include a shielded container containing the storage container and sealed.
  • the hydrogen storage device may further include one or more heat shield members installed between the storage container and the shielding container.
  • the hydrogen storage device may include: a first outflow prevention filter installed on the hydrogen supply pipe to prevent the hydrogen storage metal particles decomposed into a particle form from the pillar shape of the hydrogen storage metal from flowing out of the inside of the storage container; And a second outflow prevention filter installed on the hydrogen discharge pipe to prevent the hydrogen storage metal particles from flowing out from the inside of the storage container.
  • the first outflow prevention filter and the second outflow prevention filter may be formed of a tubular sintered metal filter or a plate-shaped sintered metal filter.
  • the metal hydride can be uniformly distributed in the inner space of the container, whereby the storage and release of hydrogen can be made quickly.
  • the hydrogen storage metal particles decomposed from the pillar shape of the hydrogen storage metal and dispersed into the metal foam are prevented from leaking out through the hydrogen supply pipe and the hydrogen discharge pipe to contaminate the inside of the hydrogen supply pipe and the hydrogen discharge pipe or reduce the amount of hydrogen storage. Can be prevented.
  • the shielding container and the heat shield member are protected by sealing the storage container containing the hydrogen storage metal to prevent the leakage of hydrogen from the storage container, it is possible to prevent the oxidation and thermal loss of the hydrogen storage metal and the storage container.
  • FIG. 1 is a cross-sectional view showing the configuration of a hydrogen storage device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the porous receiving member and the hydrogen storage metal shown in FIG. 1.
  • FIG 3 is a cross-sectional view showing the configuration of a hydrogen storage device according to another embodiment of the present invention.
  • FIG. 4 is an exploded perspective view illustrating the storage container, the porous receiving member, the hydrogen storage metal, and the heat supply source shown in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 3.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a perspective view showing the configuration of a hydrogen storage device according to an embodiment of the present invention.
  • the hydrogen storage device 100 according to an embodiment of the present invention, the storage container 110, porous receiving member 120, hydrogen storage metal 130, hydrogen supply pipe 140 and heat supply source 160.
  • the storage container 110 accommodates the porous receiving member 120, and protects the accommodated porous receiving member 120 from the outside.
  • the storage container 110 is in the form of a cylinder.
  • it may be a hollow cylindrical shape having an inner space.
  • the porous receiving member 120 is made of a porous material, and may be configured to receive or wrap the hydrogen storage metal 130.
  • the porous receiving member 120 may be a porous metal in the form of open pores, that is, a metal foam, and may be formed in a form in which a plurality of insertion holes 121 are formed in the metal foam.
  • the porous receiving member 120 may have a cylindrical shape having a length corresponding to the length of the inner space of the storage container 110 as shown in FIG. 2.
  • the insertion holes 121 may penetrate the porous receiving member 120 in the axial direction of the cylindrical shape. At this time, the insertion holes 121 are disposed radially.
  • the type of metal constituting the metal foam is not limited, and for example, the metal foam may be copper (Cu), nickel (Ni), and an aluminum alloy.
  • the hydrogen storage metal 130 stores and releases hydrogen by adjusting the temperature and pressure of the internal space of the storage container 110 in a state where the hydrogen storage metal 130 is accommodated in the storage container 110.
  • Hydrogen storage metal 130 is preferably a columnar shape. Because, the hydrogen storage metal 130 is expanded in the process of storing hydrogen and thus the internal stress occurs, the internal stress generated at this time to fracture the hydrogen storage metal 130, the hydrogen storage metal 130 This is because when formed in a columnar shape, the ability to withstand internal stresses generated during hydrogen storage can be improved.
  • the columnar hydrogen storage metal 230 is easy to handle. That is, the hydrogen storage metal may be rapidly oxidized by contact with the atmosphere. In particular, in the case of a hydrogen storage metal in the form of powder can spontaneously ignite even at room temperature. However, the use of the columnar hydrogen storage metal 230 greatly reduces the risk of ignition due to oxidation and rapid oxidation in the air, thereby facilitating the handling of metal oxides.
  • the hydrogen storage metal 130 is inserted into the insertion holes 121 formed in the porous receiving member 120 is accommodated in the porous receiving member 120. At this time, the hydrogen storage metal 130 is disposed radially in the porous receiving member 120 because the insertion holes 121 are disposed radially.
  • the hydrogen storage metal 130 may be depleted uranium (DU).
  • the hernia pressure is high and uneven enough so that deuterium-tritium can be smoothly supplied for the deuterium-tritium (DT) reaction required for fusion energy production in a reactor such as a tokamak in a fusion facility. Because there is no problem of anger.
  • DT deuterium-tritium
  • the hydrogen storage metal 130 is formed in a columnar shape to withstand the internal stress during hydrogen storage, but a portion of the columnar hydrogen storage metal 130 in the form of a column during repeated storage and release of hydrogen from the hydrogen storage metal It can be broken down and dispersed into particles.
  • the hydrogen storage metal particles may be dispersed into the metal foam through open pores of the metal foam, which is the porous receiving member 120.
  • the hydrogen supply pipe 140 supplies hydrogen into the storage container 110.
  • the hydrogen supply pipe 140 is connected in fluid communication with the internal space of the storage container 110 may supply hydrogen, for example tritium, to the internal space of the storage container 110.
  • the hydrogen discharge pipe 150 discharges hydrogen from the internal space of the storage container 110 to the supply destination.
  • the hydrogen discharge pipe 150 is connected in fluid communication with the internal space of the storage container 110 may discharge hydrogen from the internal space of the storage container 110 to the supply destination.
  • the hydrogen discharge pipe 150 may supply tritium from the inner space of the storage container 110 to the tokamak of the fusion facility.
  • the heat supply source 160 supplies heat to the internal space of the storage container 110.
  • the heat source 160 may be located inside or outside the storage container 110.
  • the heat source 160 may be a cartridge heater.
  • the cartridge heater may be partially inserted into a part of the entire insertion hole 121 of the porous receiving member 120 to supply heat to the internal space of the storage container 110.
  • the cartridge heater may be directly connected to a power source outside the storage container 110 or connected through electric feed-through to supply power.
  • hydrogen eg, tritium
  • hydrogen supply pipe 140 hydrogen supply pipe 140
  • the supplied hydrogen is stored and stored in the hydrogen storage metal 130 accommodated in the insertion hole 121 of the porous accommodating member 120, and hydrogen is stored from the hydrogen storage metal 130, that is, the metal hydride.
  • the hydrogen stored in the hydrogen storage metal 130 may be desorbed and released, and the released hydrogen may be supplied to a supply source, for example, a toka membrane of a fusion facility through the hydrogen discharge pipe 150.
  • the hydrogen storage metal 130 may be partially decomposed into hydrogen storage metal particles from a columnar shape and dispersed, and the hydrogen storage metal particles may be dispersed into the metal foam through open pores of the metal foam.
  • the hydrogen storage metal particles are dispersed and distributed around the radially arranged columnar hydrogen storage metal 130, whereby the hydrogen storage metal 130 is uniformly distributed in the internal space of the storage container 110. This allows the metal hydride to be evenly distributed. As the hydrogen storage metal 130 is uniformly distributed, hydrogen may be quickly stored and released.
  • FIG. 3 is a cross-sectional view showing the configuration of a hydrogen storage device according to another embodiment of the present invention
  • Figure 4 is an exploded perspective view showing a storage container, a porous receiving member, a hydrogen storage metal and a heat supply source shown in FIG.
  • the hydrogen storage device 200 includes a storage container 210, a porous receiving member 220, a hydrogen storage metal 230, a hydrogen supply pipe 240, The hydrogen discharge pipe 250, the heat supply source 260, the shield container 270, the heat shield member 280, the first outflow prevention filter 291 and the second outflow prevention filter 292.
  • the storage container 210 accommodates the porous receiving member 220 and protects the accommodated porous receiving member 220 from the outside.
  • the storage container 210 is in the form of a cylinder.
  • it may be a hollow cylindrical shape having an inner space.
  • the porous receiving member 220 is made of a porous material, and may be configured to accommodate or surround the hydrogen storage metal 230.
  • the porous receiving member 220 may be formed of two or more metal foams stacked and arranged along the axial direction of the storage container 210, and each porous receiving member 220 may include an insertion hole 221. It may be accommodated and nested in the internal space of the 210.
  • the porous accommodating member 220 may be formed with a cutout 223 in which a portion is cut in a circular shape, and the cutout 223 is stored when the porous accommodating member 220 is accommodated in the storage container 210. It may be spaced apart from the inner surface of the container 210 to form a pipe inlet space (210a) in the storage container (210).
  • each porous receiving member 220 When the porous receiving member 220 is formed of two or more metal foams superimposed on each other, the storage container 210 has one end fixed to the inner surface of the storage container so that the longitudinal direction is parallel to the axial direction of the storage container 211. ), And each porous receiving member 220 may include a slit 222 coupled to the diaphragm 211.
  • the diaphragm 211 is disposed inside the storage vessel 210 so as to be perpendicular to the circular shape of the cross section of the storage vessel 210 and parallel to the longitudinal direction of the storage vessel 210, and the long axis direction of the diaphragm 211 is the storage vessel. It may be a length corresponding to the length of the inner space of the 210 and the short axis direction of the diaphragm 211 may be a length smaller than the diameter of the circular shape of the cross section of the storage container (210).
  • the diaphragm 211 has two or more overlapping porous receiving members 220 accommodated in the inner space of the storage container 210 rotate in one direction in the storage container 210 so that each porous receiving member 220 is in one direction. It may be a configuration for preventing rotation.
  • the slit 222 is formed in each porous receiving member 220 to be parallel to the diaphragm 211, and may have a depth at which the diaphragm 211 may be inserted.
  • the plurality of insertion holes 221 of the porous receiving member 220 may be disposed around the slit 222.
  • the arrangement of the plurality of insertion holes 221 is not particularly limited, for example, it may be arranged in a plurality of rows on both sides of the slit 222.
  • porous receiving member 220 is the same as the porous receiving member 220 of the hydrogen storage device according to an embodiment of the present invention except that it consists of two or more overlapping metal foam and includes a slit 222 More detailed description will be omitted.
  • the hydrogen storage metal 230 is the same as the hydrogen storage metal 130 according to an embodiment of the present invention, a detailed description thereof will be omitted.
  • the hydrogen supply pipe 240 supplies hydrogen into the storage container 210.
  • the hydrogen supply pipe 240 is connected in fluid communication with the internal space of the storage container 210 may supply hydrogen, for example tritium, to the internal space of the storage container 210.
  • a portion of the hydrogen supply pipe 240 is inserted into the pipe inlet space 210a in the storage container 210 may be located on one side of the diaphragm 211 in the storage container 210.
  • the hydrogen discharge pipe 250 discharges hydrogen from the internal space of the storage container 210 to the supply destination.
  • the hydrogen discharge pipe 250 is connected in fluid communication with the internal space of the storage container 210.
  • a portion of the hydrogen discharge pipe 250 is inserted into the pipe inlet space 210a in the storage container 210 may be located on the other side of the diaphragm 211 in which the hydrogen supply pipe 240 is not located.
  • the hydrogen discharge pipe 250 may discharge hydrogen from the internal space of the storage container 210 to the supply destination.
  • the hydrogen discharge pipe 250 may supply tritium from the inner space of the storage container 210 to the tokamak of the fusion facility.
  • the heat source 260 supplies heat to the inner space of the storage container 210.
  • the heat source 260 may be located inside and outside the storage container 210.
  • the heat source 260 may include a cartridge heater 261 and an external heater 262.
  • the cartridge heater 261 may be partially inserted into a part of the entire insertion hole 221 of the porous receiving member 220 to supply heat to the internal space of the storage container 210.
  • the cartridge heater 261 may be directly connected to a power source external to the storage container 110 or connected through electric feed-through to supply power.
  • the external heater 262 may be installed on the outer surface of the storage container 210 to surround the outer surface of the storage container 210.
  • the external heater 262 may be a coil type heater.
  • the coil-type external heater 262 may be wound around the outer surface of the storage container 210 in a spiral shape to surround the storage container 210.
  • the external heater 262 may be installed by being treated with a feedthrough with respect to the storage container 210 and the shielding container 270.
  • the shielding container 270 accommodates the storage container 210.
  • the shielding container 270 may be in the form of a tube having an inner diameter larger than the outer diameter of the storage container 210.
  • it may be cylindrical tubular.
  • the shielding container 270 is sealed by receiving the storage container 210, thereby blocking the loss of heat applied to the storage container 210, preventing the leakage of hydrogen from the storage container 210, and storing the hydrogen storage metal ( 230 and the storage container 210 can be protected from the outside to prevent oxidation.
  • the heat shield member 280 blocks heat transfer from the storage container 210 to the outside.
  • the heat shield member 280 is installed between the storage container 210 and the shielding container 270.
  • the heat shield 280 may be in the form of a cylindrical tubular metal or metal foil.
  • the heat shield member 280 may be installed between the storage container 210 and the shielding container 270 in one or more layers.
  • the first outflow prevention filter 291 is installed on the hydrogen supply pipe 240 to prevent the hydrogen storage metal particles decomposed in the form of particles from the pillar shape of the hydrogen storage metal to flow out from the inside of the storage container 210. That is, the first outflow prevention filter 291 prevents the hydrogen storage metal particles from flowing out through the hydrogen supply pipe 240.
  • the first outflow prevention filter 291 may be a tubular sintered metal filter or a plate-shaped sintered metal filter.
  • the first outflow prevention filter 291 may be installed to surround the opening of the end of the portion inserted into the storage container 210 of the hydrogen supply pipe 240, and at this time, the pipe inlet space in the storage container 210. May be located within 210a.
  • the first outflow prevention filter 291 may be installed to be disposed on a passage inside the hydrogen supply pipe 240. In this case, the first outflow prevention filter 291 may be located outside the pipe inlet space 210a or the storage container 210 in the storage container 210.
  • the second outflow prevention filter 292 is installed on the hydrogen discharge pipe 250 to prevent the hydrogen storage metal particles from flowing out of the interior of the storage vessel 210. Since the structure of the second outflow prevention filter 292 is installed on the hydrogen discharge pipe 250 is similar to the first outflow prevention filter 291, the second outflow prevention filter 291 is replaced with the description of the first outflow prevention filter 291, and a detailed description thereof is omitted. Let's do it.
  • the process of storing and releasing hydrogen, for example, tritium, by the hydrogen storage metal 230 is the same as the hydrogen storage device according to the embodiment of the present invention. The description will be omitted.
  • the hydrogen storage device is made of two or more metal foams in which the porous receiving member 220 is overlapped with each other, hydrogen storage is performed due to the process of repeatedly storing and releasing tritium of the hydrogen storage metal 230.
  • a plurality of regions containing hydrogen storage metal particles decomposed and dispersed from the columnar shape of the metal 230 may be provided in a plurality, so that the hydrogen storage metal particles are concentrated to a part of the entire length of the porous accommodation member 220. Can be prevented.
  • the heating of the hydrogen storage metal 230 is performed by the cartridge heater 261 located in the storage container 210 and the coil type external heater 262 surrounding the storage container 210. Since the hydrogen storage metal 230 can be heated more easily, whereby the reaction between the hydrogen storage metal 230 and hydrogen can be made faster.
  • hydrogen storage metal particles decomposed from the pillar shape of the hydrogen storage metal 230 and dispersed into the metal foam by repeated storage and release processes of hydrogen are installed on the hydrogen supply pipe 240 and the hydrogen discharge pipe 250.
  • the outflow prevention filter 291 and the second outflow prevention filter 292 is prevented from leaking to the outside of the storage container 210 and the shielding container 270, whereby the hydrogen supply pipe 240 and the hydrogen discharge pipe 250 Contamination of the inside of the container or reduction of the hydrogen storage amount can be prevented.
  • the hydrogen from the storage container 210 is stored.
  • the leakage may be prevented, and the hydrogen storage metal 230 and the storage container 210 may be protected from the outside to prevent oxidation, and the loss of heat applied to the storage container 210 may be prevented.

Abstract

A hydrogen storage device is disclosed. The hydrogen storage device comprises: a cylinder-shaped storage container; a porous accommodating member accommodated in an inner space of the storage container; a column-shaped hydrogen storage metal of which the axial direction of the column shape is disposed parallel to the axial direction of the storage container such that the hydrogen storage metal is accommodated inside the storage container while being surrounded by the porous accommodating member; a hydrogen supply pipe connected to the storage container so as to enable fluid to flow therebetween, thereby supplying hydrogen to the inner space of the storage container; a hydrogen discharge pipe connected to the storage container so as to enable the fluid to flow therebetween, thereby discharging the hydrogen inside the storage container to a supply site; and a heat supply source positioned inside or outside the storage container so as to supply heat to the inner space of the storage container. When the hydrogen storage device is used, metal hydrides can be uniformly distributed in the inner space of the container, thereby enabling hydrogen to be quickly stored and discharged.

Description

기둥형상의 수소저장금속을 이용한 수소 저장 장치Hydrogen storage device using columnar hydrogen storage metal
본 발명은 수소 저장 장치에 관한 것으로, 더욱 상세하게는 수소의 저장 및 방출 효율 및 제작 안전성이 증대된 수소 저장 장치에 관한 것이다.TECHNICAL FIELD The present invention relates to a hydrogen storage device, and more particularly, to a hydrogen storage device having increased storage and release efficiency and production safety of hydrogen.
산업이 급속도로 발전함에 따라 전 세계적으로 고갈되어 가는 화석 연료의 대체 및 지구의 환경보존과 에너지원의 효율적인 이용을 위하여 미래의 에너지 매체로 우수한 특성을 가지고 있는 에너지 관련 기술 중 고효율의 환경친화적 청정에너지 기술개발이 매우 시급하다. 이에 따라 수소에너지의 기술개발에 대한 관심이 높아지고 있으며, 수소의 제조와 저장, 수송 분야를 포함한 수소에너지 이용기술의 확보는 미래 21세기 에너지 안보 및 국가경쟁력을 결정하는 중요한 요소가 될 것이다.High efficiency, eco-friendly clean energy technology among energy-related technologies that have excellent characteristics as future energy media for the replacement of fossil fuel, which is exhausted worldwide as the industry develops rapidly, and the global conservation of environment and efficient use of energy sources. Development is very urgent. Accordingly, interest in technology development of hydrogen energy is increasing, and securing of hydrogen energy utilization technology including hydrogen production, storage, and transportation will be an important factor in determining energy security and national competitiveness in the 21st century.
수소는 에너지원으로서 사용할 경우에 무한정인 물을 원료로 하여 제조할 수 있으며 사용 후에는 다시 물로 재순환이 이루어질 뿐만 아니라, 연소 시 극소량의 NOx 발생을 제외하고는 공해물질이 생성되지 않는다. 또한, 수소는 가스나 액체로서 쉽게 수송할 수 있으며 고압가스, 액체수소, 금속수소화물 등의 다양한 형태로의 저장이 용이하다. 또한, 직접 연소에 의한 연료 또는 연료전지 등의 연료로서의 사용이 간편한 장점을 가지고 있다. 따라서, 수소는 산업용의 기초소재로부터 일반 연료자동차, 수소비행기, 연료전지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 수 있어, 미래의 에너지시스템에 가장 적합한 것으로 판단되고 있다. When used as an energy source, hydrogen can be produced using indefinite water as a raw material. After use, hydrogen is recycled back to water, and no pollutants are generated except for the generation of very small NOx during combustion. In addition, hydrogen can be easily transported as a gas or a liquid, and is easily stored in various forms such as high pressure gas, liquid hydrogen, and metal hydride. In addition, it has the advantage of being easy to use as fuel such as fuel or fuel cell by direct combustion. Therefore, hydrogen can be used in almost all fields used in current energy systems, such as general fuel vehicles, hydrogen airplanes, and fuel cells, from industrial basic materials, and thus, it is considered to be most suitable for future energy systems.
한편, 핵융합에너지는 수소동위원소인 삼중수소와 중수소의 핵융합반응으로 생산될 수 있다.On the other hand, the fusion energy can be produced by the nuclear fusion reaction of tritium and deuterium hydrogen isotopes.
핵융합반응의 원료인 삼중수소는 방사성 수소동위원소로서, 그 취급에 있어서 고도의 안전기술이 요구된다. 또한, 삼중수소는 국가 간 수출입통제를 받는 민감한 방사성물질이므로, 이를 효율적으로 사용하기 위하여 안전하게 저장하고, 정확한 재고를 측정하여 공급하는 기술이 중요하다.Tritium, a raw material for the fusion reaction, is a radioactive hydrogen isotope and requires high safety techniques in its handling. In addition, since tritium is a sensitive radioactive material subject to import and export control between countries, it is important to store it safely and to measure and supply accurate inventory for efficient use.
또한, 삼중수소 관련 기술은 국가 간 수출입이 통제되는 민감한 기술이기 때문에, 선진국으로부터의 기술이전에 제약이 많으며, 설사 해외에서 기술이 도입되어도, 타 분야 활용 또는 제 3국에의 기술 수출시 기술 공급국의 승인을 받아야하는 민감한 기술에 해당한다.In addition, since tritium-related technology is a sensitive technology that controls import and export between countries, there are many limitations in technology transfer from developed countries, and even if technology is introduced from abroad, it is a supplier of technology in other fields or when exporting technology to a third country. Corresponds to a sensitive technology that needs to be approved.
토카막 등의 핵융합반응로에서 발생한 헬륨 등의 핵융합반응 생성물과 미반응 수소동위원소는 토카막배기체처리 공정의 팔라듐-은 합금 금속막 장치에서 헬륨과 순수 수소동위원소로 분리된다.A fusion reaction product such as helium and an unreacted hydrogen isotope generated in a fusion reactor such as Tokamak are separated into helium and pure hydrogen isotope in the palladium-silver alloy metal membrane device of the Tokamak exhaust treatment process.
상기 분리된 순수 수소동위원소는 초저온 증류탑에서 경수소, 중수소 및 삼중수소로 분리되며, 이 중, 삼중수소는 저장공정과 연료주입계통을 통하여 다시 토카막으로 순환된다. 이때, 삼중수소저장공정에는 수소 저장 장치가 설치된다.The separated pure hydrogen isotope is separated into hard hydrogen, deuterium and tritium in an ultra low temperature distillation column, of which tritium is circulated back to the toka membrane through a storage process and a fuel injection system. At this time, the hydrogen storage device is installed in the tritium storage process.
이와 같이 수소는 미래의 대체 에너지원으로서 수소 에너지를 이용하고자 하는 노력이 점차 증대되고 있으며, 이에 따라 수소 저장 장치의 개발에 주목되고 있다.As such, efforts to use hydrogen energy as an alternative energy source in the future are gradually increasing, and accordingly, attention has been paid to the development of a hydrogen storage device.
종래의 대부분의 수소 저장 장치는 밀폐된 용기 내에 수소저장금속을 분말 형태로 수용하고 있고 상기 용기 내에 가열선을 설치하여 구성된다. 이러한 종래의 수소 저장 장치는 수소저장금속이 수소를 흡장하여 저장하고 수소를 탈장하여 방출하는 과정을 반복하면서 팽창 및 수축이 반복되고, 이에 의해 수소저장금속이 쉽게 분말화 되어서, 분말 형태의 수소저장금속이 용기 내에서 일부분으로 집중되어 수용되는 문제가 있었다. 예를 들면, 분말 형태의 수소저장금속이 용기의 내부공간의 아래쪽에 집중되는 문제가 있었다. 이에 의해, 수소저장금속이 용기 내에 고르게 분포하여 배치되기 어렵고, 이는 결과적으로 수소를 저장한 금속수소화물의 열전달이 저하되어 수소의 저장 및 방출 효율이 낮아지는 문제로 이어진다.Most conventional hydrogen storage devices contain hydrogen storage metal in powder form in an airtight container and are constructed by installing heating wires in the container. In the conventional hydrogen storage device, the expansion and contraction are repeated while the hydrogen storage metal occludes and stores hydrogen and the hydrogen is desorbed and released, thereby making the hydrogen storage metal easily powdered, thereby storing hydrogen in powder form. There has been a problem that the metal is contained and accommodated in part within the container. For example, there has been a problem that the hydrogen storage metal in powder form is concentrated under the inner space of the container. As a result, the hydrogen storage metal is difficult to be evenly distributed in the container, which results in a problem that the heat transfer of the metal hydride storing hydrogen is lowered and the storage and release efficiency of hydrogen is lowered.
또한 종래의 수소 저장이 가능한 물질은 수소 저장 장치의 제작 공정 중에 대기중에 산화로 인해 수소 저장 성능의 저하가 발생하며, 일부는 급속한 산화로 인한 화재의 우려 또한 존재한다. 이는 수소 저장 장치의 제작 안전성을 위협하거나, 제작 비용의 증대로 이어지는 문제가 있다.In addition, a conventional hydrogen storage material is deteriorated in the hydrogen storage performance due to oxidation in the air during the manufacturing process of the hydrogen storage device, and some of the fire risk due to rapid oxidation also exists. This threatens the manufacturing safety of the hydrogen storage device, or there is a problem leading to an increase in the manufacturing cost.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 미국특허 US6,015,041(Patent Document 1) US Patent US 6,015,041
본 발명은 금속수소화물이 용기 내에 균일하게 분포하도록 하고 이에 의해 수소의 저장 및 방출이 빠르게 이루어질 수 있도록 한 수소 저장 장치를 제공하는데 목적이 있다.It is an object of the present invention to provide a hydrogen storage device that allows metal hydrides to be uniformly distributed in a container and thereby allows for the storage and release of hydrogen quickly.
본 발명에 따른 수소 저장 장치는, 실린더 형태의 저장용기; 상기 저장용기의 내부공간에 수용된 다공성 수용부재; 기둥 형상이고, 상기 기둥 형상의 축방향이 상기 저장용기의 축방향에 평행하게 배치되어 상기 다공성 수용부재로 둘러싸인 채로 상기 저장용기 내부에 수용된 수소저장금속; 상기 저장용기와 유체 소통 가능하게 연결되어 상기 저장용기의 내부공간으로 수소를 공급하는 수소공급관; 상기 저장용기와 유체 소통 가능하게 연결되어 상기 저장용기의 내의 수소를 공급처로 배출하는 수소배출관; 및 상기 저장용기의 내부 또는 외부에 위치하여 상기 저장용기의 내부공간에 열을 공급하는 열공급원을 포함한다.Hydrogen storage device according to the invention, the storage container in the form of a cylinder; A porous receiving member accommodated in an inner space of the storage container; A hydrogen storage metal having a columnar shape, the axial direction of the columnar shape being disposed parallel to the axial direction of the storage container, and accommodated inside the storage container while being surrounded by the porous receiving member; A hydrogen supply pipe connected in fluid communication with the storage container to supply hydrogen to the internal space of the storage container; A hydrogen discharge pipe connected in fluid communication with the storage container to discharge hydrogen in the storage container to a supply destination; And a heat supply source located inside or outside the storage container to supply heat to the internal space of the storage container.
저장용기의 실린더 형태는, 즉 내부공간을 갖도록 속인 빈 통형의 용기 형태를 의미한다.The cylinder shape of the storage container means, ie, an empty cylindrical container which is deceived to have an inner space.
수소저장금속은 흡장 및 탈장을 통해 수소를 저장 및 방출한다. 여기서, 흡장은 수소가 수소저장금속과 반응하여 메탈 하이드라이드를 형성하는 반응을 의미하고, 탈장은 메탈 하이드라이드로 형성된 수소저장금속으로부터 수소가 방출되도록 열을 흡수하는 흡열반응을 의미한다. 따라서 수소를 흡장할 때에는 저장용기의 내부공간을 냉각해 주고, 수소를 탈장할 때에는 저장용기의 내부공간을 가열한다.Hydrogen storage metals store and release hydrogen through occlusion and hernia. Here, occlusion refers to a reaction in which hydrogen reacts with a hydrogen storage metal to form a metal hydride, and degassing refers to an endothermic reaction that absorbs heat to release hydrogen from a hydrogen storage metal formed of a metal hydride. Therefore, when storing hydrogen, the internal space of the storage container is cooled, and when the hydrogen is extracted, the internal space of the storage container is heated.
상기 수소저장금속은 LaNi계 금속, LaNiAl계 금속, ZrCo, 감손우라늄, 우라늄, 티타늄, 팔라듐, ZrNi, ZiNixCoy(x=0.01~0.99,y=1-x), ZrNixCoyFez(x=0.01~0.99, y=0.01~0.99, z=0.01~0.99, x+y+z=1) 및 ZixHfyCo(x=0.01~0.99, y=1-x)로 구성되는 군으로부터 선택된 하나 어느 하나일 수 있다.The hydrogen storage metal is LaNi-based metal, LaNiAl-based metal, ZrCo, depleted uranium, uranium, titanium, palladium, ZrNi, ZiNi x Co y (x = 0.01 ~ 0.99, y = 1-x), ZrNi x Co y Fe z (x = 0.01-0.99, y = 0.01-0.99, z = 0.01-0.99, x + y + z = 1) and Zi x Hf y Co (x = 0.01-0.99, y = 1-x) It may be any one selected from.
다공성 수용부재는 메탈폼(Metal form)일 수 있고, 상기 메탈폼은 구리, 니켈, 알루미늄 합금으로 구성되는 군으로부터 선택된 어느 하나로 이루어질 수 있다.The porous receiving member may be a metal form, and the metal form may be made of any one selected from the group consisting of copper, nickel, and aluminum alloys.
일 실시예로, 다공성 수용부재는 원통 형상일 수 있고 상기 저장용기의 축방향을 따라 다공성 수용부재에 관통된 다수의 삽입구멍을 포함할 수 있다. 이러한 경우, 기둥 형상의 수소저장금속은 다수의 삽입구멍의 전부 또는 일부에 삽입될 수 있다. In one embodiment, the porous receiving member may have a cylindrical shape and may include a plurality of insertion holes penetrated through the porous receiving member along the axial direction of the storage container. In this case, the columnar hydrogen storage metal may be inserted in all or part of the plurality of insertion holes.
다른 실시예로, 다공성 수용부재는 상기 저장용기의 축방향을 따라 나열되어 포개어진 둘 이상의 메탈폼으로 이루어질 수 있고, 각각의 메탈폼은 삽입구멍을 포함할 수 있다. 이러한 경우, 상기 저장용기는 상기 저장용기의 내면에 일단부가 고정되어 길이방향이 상기 저장용기의 축방향과 평행하도록 배치된 격판을 포함하고, 상기 둘 이상의 메탈폼은 상기 격판과 결합하는 슬릿을 포함할 수 있다.In another embodiment, the porous receiving member may be formed of two or more metal foams stacked and arranged along the axial direction of the storage container, and each metal foam may include an insertion hole. In this case, the storage container includes a diaphragm having one end fixed to an inner surface of the storage vessel, the diaphragm having a longitudinal direction parallel to the axial direction of the storage vessel, and the two or more metal foams including a slit that engages the diaphragm. can do.
상기 열공급원은 소정의 길이를 갖는 카트리지 히터를 포함하고, 상기 카트리지 히터의 길이의 일부 또는 전부는 상기 다수의 삽입구멍 중 하나 이상의 삽입구멍에 삽입될 수 있다.The heat source includes a cartridge heater having a predetermined length, and part or all of the length of the cartridge heater may be inserted into one or more insertion holes of the plurality of insertion holes.
상기 열공급원은 상기 저장용기의 외면을 감싸도록 상기 저장용기의 외면에 설치된 외부히터를 더 포함할 수 있다.The heat supply source may further include an external heater installed on the outer surface of the storage container to surround the outer surface of the storage container.
상기 수소 저장 장치는 상기 저장용기를 수용하여 밀폐된 차폐용기를 더 포함할 수 있다.The hydrogen storage device may further include a shielded container containing the storage container and sealed.
상기 수소 저장 장치는 상기 저장용기 및 차폐용기 사이에 설치된 하나 이상의 열차폐부재를 더 포함할 수 있다.The hydrogen storage device may further include one or more heat shield members installed between the storage container and the shielding container.
상기 수소 저장 장치는, 상기 수소공급관 상에 설치되어 상기 수소저장금속의 기둥 형상으로부터 입자 형태로 분해된 수소저장금속 입자가 상기 저장용기의 내부로부터 유출되는 것을 방지하는 제1 유출방지필터; 및 상기 수소배출관 상에 설치되어 상기 수소저장금속 입자가 상기 저장용기의 내부로부터 유출되는 것을 방지하는 제2 유출방지필터를 더 포함할 수 있다.The hydrogen storage device may include: a first outflow prevention filter installed on the hydrogen supply pipe to prevent the hydrogen storage metal particles decomposed into a particle form from the pillar shape of the hydrogen storage metal from flowing out of the inside of the storage container; And a second outflow prevention filter installed on the hydrogen discharge pipe to prevent the hydrogen storage metal particles from flowing out from the inside of the storage container.
상기 제1 유출방지필터 및 제2 유출방지필터는 관형상의 소결 금속필터 또는 판형상의 소결 금속필터로 이루어질 수 있다.The first outflow prevention filter and the second outflow prevention filter may be formed of a tubular sintered metal filter or a plate-shaped sintered metal filter.
본 발명에 따른 수소 저장 장치에 의하면, 용기의 내부공간에 금속수소화물이 균일하게 분포할 수 있고, 이에 의해 수소의 저장 및 방출이 빠르게 이루어질 수 있다.According to the hydrogen storage device according to the present invention, the metal hydride can be uniformly distributed in the inner space of the container, whereby the storage and release of hydrogen can be made quickly.
또한, 수소저장금속의 기둥 형상으로부터 분해되어 메탈폼 내로 분산된 수소저장금속 입자가 수소공급관 및 수소배출관을 통해 외부로 유출되는 것을 방지하여 수소공급관 및 수소배출관의 내부를 오염시키거나 수소 저장량이 감소하는 것을 방지할 수 있다.In addition, the hydrogen storage metal particles decomposed from the pillar shape of the hydrogen storage metal and dispersed into the metal foam are prevented from leaking out through the hydrogen supply pipe and the hydrogen discharge pipe to contaminate the inside of the hydrogen supply pipe and the hydrogen discharge pipe or reduce the amount of hydrogen storage. Can be prevented.
또한, 수소저장금속을 수용하고 있는 저장용기를 차폐용기 및 열차폐부재가 밀폐하여 보호하므로 저장용기로부터 수소의 누설을 방지, 수소저장금속 및 저장용기의 산화방지 및 열손실을 방지할 수 있다.In addition, since the shielding container and the heat shield member are protected by sealing the storage container containing the hydrogen storage metal to prevent the leakage of hydrogen from the storage container, it is possible to prevent the oxidation and thermal loss of the hydrogen storage metal and the storage container.
도 1은 본 발명의 일 실시예에 따른 수소 저장 장치의 구성을 나타낸 단면도이다.1 is a cross-sectional view showing the configuration of a hydrogen storage device according to an embodiment of the present invention.
도 2는 도 1에 도시된 다공성 수용부재 및 수소저장금속을 나타낸 사시도이다.FIG. 2 is a perspective view illustrating the porous receiving member and the hydrogen storage metal shown in FIG. 1.
도 3은 본 발명의 다른 실시예에 따른 수소 저장 장치의 구성을 나타낸 단면도이다.3 is a cross-sectional view showing the configuration of a hydrogen storage device according to another embodiment of the present invention.
도 4는 도 3에 도시된 저장용기, 다공성 수용부재, 수소저장금속 및 열공급원을 나타낸 분리 사시도이다.FIG. 4 is an exploded perspective view illustrating the storage container, the porous receiving member, the hydrogen storage metal, and the heat supply source shown in FIG. 3.
도 5는 도 3의 A-A'선 단면도이다.5 is a cross-sectional view taken along the line AA ′ of FIG. 3.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 수소 저장 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a hydrogen storage device according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 따른 수소 저장 장치의 구성을 나타낸 사시도이다.1 is a perspective view showing the configuration of a hydrogen storage device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 수소 저장 장치(100)는, 저장용기(110), 다공성 수용부재(120), 수소저장금속(130), 수소공급관(140) 및 열공급원(160)을 포함한다.Referring to Figure 1, the hydrogen storage device 100 according to an embodiment of the present invention, the storage container 110, porous receiving member 120, hydrogen storage metal 130, hydrogen supply pipe 140 and heat supply source 160.
저장용기(110)는 다공성 수용부재(120)를 수용하며, 수용된 다공성 수용부재(120)를 외부로부터 보호한다. 저장용기(110)는 실린더 형태이다. 예를 들면, 내부공간을 갖는 속이 빈 원통 형상일 수 있다.The storage container 110 accommodates the porous receiving member 120, and protects the accommodated porous receiving member 120 from the outside. The storage container 110 is in the form of a cylinder. For example, it may be a hollow cylindrical shape having an inner space.
다공성 수용부재(120)는 다공성 소재로 이루어지고, 수소저장금속(130)을 수용하거나 감싸도록 구성될 수 있다. 이를 위해, 다공성 수용부재(120)는 개방형 기공(Open Pore) 형태의 다공질 금속, 즉 메탈폼(Foam Metal)일 수 있고, 메탈폼에 다수의 삽입구멍(121)을 형성한 형태로 구성될 수 있다. 일 예로, 다공성 수용부재(120)는 도 2에 도시된 바와 같이 저장용기(110)의 내부공간의 길이에 대응하는 길이를 갖는 원기둥 형상일 수 있다. 이러한 경우, 삽입구멍(121)들은 원기둥 형상의 축방향을 따라 다공성 수용부재(120)에 관통될 수 있다. 이때, 삽입구멍(121)들은 방사상으로 배치된다. 여기서, 상기 메탈폼을 구성하는 금속의 종류에는 제한이 없으며, 예를 들면, 메탈폼은 구리(Cu), 니켈(Ni) 및 알루미늄 합금일 수 있다. The porous receiving member 120 is made of a porous material, and may be configured to receive or wrap the hydrogen storage metal 130. To this end, the porous receiving member 120 may be a porous metal in the form of open pores, that is, a metal foam, and may be formed in a form in which a plurality of insertion holes 121 are formed in the metal foam. have. For example, the porous receiving member 120 may have a cylindrical shape having a length corresponding to the length of the inner space of the storage container 110 as shown in FIG. 2. In this case, the insertion holes 121 may penetrate the porous receiving member 120 in the axial direction of the cylindrical shape. At this time, the insertion holes 121 are disposed radially. Here, the type of metal constituting the metal foam is not limited, and for example, the metal foam may be copper (Cu), nickel (Ni), and an aluminum alloy.
수소저장금속(130)은 수소저장금속(130)이 저장용기(110) 내에 수용된 상태에서 저장용기(110)의 내부공간의 온도 및 압력을 조절함으로써 수소를 저장 및 방출한다. 수소저장금속(130)은 기둥 형상인 것이 바람직하다. 왜냐하면, 수소저장금속(130)은 수소를 저장하는 과정에서 부피가 팽창하게 되고 따라서 내부응력이 발생하며, 이때 발생한 내부응력은 수소저장금속(130)을 파쇄시키게 되는데, 수소저장금속(130)이 기둥 형상으로 형성되는 경우에는 수소를 저장하는 과정에서 발생되는 내부응력을 견디는 능력이 향상될 수 있기 때문이다.The hydrogen storage metal 130 stores and releases hydrogen by adjusting the temperature and pressure of the internal space of the storage container 110 in a state where the hydrogen storage metal 130 is accommodated in the storage container 110. Hydrogen storage metal 130 is preferably a columnar shape. Because, the hydrogen storage metal 130 is expanded in the process of storing hydrogen and thus the internal stress occurs, the internal stress generated at this time to fracture the hydrogen storage metal 130, the hydrogen storage metal 130 This is because when formed in a columnar shape, the ability to withstand internal stresses generated during hydrogen storage can be improved.
또한 기둥 형상의 수소저장금속(230)은 취급이 용이하다. 즉, 수소저장금속은 대기와의 접촉에 의해 급속한 산화가 이루어질 우려가 있다. 특히 분말 형태의 수소저장금속의 경우에는 상온에서도 자연 발화할 수 있다. 그러나 기둥 형상의 수소저장금속(230)을 이용하게 되면 대기중에서의 산화 및 급속한 산화로 인한 발화의 위험성을 대폭 줄일 수 있어 금속산화물의 취급이 용이해진다.In addition, the columnar hydrogen storage metal 230 is easy to handle. That is, the hydrogen storage metal may be rapidly oxidized by contact with the atmosphere. In particular, in the case of a hydrogen storage metal in the form of powder can spontaneously ignite even at room temperature. However, the use of the columnar hydrogen storage metal 230 greatly reduces the risk of ignition due to oxidation and rapid oxidation in the air, thereby facilitating the handling of metal oxides.
이러한 수소저장금속(130)은 다공성 수용부재(120)에 형성된 삽입구멍(121)들에 삽입되어 다공성 수용부재(120)의 내부에 수용된다. 이때, 수소저장금속(130)은 삽입구멍(121)들이 방사상으로 배치되어 있으므로 다공성 수용부재(120) 내에 방사상으로 배치된다.The hydrogen storage metal 130 is inserted into the insertion holes 121 formed in the porous receiving member 120 is accommodated in the porous receiving member 120. At this time, the hydrogen storage metal 130 is disposed radially in the porous receiving member 120 because the insertion holes 121 are disposed radially.
수소저장금속(130)은 LaNi계 금속, LaNiAl계 금속, ZrCo, 감손우라늄, 우라늄, 티타늄, 팔라듐, ZrNi, ZiNixCoy(x=0.01~0.99,y=1-x), ZrNixCoyFez(x=0.01~0.99, y=0.01~0.99, z=0.01~0.99, x+y+z=1) 및 ZixHfyCo(x=0.01~0.99, y=1-x)로 구성되는 군으로부터 선택된 하나 어느 하나로 구성될 수 있다. 바람직하게는, 수소저장금속(130)은 감손우라늄(DU: depleted uranium)일 수 있다. 감손우라늄의 경우에는 핵융합 시설의 토카막 등의 반응로에서 핵융합 에너지 생산에 필요로 하는 DT(deuterium-tritium, 중수소-삼중수소)반응을 위한 중수소-삼중수소의 원활한 공급이 가능할 정도로 탈장 압력이 높고 불균일화의 문제가 없기 때문이다.The hydrogen storage metal 130 is a LaNi-based metal, LaNiAl-based metal, ZrCo, depleted uranium, uranium, titanium, palladium, ZrNi, ZiNi x Co y (x = 0.01 ~ 0.99, y = 1-x), ZrNi x Co y Fe z (x = 0.01-0.99, y = 0.01-0.99, z = 0.01-0.99, x + y + z = 1) and Zi x Hf y Co (x = 0.01-0.99, y = 1-x) It may be composed of any one selected from the group consisting of. Preferably, the hydrogen storage metal 130 may be depleted uranium (DU). In the case of depleted uranium, the hernia pressure is high and uneven enough so that deuterium-tritium can be smoothly supplied for the deuterium-tritium (DT) reaction required for fusion energy production in a reactor such as a tokamak in a fusion facility. Because there is no problem of anger.
한편, 수소저장금속(130)은 수소 저장시의 내부응력을 견디도록 기둥 형상으로 형성되지만 반복적인 수소의 저장 및 방출과정에서 기둥 형상의 수소저장금속(130)의 일부가 기둥 형상으로로부터 수소저장금속 입자로 분해되어 분산될 수 있다. 이때, 수소저장금속 입자들은 다공성 수용부재(120)인 메탈폼의 개방형 기공을 통해 메탈폼 내로 분산될 수 있다.On the other hand, the hydrogen storage metal 130 is formed in a columnar shape to withstand the internal stress during hydrogen storage, but a portion of the columnar hydrogen storage metal 130 in the form of a column during repeated storage and release of hydrogen from the hydrogen storage metal It can be broken down and dispersed into particles. In this case, the hydrogen storage metal particles may be dispersed into the metal foam through open pores of the metal foam, which is the porous receiving member 120.
수소공급관(140)은 저장용기(110)의 내부로 수소를 공급한다. 이를 위해, 수소공급관(140)은 저장용기(110)의 내부공간과 유체 소통 가능하게 연결되어 저장용기(110)의 내부공간으로 수소, 예를 들면 삼중수소를 공급할 수 있다. The hydrogen supply pipe 140 supplies hydrogen into the storage container 110. To this end, the hydrogen supply pipe 140 is connected in fluid communication with the internal space of the storage container 110 may supply hydrogen, for example tritium, to the internal space of the storage container 110.
수소배출관(150)은 저장용기(110)의 내부공간으로부터 수소를 공급처로 배출한다. 이를 위해, 수소배출관(150)은 저장용기(110)의 내부공간과 유체 소통 가능하게 연결되어 저장용기(110)의 내부공간으로부터 수소를 공급처로 배출할 수 있다. 예를 들면, 수소배출관(150)은 저장용기(110)의 내부공간으로부터 핵융합 시설의 토카막으로 삼중수소를 공급할 수 있다.The hydrogen discharge pipe 150 discharges hydrogen from the internal space of the storage container 110 to the supply destination. To this end, the hydrogen discharge pipe 150 is connected in fluid communication with the internal space of the storage container 110 may discharge hydrogen from the internal space of the storage container 110 to the supply destination. For example, the hydrogen discharge pipe 150 may supply tritium from the inner space of the storage container 110 to the tokamak of the fusion facility.
열공급원(160)은 저장용기(110)의 내부공간에 열을 공급한다. 열공급원(160)은 저장용기(110)의 내부 또는 외부에 위치할 수 있다. 일 예로, 열공급원(160)은 카트리지 히터일 수 있다. 카트리지 히터는 다공성 수용부재(120)의 삽입구멍(121) 전체 중 일부에 일부분이 삽입되어 저장용기(110)의 내부공간에 열을 공급할 수 있다. 카트리지 히터는 저장용기(110) 외부의 전원과 직접 연결되거나 전선 피드쓰루(electrical feed-through)를 통해 연결되어 전원의 공급이 이루어질 수 있다.The heat supply source 160 supplies heat to the internal space of the storage container 110. The heat source 160 may be located inside or outside the storage container 110. As an example, the heat source 160 may be a cartridge heater. The cartridge heater may be partially inserted into a part of the entire insertion hole 121 of the porous receiving member 120 to supply heat to the internal space of the storage container 110. The cartridge heater may be directly connected to a power source outside the storage container 110 or connected through electric feed-through to supply power.
이러한 본 발명의 일 실시예에 따른 수소 저장 장치는 수소공급관(140)을 통해 저장용기(110)의 내부공간으로 수소(예를 들면, 삼중수소)가 공급되고, 저장용기(110)의 내부로 공급된 수소는 다공성 수용부재(120)의 삽입구멍(121) 내에 수용된 수소저장금속(130)과 흡장 반응하여 저장되고, 수소를 저장하고 있는 수소저장금속(130), 즉 금속수소화물로부터 수소를 방출하고자 하는 경우 열공급원(160)을 통해 저장용기(110)의 내부공간에 열을 공급하여 수소를 저장한 수소저장금속(130)을 가열함으로써 수소저장금속(130)의 흡장 반응의 역방향으로 반응하여 수소저장금속(130)에 저장된 수소를 탈장하여 방출시킬 수 있고, 방출되는 수소는 수소배출관(150)을 통해 공급처, 예를 들면 핵융합 시설의 토카막으로 공급될 수 있다.In the hydrogen storage device according to an embodiment of the present invention, hydrogen (eg, tritium) is supplied to the internal space of the storage container 110 through the hydrogen supply pipe 140, and then into the storage container 110. The supplied hydrogen is stored and stored in the hydrogen storage metal 130 accommodated in the insertion hole 121 of the porous accommodating member 120, and hydrogen is stored from the hydrogen storage metal 130, that is, the metal hydride. If it is to be discharged by supplying heat to the internal space of the storage container 110 through the heat supply source 160 to heat the hydrogen storage metal 130 storing hydrogen to react in the reverse direction of the occlusion reaction of the hydrogen storage metal 130 Thus, the hydrogen stored in the hydrogen storage metal 130 may be desorbed and released, and the released hydrogen may be supplied to a supply source, for example, a toka membrane of a fusion facility through the hydrogen discharge pipe 150.
이러한 수소의 저장 및 방출 과정이 반복되면 수소저장금속(130)은 일부가 기둥 형상으로부터 수소저장금속 입자로 분해되어 분산될 수 있고, 이때 수소저장금속 입자들은 메탈폼의 개방형 기공을 통해 메탈폼 내로 분산되며, 수소저장금속 입자들은 방사상으로 배치된 기둥 형상의 수소저장금속(130)의 주변으로 분포하게 되고, 이에 의해 저장용기(110)의 내부공간에 수소저장금속(130)이 균일하게 분포될 수 있고, 이는 금속수소화물이 균일하게 분포되도록 한다. 수소저장금속(130)이 균일하게 분포됨에 따라 수소의 저장 및 방출이 빠르게 이루어질 수 있다.When the storage and release process of hydrogen is repeated, the hydrogen storage metal 130 may be partially decomposed into hydrogen storage metal particles from a columnar shape and dispersed, and the hydrogen storage metal particles may be dispersed into the metal foam through open pores of the metal foam. The hydrogen storage metal particles are dispersed and distributed around the radially arranged columnar hydrogen storage metal 130, whereby the hydrogen storage metal 130 is uniformly distributed in the internal space of the storage container 110. This allows the metal hydride to be evenly distributed. As the hydrogen storage metal 130 is uniformly distributed, hydrogen may be quickly stored and released.
도 3은 본 발명의 다른 실시예에 따른 수소 저장 장치의 구성을 나타낸 단면도이고, 도 4는 도 3에 도시된 저장용기, 다공성 수용부재, 수소저장금속 및 열공급원을 나타낸 분리 사시도이다.3 is a cross-sectional view showing the configuration of a hydrogen storage device according to another embodiment of the present invention, Figure 4 is an exploded perspective view showing a storage container, a porous receiving member, a hydrogen storage metal and a heat supply source shown in FIG.
도 3 및 도 4를 참조하면, 본 발명의 다른 실시예에 따른 수소 저장 장치(200)는 저장용기(210), 다공성 수용부재(220), 수소저장금속(230), 수소공급관(240), 수소배출관(250), 열공급원(260), 차폐용기(270), 열차폐부재(280), 제1 유출방지필터(291) 및 제2 유출방지필터(292)를 포함한다.3 and 4, the hydrogen storage device 200 according to another embodiment of the present invention includes a storage container 210, a porous receiving member 220, a hydrogen storage metal 230, a hydrogen supply pipe 240, The hydrogen discharge pipe 250, the heat supply source 260, the shield container 270, the heat shield member 280, the first outflow prevention filter 291 and the second outflow prevention filter 292.
저장용기(210)는 다공성 수용부재(220)를 수용하며, 수용된 다공성 수용부재(220)를 외부로부터 보호한다. 저장용기(210)는 실린더 형태이다. 예를 들면, 내부공간을 갖는 속이 빈 원통 형상일 수 있다.The storage container 210 accommodates the porous receiving member 220 and protects the accommodated porous receiving member 220 from the outside. The storage container 210 is in the form of a cylinder. For example, it may be a hollow cylindrical shape having an inner space.
다공성 수용부재(220)는 다공성 소재로 이루어지고, 수소저장금속(230)을 수용하거나 감싸도록 구성될 수 있다. 다공성 수용부재(220)는 저장용기(210)의 축방향을 따라 나열되어 포개어진 둘 이상의 메탈폼으로 이루어질 수 있고, 각각의 다공성 수용부재(220)는 삽입구멍(221)을 포함하며 저장용기(210)의 내부공간에 수용되어 포개어질 수 있다. 또한 다공성 수용부재(220)는 원 형상에서 일부분이 절개된 절개부(223)가 형성될 수 있고, 상기 절개부(223)는 다공성 수용부재(220)가 저장용기(210) 내에 수용될 때 저장용기(210)의 내면과 이격되어 저장용기(210) 내에 관인입공간(210a)을 형성할 수 있다.The porous receiving member 220 is made of a porous material, and may be configured to accommodate or surround the hydrogen storage metal 230. The porous receiving member 220 may be formed of two or more metal foams stacked and arranged along the axial direction of the storage container 210, and each porous receiving member 220 may include an insertion hole 221. It may be accommodated and nested in the internal space of the 210. In addition, the porous accommodating member 220 may be formed with a cutout 223 in which a portion is cut in a circular shape, and the cutout 223 is stored when the porous accommodating member 220 is accommodated in the storage container 210. It may be spaced apart from the inner surface of the container 210 to form a pipe inlet space (210a) in the storage container (210).
다공성 수용부재(220)가 서로 포개어지는 둘 이상의 메탈폼으로 이루어지는 경우, 저장용기(210)는 저장용기의 내면에 일단부가 고정되어 길이방향이 상기 저장용기의 축방향과 평행하도록 배치된 격판(211)을 포함하며, 각각의 다공성 수용부재(220)는 상기 격판(211)과 결합하는 슬릿(222)을 포함할 수 있다.When the porous receiving member 220 is formed of two or more metal foams superimposed on each other, the storage container 210 has one end fixed to the inner surface of the storage container so that the longitudinal direction is parallel to the axial direction of the storage container 211. ), And each porous receiving member 220 may include a slit 222 coupled to the diaphragm 211.
격판(211)은 저장용기(210)의 단면의 원 형상에 수직하고 저장용기(210)의 길이방향에 평행하도록 저장용기(210)의 내부에 배치되고, 격판(211)의 장축방향은 저장용기(210)의 내부공간의 길이에 대응하는 길이일 수 있고 격판(211)의 단축방향은 저장용기(210)의 단면의 원 형상의 지름보다 작은 길이일 수 있다. 이러한 격판(211)은 저장용기(210)의 내부공간에 수용되는 둘 이상 포개어지는 다공성 수용부재(220)가 저장용기(210) 내에서 일방향으로 회전하여 각각의 다공성 수용부재(220)가 일방향으로 회전하는 것을 방지하기 위한 구성일 수 있다.The diaphragm 211 is disposed inside the storage vessel 210 so as to be perpendicular to the circular shape of the cross section of the storage vessel 210 and parallel to the longitudinal direction of the storage vessel 210, and the long axis direction of the diaphragm 211 is the storage vessel. It may be a length corresponding to the length of the inner space of the 210 and the short axis direction of the diaphragm 211 may be a length smaller than the diameter of the circular shape of the cross section of the storage container (210). The diaphragm 211 has two or more overlapping porous receiving members 220 accommodated in the inner space of the storage container 210 rotate in one direction in the storage container 210 so that each porous receiving member 220 is in one direction. It may be a configuration for preventing rotation.
슬릿(222)은 격판(211)과 평행하도록 각각의 다공성 수용부재(220)에 형성되며, 격판(211)이 삽입될 수 있는 깊이일 수 있다.The slit 222 is formed in each porous receiving member 220 to be parallel to the diaphragm 211, and may have a depth at which the diaphragm 211 may be inserted.
다공성 수용부재(220)의 다수의 삽입구멍(221)은 슬릿(222)의 주변에 배치될 수 있다. 이때, 다수의 삽입구멍(221)의 배열 형태에는 특별한 제한은 없으며, 예를 들면, 슬릿(222)의 양측에서 복수의 열로 배치될 수 있다.The plurality of insertion holes 221 of the porous receiving member 220 may be disposed around the slit 222. At this time, the arrangement of the plurality of insertion holes 221 is not particularly limited, for example, it may be arranged in a plurality of rows on both sides of the slit 222.
이러한 다공성 수용부재(220)는 둘 이상의 서로 포개어지는 메탈폼으로 구성되고 슬릿(222)을 포함하는 것을 제외하고는 본 발명의 일 실시예에 따른 수소 저장 장치의 다공성 수용부재(220)와 동일하므로 더 구체적인 설명은 생략하기로 한다.Since the porous receiving member 220 is the same as the porous receiving member 220 of the hydrogen storage device according to an embodiment of the present invention except that it consists of two or more overlapping metal foam and includes a slit 222 More detailed description will be omitted.
수소저장금속(230)은 본 발명의 일 실시예에 따른 수소저장금속(130)과 동일하므로 구체적인 설명은 생략하기로 한다.Since the hydrogen storage metal 230 is the same as the hydrogen storage metal 130 according to an embodiment of the present invention, a detailed description thereof will be omitted.
수소공급관(240)은 저장용기(210)의 내부로 수소를 공급한다. 이를 위해, 수소공급관(240)은 저장용기(210)의 내부공간과 유체 소통 가능하게 연결되어 저장용기(210)의 내부공간으로 수소, 예를 들면 삼중수소를 공급할 수 있다. 이때, 수소공급관(240)은 일부분이 저장용기(210) 내의 관인입공간(210a)에 삽입되어 저장용기(210) 내의 격판(211)의 일측에 위치할 수 있다.The hydrogen supply pipe 240 supplies hydrogen into the storage container 210. To this end, the hydrogen supply pipe 240 is connected in fluid communication with the internal space of the storage container 210 may supply hydrogen, for example tritium, to the internal space of the storage container 210. At this time, a portion of the hydrogen supply pipe 240 is inserted into the pipe inlet space 210a in the storage container 210 may be located on one side of the diaphragm 211 in the storage container 210.
수소배출관(250)은 저장용기(210)의 내부공간으로부터 수소를 공급처로 배출한다. 이를 위해, 수소배출관(250)은 저장용기(210)의 내부공간과 유체 소통 가능하게 연결된다. 이때, 수소배출관(250)은 일부분이 저장용기(210) 내의 관인입공간(210a)에 삽입되어 수소공급관(240)이 위치하지 않은 격판(211)의 다른 일측에 위치할 수 있다. 이러한 수소배출관(250)은 저장용기(210)의 내부공간으로부터 수소를 공급처로 배출할 수 있다. 예를 들면, 수소배출관(250)은 저장용기(210)의 내부공간으로부터 핵융합 시설의 토카막으로 삼중수소를 공급할 수 있다.The hydrogen discharge pipe 250 discharges hydrogen from the internal space of the storage container 210 to the supply destination. To this end, the hydrogen discharge pipe 250 is connected in fluid communication with the internal space of the storage container 210. At this time, a portion of the hydrogen discharge pipe 250 is inserted into the pipe inlet space 210a in the storage container 210 may be located on the other side of the diaphragm 211 in which the hydrogen supply pipe 240 is not located. The hydrogen discharge pipe 250 may discharge hydrogen from the internal space of the storage container 210 to the supply destination. For example, the hydrogen discharge pipe 250 may supply tritium from the inner space of the storage container 210 to the tokamak of the fusion facility.
열공급원(260)은 저장용기(210)의 내부공간에 열을 공급한다. 열공급원(260)은 저장용기(210)의 내부 및 외부에 위치할 수 있다. 일 예로, 열공급원(260)은 카트리지 히터(261) 및 외부히터(262)를 포함할 수 있다. The heat source 260 supplies heat to the inner space of the storage container 210. The heat source 260 may be located inside and outside the storage container 210. For example, the heat source 260 may include a cartridge heater 261 and an external heater 262.
카트리지 히터(261)는 다공성 수용부재(220)의 삽입구멍(221) 전체 중 일부에 일부분이 삽입되어 저장용기(210)의 내부공간에 열을 공급할 수 있다. 카트리지 히터(261)는 저장용기(110) 외부의 전원과 직접 연결되거나 전선 피드쓰루(electrical feed-through)를 통해 연결되어 전원의 공급이 이루어질 수 있다.The cartridge heater 261 may be partially inserted into a part of the entire insertion hole 221 of the porous receiving member 220 to supply heat to the internal space of the storage container 210. The cartridge heater 261 may be directly connected to a power source external to the storage container 110 or connected through electric feed-through to supply power.
외부히터(262)는 저장용기(210)의 외면을 감싸도록 저장용기(210)의 외면에 설치될 수 있다. 일 예로, 외부히터(262)는 코일타입히터일 수 있다. 이러한 경우, 코일타입의 외부히터(262)는 저장용기(210)의 외면에 나선형으로 감겨서 저장용기(210)를 감싸는 형태일 수 있다. 이러한 외부히터(262)는 저장용기(210) 및 차폐용기(270)에 대하여 피드쓰루로 처리되어 설치될 수 있다.The external heater 262 may be installed on the outer surface of the storage container 210 to surround the outer surface of the storage container 210. For example, the external heater 262 may be a coil type heater. In this case, the coil-type external heater 262 may be wound around the outer surface of the storage container 210 in a spiral shape to surround the storage container 210. The external heater 262 may be installed by being treated with a feedthrough with respect to the storage container 210 and the shielding container 270.
차폐용기(270)는 저장용기(210)를 수용한다. 이를 위해, 차폐용기(270)는 저장용기(210)의 외경보다 큰 내경을 갖는 관 형태일 수 있다. 예를 들면, 원통형 관 형상일 수 있다. 차폐용기(270)는 저장용기(210)를 수용하여 밀폐되며, 이에 의해 저장용기(210)에 가해진 열의 손실을 차단하고, 저장용기(210)로부터의 수소의 누설을 방지하고, 수소저장금속(230) 및 저장용기(210)를 외부로부터 보호하여 산화를 방지할 수 있다.The shielding container 270 accommodates the storage container 210. To this end, the shielding container 270 may be in the form of a tube having an inner diameter larger than the outer diameter of the storage container 210. For example, it may be cylindrical tubular. The shielding container 270 is sealed by receiving the storage container 210, thereby blocking the loss of heat applied to the storage container 210, preventing the leakage of hydrogen from the storage container 210, and storing the hydrogen storage metal ( 230 and the storage container 210 can be protected from the outside to prevent oxidation.
열차폐부재(280)는 저장용기(210)에서 외부로의 열전달을 차단한다. 이를 위해, 열차폐부재(280)는 저장용기(210) 및 차폐용기(270) 사이에 설치된다. 일 예로, 열차폐부재(280)는 원통형 관 형상의 금속 또는 금속 포일 형태일 수 있다. 이러한 열차폐부재(280)는 하나 이상의 층으로 저장용기(210) 및 차폐용기(270) 사이에 설치될 수 있다.The heat shield member 280 blocks heat transfer from the storage container 210 to the outside. To this end, the heat shield member 280 is installed between the storage container 210 and the shielding container 270. For example, the heat shield 280 may be in the form of a cylindrical tubular metal or metal foil. The heat shield member 280 may be installed between the storage container 210 and the shielding container 270 in one or more layers.
제1 유출방지필터(291)는 수소공급관(240) 상에 설치되어 수소저장금속의 기둥 형상으로부터 입자 형태로 분해된 수소저장금속 입자가 저장용기(210)의 내부로부터 유출되는 것을 방지한다. 즉, 제1 유출방지필터(291)는 수소공급관(240)을 통해 상기 수소저장금속 입자가 유출되는 것을 방지한다. The first outflow prevention filter 291 is installed on the hydrogen supply pipe 240 to prevent the hydrogen storage metal particles decomposed in the form of particles from the pillar shape of the hydrogen storage metal to flow out from the inside of the storage container 210. That is, the first outflow prevention filter 291 prevents the hydrogen storage metal particles from flowing out through the hydrogen supply pipe 240.
일 예로, 제1 유출방지필터(291)는 관형상의 소결 금속필터 또는 판형상의 소결 금속필터일 수 있다. 관 형상의 경우 제1 유출방지필터(291)는 수소공급관(240)의 저장용기(210) 내로 삽입된 부분의 끝의 개구를 감싸도록 설치될 수 있고, 이때 저장용기(210) 내의 관인입공간(210a) 내에 위치할 수 있다. 판형상인 경우 제1 유출방지필터(291)는 수소공급관(240)의 내부의 통로상에 배치되도록 설치될 수 있다. 이때, 제1 유출방지필터(291)는 저장용기(210) 내의 관인입공간(210a) 또는 저장용기(210)의 외측에 위치할 수 있다.For example, the first outflow prevention filter 291 may be a tubular sintered metal filter or a plate-shaped sintered metal filter. In the case of the tubular shape, the first outflow prevention filter 291 may be installed to surround the opening of the end of the portion inserted into the storage container 210 of the hydrogen supply pipe 240, and at this time, the pipe inlet space in the storage container 210. May be located within 210a. In the case of a plate shape, the first outflow prevention filter 291 may be installed to be disposed on a passage inside the hydrogen supply pipe 240. In this case, the first outflow prevention filter 291 may be located outside the pipe inlet space 210a or the storage container 210 in the storage container 210.
제2 유출방지필터(292)는 수소배출관(250) 상에 설치되어 상기 수소저장금속 입자가 저장용기(210)의 내부로부터 유출되는 것을 방지한다. 제2 유출방지필터(292)가 수소배출관(250) 상에 설치되는 구조는 제1 유출방지필터(291)와 유사하므로 제1 유출방지필터(291)의 설명으로 대신하도록 하고 더 구체적인 설명은 생략하기로 한다.The second outflow prevention filter 292 is installed on the hydrogen discharge pipe 250 to prevent the hydrogen storage metal particles from flowing out of the interior of the storage vessel 210. Since the structure of the second outflow prevention filter 292 is installed on the hydrogen discharge pipe 250 is similar to the first outflow prevention filter 291, the second outflow prevention filter 291 is replaced with the description of the first outflow prevention filter 291, and a detailed description thereof is omitted. Let's do it.
이러한 본 발명의 다른 실시예에 따른 수소 저장 장치에서 수소저장금속(230)이 수소, 예를 들면, 삼중수소를 저장 및 방출하는 과정은 본 발명의 일 실시예에 따른 수소 저장 장치와 동일하므로 구체적인 설명은 생략하기로 한다.In the hydrogen storage device according to another embodiment of the present invention, the process of storing and releasing hydrogen, for example, tritium, by the hydrogen storage metal 230 is the same as the hydrogen storage device according to the embodiment of the present invention. The description will be omitted.
이러한 본 발명의 다른 실시예에 따른 수소 저장 장치는 다공성 수용부재(220)가 서로 포개어지는 둘 이상의 메탈폼으로 이루어지므로 반복적인 수소저장금속(230)의 삼중수소의 저장 및 방출과정으로 인해 수소저장금속(230)의 기둥 형상으로부터 분해되어 분산되는 수소저장금속 입자를 수용하는 영역을 복수로 분획하여 제공할 수 있고, 이에 따라 수소저장금속 입자가 다공성 수용부재(220)의 전체 길이 중 일부분으로 집중되어 수용되는 것이 방지될 수 있다.Since the hydrogen storage device according to another embodiment of the present invention is made of two or more metal foams in which the porous receiving member 220 is overlapped with each other, hydrogen storage is performed due to the process of repeatedly storing and releasing tritium of the hydrogen storage metal 230. A plurality of regions containing hydrogen storage metal particles decomposed and dispersed from the columnar shape of the metal 230 may be provided in a plurality, so that the hydrogen storage metal particles are concentrated to a part of the entire length of the porous accommodation member 220. Can be prevented.
또한, 수소를 저장 및 방출하는 과정에서 수소저장금속(230)의 가열이 저장용기(210) 내에 위치하는 카트리지 히터(261) 및 저장용기(210)를 감싸는 코일타입의 외부히터(262)에 의해 이루어지므로 더욱 용이하게 수소저장금속(230)을 가열할 수 있고, 이에 의해 수소저장금속(230) 및 수소의 반응이 빠르게 이루어질 수 있다.In addition, in the process of storing and releasing hydrogen, the heating of the hydrogen storage metal 230 is performed by the cartridge heater 261 located in the storage container 210 and the coil type external heater 262 surrounding the storage container 210. Since the hydrogen storage metal 230 can be heated more easily, whereby the reaction between the hydrogen storage metal 230 and hydrogen can be made faster.
또한, 반복적인 수소의 저장 및 방출 과정에 의해 수소저장금속(230)의 기둥 형상으로부터 분해되어 메탈폼 내로 분산된 수소저장금속 입자가 수소공급관(240) 및 수소배출관(250) 상에 설치된 제1 유출방지필터(291) 및 제2 유출방지필터(292)에 의해 저장용기(210) 및 차폐용기(270)의 외부로 유출되는 것이 방지되며, 이에 의해 수소공급관(240) 및 수소배출관(250)의 내부를 오염시키거나 수소 저장량이 감소하는 것이 방지될 수 있다.In addition, hydrogen storage metal particles decomposed from the pillar shape of the hydrogen storage metal 230 and dispersed into the metal foam by repeated storage and release processes of hydrogen are installed on the hydrogen supply pipe 240 and the hydrogen discharge pipe 250. The outflow prevention filter 291 and the second outflow prevention filter 292 is prevented from leaking to the outside of the storage container 210 and the shielding container 270, whereby the hydrogen supply pipe 240 and the hydrogen discharge pipe 250 Contamination of the inside of the container or reduction of the hydrogen storage amount can be prevented.
또한, 차폐용기(270) 내에 저장용기(210)가 수용되어 밀폐되고, 저장용기(210) 및 차폐용기(270) 사이에 열차폐부재(280)가 설치되므로 저장용기(210)로부터의 수소의 누설을 방지하고, 수소저장금속(230) 및 저장용기(210)를 외부로부터 보호하여 산화를 방지할 수 있고, 저장용기(210)에 가해진 열의 손실을 방지할 수 있다.In addition, since the storage container 210 is accommodated and sealed in the shielding container 270, and a heat shielding member 280 is installed between the storage container 210 and the shielding container 270, the hydrogen from the storage container 210 is stored. The leakage may be prevented, and the hydrogen storage metal 230 and the storage container 210 may be protected from the outside to prevent oxidation, and the loss of heat applied to the storage container 210 may be prevented.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention should not be limited to the embodiments set forth herein but should be construed in the broadest scope consistent with the principles and novel features set forth herein.

Claims (12)

  1. 실린더 형태의 저장용기;Cylinder-type storage containers;
    상기 저장용기의 내부공간에 수용된 다공성 수용부재;A porous receiving member accommodated in an inner space of the storage container;
    기둥 형상이고, 상기 기둥 형상의 축방향이 상기 저장용기의 축방향에 평행하게 배치되어 상기 다공성 수용부재로 둘러싸인 채로 상기 저장용기 내부에 수용된 수소저장금속;A hydrogen storage metal having a columnar shape, the axial direction of the columnar shape being disposed parallel to the axial direction of the storage container, and accommodated inside the storage container while being surrounded by the porous receiving member;
    상기 저장용기와 유체 소통 가능하게 연결되어 상기 저장용기의 내부공간으로 수소를 공급하는 수소공급관;A hydrogen supply pipe connected in fluid communication with the storage container to supply hydrogen to the internal space of the storage container;
    상기 저장용기와 유체 소통 가능하게 연결되어 상기 저장용기의 내의 수소를 공급처로 배출하는 수소배출관; 및A hydrogen discharge pipe connected in fluid communication with the storage container to discharge hydrogen in the storage container to a supply destination; And
    상기 저장용기의 내부 또는 외부에 위치하여 상기 저장용기의 내부공간에 열을 공급하는 열공급원을 포함하는 것을 특징으로 하는,Located inside or outside the storage container, characterized in that it comprises a heat supply source for supplying heat to the internal space of the storage container,
    수소 저장 장치.Hydrogen storage device.
  2. 제1항에 있어서,The method of claim 1,
    상기 다공성 수용부재는 상기 저장용기의 축방향에 평행하도록 상기 다공성 수용부재에 관통된 다수의 삽입구멍을 포함하고,The porous receiving member includes a plurality of insertion holes penetrated through the porous receiving member to be parallel to the axial direction of the storage container,
    상기 기둥 형상의 수소저장금속은 상기 다수의 삽입구멍 전부 또는 일부에 삽입되어 있는 것을 특징으로 하는,The pillar-shaped hydrogen storage metal is characterized in that inserted into all or part of the plurality of insertion holes,
    수소 저장 장치.Hydrogen storage device.
  3. 제2항에 있어서,The method of claim 2,
    상기 다공성 수용부재는 메탈폼(Metal form)인 것을 특징으로 하는,The porous receiving member is characterized in that the metal form (Metal form),
    수소 저장 장치.Hydrogen storage device.
  4. 제3항에 있어서,The method of claim 3,
    상기 다공성 수용부재는 상기 저장용기의 축방향을 따라 나열되어 포개어진 둘 이상의 메탈폼으로 이루어지는 것을 특징으로 하는,The porous receiving member is characterized in that consisting of two or more metal foams stacked arranged along the axial direction of the storage container,
    수소 저장 장치.Hydrogen storage device.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 저장용기는 상기 저장용기의 내면에 일단부가 고정되어 길이방향이 상기 저장용기의 축방향과 평행하도록 배치된 격판을 포함하고,The storage container includes a diaphragm having one end fixed to an inner surface of the storage container and having a longitudinal direction parallel to an axial direction of the storage container,
    상기 둘 이상의 메탈폼은 상기 격판과 결합하는 슬릿을 포함하는 것을 특징으로 하는,The at least two metal foam is characterized in that it comprises a slit to engage with the diaphragm,
    수소 저장 장치.Hydrogen storage device.
  6. 제2항에 있어서,The method of claim 2,
    상기 열공급원은 소정의 길이를 갖는 카트리지 히터를 포함하고,The heat supply source comprises a cartridge heater having a predetermined length,
    상기 카트리지 히터의 길이의 일부 또는 전부는 상기 다수의 삽입구멍 중 하나 이상의 삽입구멍에 삽입되는 것을 특징으로 하는,Part or all of the length of the cartridge heater is inserted into at least one of the insertion holes of the plurality of insertion holes,
    수소 저장 장치.Hydrogen storage device.
  7. 제2항에 있어서,The method of claim 2,
    상기 열공급원은 상기 저장용기의 외면을 감싸도록 상기 저장용기의 외면에 설치된 외부히터를 더 포함하는 것을 특징으로 하는,The heat supply source further comprises an external heater installed on the outer surface of the storage container to surround the outer surface of the storage container,
    수소 저장 장치.Hydrogen storage device.
  8. 제1항에 있어서,The method of claim 1,
    상기 기둥 형상의 수소저장금속은 LaNi계 금속, LaNiAl계 금속, ZrCo, 감손우라늄, 우라늄, 티타늄, 팔라듐, ZrNi, ZiNixCoy(x=0.01~0.99,y=1-x), ZrNixCoyFez(x=0.01~0.99, y=0.01~0.99, z=0.01~0.99, x+y+z=1) 및 ZixHfyCo(x=0.01~0.99, y=1-x)로 구성되는 군으로부터 선택된 하나 어느 하나인 것을 특징으로 하는,The columnar hydrogen storage metal is LaNi-based metal, LaNiAl-based metal, ZrCo, depleted uranium, uranium, titanium, palladium, ZrNi, ZiNi x Co y (x = 0.01 ~ 0.99, y = 1-x), ZrNi x Co with y Fe z (x = 0.01-0.99, y = 0.01-0.99, z = 0.01-0.99, x + y + z = 1) and Zi x Hf y Co (x = 0.01-0.99, y = 1-x) Characterized in that any one selected from the group consisting of,
    수소 저장 장치.Hydrogen storage device.
  9. 제1항에 있어서,The method of claim 1,
    상기 수소 저장 장치는 상기 저장용기를 수용하여 밀폐된 차폐용기를 더 포함하는 것을 특징으로 하는,The hydrogen storage device further comprises a shielded container for receiving the storage container,
    수소 저장 장치.Hydrogen storage device.
  10. 제9항에 있어서,The method of claim 9,
    상기 수소 저장 장치는 상기 저장용기 및 차폐용기 사이에 설치된 하나 이상의 열차폐부재를 더 포함하는 것을 특징으로 하는,The hydrogen storage device further comprises at least one heat shield member installed between the storage vessel and the shield vessel,
    수소 저장 장치.Hydrogen storage device.
  11. 제1항에 있어서,The method of claim 1,
    상기 수소 저장 장치는,The hydrogen storage device,
    상기 수소공급관 상에 설치되어 상기 수소저장금속의 기둥 형상으로부터 입자 형태로 분해된 수소저장금속 입자가 상기 저장용기의 내부로부터 유출되는 것을 방지하는 제1 유출방지필터; 및A first outflow prevention filter installed on the hydrogen supply pipe to prevent the hydrogen storage metal particles decomposed in the form of particles from the pillar shape of the hydrogen storage metal from flowing out of the inside of the storage container; And
    상기 수소배출관 상에 설치되어 상기 수소저장금속 입자가 상기 저장용기의 내부로부터 유출되는 것을 방지하는 제2 유출방지필터를 더 포함하는 것을 특징으로 하는,And a second outflow prevention filter installed on the hydrogen discharge pipe to prevent the hydrogen storage metal particles from flowing out from the inside of the storage container.
    수소 저장 장치.Hydrogen storage device.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1 유출방지필터 및 제2 유출방지필터는 관형상의 소결 금속필터 또는 판형상의 소결 금속필터로 이루어지는 것을 특징으로 하는,The first outflow prevention filter and the second outflow prevention filter, characterized in that consisting of a tubular sintered metal filter or a plate-shaped sintered metal filter,
    수소 저장 장치.Hydrogen storage device.
PCT/KR2016/014498 2015-12-11 2016-12-12 Hydrogen storage device using column-shaped hydrogen storage metal WO2017099543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0177061 2015-12-11
KR1020150177061A KR101867137B1 (en) 2015-12-11 2015-12-11 Hydrogen storage apparatus using a metal hydride of pillar

Publications (1)

Publication Number Publication Date
WO2017099543A1 true WO2017099543A1 (en) 2017-06-15

Family

ID=59013803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014498 WO2017099543A1 (en) 2015-12-11 2016-12-12 Hydrogen storage device using column-shaped hydrogen storage metal

Country Status (2)

Country Link
KR (1) KR101867137B1 (en)
WO (1) WO2017099543A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999996A (en) * 2021-02-19 2021-06-22 长春大学 Hydrogen-storing and heat-producing equipment
DE102020124078A1 (en) 2020-09-16 2022-03-17 Audi Aktiengesellschaft Tank container, fuel cell device with a tank container and method for manufacturing a tank container
DE102020124074A1 (en) 2020-09-16 2022-03-17 Audi Aktiengesellschaft Tank container, fuel cell device with a tank container, and fuel cell vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015041A (en) * 1996-04-01 2000-01-18 Westinghouse Savannah River Company Apparatus and methods for storing and releasing hydrogen
JP2003020898A (en) * 2001-07-10 2003-01-24 Ohbayashi Corp Equipment for mending tunnel lining concrete
JP2005262065A (en) * 2004-03-18 2005-09-29 Shin Etsu Chem Co Ltd Hydrogen storage body
KR100955654B1 (en) * 2008-01-03 2010-05-06 한국생산기술연구원 A hydrogen storage device using hydrogen storage alloy
KR20140122316A (en) * 2013-04-09 2014-10-20 한국기초과학지원연구원 Hydrogen storage containers for rapid cooling composite cooling devices and cooling methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003606A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 reactor for hydrogen storage alloys
JP2006029396A (en) * 2004-07-13 2006-02-02 Taiheiyo Cement Corp Hydrogen storage vessel and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015041A (en) * 1996-04-01 2000-01-18 Westinghouse Savannah River Company Apparatus and methods for storing and releasing hydrogen
JP2003020898A (en) * 2001-07-10 2003-01-24 Ohbayashi Corp Equipment for mending tunnel lining concrete
JP2005262065A (en) * 2004-03-18 2005-09-29 Shin Etsu Chem Co Ltd Hydrogen storage body
KR100955654B1 (en) * 2008-01-03 2010-05-06 한국생산기술연구원 A hydrogen storage device using hydrogen storage alloy
KR20140122316A (en) * 2013-04-09 2014-10-20 한국기초과학지원연구원 Hydrogen storage containers for rapid cooling composite cooling devices and cooling methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124078A1 (en) 2020-09-16 2022-03-17 Audi Aktiengesellschaft Tank container, fuel cell device with a tank container and method for manufacturing a tank container
DE102020124074A1 (en) 2020-09-16 2022-03-17 Audi Aktiengesellschaft Tank container, fuel cell device with a tank container, and fuel cell vehicle
CN112999996A (en) * 2021-02-19 2021-06-22 长春大学 Hydrogen-storing and heat-producing equipment

Also Published As

Publication number Publication date
KR20170069618A (en) 2017-06-21
KR101867137B1 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2017099543A1 (en) Hydrogen storage device using column-shaped hydrogen storage metal
US7771519B2 (en) Liners for ion transport membrane systems
WO2014199459A1 (en) Tubular body and method for manufacturing tubular body
KR101941673B1 (en) Multi-layered nuclear fuel cladding and method for manufacturing therof
JP2017181445A (en) Portable type nuclear reactor and reactor core thereof
EP2105934A2 (en) Fuel rod and assembly containing an internal hydrogen/tritium getter structure
JP3124140B2 (en) In-core equipment for fusion reactors
CN111316372A (en) Annular metal nuclear fuel and manufacturing method thereof
JP6037749B2 (en) Fuel cell module
KR101907344B1 (en) Hydrogen storage apparatus using a metal hydride of pillar
KR20230116858A (en) Fuel pellets/compacts surrounded by a beryllium-based (BE or BEO or BE2C) sleeve for use in micro-reactors
JP2014110174A (en) Fuel cell module
EP2951836B1 (en) Method and practical device composition for purification of air from gaseous tritium and concentration of tritium in a constant volume of water
US9202601B2 (en) Methods and apparatus for suppressing tritium permeation during tritium production
US7896952B2 (en) Cartridge adsorber system for removing hydrogen sulfide from reformate
CN106575777B (en) Fuel cell system reaction gas container for space optimized use
CA1047175A (en) Storage and shipping container for gas filled pellets
RU90609U1 (en) REACTOR INSTALLATION
EP4006919A1 (en) Encapsulated pebble fuel
KR101624727B1 (en) Non-maintenance type tritium storage vessel for nuclear fusion facility
JP6016520B2 (en) Fuel cell module
RU24590U1 (en) CONTAINER FOR HYDROGEN AND ITS ISOTOPES
CN216212375U (en) Irradiation device and reactor
Irianto et al. Performance Analysis of the Helium Purification System in the Indonesia Experimental Power Reactor
RU2195717C1 (en) Energy generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873408

Country of ref document: EP

Kind code of ref document: A1