WO2017097067A1 - 一种数据传输保护方法及其装置 - Google Patents

一种数据传输保护方法及其装置 Download PDF

Info

Publication number
WO2017097067A1
WO2017097067A1 PCT/CN2016/104361 CN2016104361W WO2017097067A1 WO 2017097067 A1 WO2017097067 A1 WO 2017097067A1 CN 2016104361 W CN2016104361 W CN 2016104361W WO 2017097067 A1 WO2017097067 A1 WO 2017097067A1
Authority
WO
WIPO (PCT)
Prior art keywords
nav
subchannel
inter
ppdu
current value
Prior art date
Application number
PCT/CN2016/104361
Other languages
English (en)
French (fr)
Inventor
刘应状
范巍巍
李云波
罗俊
林英沛
禄彼得
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610454706.4A external-priority patent/CN106856629B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16872259.3A priority Critical patent/EP3373682B1/en
Priority to ES16872259T priority patent/ES2899354T3/es
Publication of WO2017097067A1 publication Critical patent/WO2017097067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission protection method and apparatus therefor.
  • the channel access mechanism used by the IEEE 802.11 MAC in the existing wireless local area network (WLAN) system is the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism.
  • the mechanism can be used to detect and avoid collisions on the network when two or more network devices need to transmit data.
  • the virtual carrier sensing mechanism in the CSMA/CA mechanism can be maintained by each site for recording.
  • the Network Allocation Vector (NAV) of the station's channel occupancy time controls the data transmission.
  • NAV Network Allocation Vector
  • the 5 GHz transmission bandwidth provided has a more abundant channel transmission bandwidth resource than 2.4 GHz, and the channel transmission bandwidth resource can be divided into multiple subchannel transmission bandwidths, and can be divided by the access point.
  • Each subchannel transmission bandwidth is allocated to different stations, and the trigger frame is used to schedule multiple stations to simultaneously transmit data on different subchannel transmission bandwidths.
  • the station ignores the received physical layer convergence procedure (physical layer convergence procedure (PLCP) of the physical layer convergence procedure (PLCP).
  • PLCP physical layer convergence procedure
  • PLCP physical layer convergence procedure
  • the prior art generally uses a single NAV to control data transmission on all channel subbands of the entire channel transmission bandwidth.
  • the target station receives a scheduling frame on a certain frequency band, the NAV will be larger according to the relative current value.
  • the duration of the NAV is updated, and there may be a situation where the target station still cannot meet the preset threshold because the current value of the NAV does not meet the preset threshold even if the neighboring station or the access point does not occupy the current frequency band.
  • Data transmission greatly reduces the utilization of the frequency band.
  • Embodiments of the present invention provide a data transmission protection method and device thereof, which use multiple NAVs to control data transmission, in order to reduce data transmission interference and improve frequency band utilization.
  • a first aspect of the embodiments of the present invention discloses a data transmission protection method, including:
  • the station receives a trigger frame sent by an access point of its associated basic service set BSS;
  • the method when receiving a trigger frame sent by an access point of a basic service set BSS associated with a site, The current value of the at least two network allocation vectors NAV set on the subchannel frequency band of the channel transmission bandwidth of the BSS, before the available subchannel frequency band is selected from the channel transmission bandwidth of the BSS in response to the trigger frame, the method further includes:
  • Two network allocation vectors NAV including one intra-NAV and one inter-NAV, are set on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the station;
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on all subchannel bands of the channel transmission bandwidth.
  • a total of one intra-NAV is set on all subchannel bands of the channel transmission bandwidth, and at least one and each overlapping basic service set OBSS are respectively set on each subchannel band of the channel transmission bandwidth.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • Two network allocation vectors NAV including one intra-NAV and one inter-NAV, are respectively disposed on each subchannel frequency band of the channel transmission bandwidth;
  • the intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, where the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • a fourth possible implementation manner of the first aspect of the embodiments of the present disclosure when receiving the trigger frame sent by the access point of the basic service set BSS associated with the site, Determining an available subchannel frequency band from the channel transmission bandwidth of the BSS in response to the trigger frame according to a current value of at least two network allocation vectors NAV set on a subchannel frequency band of a channel transmission bandwidth of the BSS, further including :
  • the NAV is used to record a length of time during which the station is prohibited from performing data transmission on a subchannel band in which the NAV is set by a station other than the station or an access point.
  • the sub-channel frequency band according to a channel transmission bandwidth of the BSS Setting a current value of at least two network allocation vectors NAV, selecting an available subchannel frequency band for data transmission from the channel transmission bandwidth of the BSS to respond to the trigger frame, including:
  • the a current value of at least two network allocation vectors NAV set on a subchannel band of the channel transmission bandwidth, and an available subchannel band for data transmission is selected from the channel transmission bandwidth of the BSS
  • the trigger frame should be:
  • At least one subchannel band whose current value of the inter-NAV is equal to a preset value is selected as an available subchannel for data transmission.
  • the at least one inter-NAV corresponding to each of the monitored overlapping basic service sets OBSS is respectively set on each subchannel band of the channel transmission bandwidth, if at least one subchannel band exists, all of the settings are
  • the current value of the inter-NAV is equal to a preset value, and the at least one subchannel frequency band is selected as an available subchannel frequency band for data transmission in response to the trigger frame.
  • the subchannel frequency band according to a channel transmission bandwidth of the BSS Setting a current value of at least two network allocation vectors NAV, selecting an available subchannel frequency band for data transmission from the channel transmission bandwidth of the BSS to respond to the trigger frame, including:
  • the current value of the NAV is derived from at least one subchannel band of the BSS selected as an available subchannel band for data transmission in response to the trigger frame.
  • the method further includes: After selecting the available subchannel frequency band, the frequency domain resource of the station is confirmed from the available subchannel frequency band according to the frequency domain resource scheduling information of the trigger frame, to perform data frame transmission on the confirmed frequency domain resource.
  • the receiving the site When the trigger frame sent by the access point of the associated basic service set BSS is transmitted from the channel of the BSS according to the current value of at least two network allocation vectors NAV set on the subchannel band of the channel transmission bandwidth of the BSS Before selecting the available subchannel frequency band for data transmission in response to the trigger frame, the method further includes:
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determining whether the scheduling target of the trigger frame includes the site;
  • the scheduling target of the trigger frame includes the station, performing a current value of at least two network allocation vectors NAV set according to a subchannel frequency band of a channel transmission bandwidth of the BSS, and selecting a channel transmission bandwidth of the BSS An available subchannel frequency band for data transmission in response to the step of triggering the frame.
  • the determining, after determining the source of the PPDU further includes:
  • the PPDU is originated from a basic service set BSS associated with the site and the site is not the destination of the PPDU, the PPDU is obtained to obtain a duration value duration;
  • the determining, after determining the source of the PPDU further includes:
  • the PPDU is derived from the OBSS, obtain a duration value in the PPDU;
  • the current value of the inter-NAV set on all subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the inter-NAV is updated. Duration;
  • the inter-NAV corresponding to the OBSS with the same PPDU source of the duration is updated to the duration;
  • the current value of the inter-NAV corresponding to the OBSS is smaller than the duration, and the current value of the inter-NAV that is smaller than the duration and corresponding to the OBSS of the PPDU source is set to be updated on the target designated subchannel frequency band. For the duration.
  • the method further includes:
  • the method when the PPDU is received, determining the source of the PPDU And after determining the type of the PPDU, the method further includes:
  • the received contention-free period end CF-END frame originates from the BSS, update the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS to a preset value; or
  • the received contention-free period end CF-END frame originates from the BSS, acquires a specified subchannel frequency band in the CF-END frame, and sets the current intra-NAV of the station on the designated subchannel frequency band The value is updated to the default value.
  • the fourteenth possible implementation manner of the first aspect of the embodiments of the present invention further includes:
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, the current value of the inter-NAV set by the station on the all subchannel bands is updated to a preset value;
  • the station sets, on the all subchannel frequency bands, a current value of the inter-NAV corresponding to the OBSS that is the same as the source of the CF-END frame, to a preset value; or
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, the specified sub-channel frequency band in the CF-END frame is obtained, and the current value of the inter-NAV set on the specified sub-channel frequency band is obtained. Update to a preset value; or
  • the designated sub-channel frequency band in the CF-END frame is obtained, and the designated OBSS corresponding to the CF-END frame source is used.
  • the current value of the inter-NAV set on the channel band is updated to a preset value; or
  • the designated sub-channel frequency band in the CF-END frame is obtained, and the CF-END is set on each of the designated sub-channel bands respectively.
  • the current values of all inter-NAVs corresponding to the OBSSs of the same END frame are updated to preset values.
  • the received PPDU is a contention-free end CF-END frame
  • obtain a specified subchannel frequency band in the CF-END frame if the source of the current value of the NAV set on the specified subchannel frequency band and the CF- The source of the END frame is consistent, and the current value of the NAV is updated to a preset value.
  • a second aspect of the embodiments of the present invention discloses a data transmission protection device, which has a function of realizing the actual site behavior of the foregoing method, and the function may be implemented by hardware or by executing corresponding software on hardware. achieve.
  • the hardware or software may include one or more modules corresponding to the functions described above.
  • the apparatus is in another possible design, comprising a processor and a wireless communication module, the processor being configured to support the function of the station to perform the method, the wireless communication module for supporting a station and access Communication between points or other stations, to the access point or other station to send and receive PPDUs designed in the above method.
  • the apparatus includes a memory for coupling with a processor to store program instructions and data necessary for the station.
  • the touch sent by the access point of the BSS associated with the station may be received.
  • the trigger frame reduces data transmission interference, and can respectively set NAV for different channel transmission bandwidths to avoid waste of frequency resources and improve frequency band utilization.
  • FIG. 1 is a schematic structural diagram of a WLAN according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of channel access competition disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a data transmission protection method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another data transmission protection method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart diagram of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of still another data transmission protection method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a modularity of a data transmission protection device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a data transmission protection apparatus according to an embodiment of the present invention.
  • the channel transmission bandwidth may include 20 MHz, 40 MHz, 80 MHz, or 160 MHz, etc., and 20 MHz as the minimum unit channel transmission frequency band may divide the entire channel transmission bandwidth into multiple subchannel frequency bands, and may set corresponding according to the subchannel frequency band.
  • the source of the current value of the NAV, intra-NAV or inter-NAV in this embodiment refers to which BSS or OBSS the PPDU of the current NAV, intra-NAV or inter-NAV is set to.
  • the preset value may be 0, or may be set according to requirements; the scheduling target may pass the signaling B part of the data frame or the resource indication information of the trigger frame.
  • the scheduling identifier in the determination is performed; the sending destination may be determined by using a receiving address in the PPDU.
  • FIG. 1 is a schematic diagram of a WLAN structure according to an embodiment of the present invention.
  • the basic component of a WLAN based on the IEEE 802.11 technology is a BSS, and the BSS is an Access Point (AP) and multiple stations (Station).
  • AP Access Point
  • STA multiple stations
  • the access point AP may be a base station, a router, a switch, etc., and may be used to schedule STAs in a BSS range
  • the station STA may be a wireless connection such as a notebook computer, a wireless speaker, a smart phone, or the like.
  • the incoming device can be used to respond to the scheduling of the access point AP of the BSS.
  • two adjacent BSSs of BSS1 and BSS2 are OBSSs of each other, sharing different channel frequency bands of the channel transmission bandwidth.
  • STA1 ⁇ 3 are the sites of BSS1
  • AP1 is the access point of BSS1
  • STA4 is the site of BSS2
  • AP2 is the access point of BSS2
  • STA2 is in the overlapping area of BSS1 and BSS2
  • the IEEE 802.11 working group has established the High Efficiency WLAN Study Group (HEW SG) and the 802.11ax working group to upgrade the transmission bandwidth from 2.4 GHz to 5 GHz.
  • the AP can divide the entire channel transmission bandwidth into different ones.
  • the subchannel frequency band is allocated to different STAs, and a plurality of STAs are scheduled by using a trigger frame sent by the access point of the BSS to simultaneously perform data transmission on multiple different frequency bands.
  • the STA can maintain its own timer NAV by ignoring the smaller duration included in the OBSS trigger frame.
  • the STA responds to the currently received scheduling frame of the BSS, it may cause interference to the data transmission of the OBSS. As shown in FIG.
  • the duration1 of the frame sets the NAV. If the data frame of the STA4 is received and the duration2 carried by the frame is less than the duration1, the NAV maintains the current duration1. If the duration1 is less than the duration2, the STA2 receives the scheduling of the AP1 transmission again. If the target is the trigger frame of STA2, STA2 will respond to the trigger frame sent by AP1. At this time, the data frame sent by STA2 to AP1 may be received by STA4 that is transmitting data, which causes interference to OBSS data transmission.
  • a single timer NAV of the existing 802.11 standard is used to manage scheduling on multiple subchannel frequency bands, which may cause resource waste.
  • 2 is a schematic diagram of channel access competition. As shown in FIG. 2, if the channel band bandwidth is divided into subchannel bands 1 to 4, AP2 on the OBSS schedules STA2 in subchannel band 4, and AP3 is scheduled in band 1. STA3, STA1 sets the NAV according to the maximum duratinon in the response data frame of STA2 or STA3.
  • FIG. 3 is a schematic flowchart of a data transmission protection method according to an embodiment of the present invention, where the method may include steps S101 to S102.
  • the station receives a trigger frame sent by an access point of the associated basic service set BSS.
  • the station receives a trigger frame sent by an access point of its associated basic service set BSS.
  • the station may determine whether the PPDU is a trigger frame, and if yes, receive the trigger frame.
  • S102 Select a available subchannel frequency band for data transmission from a channel transmission bandwidth of the BSS according to a current value of at least two network allocation vectors NAV set on a subchannel frequency band of a channel transmission bandwidth of the BSS.
  • the trigger frame
  • the station selects available for data transmission from a channel transmission bandwidth of the BSS according to a current value of at least two network allocation vectors NAV set on a subchannel band of a channel transmission bandwidth of the BSS.
  • the subchannel band is responsive to the trigger frame.
  • NAV as a network distribution
  • the vector, applied to the virtual carrier sense, can be equivalent to a counter for virtually reflecting the busy and idle channels.
  • at least two NAVs are set on the subchannel frequency band of the channel transmission bandwidth of the BSS associated with the station, which is used for controlling channel access competition and functions as data transmission protection.
  • the NAV value of 0 can be agreed to indicate that the available subchannel frequency band allows data transmission, and when the NAV value is non-zero, the available subchannel frequency band is not allowed to perform data transmission.
  • the STA1 can maintain two types of NAVs, including intra-NAV and inter-NAV, in the entire sub-channel band of the channel transmission bandwidth.
  • the intra-NAV is used to maintain the NAV of the BSS
  • the inter-NAV is used to maintain the NAV of the OBSS and obtain
  • NAVs are set on all subchannel bands of the channel transmission bandwidth of the BSS or subchannel bands of each channel transmission bandwidth.
  • the NAV can be further divided into an intra-NAV set by the associated BSS and an inter-NAV set by the OBSS.
  • the transmission of data frames may be selected from the subchannel bands in the channel transmission bandwidth according to the current value of the NAV.
  • all subchannel bands of the selected channel transmission bandwidth are available subchannel bands and may allow for data transmission over the available subchannel bands.
  • the triggering frame sent by the access point of the BSS associated with the station may be received, and the current value of the at least two network allocation vectors NAV set on the subchannel band of the channel transmission bandwidth of the BSS may be Selecting available subchannel frequency bands for data transmission from the channel transmission bandwidth of the BSS to respond to the trigger frame, reducing data transmission interference, and setting NAV separately for different channel transmission bandwidths to avoid band resources Waste, improve band utilization.
  • FIG. 4 is a flowchart of another data transmission protection method according to an embodiment of the present invention. Schematically, the method includes steps S201-S204.
  • a total of two network allocation vectors NAV, including an intra-NAV and an inter-NAV, are set on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the station.
  • two NAVs are set on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the site, including one intra-NAV and one inter-NAV, wherein the intra-NAV is used to record the site.
  • the time length for which the BSS prohibits data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used to record that the OBSS monitored by the station prohibits data on all subchannel bands of the channel transmission bandwidth.
  • the length of time for transmission For example, as shown in FIG.
  • the intra-NAV and the inter-NAV may be updated according to the duration value of the received PPDU and the source of the frame, and the update value of the NAV needs to be greater than the current value of the corresponding NAV, for example, if STA1 receives simultaneously.
  • the site when receiving the PPDU, determines the source of the PPDU, and determines the type of the PPDU.
  • the PPDU may include multiple types such as a data frame, a trigger frame, and a CF-END frame.
  • the PPDU may be sent by any node on the BSS or OBSS, such as an access point and a site.
  • the STA2 when the STA2 receives the PPDU, it determines whether the frame type field of the MAC header of the PPDU is a trigger frame or a CF-END frame. If the PPDU is a trigger frame, the trigger frame can be judged by the TA field of the MAC domain to determine the trigger frame.
  • Source if the PPDU is a CF-END frame, the source of the CF-END frame can be determined by parsing the BSSID field of the MAC field of the CF-END frame.
  • the PPDU is derived from an access point of a basic service set BSS associated with a site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • the station determines whether the scheduling target of the trigger frame includes the site.
  • the site identifier in the resource indication information of the MAC domain of the trigger frame may be matched with the AID value configured by the AP in the association to determine whether the scheduling target of the trigger frame includes the site, and if the matching is consistent, Then, the scheduling target of this trigger frame includes the site.
  • the scheduling target of the trigger frame includes the site, if the current value of the inter-NAV set on all subchannel bands of the channel transmission bandwidth of the BSS is equal to a preset value, selecting the channel transmission bandwidth. All subchannel bands are available subchannel bands for data transmission, and according to the frequency domain resource scheduling information of the trigger frame, the frequency domain resources of the transmission of the station are confirmed from the available subchannel bands, in the frequency domain of the confirmation. Data frame transmission is performed on the resource.
  • the scheduling target of the trigger frame includes the station
  • the scheduling target of the trigger frame includes the station
  • the current value of the inter-NAV set on all subchannel bands of the channel transmission bandwidth of the BSS is equal to the preset value
  • select the All subchannel bands of the channel transmission bandwidth are available subchannel bands for data transmission
  • the frequency domain resources of the transmission of the station are confirmed from the available subchannel bands according to the frequency domain resource scheduling information of the trigger frame
  • Data frame transmission is performed on the confirmed frequency domain resource.
  • the channel transmission bandwidth is 80 MHz
  • all subchannel bands of the channel transmission bandwidth are 80 MHz
  • an intra-NAV and an inter-NAV may be set at the 80 MHz.
  • the frequency band and according to the frequency domain resource scheduling information of the trigger frame, confirms the frequency domain resource of the transmission of the station from the available subchannel frequency band, to perform data frame transmission on the confirmed frequency domain resource.
  • AP2 is an associated access point of STA2.
  • STA2 When AP2 needs to schedule STA2 for data transmission, it can send a trigger frame to STA2.
  • the scheduling target of the trigger frame is directed to STA2, and STA2 is maintained according to AP2.
  • the station may confirm the frequency domain resources of the transmission of the station from the available subchannel frequency bands according to the frequency domain resource scheduling information of the trigger frame.
  • the available subchannel frequency bands are the frequency band 2 and the frequency band 3, and may be used according to the requirements of the trigger frame. 4MHz bandwidth resources in Band 2, Then, it can be confirmed that the frequency domain resource of the transmission of the station is 4 MHz in the frequency band 2, and the data frame transmission is performed thereon in response to the trigger frame.
  • the precondition for transmitting the data frame, such as the uplink data frame, through all the subchannel bands of the channel transmission bandwidth further includes determining that the current signal strength is less than a Clear Channel Assessment (CCA) threshold or an OBSS packet detection (OBSS). Packet detection level) threshold.
  • CCA Clear Channel Assessment
  • OBSS OBSS packet detection
  • Packet detection level Packet detection level
  • the station may further perform the step of updating the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected to be updated by using the source of the PPDU.
  • the optional step A is to obtain the duration value duration in the PPDU if the PPDU is originated from the basic service set BSS associated with the site and the site is not the destination of the PPDU.
  • the current value of the intra-NAV set on all the subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the intra-NAV is updated to the duration.
  • the site may parse the PPDU to obtain a duration, if the current value of the intra-NAV is smaller than The duration can be updated for the current value of the intra-NAV.
  • the duration value duration in the PPDU is obtained.
  • the current value of the inter-NAV set on all subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the inter-NAV is updated. Said duration.
  • the station may parse the PPDU to obtain a duration, and if the current value of the inter-NAV is less than the duration, the current value of the inter-NAV may be updated.
  • the station may further perform a processing step on the CF-END frame.
  • it may be determined whether the type of the data frame is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source of the current value of the intra-NAV or the current value of the inter-NAV is updated.
  • the preset value may be 0.
  • Optional step B if the received contention-free period end CF-END frame originates from the BSS, the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS Update to the default value.
  • the current value of the intra-NAV may be updated to a preset value of 0 to clear the current value of the intra-NAV.
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS
  • the current value of the inter-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS is selected. Update to the default value.
  • the current value of the inter-NAV may be updated to a preset value of 0 to clear the current value of the inter-NAV.
  • the received CF-END frame is derived from the OBSS, determining a source of the current value of the inter-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS and the CF- Whether the source of the END frame is the same, if the same, the current value of the inter-NAV is updated to a preset value.
  • the CF-END frame is derived from OBSS2, and if the source of the current value of the inter-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS is also OBSS, the current value of the inter-NAV may be Updated to the default value of 0.
  • the station sets an intra-NAV and an inter-NAV on all subchannel bands of the channel transmission bandwidth of the associated BSS.
  • the station can pass the intra-NAV and the inter-NAV.
  • the current value obtains the available subchannel frequency band for data transmission in response to the trigger frame, and realizes data transmission protection, which reduces the interference of data transmission compared to using a single NAV, according to the source of the PPDU or the source of the CF-END frame.
  • the intra-NAV or inter-NAV are updated separately to avoid mis-update or clearing of the NAV.
  • FIG. 5 is a flowchart of still another data transmission protection method according to an embodiment of the present invention. Schematically, the method includes steps S301-S304.
  • an intra-NAV and at least one inter- corresponding to each of the monitored overlapping basic service sets OBSS are respectively set on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the station.
  • NAV wherein the intra-NAV is used to record the length of time that the station is prohibited by the BSS from transmitting data on all subchannel bands of the channel transmission bandwidth
  • the inter-NAV is used to record the OBSS that is monitored by the station.
  • the length of time during which data is transmitted over all subchannel bands of the channel transmission bandwidth For example, as shown in FIG.
  • step S302 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, and details are not described herein again.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S303 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the scheduling target of the trigger frame includes the station, if all the inter-NAVs corresponding to each OBSS monitored are set on all subchannel bands of the channel transmission bandwidth of the BSS, The values are all equal to a preset value, and all subchannel bands of the channel transmission bandwidth are selected as available subchannel bands for data transmission, and according to frequency domain resource scheduling information of the trigger frame, The frequency domain resources of the transmission of the station are confirmed from the available subchannel frequency bands to perform data frame transmission on the confirmed frequency domain resources.
  • the scheduling target of the trigger frame includes the station, if all the inter-NAVs corresponding to each OBSS that are monitored are set on all subchannel bands of the channel transmission bandwidth of the BSS, The current values are all equal to a preset value, and all subchannel bands of the channel transmission bandwidth are selected as available subchannel bands for data transmission in response to the trigger frame.
  • the channel transmission bandwidth is 80 MHz
  • the entire subchannel band of the channel transmission bandwidth is 80 MHz
  • an intra-NAV and the same number of inter-NAVs as the monitored OBSS can be set at the 80 MHz. .
  • OBSS1 and OBSS2 Take STA1 in Figure 2 as an example.
  • OBSS1 and OBSS2 which are set to inter-NAV1 and inter-NAV2 respectively.
  • AP1 is the associated access point of STA1.
  • the duration is 4.
  • intra-NAV 4.
  • the station may confirm the frequency domain resources of the transmission of the station from the available subchannel frequency bands according to the frequency domain resource scheduling information of the trigger frame.
  • the available subchannel frequency bands are the frequency band 2 and the frequency band 3, and may be used according to the requirements of the trigger frame.
  • the frequency domain resource of the transmission of the station is 4 MHz in Band 2, and data frame transmission is performed thereon in response to the trigger frame.
  • the precondition for transmitting the data frame, such as the uplink data frame, by using all the subchannel bands of the channel transmission bandwidth further includes determining that the current signal strength is less than a CCA threshold or an OBSS packet detection level threshold.
  • the site may also perform an update on the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected and updated by the source of the PPDU.
  • the PPDU is originated from a basic service set BSS associated with the site, and the site is not the destination of the PPDU, obtain a duration value in the PPDU;
  • the current value of the intra-NAV set on all the subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the intra-NAV is updated to the duration.
  • the steps in the embodiment of the present invention may be referred to the step A after the step S202 is performed as shown in FIG. 4, and details are not described herein again.
  • the PPDU is derived from the overlapping basic service set OBSS, obtaining a duration value duration in the PPDU;
  • the inter-NAV corresponding to the OBSS with the same PPDU source of the duration is updated to the duration.
  • the station acquires a duration value duration in the PPDU, and when all the subchannel frequency bands are set, at least one corresponds to the OBSS monitored by the station. If the current value of the inter-NAV corresponding to the OBSS of the duration of the PPDU of the duration is smaller than the duration, the station associates the OBSS with the same source as the PPDU of the duration. The inter-NAV is updated to the duration.
  • inter-NAV1 and inter-NAV2 corresponding to OBSS1 and OBSS2 are set on all subchannel bands
  • the station may further perform a processing step on the CF-END frame.
  • a processing step it may be determined whether the type of the PPDU is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source updates the current value of intra-NAV or the current value of inter-NAV.
  • the preset value may be 0.
  • the received contention-free period end CF-END frame originates from the BSS, update the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS to default value.
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS
  • the current value of the inter-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS is selected. Update to the default value.
  • the steps in the embodiment of the present invention may be referred to the step B after the step S202 is performed as shown in FIG. 3, and details are not described herein again.
  • the station is set on the entire sub-channel frequency band of the channel transmission bandwidth of the BSS and the CF-END The current value of the inter-NAV corresponding to the OBSS is updated to a preset value.
  • the station if the received CF-END frame is derived from the OBSS, the station is set to be the same as the OBSS of the CF-END frame source set on all subchannel bands of the channel transmission bandwidth of the BSS. - The current value of NAV is updated to the default value. For example, the CF-END frame is derived from OBSS2. If OBSS2 corresponds to inter-NAV2, inter-NAV2 is updated to a preset value, and other inter-NAVs are not updated.
  • the inter-NAV setting mode is changed from setting an inter-NAV in all subchannel bands to at least one inter-NAV corresponding to each OBSS monitored, except
  • methods for clearing and updating inter-NAV for specific OBSS are also provided.
  • FIG. 6 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention, where the method includes steps S401-S404.
  • a total intra-NAV is set on all subchannel bands of the channel transmission bandwidth, and an inter-NAV is respectively set on each subchannel band of the channel transmission bandwidth.
  • the station is set in all subchannel bands of the channel transmission bandwidth.
  • An intra-NAV and an inter-NAV are respectively disposed on each of the subchannel bands of the channel transmission bandwidth, wherein the intra-NAV is used to record that the station is prohibited by the BSS from transmitting bandwidth on the channel.
  • the length of time for data transmission on all subchannel bands, the inter-NAV is used to record the length of time that the OBSS monitored by the station prohibits data transmission on the subchannel band in which the inter-NAV is set. For example, as shown in FIG.
  • the entire channel transmission bandwidth is divided into four subchannel bands of frequency bands 1-4, and one intra-NAV and four inter-NAVs may be set in the frequency bands 1-4, wherein the frequency band 1 ⁇ 4 respectively set the corresponding inter-NAV1 ⁇ 4, and the initial values of all intra-NAV and inter-NAV are 0.
  • step S402 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, and details are not described herein again.
  • the PPDU is derived from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S403 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the scheduling target of the trigger frame includes the station, select at least one subchannel frequency band whose current value of the inter-NAV is equal to a preset value as an available subchannel frequency band for data transmission, and according to the The frequency domain resource scheduling information of the trigger frame is used to confirm the frequency domain resource of the transmission of the station from the available subchannel frequency band, to perform data frame transmission on the confirmed frequency domain resource.
  • the station selects at least one subchannel frequency band whose current value of the inter-NAV is equal to the preset value as available for data transmission.
  • the subchannel band is responsive to the trigger frame.
  • the channel transmission bandwidth is 80 MHz
  • the channel transmission bandwidth can be divided into four 20 MHz subchannel bands, one intra-NAV is set at 80 MHz, and 1 is set in each 20 MHz subchannel band. Inter-NAV. If the agreement 0 indicates that the available subchannel band allows data transmission, non-zero indicates that the available subchannel band is not allowed. data transmission.
  • the available subchannel frequency bands may be selected in two manners.
  • all the designated subchannel frequency bands may be selected as available sub-bands.
  • the channel band; the second mode is that if all the designated subchannel bands have a specified subchannel band whose inter-NAV is equal to the preset value, the channel is selected as the available subchannel band, and the frequency domain resource scheduling information according to the trigger frame is used. And confirming the frequency domain resource of the transmission of the station from the available subchannel frequency band to perform data frame transmission on the confirmed frequency domain resource.
  • the frequency band 2 in which inter-NAV2 is set may be selected as the available subchannel frequency band.
  • the station may confirm the frequency domain resources of the transmission of the station from the available subchannel frequency bands according to the frequency domain resource scheduling information of the trigger frame.
  • the available subchannel frequency bands are the frequency band 2 and the frequency band 3, and may be used according to the requirements of the trigger frame. For the 4 MHz bandwidth resource in Band 2, it can be confirmed that the frequency domain resource of the transmission of the station is 4 MHz in Band 2, and data frame transmission is performed thereon in response to the trigger frame.
  • the precondition for transmitting the data frame, such as the uplink data frame, by using the subchannel frequency band of the channel transmission bandwidth further includes determining that the current signal strength is less than a CCA threshold or an OBSS packet detection level threshold.
  • the station may further perform the step of updating the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected and updated by the source of the PPDU.
  • the PPDU is originated from a basic service set BSS associated with a site, parsing the PPDU to obtain a duration value duration.
  • the current value of the intra-NAV set on all the subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the intra-NAV is updated to the duration.
  • the optional step C is to obtain the duration value duration in the PPDU if the PPDU is derived from the overlapping basic service set OBSS.
  • a specified subchannel frequency band is obtained in the PPDU, and if a current value of the inter-NAV exists in the specified subchannel frequency band is less than the duration And updating a current value of the inter-NAV that is smaller than the duration in the specified subchannel frequency band to the duration.
  • the station may further perform a processing step on the CF-END frame.
  • it may be determined whether the type of the PPDU is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source updates the current value of the intra-NAV or the current value of the inter-NAV.
  • the preset value may be 0.
  • the received contention-free period end CF-END frame originates from the BSS, update the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS to default value.
  • the steps in the embodiment of the present invention may be referred to the step B after the step S202 is performed as shown in FIG. 4, and details are not described herein again.
  • Optional step D if the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, obtain the designated sub-channel frequency band in the CF-END frame, and set the specified sub-channel frequency band The current value of inter-NAV is updated to a preset value.
  • the specified subchannel frequency band such as the subchannel frequency band 1-2
  • the specified subchannel frequency band may be obtained by parsing the CF-END frame, and the inter-NAV corresponding to the subchannel frequency band 1-2 may be obtained.
  • the current value is updated to a preset value of 0 to clear the current value of the inter-NAV.
  • Optional step E if the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, obtain the designated sub-channel frequency band in the CF-END frame, and will be the same source as the CF-END frame
  • the current value of the inter-NAV set on the specified subchannel band corresponding to the OBSS is updated to a preset value.
  • the specified subchannel frequency band such as the subchannel frequency band 1 ⁇ 2 may be obtained by parsing the CF-END frame, if the inter channel frequency band 1 ⁇ 2 is inter-NAV1, inter -
  • the current value of NAV2 is OBSS1, OBSS2, respectively, and the current value of inter-NAV2 can be updated to the preset value of 0 to clear the current value of inter-NAV2.
  • the station sets an intra-NAV sum on all subchannel bands of the channel transmission bandwidth of the associated BSS, and sets an inter-NAV in each subchannel band.
  • the available subchannel bands in the designated subchannel band can be obtained by the current values of intra-NAV and inter-NAV and the data frames are transmitted in response to the trigger frame, which reduces the interference to the OBSS data transmission compared to using a single NAV.
  • the intra-NAV or inter-NAV on the designated subchannel band is updated separately according to the source of the PPDU or the source of the CF-END frame, thereby avoiding the false update or clearing of the NAV.
  • FIG. 7 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention, where the method includes steps S501-S505.
  • a total intra-NAV is set on all subchannel bands of the channel transmission bandwidth, and at least one and each overlapping basic service set OBSS are respectively set on each subchannel band of the channel transmission bandwidth.
  • the belonging station sets an intra-NAV on all subchannel bands of the channel transmission bandwidth and sets at least one and each monitored one on each subchannel band of the channel transmission bandwidth.
  • An inter-NAV corresponding to the one-to-one correspondence of the basic service set OBSS, wherein the intra-NAV is used to record a length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth,
  • the inter-NAV is used to record the length of time that the OBSS monitored by the station prohibits data transmission on the subchannel band in which the inter-NAV is set. For example, as shown in FIG. 2, it is assumed that the entire channel transmission bandwidth is divided into four sub-letters of frequency bands 1-4.
  • the channel band there are two OBSSs of OBSS1 and OBSS2, and one intra-NAV and multiple inter-NAVs are set in the frequency bands 1 to 4, wherein one inter-NAV is set corresponding to each of the OBSS1 and OBSS2 in each frequency band, such as Inter-NAV31 and inter-NAV32 are set to correspond to OBSS1 and OBSS2, respectively, and the initial values of intra-NAV and inter-NAV are both 0.
  • step S502 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, and details are not described herein again.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S503 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the scheduling target of the trigger frame includes the station, if there is at least one subchannel frequency band, the current values of all the inter-NAVs that are set are equal to a preset value, and the at least one subchannel frequency band is And selecting, as the available subchannel frequency band for data transmission, and confirming the frequency domain resource of the transmission of the station from the available subchannel frequency band according to the frequency domain resource scheduling information of the trigger frame, to perform on the confirmed frequency domain resource.
  • the data frame is sent.
  • the scheduling target of the trigger frame includes the station
  • the current values of all the inter-NAVs that are set are equal to a preset value
  • the at least one sub The channel band is selected as a usable subchannel band in response to the trigger frame.
  • the channel transmission bandwidth can be divided into four 20 MHz subchannel bands, and one intra-NAV is set at 80 MHz, and at each 20 MHz.
  • inter-NAV31 and inter-NAV32 corresponding to OBSS1 and OBSS2 are set as in band 3.
  • the available subchannel frequency bands can be selected in two ways. In the first mode, if all the inter-NAVs set on all the designated subchannel frequency bands are equal to the preset value, all the designated subchannel frequency bands can be selected as available.
  • Subchannel band the second mode is that if at least one designated subchannel band exists in all the designated subchannel bands, and all inter-NAVs set thereon are equal to a preset value, it may be selected as a usable subchannel band, and according to The frequency domain resource scheduling information of the trigger frame confirms the frequency domain resource of the transmission of the station from the available subchannel frequency band, and performs data frame transmission on the confirmed frequency domain resource.
  • STA1 in FIG. 2 it is assumed that there are two OBSSs of OBSS1 and OBSS2, four subchannel bands of frequency bands 1-4, and all initial values of intra-NAV and inter-NAV set in the frequency band are 0, and AP1 is STA1.
  • AP1 calls STA1 in frequency bands 2 to 3, it can be determined according to the first mode whether the current values of inter-NAV21, inter-NAV22, inter-NAV31, and inter-NAV32 set in the frequency bands 2 to 3 are both It is equal to the preset value, if yes, it is determined that the frequency bands 2 to 3 are available subchannel frequency bands; or according to the first manner, whether the inter-NAV 21 and the inter-NAV 22 set in the frequency bands 2 to 3 are equal to the preset value, and the inter-NAV 31 and Whether the current value of inter-NAV32 is equal to the preset value, if the current values of inter-NAV21 and inter-NAV22 set in band 2 are equal to the preset value, and the current values of inter-NAV31 and inter-NAV32 set in band 3 are not Equal to the preset value, band 2 can be selected as the available subchannel band.
  • the station may confirm the frequency domain resources of the transmission of the station from the available subchannel frequency bands according to the frequency domain resource scheduling information of the trigger frame.
  • the available subchannel frequency bands are the frequency band 2 and the frequency band 3, and may be used according to the requirements of the trigger frame.
  • the frequency domain resource of the transmission of the station is 4 MHz in Band 2, and data frame transmission is performed thereon in response to the trigger frame.
  • the precondition for transmitting the data frame, such as the uplink data frame, by using the subchannel frequency band of the channel transmission bandwidth further includes determining that the current signal strength is less than a CCA threshold or an OBSS packet detection level threshold.
  • the station may further perform the step of updating the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected to be updated by the source of the PPDU.
  • the duration value of the PPDU is obtained.
  • the current value of the intra-NAV set on all the subchannel bands of the channel transmission bandwidth is smaller than the duration, the current value of the intra-NAV is updated to the duration.
  • the steps in the embodiment of the present invention may be referred to the step A after the step S202 is performed as shown in FIG. 4, and details are not described herein again.
  • An optional step F if the PPDU is derived from the overlapping basic service set OBSS, obtaining a duration value duration in the PPDU;
  • the current value of the inter-NAV corresponding to the OBSS is smaller than the duration, and the current value of the inter-NAV that is smaller than the duration and corresponding to the OBSS of the PPDU source is set to be updated on the target designated subchannel frequency band. For the duration.
  • the station may further perform a processing step on the CF-END frame.
  • it may be determined whether the type of the PPDU is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source updates the current value of the intra-NAV or the current value of the inter-NAV.
  • the preset value may be 0.
  • the received contention-free period end CF-END frame originates from the BSS, update the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS to default value.
  • the steps in the embodiment of the present invention may be referred to the step B after the step S202 is performed as shown in FIG. 4, and details are not described herein again.
  • An optional step G if the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, obtain the designated sub-channel frequency band in the CF-END frame, and set each of the designated sub-channel frequency bands separately All inter-NAVs corresponding to the same OBSS of the CF-END frame source The current value is updated to the default value.
  • the specified subchannel frequency band such as the frequency band 4
  • the specified subchannel frequency band such as the frequency band 4
  • the OBSS2 corresponds to the inter-band in the frequency band 4.
  • the current value of inter-NAV42 can be updated to the preset value of 0 to clear the current value of inter-NAV.
  • the station sets an intra-NAV and an inter-NAV corresponding to each OBSS that is monitored, in each subchannel band of the channel transmission bandwidth of the associated BSS, except that the station has a decrease.
  • methods for clearing and updating inter-NAV for a particular OBSS on each subchannel band are also provided.
  • FIG. 8 is a schematic flowchart diagram of still another data transmission protection method according to an embodiment of the present invention, where the method includes steps S601-S604.
  • the station sets two network allocation vectors NAV, including one intra-NAV and one inter-NAV, for each subchannel band on the channel transmission bandwidth, where the intra-NAV is used. Recording a length of time during which the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, and the inter-NAV is used to record an OBSS banned by the station. The length of time during which data transmission takes place on the subchannel band of the inter-NAV. For example, as shown in FIG. 2, it is assumed that four sub-channel bands of frequency band 1 to 4 are divided in the entire channel transmission bandwidth, and four intra-NAVs and four inter-NAVs are set in each frequency band, and the initial values are all 0.
  • step S602 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, where No more details are given.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S603 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the scheduling target of the trigger frame includes the station, select at least one subchannel frequency band whose current value of the inter-NAV is equal to a preset value as an available subchannel frequency band for data transmission, and according to the The frequency domain resource scheduling information of the trigger frame is used to confirm the frequency domain resource of the transmission of the station from the available subchannel frequency band, to perform data frame transmission on the confirmed frequency domain resource.
  • step S604 of the embodiment of the present invention may refer to step S404 shown in FIG. 6, and details are not described herein again.
  • the station may further perform the step of updating the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected for updating by using the source of the data frame.
  • the optional step H is to obtain the duration value duration in the PPDU if the PPDU is originated from the basic service set BSS associated with the site and the site is not the destination of the PPDU.
  • the PPDU is derived from the overlapping basic service set OBSS, parsing the PPDU to obtain a duration value duration.
  • the steps in the embodiment of the present invention may be referred to the step C after the step S402 is performed as shown in FIG. 6, and details are not described herein again.
  • the station may further perform a processing step on the CF-END frame.
  • it may be determined whether the type of the PPDU is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source updates the current value of the intra-NAV or the current value of the inter-NAV.
  • the preset value may be 0.
  • Optional step I if the received contention-free period end CF-END frame originates from the BSS, acquire a specified subchannel frequency band in the CF-END frame, and set the station on the designated subchannel frequency band The current value of intra-NAV is updated to a preset value.
  • the frequency bands 1 to 4 respectively correspond to the intra-NAVs 1 to 4, and if the received CF-END frame is derived from the BSS, the designated subchannel frequency band in the CF-END frame is obtained as the frequency band 1 to 2,
  • the current value of intra-NAV 1-2 can be updated to 0 to clear the current value of intra-NAV 1-2.
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS
  • the specified sub-channel frequency band in the CF-END frame is obtained, and the inter-set on the designated sub-channel frequency band is set.
  • the current value of NAV is updated to the default value.
  • the steps in the embodiment of the present invention may be referred to the step D after the step S402 is performed as shown in FIG. 6, and details are not described herein.
  • the received CF-END frame is derived from the OBSS
  • the specified subchannel frequency band in the CF-END frame is obtained, and the current value of the inter-NAV set by the station on the specified subchannel frequency band is determined. Whether the source is the same as the source of the CF-END frame, and if they are the same, the current value of the inter-NAV is updated to a preset value.
  • the station sets an intra-NAV and an inter-NAV on each subchannel band of the channel transmission bandwidth of the associated BSS, compared with the embodiment in FIG. 6, except that the OBSS interference is reduced.
  • methods for clearing and updating intra-NAV on specific frequency bands are also provided.
  • FIG. 9 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention, where the method includes steps S701-S704.
  • the station sets an intra-NAV and at least one inter-NAV corresponding to the monitored overlapping basic service set OBSS in each of the subchannel bands on the channel transmission bandwidth, where
  • the intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, where the inter-NAV is used for recording by the site.
  • the OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set. For example, as shown in FIG. 2, it is assumed that four subchannel bands of frequency bands 1 to 4 are divided in the entire channel transmission bandwidth, and four intra-NAVs and two inter-NAVs are set in each frequency band, and the initial values are all 0.
  • the access point AP1 of the BSS associated with the STA1 of the station sends a PPDU to the STA4, and the STA1 also receives the PPDU.
  • the resolution of the PPDU is determined to be 10
  • the designated subchannel frequency band is the frequency band 1 to 2
  • STA1 receives the STA2 in OBSS1 and transmits the duration 4
  • the designated subchannel band is the PPDU of the band 3 ⁇ 4
  • step S702 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, and details are not described herein again.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S703 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the scheduling target of the trigger frame includes the station, if there is at least one subchannel frequency band, the current values of all the inter-NAVs that are set are equal to a preset value, and the at least one The subchannel frequency band is selected as a usable subchannel frequency band for data transmission, and the frequency domain resource of the transmission of the station is confirmed from the available subchannel frequency band according to the frequency domain resource scheduling information of the trigger frame, in the frequency domain of the acknowledgement Data frame transmission is performed on the resource.
  • step S704 of the embodiment of the present invention may refer to step S504 shown in FIG. 7, and details are not described herein again.
  • the station may further perform the step of updating the current value of the NAV.
  • the intra-NAV or the inter-NAV may be selected for updating by using the source of the PPDU.
  • the PPDU is originated from a basic service set BSS associated with the site, and the site is not the destination of the PPDU, obtain a duration value in the PPDU;
  • the steps in the embodiment of the present invention can be referred to the step H after the step S602 is performed as shown in FIG. 4, and details are not described herein again.
  • the PPDU is derived from the overlapping basic service set OBSS, parsing the PPDU to obtain a duration value duration.
  • the current value of the inter-NAV corresponding to the OBSS is smaller than the duration, and the current value of the inter-NAV that is smaller than the duration and corresponding to the OBSS of the PPDU source is set to be updated on the target designated subchannel frequency band. For the duration.
  • the steps in the embodiment of the present invention may be referred to the step F after the step S502 is performed as shown in FIG. 4, and details are not described herein again.
  • the station may further perform a processing step on the CF-END frame.
  • it may be determined whether the type of the PPDU is a CF-END frame, and if so, the CF-END frame may be determined.
  • the source updates the current value of the intra-NAV or the current value of the inter-NAV.
  • the preset value may be 0.
  • the received contention-free period end CF-END frame is originated from the BSS, acquiring a specified sub-channel frequency band in the CF-END frame, and setting the intra-location in the specified sub-channel frequency band -
  • the current value of NAV is updated to the default value.
  • the steps in the embodiment of the present invention may be referred to the step 1 after the step S602 is performed as shown in FIG. 6, and details are not described herein.
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS
  • the specified sub-channel frequency band in the CF-END frame is obtained, and each of the designated sub-channel frequency bands is separately set and The current values of all inter-NAVs corresponding to the same OBSS of the CF-END frame are updated to preset values.
  • the steps in the embodiment of the present invention can be referred to the step G after the step S502 is performed as shown in FIG. 6, and details are not described herein again.
  • the station sets an intra-NAV and a plurality of inter-NAVs in each subchannel band of the channel transmission bandwidth of the associated BSS, and compares the embodiment in FIG. 7 with the reduction of OBSS interference.
  • an encryption and update method for inter-NAV with different OBSS on a specific frequency band is also provided.
  • FIG. 10 is a schematic flowchart of still another data transmission protection method according to an embodiment of the present invention, where the method includes steps S801-S804.
  • one NAV is respectively set on each subchannel frequency band of the channel transmission bandwidth, wherein the NAV is used to record that the station is prohibited from being set in other stations or access points except the station.
  • the length of time during which data transmission is performed on the subchannel band of the NAV For example, as shown in FIG. 2, it is assumed that the entire channel transmission bandwidth is divided into four subchannel bands of frequency bands 1-4, and one NAV is set in the frequency bands 1-4, that is, a total of four NAVs, and the initial values of the NAVs are all zero. If the access point AP1 of the BSS associated with the STA1 of the station sends a PPDU to the STA4, the STA1 also receives the PPDU.
  • step S802 of the embodiment of the present invention may refer to step S202 shown in FIG. 4, and details are not described herein again.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determine whether the scheduling target of the trigger frame includes the site.
  • step S803 of the embodiment of the present invention may refer to step S203 shown in FIG. 4, and details are not described herein again.
  • the channel transmission bandwidth is 80 MHz
  • the channel transmission bandwidth may be divided into four 20 MHz subchannel bands, and one NAV is set in each subchannel band, if the agreement 0 indicates that the available subchannel band allows data. Transmission, non-zero means that the available subchannel band does not allow data transmission.
  • the available subchannel frequency bands may be selected in two manners.
  • all the designated subchannel frequency bands may be selected as available sub-bands.
  • the channel band; the second mode is that if all the designated subchannel bands have a specified subchannel band whose inter-NAV is equal to the preset value, the channel is selected as the available subchannel band, and the frequency domain resource scheduling information according to the trigger frame is used. And confirming the frequency domain resource of the transmission of the station from the available subchannel frequency band to perform data frame transmission on the confirmed frequency domain resource
  • STA1 in FIG. 2 as an example, it is assumed that there are four subchannel bands in the frequency bands 1 to 4, and the initial values of the four NAVs set in each frequency band are all 0, and AP1 is the associated access point of STA1. If AP1 is in the frequency band 2 ⁇ 3, STA1 is called, and according to the first manner, whether the current values of NAV2 and NAV3 set in the frequency bands 2 to 3 are equal to a preset value, and if yes, determining that the frequency bands 2 to 3 are available subchannel bands; or according to the first type Mode judgment Whether there is a value equal to a preset value in the current values of NAV2 and NAV3 set in the broken band 2 to 3.
  • the band of NAV2 may be set. 2 is selected as the available subchannel frequency band.
  • the station may confirm the frequency domain resources of the transmission of the station from the available subchannel frequency bands according to the frequency domain resource scheduling information of the trigger frame.
  • the available subchannel frequency bands are the frequency band 2 and the frequency band 3, and may be used according to the requirements of the trigger frame.
  • the frequency domain resource of the transmission of the station is 4 MHz in Band 2, and data frame transmission is performed thereon in response to the trigger frame.
  • the current value of the NAV is derived from the at least one subchannel band of the BSS and is selected as a available sub The channel band and transmits a data frame in response to the trigger frame.
  • the station when receiving the trigger frame sent by the access point of the basic service set BSS associated with the station, the station selects the current value of the NAV from the at least one subchannel band of the BSS as a available sub The channel band and transmits a data frame in response to the trigger frame.
  • the channel transmission bandwidth is 80 MHz
  • the channel transmission bandwidth may be divided into four 20 MHz subchannel bands, and one NAV is set in each subchannel band, if the agreement 0 indicates that the available subchannel band allows data. Transmission, non-zero means that the available subchannel frequency band is not allowed to transmit data.
  • NAV1 and NAV2 are derived from the associated BSS
  • the current values of NAV3 and NAV4 are derived from OBSS, and bands 1 to 2 in which NAV1 and NAV2 are set are selected as available subchannel bands.
  • the precondition for transmitting the data frame, such as the uplink data frame, by using the subchannel frequency band of the channel transmission bandwidth further includes determining that the current signal strength is less than a CCA threshold or an OBSS packet detection level threshold.
  • the station may further perform the step of updating the current value of the NAV.
  • whether the NAV corresponding to the specified subchannel frequency band is updated may be determined by the source of the PPDU.
  • the site is not a sending target of the PPDU, obtaining a designated sub-in the PPDU.
  • Channel band and duration value duration if the specified subchannel band exists
  • the current value of the NAV is smaller than the designated subchannel frequency band of the duration, and the current value of the NAV smaller than the duration in the designated subchannel frequency band is updated to the duration.
  • the PPDU acquired by STA1 is derived from STA2, or the PPDU acquired by STA1 is originated from AP1 but the transmission target does not include STA1, and the designated subchannel frequency band is obtained according to the PPDU.
  • duration 5
  • NAV1 can be updated to 5. If the PPDU is sent by the BSS associated with STA1 and the transmission destination is STA1, no update is performed.
  • the station may further perform a processing step on the CF-END frame, and the preset value may be 0.
  • the received PPDU is a CF-END frame
  • obtain a specified subchannel frequency band in the CF-END frame if the source of the current value of the NAV set on the specified subchannel frequency band is the CF- The source of the END frame is consistent, and the current value of the NAV is updated to a preset value.
  • the designated subchannel frequency band is band 1 to 3
  • the current values of NAV1 and NAV2 are also derived from OBSS1
  • the current value of NAV3 is derived from
  • the associated BSS can update the current values of NAV1 and NAV2 to a preset value of 0 to clear the current value of the NAV.
  • the foregoing embodiment may be extended to a process of receiving a CF-END frame when a NAV is set over the entire bandwidth.
  • the CF is determined. Whether the source OBSS of the -END frame is consistent with the OBSS from which the current value of the NAV is derived. If they are consistent, the current value of the NAV may be updated to a preset value of 0 to clear the current value of the NAV; if not, the update is not updated.
  • the current value of NAV For example, assuming that the CF-END frame is derived from OBSS2 and the current NAV is also derived from OBSS2, the NAV can be updated to a preset value of zero.
  • the station sets an NAV on each subchannel band of the channel transmission bandwidth of the associated BSS, and may obtain the available subchannel band in the specified subchannel band by using the current value of the NAV on each band.
  • the uplink data frame is used for data transmission protection, and the channel transmission is controlled by using a single NAV, which avoids waste of resources of the available subchannel frequency band and effectively improves the frequency band utilization.
  • FIG. 11 is a schematic diagram of a modularity of a data transmission protection apparatus according to an embodiment of the present invention.
  • the apparatus may include a receiving unit 11, a response unit 12, a setting unit 13, a confirming unit 14, a first judging unit 15, a second judging unit 16, a parsing unit 17, a first updating unit 18, and a Two update unit 19, wherein:
  • the receiving unit 11 is configured to receive a trigger frame sent by an access point of a basic service set BSS associated with the station.
  • the response unit 12 is configured to select an available subchannel for data transmission from a channel transmission bandwidth of the BSS according to a current value of at least two network allocation vectors NAV set on a subchannel band of a channel transmission bandwidth of the BSS.
  • the frequency band is responsive to the trigger frame.
  • the response unit 12 is configured to: if the scheduling target of the trigger frame includes the station, according to a current value of at least two network allocation vectors NAV set on a subchannel frequency band of a channel transmission bandwidth of the BSS, An available subchannel band for data transmission is selected from the channel transmission bandwidth of the BSS in response to the trigger frame.
  • the response unit 12 is specifically configured to: when an inter-NAV is set on all subchannel bands of the channel transmission bandwidth, if all channel bandwidths of the BSS are set on a subchannel band The current value of inter-NAV is equal to a preset value, and all subchannel bands of the channel transmission bandwidth are selected as available subchannel bands for data transmission in response to the trigger frame.
  • the response unit 12 is specifically configured to: when at least one inter-NAV corresponding to each OBSS that is monitored is set on all subchannel bands of the channel transmission bandwidth, if the channel of the BSS is All current values of the inter-NAVs corresponding to each of the monitored OBSSs set on all subchannel bands of the transmission bandwidth are equal to a preset value, and all subchannel bands of the channel transmission bandwidth are selected for data.
  • the available subchannel bands are transmitted in response to the trigger frame.
  • the response unit 12 is specifically configured to: when an inter-NAV is respectively set on each subchannel band of the channel transmission bandwidth, the current value of the inter-NAV is equal to at least one of a preset value.
  • the channel band is selected as the available subchannel band for data transmission in response to the trigger frame.
  • the response sub-unit 11 is specifically configured to: when each of the sub-channel frequency bands of the channel transmission bandwidth is configured with at least one inter-NAV corresponding to each of the monitored basic service sets OBSS If there is at least one subchannel frequency band, the current values of all the inter-NAVs set are equal to a preset value, and the at least one subchannel frequency band is selected as available for data transmission.
  • the subchannel band is responsive to the trigger frame.
  • the response subunit 11 is configured to select at least one subchannel frequency band whose current value of the NAV is equal to a preset value as an available subchannel frequency band for data transmission in response to the trigger frame.
  • the response subunit 11 is configured to select a current value of the NAV from at least one subchannel frequency band of the BSS as an available subchannel frequency band for data transmission in response to the trigger frame.
  • the setting unit 13 is configured to set a total of two network allocation vectors NAV, including an intra-NAV and an inter, on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the station. -NAV.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to set an intra-NAV and at least one overlapping basic service set for each of the sub-channel bands of the channel transmission bandwidth of the basic service set BSS associated with the station.
  • the OBSS corresponds to the inter-NAV.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to set an intra-NAV on all subchannel bands of the channel transmission bandwidth and an inter-NAV on each subchannel band of the channel transmission bandwidth.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to set an intra-NAV on all subchannel bands of the channel transmission bandwidth and set at least one and each to be monitored on each subchannel band of the channel transmission bandwidth.
  • Each of the overlapping basic service sets OBSS corresponds to the inter-NAV.
  • the intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, where the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to separately set two network allocation vectors NAV, including one intra-NAV and one inter-NAV, on each subchannel frequency band of the channel transmission bandwidth.
  • the intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, where the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to respectively set at least one intra-NAV and at least one inter-one-to-one corresponding to the monitored overlapping basic service set OBSS on each subchannel frequency band of the channel transmission bandwidth.
  • NAV The intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, where the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the setting unit 13 is configured to separately set one NAV on each subchannel frequency band of the channel transmission bandwidth.
  • the NAV is used to record a length of time during which the station is prohibited from performing data transmission on a subchannel band in which the NAV is set by a station other than the station or an access point.
  • an inter-NAV When an inter-NAV is set on all subchannel bands of the channel transmission bandwidth, if the current value of the inter-NAV set on all subchannel bands of the channel transmission bandwidth of the BSS is equal to a preset value, the channel is selected. All subchannel bands of the transmission bandwidth are available subchannel bands for data transmission in response to the trigger frame.
  • at least one inter-NAV corresponding to each of the monitored OBSSs is set on all subchannel bands of the channel transmission bandwidth, if all of the subchannel bands of the channel transmission bandwidth of the BSS are set The current value of the inter-NAV corresponding to each OBSS monitored is equal to a preset value, and all subchannel bands of the channel transmission bandwidth are selected as available subchannel bands for data transmission in response to the trigger frame.
  • the confirming unit 14 is configured to: after selecting the available subchannel frequency band, confirm the frequency domain resource of the transmission of the station from the available subchannel frequency band according to the frequency domain resource scheduling information of the trigger frame. Data frame transmission is performed on the confirmed frequency domain resource.
  • the first determining unit 15 is configured to determine the source of the PPDU when the PPDU is received, and determine the type of the PPDU.
  • the second determining unit 16 is configured to determine whether the scheduling target of the trigger frame includes the site if the PPDU is originated from an access point of a basic service set BSS associated with a site and is a trigger frame. .
  • the parsing unit 17 is configured to acquire a duration value duration in the PPDU if the PPDU is originated from a basic service set BSS associated with the station and the station is not a transmission target of the PPDU.
  • the parsing unit 17 is configured to obtain a duration value duration in the PPDU if the PPDU is derived from the overlapping basic service set OBSS.
  • the first update unit 18 is configured to update the current value of the intra-NAV to be the current value of the intra-NAV if the current value of the intra-NAV set on all subchannel bands of the channel transmission bandwidth is less than the duration. The duration.
  • the first update unit 18 is configured to acquire a specified subchannel frequency band in the PPDU, and if the current value of the intra-NAV set on the specified subchannel frequency band is less than the duration, the intra- The current value of NAV is updated to the duration.
  • the first updating unit 18 is configured to: when the all subchannel bands are set to one inter-NAV, if the duration is greater than a current of the inter-NAV set on all subchannel bands of the channel transmission bandwidth. The value is updated by using the duration of the current value of the inter-NAV.
  • the first updating unit 18 is configured to: when the all subchannel frequency bands are set to one inter-NAV, if a current value of the inter-NAV set on all subchannel frequency bands of the channel transmission bandwidth is smaller than the Duration, updating the current value of the inter-NAV to the duration.
  • the first updating unit 18 is configured to: when the all subchannel frequency bands are set to at least one inter-NAV corresponding to the OBSS monitored by the station, if the PPDU source of the duration is The current value of the inter-NAV corresponding to the same OBSS is smaller than the duration, and the inter-NAV corresponding to the OBSS of the same PPDU source is updated to the duration.
  • the first update unit 18 is configured to set one of each subchannel frequency band. Obtaining, in the inter-NAV, the designated subchannel frequency band in the PPDU, if the current value of the inter-NAV in the specified subchannel frequency band is less than the duration, the specified subchannel frequency band is smaller than the duration of the duration The current value of inter-NAV is updated to the duration.
  • the first updating unit 18 is configured to acquire a specified subchannel frequency band in the PPDU when the OBSS monitored by each of the subchannel frequency bands respectively corresponds to one inter-NAV, if An inter-NAV corresponding to the OBSS of the PPDU source is present in the designated subchannel frequency band, and the current value is smaller than the duration, and the duration of the target specified subchannel frequency band is smaller than the duration and the source of the PPDU The current value of the inter-NAV corresponding to the OBSS one-to-one is updated to the duration.
  • the first update unit 18 is configured to: when the PPDU is originated from an overlapping basic service set OBSS or when the PPDU is originated from a basic service set BSS associated with a site, and the site is not a sending target of the PPDU Obtaining a specified subchannel frequency band and duration value duration in the PPDU, if the current value of the NAV in the designated subchannel frequency band is smaller than the designated subchannel frequency band of the duration, the specified subchannel frequency band is smaller than the specified The current value of the NAV of duration is updated to the duration.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame originates from the BSS, and the station is on all subchannel bands of the channel transmission bandwidth of the BSS. The current value of the set intra-NAV is updated to the preset value.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame originates from the BSS, acquire a specified subchannel frequency band in the CF-END frame, and obtain the site The current value of the intra-NAV set on the designated subchannel band is updated to a preset value.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame is derived from the overlapping basic service set OBSS, and set the inter-NAV of the station on the all subchannel bands. The current value is updated to the default value.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame is derived from the overlapping basic service set OBSS, and set the site to the CF on the all subchannel bands. -END frame The current value of the same inter-NAV is updated to the preset value.
  • the second update unit 19 is configured to end the CF-END frame if the received contention-free period ends. And starting from the overlapping basic service set OBSS, acquiring the specified subchannel frequency band in the CF-END frame, and updating the current value of the inter-NAV set on the specified subchannel frequency band to a preset value.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame is derived from the overlapping basic service set OBSS, acquire the designated sub-channel frequency band in the CF-END frame, and The current value of the inter-NAV set on the designated subchannel frequency band corresponding to the OBSS in which the CF-END frame source is the same is updated to a preset value.
  • the second updating unit 19 is configured to: if the received contention-free period ends, the CF-END frame is derived from the overlapping basic service set OBSS, obtain the specified subchannel frequency band in the CF-END frame, and each one The current values of all the inter-NAVs corresponding to the OBSSs of the same source of the CF-END frame set in the designated subchannel bands are updated to preset values.
  • the second updating unit 19 is configured to acquire, if the received PPDU is a contention-free end CF-END frame, a specified subchannel frequency band in the CF-END frame, if the designated subchannel frequency band is used.
  • the source of the current value of the set NAV is consistent with the source of the CF-END frame, and the current value of the NAV is updated to a preset value.
  • the trigger frame sent by the access point of the BSS associated with the station may be received, and the current value of at least two NAVs set on the subchannel band of the channel transmission bandwidth of the BSS may be queried through at least two NAVs.
  • the current value, the available subchannel band for data transmission is selected from the channel transmission bandwidth of the BSS to respond to the trigger frame, and the data transmission of the channel transmission bandwidth is controlled by at least two NAVs, which can be reduced by adopting one NAV.
  • the transmission interference caused by the OBSS can be separately controlled by the data transmission on the subchannel frequency band of the channel transmission bandwidth by at least two NAVs, thereby improving the utilization of the frequency band.
  • Another data transmission protection method disclosed in the embodiment of the present invention is to set a NAV and a BSS color value on all subchannel bands of the channel transmission bandwidth.
  • the affiliate station sets a NAV and a BSS color corresponding to the source of the cell to which the NAV belongs.
  • the NAV is used to record the site being The length of time for data transmission on all subchannel bands of the channel transmission bandwidth is prohibited, and the BSS color is used to record the source of the BSS to which the PPDU of the NAV is located.
  • the BSS color may be derived from a BSS color carried by the SIG-A in the PPDU or from a TA value carried by a MAC header of the PPDU.
  • determining the source of the PPDU includes the following manner.
  • Manner 1 According to whether the BSS color in the SIG-A field and the BSS color value of the BSS in the PPDU are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • Manner 2 According to whether the TA value carried in the MAC header of the PPDU and the MAC address of the AP associated with the station are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • the station In addition to determining the source of the PPDU, the station also determines the granularity of the TXOP in the SIG-A field in the PPDU.
  • the granularity of the TXOP is used to indicate the minimum resolvable interval of the TXOP.
  • the length of the TXOP is 7 bits (B0-B6), where B0 represents the granularity unit, the value 0 represents the granularity of 8us, and the value 1 represents the granularity.
  • B1 ⁇ B6 represents the actual TXOP size
  • the TXOP range of 8us granularity can be expressed as (8us * value of (B1 ⁇ B6)), that is, 0 ⁇ 504us
  • the 128OP particle size can represent the TXOP range is ( 512+128*value of (B1 ⁇ B6)), ie 512 ⁇ 8576us.
  • the PPDU for setting or updating the current NAV is from the BSS, and when the TXOP field in the SIG-A field in the PPDU represents the granularity of the TXOP value changes from large to small, the NAV is The current value is updated to the TXOP value in the SIG-A field of the PPDU.
  • the current value of the NAV is updated to the TXOP value of the SIG-A field of the PPDU.
  • the PPDU is derived from the BSS
  • the PPDU for setting or updating the current NAV is from the BSS
  • the granularity of the currently set or updated NAV is 128 us
  • the granularity of the TXOP value in the SIG-A field of the PPDU is 128 us
  • the current value of the NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the PPDU of the current NAV is set or updated from the same OBSS, and the granularity of the TXOP field in the SIG-A field in the PPDU represents a change from the large to the In hours, the current value of the NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the current value of the NAV is updated to the TXOP value of the SIG-A field of the PPDU.
  • the PPDU is derived from OBSS1
  • the PPDU for setting or updating the current NAV is from the BSS1
  • the granularity of the currently set or updated NAV is 128 us
  • the granularity of the TXOP value in the SIG-A field of the PPDU is 8us
  • the current value of the NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the source of the PPDU is different from the source of the PPDU that sets or updates the current NAV
  • the current value of the NAV is updated to The TXOP value of the SIG-A field of the PPDU is updated, and the BSS color is updated to the BSS color value of the PPDU source.
  • the TXOP field in the SIG-A field in the PPDU represents a TXOP value less than or equal to the value of the current NAV, the current NAV and BSS color are not updated.
  • the source of the received PPDU is the same as the source of the PPDU for setting or updating the current NAV
  • the received PPDU is the same as the source of the PPDU for setting or updating the current NAV, and indicates the SIG-A of the PPDU.
  • the granularity of the TXOP is changed from large to small; optionally, if it is determined that the received PPDU is the same as the source of the PPDU for setting or updating the current NAV, the current NAV is updated to be in the SIG-A field of the PPDU.
  • the TXOP value is used to flexibly control the duration of the NAV and reduce over-protection of the channel, so that the NAV-enabled station can access the channel earlier and improve the efficiency of channel use.
  • Another data transmission protection method disclosed in the embodiment of the present invention is to set an intra-NAV and an inter-NAV on all subchannel bands of the channel transmission bandwidth.
  • the associated station sets an intra-NAV and an inter-NAV on the channel transmission bandwidth.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the station.
  • the arriving OBSS prohibits the length of time for data transmission on all subchannel bands of the channel transmission bandwidth.
  • determining the source of the PPDU includes the following manner.
  • Manner 1 According to whether the BSS color in the SIG-A field and the BSS color value of the BSS in the PPDU are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • Manner 2 According to whether the TA value carried in the MAC header of the PPDU and the MAC address of the AP associated with the station are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • the station In addition to determining the source of the PPDU, the station also determines the granularity of the TXOP in the SIG-A field in the PPDU.
  • the granularity of the TXOP is used to indicate the minimum resolvable interval of the TXOP.
  • the length of the TXOP is 7 bits (B0-B6), where B0 represents the granularity unit, the value 0 represents the granularity of 8us, and the value 1 represents the granularity.
  • B1 ⁇ B6 represents the actual TXOP size
  • the TXOP range of 8us granularity can be expressed as (8us * value of (B1 ⁇ B6)), that is, 0 ⁇ 504us
  • the 128OP particle size can represent the TXOP range is ( 512+128*value of (B1 ⁇ B6)), ie 512 ⁇ 8576us.
  • the PPDU for setting or updating the current NAV is from the BSS, and when the TXOP field in the SIG-A field in the PPDU represents the granularity of the TXOP value changes from large to small, the intra- The current value of the NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the current value of the intra-NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the PPDU is from the BSS
  • the PPDU for setting or updating the current NAV is from the BSS
  • the granularity of the currently set or updated NAV is 128 us
  • the granularity of the TXOP value in the SIG-A field of the PPDU is 128 us
  • the current value of intra-NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the PPDU for setting or updating the current NAV is from the same OBSS.
  • the TXOP field in the SIG-A field of the PPDU represents the granularity of the TXOP value changes from large to small
  • the inter-inter- The current value of the NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the current value of the inter-NAV is updated to the TXOP value in the SIG-A field of the PPDU.
  • the PPDU is from OBSS1
  • the PPDU for setting or updating the current NAV comes from OBSS1
  • the currently set or updated NAV has a granularity of 128 us
  • the granularity of the TXOP value in the SIG-A field of the PPDU is 8 us
  • the current value of the inter-NAV is updated to the SIG-A of the PPDU.
  • the TXOP value in the field is from OBSS1
  • the PPDU for setting or updating the current NAV comes from OBSS1
  • the currently set or updated NAV has a granularity of 128 us
  • the granularity of the TXOP value in the SIG-A field of the PPDU is 8 us
  • the current value of the inter-NAV is updated to the SIG-A of the PPDU.
  • the TXOP value in the field is from OBSS1
  • the PPDU for setting or updating the current NAV comes from OBSS1
  • the PPDU for setting or updating the current NAV is from other OBSS.
  • the TXOP field in the SIG-A field of the PPDU represents a TXOP value greater than the current NAV value
  • the current value of the NAV is updated to
  • the TXOP value of the SIG-A field of the PPDU is updated, and the BSS color is updated to be the BSS color value of the PPDU source.
  • the TXOP field in the SIG-A field in the PPDU represents a TXOP value less than or equal to the value of the current NAV, the current NAV and BSS color are not updated.
  • the duration of the PPDU pair channel from the BSS and the OBSS is set by setting an inter-NAV and an intra-NAV, and the TXOP value in the SIG-A of the PPDU from the BSS or the OBSS is used.
  • the current value of the intra-NAV or inter-NAV is updated to the TXOP value in the SIG-A of the PPDU to flexibly control the duration of the channel occupation by the station, and the over-protection of the channel is reduced, so that the setting is performed.
  • the NAV site can access the channel earlier and improve the efficiency of channel usage.
  • Yet another data transmission protection method disclosed in the embodiment of the present invention is to set a NAV on all subchannel bands of the channel transmission bandwidth.
  • the affiliate station When the affiliate station receives the PPDU, it determines the SIG-A field TXOP field in the PPDU. If the TXOP field is a specific value, the current value of the NAV is updated to a preset value.
  • the current value of the NAV may be updated to 0 to clear the current value of the NAV.
  • the function of resetting the NAV is set by setting the TXOP domain to a specific value, so as to flexibly control the duration of the channel occupation, and release the channel usage right in time when the station does not need to occupy the channel, so that other sites that are set to the NAV are set. It can access the channel earlier and improve the efficiency of channel usage.
  • Another data transmission protection method disclosed in the embodiment of the present invention is to set a NAV and a BSS color value on all subchannel bands of the channel transmission bandwidth.
  • the affiliate station sets a NAV and a corresponding channel on the channel transmission bandwidth.
  • the NAV is used to record the length of time that the station is prohibited from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the BSS color is used to record the source of the BSS to which the PPDU of the NAV is set.
  • determining the source of the PPDU includes the following manner.
  • Manner 1 According to whether the BSS color in the SIG-A field and the BSS color value of the BSS in the PPDU are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • Manner 2 According to whether the TA value carried in the MAC header of the PPDU and the MAC address of the AP associated with the station are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS. In addition to determining the source of the PPDU, the station also determines whether the TXOP in the SIG-A field in the PPDU is a specific value.
  • the current NAV is updated to a preset value.
  • the current NAV is not updated to a preset value.
  • the current value of the NAV may be updated to 0 to clear the current value of the NAV.
  • the function of resetting the NAV is set by setting the TXOP field to a specific value, so as to flexibly control the duration of the channel occupation, and release the channel usage right in time when the station does not need to occupy the channel, so that the PPDU of the same source is set.
  • Other sites of NAV can access the channel earlier and improve the efficiency of channel usage.
  • Another data transmission protection method disclosed in the embodiment of the present invention is to set an intra-NAV and an inter-NAV on all subchannel bands of the channel transmission bandwidth.
  • the associated station sets an intra-NAV and an inter-NAV on the channel transmission bandwidth.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the station.
  • the OBSS to the banned all subchannel frequencies in the channel transmission bandwidth The length of time to carry the data transmission.
  • determining the source of the PPDU includes the following manner.
  • Manner 1 According to whether the BSS color in the SIG-A field and the BSS color value of the BSS in the PPDU are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • Manner 2 According to whether the TA value carried in the MAC header of the PPDU and the MAC address of the AP associated with the station are equal. If the values of the two are equal, the PPDU is transmitted by the BSS. If the values of the two are not equal, the PPDU is not transmitted by the BSS.
  • the station In addition to determining the source of the PPDU, the station also determines whether the TXOP in the SIG-A field in the PPDU is a specific value. If the PPDU is derived from the BSS, when the TXOP in the SIG-A field of the PPDU is a specific value, the intra-NAV is updated to a preset value. If the PPDU is derived from the OBSS, and the TXOP in the SIG-A field of the PPDU is a specific value, the inter-NAV is updated to a preset value.
  • the current value of the intra-NAV may be updated to 0 to clear the intra-NAV.
  • a current value if the PPDU is derived from the OBSS and the SIG-A field in the PPDU is determined to be all zeros, the current value of the iner-NAV may be updated to 0 to clear the current value of the inter-NAV.
  • the function of resetting the NAV is set by setting the TXOP field to a specific value, so as to flexibly control the duration of the channel occupation, and release the channel usage right in time when the station does not need to occupy the channel, so that the BSS or the OBSS is used by the BSS or the OBSS.
  • Sites with PPDUs set up with NAVs can access the channel earlier, improving the efficiency of channel usage.
  • FIG. 12 is a schematic structural diagram of a data transmission protection apparatus according to an embodiment of the present invention.
  • the data transmission protection apparatus may include at least one processor 1001, such as a CPU, at least one wireless communication module 1002, a memory 1003, and at least one communication bus 1004.
  • Communication bus 1004 is used to implement connection communication between these components.
  • the wireless communication module 1002 can provide a wireless network access function for the data transmission protection device, and can communicate with the access point device by using a Wifi or Bluetooth equalization method.
  • the memory 1003 may contain high speed RAM memory and may also include non-volatile Non-volatile memory, such as at least one disk storage.
  • the memory 1003 can optionally include at least one storage device located remotely from the aforementioned processor 1001.
  • the memory 1003 stores elements, executable modules or data structures, or a subset thereof, or their extension set:
  • An operating system 10031 comprising various system programs for implementing various basic services and processing hardware-based tasks;
  • the application 10032 includes various applications such as a device control service program and a device identification service program for implementing various application services.
  • the processor 1001 is configured to invoke a program stored in the memory 1003 to perform the following operations:
  • the available subchannel bands for data transmission are selected from the channel transmission bandwidth of the BSS in response to the trigger frame.
  • Two network allocation vectors NAV including one intra-NAV and one inter-NAV, are set on all subchannel bands of the channel transmission bandwidth of the basic service set BSS associated with the station;
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on all subchannel bands of the channel transmission bandwidth.
  • the subchannel band set according to the channel transmission bandwidth of the BSS is set.
  • the current values of the two network allocation vectors NAV, from the available subchannel bands for data transmission in the channel transmission bandwidth of the BSS, in response to the trigger frame also perform the following steps:
  • a total of one intra-NAV is set on all subchannel bands of the channel transmission bandwidth, and at least one and each overlapping basic service set OBSS are respectively set on each subchannel band of the channel transmission bandwidth.
  • the intra-NAV is used to record the length of time that the station is prohibited by the BSS from performing data transmission on all subchannel bands of the channel transmission bandwidth, and the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • Two network allocation vectors NAV including one intra-NAV and one inter-NAV, are respectively disposed on each subchannel frequency band of the channel transmission bandwidth;
  • the intra-NAV is configured to record a length of time that the station is prohibited by the BSS from performing data transmission on a subchannel band in which the intra-NAV is set, where the inter-NAV is used for recording by the site.
  • the monitored OBSS prohibits the length of time for data transmission on the subchannel band in which the inter-NAV is set.
  • the NAV is used to record a length of time during which the station is prohibited from performing data transmission on a subchannel band in which the NAV is set by a station other than the station or an access point.
  • the current value of at least two network allocation vectors NAV set on a subchannel frequency band of a channel transmission bandwidth of the BSS is selected from a channel transmission bandwidth of the BSS for data transmission.
  • the subchannel frequency band is responsive to the trigger frame, and the following steps are specifically performed:
  • an inter-NAV When an inter-NAV is set on all subchannel bands of the channel transmission bandwidth, if the current value of the inter-NAV is equal to a preset value, all subchannel bands of the channel transmission bandwidth are selected for data transmission. A subchannel band is available to respond to the trigger frame;
  • the current value of at least two network allocation vectors NAV set on a subchannel frequency band of a channel transmission bandwidth of the BSS is selected from a channel transmission bandwidth of the BSS for data transmission.
  • the subchannel frequency band is responsive to the trigger frame, and the following steps are specifically performed:
  • At least one subchannel band whose current value of the inter-NAV is equal to a preset value is selected as an available subchannel for data transmission.
  • the at least one inter-NAV corresponding to each of the monitored overlapping basic service sets OBSS is respectively set on each subchannel band of the channel transmission bandwidth, if at least one subchannel band exists, all of the settings are
  • the current value of the inter-NAV is equal to a preset value, and the at least one subchannel frequency band is selected as an available subchannel frequency band for data transmission in response to the trigger frame.
  • selecting available subchannels for data transmission from a channel transmission bandwidth of the BSS according to a current value of at least two network allocation vectors NAV set on a subchannel band of a channel transmission bandwidth of the BSS The frequency band responds to the trigger frame by performing the following steps:
  • the current value of the NAV is derived from at least one subchannel band of the BSS and is selected for The available subchannel bands of data transmission are responsive to the trigger frame.
  • the frequency domain resource of the station is confirmed from the available subchannel frequency band according to the frequency domain resource scheduling information of the trigger frame, to perform data frame transmission on the confirmed frequency domain resource.
  • the PPDU is originated from an access point of the basic service set BSS associated with the site and is a trigger frame, determining whether the scheduling target of the trigger frame includes the site;
  • the scheduling target of the trigger frame includes the station, performing a current value of at least two network allocation vectors NAV set according to a subchannel frequency band of a channel transmission bandwidth of the BSS, and selecting a channel transmission bandwidth of the BSS An available subchannel frequency band for data transmission in response to the step of triggering the frame.
  • the inter-NAV corresponding to the OBSS with the same PPDU source of the duration is updated to the duration;
  • the current value of the inter-NAV corresponding to the OBSS is smaller than the duration, and the current value of the inter-NAV that is smaller than the duration and corresponding to the OBSS of the PPDU source is set to be updated on the target designated subchannel frequency band. For the duration.
  • the received contention-free period end CF-END frame originates from the BSS, update the current value of the intra-NAV set by the station on all subchannel bands of the channel transmission bandwidth of the BSS to a preset value; or
  • the received contention-free period end CF-END frame originates from the BSS, acquires a specified subchannel frequency band in the CF-END frame, and sets the intra-NAV of the station on the designated subchannel frequency band
  • the current value is updated to the default value.
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, the current value of the inter-NAV set by the station on the all subchannel bands is updated to a preset value;
  • the station sets an inter- corresponding to the OBSS corresponding to the CF-END frame source on the all subchannel frequency bands.
  • the current value of NAV is updated to a preset value
  • the received contention-free period end CF-END frame is derived from the overlapping basic service set OBSS, the specified sub-channel frequency band in the CF-END frame is obtained, and the current value of the inter-NAV set on the specified sub-channel frequency band is obtained. Update to a preset value; or
  • the designated sub-channel frequency band in the CF-END frame is obtained, and the designated OBSS corresponding to the CF-END frame source is used.
  • the current value of the inter-NAV set on the channel band is updated to a preset value; or
  • the designated sub-channel frequency band in the CF-END frame is obtained, and the CF-END is set on each of the designated sub-channel bands respectively.
  • the current values of all inter-NAVs corresponding to the OBSSs of the same END frame are updated to preset values.
  • the received PPDU is a contention-free end CF-END frame
  • obtain a specified subchannel frequency band in the CF-END frame if the source of the current value of the NAV set on the specified subchannel frequency band and the CF- The source of the END frame is consistent, and the current value of the NAV is updated to a preset value.
  • the triggering frame sent by the access point of the BSS associated with the station is received, and the current value of at least two NAVs set on the subchannel band of the channel transmission bandwidth of the BSS is queried to select for the data.
  • the available subchannel frequency band is transmitted in response to the trigger frame, which reduces the data transmission interference to the OBSS, and sets the NAV separately for different transmission bandwidths, thereby avoiding waste of frequency resources and improving frequency band utilization.
  • the function of the intra-NAV in the foregoing embodiments of the present invention may also be performed by the NAV in the prior art, that is, setting a NAV on all subchannel bands of the channel transmission bandwidth, using the prior art.
  • the NAV is combined with the inter-NAV involved in the above embodiments, and the data transmission protection is implemented within the scope of the present patent protection by using the steps or the execution units of the above various embodiments of the invention. Further, it is also within the scope of the present patent to implement the data data transmission protection by using the related steps or the execution unit of the embodiment of the present invention, and only the inter-NAV is set without the intra-NAV.

Abstract

本发明实施例公开了一种数据传输保护方法及其装置,其中的方法包括:站点接收到其关联的基本服务集BSS的接入点发送的触发帧;根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。本发明实施例可以通过至少两个NAV的当前值选取用于数据传输的可用子信道频带以响应所述触发帧,有利于减小数据传输干扰,提高了频带利用率。

Description

一种数据传输保护方法及其装置
本申请要求于2016年6月21日提交中国专利局、申请号为201610454706.4、发明名称为“一种数据传输保护方法及其装置”的中国专利申请的优先权,本申请还要求于2015年12月8日提交中国专利局、申请号为201510897813.X、发明名称为“一种数据传输保护方法及其装置”的中国专利申请的优先权,上述两个申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及了一种数据传输保护方法及其装置。
背景技术
现有无线局域网(Wireless local area network,WLAN)系统中的IEEE802.11MAC所使用信道接入机制是载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance,CSMA/CA)机制,所述机制可用于检测和避免当两个或两个以上的网络设备需要进行数据传送时网络上的冲突,其中,CSMA/CA机制中的虚拟载波监听机制可通过每个站点所维护的用于记录站点对信道占用时间的网络分配矢量(Network Allocation Vector,NAV),实现对数据传输的控制。
随着802.11ax通信标准的推进,其所提供的5GHz传输带宽拥有比2.4GHz更宽裕的信道传输带宽资源,所述信道传输带宽资源可以被划分为多个子信道传输带宽,并可由接入点将各子信道传输带宽分配给不同的站点,通过采用触发帧来调度多个站点在不同子信道传输带宽上同时进行数据传输。按照现有的802.11标准协议中的虚拟载波监听机制,站点会忽略接收到的发送目标不包含所述站点的物理层汇聚过程协议(physical layer convergence procedure,PLCP)的协议数据单元(physical layer convergence procedure(PLCP)protocol data unit, PPDU)内包含的相对较小的时间域值duration,而维持自身的NAV的当前值,此时若接收到基本服务集(Basic Service Set,BSS)的关联接入点发送的触发帧时,可能会因响应触发帧而对重叠基本服务集(Overlap Basic Service Set,,OBSS)的数据传输造成干扰。另一方面,现有技术通常采用单一NAV对整个信道传输带宽的所有信道子频带上的数据传输进行控制,当目标站点在某一频带上的接收到调度帧时NAV会根据相对当前值较大的duration对NAV的当前值进行更新,可能存在即使相邻站点或接入点没有占用当前频带时,目标站点仍然因NAV的当前值不满足预设阈值,从而导致目标站点仍然不能在当前频带进行数据传输,大大降低了频带的利用率。
发明内容
本发明实施例提供一种数据传输保护方法及其装置,采用多个NAV对数据传输进行控制,以期减小数据传输干扰,提高频带利用率。
本发明实施例第一方面公开了一种数据传输保护方法,包括:
站点接收其关联的基本服务集BSS的接入点发送的触发帧;
根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种实施方式中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取可用子信道频带以响应所述触发帧之前,还包括:
在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或,
在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共 设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度。
结合本发明实施例第一方面,在本发明实施例第一方面的第二种可能的实施方式中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取可用子信道频带以响应所述触发帧之前,还包括:
在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV;或
在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
结合本发明实施例第一方面,在本发明实施例第一方面的第三种可能的实施方式中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取可用子信道频带以响应所述触发帧之前,还包括:
在所述信道传输带宽的每一个子信道频带上分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或
在所述信道传输带宽的每一个子信道频带上分别设置一个intra-NAV和至 少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
结合本发明实施例第一方面,在本发明实施例第一方面的第四种可能的实施方式中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取可用子信道频带以响应所述触发帧之前,还包括:
在所述信道传输带宽的每一个子信道频带上分别设置一个NAV;
其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。
结合本发明实施例第一方面的第一种可能的实施方式,在本发明实施例第一方面的第五种可能的实施方式中,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,包括:
当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述inter-NAV的当前值等于所述预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧;
当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述inter-NAV的当前值均等于所述预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
结合本发明实施例第一方面的第二种可能的实施方式或第三种可能的实施方式,在本发明实施例第一方面的第六种可能的实施方式中,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响 应所述触发帧,包括:
当所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;
当所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
结合本发明实施例第一方面的第四种可能的实施方式,在本发明实施例第一方面的第七种可能的实施方式中,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,包括:
将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;或
将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
结合本发明实施例第一方面的第一种可能的实施例方式至第七种可能的实施方式,在本发明实施例第一方面的第八种可能的实施方式中,所述方法还包括:在选取可用子信道频带后,根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在所述确认的频域资源上进行数据帧发送。
结合本发明实施例第一方面的第一种可能的实施例方式至第八种可能的实施方式,在本发明实施例第一方面的第九种可能的实施方式中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型;
若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点;
若所述触发帧的调度目标包含所述站点,执行根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧的步骤。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十种可能的实施方式中,所述判断所述PPDU来源之后,还包括:
若所述PPDU来源于站点所关联的基本服务集BSS且所述站点非所述PPDU的发送目标,获取所述PPDU以获得时长值duration;
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration;或
获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十一种可能的实施方式中,所述判断所述PPDU的来源之后,还包括:
若所述PPDU来源于OBSS,获取所述PPDU中的时长值duration;
当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration;
当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration;
当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述 duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration;
当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十二种可能的实施方式中,接收到PPDU之后,还包括:
当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十三种可能的实施方式中,所述当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型之后,还包括:
若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV的当前值更新为预设值。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十四种可能的实施方式中,还包括:
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所 述站点在所述全部子信道频带上设置与所述CF-END帧来源相同的所述OBSS对应的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
结合本发明实施例的第一方面的第九种可能的实施方式,在本发明实施例第一方面的第十五种可能的实施方式中,还包括:
若接收到的PPDU是免竞争周期结束CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
本发明实施例的第二方面公开了一种数据传输保护装置,所述装置具有实现上述方法的实际中站点行为的功能,所述功能可以通过硬件实现,也可以通过在硬件上执行相应的软件实现。所述硬件或软件可包括一个或多个与上述功能相对应的模块。
所述装置在另一种可能的设计中,其包括处理器和无线通信模块,所述处理器被配置为支持所述站点执行上述方法的功能,所述无线通信模块用于支持站点与接入点或其它站点之间的通信,向所述接入点或其它站点收发上述方法中所设计的PPDU。所述装置包括存储器,所述存储器用于与处理器耦合,保存所述站点必要的程序指令和数据。
本发明实施例中,可以通过接收到站点所关联的BSS的接入点发送的触 发帧,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,减小了数据传输干扰,并可针对不同的信道传输带宽分别设置NAV,以避免频带资源浪费,提高频带利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种WLAN结构示意图;
图2是本发明实施例公开的一种信道接入竞争的示意图;
图3是本发明实施例公开的一种数据传输保护方法的流程示意图。
图4是本发明实施例公开的另一种数据传输保护方法的流程示意图;
图5是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图6是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图7是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图8是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图9是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图10是本发明实施例公开的又一种数据传输保护方法的流程示意图;
图11是本发明实施例公开的一种数据传输保护装置的模块化示意图;
图12是本发明实施例公开的一种数据传输保护装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例中,信道传输带宽可以包括20MHz、40MHz、80MHz或160MHz等,以20MHz作为最小单位信道传输频带可将整个信道传输带宽划分为多个子信道频带,并可根据子信道频带设置相应的一个或多个NAV。本实施例中的NAV、intra-NAV或inter-NAV的当前值的来源是指设置当前NAV、intra-NAV或inter-NAV的PPDU来源于哪个BSS或OBSS。需要强调的是,本发明实施例中,所述预设值可以是0,也可以根据需要进行设定;所述调度目标可以通过数据帧的信令B部分的或是触发帧的资源指示信息中的调度标识进行判断;所述发送目标可以通过PPDU中的接收地址进行判断。
为了便于理解本发明实施例,下面先对本发明实施例的WLAN结构示意图进行描述。请参阅图1,图1是本发明实施例公开的一种WLAN结构示意图,基于IEEE 802.11技术的WLAN的基本组成部分是BSS,BSS由接入点(Access Point,AP)和多个站点(Station,STA)组成,其中,所述接入点AP可以是基站、路由器、交换机等等,可用于调度BSS范围内的STA,所述站点STA可以是如笔记本电脑、无线音箱、智能手机等无线接入设备,可用于响应BSS的接入点AP的调度。图1中BSS1和BSS2两个相邻的BSS互为OBSS,共享信道传输带宽的不同子信道频带。其中,STA1~3为BSS1的站点,AP1为BSS1的接入点,STA4为BSS2的站点,AP2为BSS2的接入点,STA2处于BSS1和BSS2的重叠区域,可以同时监听到BSS1的AP1和BSS2中靠近STA2的站点或接入点的数据帧。
IEEE802.11工作组先后成立高效无线局域网研究组(High Efficiency WLAN Study Group,HEW SG)和成立802.11ax工作组,将传输带宽由2.4GHz升级到5GHz,AP可以将整个信道传输带宽划分为不同的子信道频带,并将不同的子信道频带分配给不同的STA,通过采用BSS的接入点发送的触发帧来调度多个STA,以使多个不同的频带上同时进行数据传输。根据现有802.11标准,STA可以忽略OBSS触发帧内包含的较小的duration而维持自身定时器NAV,当STA响应当前接收到的BSS的调度帧时,可能会对OBSS的数据传输造成干扰。如图1所示,当STA2接收到AP1发送的调度目标为STA2的触发帧时,根据触发 帧的duration1设置NAV,若接收到STA4的数据帧且所述帧携带的duration2小于duration1,则NAV维持当前的duration1不变,在大于duration1小于duration2的时间内,若STA2再次接收到AP1发送的调度目标为STA2的触发帧,则STA2将响应AP1发送的触发帧,此时,STA2向AP1发送的数据帧可能会被正在进行数据传输的STA4所接收,从而造成对OBSS数据传输的干扰。
另一方面,由于每个BSS的AP对STA的调度所使用的频段可能不同,采用现有802.11标准的单一定时器NAV来管理多个子信道频带上的调度,可能存在资源浪费问题。图2为一种信道接入竞争的示意图,如图2所示,若将信道频带带宽分为子信道频带1~4,当OBSS上的AP2在子信道频带4调度STA2,AP3在频带1调度STA3,STA1会根据STA2或STA3的响应数据帧中的最大duratinon设置NAV,由于整个带宽只有一个NAV,即使STA1的相邻接入点或站点并未占用子信道频带2和3,由于NAV的值为非空闲值,因此STA1仍然不能在频带2和3上与AP1进行上行数据传输,从而造成资源浪费。
以上结合图1对WLAN结构示意图和图2的信道接入竞争的示意图以及当前存在的问题进行了描述,下面进一步描述本发明实施例公开的方法。请参阅图3,图3是本发明实施例公开的一种数据传输保护方法的流程示意图,所述方法可以包括步骤S101~S102。
S101,站点接收其所关联的基本服务集BSS的接入点发送的触发帧。
具体实施例中,站点接收其所关联的基本服务集BSS的接入点发送的触发帧。当站点检测到其所关联的基本服务集BSS的接入点发送的PPDU时,可以判断PPDU是否为触发帧,若是,则接收所述触发帧。
S102,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
具体实施例中,所述站点根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。其中,NAV作为网络分配 矢量,应用于虚拟载波监听中,可相当于一个计数器,用于虚拟地反映信道的忙与闲。本发明实施例中,在站点所关联的BSS的信道传输带宽的子信道频带上设置有至少两个NAV,用于控制信道接入竞争,起到数据传输保护的作用。
本发明实施例中,可约定NAV值为0表示可用子信道频带允许进行数据传输,当NAV的值为非0表示可用子信道频带不允许进行数据传输。站点STA1可以在信道传输带宽的全部子信道频带上维护两类NAV,包括intra-NAV和inter-NAV,其中,intra-NAV用于维护BSS的NAV,inter-NAV用于维护OBSS的NAV并获取intra-NAV和inter-NAV的当前值,若inter-NAV=0,则可从所述BSS的信道传输带宽中选取全部子信道频带作为可用子信道频带,允许在全部子信道频带上进行数据传输。也可以在整个信道传输带宽的至少两个子信道频带中的每一个子信道频带上维护一个NAV或在至少两个子信道频带中的每一个子信道频带上维护两类NAV,包括intra-NAV和inter-NAV,并获取NAV的当前值。
为了减少信道接入竞争中存在的数据传输冲突和干扰,在BSS的信道传输带宽的所有子信道频带上或每一个信道传输带宽的子信道频带上设置NAV。为了区分NAV的来源,可以进一步将NAV分为被关联的BSS所设置的intra-NAV和被OBSS所设置的inter-NAV。根据NAV的当前值可以从所述信道传输带宽中的子信道频带中选择可用子信道频带进行数据帧如上行数据帧的发送。以信道传输带宽的所有子信道频带上共设置两个NAV为例,包括一个intra-NAV和一个inter-NAV,若检测到inter-NAV=0,说明当前OBSS中没有会干扰本站点的节点如接入点或站点的数据传输,选择信道传输带宽的所有子信道频带为可用子信道频带,并可允许在可用子信道频带上进行数据传输。
本发明实施例中,可以通过接收到站点所关联的BSS的接入点发送的触发帧,并根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,减小了数据传输干扰,并可针对不同的信道传输带宽分别设置NAV,以避免频带资源浪费,提高频带利用率。
请参阅图4,图4是本发明实施例公开的另一种数据传输保护方法的流程 示意图,所述方法包括步骤S201-S204。
S201,在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV。
具体实施例中,在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个NAV,包括一个intra-NAV和一个inter-NAV,其中,intra-NAV用于记录站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,inter-NAV用于记录被站点所监听到的OBSS禁止在信道传输带宽的全部子信道频带上进行数据传输的时间长度。例如,如图2所示,在整个信道传输带宽的全部子信道频带上设置一个intra-NAV和一个inter-NAV,假设intra-NAV和inter-NAV的初始值均为0,若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,STA1可获得所述非发送给自己的PPDU中时长值duration=10,并根据duration设置intra-NAV=10,若STA1接收到STA2发送的duration=4的PPDU时,可设置inter-NAV=4。需要说明的是intra-NAV和inter-NAV可依据接收到的PPDU的duration值和帧的来源进行更新,对NAV的更新时需满足duration值大于相应的NAV的当前值,例如,若STA1同时接收到STA2和STA3分别发送的duration1=4的PPDU和duration2=6的PPDU,则由于duration2>duration1,可设置inter-NAV=6。
S202,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,当接收到PPDU时,所述站点判断所述PPDU来源,并判断所述PPDU的类型。本发明实施例中,PPDU可以包括数据帧,触发帧、CF-END帧等多种类型,PPDU可由BSS或OBSS上的任意节点如接入点和站点所发送。例如,当STA2接收到PPDU时,通过判断PPDU的MAC header的帧类型字段获知是触发帧还是CF-END帧,若PPDU为触发帧时,可以通过解析触发帧通过MAC域的TA字段判断触发帧的来源;若PPDU为CF-END帧时,可以通过解析CF-END帧MAC域的BSSID字段判断CF-END帧的来源。
S203,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,若所述PPDU来源于站点所关联的BSS的接入点且为触发帧,所述站点判断所述触发帧的调度目标是否包含所述站点。本发明实施例中,所述可以采用触发帧的MAC域的资源指示信息中的站点标识与关联时AP配置的AID值进行匹配来判断触发帧的调度目标是否包含所述站点,若匹配一致,则说明此触发帧的调度目标包含所述站点。
S204,当所述触发帧的调度目标包含所述站点时,若所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,当所述触发帧的调度目标包含所述站点时,若所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值等于所述预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。本发明实施例中,若信道传输带宽为80MHz,则信道传输带宽的全部子信道频带即为80MHz,可以在所述80MHz上设置一个intra-NAV和一个inter-NAV。若约定0表示可用子信道频带允许进行数据传输,非0表示可用子信道频带不允许进行数据传输,当inter-NAV=0时,可确定所述信道传输带宽的全部子信道频带为可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
以图2中的STA2为例,AP2为STA2的关联接入点,当AP2需要调度STA2进行数据传输时,可以向STA2发送触发帧,所述触发帧的调度目标指向STA2,STA2根据AP2所维护的两个NAV中inter-NAV的当前值判断信道传输带宽的全部子信道频带是否为可用子信道频带,若inter-NAV=0,则选择信道传输带宽的全部子信道频带为可用子信道频带。站点根据触发帧的频域资源调度信息,可以从可用子信道频带中确认站点的传输的频域资源,例如,可用子信道频带为频带2和频带3,则可根据触发帧的中所要求使用的频带2中的4MHz带宽资源, 则可以确认站点的传输的频域资源为频带2中的4MHz,并在其上进行数据帧发送以响应所述触发帧。
可选的,通过所述信道传输带宽的全部子信道频带发送数据帧如上行数据帧的前提条件还包括判断当前的信号强度小于信道空闲评估(CCA,Clear Channel Assessment)门限或OBSS包检测(OBSS packet detection level)门限。
在执行上述步骤S202之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过PPDU的来源判断选择intra-NAV或inter-NAV进行更新。
可选的步骤A,若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration。
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,若所述PPDU来源于站点所关联的BSS且所述PPDU不是发送给所述站点的,所述站点可解析所述PPDU以获取duration,若所述intra-NAV的当前值小于所述duration,可对所述intra-NAV的当前值进行更新。例如如图2所示,AP1发送数据帧指向STA4,STA1接收到所述数据帧,可解析所述数据帧获得duration=10,而若此时intra-NAV=5,则可以将intra-NAV的当前值更新为10。
可选的,若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration。
当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration。
具体实现中,若所述PPDU来源于OBSS,所述站点可解析所述PPDU以获得duration,若所述inter-NAV的当前值小于所述duration,可对所述inter-NAV的当前值进行更新。例如如图2所示,若AP2发送数据帧给STA2,而STA1接收到所述数据帧,则可将所述数据帧进行解析获得duration=10,而若此时inter-NAV=5,则可以将inter-NAV的当前值更新为10。
在执行上述步骤S202之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断数据帧的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发明实施例中,预设值可以为0。
可选的步骤B,若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值。
具体实现中,若CF-END帧来源于所述BSS,可以将所述intra-NAV的当前值更新为预设值0,以清除intra-NAV的当前值。
可选的,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值更新为预设值。
具体实现中,若CF-END帧来源于所述OBSS,可以将所述inter-NAV的当前值更新为预设值0,以清除inter-NAV的当前值。
进一步可选的,若接收到的CF-END帧来源于OBSS,判断所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值的来源与所述CF-END帧的来源是否相同,若相同,将所述inter-NAV的当前值更新为预设值。例如,CF-END帧来源于OBSS2,若所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值的来源也是OBSS,则可以将inter-NAV的当前值更新为预设值0。
本发明实施例中,站点在所关联的BSS的信道传输带宽的全部子信道频带上设置了一个intra-NAV和一个inter-NAV,当PPDU为触发帧时,可以通过intra-NAV和inter-NAV的当前值获取用于数据传输的可用子信道频带以响应所述触发帧,实现数据传输保护,相比采用单一NAV,减小了数据传输的干扰,根据PPDU的来源或CF-END帧的来源对intra-NAV或inter-NAV分别进行更新,避免了NAV的误更新或清除。
请参阅图5,图5是本发明实施例公开的又一种数据传输保护方法的流程 示意图,所述方法包括步骤S301-S304。
S301,在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上分别设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV。
具体实施例中,在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上分别设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV,其中,intra-NAV用于记录站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,inter-NAV用于记录被站点所监听到的OBSS禁止在信道传输带宽的全部子信道频带上进行数据传输的时间长度。例如,如图2所示,假设站点STA1可监听到2个OBSS,在整个信道传输带宽的全部子信道频带上可设置一个intra-NAV和2个inter-NAV,其中,OBSS1和OBSS2分别对应inter-NAV1和inter-NAV2,假设所有intra-NAV和inter-NAV初始值均为0,若站点STA1所在的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,若解析获得PPDU的duration=10,可设置intra-NAV=10,若STA1同时接收到OBSS1中的STA2和OBSS2中的STA3分别发送的duration1=4的PPDU和duration2=6的PPDU,可分别设置inter-NAV1=4,inter-NAV2=6。
S302,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S302可以参见图4所示的步骤S202,在此不再进行赘述。
S303,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S303可以参见图4所示的步骤S203,在此不再进行赘述。
S304,当所述触发帧的调度目标包含所述站点时,若所述BSS的信道传输带宽的全部子信道频带上设置的所有与所监听到的每一个OBSS一一对应的inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息, 从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,当所述触发帧的调度目标包含所述站点时,若所述BSS的信道传输带宽的全部子信道频带上设置的所有与所监听到的每一个OBSS一一对应的inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。本发明实施例中,若信道传输带宽为80MHz,则信道传输带宽的全部子信道频带即为80MHz,可以在所述80MHz上设置一个intra-NAV和与所监听到的OBSS数量相同的inter-NAV。若约定0表示可用子信道频带允许进行数据传输,非0表示可用子信道频带不允许进行数据传输,当全部N(N为自然数)个OBSS对应的N个inter-NAV=0时,可确定所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带,站点可以通过所述用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
以图2中的STA1为例,假设有OBSS1和OBSS2两个OBSS,分别对应设置inter-NAV1和inter-NAV2,AP1为STA1的关联接入点,当AP1发送调度目标指向STA4,duration为4的触发帧时,假设触发帧的duration为4时,intra-NAV=4,若此时STA2和STA3分别发送duration1=3和duration2=5的数据帧时,则inter-NAV1=3,inter-NAV2=5,则只有当inter-NAV1和inter-NAV2同时为0时,才能够选择所述信道传输带宽的全部子信道频带为可用子信道频带。站点根据触发帧的频域资源调度信息,可以从可用子信道频带中确认站点的传输的频域资源,例如,可用子信道频带为频带2和频带3,则可根据触发帧的中所要求使用的频带2中的4MHz带宽资源,则可以确认站点的传输的频域资源为频带2中的4MHz,并在其上进行数据帧发送以响应所述触发帧。
可选的,通过所述信道传输带宽的全部子信道频带发送数据帧如上行数据帧的前提条件还包括判断当前的信号强度小于CCA门限或OBSS packet detection level门限。
在执行上述步骤S302之后,所述站点还可以执行对NAV的当前值进行更新 的步骤,本发明实施例中,可以通过PPDU的来源判断选择intra-NAV或inter-NAV进行更新。
可选的,若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration;
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S202之后步骤A,在此不再进行赘述。
可选的,若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration;
当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration。
具体实现中,若所述PPDU来源于重叠基本服务集OBSS,所述站点获取所述PPDU中的时长值duration,当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,所述站点将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration。
例如,假设存在2个OBSS,全部子信道频带上设置分别与OBSS1和OBSS2对应的inter-NAV1和inter-NAV2,若PPDU来源于OBSS2且PPDU中的duration=10,而inter-NAV1和inter-NAV2的当前值inter-NAV1=3、inter-NAV2=6分别来源于OBSS1和OBSS2,由于inter-NAV2的当前值与inter-NAV2来源相同,且inter-NAV2<duration,因此可以将inter-NAV2的当前值更新为10,inter-NAV1不进行更新。
在执行上述步骤S302之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断PPDU的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发 明实施例中,预设值可以为0。
可选的,若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值。
可选的,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图3所示的在执行上述步骤S202之后步骤B,在此不再进行赘述。
进一步可选的,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的与所述CF-END帧来源相同所述OBSS对应的inter-NAV的当前值更新为预设值。
具体实现中,若接收到的CF-END帧来源于OBSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的与所述CF-END帧来源相同的OBSS对应的inter-NAV的当前值更新为预设值。例如,CF-END帧来源于OBSS2,若OBSS2对应于inter-NAV2,则将inter-NAV2更新为预设值,其它inter-NAV不进行更新。
本发明实施例在前面实施例基础上,对inter-NAV的设置方式由全部子信道频带上设置一个inter-NAV更改为在至少一个与所监听到的每一个OBSS分别对应的inter-NAV,除具有减小OBSS干扰和NAV误更新或清除效果以外,还提供了针对特定OBSS的inter-NAV进行清除和更新的方法。
请参阅图6,图6是本发明实施例公开的又一种数据传输保护方法的流程示意图,所述方法包括步骤S401-S404。
S401,在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV。
具体实施例中,所述站点在所述信道传输带宽的全部子信道频带上共设置 一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV,其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。例如,如图2所示,假设在整个信道传输带宽划分有频带1~4四个子信道频带,在频带1~4中可共设置1个intra-NAV和4个inter-NAV,其中,频带1~4分别设置对应的inter-NAV1~4,所有intra-NAV和inter-NAV的初始值均为0,若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,若解析获得PPDU的duration=10,则可设置intra-NAV=4,若STA1同时接收到OBSS中的STA2发送duration=4、指定子信道频带为频带1~2的PPDU,可设置inter-NAV1=4,inter-NAV2=4。
S402,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S402可以参见图4所示的步骤S202,在此不再进行赘述。
S403,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S403可以参见图4所示的步骤S203,在此不再进行赘述。
S404,当所述触发帧的调度目标包含所述站点时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,当所述触发帧的调度目标包含所述站点时,所述站点将所述inter-NAV的当前值等于所述预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。本发明实施例中,若信道传输带宽为80MHz,则信道传输带宽可划分为4个20MHz的子信道频带,在80MHz上设置1个intra-NAV,并在每一个20MHz的子信道频带上设置1个inter-NAV。若约定0表示可用子信道频带允许进行数据传输,非0表示可用子信道频带不允许进行 数据传输。本发明实施例可以采用两种方式选取可用子信道频带,第一种方式为若所有指定子信道频带上设置的inter-NAV均等于预设值时,可以将所有指定子信道频带选取为可用子信道频带;第二种方式为若所有指定子信道频带中存在inter-NAV等于预设值的指定子信道频带,将其选取为可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
以图2中的STA1为例,假设存在频带1~4四个子信道频带,频带上设置的所有intra-NAV和inter-NAV的初始值均为0,AP1为STA1的关联接入点,若AP1在频带2~3上调用STA1,可根据第一种方式判断频带2~3上设置的inter-NAV2和inter-NAV3的当前值是否均等于预设值,若是则确定频带2~3为可用子信道频带;或根据第一种方式判断频带2~3上设置的inter-NAV2和inter-NAV3的当前值中是否存在等于预设值的,例如inter-NAV2的当前值等于预设值而inter-NAV3的当前值不等于预设值,则可以将设置inter-NAV2的频带2选取为可用子信道频带。站点根据触发帧的频域资源调度信息,可以从可用子信道频带中确认站点的传输的频域资源,例如,可用子信道频带为频带2和频带3,则可根据触发帧的中所要求使用的频带2中的4MHz带宽资源,则可以确认站点的传输的频域资源为频带2中的4MHz,并在其上进行数据帧发送以响应所述触发帧。
可选的,通过所述信道传输带宽的子信道频带发送数据帧如上行数据帧的前提条件还包括判断当前的信号强度小于CCA门限或OBSS packet detection level门限。
在执行上述步骤S402之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过PPDU的来源判断选择intra-NAV或inter-NAV进行更新。
可选的,若所述PPDU来源于站点所关联的基本服务集BSS,解析所述PPDU以获得时长值duration。
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤 S202之后步骤A,在此不再进行赘述。
可选的步骤C,若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration。
当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration。
具体实现中,当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration。例如,PPDU的指定子信道频带为频带2,若频带2对应的inter-NAV2=4,PPDU中的duration=8,则更新inter-NAV2=8,若频带2对应的inter-NAV2=10,则不进行更新。
在执行上述步骤S402之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断PPDU的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发明实施例中,预设值可以为0。
可选的,若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S202之后步骤B,在此不再进行赘述。
可选的步骤D,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值。
具体实现中,若CF-END帧来源于所述OBSS,可以通过解析所述CF-END帧获得指定子信道频带如子信道频带1~2,可以将子信道频带1~2对应的inter-NAV的当前值更新为预设值0,以清除inter-NAV的当前值。
可选的步骤E,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值。
具体实现中,若CF-END帧来源于所述OBSS2,可以通过解析所述CF-END帧获得指定子信道频带如子信道频带1~2,若子信道频带1~2上的inter-NAV1、inter-NAV2的当前值来源分别为OBSS1、OBSS2,则可将inter-NAV2的当前值更新为预设值0,以清除inter-NAV2的当前值。
本发明实施例中,站点在所关联的BSS的信道传输带宽的所有子信道频带上设置一个intra-NAV和,在每一个子信道频带上设置了一个inter-NAV,当PPDU为触发帧时,可以通过intra-NAV和inter-NAV的当前值获取指定子信道频带中的可用子信道频带并发送数据帧以响应所述触发帧,相比采用单一NAV,减小了对OBSS数据传输的干扰,根据PPDU的来源或CF-END帧的来源对指定子信道频带上的intra-NAV或inter-NAV分别进行更新,避免了NAV的误更新或清除。
请参阅图7,图7是本发明实施例公开的又一种数据传输保护方法的流程示意图,所述方法包括步骤S501-S505。
S501,在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV。
具体实施例中,所属站点在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV,其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。例如,如图2所示,假设在整个信道传输带宽划分有频带1~4四个子信 道频带,有OBSS1和OBSS2两个OBSS,在频带1~4中共设置1个intra-NAV和多个inter-NAV,其中,在每一个频带上分别对应OBSS1和OBSS2各设置一个inter-NAV,如频带3上设置inter-NAV31和inter-NAV32分别对应OBSS1和OBSS2,且intra-NAV和inter-NAV的初始值均为0。若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时可接收到所述PPDU并解析获得PPDU的duration=10,则可设置intra-NAV=4,若STA1接收到OBSS1中的STA2发送duration=4、指定子信道频带为频带1~2的PPDU,则设置inter-NAV11=4、inter-NAV21=4,若STA1接收到OBSS2中的STA3发送duration=5、指定子信道频带为频带1~3的PPDU,可设置inter-NAV12=5,intra-NAV22=5,intra-NAV32=5。
S502,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S502可以参见图4所示的步骤S202,在此不再进行赘述。
S503,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S503可以参见图4所示的步骤S203,在此不再进行赘述。
S504,当所述触发帧的调度目标包含所述站点时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,当所述触发帧的调度目标包含所述站点时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为可用子信道频带以响应所述触发帧。本发明实施例中,若有OBSS1和OBSS2两个OBSS,信道传输带宽为80MHz,则信道传输带宽可划分为4个20MHz的子信道频带,在80MHz上设置一个intra-NAV,并在每一个20MHz的子信道频带上如频带3设置与OBSS1、OBSS2分别对应的inter-NAV31、inter-NAV32。若约定0表示可用子信道频带允许进行数据传输,非0表示可用 子信道频带不允许进行数据传输。本发明实施例可以采用两种方式选取可用子信道频带,第一种方式为若所有指定子信道频带上设置的所有inter-NAV均等于预设值时,可以将所有指定子信道频带选取为可用子信道频带;第二种方式为若所有指定子信道频带中存在至少一个指定子信道频带,其上设置的所有inter-NAV等于预设值,则可以将其选取为可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
以图2中的STA1为例,假设存在OBSS1和OBSS2两个OBSS,频带1~4四个子信道频带,频带上设置的所有intra-NAV和inter-NAV的初始值均为0,AP1为STA1的关联接入点,若AP1在频带2~3上调用STA1,可根据第一种方式判断频带2~3上设置的inter-NAV21、inter-NAV22和inter-NAV31、inter-NAV32的当前值是否均等于预设值,若是则确定频带2~3为可用子信道频带;或根据第一种方式判断频带2~3上设置的inter-NAV21和inter-NAV22是否等于预设值,以及inter-NAV31和inter-NAV32的当前值中是否等于预设值,若频带2上设置的inter-NAV21和inter-NAV22的当前值等于预设值而频带3上设置的inter-NAV31和inter-NAV32的当前值不等于预设值,则可以将频带2选取为可用子信道频带。站点根据触发帧的频域资源调度信息,可以从可用子信道频带中确认站点的传输的频域资源,例如,可用子信道频带为频带2和频带3,则可根据触发帧的中所要求使用的频带2中的4MHz带宽资源,则可以确认站点的传输的频域资源为频带2中的4MHz,并在其上进行数据帧发送以响应所述触发帧。
可选的,通过所述信道传输带宽的子信道频带发送数据帧如上行数据帧的前提条件还包括判断当前的信号强度小于CCA门限或OBSS packet detection level门限。
在执行上述步骤S502之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过PPDU的来源判断选择intra-NAV或inter-NAV进行更新。
可选的,若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration。
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S202之后步骤A,在此不再进行赘述。
可选的步骤F,若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration;
当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
具体实现中,例如,所述站点可监听到OBSS1和OBSS2,假设PPDU来自于OBSS1的指定子信道频带为频带4,频带4上设置2个inter-NAV,inter-NAV41=4和inter-NAV42=10,当PPDU中的duration=8,则可更新小于duration的inter-NAV41=8,不对inter-NAV42以及其它频带上的inter-NAV进行更新。
在执行上述步骤S502之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断PPDU的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发明实施例中,预设值可以为0。
可选的,若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S202之后步骤B,在此不再进行赘述。
可选的步骤G,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV 的当前值更新为预设值。
具体实现中,若CF-END帧来源于所述OBSS,可以通过解析所述CF-END帧获得指定子信道频带如频带4,若CF-END帧来源于OBSS2,OBSS2在频带4上对应inter-NAV42,可以将inter-NAV42的当前值更新为预设值0,以清除inter-NAV的当前值。
本发明实施例中,站点在所关联的BSS的信道传输带宽的每一个子信道频带上设置了一个intra-NAV和与所监听到的每一个OBSS一一对应的inter-NAV,除具有减小OBSS干扰和NAV误更新或清除效果以外,还提供了针对各个子信道频带上的特定OBSS的inter-NAV进行清除和更新的方法。
请参阅图8,图8是本发明实施例公开的又一种数据传输保护方法的流程示意图,所述方法包括步骤S601-S604。
S601,在所述信道传输带宽上的每一个子信道频带分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV。
具体实施例中,所述站点在所述信道传输带宽上的每一个子信道频带分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV,其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。例如,如图2所示,假设在整个信道传输带宽划分有频带1~4四个子信道频带,在每一个频带上设置4个intra-NAV和4个inter-NAV,初始值均为0,若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,若解析获得PPDU的duration=10,指定子信道频带为频带1~2,则可设置intra-NAV1=4,intra-NAV2=4,若STA1同时接收到OBSS中的STA2发送duration=4、指定子信道频带为频带3~4的PPDU,可设置inter-NAV3=4,inter-NAV4=4。
S602,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S602可以参见图4所示的步骤S202,在此 不再进行赘述。
S603,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S603可以参见图4所示的步骤S203,在此不再进行赘述。
S604,当所述触发帧的调度目标包含所述站点时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,本发明实施例步骤S604可以参见图6所示的步骤S404,在此不再进行赘述。
在执行上述步骤S602之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过数据帧的来源判断选择intra-NAV或inter-NAV进行更新。
可选的步骤H,若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration。
获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,通过解析PPDU获得指定子信道频带如频带1~2,若频带1~2中intra-NAV1=2,intra-NAV2=5,PPDU的duration=4,则可以将intra-NAV1的值更新为4,对intra-NAV2和其它频带上的intra-NAV不进行更新。
可选的,若所述PPDU来源于重叠基本服务集OBSS,解析所述PPDU以获得时长值duration。
当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图6所示的在执行上述步骤S402之后步骤C,在此不再进行赘述。
在执行上述步骤S602之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断PPDU的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发明实施例中,预设值可以为0。
可选的步骤I,若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV的当前值更新为预设值。
具体实现中,例如频带1~4分别对应intra-NAV1~4,若接收到的所述CF-END帧来源于所述BSS,获取CF-END帧中的指定子信道频带为频带1~2,可将intra-NAV1~2的当前值更新为0,以清除所述intra-NAV1~2的当前值。
可选的,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图6所示的在执行上述步骤S402之后步骤D,在此不再进行赘述。
进一步可选的,若接收到的CF-END帧来源于OBSS,获取所述CF-END帧中指定子信道频带,判断所述站点在所述指定子信道频带上设置的inter-NAV的当前值的来源与所述CF-END帧的来源是否相同,若相同,将所述inter-NAV的当前值更新为预设值。
假设存在两个OBSS,若CF-END帧来源于OBSS2且指定子信道频带为2~3,其对应的inter-NAV2和inter-NAV3的当前值分别来源于OBSS1和OBSS2,因此可以将inter-NAV3的当前值更新为预设值0,inter-NAV2的当前值不进行更新。本发明实施例中,站点在所关联的BSS的信道传输带宽的每一个子信道频带上设置了一个intra-NAV和一个inter-NAV,相比较图6中的实施例,除具有减小OBSS干扰和NAV误更新或清除效果以外,还提供了针对特定频带上的intra-NAV的清除和更新方法。
请参阅图9,图9是本发明实施例公开的又一种数据传输保护方法的流程示意图,所述方法包括步骤S701-S704。
S701,在所述信道传输带宽上的每一个子信道频带分别设置一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV。
具体实施例中,所述站点在所述信道传输带宽上的每一个子信道频带分别设置一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV,其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。例如,如图2所示,假设在整个信道传输带宽划分有频带1~4四个子信道频带,在每一个频带上设置4个intra-NAV和2个inter-NAV,初始值均为0,若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,若解析获得PPDU的duration=10,指定子信道频带为频带1~2,则可设置intra-NAV1=4,intra-NAV2=4,若STA1接收到OBSS1中的STA2发送duration=4、指定子信道频带为频带3~4的PPDU,可设置inter-NAV31=4,inter-NAV41=4,若STA1接收到OBSS2中的STA3发送duration=7、指定子信道频带为频带2~3的PPDU,inter-NAV22=7,inter-NAV32=7。
S702,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S702可以参见图4所示的步骤S202,在此不再进行赘述。
S703,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S703可以参见图4所示的步骤S203,在此不再进行赘述。
S704,当所述触发帧的调度目标包含所述站点时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个 子信道频带选取为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,本发明实施例步骤S704可以参见图7所示的步骤S504,在此不再进行赘述。
在执行上述步骤S702之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过PPDU的来源判断选择intra-NAV或inter-NAV进行更新。
可选的,若所述PPDU来源于站点所关联的基本服务集BSS,且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration;
获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S602之后步骤H,在此不再进行赘述。
可选的,若所述PPDU来源于重叠基本服务集OBSS,解析所述PPDU以获得时长值duration。
当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
具体实现中,本发明实施例所述步骤可以参见图4所示的在执行上述步骤S502之后步骤F,在此不再进行赘述。
在执行上述步骤S702之后,所述站点还可以执行对CF-END帧的处理步骤,本发明实施例中,可以判断PPDU的类型是否为CF-END帧,若是,可通过判断CF-END帧的来源对intra-NAV的当前值或inter-NAV的当前值进行更新,本发明实施例中,预设值可以为0。
可选的,若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图6所示的在执行上述步骤S602之后步骤I,在此不再进行赘述。
可选的,若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
具体实现中,本发明实施例所述步骤可以参见图6所示的在执行上述步骤S502之后步骤G,在此不再进行赘述。
本发明实施例中,站点在所关联的BSS的信道传输带宽的每一个子信道频带上设置了一个intra-NAV和多个inter-NAV,相比较图7中的实施例除具有减小OBSS干扰和NAV误更新或清除效果以外,还提供了针对特定频带上的与不同OBSS的inter-NAV的清除和更新方法。
请参阅图10,图10是本发明实施例公开的又一种数据传输保护方法的流程示意图,所述方法包括步骤S801-S804。
S801,在所述信道传输带宽的每一个子信道频带上分别设置一个NAV。
具体实施例中,在所述信道传输带宽的每一个子信道频带上分别设置一个NAV,其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。例如,如图2所示,假设在整个信道传输带宽划分有频带1~4四个子信道频带,在频带1~4中分别设置一个NAV,即共4个NAV,NAV的初始值均为0,若站点STA1所关联的BSS的接入点AP1向STA4发送PPDU,STA1同时也会接收到所述PPDU,若解析获得PPDU的duration=10,指定子信道频带为频带1~2,则可设置NAV1=10,NAV2=10,若NAV1=10时,STA1接收到STA2发送duration=4的PPDU,指定子信道频带为频带1,由于duration小于当前NAV的值,则不对NAV1的值 进行设置。
S802,当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
具体实现中,本发明实施例步骤S802可以参见图4所示的步骤S202,在此不再进行赘述。
S803,若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
具体实现中,本发明实施例步骤S803可以参见图4所示的步骤S203,在此不再进行赘述。
S804,当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送。
具体实现中,当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。本发明实施例中,假设信道传输带宽为80MHz,则信道传输带宽可划分为4个20MHz的子信道频带,在每一个子信道频带上设置一个NAV,若约定0表示可用子信道频带允许进行数据传输,非0表示可用子信道频带不允许进行数据传输。本发明实施例可以采用两种方式选取可用子信道频带,第一种方式为若所有指定子信道频带上设置的inter-NAV均等于预设值时,可以将所有指定子信道频带选取为可用子信道频带;第二种方式为若所有指定子信道频带中存在inter-NAV等于预设值的指定子信道频带,将其选取为可用子信道频带,并根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在该确认的频域资源上进行数据帧发送
以图2中的STA1为例,假设存在频带1~4四个子信道频带,各频带上设置的4个NAV的初始值均为0,AP1为STA1的关联接入点,若AP1在频带2~3上调用STA1,可根据第一种方式判断频带2~3上设置的NAV2和NAV3的当前值是否均等于预设值,若是则确定频带2~3为可用子信道频带;或根据第一种方式判 断频带2~3上设置的NAV2和NAV3的当前值中是否存在等于预设值的,例如NAV2的当前值等于预设值而NAV3的当前值不等于预设值,则可以将设置NAV2的频带2选取为可用子信道频带。站点根据触发帧的频域资源调度信息,可以从可用子信道频带中确认站点的传输的频域资源,例如,可用子信道频带为频带2和频带3,则可根据触发帧的中所要求使用的频带2中的4MHz带宽资源,则可以确认站点的传输的频域资源为频带2中的4MHz,并在其上进行数据帧发送以响应所述触发帧。
在另一实施例中,当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为可用子信道频带并发送数据帧以响应所述触发帧。
具体实现中,当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,所述站点将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为可用子信道频带并发送数据帧以响应所述触发帧。本发明实施例中,假设信道传输带宽为80MHz,则信道传输带宽可划分为4个20MHz的子信道频带,在每一个子信道频带上设置一个NAV,若约定0表示可用子信道频带允许进行数据传输,非0表示可用子信道频带不允许进行数据传输,例如若共有频带1~4四个频带,对应设有NAV1~4四个NAV,若其中NAV1和NAV2的当前值来源于关联的BSS,NAV3和NAV4的当前值来源于OBSS,则将设置NAV1和NAV2的频带1~2选取为可用子信道频带。
可选的,通过所述信道传输带宽的子信道频带发送数据帧如上行数据帧的前提条件还包括判断当前的信号强度小于CCA门限或OBSS packet detection level门限。
在执行上述步骤S802之后,所述站点还可以执行对NAV的当前值进行更新的步骤,本发明实施例中,可以通过PPDU的来源判断是否对指定子信道频带相应的NAV进行更新。
可选的,当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在 NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
具体实现中,例如,如图2所示,STA1所获取到的PPDU来源于STA2,或STA1所获取到的PPDU来源于AP1但发送目标不包括STA1,可根据PPDU获取指定子信道频带为频带1~2,duration=5,若对应指定子信道频带的NAV的当前值分别为NAV1=3,NAV2=6,则可以将NAV1更新为5。若PPDU为STA1所关联的BSS所发送且发送目标为STA1时,则不进行更新。
在执行上述步骤S802之后,所述站点还可以执行对CF-END帧的处理步骤,预设值可以为0。
可选的,若接收到的PPDU是CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
具体实现中,以图2所示,若STA1所获得CF-END帧来源于OBSS1,指定子信道频带为频带1~3,假设NAV1和NAV2的当前值也来源于OBSS1,NAV3的当前值来源于关联的BSS,则可以将NAV1和NAV2的当前值更新为预设值0,以清除NAV的当前值。
上述实施例可扩展为在整个带宽上设置一个NAV情况下接收到CF-END帧的处理过程,当整个带宽上设置一个NAV时,若接收到CF-END帧且来源于OBSS,判断所述CF-END帧的来源OBSS与所述NAV的当前值所来源的OBSS是否一致,若一致,则可以将NAV的当前值更新为预设值0,以清除NAV的当前值;若不一致,则不更新NAV的当前值。例如,假设CF-END帧且来源于OBSS2,当前NAV也来源于OBSS2,则可以将当NAV更新为预设值0。
本发明实施例中,站点在所关联的BSS的信道传输带宽的每一个子信道频带上设置了一个NAV,可以通过各频带上的NAV的当前值获取指定子信道频带中的可用子信道频带发送上行数据帧以进行数据传输保护,相比采用单一NAV对信道传输进行控制,避免了可用子信道频带的资源浪费,有效提高了频带利用率。
请参阅图11,图11是本发明实施例公开的一种数据传输保护装置的模块化示意图。如图7所示,所述装置可以包括接收单元11、响应单元12、设置单元13、确认单元14、第一判断单元15、第二判断单元16、解析单元17、第一更新单元18和第二更新单元19,其中:
接收单元11,用于接收站点关联的基本服务集BSS的接入点发送的触发帧。
响应单元12,用于根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
可选的,所述响应单元12用于若所述触发帧的调度目标包含所述站点,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
在另一实施例中,所述响应单元12具体用于当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
可选的,所述响应单元12具体用于当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述BSS的信道传输带宽的全部子信道频带上设置的所有与所监听到的每一个OBSS一一对应的inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
可选的,所述响应单元12具体用于当所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
可选的,所述响应子单元11具体用于当所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用 子信道频带以响应所述触发帧。
可选的,所述响应子单元11用于将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
可选的,所述响应子单元11用于将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
在另一实施例中,所述设置单元13用于在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点 所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在所述信道传输带宽的每一个子信道频带上分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在所述信道传输带宽的每一个子信道频带上分别设置至少一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV。其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
可选的,所述设置单元13用于在所述信道传输带宽的每一个子信道频带上分别设置一个NAV。其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。
当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述BSS的信道传输带宽的全部子信道频带上设置的inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述BSS的信道传输带宽的全部子信道频带上设置的所有与所监听到的每一个OBSS一一对应的inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
在另一实施例中,确认单元14用于在选取可用子信道频带后,根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源, 以在所述确认的频域资源上进行数据帧发送。
在另一实施例中,第一判断单元15用于当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型。
在另一实施例中,第二判断单元16用于若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点。
在另一实施例中,解析单元17用于若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration。
可选的,所述解析单元17用于若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration。
在另一实施例中,第一更新单元18用于若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
可选的,所述第一更新单元18用于获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
可选的,所述第一更新单元18用于当所述全部子信道频带设置一个inter-NAV时,若所述duration大于所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值,采用所述duration对所述inter-NAV的当前值进行更新。
可选的,所述第一更新单元18用于当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration。
可选的,所述第一更新单元18用于当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration。
可选的,所述第一更新单元18用于当所述每一个子信道频带设置一个 inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration。
可选的,所述第一更新单元18用于当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
可选的,所述第一更新单元18用于当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
在另一实施例中,第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置的inter-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置与所述CF-END帧来源相同的inter-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧 来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
可选的,所述第二更新单元19用于若接收到的PPDU是免竞争周期结束CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
上述各单元的具体解释请参见图3~图10的方法实施例,本部分不再详述。
本发明实施例中,可以通过接收站点所关联的BSS的接入点发送的触发帧,并查询BSS的信道传输带宽的子信道频带上设置的至少两个NAV的当前值,通过至少两个NAV的当前值,从BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,通过至少两个NAV对信道传输带宽的数据传输进行控制,可以减小因采用一个NAV而对OBSS造成的传输干扰,且可通过至少两个NAV对信道传输带宽的子信道频带上的数据传输分别进行控制,提高了频带的利用率。
补充实施例1
本发明实施例公开的又一种数据传输保护方法是在所述信道传输带宽的全部子信道频带上设置一个NAV和一个BSS color值。
具体实施例中,所属站点在所述信道传输带宽上设置一个NAV和一个对应设置该NAV所属小区来源的BSS color。其中,所述NAV用于记录所述站点被 禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述BSS color用于记录设置该NAV的PPDU所属BSS的来源。所述BSS color可以来源于所述PPDU中SIG-A携带的BSS color,或者来源于所述PPDU的MAC头部携带的TA值。
站点接收到PPDU时,判断所述PPDU来源包括以下方式。
方式1:根据所述PPDU中SIG-A字段中的BSS color和本BSS的BSS color值是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
方式2:根据所述PPDU的MAC头部携带的TA值和所述站点关联的AP的MAC address是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
站点除了判断所述PPDU的来源外,还判断所述PPDU中SIG-A字段中的TXOP的颗粒度大小。其中TXOP的颗粒度大小用来表示TXOP的最小可分辨间隔,例如表示TXOP的长度为7bit(B0-B6),其中B0表示颗粒度单位,值0代表颗粒度为8us,值1代表颗粒度为128us,B1~B6表示实际的TXOP大小,则8us的颗粒度可以表示的TXOP范围为(8us*value of(B1~B6)),即0~504us,128us的颗粒度可以表示的TXOP范围为(512+128*value of(B1~B6)),即512~8576us。
若所述PPDU来源于本BSS,设置或更新当前NAV的PPDU来自于本BSS,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值的颗粒度由大变到小时,则将NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
可选的,若所述PPDU来源于本BSS,设置或更新当前NAV的PPDU来自于本BSS,则将NAV的当前值更新为所述PPDU的SIG-A字段的TXOP值。
例如,所述PPDU来源于本BSS,设置或更新当前NAV的PPDU来自于本BSS,当前设置或更新的NAV的颗粒度大小为128us,所述PPDU的SIG-A字段中的TXOP值的颗粒度为8us,则将NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
若所述PPDU来源于OBSS,设置或更新当前NAV的PPDU来自于同一个OBSS,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值的颗粒度由大变到 小时,则将NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
可选的,若所述PPDU来源于OBSS,设置或更新当前NAV的PPDU来自于同一个OBSS,则将NAV的当前值更新为所述PPDU的SIG-A字段的TXOP值。
例如,所述PPDU来源于OBSS1,设置或更新当前NAV的PPDU来自于本BSS1,当前设置或更新的NAV的颗粒度大小为128us,所述PPDU的SIG-A字段中的TXOP值的颗粒度为8us,则将NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
若所述PPDU的来源与设置或更新当前NAV的PPDU的来源不相同,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值大于当前NAV的值,则将NAV的当前值更新为所述PPDU的SIG-A字段的TXOP值,同时更新BSS color为所述PPDU来源的BSS color值。当所述PPDU中SIG-A字段中的TXOP域代表TXOP值小于或等于当前NAV的值,则不更新当前NAV和BSS color。
本发明实施例中,可以通过判断接收到的PPDU的来源与设置或更新当前NAV的PPDU来源是否相同,当接收到的PPDU与设置或更新当前NAV的PPDU来源相同,且表示PPDU的SIG-A中的TXOP的颗粒度由大变小时;可选的,若判断收到接收到的PPDU与设置或更新当前NAV的PPDU来源相同,则将当前NAV更新为所述PPDU的SIG-A字段中的TXOP值,来灵活控制NAV的时长,减少对信道的过保护,使得被设置NAV的站点能更早地接入信道,提高信道使用的效率。
补充实施例2
本发明实施例公开的又一种数据传输保护方法是在所述信道传输带宽的全部子信道频带上设置一个intra-NAV和一个inter-NAV。
具体实施例中,所属站点在所述信道传输带宽上设置一个intra-NAV和一个inter-NAV。其中,所述intra-NAV用于记录所述站点被本BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度。
站点接收到PPDU时,判断所述PPDU来源包括以下方式。
方式1:根据所述PPDU中SIG-A字段中的BSS color和本BSS的BSS color值是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
方式2:根据所述PPDU的MAC头部携带的TA值和所述站点关联的AP的MAC address是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
站点除了判断所述PPDU的来源外,还判断所述PPDU中SIG-A字段中的TXOP的颗粒度大小。其中TXOP的颗粒度大小用来表示TXOP的最小可分辨间隔,例如表示TXOP的长度为7bit(B0-B6),其中B0表示颗粒度单位,值0代表颗粒度为8us,值1代表颗粒度为128us,B1~B6表示实际的TXOP大小,则8us的颗粒度可以表示的TXOP范围为(8us*value of(B1~B6)),即0~504us,128us的颗粒度可以表示的TXOP范围为(512+128*value of(B1~B6)),即512~8576us。
若所述PPDU来源于本BSS,设置或更新当前NAV的PPDU来自于本BSS,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值的颗粒度由大变到小时,则将intra-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
可选的,若所述PPDU来自于本BSS,设置或更新当前NAV的PPDU来自于本BSS,则将intra-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
例如,所述PPDU来自于本BSS,设置或更新当前NAV的PPDU来自于本BSS,当前设置或更新的NAV的颗粒度大小为128us,所述PPDU的SIG-A字段中的TXOP值的颗粒度为8us,则将intra-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
若所述PPDU来源于OBSS,设置或更新当前NAV的PPDU来自于同一个OBSS,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值的颗粒度由大变到小时,则将inter-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
可选的,若所述PPDU来自于OBSS,设置或更新当前NAV的PPDU来自于同一个OBSS,则将inter-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
例如,所述PPDU来自于OBSS1,设置或更新当前NAV的PPDU来自于 OBSS1,当前设置或更新的NAV的颗粒度大小为128us,所述PPDU的SIG-A字段中的TXOP值的颗粒度为8us,则将inter-NAV的当前值更新为所述PPDU的SIG-A字段中的TXOP值。
若所述PPDU来自于OBSS,设置或更新当前NAV的PPDU来自于其他OBSS,当所述PPDU中SIG-A字段中的TXOP域代表TXOP值大于当前NAV的值,则将NAV的当前值更新为所述PPDU的SIG-A字段的TXOP值,同时更新BSS color为所述PPDU来源的BSS color值。当所述PPDU中SIG-A字段中的TXOP域代表TXOP值小于或等于当前NAV的值,则不更新当前NAV和BSS color。
本发明实施例中,通过设置一个inter-NAV和一个intra-NAV来区来自分本BSS和OBSS的PPDU对信道的占用时长,当来自本BSS或OBSS的PPDU的SIG-A中的TXOP值的颗粒度有大变小时,更新intra-NAV或inter-NAV的当前值为所述PPDU的SIG-A中的TXOP值来灵活控制站点对信道占用的时长,减少对信道的过保护,使得被设置NAV的站点能更早地接入信道,提高信道使用的效率。
补充实施例3
本发明实施例公开的又一种数据传输保护方法是在所述信道传输带宽的全部子信道频带上设置一个NAV。
当所属站点在接收到PPDU时,判断所述PPDU中的SIG-A字段TXOP域,若所示TXOP域是一个特定值,则将所述NAV的当前值更新为预设值。
具体实现中,若所判断所述PPDU中的SIG-A字段TXOP为全零,可以将所述NAV的当前值更新为0,以清除NAV的当前值。
本发明实施例中,通过设置TXOP域为特定值来起到复位NAV的功能,来灵活控制对信道占用的时长,在站点不需要占用信道时及时释放信道使用权,使得被设置NAV的其他站点能更早地接入信道,提高信道使用的效率。
补充实施例4
本发明实施例公开的又一种数据传输保护方法是在所述信道传输带宽的全部子信道频带上设置一个NAV和一个BSS color值。
具体实施例中,所属站点在所述信道传输带宽上设置一个NAV和一个对应 设置该NAV所属小区来源的BSS color。其中,所述NAV用于记录所述站点被禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述BSS color用于记录设置该NAV的PPDU所属BSS的来源。
站点接收到PPDU时,判断所述PPDU来源包括以下方式。
方式1:根据所述PPDU中SIG-A字段中的BSS color和本BSS的BSS color值是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
方式2:根据所述PPDU的MAC头部携带的TA值和所述站点关联的AP的MAC address是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。站点除了判断所述PPDU的来源外,还判断所述PPDU中SIG-A字段中的TXOP是否为特定值。
若所述PPDU来源的BSS与所述BSS color记录来源一致,则将当前NAV更新为预设值。
若所述PPDU来源的BSS与所述BSS color记录来源不一致,则当前NAV不更新为预设值。
具体实现中,若所判断所述PPDU中的SIG-A字段TXOP域为全零,可以将所述NAV的当前值更新为0,以清除NAV的当前值。
本发明实施例中,通过设置TXOP域为特定值来起到复位NAV的功能,来灵活控制对信道占用的时长,在站点不需要占用信道时及时释放信道使用权,使得被相同来源的PPDU设置了NAV的其他站点能更早地接入信道,提高信道使用的效率。
补充实施例5
本发明实施例公开的又一种数据传输保护方法是在所述信道传输带宽的全部子信道频带上设置一个intra-NAV和一个inter-NAV。
具体实施例中,所属站点在所述信道传输带宽上设置一个intra-NAV和一个inter-NAV。其中,所述intra-NAV用于记录所述站点被本BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频 带上进行数据传输的时间长度。
站点接收到PPDU时,判断所述PPDU来源包括以下方式。
方式1:根据所述PPDU中SIG-A字段中的BSS color和本BSS的BSS color值是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
方式2:根据所述PPDU的MAC头部携带的TA值和所述站点关联的AP的MAC address是否相等。若两者的值相等,则所述PPDU由本BSS传输。若两者的值不相等,则所述PPDU不是由本BSS传输。
站点除了判断所述PPDU的来源外,还判断所述PPDU中SIG-A字段中的TXOP是否为特定值。若所述PPDU来源于本BSS,当所述PPDU中SIG-A字段里的TXOP为特定值,则将intra-NAV更新为预设值。若所述PPDU来源于OBSS,且当所述PPDU中SIG-A字段里的TXOP为特定值,则将inter-NAV更新为预设值。
具体实现中,若所述PPDU来源于本BSS,且判断所述PPDU中的SIG-A字段TXOP域为全零,可以将所述intra-NAV的当前值更新为0,以清除intra-NAV的当前值;若所述PPDU来源于OBSS,且判断所述PPDU中的SIG-A字段TXOP域为全零,可以将所述iner-NAV的当前值更新为0,以清除inter-NAV的当前值
本发明实施例中,通过设置TXOP域为特定值来起到复位NAV的功能,来灵活控制对信道占用的时长,在站点不需要占用信道时及时释放信道使用权,使得被本BSS或OBSS的PPDU设置了NAV的站点能更早地接入信道,提高信道使用的效率。
下面进一步对本发明实施例中涉及的数据传输保护装置进行描述。请参阅图12,图12是本发明实施例公开的一种数据传输保护装置的结构示意图。如图12所示,所述数据传输保护装置可以包括:至少一个处理器1001,例如CPU,至少一个无线通信模块1002,存储器1003,至少一个通信总线1004。通信总线1004用于实现这些组件之间的连接通信。其中,无线通信模块1002可以为数据传输保护装置提供无线网络接入功能,可通过Wifi、蓝牙等于方式与接入点设备进行通信。存储器1003可能包含高速RAM存储器,也可能还包括非易失性 存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1003可选的可以包含至少一个位于远离前述处理器1001的存储装置。
在一些实施方式中,存储器1003存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
操作系统10031,包含各种系统程序,用于实现各种基础业务以及处理基于硬件的任务;
应用程序10032,包含设备控制服务程序、设备识别服务程序等各种应用程序,用于实现各种应用业务。
具体地,处理器1001用于调用存储器1003中存储的程序,执行以下操作:
当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
在一个发明实施例中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还执行以下步骤:
在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或,
在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度。
在一个发明实施例中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少 两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中用于数据传输的可用子信道频带以响应所述触发帧之前,还执行以下步骤:
在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV;或
在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
在一个发明实施例中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还执行以下步骤:
在所述信道传输带宽的每一个子信道频带上分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或
在所述信道传输带宽的每一个子信道频带上分别设置一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV;
其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
在一个实施例中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还执行以下步骤:
在所述信道传输带宽的每一个子信道频带上分别设置一个NAV;
其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。
在一个实施例中,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,具体执行以下步骤:
当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧;
当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
在一个实施例中,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,具体执行以下步骤:
当所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;或
当所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
在一个实施例中,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,具体执行以下步骤:
将所述NAV的当前值等于所述预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;或
将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为用于 数据传输的可用子信道频带以响应所述触发帧。
在一个实施例中,还执行以下步骤:
在选取可用子信道频带后,根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在所述确认的频域资源上进行数据帧发送。
在一个实施例中,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还执行以下步骤:
当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型;
若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点;
若所述触发帧的调度目标包含所述站点,执行根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧的步骤。
在一个实施例中,所述判断所述PPDU来源之后,还执行以下步骤:
若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration;
若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration;或
获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
在一个实施例中,所述判断所述PPDU的来源之后,还执行以下步骤:
若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration;
当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全 部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration;
当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration;
当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration;
当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
在一个实施例中,所述接收到PPDU之后,还执行以下步骤:
当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
在一个实施例中,所述当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型之后,还执行以下步骤:
若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV 的当前值更新为预设值。
在一个实施例中,还执行以下步骤:
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置与所述CF-END帧来源相同的所述OBSS对应的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
在一个实施例中,还执行以下步骤:
若接收到的PPDU是免竞争周期结束CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
本发明实施例中,可以通过接收到站点所关联的BSS的接入点发送的触发帧,并查询BSS的信道传输带宽的子信道频带上设置的至少两个NAV的当前值来选择用于数据传输的可用子信道频带以响应所述触发帧,减小了对OBSS的数据传输干扰,同时针对不同的传输带宽分别设置NAV,可以避免频带资源浪费,提高了频带利用率。
上述各发明实施例中的intra-NAV的功能也可以由现有技术中的NAV来执行,即在信道传输带宽的所有子信道频带上设置一个NAV,采用现有技术中的 NAV与上述各实施例中所涉及到的inter-NAV进行组合,采用上述各发明实施例相关步骤或执行单元等实现数据传输保护在本专利保护的范围内。进一步的,仅设置inter-NAV而未设置intra-NAV的采用本发明实施例相关步骤或执行单元等实现数据数据传输保护的方案也在本专利保护的范围内。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上所揭示的仅为本发明较佳的实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所做的等同变化,仍属于本发明所涵盖的范围。

Claims (32)

  1. 一种数据传输保护的方法,其特征在于,包括:
    站点接收其关联的基本服务集BSS的接入点发送的触发帧;
    根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
  2. 根据权利要求1所述的方法,其特征在于,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
    在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或,
    在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度。
  3. 根据权利要求1所述的方法,其特征在于,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
    在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV;或
    在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
  4. 根据权利要求1所述的方法,其特征在于,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
    在所述信道传输带宽的每一个子信道频带上分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或
    在所述信道传输带宽的每一个子信道频带上分别设置一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
  5. 根据权利要求1所述的方法,其特征在于,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
    在所述信道传输带宽的每一个子信道频带上分别设置一个NAV;
    其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。
  6. 根据权利要求2所述的方法,其特征在于,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,包括:
    当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧;
    当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述inter-NAV的当前值均等于预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
  7. 根据权利要求3或4所述的方法,其特征在于,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧,包括:
    当所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;
    当所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
  8. 根据权利要求5所述的方法,其特征在于,所述根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发 帧,包括:
    将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;或
    将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
  9. 根据权利要求1-8任意一项所述的方法,其特征在于,所述方法还包括:在选取可用子信道频带后,根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在所述确认的频域资源上进行数据帧发送。
  10. 根据权利要求1-9任意一项所述的方法,其特征在于,所述当接收到站点所关联的基本服务集BSS的接入点发送的触发帧时,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧之前,还包括:
    当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型;
    若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点;
    若所述触发帧的调度目标包含所述站点,执行根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧的步骤。
  11. 根据权利要求10所述的方法,其特征在于,所述判断所述PPDU来源之后,还包括:
    若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration;
    若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration;或
    获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
  12. 根据权利要求10所述的方法,其特征在于,所述判断所述PPDU的来源之后,还包括:
    若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration;
    当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration;
    当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration;
    当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration;
    当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
  13. 根据权利要求10所述的方法,其特征在于,接收到PPDU之后,还包 括:
    当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
  14. 根据权利要求10所述的方法,其特征在于,所述当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型之后,还包括:
    若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV的当前值更新为预设值。
  15. 根据权利要求10所述的方法,其特征在于,还包括:
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置与所述CF-END帧来源相同的所述OBSS对应的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
  16. 根据权利要求10所述的方法,其特征在于,还包括:
    若接收到的PPDU是免竞争周期结束CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
  17. 一种数据传输保护装置,其特征在于,包括:
    接收单元,用于接收站点关联的基本服务集BSS的接入点发送的触发帧;
    响应单元,用于可用子信道频带根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取用于数据传输的可用子信道频带以响应所述触发帧。
  18. 根据权利要求17所述的装置,其特征在于,设置单元用于:
    在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或,
    在站点所关联的基本服务集BSS的信道传输带宽的全部子信道频带上共设置一个intra-NAV和至少一个与所监听到的每一个重叠基本服务集OBSS分别对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度。
  19. 根据权利要求17所述的装置,其特征在于,设置单元用于:
    在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV;或
    在所述信道传输带宽的全部子信道频带上共设置一个intra-NAV和在所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在所述信道传输带宽的全部子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
  20. 根据权利要求17所述的装置,其特征在于,设置单元用于:
    在所述信道传输带宽的每一个子信道频带上分别设置两个网络分配矢量NAV,包括一个intra-NAV和一个inter-NAV;或
    在所述信道传输带宽的每一个子信道频带上分别设置至少一个intra-NAV和至少一个与所监听到的重叠基本服务集OBSS一一对应的inter-NAV;
    其中,所述intra-NAV用于记录所述站点被所述BSS禁止在设置所述intra-NAV的子信道频带上进行数据传输的时间长度,所述inter-NAV用于记录被所述站点所监听到的OBSS禁止在设置所述inter-NAV的子信道频带上进行数据传输的时间长度。
  21. 根据权利要求17所述的装置,其特征在于,设置单元用于:
    在所述信道传输带宽的每一个子信道频带上分别设置一个NAV;
    其中,所述NAV用于记录所述站点被除所述站点以外的其它站点或接入点禁止在设置所述NAV的子信道频带上进行数据传输的时间长度。
  22. 根据权利要求18所述的装置,其特征在于,所述响应单元具体用于:
    当所述信道传输带宽的全部子信道频带上设置一个inter-NAV时,若所述inter-NAV的当前值等于预设值,选择所述信道传输带宽的全部子信道频带为 用于数据传输的可用子信道频带以响应所述触发帧;
    当所述信道传输带宽的全部子信道频带上设置至少一个与所监听到的每一个OBSS一一对应的inter-NAV时,若所述inter-NAV的当前值均等于所述预设值,选择所述信道传输带宽的全部子信道频带为用于数据传输的可用子信道频带以响应所述触发帧。
  23. 根据权利要求19或20所述的装置,其特征在于,所述响应单元具体用于:
    当所述信道传输带宽的每一个子信道频带上分别设置一个inter-NAV时,将所述inter-NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;
    当所述信道传输带宽的每一个子信道频带上分别设置至少一个与所监听到的每一个重叠基本服务集OBSS一一对应的inter-NAV时,若存在至少一个子信道频带,其设置的所有所述inter-NAV的当前值均等于预设值,将所述至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
  24. 根据权利要求21所述的装置,其特征在于,所述响应单元具体用于:
    将所述NAV的当前值等于预设值的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧;或
    将所述NAV的当前值来源于所述BSS的至少一个子信道频带选取为用于数据传输的可用子信道频带以响应所述触发帧。
  25. 根据权利要求17-24任意一项所述的装置,其特征在于,还包括:
    确认单元,用于在选取可用子信道频带后,根据所述触发帧的频域资源调度信息,从可用子信道频带中确认站点的传输的频域资源,以在所述确认的频域资源上进行数据帧发送。
  26. 根据权利要求16-25任意一项所述的装置,其特征在于,还包括:
    第一判断单元,用于当接收到PPDU时,判断所述PPDU来源,并判断所述PPDU的类型;
    第二判断单元,用于若所述PPDU来源于站点所关联的基本服务集BSS的接入点且为触发帧,判断所述触发帧的调度目标是否包含所述站点;
    所述响应单元,还用于若所述触发帧的调度目标包含所述站点,根据所述BSS的信道传输带宽的子信道频带上设置的至少两个网络分配矢量NAV的当前值,从所述BSS的信道传输带宽中选取可用子信道频带并发送数据帧以响应所述触发帧。
  27. 根据权利要求26所述的装置,其特征在于,还包括:
    解析单元,用于若所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标,获取所述PPDU中的时长值duration;
    第一更新单元,用于若所述信道传输带宽的全部子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration;或
    获取所述PPDU中指定子信道频带,若存在所述指定子信道频带上设置的intra-NAV的当前值小于所述duration,将所述intra-NAV的当前值更新为所述duration。
  28. 根据权利要求26所述的装置,其特征在于,还包括:
    解析单元,用于若所述PPDU来源于重叠基本服务集OBSS,获取所述PPDU中的时长值duration;
    第一更新单元,用于当所述全部子信道频带设置一个inter-NAV时,若所述duration大于所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值,采用所述duration对所述inter-NAV的当前值进行更新;
    所述第一更新单元,还用于当所述全部子信道频带设置一个inter-NAV时,若所述信道传输带宽的全部子信道频带上设置的inter-NAV的当前值小于所述duration,更新所述inter-NAV的当前值为所述duration;
    所述第一更新单元,还用于当所述全部子信道频带设置至少一个与所述站点所监听到的OBSS分别对应的inter-NAV时,若所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV的当前值小于所述duration,将所述与所述duration的PPDU来源相同的OBSS对应的inter-NAV更新为所述duration;
    所述第一更新单元,还用于当所述每一个子信道频带设置一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在所述inter-NAV的当前值小于所述duration,将指定子信道频带中小于所述duration的所述inter-NAV的当前值更新为所述duration;
    所述第一更新单元,还用于当所述每一个子信道频带上的每一个所监听到的OBSS分别对应一个inter-NAV时,获取所述PPDU中指定子信道频带,若所述指定子信道频带中存在与所述PPDU来源的OBSS对应的inter-NAV,其当前值小于所述duration,将在所述目标指定子信道频带上设置的小于所述duration且与所述PPDU来源的OBSS一一对应的inter-NAV的当前值更新为所述duration。
  29. 根据权利要求26所述的装置,其特征在于,还包括:
    第一更新单元,用于当所述PPDU来源于重叠基本服务集OBSS或当所述PPDU来源于站点所关联的基本服务集BSS且所述站点不是所述PPDU的发送目标时,获取所述PPDU中指定子信道频带和时长值duration,若所述指定子信道频带中存在NAV的当前值小于所述duration的指定子信道频带,将所述指定子信道频带中小于所述duration的所述NAV的当前值更新为所述duration。
  30. 根据权利要求根据权利要求26所述的装置,其特征在于,第二更新单元用于:
    若接收到的免竞争周期结束CF-END帧来源于所述BSS,将所述站点在所述BSS的信道传输带宽的全部子信道频带上设置的intra-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于所述BSS,获取所述CF-END帧中的指定子信道频带,并将所述站点在指定子信道频带上设置的intra-NAV 的当前值更新为预设值。
  31. 根据权利要求根据权利要求26所述的装置,其特征在于,所述第二更新单元还用于:
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,将所述站点在所述全部子信道频带上设置与所述CF-END帧来源相同的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将所述指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将与所述CF-END帧来源相同的OBSS对应的指定子信道频带上设置的inter-NAV的当前值更新为预设值;或
    若接收到的免竞争周期结束CF-END帧来源于重叠基本服务集OBSS,获取所述CF-END帧中指定子信道频带,并将每一个指定子信道频带上分别设置的与所述CF-END帧来源相同的OBSS一一对应的所有inter-NAV的当前值更新为预设值。
  32. 根据权利要求26所述的装置,其特征在于,所述第二更新单元还用于:
    若接收到的PPDU是免竞争周期结束CF-END帧,获取所述CF-END帧中的指定子信道频带,若所述指定子信道频带上设置的NAV的当前值的来源与所述CF-END帧的来源一致,将所述NAV的当前值更新为预设值。
PCT/CN2016/104361 2015-12-08 2016-11-02 一种数据传输保护方法及其装置 WO2017097067A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16872259.3A EP3373682B1 (en) 2015-12-08 2016-11-02 Data transmission protection method and apparatus thereof
ES16872259T ES2899354T3 (es) 2015-12-08 2016-11-02 Procedimiento de protección de transmisión de datos y aparato para el mismo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510897813 2015-12-08
CN201510897813.X 2015-12-08
CN201610454706.4 2016-06-21
CN201610454706.4A CN106856629B (zh) 2015-12-08 2016-06-21 一种数据传输保护方法及其装置

Publications (1)

Publication Number Publication Date
WO2017097067A1 true WO2017097067A1 (zh) 2017-06-15

Family

ID=59013722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104361 WO2017097067A1 (zh) 2015-12-08 2016-11-02 一种数据传输保护方法及其装置

Country Status (4)

Country Link
CN (1) CN111787626B (zh)
ES (1) ES2899354T3 (zh)
HU (1) HUE055924T2 (zh)
WO (1) WO2017097067A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462524A (zh) * 2001-05-15 2003-12-17 皇家菲利浦电子有限公司 用于避免工作在混合协调功能下的ieee802.00无线局域网中冲突的重叠网络分配矢量
US20080267162A1 (en) * 2007-04-30 2008-10-30 Mathilde Benveniste Method and Apparatus Performing Express Forwarding Bypass for Time-Critical Frames
CN104066198A (zh) * 2013-03-22 2014-09-24 中兴通讯股份有限公司 无线局域网络中选择信道的方法及系统
CN104883711A (zh) * 2015-04-28 2015-09-02 江苏中兴微通信息科技有限公司 一种增强型动态带宽机制及其收发装置
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971350B1 (en) * 2011-04-20 2015-03-03 Marvell International Ltd. Accessing channels in a multi-channel communication system
CN104284441B (zh) * 2013-07-12 2019-04-19 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
KR20160074518A (ko) * 2013-10-05 2016-06-28 엘지전자 주식회사 무선랜 시스템에서 섹터화된 전송기회를 이용한 동작 방법 및 장치
WO2015074237A1 (zh) * 2013-11-22 2015-05-28 华为技术有限公司 一种数据传输方法和数据传输设备
WO2015109603A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 竞争信道的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462524A (zh) * 2001-05-15 2003-12-17 皇家菲利浦电子有限公司 用于避免工作在混合协调功能下的ieee802.00无线局域网中冲突的重叠网络分配矢量
US20080267162A1 (en) * 2007-04-30 2008-10-30 Mathilde Benveniste Method and Apparatus Performing Express Forwarding Bypass for Time-Critical Frames
CN104066198A (zh) * 2013-03-22 2014-09-24 中兴通讯股份有限公司 无线局域网络中选择信道的方法及系统
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点
CN104883711A (zh) * 2015-04-28 2015-09-02 江苏中兴微通信息科技有限公司 一种增强型动态带宽机制及其收发装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373682A4 *

Also Published As

Publication number Publication date
HUE055924T2 (hu) 2022-01-28
ES2899354T3 (es) 2022-03-11
CN111787626A (zh) 2020-10-16
CN111787626B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US11937299B2 (en) Controlling transmissions from multiple user devices via a request-clear technique
JP7309030B2 (ja) マルチリンク通信方法及び装置
US20220279528A1 (en) Wireless communication terminal and wireless communication method for transmitting uplink by multiple users
AU2015327446B2 (en) System and method for power control
CA2943828C (en) Retransmission method at time of sharing transmission opportunity in wireless lan system, and device therefor
US20170338935A1 (en) Wireless communication method and wireless communication device for configuring broadband link
US10827527B2 (en) Channel contention method and apparatus
CN106941731B (zh) 无线通信系统中nav设置方法及相关设备
CN106856629B (zh) 一种数据传输保护方法及其装置
KR20120018221A (ko) Wlan 시스템에서 효율적인 다수 모드 동작을 제공하는 방법 및 시스템
KR102054052B1 (ko) 무선 통신 방법 및 무선 통신 단말
US20160353485A1 (en) Managing medium access for wireless devices
KR102148654B1 (ko) 무선랜 시스템에서 멀티 유저 프레임 전송 방법
WO2017097067A1 (zh) 一种数据传输保护方法及其装置
CN106488580B (zh) 竞争接入方法、竞争接入装置、站点及竞争接入系统
WO2023134581A1 (zh) 信道竞争方法及装置
CN113473621A (zh) 竞争信道的方法和装置
KR102566554B1 (ko) 무선 통신 방법 및 무선 통신 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016872259

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE